51
|
Ziganshin AU, Kamaliev RR, Grishin SN, Ziganshina LE, Zefirov AL, Burnstock G. The influence of hypothermia on P2 receptor-mediated responses of frog skeletal muscle. Eur J Pharmacol 2005; 509:187-93. [PMID: 15733555 DOI: 10.1016/j.ejphar.2004.11.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 11/15/2004] [Indexed: 11/17/2022]
Abstract
The contractile responses of isolated Rana ridibunda frog sartorius muscle contractions evoked by electrical field stimulation (EFS) were studied at three temperature conditions of 17, 22 and 27 degrees C. Temperature-dependent increase of muscle contractility was found. ATP (10-100 microM) concentration dependently inhibited the electrical field stimulation-evoked contractions of sartorius muscle at all three temperatures; this effect was significantly more prominent at a temperature of 17 degrees C than at other two temperatures. Adenosine (100 microM) also caused inhibition of electrical field stimulation-evoked contractions which was statistically identical at all three temperature conditions tested. A P2 receptor antagonist, pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS, 10 microM) reduced the inhibitory effect of ATP at all three temperatures but did not affect inhibitory action of adenosine. In contrast, 8-(p-sulfophenyl)theophylline (8-SPT, 100 microM), a nonselective P1 receptor antagonist, abolished inhibitory effects of adenosine at all three temperature conditions but did not antagonize inhibition caused by ATP. In electrophysiological experiments, ATP (100 microM) and adenosine (100 microM) temperature dependently reduced end-plate currents recorded in sartorius neuromuscular junction by voltage-clamp technique. The inhibitory effects of both agonists were enhanced with the decrease of temperature. 8-SPT (100 microM) abolished the inhibitory effect of adenosine but not ATP on end-plate currents. Suramin (100 microM), a nonselective P2 receptor antagonist, inhibited the action of ATP but not adenosine, while PPADS (10 microM) had no influence on the effects of either ATP or adenosine. It is concluded from this study that the effectiveness of P2 receptor-mediated inhibition of frog skeletal muscle contraction in contrast to that of adenosine is dependent on the temperature conditions.
Collapse
Affiliation(s)
- Airat U Ziganshin
- Department of Pharmacology, Kazan State Medical University, 49 Butlerov Street, Kazan 420012, Russia.
| | | | | | | | | | | |
Collapse
|
52
|
Belous A, Wakata A, Knox CD, Nicoud IB, Pierce J, Anderson CD, Pinson CW, Chari RS. Mitochondrial P2Y-Like receptors link cytosolic adenosine nucleotides to mitochondrial calcium uptake. J Cell Biochem 2005; 92:1062-73. [PMID: 15258927 DOI: 10.1002/jcb.20144] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ATP is a known extracellular ligand for cell membrane purinergic receptors. Intracellular ATP can work also as a regulatory ligand via binding sites on functional proteins. We report herein the existence of P2Y(1)-like and P2Y(2)-like receptors in hepatocyte mitochondria (mP2Y(1) and mP2Y(2)), which regulate mCa(2+) uptake though the uniporter. Mitochondrial P2Y(1) activation stimulates mCa(2+) uptake; whereas, mP2Y(2) activation inhibits mCa(2+) uptake. ATP acts preferentially on mP2Y(2) receptors, while ADP and AMP-PNP stimulate both the mP2Y(1) and mP2Y(2). PPADS inhibits ADP stimulated mP2Y(1)-mediated mCa(2+) uptake. In addition, UTP, a selective P2Y(2) agonist, strongly inhibits mCa(2+) uptake. The newly discovered presence and function of these receptors is significant because it explains increased mCa(2+) uptake in the setting of low cytosolic [ATP] and, therefore, establishes a mechanism for direct feedback in which cytosolic [ATP] governs mitochondrial ATP production through regulation of mCa(2+) uptake.
