51
|
Chen Q, Lai H. Plant-derived virus-like particles as vaccines. Hum Vaccin Immunother 2013; 9:26-49. [PMID: 22995837 PMCID: PMC3667944 DOI: 10.4161/hv.22218] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/06/2012] [Accepted: 09/13/2012] [Indexed: 02/07/2023] Open
Abstract
Virus-like particles (VLPs) are self-assembled structures derived from viral antigens that mimic the native architecture of viruses but lack the viral genome. VLPs have emerged as a premier vaccine platform due to their advantages in safety, immunogenicity, and manufacturing. The particulate nature and high-density presentation of viral structure proteins on their surface also render VLPs as attractive carriers for displaying foreign epitopes. Consequently, several VLP-based vaccines have been licensed for human use and achieved significant clinical and economical success. The major challenge, however, is to develop novel production platforms that can deliver VLP-based vaccines while significantly reducing production times and costs. Therefore, this review focuses on the essential role of plants as a novel, speedy and economical production platform for VLP-based vaccines. The advantages of plant expression systems are discussed in light of their distinctive posttranslational modifications, cost-effectiveness, production speed, and scalability. Recent achievements in the expression and assembly of VLPs and their chimeric derivatives in plant systems as well as their immunogenicity in animal models are presented. Results of human clinical trials demonstrating the safety and efficacy of plant-derived VLPs are also detailed. Moreover, the promising implications of the recent creation of "humanized" glycosylation plant lines as well as the very recent approval of the first plant-made biologics by the U. S. Food and Drug Administration (FDA) for plant production and commercialization of VLP-based vaccines are discussed. It is speculated that the combined potential of plant expression systems and VLP technology will lead to the emergence of successful vaccines and novel applications of VLPs in the near future.
Collapse
Affiliation(s)
- Qiang Chen
- Center for Infectious Diseases and Vaccinology, Biodesign Institute at Arizona State University, Tempe, AZ USA.
| | | |
Collapse
|
52
|
Kwon KC, Nityanandam R, New JS, Daniell H. Oral delivery of bioencapsulated exendin-4 expressed in chloroplasts lowers blood glucose level in mice and stimulates insulin secretion in beta-TC6 cells. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:77-86. [PMID: 23078126 PMCID: PMC3535676 DOI: 10.1111/pbi.12008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/13/2012] [Accepted: 09/18/2012] [Indexed: 05/19/2023]
Abstract
Glucagon-like peptide (GLP-1) increases insulin secretion but is rapidly degraded (half-life: 2 min in circulation). GLP-1 analogue, exenatide (Byetta) has a longer half-life (3.3-4 h) with potent insulinotropic effects but requires cold storage, daily abdominal injections with short shelf life. Because patients with diabetes take >60 000 injections in their life time, alternative delivery methods are highly desired. Exenatide is ideal for oral delivery because insulinotropism is glucose dependent, with reduced risk of hypoglycaemia even at higher doses. Therefore, exendin-4 (EX4) was expressed as a cholera toxin B subunit (CTB)-fusion protein in tobacco chloroplasts to facilitate bioencapsulation within plant cells and transmucosal delivery in the gut via GM1 receptors present in the intestinal epithelium. The transgene integration was confirmed by PCR and Southern blot analysis. Expression level of CTB-EX4 reached up to 14.3% of total leaf protein (TLP). Lyophilization of leaf material increased therapeutic protein concentration by 12- to 24-fold, extended their shelf life up to 15 months when stored at room temperature and eliminated microbes present in fresh leaves. The pentameric structure, disulphide bonds and functionality of CTB-EX4 were well preserved in lyophilized materials. Chloroplast-derived CTB-EX4 showed increased insulin secretion similar to the commercial EX4 in beta-TC6, a mouse pancreatic cell line. Even when 5000-fold excess dose of CTB-EX4 was orally delivered, it stimulated insulin secretion similar to the intraperitoneal injection of commercial EX4 but did not cause hypoglycaemia in mice. Oral delivery of the bioencapsulated EX4 should eliminate injections, increase patient compliance/convenience and significantly lower their cost.
Collapse
Affiliation(s)
- Kwang-Chul Kwon
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL 32816-2364, USA
| | - Ramya Nityanandam
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL 32816-2364, USA
| | - James Stewart New
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL 32816-2364, USA
| | - Henry Daniell
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL 32816-2364, USA
| |
Collapse
|
53
|
Del L Yácono M, Farran I, Becher ML, Sander V, Sánchez VR, Martín V, Veramendi J, Clemente M. A chloroplast-derived Toxoplasma gondii GRA4 antigen used as an oral vaccine protects against toxoplasmosis in mice. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:1136-44. [PMID: 23020088 DOI: 10.1111/pbi.12001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 08/16/2012] [Accepted: 08/25/2012] [Indexed: 05/25/2023]
Abstract
The parasitic protozoan Toxoplasma gondii, the causal agent of toxoplasmosis, can infect most mammals and birds. In human medicine, T. gondii can cause complications in pregnant women and immunodeficient individuals, while in veterinary medicine, T. gondii infection has economic importance due to abortion and neonatal loss in livestock. Thus, the development of an effective anti-Toxoplasma vaccine would be of great value. In this study, we analysed the expression of T. gondii GRA4 antigen by chloroplast transformation (chlGRA4) in tobacco plants and evaluated the humoral and cellular responses and the grade of protection after oral administration of chlGRA4 in a murine model. The Western blot analysis revealed a specific 34-kDa band mainly present in the insoluble fractions. The chlGRA4 accumulation levels were approximately 6 μg/g of fresh weight (equivalent to 0.2% of total protein). Oral immunization with chlGRA4 resulted in a decrease of 59% in the brain cyst load of mice compared to control mice. ChlGRA4 immunization elicited both a mucosal immune response characterized by the production of specific IgA, and IFN-γ, IL-4 and IL-10 secretion by mesenteric lymph node cells, and a systemic response in terms of GRA4-specific serum antibodies and secretion of IFN-γ, IL-4 and IL-10 by splenocytes. Our results indicate that oral administration of chlGRA4 promotes the elicitation of both mucosal and systemic balanced Th1/Th2 responses that control Toxoplasma infection, reducing parasite loads.
Collapse
Affiliation(s)
- María Del L Yácono
- Laboratorio de Biotecnología Vegetal, IIB-INTECH, CONICET-UNSAM, Chascomús, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Stable plastid transformation for high-level recombinant protein expression: promises and challenges. J Biomed Biotechnol 2012; 2012:158232. [PMID: 23093835 PMCID: PMC3474547 DOI: 10.1155/2012/158232] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/10/2012] [Accepted: 08/24/2012] [Indexed: 12/22/2022] Open
Abstract
Plants are a promising expression system for the production of recombinant proteins. However, low protein productivity remains a major obstacle that limits extensive commercialization of whole plant and plant cell bioproduction platform. Plastid genetic engineering offers several advantages, including high levels of transgenic expression, transgenic containment via maternal inheritance, and multigene expression in a single transformation event. In recent years, the development of optimized expression strategies has given a huge boost to the exploitation of plastids in molecular farming. The driving forces behind the high expression level of plastid bioreactors include codon optimization, promoters and UTRs, genotypic modifications, endogenous enhancer and regulatory elements, posttranslational modification, and proteolysis. Exciting progress of the high expression level has been made with the plastid-based production of two particularly important classes of pharmaceuticals: vaccine antigens, therapeutic proteins, and antibiotics and enzymes. Approaches to overcome and solve the associated challenges of this culture system that include low transformation frequencies, the formation of inclusion bodies, and purification of recombinant proteins will also be discussed.
Collapse
|
55
|
Love AJ, Chapman SN, Matic S, Noris E, Lomonossoff GP, Taliansky M. In planta production of a candidate vaccine against bovine papillomavirus type 1. PLANTA 2012; 236:1305-13. [PMID: 22718313 DOI: 10.1007/s00425-012-1692-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/06/2012] [Indexed: 05/17/2023]
Abstract
Bovine papillomavirus type 1 (BPV-1) is an economically important virus that induces tumourigenic pathologies in horses and cows. Given that the BPV-1 L1 major coat protein can self-assemble into highly immunogenic higher-order structures, we transiently expressed it in Nicotiana benthamiana as a prelude to producing a candidate vaccine. It was found that plant codon optimization of L1 gave higher levels of expression than its non-optimized counterpart. Following protein extraction, we obtained high yields (183 mg/kg fresh weight leaf tissue) of relatively pure L1, which had self-assembled into virus-like particles (VLPs). We found that these VLPs elicited a highly specific and strong immune response, and therefore they may have utility as a potential vaccine. This is the first report demonstrating the viable production of a candidate BPV vaccine protein in plants.
