51
|
Paquette T, Leblond H, Piché M. Isoflurane anesthesia does not affect spinal cord neurovascular coupling: evidence from decerebrated rats. J Physiol Sci 2019; 69:13-21. [PMID: 29600499 PMCID: PMC10717246 DOI: 10.1007/s12576-018-0607-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/22/2018] [Indexed: 01/22/2023]
Abstract
Neurological examination remains the primary clinical investigation in patients with spinal cord injury. However, neuroimaging methods such as functional magnetic resonance imaging (fMRI) are promising tools for following functional changes in the course of injury, disease and rehabilitation. However, the relationship between neuronal activity and blood flow in the spinal cord on which fMRI relies has been largely overlooked. The objective of this study was to examine neurovascular coupling in the spinal cord of decerebrated rats during electrical stimulation of the sciatic nerve with and without isoflurane anesthesia (1.2%). Local field potentials (LFP) and spinal cord blood flow (SCBF) were recorded simultaneously in the lumbosacral enlargement. Isoflurane did not significantly alter LFP (p = 0.53) and SCBF (p = 0.57) amplitude. Accordingly, neurovascular coupling remained comparable with or without isoflurane anesthesia (p = 0.39). These results support the use of isoflurane in rodents to investigate nociceptive functions of the spinal cord using fMRI.
Collapse
Affiliation(s)
- Thierry Paquette
- Department of Chiropractic, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
- CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
| | - Hugues Leblond
- CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
| | - Mathieu Piché
- Department of Chiropractic, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7.
- CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7.
| |
Collapse
|
52
|
Tang S, Powell EM, Zhu W, Lo FS, Erzurumlu RS, Xu S. Altered Forebrain Functional Connectivity and Neurotransmission in a Kinase-Inactive Met Mouse Model of Autism. Mol Imaging 2019; 18:1536012118821034. [PMID: 30799683 PMCID: PMC6322103 DOI: 10.1177/1536012118821034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022] Open
Abstract
MET, the gene encoding the tyrosine kinase receptor for hepatocyte growth factor, is a susceptibility gene for autism spectrum disorder (ASD). Genetically altered mice with a kinase-inactive Met offer a potential model for understanding neural circuit organization changes in autism. Here, we focus on the somatosensory thalamocortical circuitry because distinct somatosensory sensitivity phenotypes accompany ASD, and this system plays a major role in sensorimotor and social behaviors in mice. We employed resting-state functional magnetic resonance imaging and in vivo high-resolution proton MR spectroscopy to examine neuronal connectivity and neurotransmission of wild-type, heterozygous Met-Emx1, and fully inactive homozygous Met-Emx1 mice. Met-Emx1 brains showed impaired maturation of large-scale somatosensory network connectivity when compared with wild-type controls. Significant sex × genotype interaction in both network features and glutamate/gamma-aminobutyric acid (GABA) balance was observed. Female Met-Emx1 brains showed significant connectivity and glutamate/GABA balance changes in the somatosensory thalamocortical system when compared with wild-type brains. The glutamate/GABA ratio in the thalamus was correlated with the connectivity between the somatosensory cortex and the thalamus in heterozygous Met-Emx1 female brains. The findings support the hypothesis that aberrant functioning of the somatosensory thalamocortical system is at the core of the conspicuous somatosensory behavioral phenotypes observed in Met-Emx1 mice.
Collapse
Affiliation(s)
- Shiyu Tang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth M. Powell
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Wenjun Zhu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Fu-Sun Lo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Reha S. Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
53
|
Watanabe N, Sasaki S, Masamoto K, Hotta H. Vascular Gap Junctions Contribute to Forepaw Stimulation-Induced Vasodilation Differentially in the Pial and Penetrating Arteries in Isoflurane-Anesthetized Rats. Front Mol Neurosci 2018; 11:446. [PMID: 30559647 PMCID: PMC6286957 DOI: 10.3389/fnmol.2018.00446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/19/2018] [Indexed: 12/25/2022] Open
Abstract
Somatosensory stimulation causes dilation of the pial and penetrating arteries and an increase in cerebral blood flow (CBF) in the representative region of the somatosensory cortex. As an underlying mechanism for such stimulation-induced increases in CBF, cerebral artery dilation has been thought to propagate in the vascular endothelium from the parenchyma to the brain surface. Vascular gap junctions may propagate vasodilation. However, the contribution of vascular gap junctions to cerebrovascular regulation induced by somatosensory stimulation is largely unknown. The aim of the present study was to investigate the contribution of vascular gap junctions to the regulation of the pial and penetrating arteries during neuronal activity attributed to somatosensory stimulation. Experiments were performed on male Wistar rats (age: 7-10 weeks) with artificial ventilation under isoflurane anesthesia. For somatosensory stimulation, the left forepaw was electrically stimulated (1.5 mA, 0.5 ms and 10 Hz, for 5 s). The artery in the forelimb area of the right somatosensory cortex was imaged through a cranial window using a two-photon microscope and the diameter was measured. Carbenoxolone (CBX) was intravenously (i.v.) administered, at a dose of 100 mg/kg, to block vascular gap junctions. The forepaw electrical stimulation increased the diameter of the pial and penetrating arteries by 7.0% and 5.0% of the pre-stimulus diameter, respectively, without changing the arterial pressure. After CBX administration, the change in pial artery diameter during forepaw stimulation was attenuated to 3.2%. However, changes in the penetrating artery were not significantly affected. CBF was measured using a laser speckle flowmeter, together with somatosensory-evoked potential (SEP) recorded in the somatosensory cortex. The extent of CBF increase (by 24.1% of the pre-stimulus level) and amplitude of SEP were not affected by CBX administration. The present results suggest that vascular gap junctions, possibly on the endothelium, contribute to pial artery dilation during neuronal activity induced by somatosensory stimulation.
Collapse
Affiliation(s)
- Nobuhiro Watanabe
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Satoshi Sasaki
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Kazuto Masamoto
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan.,Brain Science Inspired Life Support Research Center, The University of Electro-Communications, Tokyo, Japan
| | - Harumi Hotta
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
54
|
Tran CHT, Peringod G, Gordon GR. Astrocytes Integrate Behavioral State and Vascular Signals during Functional Hyperemia. Neuron 2018; 100:1133-1148.e3. [PMID: 30482689 DOI: 10.1016/j.neuron.2018.09.045] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 06/25/2018] [Accepted: 09/24/2018] [Indexed: 01/17/2023]
Abstract
Dynamic changes in astrocyte free Ca2+ regulate synaptic signaling and local blood flow. Although astrocytes are poised to integrate signals from synapses and the vasculature to perform their functional roles, it remains unclear what dictates astrocyte responses during neurovascular coupling under realistic conditions. We examined peri-arteriole and peri-capillary astrocytes in the barrel cortex of active mice in response to sensory stimulation or volitional behaviors. We observed an AMPA and NMDA receptor-dependent elevation in astrocyte endfoot Ca2+ that followed functional hyperemia onset. This delayed astrocyte Ca2+ signal was dependent on the animal's action at the time of measurement as well as a neurovascular pathway that linked to endothelial-derived nitric oxide. A similar elevation in endfoot Ca2+ was evoked using vascular chemogenetics or optogenetics, and opto-stimulated dilation recruited the same nitric oxide pathway as functional hyperemia. These data show that behavioral state and microvasculature influence astrocyte Ca2+ in active mice. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Cam Ha T Tran
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Govind Peringod
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Grant R Gordon
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
55
|
Lee S, Kang BM, Kim JH, Min J, Kim HS, Ryu H, Park H, Bae S, Oh D, Choi M, Suh M. Real-time in vivo two-photon imaging study reveals decreased cerebro-vascular volume and increased blood-brain barrier permeability in chronically stressed mice. Sci Rep 2018; 8:13064. [PMID: 30166586 PMCID: PMC6117335 DOI: 10.1038/s41598-018-30875-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/07/2018] [Indexed: 01/15/2023] Open
Abstract
Chronic stress disrupts brain homeostasis and adversely affects the cerebro-vascular system. Even though the effects of chronic stress on brain system have been extensively studied, there are few in vivo dynamic studies on the effects of chronic stress on the cerebro-vascular system. In this study, the effects of chronic stress on cerebral vasculature and BBB permeability were studied using in vivo two-photon (2p) microscopic imaging with an injection of fluorescence-conjugated dextran. Our real-time 2p imaging results showed that chronic stress reduced the vessel diameter and reconstructed vascular volume, regardless of vessel type and branching order. BBB permeability was investigated with two different size of tracers. Stressed animals exhibited a greater BBB permeability to 40-kDa dextran, but not to 70-kDa dextran, which is suggestive of weakened vascular integrity following stress. Molecular analysis revealed significantly higher VEGFa mRNA expression and a reduction in claudin-5. In summary, chronic stress decreases the size of cerebral vessels and increases BBB permeability. These results may suggest that the sustained decrease in cerebro-vascular volume due to chronic stress leads to a hypoxic condition that causes molecular changes such as VEGF and claudin-5, which eventually impairs the function of BBB.
Collapse
Affiliation(s)
- Sohee Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Bok-Man Kang
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jae Hwan Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jiwoong Min
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hyung Seok Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hyunwoo Ryu
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hyejin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.,Department of Biological Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sungjun Bae
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Daehwan Oh
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Myunghwan Choi
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea. .,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea. .,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea. .,Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| |
Collapse
|
56
|
Mouse fMRI under ketamine and xylazine anesthesia: Robust contralateral somatosensory cortex activation in response to forepaw stimulation. Neuroimage 2018; 177:30-44. [DOI: 10.1016/j.neuroimage.2018.04.062] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022] Open
|
57
|
Bukhari Q, Schroeter A, Rudin M. Increasing isoflurane dose reduces homotopic correlation and functional segregation of brain networks in mice as revealed by resting-state fMRI. Sci Rep 2018; 8:10591. [PMID: 30002419 PMCID: PMC6043584 DOI: 10.1038/s41598-018-28766-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 06/26/2018] [Indexed: 11/23/2022] Open
Abstract
Effects of anesthetics on brain functional networks are not fully understood. In this work, we investigated functional brain networks derived from resting-state fMRI data obtained under different doses of isoflurane in mice using stationary and dynamic functional connectivity (dFC) analysis. Stationary network analysis using FSL Nets revealed a modular structure of functional networks, which could be segregated into a lateral cortical, an associative cortical network, elements of the prefrontal network, a subcortical network, and a thalamic network. Increasing isoflurane dose led to a loss of functional connectivity between the bilateral cortical regions. In addition, dFC analysis revealed a dominance of dynamic functional states (dFS) exhibiting modular structure in mice anesthetized with a low dose of isoflurane, while at high isoflurane levels dFS showing widespread unstructured correlation displayed highest weights. This indicates that spatial segregation across brain functional networks is lost with increasing dose of the anesthetic drug used. To what extent this indicates a state of deep anesthesia remains to be shown. Combining the results of stationary and dynamic FC analysis indicates that increasing isoflurane levels leads to loss of modular network organization, which includes loss of the strong bilateral interactions between homotopic brain areas.