Collapse
Affiliation(s)
- Andrey Belous
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232-4753, USA
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Rundén-Pran E, Tansø R, Haug FM, Ottersen OP, Ring A. Neuroprotective effects of inhibiting N-methyl-d-aspartate receptors, P2X receptors and the mitogen-activated protein kinase cascade: A quantitative analysis in organotypical hippocampal slice cultures subjected to oxygen and glucose deprivation. Neuroscience 2005; 136:795-810. [PMID: 16344152 DOI: 10.1016/j.neuroscience.2005.08.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 08/04/2005] [Accepted: 08/30/2005] [Indexed: 11/24/2022]
Abstract
Cell death was assessed by quantitative analysis of propidium iodide uptake in rat hippocampal slice cultures transiently exposed to oxygen and glucose deprivation, an in vitro model of brain ischemia. The hippocampal subfields CA1 and CA3, and fascia dentata were analyzed at different stages from 0 to 48 h after the insult. Cell death appeared at 3 h and increased steeply toward 12 h. Only a slight additional increase in propidium iodide uptake was seen at later intervals. The mitogen-activated protein kinases extracellular signal-regulated kinase 1 and extracellular signal-regulated kinase 2 were activated immediately after oxygen and glucose deprivation both in CA1 and in CA3/fascia dentata. Inhibition of the specific mitogen-activated protein kinase activator mitogen-activated protein kinase kinase by PD98059 or U0126 offered partial protection against oxygen and glucose deprivation-induced cell damage. The non-selective P2X receptor antagonist suramin gave neuroprotection of the same magnitude as the N-methyl-D-aspartate channel blocker MK-801 (approximately 70%). Neuroprotection was also observed with the P2 receptor blocker PPADS. Immunogold data indicated that hippocampal slice cultures (like intact hippocampi) express several isoforms of P2X receptors at the synaptic level, consistent with the idea that the effects of suramin and PPADS are mediated by P2X receptors. Virtually complete neuroprotection was obtained by combined blockade of N-methyl-D-aspartate receptors, P2X receptors, and mitogen-activated protein kinase kinase. Both P2X receptors and N-methyl-D-aspartate receptors mediate influx of calcium. Our results suggest that inhibition of P2X receptors has a neuroprotective potential similar to that of inhibition of N-methyl-D-aspartate receptors. In contrast, our comparative analysis shows that only partial protection can be achieved by inhibiting the extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase cascade, one of the downstream pathways activated by intracellular calcium overload.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Western/methods
- Cell Death/drug effects
- Cell Death/physiology
- Dizocilpine Maleate/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Enzyme Activation/drug effects
- Enzyme Inhibitors/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Glucose/deficiency
- Hippocampus/drug effects
- Hippocampus/pathology
- Hypoxia
- Male
- Microscopy, Immunoelectron/methods
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/metabolism
- Neurons/drug effects
- Neurons/ultrastructure
- Neuroprotective Agents/pharmacology
- Organ Culture Techniques
- Purinergic P2 Receptor Antagonists
- Pyridoxal Phosphate/analogs & derivatives
- Pyridoxal Phosphate/pharmacology
- Rats
- Rats, Wistar
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- Receptors, Purinergic P2/physiology
- Receptors, Purinergic P2/ultrastructure
- Receptors, Purinergic P2X
- Time Factors
Collapse
Affiliation(s)
- E Rundén-Pran
- Centre for Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105 Blindern, N-0317 Oslo, Norway.