Collapse
Affiliation(s)
- Andrew J Love
- The James Hutton Institute Dundee, Dundee DD2 5DA, UK.
| | | | | | | | | | | |
Collapse
|
56
|
Matić S, Masenga V, Poli A, Rinaldi R, Milne RG, Vecchiati M, Noris E. Comparative analysis of recombinant Human Papillomavirus 8 L1 production in plants by a variety of expression systems and purification methods. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:410-21. [PMID: 22260326 DOI: 10.1111/j.1467-7652.2011.00671.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Human papillomavirus 8 (HPV-8), one of the high-risk cutaneous papillomaviruses (cHPVs), is associated with epidermodysplasia verruciformis and nonmelanoma skin cancer in immuno-compromised individuals. Currently, no vaccines against cHPVs have been reported; however, recent studies on cross-neutralizing properties of their capsid proteins (CP) have fostered an interest in vaccine production against these viruses. We examined the potential of producing HPV-8 major CP L1 in Nicotiana benthamiana by agroinfiltration of different transient expression vectors: (i) the binary vector pBIN19 with or without silencing suppressor constructs, (ii) the nonreplicating Cowpea mosaic virus-derived expression vector pEAQ-HT and (iii) a replicating Tobacco mosaic virus (TMV)-based vector alone or with signal peptides. Although HPV-8 L1 was successfully expressed using pEAQ-HT and TMV, a 15-fold increase was obtained with pEAQ-HT. In contrast, no L1 protein could be immune detected using pBIN19 irrespective of whether silencing suppressors were coexpressed, although such constructs were required for identifying L1-specific transcripts. A fourfold yield increase in L1 expression was obtained when 22 C-terminal amino acids were deleted (L1ΔC22), possibly eliminating a nuclear localization signal. Electron microscopy showed that plant-made HPV-8 L1 proteins assembled in appropriate virus-like particles (VLPs) of T = 1 or T = 7 symmetry. Ultrathin sections of L1ΔC22-expressing cells revealed their accumulation in the cytoplasm in the form of VLPs or paracrystalline arrays. These results show for the first time the production and localization of HPV-8 L1 protein in planta and its assembly into VLPs representing promising candidate for potential vaccine production.
Collapse
Affiliation(s)
- Slavica Matić
- Istituto di Virologia Vegetale, Consiglio Nazionale delle Ricerche, Strada delle Cacce, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
57
|
Production of monoclonal antibodies against the FimA protein of Porphyromonas gingivalis in Nicotiana benthamiana. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0636-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
58
|
Production of foreign proteins using plastid transformation. Biotechnol Adv 2012; 30:387-97. [DOI: 10.1016/j.biotechadv.2011.07.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/10/2011] [Accepted: 07/25/2011] [Indexed: 12/19/2022]
|
59
|
Cerovska N, Hoffmeisterova H, Moravec T, Plchova H, Folwarczna J, Synkova H, Ryslava H, Ludvikova V, Smahel M. Transient expression of Human papillomavirus type 16 L2 epitope fused to N- and C-terminus of coat protein of Potato virus X in plants. J Biosci 2012; 37:125-33. [PMID: 22357210 DOI: 10.1007/s12038-011-9177-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/13/2011] [Indexed: 01/29/2023]
Abstract
Transient expression of foreign genes based on plant viral vectors is a suitable system for the production of relevant immunogens that can be used for the development of a new generation of vaccines against a variety of infectious diseases. In the present study the epitope derived from HPV-16 L2 minor capsid protein (amino acids 108-120) was expressed from Potato virus X (PVX)-based vector pGR106 as N- or C-terminal fusion with the PVX coat protein (PVX CP) in transgenic Nicotiana benthamiana plants. The fusion protein L2 108-120-PVX CP was successfully expressed in plants at a level of 170 mg/kg of fresh leaf tissue. The C-terminal fusion protein PVX CP- L2 108-120 was expressed using mutated vector sequence to avoid homologous recombination at a level of 8 mg/kg of fresh leaf tissue. Immunogenicity of L2 108-120-PVX CP virus-like particles was tested after immunization of mice by subcutaneous injection or tattoo administration. In animal sera the antibodies against the PVX CP and the L2 108-120 epitope were found after both methods of vaccine delivery.
Collapse
Affiliation(s)
- Noemi Cerovska
- Institute of Experimental Botany, v. v. i., Academy of Sciences of Czech Republic, Na Karlovce 1a, 16000 Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Buonaguro L, Tagliamonte M, Tornesello ML, Buonaguro FM. Developments in virus-like particle-based vaccines for infectious diseases and cancer. Expert Rev Vaccines 2012; 10:1569-83. [PMID: 22043956 DOI: 10.1586/erv.11.135] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Virus-like particles hold great promise for the development of effective and affordable vaccines. Indeed, virus-like particles are suitable for presentation and efficient delivery of linear as well as conformational antigens to antigen-presenting cells. This will ultimately result in optimal B-cell activation and cross-presentation with both MHC class I and II molecules to prime CD4(+) T-helper as well as CD8(+) cytotoxic T cells. This article provides an update on the development and use of virus-like particles as vaccine approaches for infectious diseases and cancer.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale Tumori Fond Pascale, Via Mariano Semmola 142, 80131 Napoli, Italy.
| | | | | | | |
Collapse
|
61
|
Sanz-Barrio R, Millán AFS, Corral-Martínez P, Seguí-Simarro JM, Farran I. Tobacco plastidial thioredoxins as modulators of recombinant protein production in transgenic chloroplasts. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:639-50. [PMID: 21426478 DOI: 10.1111/j.1467-7652.2011.00608.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Thioredoxins (Trxs) are small ubiquitous disulphide proteins widely known to enhance expression and solubility of recombinant proteins in microbial expression systems. Given the common evolutionary heritage of chloroplasts and bacteria, we attempted to analyse whether plastid Trxs could also act as modulators of recombinant protein expression in transgenic chloroplasts. For that purpose, two tobacco Trxs (m and f) with different phylogenetic origins were assessed. Using plastid transformation, we assayed two strategies: the fusion and the co-expression of Trxs with human serum albumin (HSA), which was previously observed to form large protein bodies in tobacco chloroplasts. Our results indicate that both Trxs behave similarly as regards HSA accumulation, although they act differently when fused or co-expressed with HSA. Trxs-HSA fusions markedly increased the final yield of HSA (up to 26% of total protein) when compared with control lines that only expressed HSA; this increase was mainly caused by higher HSA stability of the fused proteins. However, the fusion strategy failed to prevent the formation of protein bodies within chloroplasts. On the other hand, the co-expression constructs gave rise to an absence of large protein bodies although no more soluble HSA was accumulated. In these plants, electron micrographs showed HSA and Trxs co-localization in small protein bodies with fibrillar texture, suggesting a possible influence of Trxs on HSA solubilization. Moreover, the in vitro chaperone activity of Trx m and f was demonstrated, which supports the hypothesis of a direct relationship between Trx presence and HSA aggregates solubilization in plants co-expressing both proteins.
Collapse
Affiliation(s)
- Ruth Sanz-Barrio
- Instituto de Agrobiotecnología (UPNA-CSIC-Gobierno de Navarra), Pamplona, Spain
| | | | | | | | | |
Collapse
|
62
|
Waheed MT, Thönes N, Müller M, Hassan SW, Gottschamel J, Lössl E, Kaul HP, Lössl AG. Plastid expression of a double-pentameric vaccine candidate containing human papillomavirus-16 L1 antigen fused with LTB as adjuvant: transplastomic plants show pleiotropic phenotypes. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:651-60. [PMID: 21447051 DOI: 10.1111/j.1467-7652.2011.00612.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Human papillomavirus (HPV) causes cervical cancer in women worldwide, which is currently prevented by vaccines based on virus-like particles (VLPs). However, these vaccines have certain limitations in their availability to developing countries, largely due to elevated costs. Concerning the highest burden of disease in resource-poor countries, development of an improved mucosal and cost-effective vaccine is a necessity. As an alternative to VLPs, capsomeres have been shown to be highly immunogenic and can be used as vaccine candidate. Furthermore, coupling of an adjuvant like Escherichia coli heat-labile enterotoxin subunit B (LTB) to an antigen can increase its immunogenicity and reduce the costs related to separate co-administration of adjuvants. Our study demonstrates the expression of two pentameric proteins: the modified HPV-16 L1 (L1_2xCysM) and LTB as a fusion protein in tobacco chloroplasts. Homoplasmy of the transplastomic plants was confirmed by Southern blotting. Western blot analysis showed that the LTB-L1 fusion protein was properly expressed in the plastids and the recombinant protein was estimated to accumulate up to 2% of total soluble protein. Proper folding and display of conformational epitopes for both LTB and L1 in the fusion protein was confirmed by GM1-ganglioside binding assay and antigen capture ELISA, respectively. However, all transplastomic lines showed chlorosis, male sterility and growth retardation, which persisted in the ensuing four generations studied. Nevertheless, plants reached maturity and produced seeds by pollination with wild-type plants. Taken together, these results pave the way for the possible development of a low-cost adjuvant-coupled vaccine with potentially improved immunogenicity against cervical cancer.