Collapse
Affiliation(s)
- Q Bukhari
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - A Schroeter
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - M Rudin
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland. .,Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
58
|
Paquette T, Jeffrey-Gauthier R, Leblond H, PichÉ M. Functional Neuroimaging of Nociceptive and Pain-Related Activity in the Spinal Cord and Brain: Insights From Neurovascular Coupling Studies. Anat Rec (Hoboken) 2018; 301:1585-1595. [PMID: 29752872 DOI: 10.1002/ar.23854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/22/2018] [Accepted: 03/31/2018] [Indexed: 12/12/2022]
Abstract
Spinal cord and brain processes underlie pain perception, which produces systemic cardiovascular changes. In turn, the autonomic nervous system regulates vascular function in the spinal cord and brain in order to adapt to these systemic changes, while neuronal activity induces local vascular changes. Thus, autonomic regulation and pain processes in the brain and spinal cord are tightly linked and interrelated. The objective of this topical review is to discuss work on neurovascular coupling during nociceptive processing in order to highlight supporting evidence and limitations for the use of cerebral and spinal fMRI to investigate pain mechanisms and spinal nociceptive processes. Work on functional neuroimaging of pain is presented and discussed in relation to available neurovascular coupling studies and related issues. Perspectives on future work are also discussed with an emphasis on differences between the brain and the spinal cord and on different approaches that may be useful to improve current methods, data analyses and interpretation. In summary, this review highlights the lack of data on neurovascular coupling during nociceptive stimulation and indicates that hemodynamic and BOLD responses measured with fMRI may be biased by nonspecific vascular changes. Future neuroimaging studies on nociceptive and pain-related processes would gain further understanding of neurovascular coupling in the brain and spinal cord and should take into account the effects of systemic vascular changes that may affect hemodynamic responses. Anat Rec, 301:1585-1595, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thierry Paquette
- Department of Chiropractic, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Renaud Jeffrey-Gauthier
- Department of Chiropractic, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Hugues Leblond
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Mathieu PichÉ
- Department of Chiropractic, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| |
Collapse
|
59
|
Li Y, Wei W, Wang RK. Capillary flow homogenization during functional activation revealed by optical coherence tomography angiography based capillary velocimetry. Sci Rep 2018. [PMID: 29515156 PMCID: PMC5841298 DOI: 10.1038/s41598-018-22513-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Elaborate modeling study suggests an important role of capillary transit time heterogeneity (CTTH) reduction in brain oxygenation during functional hyperemia. Here, we use optical coherence tomography angiography (OCTA) capillary velocimetry to probe blood flow dynamics in cerebral capillary beds and validate the change in CTTH during functional activation in an in vivo rodent model. Through evaluating flow dynamics and consequent transit time parameters from thousands of capillary vessels within three-dimensional (3-D) tissue volume upon hindpaw electrical stimulation, we observe reductions in both capillary mean transit time (MTT) (9.8% ± 2.2) and CTTH (5.9% ± 1.4) in the hindlimb somatosensory cortex (HLS1). Additionally, capillary flow pattern modification is observed with a significant difference (p < 0.05) between the HLS1 and non-activated cortex regions. These quantitative findings reveal a localized microcirculatory adjustment during functional activation, consistent with previous studies, and support the critical contribution of capillary flow homogenization to brain oxygenation. The OCTA velocimetry is a useful tool to image microcirculatory dynamics in vivo using animal models, enabling a more comprehensive understanding as to hemodynamic-metabolic coupling.
Collapse
Affiliation(s)
- Yuandong Li
- Department of Bioengineering, University of Washington, Seattle, USA
| | - Wei Wei
- Department of Bioengineering, University of Washington, Seattle, USA
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, USA.
| |
Collapse
|
60
|
Hirano Y, Yen CC, Liu JV, Mackel JB, Merkle H, Nascimento GC, Stefanovic B, Silva AC. Investigation of the BOLD and CBV fMRI responses to somatosensory stimulation in awake marmosets (Callithrix jacchus). NMR IN BIOMEDICINE 2018; 31:10.1002/nbm.3864. [PMID: 29285809 PMCID: PMC5841465 DOI: 10.1002/nbm.3864] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/16/2017] [Accepted: 10/24/2017] [Indexed: 06/01/2023]
Abstract
Understanding the spatiotemporal features of the hemodynamic response function (HRF) to brain stimulation is essential for the correct application of neuroimaging methods to study brain function. Here, we investigated the spatiotemporal evolution of the blood oxygen level-dependent (BOLD) and cerebral blood volume (CBV) HRF in conscious, awake marmosets (Callithrix jacchus), a New World non-human primate with a lissencephalic brain and with growing use in biomedical research. The marmosets were acclimatized to head fixation and placed in a 7-T magnetic resonance imaging (MRI) scanner. Somatosensory stimulation (333-μs pulses; amplitude, 2 mA; 64 Hz) was delivered bilaterally via pairs of contact electrodes. A block design paradigm was used in which the stimulus duration increased in pseudo-random order from a single pulse up to 256 electrical pulses (4 s). For CBV measurements, 30 mg/kg of ultrasmall superparamagnetic ironoxide particles (USPIO) injected intravenously, were used. Robust BOLD and CBV HRFs were obtained in the primary somatosensory cortex (S1), secondary somatosensory cortex (S2) and caudate at all stimulus conditions. In particular, BOLD and CBV responses to a single 333-μs-long stimulus were reliably measured, and the CBV HRF presented shorter onset time and time to peak than the BOLD HRF. Both the size of the regions of activation and the peak amplitude of the HRFs grew quickly with increasing stimulus duration, and saturated for stimulus durations greater than 1 s. Onset times in S1 and S2 were faster than in caudate. Finally, the fine spatiotemporal features of the HRF in awake marmosets were similar to those obtained in humans, indicating that the continued refinement of awake non-human primate models is essential to maximize the applicability of animal functional MRI studies to the investigation of human brain function.
Collapse
Affiliation(s)
- Yoshiyuki Hirano
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1065 USA
| | - Cecil C. Yen
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1065 USA
| | - Junjie V. Liu
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1065 USA
| | - Julie B. Mackel
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1065 USA
| | - Hellmut Merkle
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1065 USA
| | - George C. Nascimento
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1065 USA
| | - Bojana Stefanovic
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1065 USA
| | - Afonso C. Silva
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1065 USA
| |
Collapse
|
61
|
Cudmore RH, Dougherty SE, Linden DJ. Cerebral vascular structure in the motor cortex of adult mice is stable and is not altered by voluntary exercise. J Cereb Blood Flow Metab 2017; 37:3725-3743. [PMID: 28059584 PMCID: PMC5718320 DOI: 10.1177/0271678x16682508] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/24/2016] [Accepted: 10/30/2016] [Indexed: 01/09/2023]
Abstract
The cerebral vasculature provides blood flow throughout the brain, and local changes in blood flow are regulated to match the metabolic demands of the active brain regions. This neurovascular coupling is mediated by real-time changes in vessel diameter and depends on the underlying vascular network structure. Neurovascular structure is configured during development by genetic and activity-dependent factors. In adulthood, it can be altered by experiences such as prolonged hypoxia, sensory deprivation and seizure. Here, we have sought to determine whether exercise could alter cerebral vascular structure in the adult mouse. We performed repeated in vivo two-photon imaging in the motor cortex of adult transgenic mice expressing membrane-anchored green fluorescent protein in endothelial cells (tyrosine endothelial kinase 2 receptor (Tie2)-Cre:mTmG). This strategy allows for high-resolution imaging of the vessel walls throughout the lifespan. Vascular structure, as measured by capillary branch point number and position, segment diameter and length remained stable over a time scale of months as did pericyte number and position. Furthermore, we compared the vascular structure before, during, and after periods of voluntary wheel running and found no alterations in these same parameters. In both running and control mice, we observed a low rate of capillary segment subtraction. Interestingly, these rare subtraction events preferentially remove short vascular loops.
Collapse
Affiliation(s)
- Robert H Cudmore
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah E Dougherty
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J Linden
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
62
|
Functional networks and network perturbations in rodents. Neuroimage 2017; 163:419-436. [DOI: 10.1016/j.neuroimage.2017.09.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022] Open
|
63
|
Disturbances in the control of capillary flow in an aged APP swe/PS1ΔE9 model of Alzheimer's disease. Neurobiol Aging 2017; 62:82-94. [PMID: 29131981 DOI: 10.1016/j.neurobiolaging.2017.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 02/08/2023]
Abstract
Vascular changes are thought to contribute to the development of Alzheimer's disease, and both cerebral blood flow and its responses during neural activation are reduced before Alzheimer's disease symptoms onset. One hypothetical explanation is that capillary dysfunction reduces oxygen extraction efficacy. This study compares the morphology and hemodynamics of the microvasculature in the somatosensory cortex of 18-month-old APPSWE/PS1ΔE9 (transgenic [Tg]) mice and wild-type (WT) littermates. In particular, the extent to which their capillary transit times homogenize during functional activation was measured and compared. Capillary length density was similar in both groups but capillary blood flow during rest was lower in the Tg mice, indicating that cortical oxygen availability is reduced. The capillary hemodynamic response to functional activation was larger, and lasted longer in Tg mice than in WT mice. The homogenization of capillary transit times during functional activation, which we previously demonstrated in young mice, was absent in the Tg mice. This study demonstrates that both neurovascular coupling and capillary function are profoundly disturbed in aged Tg and WT mice.
Collapse
|
64
|
Ma J, Ma Y, Dong B, Bandet MV, Shuaib A, Winship IR. Prevention of the collapse of pial collaterals by remote ischemic perconditioning during acute ischemic stroke. J Cereb Blood Flow Metab 2017; 37:3001-3014. [PMID: 27909265 PMCID: PMC5536804 DOI: 10.1177/0271678x16680636] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/23/2016] [Accepted: 10/30/2016] [Indexed: 02/05/2023]
Abstract
Collateral circulation is a key variable determining prognosis and response to recanalization therapy during acute ischemic stroke. Remote ischemic perconditioning (RIPerC) involves inducing peripheral ischemia (typically in the limbs) during stroke and may reduce perfusion deficits and brain damage due to cerebral ischemia. In this study, we directly investigated pial collateral flow augmentation due to RIPerC during distal middle cerebral artery occlusion (MCAo) in rats. Blood flow through pial collaterals between the anterior cerebral artery (ACA) and the MCA was assessed in male Sprague Dawley rats using in vivo laser speckle contrast imaging (LSCI) and two photon laser scanning microscopy (TPLSM) during distal MCAo. LSCI and TPLSM revealed that RIPerC augmented collateral flow into distal MCA segments. Notably, while control rats exhibited an initial dilation followed by a progressive narrowing of pial arterioles 60 to 150-min post-MCAo (constricting to 80-90% of post-MCAo peak diameter), this constriction was prevented or reversed by RIPerC (such that vessel diameters increased to 105-110% of post-MCAo, pre-RIPerC diameter). RIPerC significantly reduced early ischemic damage measured 6 h after stroke onset. Thus, prevention of collateral collapse via RIPerC is neuroprotective and may facilitate other protective or recanalization therapies by improving blood flow in penumbral tissue.