| | | | | | | | | |
Collapse
|
54
|
Suzuki E, Kessler M, Montgomery K, Arai AC. Divergent effects of the purinoceptor antagonists suramin and pyridoxal-5'-phosphate-6-(2'-naphthylazo-6'-nitro-4',8'-disulfonate) (PPNDS) on alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Mol Pharmacol 2004; 66:1738-47. [PMID: 15448189 DOI: 10.1124/mol.104.003038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Suramin is a large naphthyl-polysulfonate compound that inhibits an array of receptors and enzymes, and it has also been reported to block currents mediated by glutamate receptors. This study shows that suramin and several structurally related compounds [8,8'-[carbonylbis(imino-3,1-phenylenecarbonylamino)]bis-(1,3,5-naphthalenetrisulfonic acid), 6Na (NF023), 8,8'-(carbonylbis(imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino))bis-1,3,5-naphthalenetrisulfonic acid, Na (NF279), and 4,4',4'',4'''-[carbonyl-bis[imino-5,1,3-benzenetriyl-bis-(carbonylimino)]]tetrakis-benzene-1,3-disulfonic acid, 8Na (NF449)] reduce binding of [3H]alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and [3H]fluorowillardiine to rat brain membranes and homomeric GluR1-4 receptors, with IC50 values in the range of 5 to 180 microM. Inhibition often was less than complete at saturating drug concentrations and thus seems to be noncompetitive in nature. Pyridoxal-5'-phosphate-6-(2'-naphthylazo-6'-nitro-4',8'-disulfonate) (PPNDS) is a potent antagonist of purinoceptors that shares some structural elements with suramin yet is smaller than the latter. PPNDS also had potent effects on AMPA receptors (EC50 value of 4 microM) but of a kind not seen with the other compounds in that it increased binding affinity for radioagonists severalfold. In addition, PPNDS slowed association and dissociation rates more than 10 times. In physiological experiments with GluR2 receptors, PPNDS at 50 microM reduced the peak current by 30 to 50% but had only small effects on other waveform aspects such desensitization and steady-state currents. This pattern of effects differentiates PPNDS from other compounds such as thiocyanate and up-modulators, which increase agonist binding by enhancing desensitization or slowing deactivation, respectively. Receptor model simulations indicate that most effects can be accounted for by assuming that PPNDS slows agonist binding/unbinding and stabilizes the bound-closed state of the receptor. By extension, suramin is proposed to stabilize the unbound state and thereby to reduce affinity for agonists. These drugs thus act through a novel type of noncompetitive antagonism.
Collapse
Affiliation(s)
- Erika Suzuki
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62702, USA
| | | | | | | |
Collapse
|
55
|
Kittner H, Krügel U, Hoffmann E, Illes P. Modulation of feeding behaviour by blocking purinergic receptors in the rat nucleus accumbens: a combined microdialysis, electroencephalographic and behavioural study. Eur J Neurosci 2004; 19:396-404. [PMID: 14725634 DOI: 10.1111/j.0953-816x.2003.03090.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nonspecific P2 receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), the nonspecific P1 receptor antagonist 8-(p-sulphophenyl)-theophylline (8-SPT) and the combination of both were applied by retrograde microdialysis into the nucleus accumbens (NAc) before and during feeding of 18-h food-deprived rats. In addition to the registration of behavioural parameters, such as the amount and duration of food intake, the feeding-induced changes in dopamine (DA) concentration and the concomitant changes of neuronal activity in the NAc and the ventral tegmental area (VTA) were simultaneously determined. The perfusion with PPADS (20 microm) diminished the amount of food intake and the duration of feeding. Furthermore, the P2 receptor antagonist blocked the feeding-induced DA release and prevented the feeding-elicited changes of the electroencephalography (EEG) power distribution which was characterised by an increase in the power of the 8.0-13.0-Hz frequency band in the NAc and the VTA. The effects of PPADS could be completely prevented by the concomitantly perfused adenosine receptor antagonist 8-SPT (100 microm). When given alone, 8-SPT increased the amount of food ingested, the duration of feeding and the EEG power of the higher frequency range, particularly between 19.0 and 30.0 Hz, in both the NAc and the VTA. The feeding-elicited DA release was supplemented to the enhanced DA level caused by the perfusion with 8-SPT in an additive manner. The P2 and P1 receptor antagonists interact antagonistically in the modulation of feeding behaviour and the feeding-induced changes of EEG activity suggesting that both endogenous extracellular ATP and adenosine are involved in the regulation of the feeding-associated mesolimbic neuronal activity in a functionally antagonistic manner.