Collapse
Affiliation(s)
- Mohammad T Waheed
- Department of Applied Plant Sciences and Plant Biotechnology (DAPP), University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Kanagaraj AP, Verma D, Daniell H. Expression of dengue-3 premembrane and envelope polyprotein in lettuce chloroplasts. PLANT MOLECULAR BIOLOGY 2011; 76:323-33. [PMID: 21431782 PMCID: PMC3468899 DOI: 10.1007/s11103-011-9766-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Accepted: 03/07/2011] [Indexed: 05/22/2023]
Abstract
Dengue is an acute febrile viral disease with >100 million infections occurring each year and more than half of the world population is at risk. Global resurgence of dengue in many urban centers of the tropics is a major concern. Therefore, development of a successful vaccine is urgently needed that is economical and provide long-lasting protection from dengue virus infections. In this manuscript, we report expression of dengue-3 serotype polyprotein (prM/E) consisting of part of capsid, complete premembrane (prM) and truncated envelope (E) protein in an edible crop lettuce. The dengue sequence was controlled by endogenous Lactuca sativa psbA regulatory elements. PCR and Southern blot analysis confirmed transgene integration into the lettuce chloroplast genome via homologous recombination at the trnI/trnA intergenic spacer region. Western blot analysis showed expression of polyprotein prM/E in different forms as monomers (~65 kDa) or possibly heterodimers (~130 kDa) or multimers. Multimers were solubilized into monomers using guanidine hydrochloride. Transplastomic lettuce plants expressing dengue prM/E vaccine antigens grew normally and transgenes were inherited in the T1 progeny without any segregation. Transmission electron microscopy showed the presence of virus-like particles of ~20 nm diameter in chloroplast extracts of transplastomic lettuce expressing prM/E proteins, but not in untransformed plants. The prM/E antigens expressed in lettuce chloroplasts should offer a potential source for investigating an oral Dengue vaccine.
Collapse
Affiliation(s)
- Anderson Paul Kanagaraj
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, 336 Biomolecular Science Building, Orlando, FL 32816-2364, USA
| | | | | |
Collapse
|
64
|
Fernández-San Millán A, Obregón P, Veramendi J. Over-expression of peptide deformylase in chloroplasts confers actinonin resistance, but is not a suitable selective marker system for plastid transformation. Transgenic Res 2011; 20:613-24. [PMID: 20936344 DOI: 10.1007/s11248-010-9447-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 09/23/2010] [Indexed: 01/09/2023]
Abstract
Arabidopsis thaliana peptide deformylase PDF1B was expressed in tobacco chloroplasts using spectinomycin as the selective agent. The foreign protein accumulated in chloroplasts (6% of the total soluble protein) and was enzymatically active. Transplastomic plants were evaluated for resistance to the peptide deformylase inhibitor actinonin. In vitro seed germination in the presence of actinonin and in planta application of the inhibitor demonstrated the resistance of the transformed plants. In addition, transgenic leaf explants were able to develop shoots via organogenesis in the presence of actinonin. However, when the combination of the PDF1B gene and actinonin was used as the primary selective marker system for chloroplast transformation of tobacco, all developed shoots were escapes. Therefore, under the experimental conditions tested, the use of this system for plastid transformation would be limited to function as a secondary selective marker.
Collapse
Affiliation(s)
- Alicia Fernández-San Millán
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus de Arrosadía, 31006, Pamplona, Spain
| | | | | |
Collapse
|
65
|
Plchova H, Moravec T, Hoffmeisterova H, Folwarczna J, Cerovska N. Expression of Human papillomavirus 16 E7ggg oncoprotein on N- and C-terminus of Potato virus X coat protein in bacterial and plant cells. Protein Expr Purif 2011; 77:146-52. [PMID: 21266198 DOI: 10.1016/j.pep.2011.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 01/18/2011] [Accepted: 01/18/2011] [Indexed: 11/21/2022]
Abstract
The E7 oncoprotein from Human papillomavirus type 16 (HPV16) is an attractive candidate for anti-cancer therapeutical vaccine development. In this study, we engineered different fusions of mutagenized coding sequence of E7 oncoprotein (E7ggg) with coat protein of Potato virus X (PVX CP) both on 5'- and 3'-terminus of PVX CP and evaluated the influence of the length of linker (no linker, 4, 15aa) connecting PVX CP and E7ggg on their production. At first the expression in Escherichia coli was conducted to assess the characteristics of the recombinant protein prior to be further produced in plants, that is, resultant proteins were used for screening of their immunological reactivity with antibodies against PVX CP and E7. Fusion proteins successfully expressed in bacteria and plants were partially purified and their reactivity and ability to form virus-like particles were evaluated with anti-E7 antibodies.
Collapse
Affiliation(s)
- Helena Plchova
- Academy of Sciences of the Czech Republic, 160 00 Prague 6, Czech Republic
| | | | | | | | | |
Collapse
|
66
|
Lössl AG, Waheed MT. Chloroplast-derived vaccines against human diseases: achievements, challenges and scopes. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:527-39. [PMID: 21447052 DOI: 10.1111/j.1467-7652.2011.00615.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Infectious diseases represent a continuously growing menace that has severe impact on health of the people worldwide, particularly in the developing countries. Therefore, novel prevention and treatment strategies are urgently needed to reduce the rate of these diseases in humans. For this reason, different options can be considered for the production of affordable vaccines. Plants have been proved as an alternative expression system for various compounds of biological importance. Particularly, plastid genetic engineering can be potentially used as a tool for cost-effective vaccine production. Antigenic proteins from different viruses and bacteria have been expressed in plastids. Initial immunological studies of chloroplast-derived vaccines have yielded promising results in animal models. However, because of certain limitations, these vaccines face many challenges on production and application level. Adaptations to the novel approaches are needed, which comprise codon usage and choice of proven expression cassettes for the optimal yield of expressed proteins, use of inducible systems, marker gene removal, selection of specific antigens with high immunogenicity and development of tissue culture systems for edible crops to prove the concept of low-cost edible vaccines. As various aspects of plant-based vaccines have been discussed in recent reviews, here we will focus on certain aspects of chloroplast transformation related to vaccine production against human diseases.
Collapse
Affiliation(s)
- Andreas G Lössl
- Department of Applied Plant Sciences and Plant Biotechnology (DAPP), University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria.
| | | |
Collapse
|
67
|
Gisby MF, Mellors P, Madesis P, Ellin M, Laverty H, O'Kane S, Ferguson MWJ, Day A. A synthetic gene increases TGFβ3 accumulation by 75-fold in tobacco chloroplasts enabling rapid purification and folding into a biologically active molecule. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:618-28. [PMID: 21535357 DOI: 10.1111/j.1467-7652.2011.00619.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Human transforming growth factor-β3 (TGFβ3) is a new therapeutic protein used to reduce scarring during wound healing. The active molecule is a nonglycosylated, homodimer comprised of 13-kDa polypeptide chains linked by disulphide bonds. Expression of recombinant human TGFβ3 in chloroplasts and its subsequent purification would provide a sustainable source of TGFβ3 free of animal pathogens. A synthetic sequence (33% GC) containing frequent chloroplast codons raised accumulation of the 13-kDa TGFβ3 polypeptide by 75-fold compared to the native coding region (56% GC) when expressed in tobacco chloroplasts. The 13-kDa TGFβ3 monomer band was more intense than the RuBisCO 15-kDa small subunit on Coomassie blue-stained SDS-PAGE gels. TGFβ3 accumulated in insoluble aggregates and was stable in leaves of different ages but was not detected in seeds. TGFβ3 represented 12% of leaf protein and appeared as monomer, dimer and trimer bands on Western blots of SDS-PAGE gels. High yield and insolubility facilitated initial purification and refolding of the 13-kDa polypeptide into the TGFβ3 homodimer recognized by a conformation-dependent monoclonal antibody. The TGFβ3 homodimer and trace amounts of monomer were the only bands visible on silver-stained gels following purification by hydrophobic interaction chromatography and cation exchange chromatography. N-terminal sequencing and electronspray ionization mass spectrometry showed the removal of the initiator methionine and physical equivalence of the chloroplast-produced homodimer to standard TGFβ3. Functional equivalence was demonstrated by near-identical dose-response curves showing the inhibition of mink lung epithelial cell proliferation. We conclude that chloroplasts are an attractive production platform for synthesizing recombinant human TGFβ3.