Collapse
Affiliation(s)
- Junqiang Ma
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yonglie Ma
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Bin Dong
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Mischa V Bandet
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Ashfaq Shuaib
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Ian R Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Ian R Winship, 12-127 Clinical Sciences Building, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
65
|
Schmid F, Barrett MJP, Jenny P, Weber B. Vascular density and distribution in neocortex. Neuroimage 2017; 197:792-805. [PMID: 28669910 DOI: 10.1016/j.neuroimage.2017.06.046] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/09/2017] [Accepted: 06/20/2017] [Indexed: 12/22/2022] Open
Abstract
An amazingly wide range of complex behavior emerges from the cerebral cortex. Much of the information processing that leads to these behaviors is performed in neocortical circuits that span throughout the six layers of the cortex. Maintaining this circuit activity requires substantial quantities of oxygen and energy substrates, which are delivered by the complex yet well-organized and tightly-regulated vascular system. In this review, we provide a detailed characterization of the most relevant anatomical and functional features of the cortical vasculature. This includes a compilation of the available data on laminar variation of vascular density and the topological aspects of the microvascular system. We also review the spatio-temporal dynamics of cortical blood flow regulation and oxygenation, many aspects of which remain poorly understood. Finally, we discuss some of the important implications of vascular density, distribution, oxygenation and blood flow regulation for (laminar) fMRI.
Collapse
Affiliation(s)
- Franca Schmid
- Institute of Fluid Dynamics, ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland.
| | - Matthew J P Barrett
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Patrick Jenny
- Institute of Fluid Dynamics, ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
66
|
Joseph J, Tomaszewski MR, Quiros-Gonzalez I, Weber J, Brunker J, Bohndiek SE. Evaluation of Precision in Optoacoustic Tomography for Preclinical Imaging in Living Subjects. J Nucl Med 2017; 58:807-814. [PMID: 28126890 DOI: 10.2967/jnumed.116.182311] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022] Open
Abstract
Optoacoustic tomography (OT) is now widely used in preclinical imaging; however, the precision (repeatability and reproducibility) of OT has yet to be determined. Methods: We used a commercial small-animal OT system. Measurements in stable phantoms were used to independently assess the impact of system variables on precision (using coefficient of variation, COV), including acquisition wavelength, rotational position, and frame averaging. Variables due to animal handling and physiology, such as anatomic placement and anesthesia conditions, were then assessed in healthy nude mice using the left kidney and spleen as reference organs. Temporal variation was assessed by repeated measurements over hours and days both in phantoms and in vivo. Sensitivity to small-molecule dyes was determined in phantoms and in vivo; precision was assessed in vivo using IRDye800CW. Results: OT COV in a stable phantom was less than 2.8% across all wavelengths over 30 d. The factors with the greatest impact on signal repeatability in phantoms were rotational position and user experience, both of which still resulted in a COV of less than 4% at 700 nm. Anatomic region-of-interest size showed the highest variation, at 12% and 18% COV in the kidney and spleen, respectively; however, functional SO2 measurements based on a standard operating procedure showed an exceptional reproducibility of less than 4% COV. COV for repeated injections of IRDye800CW was 6.6%. Sources of variability for in vivo data included respiration rate, degree of user experience, and animal placement. Conclusion: Data acquired with our small-animal OT system were highly repeatable and reproducible across subjects and over time. Therefore, longitudinal OT studies may be performed with high confidence when our standard operating procedure is followed.
Collapse
Affiliation(s)
- James Joseph
- Department of Physics and Cancer Research U.K. Cambridge Institute, University of Cambridge, United Kingdom
| | - Michal R Tomaszewski
- Department of Physics and Cancer Research U.K. Cambridge Institute, University of Cambridge, United Kingdom
| | - Isabel Quiros-Gonzalez
- Department of Physics and Cancer Research U.K. Cambridge Institute, University of Cambridge, United Kingdom
| | - Judith Weber
- Department of Physics and Cancer Research U.K. Cambridge Institute, University of Cambridge, United Kingdom
| | - Joanna Brunker
- Department of Physics and Cancer Research U.K. Cambridge Institute, University of Cambridge, United Kingdom
| | - Sarah E Bohndiek
- Department of Physics and Cancer Research U.K. Cambridge Institute, University of Cambridge, United Kingdom
| |
Collapse
|
67
|
Boussida S, Traoré AS, Durif F. Mapping of the brain hemodynamic responses to sensorimotor stimulation in a rodent model: A BOLD fMRI study. PLoS One 2017; 12:e0176512. [PMID: 28441420 PMCID: PMC5404844 DOI: 10.1371/journal.pone.0176512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/12/2017] [Indexed: 12/02/2022] Open
Abstract
Blood Oxygenation Level Dependent functional MRI (BOLD fMRI) during electrical paw stimulation has been widely used in studies aimed at the understanding of the somatosensory network in rats. However, despite the well-established anatomical connections between cortical and subcortical structures of the sensorimotor system, most of these functional studies have been concentrated on the cortical effects of sensory electrical stimulation. BOLD fMRI study of the integration of a sensorimotor input across the sensorimotor network requires an appropriate methodology to elicit functional activation in cortical and subcortical areas owing to the regional differences in both neuronal and vascular architectures between these brain regions. Here, using a combination of low level anesthesia, long pulse duration of the electrical stimulation along with improved spatial and temporal signal to noise ratios, we provide a functional description of the main cortical and subcortical structures of the sensorimotor rat brain. With this calibrated fMRI protocol, unilateral non-noxious sensorimotor electrical hindpaw stimulation resulted in robust positive activations in the contralateral sensorimotor cortex and bilaterally in the sensorimotor thalamus nuclei, whereas negative activations were observed bilaterally in the dorsolateral caudate-putamen. These results demonstrate that, once the experimental setup allowing necessary spatial and temporal signal to noise ratios is reached, hemodynamic changes related to neuronal activity, as preserved by the combination of a soft anesthesia with a soft muscle relaxation, can be measured within the sensorimotor network. Moreover, the observed responses suggest that increasing pulse duration of the electrical stimulus adds a proprioceptive component to the sensory input that activates sensorimotor network in the brain, and that these activation patterns are similar to those induced by digits paw’s movements. These findings may find application in fMRI studies of sensorimotor disorders within cortico-basal network in rodents.
Collapse
|
68
|
GABAergic effect on resting-state functional connectivity: Dynamics under pharmacological antagonism. Neuroimage 2017; 149:53-62. [DOI: 10.1016/j.neuroimage.2017.01.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 12/06/2016] [Accepted: 01/17/2017] [Indexed: 11/19/2022] Open
|
69
|
Westphal R, Simmons C, Mesquita MB, Wood TC, Williams SCR, Vernon AC, Cash D. Characterization of the resting-state brain network topology in the 6-hydroxydopamine rat model of Parkinson's disease. PLoS One 2017; 12:e0172394. [PMID: 28249008 PMCID: PMC5382982 DOI: 10.1371/journal.pone.0172394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 02/03/2017] [Indexed: 01/21/2023] Open
Abstract
Resting-state functional MRI (rsfMRI) is an imaging technology that has recently gained attention for its ability to detect disruptions in functional brain networks in humans, including in patients with Parkinson's disease (PD), revealing early and widespread brain network abnormalities. This methodology is now readily applicable to experimental animals offering new possibilities for cross-species translational imaging. In this context, we herein describe the application of rsfMRI to the unilaterally-lesioned 6-hydroxydopamine (6-OHDA) rat, a robust experimental model of the dopamine depletion implicated in PD. Using graph theory to analyse the rsfMRI data, we were able to provide meaningful and translatable measures of integrity, influence and segregation of the underlying functional brain architecture. Specifically, we confirm that rats share a similar functional brain network topology as observed in humans, characterised by small-worldness and modularity. Interestingly, we observed significantly reduced functional connectivity in the 6-OHDA rats, primarily in the ipsilateral (lesioned) hemisphere as evidenced by significantly lower node degree, local efficiency and clustering coefficient in the motor, orbital and sensorimotor cortices. In contrast, we found significantly, and bilaterally, increased thalamic functional connectivity in the lesioned rats. The unilateral deficits in the cortex are consistent with the unilateral nature of this model and further support the validity of the rsfMRI technique in rodents. We thereby provide a methodological framework for the investigation of brain networks in other rodent experimental models of PD, as well as of animal models in general, for cross-comparison with human data.
Collapse
Affiliation(s)
- Robert Westphal
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Camilla Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Michel B. Mesquita
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Tobias C. Wood
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Steve C. R. Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
70
|
Volumetric Spatial Correlations of Neurovascular Coupling Studied using Single Pulse Opto-fMRI. Sci Rep 2017; 7:41583. [PMID: 28176823 PMCID: PMC5296864 DOI: 10.1038/srep41583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 12/21/2016] [Indexed: 11/21/2022] Open
Abstract
Neurovascular coupling describes the link between neuronal activity and cerebral blood flow. This relationship has been the subject of intense scrutiny, with most previous work seeking to understand temporal correlations that describe neurovascular coupling. However, to date, the study of spatial correlations has been limited to two-dimensional mapping of neuronal or vascular derived signals emanating from the brain’s surface, using optical imaging techniques. Here, we investigate spatial correlations of neurovascular coupling in three dimensions, by applying a single 10 ms pulse of light to trigger optogenetic activation of cortical neurons transduced to express channelrhodopsin2, with concurrent fMRI. We estimated the spatial extent of increased neuronal activity using a model that takes into the account the scattering and absorption of blue light in brain tissue together with the relative density of channelrhodopsin2 expression across cortical layers. This method allows precise modulation of the volume of activated tissue in the cerebral cortex with concurrent three-dimensional mapping of functional hyperemia. Single pulse opto-fMRI minimizes adaptation, avoids heating artefacts and enables confined recruitment of the neuronal activity. Using this novel method, we present evidence for direct proportionality of volumetric spatial neurovascular coupling in the cerebral cortex.