Collapse
Affiliation(s)
- H Kittner
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany.
| | | | | | | |
Collapse
|
56
|
Brown J, Brown CA. Evaluation of reactive blue 2 derivatives as selective antagonists for P2Y receptors. Vascul Pharmacol 2003; 39:309-15. [PMID: 14567069 DOI: 10.1016/s1537-1891(03)00030-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
P2Y receptor pharmacology is hampered by a lack of subtype selective antagonists. However, a recent study evaluated series of compounds, structurally related to the dye reactive blue 2, for their antagonist selectivity at P2X vs. P2Y receptors. Acid blue 129, acid blue 80, acid blue 25 and acid violet 34 were found to be the most potent of the antagonists studied, at P2Y receptors [Naunyn Schmiedeberg's Arch. Pharmacol. 357 (1998) 111]. In this study, we have determined the ability of these four agents to selectively antagonize inositol phosphate turnover mediated by P2Y1 and P2Y2 receptors that are natively expressed in bovine aortic endothelial (BAE) cells. Acid blue 129, acid blue 80, and acid violet 34 shifted the dose-response curve of the P2Y1 agonist 2-methylthio adenosine trisphosphate (2MeSATP) to the right. Acid blue 129 and acid blue 80 were also very weak antagonists of the P2Y2 agonist uridine 5'-triphosphate (UTP). At 30 and 100 microM, acid violet 34 failed to have any significant effect on the dose-response to UTP. However, at 10 microM, acid violet 34 enhanced the UTP responses. Acid blue 80, acid blue 129 and acid violet 34 are P2Y vs. P2X selective, but show poor selectivity between P2Y1 and P2Y2 receptors and are therefore of limited use in the field of P2Y receptor pharmacology. Furthermore, contrary to previous reports, acid blue 25 is not a P2Y-selective antagonist.
Collapse
Affiliation(s)
- Julia Brown
- Biomedical Sciences Division, School of Applied Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1SB, UK.
| | | |
Collapse
|
57
|
Abstract
Intercellular spread of Ca2+ waves is the primary manifestation of cell-to-cell communication among astrocytes. Ca2+ waves propagate via the release of a diffusible extracellular messenger that has been identified as ATP. In dorsal spinal astrocytes, Ca2+ waves are mediated by activation of two functionally distinct subtypes of metabotropic purinoceptor: the P2Y1 receptor and a receptor previously classified as P2U. Here, we show that the P2U receptor is molecularly and pharmacologically identical to the cloned P2Y2 receptor. Both P2Y1 and P2Y2 receptors are necessary for full Ca2+ wave propagation in spinal astrocytes. Conversely, heterologous expression of either P2Y1 or P2Y2 receptors is sufficient for Ca2+ waves, and expressing these receptor subtypes together recapitulates the characteristics of Ca2+ waves in spinal astrocytes. Thus, P2Y1 and P2Y2 receptors are both necessary and sufficient for propagation of Ca2+ waves. Furthermore, we demonstrate that there are dramatic differences in the characteristics of Ca2+ waves propagating through each receptor subtype: Ca2+ waves propagating via P2Y2 receptors travel faster and further than those propagating via P2Y1 receptors. We find that the nucleotidase apyrase selectively blocks Ca2+ wave propagation through P2Y2 receptors but accelerates Ca2+ waves propagating through P2Y1 receptors. Taking our results together with those from the literature, we suggest that mediation of Ca2+ waves by ATP leading to activation of two subtypes of receptor, P2Y1 and P2Y2, may be a general principle for gliotransmission in the CNS. Thus, processes that alter expression or function of these receptors may control the rate and extent of astrocyte Ca2+ waves.