Collapse
Affiliation(s)
- Martin F Gisby
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Waheed MT, Thönes N, Müller M, Hassan SW, Razavi NM, Lössl E, Kaul HP, Lössl AG. Transplastomic expression of a modified human papillomavirus L1 protein leading to the assembly of capsomeres in tobacco: a step towards cost-effective second-generation vaccines. Transgenic Res 2011; 20:271-82. [PMID: 20563641 DOI: 10.1007/s11248-010-9415-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 06/02/2010] [Indexed: 12/26/2022]
Abstract
Certain types of human papillomaviruses (HPV) are causatively associated with cervical carcinoma, the second most common cancer in women worldwide. Due to limitations in the availability of currently used virus-like particle (VLP)-based vaccines against HPV to women of developing countries, where most cases of cervical cancer occur, the development of a cost-effective second-generation vaccine is a necessity. Capsomeres have recently been demonstrated to be highly immunogenic and to have a number of advantages as a potential cost-effective alternative to VLP-based HPV vaccines. We have expressed a mutated HPV-16 L1 (L1_2xCysM) gene that retained the ability to assemble L1 protein to capsomeres in tobacco chloroplasts. The recombinant protein yielded up to 1.5% of total soluble protein. The assembly of capsomeres was examined and verified by cesium chloride density gradient centrifugation and sucrose sedimentation analysis. An antigen capture enzyme-linked immunosorbent assay confirmed the formation of capsomeres by using a conformation-specific monoclonal antibody which recognized the conformational epitopes. Transplastomic tobacco plants exhibited normal growth and morphology, but all such lines showed male sterility in the T₀, T₁ and T₂ generations. Taken together, these results indicate the possibility of producing a low-cost capsomere-based vaccine by plastids.
Collapse
Affiliation(s)
- M Tahir Waheed
- Department of Applied Plant Sciences and Plant Biotechnology (DAPP), University of Natural Resources and Applied Life Sciences (BOKU), Gregor-Mendel-Strasse 33, 1180, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Tagliamonte M, Tornesello ML, Buonaguro FM, Buonaguro L. Conformational HIV-1 envelope on particulate structures: a tool for chemokine coreceptor binding studies. J Transl Med 2011; 9 Suppl 1:S1. [PMID: 21284899 PMCID: PMC3105500 DOI: 10.1186/1479-5876-9-s1-s1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein gp120 presents conserved binding sites for binding to the primary virus receptor CD4 as well as the major HIV chemokine coreceptors, CCR5 and CXCR4. Concerted efforts are underway to understand the specific interactions between gp120 and coreceptors as well as their contribution to the subsequent membrane fusion process. The present review summarizes the current knowledge on this biological aspect, which represents one of the key and essential points of the HIV-host cell interplay and HIV life cycle. The relevance of conformational HIV-1 Envelope proteins presented on Virus-like Particles for appropriate assessment of this molecular interaction, is also discussed.
Collapse
Affiliation(s)
- Maria Tagliamonte
- Lab, of Molecular Biology and Viral Oncogenesis & AIDS Reference Center, Istituto Nazionale Tumori Fond, G, Pascale, Naples, Italy
| | | | | | | |
Collapse
|
70
|
Lee SB, Li B, Jin S, Daniell H. Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:100-15. [PMID: 20553419 PMCID: PMC3468903 DOI: 10.1111/j.1467-7652.2010.00538.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Retrocyclin-101 (RC101) and Protegrin-1 (PG1) are two important antimicrobial peptides that can be used as therapeutic agents against bacterial and/or viral infections, especially those caused by the HIV-1 or sexually transmitted bacteria. Because of their antimicrobial activity and complex secondary structures, they have not yet been produced in microbial systems and their chemical synthesis is prohibitively expensive. Therefore, we created chloroplast transformation vectors with the RC101 or PG1 coding sequence, fused with GFP to confer stability, furin or Factor Xa cleavage site to liberate the mature peptide from their fusion proteins and a His-tag to aid in their purification. Stable integration of RC101 into the tobacco chloroplast genome and homoplasmy were confirmed by Southern blots. RC101 and PG1 accumulated up to 32%-38% and 17%∼26% of the total soluble protein. Both RC101 and PG1 were cleaved from GFP by corresponding proteases in vitro, and Factor Xa-like protease activity was observed within chloroplasts. Confocal microscopy studies showed location of GFP fluorescence within chloroplasts. Organic extraction resulted in 10.6-fold higher yield of RC101 than purification by affinity chromatography using His-tag. In planta bioassays with Erwinia carotovora confirmed the antibacterial activity of RC101 and PG1 expressed in chloroplasts. RC101 transplastomic plants were resistant to tobacco mosaic virus infections, confirming antiviral activity. Because RC101 and PG1 have not yet been produced in other cell culture or microbial systems, chloroplasts can be used as bioreactors for producing these proteins. Adequate yield of purified antimicrobial peptides from transplastomic plants should facilitate further preclinical studies.
Collapse
Affiliation(s)
| | | | - Shuangxia Jin
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Henry Daniell
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
71
|
Youm JW, Jeon JH, Kim H, Min SR, Kim MS, Joung H, Jeong WJ, Kim HS. High-level expression of a human β-site APP cleaving enzyme in transgenic tobacco chloroplasts and its immunogenicity in mice. Transgenic Res 2010; 19:1099-108. [PMID: 20229285 PMCID: PMC7089353 DOI: 10.1007/s11248-010-9383-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 03/04/2010] [Indexed: 11/28/2022]
Abstract
Plastid transformation has to date been applied to the expression of heterologous genes involved in agronomic traits and to the production of useful recombinant proteins. Here, we report a feasibility study for producing the human β-site APP cleaving enzyme (BACE) via transformation of tobacco chloroplasts. Stable integration of human BACE into the plastome was confirmed by PCR. Genomic Southern blot analysis detected the presence of the tobacco aadA and human BACE genes between trnI and trnA in the plastome. Northern blot analysis revealed that the aadA and BACE genes were both properly transcribed into a dicistronic transcriptional unit. Human BACE protein expression in transplastomic tobacco was determined by western blot analysis. ELISA analysis revealed that, based on a dilution series of E. coli-derived BACE as a standard, transplastomic lines accumulated BACE to levels of 2.0% of total soluble proteins. When mice were gavaged with the transplastomic tobacco extracts, they showed an immune response against the BACE antigen. The successful production of plastid-based BACE protein has the potential for developing a plant-based vaccine against Alzheimer disease.
Collapse
Affiliation(s)
- Jung Won Youm
- Plant Systems Engineering Research Center, KRIBB, Daejeon, 305-806 Korea
| | - Jae Heung Jeon
- Plant Systems Engineering Research Center, KRIBB, Daejeon, 305-806 Korea
| | - Hee Kim
- Digital Biotech Inc., R&D, Ansan City, KyungGiDo, 425-839 Korea
| | - Sung Ran Min
- Plant Systems Engineering Research Center, KRIBB, Daejeon, 305-806 Korea
| | - Mi Sun Kim
- Plant Systems Engineering Research Center, KRIBB, Daejeon, 305-806 Korea
| | - Hyouk Joung
- Plant Systems Engineering Research Center, KRIBB, Daejeon, 305-806 Korea
| | - Won Joong Jeong
- Plant Systems Engineering Research Center, KRIBB, Daejeon, 305-806 Korea
| | - Hyun Soon Kim
- Plant Systems Engineering Research Center, KRIBB, Daejeon, 305-806 Korea
| |
Collapse
|
72
|
Mariani L, Venuti A. HPV vaccine: an overview of immune response, clinical protection, and new approaches for the future. J Transl Med 2010; 8:105. [PMID: 20979636 PMCID: PMC2988719 DOI: 10.1186/1479-5876-8-105] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 10/27/2010] [Indexed: 12/23/2022] Open
Abstract
Although long-term protection is a key-point in evaluating HPV-vaccine over time, there is currently inadequate information on the duration of HPV vaccine-induced immunity and on the mechanisms related to the activation of immune-memory. Longer-term surveillance in a vaccinated population is needed to identify waning immunity, evaluating any requirements for booster immunizations to assess vaccine efficacy against HPV-diseases. Current prophylactic vaccines have the primary end-points to protect against HPV-16 and 18, the genotypes more associated to cervical cancer worldwide. Nevertheless, data from many countries demonstrate the presence, at significant levels, of HPVs that are not included in the currently available vaccine preparations, indicating that these vaccines could be less effective in a particular area of the world. The development of vaccines covering a larger number of HPVs presents the most complex challenge for the future. Therefore, long term immunization and cross-protection of HPV vaccines will be discussed in light of new approaches for the future.