Collapse
|
71
|
Bukhari Q, Schroeter A, Cole DM, Rudin M. Resting State fMRI in Mice Reveals Anesthesia Specific Signatures of Brain Functional Networks and Their Interactions. Front Neural Circuits 2017; 11:5. [PMID: 28217085 PMCID: PMC5289996 DOI: 10.3389/fncir.2017.00005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/16/2017] [Indexed: 01/29/2023] Open
Abstract
fMRI studies in mice typically require the use of anesthetics. Yet, it is known that anesthesia alters responses to stimuli or functional networks at rest. In this work, we have used Dual Regression analysis Network Modeling to investigate the effects of two commonly used anesthetics, isoflurane and medetomidine, on rs-fMRI derived functional networks, and in particular to what extent anesthesia affected the interaction within and between these networks. Experimental data have been used from a previous study (Grandjean et al., 2014). We applied multivariate ICA analysis and Dual Regression to infer the differences in functional connectivity between isoflurane- and medetomidine-anesthetized mice. Further network analysis was performed to investigate within- and between-network connectivity differences between these anesthetic regimens. The results revealed five major networks in the mouse brain: lateral cortical, associative cortical, default mode, subcortical, and thalamic network. The anesthesia regime had a profound effect both on within- and between-network interactions. Under isoflurane anesthesia predominantly intra- and inter-cortical interactions have been observed, with only minor interactions involving subcortical structures and in particular attenuated cortico-thalamic connectivity. In contrast, medetomidine-anesthetized mice displayed subcortical functional connectivity including interactions between cortical and thalamic ICA components. Combining the two anesthetics at low dose resulted in network interaction that constituted the superposition of the interaction observed for each anesthetic alone. The study demonstrated that network modeling is a promising tool for analyzing the brain functional architecture in mice and comparing alterations therein caused by different physiological or pathological states. Understanding the differential effects of anesthetics on brain networks and their interaction is essential when interpreting fMRI data recorded under specific physiological and pathological conditions.
Collapse
Affiliation(s)
- Qasim Bukhari
- Institute of Biomedical Engineering, University of Zurich and ETH Zurich Zurich, Switzerland
| | - Aileen Schroeter
- Institute of Biomedical Engineering, University of Zurich and ETH Zurich Zurich, Switzerland
| | - David M Cole
- Institute of Biomedical Engineering, University of Zurich and ETH ZurichZurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of PsychiatryZurich, Switzerland
| | - Markus Rudin
- Institute of Biomedical Engineering, University of Zurich and ETH ZurichZurich, Switzerland; Institute of Pharmacology and Toxicology, University of ZurichZurich, Switzerland
| |
Collapse
|
72
|
Nikolakopoulou AM, Zhao Z, Montagne A, Zlokovic BV. Regional early and progressive loss of brain pericytes but not vascular smooth muscle cells in adult mice with disrupted platelet-derived growth factor receptor-β signaling. PLoS One 2017; 12:e0176225. [PMID: 28441414 PMCID: PMC5404855 DOI: 10.1371/journal.pone.0176225] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/18/2017] [Indexed: 11/19/2022] Open
Abstract
Pericytes regulate key neurovascular functions of the brain. Studies in pericyte-deficient transgenic mice with aberrant signaling between endothelial-derived platelet-derived growth factor BB (PDGF-BB) and platelet-derived growth factor receptor β (PDGFRβ) in pericytes have contributed to better understanding of the role of pericytes in the brain. Here, we studied PdgfrβF7/F7 mice, which carry seven point mutations that disrupt PDGFRβ signaling causing loss of pericytes and vascular smooth muscle cells (VSMCs) in the developing brain. We asked whether these mice have a stable or progressive vascular phenotype after birth, and whether both pericyte and VSMCs populations are affected in the adult brain. We found an early and progressive region-dependent loss of brain pericytes, microvascular reductions and blood-brain barrier (BBB) breakdown, which were more pronounced in the cortex, hippocampus and striatum than in the thalamus, whereas VSMCs population remained unaffected at the time when pericyte loss was already established. For example, compared to age-matched controls, PdgfrβF7/F7 mice between 4-6 and 36-48 weeks of age developed a region-dependent loss in pericyte coverage (22-46, 24-44 and 4-31%) and cell numbers (36-49, 34-64 and 11-36%), reduction in capillary length (20-39, 13-46 and 1-30%), and an increase in extravascular fibrinogen-derived deposits (3.4-5.2, 2.8-4.1 and 0-3.6-fold) demonstrating BBB breakdown in the cortex, hippocampus and thalamus, respectively. Capillary reductions and BBB breakdown correlated with loss of pericyte coverage. Our data suggest that PdgfrβF7/F7 mice develop an aggressive and rapid vascular phenotype without appreciable early involvement of VSMCs, therefore providing a valuable model to study regional effects of pericyte loss on brain vascular and neuronal functions. This model could be a useful tool for future studies directed at understanding the role of pericytes in the pathogenesis of neurological disorders associated with pericyte loss such as vascular dementia, Alzheimer's disease, amyotrophic lateral sclerosis, stroke and human immunodeficiency virus-associated neurocognitive disorder.
Collapse
Affiliation(s)
- Angeliki Maria Nikolakopoulou
- Department of Physiology and Biophysics and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Zhen Zhao
- Department of Physiology and Biophysics and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Axel Montagne
- Department of Physiology and Biophysics and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Berislav V. Zlokovic
- Department of Physiology and Biophysics and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
73
|
Gutiérrez-Jiménez E, Cai C, Mikkelsen IK, Rasmussen PM, Angleys H, Merrild M, Mouridsen K, Jespersen SN, Lee J, Iversen NK, Sakadzic S, Østergaard L. Effect of electrical forepaw stimulation on capillary transit-time heterogeneity (CTH). J Cereb Blood Flow Metab 2016; 36:2072-2086. [PMID: 26858243 PMCID: PMC5363666 DOI: 10.1177/0271678x16631560] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/26/2015] [Accepted: 12/23/2015] [Indexed: 11/16/2022]
Abstract
Functional hyperemia reduces oxygen extraction efficacy unless counteracted by a reduction of capillary transit-time heterogeneity of blood. We adapted a bolus tracking approach to capillary transit-time heterogeneity estimation for two-photon microscopy and then quantified changes in plasma mean transit time and capillary transit-time heterogeneity during forepaw stimulation in anesthetized mice (C57BL/6NTac). In addition, we analyzed transit time coefficient of variance = capillary transit-time heterogeneity/mean transit time, which we expect to remain constant in passive, compliant microvascular networks. Electrical forepaw stimulation reduced, both mean transit time (11.3% ± 1.3%) and capillary transit-time heterogeneity (24.1% ± 3.3%), consistent with earlier literature and model predictions. We observed a coefficient of variance reduction (14.3% ± 3.5%) during functional activation, especially for the arteriolar-to-venular passage. Such coefficient of variance reduction during functional activation suggests homogenization of capillary flows beyond that expected as a passive response to increased blood flow by other stimuli. This finding is consistent with an active neurocapillary coupling mechanism, for example via pericyte dilation. Mean transit time and capillary transit-time heterogeneity reductions were consistent with the relative change inferred from capillary hemodynamics (cell velocity and flux). Our findings support the important role of capillary transit-time heterogeneity in flow-metabolism coupling during functional activation.
Collapse
Affiliation(s)
| | - Changsi Cai
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Hugo Angleys
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mads Merrild
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kim Mouridsen
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sune Nørhøj Jespersen
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Jonghwan Lee
- Department of Radiology, Harvard Medical School, Boston, USA
| | | | - Sava Sakadzic
- Department of Radiology, Harvard Medical School, Boston, USA
| | - Leif Østergaard
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
74
|
Gao YR, Ma Y, Zhang Q, Winder AT, Liang Z, Antinori L, Drew PJ, Zhang N. Time to wake up: Studying neurovascular coupling and brain-wide circuit function in the un-anesthetized animal. Neuroimage 2016; 153:382-398. [PMID: 27908788 PMCID: PMC5526447 DOI: 10.1016/j.neuroimage.2016.11.069] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/18/2016] [Accepted: 11/27/2016] [Indexed: 01/08/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) has allowed the noninvasive study of task-based and resting-state brain dynamics in humans by inferring neural activity from blood-oxygenation-level dependent (BOLD) signal changes. An accurate interpretation of the hemodynamic changes that underlie fMRI signals depends on the understanding of the quantitative relationship between changes in neural activity and changes in cerebral blood flow, oxygenation and volume. While there has been extensive study of neurovascular coupling in anesthetized animal models, anesthesia causes large disruptions of brain metabolism, neural responsiveness and cardiovascular function. Here, we review work showing that neurovascular coupling and brain circuit function in the awake animal are profoundly different from those in the anesthetized state. We argue that the time is right to study neurovascular coupling and brain circuit function in the awake animal to bridge the physiological mechanisms that underlie animal and human neuroimaging signals, and to interpret them in light of underlying neural mechanisms. Lastly, we discuss recent experimental innovations that have enabled the study of neurovascular coupling and brain-wide circuit function in un-anesthetized and behaving animal models.
Collapse
Affiliation(s)
- Yu-Rong Gao
- Neuroscience Graduate Program, Pennsylvania State University, University Park, PA 16802, Unidted States; Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Yuncong Ma
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Qingguang Zhang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Aaron T Winder
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Zhifeng Liang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Lilith Antinori
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Patrick J Drew
- Neuroscience Graduate Program, Pennsylvania State University, University Park, PA 16802, Unidted States; Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, Unidted States; Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, Unidted States; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, Unidted States.
| | - Nanyin Zhang
- Neuroscience Graduate Program, Pennsylvania State University, University Park, PA 16802, Unidted States; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, Unidted States.
| |
Collapse
|
75
|
Schmid F, Wachsmuth L, Schwalm M, Prouvot PH, Jubal ER, Fois C, Pramanik G, Zimmer C, Faber C, Stroh A. Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings. J Cereb Blood Flow Metab 2016; 36:1885-1900. [PMID: 26661247 PMCID: PMC5094300 DOI: 10.1177/0271678x15619428] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/03/2015] [Indexed: 11/16/2022]
Abstract
Encoding of sensory inputs in the cortex is characterized by sparse neuronal network activation. Optogenetic stimulation has previously been combined with fMRI (ofMRI) to probe functional networks. However, for a quantitative optogenetic probing of sensory-driven sparse network activation, the level of similarity between sensory and optogenetic network activation needs to be explored. Here, we complement ofMRI with optic fiber-based population Ca2+ recordings for a region-specific readout of neuronal spiking activity in rat brain. Comparing Ca2+ responses to the blood oxygenation level-dependent signal upon sensory stimulation with increasing frequencies showed adaptation of Ca2+ transients contrasted by an increase of blood oxygenation level-dependent responses, indicating that the optical recordings convey complementary information on neuronal network activity to the corresponding hemodynamic response. To study the similarity of optogenetic and sensory activation, we quantified the density of cells expressing channelrhodopsin-2 and modeled light propagation in the tissue. We estimated the effectively illuminated volume and numbers of optogenetically stimulated neurons, being indicative of sparse activation. At the functional level, upon either sensory or optogenetic stimulation we detected single-peak short-latency primary Ca2+ responses with similar amplitudes and found that blood oxygenation level-dependent responses showed similar time courses. These data suggest that ofMRI can serve as a representative model for functional brain mapping.
Collapse
Affiliation(s)
- Florian Schmid
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Miriam Schwalm
- Focus Program translational Neuroscience & Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Pierre-Hugues Prouvot
- Focus Program translational Neuroscience & Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Eduardo Rosales Jubal
- Focus Program translational Neuroscience & Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany.,Faculty of Psychology, Diego Portales University, Santiago, Chile
| | - Consuelo Fois
- Focus Program translational Neuroscience & Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gautam Pramanik
- Focus Program translational Neuroscience & Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Technical University Munich, Munich, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Albrecht Stroh
- Focus Program translational Neuroscience & Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
76
|
Brynildsen JK, Hsu LM, Ross TJ, Stein EA, Yang Y, Lu H. Physiological characterization of a robust survival rodent fMRI method. Magn Reson Imaging 2016; 35:54-60. [PMID: 27580522 DOI: 10.1016/j.mri.2016.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/13/2016] [Accepted: 08/20/2016] [Indexed: 10/21/2022]
Abstract
Anesthetics are commonly used in preclinical functional MRI studies. It is well-appreciated that proper choice of anesthetics is of critical importance for maintaining a physiologically normal range of autonomic functioning. A recent study, using a low dose of dexmedetomidine (active isomer of medetomidine) in combination with a low dose of isoflurane, suggested stable measurements across repeated fMRI experiments in individual animals with each session lasting up to several hours. The rat default mode network has been successfully identified using this preparation, indicating that this protocol minimally disturbs brain network functions. However, medetomidine is known to cause peripheral vasoconstriction, respiratory suppression, and bradycardia, each of which could independently confound the BOLD signal. The goal of this study was to systematically characterize physiological conditions for fMRI experiments under this anesthetic regimen. To this end, we acquired somatosensory stimulation "task-evoked" and resting-state fMRI to evaluate the integrity of neurovascular coupling and brain network function during three time windows (0-30min, 30-90min, and 90-150min) following dexmedetomidine initiation. Results demonstrate that both evoked BOLD response and resting-state fMRI signal remained stable during the 90-150min time window, while autonomic physiological parameters maintained near-normal conditions during this period. Our data suggest that using a spontaneously-inhaled, low dose of isoflurane in combination with a continuous low dose of dexmedetomidine is a viable option for longitudinal imaging studies in rats.
Collapse
Affiliation(s)
- Julia K Brynildsen
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, Suite 200, Baltimore, MD, USA
| | - Li-Ming Hsu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, Suite 200, Baltimore, MD, USA
| | - Thomas J Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, Suite 200, Baltimore, MD, USA
| | - Elliot A Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, Suite 200, Baltimore, MD, USA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, Suite 200, Baltimore, MD, USA
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, Suite 200, Baltimore, MD, USA.
| |
Collapse
|
77
|
Papoti D, Yen CCC, Hung CC, Ciuchta J, Leopold DA, Silva AC. Design and implementation of embedded 8-channel receive-only arrays for whole-brain MRI and fMRI of conscious awake marmosets. Magn Reson Med 2016; 78:387-398. [PMID: 27501382 DOI: 10.1002/mrm.26339] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/20/2016] [Accepted: 06/19/2016] [Indexed: 01/03/2023]
Abstract
PURPOSE The common marmoset (Callithrix jacchus) is a New World primate of increasing interest to neuroscience and in translational brain research. The present work describes the design and implementation of individualized 8-channel receive-only radiofrequency (RF) coil arrays that provide whole-brain coverage and allow anatomical and functional MRI experiments in conscious, awake marmosets. METHODS The coil arrays were designed with their elements embedded inside individualized restraint helmets. The size, geometry, and arrangement of the coil elements were optimized to allow whole-brain coverage. Coil-to-coil decoupling was achieved by a combination of geometric decoupling and low input impedance preamplifiers. The performance of the embedded arrays was compared against that of one 8-channel receive-only array built to fit the external surface of the helmets. RESULTS Three individualized helmets with embedded coil arrays were built for three marmosets. Whole-brain coverage was achieved with high sensitivity extending over the entire cortex. Visual stimulation of conscious awake marmosets elicited robust BOLD fMRI responses in both primary and higher order visual areas of the occipitotemporal cortex. CONCLUSION The high sensitivity provided by embedded receive-only coil arrays allows both anatomical and functional MRI data to be obtained with high spatial resolution in conscious, awake marmosets. Magn Reson Med 78:387-398, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Daniel Papoti
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Cecil Chern-Chyi Yen
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Chia-Chun Hung
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.,Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer Ciuchta
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Afonso C Silva
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
78
|
Sanchez Panchuelo RM, Ackerley R, Glover PM, Bowtell RW, Wessberg J, Francis ST, McGlone F. Mapping quantal touch using 7 Tesla functional magnetic resonance imaging and single-unit intraneural microstimulation. eLife 2016; 5. [PMID: 27154626 PMCID: PMC4898929 DOI: 10.7554/elife.12812] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 05/06/2016] [Indexed: 11/18/2022] Open
Abstract
Using ultra-high field 7 Tesla (7T) functional magnetic resonance imaging (fMRI), we map the cortical and perceptual responses elicited by intraneural microstimulation (INMS) of single mechanoreceptive afferent units in the median nerve, in humans. Activations are compared to those produced by applying vibrotactile stimulation to the unit’s receptive field, and unit-type perceptual reports are analyzed. We show that INMS and vibrotactile stimulation engage overlapping areas within the topographically appropriate digit representation in the primary somatosensory cortex. Additional brain regions in bilateral secondary somatosensory cortex, premotor cortex, primary motor cortex, insula and posterior parietal cortex, as well as in contralateral prefrontal cortex are also shown to be activated in response to INMS. The combination of INMS and 7T fMRI opens up an unprecedented opportunity to bridge the gap between first-order mechanoreceptive afferent input codes and their spatial, dynamic and perceptual representations in human cortex. DOI:http://dx.doi.org/10.7554/eLife.12812.001 The skin contains multiple types of sensory nerves that inform the brain about events occurring on the surface of the body. One way to study how this process works is to insert a very fine needle through the skin to stimulate a single sensory nerve with a small electrical current. This technique – known as intraneural microstimulation – can activate touch responses in the brain without an object actually contacting the skin. Another technique called functional magnetic resonance imaging (fMRI) has been used to measure brain activity. These studies have revealed that when objects come into contact with the skin of the fingers, they stimulate several sensory nerves at the same time, which results in brain activity in a region called the somatosensory cortex. Sanchez Panchuelo, Ackerley et al. combined fMRI and intraneural microstimulation to map brain activity in response to the activation of individual sensory nerves in the fingers of human volunteers. The experiments show that intraneural stimulation activates many areas of the brain that are also activated by mechanical contact. Future work will use this new method to study the brain's response to signals from different types of sensory nerves. DOI:http://dx.doi.org/10.7554/eLife.12812.002
Collapse
Affiliation(s)
- Rosa Maria Sanchez Panchuelo
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Rochelle Ackerley
- Department of Physiology, University of Gothenburg, Göteborg, Sweden.,Laboratoire de Neurosciences Intégratives et Adaptatives, Aix-Marseille University, Marseille, France
| | - Paul M Glover
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Richard W Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Johan Wessberg
- Department of Physiology, University of Gothenburg, Göteborg, Sweden
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Francis McGlone
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
79
|
Berg RMG. Myogenic and metabolic feedback in cerebral autoregulation: Putative involvement of arachidonic acid-dependent pathways. Med Hypotheses 2016; 92:12-7. [PMID: 27241246 DOI: 10.1016/j.mehy.2016.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/09/2016] [Accepted: 04/13/2016] [Indexed: 01/20/2023]
Abstract
The present paper presents a mechanistic model of cerebral autoregulation, in which the dual effects of the arachidonic acid metabolites 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) on vascular smooth muscle mediate the cerebrovascular adjustments to a change in cerebral perfusion pressure (CPP). 20-HETE signalling in vascular smooth muscle mediates myogenic feedback to changes in vessel wall stretch, which may be modulated by metabolic feedback through EETs released from astrocytes and endothelial cells in response to changes in brain tissue oxygen tension. The metabolic feedback pathway is much faster than 20-HETE-dependent myogenic feedback, and the former thus initiates the cerebral autoregulatory response, while myogenic feedback comprises a relatively slower mechanism that functions to set the basal cerebrovascular tone. Therefore, assessments of dynamic cerebral autoregulation, which may provide information on the response time of the cerebrovasculature, may specifically be used to yield information on metabolic feedback mechanisms, while data based on assessments of static cerebral autoregulation represent the integrated functionality of myogenic and metabolic feedback.
Collapse
Affiliation(s)
- Ronan M G Berg
- Department of Clinical Physiology & Nuclear Medicine, Frederiksberg and Bispebjerg Hospitals, Frederiksberg, Denmark.
| |
Collapse
|
80
|
A novel anesthesia regime enables neurofunctional studies and imaging genetics across mouse strains. Sci Rep 2016; 6:24523. [PMID: 27080031 PMCID: PMC4832200 DOI: 10.1038/srep24523] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/30/2016] [Indexed: 12/18/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) has revolutionized neuroscience by opening a unique window that allows neurocircuitry function and pathological alterations to be probed non-invasively across brain disorders. Here we report a novel sustainable anesthesia procedure for small animal neuroimaging that overcomes shortcomings of anesthetics commonly used in rodent fMRI. The significantly improved preservation of cerebrovascular dynamics enhances sensitivity to neural activity changes for which it serves as a proxy in fMRI readouts. Excellent cross-species/strain applicability provides coherence among preclinical findings and is expected to improve translation to clinical fMRI investigations. The novel anesthesia procedure based on the GABAergic anesthetic etomidate was extensively validated in fMRI studies conducted in a range of genetically engineered rodent models of autism and strains commonly used for transgenic manipulations. Etomidate proved effective, yielded long-term stable physiology with basal cerebral blood flow of ~0.5 ml/g/min and full recovery. Cerebrovascular responsiveness of up to 180% was maintained as demonstrated with perfusion- and BOLD-based fMRI upon hypercapnic, pharmacological and sensory stimulation. Hence, etomidate lends itself as an anesthetic-of-choice for translational neuroimaging studies across rodent models of brain disorders.
Collapse
|
81
|
Chang PC, Procissi D, Bao Q, Centeno MV, Baria A, Apkarian AV. Novel method for functional brain imaging in awake minimally restrained rats. J Neurophysiol 2016; 116:61-80. [PMID: 27052584 DOI: 10.1152/jn.01078.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/05/2016] [Indexed: 11/22/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) in rodents holds great promise for advancing our knowledge about human brain function. However, the use of anesthetics to immobilize rodents during fMRI experiments has restricted the type of questions that can be addressed using this technique. Here we describe an innovative procedure to train rats to be constrained without the need of any anesthesia during the whole procedure. We show that with 8-10 days of acclimation rats can be conscious and remain still during fMRI experiments under minimal stress. In addition, we provide fMRI results of conscious rodents in a variety of commonly used fMRI experimental paradigms, and we demonstrate the improved quality of these scans by comparing results when the same rodents were scanned under anesthesia. We confirm that the awake scanning procedure permits an improved evaluation of brain networks and brain response to external stimuli with minimal movement artifact. The present study further advances the field of fMRI in awake rodents, which provide more direct, forward and reverse, translational opportunities regarding brain functional correspondences between human and rodent research.