Collapse
Affiliation(s)
- Luciano Mariani
- Dept. Gynaecologic Oncology, National Cancer Institute Regina Elena of Rome, Italy
| | - Aldo Venuti
- Lab. Virology, National Cancer Institute Regina Elena of Rome, Italy
| |
Collapse
|
73
|
Villar-Piqué A, Sabaté R, Lopera O, Gibert J, Torne JM, Santos M, Ventura S. Amyloid-like protein inclusions in tobacco transgenic plants. PLoS One 2010; 5:e13625. [PMID: 21049018 PMCID: PMC2964307 DOI: 10.1371/journal.pone.0013625] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 10/01/2010] [Indexed: 11/19/2022] Open
Abstract
The formation of insoluble protein deposits in human tissues is linked to the onset of more than 40 different disorders, ranging from dementia to diabetes. In these diseases, the proteins usually self-assemble into ordered β-sheet enriched aggregates known as amyloid fibrils. Here we study the structure of the inclusions formed by maize transglutaminase (TGZ) in the chloroplasts of tobacco transplastomic plants and demonstrate that they have an amyloid-like nature. Together with the evidence of amyloid structures in bacteria and fungi our data argue that amyloid formation is likely a ubiquitous process occurring across the different kingdoms of life. The discovery of amyloid conformations inside inclusions of genetically modified plants might have implications regarding their use for human applications.
Collapse
Affiliation(s)
- Anna Villar-Piqué
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Raimon Sabaté
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Oriol Lopera
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB, Molecular Genetics Laboratory, Barcelona, Spain
| | - Jordi Gibert
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB, Molecular Genetics Laboratory, Barcelona, Spain
| | - Josep Maria Torne
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB, Molecular Genetics Laboratory, Barcelona, Spain
| | - Mireya Santos
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB, Molecular Genetics Laboratory, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
74
|
Cardi T, Lenzi P, Maliga P. Chloroplasts as expression platforms for plant-produced vaccines. Expert Rev Vaccines 2010; 9:893-911. [PMID: 20673012 DOI: 10.1586/erv.10.78] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Production of recombinant subunit vaccines from genes incorporated in the plastid genome is advantageous because of the attainable expression level due to high transgene copy number and the absence of gene silencing; biocontainment as a consequence of maternal inheritance of plastids and no transgene presence in the pollen; and expression of multiple transgenes in prokaryotic-like operons. We discuss the core technology of plastid transformation in Chlamydomonas reinhardtii, a unicellular alga, and Nicotiana tabacum (tobacco), a flowering plant species, and demonstrate the utility of the technology for the production of recombinant vaccine antigens.
Collapse
Affiliation(s)
- Teodoro Cardi
- CNR-IGV, Institute of Plant Genetics, Portici, Italy.
| | | | | |
Collapse
|
75
|
Shen H, Qian B, Chen W, Liu Z, Yang L, Zhang D, Liang W. Immunogenicity of recombinant F4 (K88) fimbrial adhesin FaeG expressed in tobacco chloroplast. Acta Biochim Biophys Sin (Shanghai) 2010; 42:558-67. [PMID: 20705597 DOI: 10.1093/abbs/gmq060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To test the possibility of producing the novel vaccine in plants against diarrhea normally found in neonatal and newly weaned piglets, the faeG gene, encoding a major F4ac fimbrial subunit protein, was introduced into the tobacco chloroplast genome. After two rounds of selection under spectinomycin, we obtained the transgenic plants nearly homoplasmic. RNA gel blot analysis indicated that faeG and the antibiotic selective gene aminoglycoside 3' adenylyltransferase (aadA) were highly transcribed as a dicistron, while the translational level of recombinant FaeG in transplastomic tobacco was about 0.15% of total soluble protein. The immunogenicity of recombinant FaeG produced in tobacco chloroplasts was confirmed by the observation that FaeG-specific antibodies were elicited in mice immunized with total soluble protein of transgenic plants, as well as the result that mouse sera stimulated by chloroplast-derived recombinant FaeG could neutralize F4ac enterotoxigenic Escherichia coli (ETEC) in vivo. This study provides a new alternative for producing the ETEC vaccine using the chloroplast expression system.
Collapse
MESH Headings
- Adhesins, Escherichia coli/genetics
- Adhesins, Escherichia coli/immunology
- Adhesins, Escherichia coli/metabolism
- Animals
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Blotting, Northern
- Blotting, Western
- Chloroplasts/metabolism
- DNA, Chloroplast/genetics
- Enterotoxigenic Escherichia coli/immunology
- Escherichia coli Infections/blood
- Escherichia coli Infections/immunology
- Escherichia coli Infections/microbiology
- Escherichia coli Vaccines/genetics
- Escherichia coli Vaccines/immunology
- Escherichia coli Vaccines/metabolism
- Female
- Gene Expression
- Immunization
- Mice
- Mice, Inbred BALB C
- Nucleotidyltransferases/genetics
- Nucleotidyltransferases/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Rabbits
- Nicotiana/genetics
- Nicotiana/metabolism
Collapse
Affiliation(s)
- Huifeng Shen
- School of life Sciences and Biotechnology, Shanghai Jiao tong University, China
| | | | | | | | | | | | | |
Collapse
|
76
|
Ortigosa SM, Fernández-San Millán A, Veramendi J. Stable production of peptide antigens in transgenic tobacco chloroplasts by fusion to the p53 tetramerisation domain. Transgenic Res 2010; 19:703-9. [PMID: 19953346 DOI: 10.1007/s11248-009-9348-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 11/21/2009] [Indexed: 01/21/2023]
Abstract
The production of short peptides as single molecules in recombinant systems is often limited by the low stability of the foreign peptide. In the plant expression system this problem has been solved by translational fusions to recombinant proteins that are highly stable or are able to form complex structures. Previously, we demonstrated that the highly immunogenic 21 amino acid peptide 2L21, which is derived from the canine parvovirus (CPV) VP2 protein, did not accumulate in transgenic tobacco chloroplasts. In this report, we translationally fused the 2L21 peptide to the 42 amino acid tetramerisation domain (TD) from the human transcription factor p53. The chimaeric 2L21-TD protein was expressed in tobacco chloroplasts. Leaves accumulated high levels of the recombinant protein (up to 0.4 mg/g fresh weight of leaf material, equivalent to ~6% of total soluble protein; 2% considering only the 2L21 peptide). The 2L21-TD protein was able to form tetramers in the stroma of the chloroplast. Mice immunised intraperitoneally with partially purified leaf extracts containing the 2L21-TD protein developed specific antibodies with titres similar to those elicited by a previously reported fusion between 2L21 and the B subunit of the cholera toxin. Mouse sera were able to detect both the 2L21 synthetic peptide and the CPV VP2 protein, showing that the antigenicity of the 2L21 epitope was preserved in the chimaeric protein. These results demonstrate that the p53 TD can be used as a carrier molecule for the accumulation of short peptides (such as 2L21) in the chloroplast without altering the immunogenic properties of the peptide.
Collapse
Affiliation(s)
- Susana M Ortigosa
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus de Arrosadía, 31006, Pamplona, Spain
| | | | | |
Collapse
|
77
|
Salyaev RK, Rigano MM, Rekoslavskaya NI. Development of plant-based mucosal vaccines against widespread infectious diseases. Expert Rev Vaccines 2010; 9:937-46. [PMID: 20673015 DOI: 10.1586/erv.10.81] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mucosal vaccination is a perspective for the control of infectious diseases, since it is capable of inducing humoral and cell-mediated responses. In addition, the delivery of vaccines to mucosal surfaces makes immunization practice safe and acceptable, and eliminates needle-associated risks. Transgenic plants can be used as bioreactors for the production of mucosally delivered protective antigens. This technology shows great promise to simplify and decrease the cost of vaccine delivery. Herein, we review the development of mucosally administered vaccines expressed in transgenic plants. In particular, we evaluate the advantages and disadvantages of using plants for the production of mucosal vaccines against widespread infectious diseases such as HIV, hepatitis B and TB.