Collapse
Affiliation(s)
- Pei-Ching Chang
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Daniel Procissi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and
| | - Qiyuan Bao
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Maria Virginia Centeno
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Alex Baria
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - A Vania Apkarian
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois;
| |
Collapse
|
82
|
Lyons DG, Parpaleix A, Roche M, Charpak S. Mapping oxygen concentration in the awake mouse brain. eLife 2016; 5. [PMID: 26836304 PMCID: PMC4775210 DOI: 10.7554/elife.12024] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/25/2016] [Indexed: 01/16/2023] Open
Abstract
Although critical for brain function, the physiological values of cerebral oxygen concentration have remained elusive because high-resolution measurements have only been performed during anesthesia, which affects two major parameters modulating tissue oxygenation: neuronal activity and blood flow. Using measurements of capillary erythrocyte-associated transients, fluctuations of oxygen partial pressure (Po2) associated with individual erythrocytes, to infer Po2 in the nearby neuropil, we report the first non-invasive micron-scale mapping of cerebral Po2 in awake, resting mice. Interstitial Po2 has similar values in the olfactory bulb glomerular layer and the somatosensory cortex, whereas there are large capillary hematocrit and erythrocyte flux differences. Awake tissue Po2 is about half that under isoflurane anesthesia, and within the cortex, vascular and interstitial Po2 values display layer-specific differences which dramatically contrast with those recorded under anesthesia. Our findings emphasize the importance of measuring energy parameters non-invasively in physiological conditions to precisely quantify and model brain metabolism. DOI:http://dx.doi.org/10.7554/eLife.12024.001 Brain cells need a constant supply of oxygen to fuel their activities. This oxygen is delivered by the flow of blood through the vessels in the brain. If the blood flow to brain tissue is cut off as happens in stroke, or if an individual stops breathing, the brain becomes deprived of oxygen and brain cells will be damaged and die. To better understand how the brain works in health and disease, scientists need to learn how much oxygen the blood must deliver to the brain tissue to adequately support the activities of brain cells. Many studies have measured oxygen levels in the brain. However, these studies have looked only roughly and taken measurements from large areas of the brain, or they have involved animals receiving anesthesia, which can alter blood flow and oxygen use in the brain. Recently, scientists discovered that they could measure oxygen concentration at high detail in the brain of anesthetized rodents with a specialized microscope, by using molecules that emit light at a rate that depends on the local oxygen concentration. Now, Lyons et al. have shown that this same technique can be used in mice that are awake. First, a piece of the skull was replaced with glass to create a small transparent window. Then, the animals were allowed to recover for a few weeks, and were trained to get them used to how they would be handled during the experiments. After this period, the oxygen concentrations and blood flow in different parts of the mouse brains were measured in fine detail using the microscope while the animals were awake and relaxed. The experiments showed that oxygen levels in awake resting mice are actually lower than in anesthetized mice, and that oxygen levels differ between different parts of the mouse brain. This first detailed look at oxygen levels in the brain of awake animals will likely lead to more studies. For example, future studies may look at how quickly the brain uses oxygen under normal conditions and what happens in the brain during disease. DOI:http://dx.doi.org/10.7554/eLife.12024.002
Collapse
Affiliation(s)
- Declan G Lyons
- Institut National de la Santé et de la Recherche Médicale, U1128, Paris, France.,Laboratory of Neurophysiology and New Microscopies, Université Paris Descartes, Paris, France
| | - Alexandre Parpaleix
- Institut National de la Santé et de la Recherche Médicale, U1128, Paris, France.,Laboratory of Neurophysiology and New Microscopies, Université Paris Descartes, Paris, France
| | - Morgane Roche
- Institut National de la Santé et de la Recherche Médicale, U1128, Paris, France.,Laboratory of Neurophysiology and New Microscopies, Université Paris Descartes, Paris, France
| | - Serge Charpak
- Institut National de la Santé et de la Recherche Médicale, U1128, Paris, France.,Laboratory of Neurophysiology and New Microscopies, Université Paris Descartes, Paris, France
| |
Collapse
|
83
|
Reimann HM, Hentschel J, Marek J, Huelnhagen T, Todiras M, Kox S, Waiczies S, Hodge R, Bader M, Pohlmann A, Niendorf T. Normothermic Mouse Functional MRI of Acute Focal Thermostimulation for Probing Nociception. Sci Rep 2016; 6:17230. [PMID: 26821826 PMCID: PMC4731789 DOI: 10.1038/srep17230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 10/27/2015] [Indexed: 11/30/2022] Open
Abstract
Combining mouse genomics and functional magnetic resonance imaging (fMRI) provides a promising tool to unravel the molecular mechanisms of chronic pain. Probing murine nociception via the blood oxygenation level-dependent (BOLD) effect is still challenging due to methodological constraints. Here we report on the reproducible application of acute noxious heat stimuli to examine the feasibility and limitations of functional brain mapping for central pain processing in mice. Recent technical and procedural advances were applied for enhanced BOLD signal detection and a tight control of physiological parameters. The latter includes the development of a novel mouse cradle designed to maintain whole-body normothermia in anesthetized mice during fMRI in a way that reflects the thermal status of awake, resting mice. Applying mild noxious heat stimuli to wildtype mice resulted in highly significant BOLD patterns in anatomical brain structures forming the pain matrix, which comprise temporal signal intensity changes of up to 6% magnitude. We also observed sub-threshold correlation patterns in large areas of the brain, as well as alterations in mean arterial blood pressure (MABP) in response to the applied stimulus.
Collapse
Affiliation(s)
- Henning Matthias Reimann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Jan Hentschel
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Jaroslav Marek
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Till Huelnhagen
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Mihail Todiras
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Stefanie Kox
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Russ Hodge
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Michael Bader
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
84
|
Spain A, Howarth C, Khrapitchev AA, Sharp T, Sibson NR, Martin C. Neurovascular and neuroimaging effects of the hallucinogenic serotonin receptor agonist psilocin in the rat brain. Neuropharmacology 2015; 99:210-20. [PMID: 26192543 PMCID: PMC4655865 DOI: 10.1016/j.neuropharm.2015.07.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/22/2015] [Accepted: 07/16/2015] [Indexed: 12/28/2022]
Abstract
The development of pharmacological magnetic resonance imaging (phMRI) has presented the opportunity for investigation of the neurophysiological effects of drugs in vivo. Psilocin, a hallucinogen metabolised from psilocybin, was recently reported to evoke brain region-specific, phMRI signal changes in humans. The present study investigated the effects of psilocin in a rat model using phMRI and then probed the relationship between neuronal and haemodynamic responses using a multimodal measurement preparation. Psilocin (2 mg/kg or 0.03 mg/kg i.v.) or vehicle was administered to rats (N=6/group) during either phMRI scanning or concurrent imaging of cortical blood flow and recording of local field potentials. Compared to vehicle controls psilocin (2 mg/kg) evoked phMRI signal increases in a number of regions including olfactory and limbic areas and elements of the visual system. PhMRI signal decreases were seen in other regions including somatosensory and motor cortices. Investigation of neurovascular coupling revealed that whilst neuronal responses (local field potentials) to sensory stimuli were decreased in amplitude by psilocin administration, concurrently measured haemodynamic responses (cerebral blood flow) were enhanced. The present findings show that psilocin evoked region-specific changes in phMRI signals in the rat, confirming recent human data. However, the results also suggest that the haemodynamic signal changes underlying phMRI responses reflect changes in both neuronal activity and neurovascular coupling. This highlights the importance of understanding the neurovascular effects of pharmacological manipulations for interpreting haemodynamic neuroimaging data.
Collapse
Affiliation(s)
- Aisling Spain
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK; Cancer Research UK & Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Clare Howarth
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK; Cancer Research UK & Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Alexandre A Khrapitchev
- Cancer Research UK & Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | - Nicola R Sibson
- Cancer Research UK & Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Chris Martin
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK.
| |
Collapse
|
85
|
The hemodynamic response to somatosensory stimulation in mice depends on the anesthetic used: Implications on analysis of mouse fMRI data. Neuroimage 2015; 116:40-9. [DOI: 10.1016/j.neuroimage.2015.05.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 11/23/2022] Open
|
86
|
Comparison of stimulus-evoked cerebral hemodynamics in the awake mouse and under a novel anesthetic regime. Sci Rep 2015. [PMID: 26218081 PMCID: PMC4517464 DOI: 10.1038/srep12621] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neural activity is closely followed by a localised change in cerebral blood flow, a process termed neurovascular coupling. These hemodynamic changes form the basis of contrast in functional magnetic resonance imaging (fMRI) and are used as a correlate for neural activity. Anesthesia is widely employed in animal fMRI and neurovascular studies, however anesthetics are known to profoundly affect neural and vascular physiology, particularly in mice. Therefore, we investigated the efficacy of a novel ‘modular’ anesthesia that combined injectable (fentanyl-fluanisone/midazolam) and volatile (isoflurane) anesthetics in mice. To characterize sensory-evoked cortical hemodynamic responses, we used optical imaging spectroscopy to produce functional maps of changes in tissue oxygenation and blood volume in response to mechanical whisker stimulation. Following fine-tuning of the anesthetic regime, stimulation elicited large and robust hemodynamic responses in the somatosensory cortex, characterized by fast arterial activation, increases in total and oxygenated hemoglobin, and decreases in deoxygenated hemoglobin. Overall, the magnitude and speed of evoked hemodynamic responses under anesthesia resembled those in the awake state, indicating that the novel anesthetic combination significantly minimizes the impact of anesthesia. Our findings have broad implications for both neurovascular research and longitudinal fMRI studies that increasingly require the use of genetically engineered mice.