Collapse
Affiliation(s)
- Rurick K Salyaev
- Siberian Institute of Plant Physiology and Biochemistry of The Siberian Branch of the RAS, Irkutsk, Russia.
| | | | | |
Collapse
|
78
|
Lau JM, Korban SS. Transgenic apple expressing an antigenic protein of the human respiratory syncytial virus. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:920-927. [PMID: 20307914 DOI: 10.1016/j.jplph.2010.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 02/20/2010] [Accepted: 02/20/2010] [Indexed: 05/29/2023]
Abstract
A gene coding for the human respiratory syncytial virus (RSV)-F protein, driven by the constitutively expressed CaMV 35S promoter, was introduced into leaf tissues of apple, Malusxdomestica Borkh. cv. Royal Gala, via Agrobacterium-mediated transformation. Two putative transgenic lines were identified, and the presence of the RSV-F gene was confirmed by polymerase chain reaction (PCR). A total of 25 plants from these different transgenic events were successfully rooted, acclimatized, and transferred to the greenhouse. Stable integration of the transgene was confirmed and transgene copy number was determined by DNA gel blot analysis. Expression of the npt-II selectable marker and RSV-F was determined using reverse-transcription polymerase chain reaction (RT-PCR). Furthermore, enzyme-linked immunosorbent assay (ELISA) revealed varying levels of protein expression of the RSV-F transgene, ranging from 0 to 20 microg/g tissue. This is a first step in an effort to assess the efficacy of using apple for developing a plant-based vaccine against RSV.
Collapse
Affiliation(s)
- Joann M Lau
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1201 West Gregory Drive, Urbana, IL 61801, USA
| | | |
Collapse
|
79
|
Millán AFS, Gómez-Sebastián S, Nuñez MC, Veramendi J, Escribano JM. Human papillomavirus-like particles vaccine efficiently produced in a non-fermentative system based on insect larva. Protein Expr Purif 2010; 74:1-8. [PMID: 20600940 DOI: 10.1016/j.pep.2010.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/16/2010] [Accepted: 06/17/2010] [Indexed: 11/16/2022]
Affiliation(s)
- Alicia Fernández-San Millán
- Instituto de Agrobiotecnología (Universidad Pública de Navarra-CSIC-Gobierno de Navarra), Campus Arrosadía, 31006 Pamplona, Spain
| | | | | | | | | |
Collapse
|
80
|
Rybicki EP. Plant-made vaccines for humans and animals. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:620-37. [PMID: 20233333 PMCID: PMC7167690 DOI: 10.1111/j.1467-7652.2010.00507.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/30/2009] [Accepted: 12/02/2009] [Indexed: 05/17/2023]
Abstract
The concept of using plants to produce high-value pharmaceuticals such as vaccines is 20 years old this year and is only now on the brink of realisation as an established technology. The original reliance on transgenic plants has largely given way to transient expression; proofs of concept for human and animal vaccines and of efficacy for animal vaccines have been established; several plant-produced vaccines have been through Phase I clinical trials in humans and more are scheduled; regulatory requirements are more clear than ever, and more facilities exist for manufacture of clinic-grade materials. The original concept of cheap edible vaccines has given way to a realisation that formulated products are required, which may well be injectable. The technology has proven its worth as a means of cheap, easily scalable production of materials: it now needs to find its niche in competition with established technologies. The realised achievements in the field as well as promising new developments will be reviewed, such as rapid-response vaccines for emerging viruses with pandemic potential and bioterror agents.
Collapse
Affiliation(s)
- Edward P Rybicki
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa. ed.rybicki@ uct.ac.za
| |
Collapse
|
81
|
Bock R, Warzecha H. Solar-powered factories for new vaccines and antibiotics. Trends Biotechnol 2010; 28:246-52. [PMID: 20207435 DOI: 10.1016/j.tibtech.2010.01.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/16/2010] [Accepted: 01/26/2010] [Indexed: 12/27/2022]
Affiliation(s)
- Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.
| | | |
Collapse
|
82
|
Conley AJ, Jevnikar AM, Menassa R, Brandle JE. Temporal and spatial distribution of erythropoietin in transgenic tobacco plants. Transgenic Res 2010; 19:291-8. [PMID: 19618287 DOI: 10.1007/s11248-009-9306-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 07/04/2009] [Indexed: 10/20/2022]
Abstract
Plants have shown promise as bioreactors for the large-scale production of a wide variety of recombinant proteins. To increase the economic feasibility of this technology, numerous molecular approaches have been developed to enhance the production yield of these valuable proteins in plants. Alternatively, we chose to examine the temporal and spatial distribution of erythropoietin (EPO) accumulation during tobacco plant development, in order to establish the optimal harvesting time to further maximize heterologous protein recovery. EPO is used extensively worldwide for the treatment of anaemia and is currently the most commercially valuable biopharmaceutical on the market. Our results indicate that the concentration of recombinant EPO and endogenous total soluble protein (TSP) declined significantly for every leaf of the plant during maturation, although the rate of these declines was strongly dependent on the leaf's position on the plant. As a result, the amount of EPO produced in leaves relative to TSP content remained essentially unchanged over the course of the plant's life. Decreasing levels of recombinant protein in leaves was attributed to proteolytic degradation associated with tissue senescence since transgene silencing was not detected. We found that significantly higher concentrations of EPO within younger leaves more than compensated for their smaller size, when compared to their low-expressing, fully-grown counterparts. This suggests that fast-growing, young leaves should be periodically harvested from the plants as they continue to grow in order to maximize recombinant protein yield. These findings demonstrate that EPO accumulation is highly influenced by the plant's physiology and development.
Collapse
Affiliation(s)
- Andrew J Conley
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | | | | | | |
Collapse
|
83
|
Farran I, McCarthy-Suárez I, Río-Manterola F, Mansilla C, Lasarte JJ, Mingo-Castel AM. The vaccine adjuvant extra domain A from fibronectin retains its proinflammatory properties when expressed in tobacco chloroplasts. PLANTA 2010; 231:977-90. [PMID: 20108000 DOI: 10.1007/s00425-010-1102-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 01/08/2010] [Indexed: 05/28/2023]
Abstract
We previously showed that recombinant extra domain A from fibronectin (EDA) purified from Escherichia coli was able to bind to toll-like receptor 4 (TLR4) and stimulate production of proinflammatory cytokines by dendritic cells. Because EDA could be used as an adjuvant for vaccine development, we aimed to express it from the tobacco plastome, a promising strategy in molecular farming. To optimize the amount of recombinant EDA (rEDA) in tobacco leaves, different downstream sequences were evaluated as potential fusion tags. Plants generated by tobacco plastid transformation accumulated rEDA at levels up to 2% of the total cellular protein (equivalent to approximately 0.3 mg/g fresh weight) when translationally fused to the first 15 amino acids of green fluorescence protein (GFP). The recombinant adjuvant could be purified from tobacco leaves using a simple procedure, involving ammonium sulfate precipitation and anion exchange chromatography. Purified protein was able to induce production of tumour necrosis factor-alpha (TNF-alpha) either by bone marrow-derived dendritic cells or THP-1 monocytes. The rEDA produced in tobacco leaves was also able to induce upregulation of CD54 and CD86 maturation markers on dendritic cells, suggesting that the rEDA retains the proinflammatory properties of the EDA produced in E. coli and thus could be used as an adjuvant in vaccination against infectious agents and cancer. Taken together, these results demonstrate that chloroplasts are an attractive production vehicle for the expression of this protein vaccine adjuvant.
Collapse
Affiliation(s)
- Inmaculada Farran
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus Arrosadía, 31006 Pamplona, Spain,
| | | | | | | | | | | |
Collapse
|
84
|
Madesis P, Osathanunkul M, Georgopoulou U, Gisby MF, Mudd EA, Nianiou I, Tsitoura P, Mavromara P, Tsaftaris A, Day A. A hepatitis C virus core polypeptide expressed in chloroplasts detects anti-core antibodies in infected human sera. J Biotechnol 2010; 145:377-86. [PMID: 19969031 DOI: 10.1016/j.jbiotec.2009.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 11/27/2009] [Accepted: 12/01/2009] [Indexed: 01/19/2023]
Abstract
Hepatitis C virus (HCV) is a major disease agent affecting approximately 3% of the world's population. Expression in plant chloroplasts enables low-cost production of the conserved HCV core protein used in diagnostic tests to combat virus spread in developing countries with high infection rates. The bactericidal activity of the 21 kDa precore protein hinders cloning the core gene in plastid expression cassettes, which are active in bacteria due to the similarities between bacterial and plastid promoters and ribosome binding sites. This was overcome by using a topology-dependent expression cassette containing tandem rrn and psbA plastid promoters, whose activity was shown to be dependent on temperature. The viral core gene and a codon-optimised gene encoding a C-terminal truncated 16 kDa core polypeptide were expressed in tobacco chloroplasts. The codon-optimised gene increased monocistronic core mRNA levels by at least 2-fold and core polypeptides by over 5-fold, relative to the native viral gene. Expression of the 16 kDa core polypeptide was stable in leaves of different ages. Anti-core antibodies in HCV-infected human sera were detected by the 16 kDa core polypeptide in total leaf protein fractionated on Western blots providing a first step towards developing a chloroplast-based HCV diagnostic method.