Collapse
|
87
|
Haensel JX, Spain A, Martin C. A systematic review of physiological methods in rodent pharmacological MRI studies. Psychopharmacology (Berl) 2015; 232:489-99. [PMID: 25585682 PMCID: PMC4302233 DOI: 10.1007/s00213-014-3855-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 12/19/2014] [Indexed: 10/28/2022]
Abstract
RATIONALE Pharmacological magnetic resonance imaging (phMRI) provides an approach to study effects of drug challenges on brain processes. Elucidating mechanisms of drug action helps us to better understand the workings of neurotransmitter systems, map brain function or facilitate drug development. phMRI is increasingly used in preclinical research employing rodent models; however, data interpretation and integration are complicated by the use of different experimental approaches between laboratories. In particular, the effects of different anaesthetic regimes upon neuronal and haemodynamic processes and baseline physiology could be problematic. OBJECTIVES This paper investigates how differences in phMRI research methodologies are manifested and considers associated implications, placing particular emphasis on choice of anaesthetic regimes. METHODS A systematic review of rodent phMRI studies was conducted. Factors such as those describing anaesthetic regimes (e.g. agent, dosage) and parameters relating to physiological maintenance (e.g. ventilatory gases) and MRI method were recorded. RESULTS We identified 126 eligible studies and found that the volatile agents isoflurane (43.7 %) and halothane (33.3 %) were most commonly used for anaesthesia, but dosage and mixture of ventilatory gases varied substantially between laboratories. Relevant physiological parameters were usually recorded, although 32 % of studies did not provide cardiovascular measures. CONCLUSIONS Anaesthesia and animal preparation can influence phMRI data profoundly. The variation of anaesthetic type, dosage regime and ventilatory gases makes consolidation of research findings (e.g. within a specific neurotransmitter system) difficult. Standardisation of a small(er) number of preclinical phMRI research methodologies and/or increased consideration of approaches that do not require anaesthesia is necessary to address these challenges.
Collapse
Affiliation(s)
- Jennifer X. Haensel
- Department of Psychology, University of Sheffield, Western Bank, Sheffield, S10 2TP UK
| | - Aisling Spain
- Department of Psychology, University of Sheffield, Western Bank, Sheffield, S10 2TP UK
| | - Chris Martin
- Department of Psychology, University of Sheffield, Western Bank, Sheffield, S10 2TP UK
| |
Collapse
|
88
|
Astrocytic Gq-GPCR-linked IP3R-dependent Ca2+ signaling does not mediate neurovascular coupling in mouse visual cortex in vivo. J Neurosci 2014; 34:13139-50. [PMID: 25253859 DOI: 10.1523/jneurosci.2591-14.2014] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Local blood flow is modulated in response to changing patterns of neuronal activity (Roy and Sherrington, 1890), a process termed neurovascular coupling. It has been proposed that the central cellular pathway driving this process is astrocytic Gq-GPCR-linked IP3R-dependent Ca(2+) signaling, though in vivo tests of this hypothesis are largely lacking. We examined the impact of astrocytic Gq-GPCR and IP3R-dependent Ca(2+) signaling on cortical blood flow in awake, lightly sedated, responsive mice using multiphoton laser-scanning microscopy and novel genetic tools that enable the selective manipulation of astrocytic signaling pathways in vivo. Selective stimulation of astrocytic Gq-GPCR cascades and downstream Ca(2+) signaling with the hM3Dq DREADD (designer receptors exclusively activated by designer drugs) designer receptor system was insufficient to modulate basal cortical blood flow. We found no evidence of observable astrocyte endfeet Ca(2+) elevations following physiological visual stimulation despite robust dilations of adjacent arterioles using cyto-GCaMP3 and Lck-GCaMP6s, the most sensitive Ca(2+) indicator available. Astrocytic Ca(2+) elevations could be evoked when inducing the startle response with unexpected air puffs. However, startle-induced astrocytic Ca(2+) signals did not precede corresponding startle-induced hemodynamic changes. Further, neurovascular coupling was intact in lightly sedated, responsive mice genetically lacking astrocytic IP3R-dependent Ca(2+) signaling (IP3R2 KO). These data demonstrate that astrocytic Gq-GPCR-linked IP3R-dependent Ca(2+) signaling does not mediate neurovascular coupling in visual cortex of awake, lightly sedated, responsive mice.
Collapse
|
89
|
Nasrallah FA, Low SMA, Lew SK, Chen K, Chuang KH. Pharmacological insight into neurotransmission origins of resting-state functional connectivity: α2-adrenergic agonist vs antagonist. Neuroimage 2014; 103:364-373. [PMID: 25241086 DOI: 10.1016/j.neuroimage.2014.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 08/11/2014] [Accepted: 09/03/2014] [Indexed: 12/15/2022] Open
Abstract
Resting-state functional connectivity MRI has emerged as a powerful tool for mapping large-scale neural networks based on synchronous BOLD signal; however, the neurobiological mechanisms are still unknown. To understand its neural substrates, especially the underlying neurotransmission, we applied pharmacological modulation with a receptor specific agonist and antagonist. Resting and evoked electrophysiology and BOLD signals in rat brains were measured under infusion of α2-adrenergic receptor agonist, medetomidine, the antagonist, atipamezole, and the vehicle individually. Both somatosensory BOLD activation and evoked potential were increased significantly under medetomidine compared to the vehicle while atipamezole slightly decreased both. The interhemispheric correlation at the resting state, in contrast, was suppressed by medetomidine but increased by atipamezole in regions with high receptor densities including the somatosensory cortex and thalamus. No change was seen in the caudate putamen, where receptor occupancy is low. The regional difference in connectivity was not related to cerebral blood flow, indicating that BOLD signal correlation is unlikely due to the vascular effects of the drugs. Resting intracortical recording exhibited agonist/antagonist dependent changes in beta and gamma bands that correlated with the BOLD functional connectivity measure. Our results confirm an important role of the adrenergic system on functional connectivity and suggest a neurotransmission basis of the phenomenon.
Collapse
Affiliation(s)
- Fatima A Nasrallah
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
| | - Si-Min Amanda Low
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
| | - Si Kang Lew
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
| | - Kaina Chen
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
| | - Kai-Hsiang Chuang
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore; Clinical Imaging Research Centre, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
90
|
Imaging neurovascular function and functional recovery after stroke in the rat striatum using forepaw stimulation. J Cereb Blood Flow Metab 2014; 34:1483-92. [PMID: 24917039 PMCID: PMC4158660 DOI: 10.1038/jcbfm.2014.103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 12/19/2022]
Abstract
Negative functional magnetic resonance imaging (fMRI) response in the striatum has been observed in several studies during peripheral sensory stimulation, but its relationship between local field potential (LFP) remains to be elucidated. We performed cerebral blood volume (CBV) fMRI and LFP recordings in normal rats during graded noxious forepaw stimulation at nine stimulus pulse widths. Albeit high LFP-CBV correlation was found in the ipsilateral and contralateral sensory cortices (r=0.89 and 0.95, respectively), the striatal CBV responses were neither positively, nor negatively correlated with LFP (r=0.04), demonstrating that the negative striatal CBV response is not originated from net regional inhibition. To further identify whether this negative CBV response can serve as a marker for striatal functional recovery, two groups of rats (n=5 each) underwent 20- and 45-minute middle cerebral artery occlusion (MCAO) were studied. No CBV response was found in the ipsilateral striatum in both groups immediately after stroke. Improved striatal CBV response was observed on day 28 in the 20-minute MCAO group compared with the 45-minute MCAO group (P<0.05). This study shows that fMRI signals could differ significantly from LFP and that the observed negative CBV response has potential to serve as a marker for striatal functional integrity in rats.
Collapse
|
91
|
Gong L, Li B, Wu R, Li A, Xu F. Brain-state dependent uncoupling of BOLD and local field potentials in laminar olfactory bulb. Neurosci Lett 2014; 580:1-6. [PMID: 25079901 DOI: 10.1016/j.neulet.2014.07.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/23/2014] [Accepted: 07/21/2014] [Indexed: 10/25/2022]
Abstract
The neural activities of the olfactory bulb (OB) can be modulated significantly by internal brain states. While blood oxygenation level dependent functional MRI (BOLD-fMRI) has been extensively applied to study OB in small animals, the relationship between BOLD signals and electrophysiological signals remains to be elucidated. Our recent study has revealed a complex relationship between BOLD and local field potentials (LFP) signals in different OB layers during odor stimulation. However, no study has been performed to compare these two types of signals under global brain states. Here, the changes of BOLD and LFP signals in the glomerular, mitral cell, and granular cell layers of the OB under different brain states, which were induced by different concentrations of isoflurane, were sequentially acquired using electrode array and high-resolution MRI. It was found that under deeper anesthesia, the LFP powers in all layers were decreased but the BOLD signals were unexpectedly increased. Furthermore, the decreases of LFP powers were layer-independent, but the increases of BOLD signal were layer-specific, with the order of glomerular>mitral cell>granular cell layer. The results provide new evidence that the direct neural activity levels might not be correlated well with BOLD signals in some cases, and remind us that cautions should be taken to use BOLD signals as the index of neural activities.
Collapse
Affiliation(s)
- Ling Gong
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Li
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiqi Wu
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anan Li
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China.
| |
Collapse
|
92
|
Chao THH, Chen JH, Yen CT. Repeated BOLD-fMRI imaging of deep brain stimulation responses in rats. PLoS One 2014; 9:e97305. [PMID: 24825464 PMCID: PMC4019572 DOI: 10.1371/journal.pone.0097305] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 04/17/2014] [Indexed: 11/18/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) provides a picture of the global spatial activation pattern of the brain. Interest is growing regarding the application of fMRI to rodent models to investigate adult brain plasticity. To date, most rodent studies used an electrical forepaw stimulation model to acquire fMRI data, with α-chloralose as the anesthetic. However, α-chloralose is harmful to animals, and not suitable for longitudinal studies. Moreover, peripheral stimulation models enable only a limited number of brain regions to be studied. Processing between peripheral regions and the brain is multisynaptic, and renders interpretation difficult and uncertain. In the present study, we combined the medetomidine-based fMRI protocol (a noninvasive rodent fMRI protocol) with chronic implantation of an MRI-compatible stimulation electrode in the ventroposterior (VP) thalamus to repetitively sample thalamocortical responses in the rat brain. Using this model, we scanned the forebrain responses evoked by the VP stimulation repeatedly of individual rats over 1 week. Cortical BOLD responses were compared between the 2 profiles obtained at day1 and day8. We discovered reproducible frequency- and amplitude-dependent BOLD responses in the ipsilateral somatosensory cortex (S1). The S1 BOLD responses during the 2 sessions were conserved in maximal response amplitude, area size (size ratio from 0.88 to 0.91), and location (overlap ratio from 0.61 to 0.67). The present study provides a long-term chronic brain stimulation protocol for studying the plasticity of specific neural circuits in the rodent brain by BOLD-fMRI.
Collapse
Affiliation(s)
| | - Jyh-Horng Chen
- Interdisciplinary MRI/MRS Lab, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
93
|
Present status and future challenges of electroencephalography- and magnetic resonance imaging-based monitoring in preclinical models of focal cerebral ischemia. Brain Res Bull 2014; 102:22-36. [PMID: 24462642 DOI: 10.1016/j.brainresbull.2014.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/07/2014] [Accepted: 01/14/2014] [Indexed: 12/16/2022]
Abstract
Animal models are useful tools for better understanding the mechanisms underlying neurological deterioration after an ischemic insult as well as subsequent evolution of changes and recovery of functions. In response to the updated requirements for preclinical investigations of stroke to include relevant functional measurement techniques and biomarker endpoints, we here review the state of knowledge on application of some translational electrophysiological and neuroimaging methods, and in particular, electroencephalography monitoring and magnetic resonance imaging in rodent models of ischemic stroke. This may lead to improvement of diagnostic methods and identification of new therapeutic targets, which would considerably advance the translational value of preclinical stroke research.