Collapse
Affiliation(s)
- P Madesis
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Intemann K, de Melo-Martín I. Social values and scientific evidence: the case of the HPV vaccines. BIOLOGY & PHILOSOPHY 2010; 25:203-213. [PMID: 20526463 PMCID: PMC2879703 DOI: 10.1007/s10539-009-9191-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Several have argued that the aims of scientific research are not always independent of social and ethical values. Yet this is often assumed only to have implications for decisions about what is studied, or which research projects are funded, and not for methodological decisions or standards of evidence. Using the case of the recently developed HPV vaccines, we argue that the social aims of research can also play important roles in justifying decisions about (1) how research problems are defined in drug development, (2) evidentiary standards used in testing drug "success", and (3) clinical trial methodology. As a result, attending to the social aims at stake in particular research contexts will produce more rational methodological decisions as well as more socially relevant science.
Collapse
|
86
|
Lentz EM, Segretin ME, Morgenfeld MM, Wirth SA, Dus Santos MJ, Mozgovoj MV, Wigdorovitz A, Bravo-Almonacid FF. High expression level of a foot and mouth disease virus epitope in tobacco transplastomic plants. PLANTA 2010; 231:387-95. [PMID: 20041332 DOI: 10.1007/s00425-009-1058-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 10/30/2009] [Indexed: 05/10/2023]
Abstract
Chloroplast transformation has an extraordinary potential for antigen production in plants because of the capacity to accumulate high levels of recombinant proteins and increased biosafety due to maternal plastid inheritance in most crops. In this article, we evaluate tobacco chloroplasts transformation for the production of a highly immunogenic epitope containing amino acid residues 135-160 of the structural protein VP1 of the foot and mouth disease virus (FMDV). To increase the accumulation levels, the peptide was expressed as a fusion protein with the beta-glucuronidase reporter gene (uidA). The recombinant protein represented the 51% of the total soluble proteins in mature leaves, a level higher than those of the Rubisco large subunit, the most abundant protein in the leaf of a wild-type plant. Despite this high accumulation of heterologous protein, the transplastomic plants and wild-type tobacco were phenotypically indistinguishable. The FMDV epitope expressed in transplastomic plants was immunogenic in mice. These results show that transplastomic tobacco express efficiently the recombinant protein, and we conclude that this technology allows the production of large quantities of immunogenic proteins.
Collapse
Affiliation(s)
- Ezequiel Matías Lentz
- Laboratorio de Virología y Biotecnología Vegetal, INGEBI-UBA/CONICET, Ciudad Autónoma de Buenos Aires, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Daniell H, Singh ND, Mason H, Streatfield SJ. Plant-made vaccine antigens and biopharmaceuticals. TRENDS IN PLANT SCIENCE 2009; 14:669-79. [PMID: 19836291 PMCID: PMC2787751 DOI: 10.1016/j.tplants.2009.09.009] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 08/30/2009] [Accepted: 09/24/2009] [Indexed: 05/17/2023]
Abstract
Plant cells are ideal bioreactors for the production and oral delivery of vaccines and biopharmaceuticals, eliminating the need for expensive fermentation, purification, cold storage, transportation and sterile delivery. Plant-made vaccines have been developed for two decades but none has advanced beyond Phase I. However, two plant-made biopharmaceuticals are now advancing through Phase II and Phase III human clinical trials. In this review, we evaluate the advantages and disadvantages of different plant expression systems (stable nuclear and chloroplast or transient viral) and their current limitations or challenges. We provide suggestions for advancing this valuable concept for clinical applications and conclude that greater research emphasis is needed on large-scale production, purification, functional characterization, oral delivery and preclinical evaluation.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Molecular Biology and Microbiology, University of Central Florida, College of Medicine, 336 Biomolecular Science Building, Orlando, FL 32816-2364, USA.
| | | | | | | |
Collapse
|
88
|
Franceschi S, Cuzick J, Herrero R, Dillner J, Wheeler CM. EUROGIN 2008 roadmap on cervical cancer prevention. Int J Cancer 2009; 125:2246-55. [PMID: 19521965 DOI: 10.1002/ijc.24634] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The EUROGIN 2008 Roadmap represents a continuing effort to provide updated information on primary and secondary prevention of cervical cancer. The report addresses several areas including the progress made toward global implementation of currently licensed human papillomavirus (HPV) vaccines, the possibilities and value of future-generation HPV vaccines, endpoints under consideration for evaluation of candidate HPV vaccines, and monitoring impact of HPV vaccination programmes that can be implemented within developed and less-developed countries. For the sake of completeness, a short update on the evolution of HPV testing in primary screening programmes at present and after HPV vaccine introduction has also been included. The report is available on the EUROGIN website (www.eurogin.com).
Collapse
|
89
|
Ioannidis NE, Ortigosa SM, Veramendi J, Pintó-Marijuan M, Fleck I, Carvajal P, Kotzabasis K, Santos M, Torné JM. Remodeling of tobacco thylakoids by over-expression of maize plastidial transglutaminase. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1787:1215-22. [PMID: 19497298 DOI: 10.1016/j.bbabio.2009.05.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 11/20/2022]
Abstract
Transglutaminases (TGases, EC 2.3.2.13) are intra- and extra-cellular enzymes that catalyze post-translational modification of proteins by establishing epsilon-(gamma-glutamyl) links and covalent conjugation of polyamines. In chloroplast it is well established that TGases specifically polyaminylate the light-harvesting antenna of Photosystem (PS) II (LHCII, CP29, CP26, CP24) and therefore a role in photosynthesis has been hypothesised (Della Mea et al. [23] and refs therein). However, the role of TGases in chloroplast is not yet fully understood. Here we report the effect of the over-expression of maize (Zea mays) chloroplast TGase in tobacco (Nicotiana tabacum var. Petit Havana) chloroplasts. The transglutaminase activity in over-expressers was increased 4 times in comparison to the wild-type tobacco plants, which in turn increased the thylakoid associated polyamines about 90%. Functional comparison between Wt tobacco and tgz over-expressers is shown in terms of fast fluorescence induction kinetics, non-photochemical quenching of the singlet excited state of chlorophyll a and antenna heterogeneity of PSII. Both in vivo probing and electron microscopy studies verified thylakoid remodeling. PSII antenna heterogeneity in vivo changes in the over-expressers to a great extent, with an increase of the centers located in grana-appressed regions (PSIIalpha) at the expense of centers located mainly in stroma thylakoids (PSIIbeta). A major increase in the granum size (i.e. increase of the number of stacked layers) with a concomitant decrease of stroma thylakoids is reported for the TGase over-expressers.
Collapse
|
90
|
Rigano MM, Manna C, Giulini A, Pedrazzini E, Capobianchi M, Castilletti C, Di Caro A, Ippolito G, Beggio P, De Giuli Morghen C, Monti L, Vitale A, Cardi T. Transgenic chloroplasts are efficient sites for high-yield production of the vaccinia virus envelope protein A27L in plant cellsdagger. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:577-91. [PMID: 19508274 DOI: 10.1111/j.1467-7652.2009.00425.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Orthopoxviruses (OPVs) have recently received increasing attention because of their potential use in bioterrorism and the occurrence of zoonotic OPV outbreaks, highlighting the need for the development of safe and cost-effective vaccines against smallpox and related viruses. In this respect, the production of subunit protein-based vaccines in transgenic plants is an attractive approach. For this purpose, the A27L immunogenic protein of vaccinia virus was expressed in tobacco using stable transformation of the nuclear or plastid genome. The vaccinia virus protein was expressed in the stroma of transplastomic plants in soluble form and accumulated to about 18% of total soluble protein (equivalent to approximately 1.7 mg/g fresh weight). This level of A27L accumulation was 500-fold higher than that in nuclear transformed plants, and did not decline during leaf development. Transplastomic plants showed a partial reduction in growth and were chlorotic, but reached maturity and set fertile seeds. Analysis by immunofluorescence microscopy indicated altered chlorophyll distribution. Chloroplast-synthesized A27L formed oligomers, suggesting correct folding and quaternary structure, and was recognized by serum from a patient recently infected by a zoonotic OPV. Taken together, these results demonstrate that chloroplasts are an attractive production vehicle for the expression of OPV subunit vaccines.
Collapse
Affiliation(s)
- M Manuela Rigano
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples 'Federico II', Via Università, Portici, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Davoodi-Semiromi A, Samson N, Daniell H. The green vaccine: A global strategy to combat infectious and autoimmune diseases. HUMAN VACCINES 2009; 5:488-93. [PMID: 19430198 DOI: 10.4161/hv.8247] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Abdoreza Davoodi-Semiromi
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL 32816-2364, USA
| | | | | |
Collapse
|
92
|
Palmer KE, Jenson AB, Kouokam JC, Lasnik AB, Ghim SJ. Recombinant vaccines for the prevention of human papillomavirus infection and cervical cancer. Exp Mol Pathol 2009; 86:224-33. [DOI: 10.1016/j.yexmp.2009.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Indexed: 10/21/2022]
|
93
|
Scotti N, Alagna F, Ferraiolo E, Formisano G, Sannino L, Buonaguro L, De Stradis A, Vitale A, Monti L, Grillo S, Buonaguro FM, Cardi T. High-level expression of the HIV-1 Pr55gag polyprotein in transgenic tobacco chloroplasts. PLANTA 2009; 229:1109-22. [PMID: 19234717 DOI: 10.1007/s00425-009-0898-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Accepted: 01/27/2009] [Indexed: 05/10/2023]
Abstract
Plants have been recognized as a promising production platform for recombinant pharmaceutical proteins. The human immunodeficiency virus Gag (Pr55(gag)) structural polyprotein precursor is a prime candidate for developing a HIV-1 vaccine, but, so far, has been expressed at very low level in plants. The aim of this study was to investigate factors potentially involved in Pr55(gag) expression and increase protein yield in plant cells. In transient expression experiments in various subcellular compartments, the native Pr55(gag) sequence could be expressed only in the chloroplast. Experiments with truncated subunits suggested a negative role of the 5'-end on the expression of the full gene in the cytosol. Stable transgenic plants were produced in tobacco by Agrobacterium-mediated nuclear transformation with protein targeted to plastids, and biolistic-mediated plastid transformation. Compared to the nuclear genome, the integration and expression of the gag transgene in the plastome resulted in significantly higher protein accumulation levels (up to 7-8% TSP, equivalent to 312-363 mg/kg FW). In transplastomic plants, a 25-fold higher protein accumulation was obtained by translationally fusing the Pr55(gag) polyprotein to the N-terminus of the plastid photosynthetic RbcL protein. In chloroplasts, the Pr55(gag) polyprotein was processed in a pattern similar to that achieved by the viral protease, the processing being more extended in older leaves of mature plants. The Gag proteins produced in transgenic plastids were able to assemble into particles resembling VLPs produced in baculovirus/insect cells and E. coli systems. These results indicate that plastid transformation is a promising tool for HIV antigen manufacturing in plant cells.
Collapse
Affiliation(s)
- Nunzia Scotti
- CNR-IGV, Institute of Plant Genetics, National Research Council, Via Università 133, 80055 Portici, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Ramqvist T, Dalianis T. Immunotherapeutic polyoma and human papilloma virus-like particles. Immunotherapy 2009; 1:303-12. [DOI: 10.2217/1750743x.1.2.303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polyomavirus and human papillomavirus (HPV) virus-like particles (VLPs) can be obtained by producing their major capsid protein VP1 (for polyomavirus) or L1 (for HPV) free from other viral genes in, for example, a baculovirus insect system, yeast, Escherichia coli or similar systems. Polyomavirus and HPV VLPs can immunize healthy individuals, and in some cases T-cell-deficient hosts, against primary infection with the corresponding virus. Chimeric VLPs from polyomaviruses or HPVs containing fusion proteins between the VP1/L1 or VP2/VP3/L2 minor capsid proteins and selected antigens can also be produced. These VLPs can then induce B- or T-cell immune responses and be used as preventive or therapeutic vaccines against cancers induced by the corresponding virus, or a cancer bearing the selected tumor antigen.
Collapse
Affiliation(s)
- Torbjörn Ramqvist
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, CCK R8:01, 171 76 Stockholm, Sweden
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, CCK R8:01, 171 76 Stockholm, Sweden
| |
Collapse
|
95
|
Lenzi P, Scotti N, Alagna F, Tornesello ML, Pompa A, Vitale A, De Stradis A, Monti L, Grillo S, Buonaguro FM, Maliga P, Cardi T. Translational fusion of chloroplast-expressed human papillomavirus type 16 L1 capsid protein enhances antigen accumulation in transplastomic tobacco. Transgenic Res 2008; 17:1091-102. [PMID: 18491213 DOI: 10.1007/s11248-008-9186-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 04/29/2008] [Indexed: 01/12/2023]
Abstract
Human Papillomavirus (HPV) is the causal agent of cervical cancer, one of the most common causes of death for women. The major capsid L1 protein self-assembles in Virus Like Particles (VLPs), which are highly immunogenic and suitable for vaccine production. In this study, a plastid transformation approach was assessed in order to produce a plant-based HPV-16 L1 vaccine. Transplastomic plants were obtained after transformation with vectors carrying a chimeric gene encoding the L1 protein either as the native viral (L1(v) gene) or a synthetic sequence optimized for expression in plant plastids (L1(pt) gene) under control of plastid expression signals. The L1 mRNA was detected in plastids and the L1 antigen accumulated up to 1.5% total leaf proteins only when vectors included the 5'-UTR and a short N-terminal coding segment (Downstream Box) of a plastid gene. The half-life of the engineered L1 protein, determined by pulse-chase experiments, is at least 8 h. Formation of immunogenic VLPs in chloroplasts was confirmed by capture ELISA assay using antibodies recognizing conformational epitopes and by electron microscopy.
Collapse
Affiliation(s)
- Paolo Lenzi
- CNR-IGV, Institute of Plant Genetics-Research Division Portici, via Università 133, 80055 Portici, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Plant-produced vaccines: promise and reality. Drug Discov Today 2008; 14:16-24. [PMID: 18983932 DOI: 10.1016/j.drudis.2008.10.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 09/30/2008] [Accepted: 10/06/2008] [Indexed: 11/21/2022]
Abstract
Plant-produced vaccines are a much-hyped development of the past two decades, whose time to embrace reality may have finally come. Vaccines have been developed against viral, bacterial, parasite and allergenic antigens, for humans and for animals; a wide variety of plants have been used for stable transgenic expression as well as for transient expression via Agrobacterium tumefaciens and plant viral vectors. A great many products have shown significant immunogenicity; several have shown efficacy in target animals or in animal models. The realised potential of plant-produced vaccines is discussed, together with future prospects for production and registration.
Collapse
|
97
|
Paper and market watch. Biotechnol J 2008. [DOI: 10.1002/biot.200890085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
98
|
Farran I, Río-Manterola F, Iñiguez M, Gárate S, Prieto J, Mingo-Castel AM. High-density seedling expression system for the production of bioactive human cardiotrophin-1, a potential therapeutic cytokine, in transgenic tobacco chloroplasts. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:516-27. [PMID: 18384506 DOI: 10.1111/j.1467-7652.2008.00334.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Histidine-tagged human cardiotrophin-1 (hCT-1), a recently discovered cytokine with excellent therapeutic potential, was expressed in tobacco chloroplasts under the transcriptional and translational control of two different promoters (rrn and psbA) and 5'-untranslated regions (5'-UTRs) (psbA and phage T7 gene 10). The psbA 5'-UTR promotes recombinant hCT-1 (rhCT-1) accumulation in chloroplasts at higher levels (eight-fold) than those obtained for the phage T7 gene 10 5'-UTR, regardless of the promoter used, indicating that the correct choice of translational control element is most important for protein production in chloroplasts. The maximum level of rhCT-1 achieved was 1.14 mg/g fresh weight (equivalent to 5% of total soluble protein) with the psbA promoter and 5'-UTR in young leaves harvested after 32 h of continuous light, although the bioactivity was significantly lower (approximately 35%) than that of commercial hCT-1. However, harvesting in the dark or after 12 h of light did not result in a significant decrease in the bioactivity of rhCT-1, suggesting that 32 h of over-lighting affects the biological activity of rhCT-1. Because high levels of rhCT-1 accumulation took place mainly in young leaves, it is proposed that seedlings should be used in a 'closed system' unit, yielding up to 3.2 kg per year of rhCT-1. This amount would be sufficient to meet the estimated annual worldwide needs of hCT-1 for liver transplantation surgery in a cost-effective manner. Furthermore, our strategy is an environmentally friendly method for the production of plant-based biopharmaceuticals.
Collapse
Affiliation(s)
- Imma Farran
- Instituto de Agrobiotecnología, UPNA-CSIC-Gobierno de Navarra, Campus Arrosadía, 31006 Pamplona, Spain
| | | | | | | | | | | |
Collapse
|