Collapse
|
94
|
Abstract
Hemodynamic responses in mice and other species are typically measured under anesthesia. However, anesthesia could influence their relationship to neural activity. To investigate this relationship, we used optical imaging in mouse primary visual cortex (V1). Hemodynamic responses yielded clear maps of retinotopy in both anesthetized and awake mice. However, during wakefulness, responses were four times larger and twice as fast. These differences held whether we induced anesthesia with urethane or isoflurane and whether awake mice were stationary or running on a treadmill. With electrode recordings, we established that the effects of wakefulness reflect changes in neurovascular coupling, not in neural activity. By activating V1 directly via optogenetics, we replicated the effects of wakefulness in terms of timing but not of amplitude. We conclude that neurovascular coupling depends critically on anesthesia and wakefulness: during wakefulness, neural activity is followed by much stronger and quicker hemodynamic responses.
Collapse
|
95
|
Papoti D, Yen CCC, Mackel JB, Merkle H, Silva AC. An embedded four-channel receive-only RF coil array for fMRI experiments of the somatosensory pathway in conscious awake marmosets. NMR IN BIOMEDICINE 2013; 26:1395-1402. [PMID: 23696219 PMCID: PMC4200535 DOI: 10.1002/nbm.2965] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 06/01/2023]
Abstract
fMRI has established itself as the main research tool in neuroscience and brain cognitive research. The common marmoset (Callithrix jacchus) is a non-human primate model of increasing interest in biomedical research. However, commercial MRI coils for marmosets are not generally available. The present work describes the design and construction of a four-channel receive-only surface RF coil array with excellent signal-to-noise ratio (SNR) specifically optimized for fMRI experiments in awake marmosets in response to somatosensory stimulation. The array was designed as part of a helmet-based head restraint system used to prevent motion during the scans. High SNR was obtained by building the coil array using a thin and flexible substrate glued to the inner surface of the restraint helmet, so as to minimize the distance between the array elements and the somatosensory cortex. Decoupling between coil elements was achieved by partial geometrical overlapping and by connecting them to home-built low-input-impedance preamplifiers. In vivo images show excellent coverage of the brain cortical surface with high sensitivity near the somatosensory cortex. Embedding the coil elements within the restraint helmet allowed fMRI data in response to somatosensory stimulation to be collected with high sensitivity and reproducibility in conscious, awake marmosets.
Collapse
Affiliation(s)
| | | | | | | | - Afonso C. Silva
- Address for correspondence: Afonso C. Silva, Ph.D., Chief, Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive MSC 1065, Building 10, Room B1D106, Bethesda, MD, 20892-1065, USA, Phone: +1-301-402-9703, Fax: +1-301-480-2558,
| |
Collapse
|
96
|
Jonckers E, Delgado y Palacios R, Shah D, Guglielmetti C, Verhoye M, Van der Linden A. Different anesthesia regimes modulate the functional connectivity outcome in mice. Magn Reson Med 2013; 72:1103-12. [DOI: 10.1002/mrm.24990] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 01/09/2023]
|
97
|
Nasrallah FA, Tay HC, Chuang KH. Detection of functional connectivity in the resting mouse brain. Neuroimage 2013; 86:417-24. [PMID: 24157920 DOI: 10.1016/j.neuroimage.2013.10.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 11/25/2022] Open
Abstract
Resting-state functional connectivity, manifested as spontaneous synchronous activity in the brain, has been detected by functional MRI (fMRI) across species such as humans, monkeys, and rats. Yet, most networks, especially the classical bilateral connectivity between hemispheres, have not been reliably found in the mouse brain. This could be due to anesthetic effects on neural activity and difficulty in maintaining proper physiology and neurovascular coupling in anesthetized mouse. For example, α2 adrenoceptor agonist, medetomidine, is a sedative for longitudinal mouse fMRI. However, the higher dosage needed compared to rats may suppress the functional synchrony and lead to unilateral connectivity. In this study, we investigated the influence of medetomidine dosage on neural activation and resting-state networks in mouse brain. We show that mouse can be stabilized with dosage as low as 0.1mg/kg/h. The stimulation-induced somatosensory activation was unchanged when medetomidine was increased from 0.1 to 6 and 10 folds. Especially, robust bilateral connectivity can be observed in the primary, secondary somatosensory and visual cortices, as well as the hippocampus, caudate putamen, and thalamus at low dose of medetomidine. Significant suppression of inter-hemispheric correlation was seen in the thalamus, where the receptor density is high, under 0.6mg/kg/h, and in all regions except the caudate, where the receptor density is low, under 1.0mg/kg/h. Furthermore, in mice whose activation was weaker or took longer time to detect, the bilateral connectivity was lower. This demonstrates that, with proper sedation and conservation of neurovascular coupling, similar bilateral networks like other species can be detected in the mouse brain.
Collapse
Affiliation(s)
- Fatima A Nasrallah
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
| | - Hui-Chien Tay
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
| | - Kai-Hsiang Chuang
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore; Clinical Imaging Research Centre, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
98
|
Tsurugizawa T, Nogusa Y, Ando Y, Uneyama H. Different TRPV1-mediated brain responses to intragastric infusion of capsaicin and capsiate. Eur J Neurosci 2013; 38:3628-35. [PMID: 24102723 DOI: 10.1111/ejn.12365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/24/2013] [Accepted: 08/25/2013] [Indexed: 12/20/2022]
Abstract
Capsaicin and capsiate, which is an analogue of capsaicin, are agonists of capsaicin-binding transient potential vanilloid 1 (TRPV1) receptors. However, their physiological effects are different. Capsaicin induces thermogenesis and nociception, while the different kinetics of capsiate result in thermogenesis without nociception in the oral cavity. In the present study, using functional magnetic resonance imaging, we compared the brain activation after intragastric infusion of non-nociceptive levels of capsaicin and capsiate in wild-type and TRPV1-knockout (KO) mice. Capsaicin activated several brain regions, such as the periaqueductal grey (PAG), thalamic nuclei and hypothalamus, including the medial preoptic area (mPOA) and ventromedial hypothalamus (VMH). Most of these areas were not activated in TRPV1-KO mice. Capsiate activated several regions, including the thalamic nuclei, mPOA and VMH but not PAG in wild-type mice. Most of the activated areas were not activated by intragastric capsiate infusion in TRPV1-KO mice. These results demonstrate that TRPV1 is critical for the induction of activation in the hypothalamus by capsaicin and capsiate, and these distinct brain activations could help to explain the individual physiological reactions of capsaicin and capsiate.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Institute for Innovation, Ajinomoto Co., Inc., Suzuki-cho 1-1, Kawasaki-ku, Kawasaki, 210-8601, Japan
| | | | | | | |
Collapse
|
99
|
Nasrallah FA, Lew SK, Low ASM, Chuang KH. Neural correlate of resting-state functional connectivity under α2 adrenergic receptor agonist, medetomidine. Neuroimage 2013; 84:27-34. [PMID: 23948809 DOI: 10.1016/j.neuroimage.2013.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 12/19/2022] Open
Abstract
Correlative fluctuations in functional MRI (fMRI) signals across the brain at rest have been taken as a measure of functional connectivity, but the neural basis of this resting-state MRI (rsMRI) signal is not clear. Previously, we found that the α2 adrenergic agonist, medetomidine, suppressed the rsMRI correlation dose-dependently but not the stimulus evoked activation. To understand the underlying electrophysiology and neurovascular coupling, which might be altered due to the vasoconstrictive nature of medetomidine, somatosensory evoked potential (SEP) and resting electroencephalography (EEG) were measured and correlated with corresponding BOLD signals in rat brains under three dosages of medetomidine. The SEP elicited by electrical stimulation to both forepaws was unchanged regardless of medetomidine dosage, which was consistent with the BOLD activation. Identical relationship between the SEP and BOLD signal under different medetomidine dosages indicates that the neurovascular coupling was not affected. Under resting state, EEG power was the same but a depression of inter-hemispheric EEG coherence in the gamma band was observed at higher medetomidine dosage. Different from medetomidine, both resting EEG power and BOLD power and coherence were significantly suppressed with increased isoflurane level. Such reduction was likely due to suppressed neural activity as shown by diminished SEP and BOLD activation under isoflurane, suggesting different mechanisms of losing synchrony at resting-state. Even though, similarity between electrophysiology and BOLD under stimulation and resting-state implicates a tight neurovascular coupling in both medetomidine and isoflurane. Our results confirm that medetomidine does not suppress neural activity but dissociates connectivity in the somatosensory cortex. The differential effect of medetomidine and its receptor specific action supports the neuronal origin of functional connectivity and implicates the mechanism of its sedative effect.
Collapse
Affiliation(s)
- Fatima A Nasrallah
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
| | | | | | | |
Collapse
|
100
|
Mitochondrial calcium uptake capacity modulates neocortical excitability. J Cereb Blood Flow Metab 2013; 33:1115-26. [PMID: 23591650 PMCID: PMC3705442 DOI: 10.1038/jcbfm.2013.61] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 12/25/2022]
Abstract
Local calcium (Ca(2+)) changes regulate central nervous system metabolism and communication integrated by subcellular processes including mitochondrial Ca(2+) uptake. Mitochondria take up Ca(2+) through the calcium uniporter (mCU) aided by cytoplasmic microdomains of high Ca(2+). Known only in vitro, the in vivo impact of mCU activity may reveal Ca(2+)-mediated roles of mitochondria in brain signaling and metabolism. From in vitro studies of mitochondrial Ca(2+) sequestration and cycling in various cell types of the central nervous system, we evaluated ranges of spontaneous and activity-induced Ca(2+) distributions in multiple subcellular compartments in vivo. We hypothesized that inhibiting (or enhancing) mCU activity would attenuate (or augment) cortical neuronal activity as well as activity-induced hemodynamic responses in an overall cytoplasmic and mitochondrial Ca(2+)-dependent manner. Spontaneous and sensory-evoked cortical activities were measured by extracellular electrophysiology complemented with dynamic mapping of blood oxygen level dependence and cerebral blood flow. Calcium uniporter activity was inhibited and enhanced pharmacologically, and its impact on the multimodal measures were analyzed in an integrated manner. Ru360, an mCU inhibitor, reduced all stimulus-evoked responses, whereas Kaempferol, an mCU enhancer, augmented all evoked responses. Collectively, the results confirm aforementioned hypotheses and support the Ca(2+) uptake-mediated integrative role of in vivo mitochondria on neocortical activity.
Collapse
|