Collapse
|
58
|
Gallagher CJ, Salter MW. Differential properties of astrocyte calcium waves mediated by P2Y1 and P2Y2 receptors. J Neurosci 2003; 23:6728-39. [PMID: 12890765 PMCID: PMC6740738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Intercellular spread of Ca2+ waves is the primary manifestation of cell-to-cell communication among astrocytes. Ca2+ waves propagate via the release of a diffusible extracellular messenger that has been identified as ATP. In dorsal spinal astrocytes, Ca2+ waves are mediated by activation of two functionally distinct subtypes of metabotropic purinoceptor: the P2Y1 receptor and a receptor previously classified as P2U. Here, we show that the P2U receptor is molecularly and pharmacologically identical to the cloned P2Y2 receptor. Both P2Y1 and P2Y2 receptors are necessary for full Ca2+ wave propagation in spinal astrocytes. Conversely, heterologous expression of either P2Y1 or P2Y2 receptors is sufficient for Ca2+ waves, and expressing these receptor subtypes together recapitulates the characteristics of Ca2+ waves in spinal astrocytes. Thus, P2Y1 and P2Y2 receptors are both necessary and sufficient for propagation of Ca2+ waves. Furthermore, we demonstrate that there are dramatic differences in the characteristics of Ca2+ waves propagating through each receptor subtype: Ca2+ waves propagating via P2Y2 receptors travel faster and further than those propagating via P2Y1 receptors. We find that the nucleotidase apyrase selectively blocks Ca2+ wave propagation through P2Y2 receptors but accelerates Ca2+ waves propagating through P2Y1 receptors. Taking our results together with those from the literature, we suggest that mediation of Ca2+ waves by ATP leading to activation of two subtypes of receptor, P2Y1 and P2Y2, may be a general principle for gliotransmission in the CNS. Thus, processes that alter expression or function of these receptors may control the rate and extent of astrocyte Ca2+ waves.
Collapse
Affiliation(s)
- Conor J Gallagher
- Programme in Brain and Behaviour, Hospital For Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | | |
Collapse
|
59
|
Bennett GC, Ford APDW, Smith JAM, Emmett CJ, Webb TE, Boarder MR. P2Y receptor regulation of cultured rat cerebral cortical cells: calcium responses and mRNA expression in neurons and glia. Br J Pharmacol 2003; 139:279-88. [PMID: 12770933 PMCID: PMC1573842 DOI: 10.1038/sj.bjp.0705242] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1 We have investigated increases in cytosolic Ca(2+) in response to nucleotides in mixed rat cerebrocortical cultures (neurons and glia in similar numbers) and in essentially neuron-free glial cultures. 2 In both cultures, the agonist-response profile was 2-methylthioADP(2MeSADP)>2-methylthioATP(2MeSATP)>ADP>ATP>adenosine 5'-O-(3-thiotriphosphate), consistent with a P2Y(1) receptor. The maximal responses to 2MeSADP, 2MeSATP and ADP were identical, but that to ATP was higher. 3 Suramin, pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid, reactive blue 2 (RB2), and adenosine biphosphate (A3P5P) were antagonists with apparent pA(2) values of 5.5 for suramin, 6.4 for RB2, and 4.7 for A3P5P. 4 Single cell imaging divided the cells from the mixed neuronal-glial cultures into two populations: responsive (neurons) and unresponsive (glial cells) to high [K(+)]. The response of cells to nucleotides was almost exclusively limited to those not responsive to high K(+). 5 In the presence of extracellular Mn(2+), the response of the mixed cultures to 30 mM K(+) and 20 micro M Bay K 8644 was attenuated. However, when 2MeSADP was added there was no reduction in response in cultures previously loaded with Mn(2+). This further indicated that the 2MeSADP response was not in the neurons. 6 Reverse transcriptase-polymerase chain reaction studies detected transcripts for P2Y(1), P2Y(4) and P2Y(6) in RNA preparations from embryonic rat cortex, and from both mixed and glial cultures. P2Y(2) transcripts were not detected in the embryonic cortex. 7 Based on this and previous work, it is proposed that the principal P2Y influences in the brain are on cytosolic Ca(2+) in glial cells and presynaptic sites on neurons.
Collapse
Affiliation(s)
- Gillian C Bennett
- Neurobiology Unit, Roche Bioscience, 3401 Hillview Avenue, Palo Alto, CA 94304, U.S.A
| | - Anthony P D W Ford
- Neurobiology Unit, Roche Bioscience, 3401 Hillview Avenue, Palo Alto, CA 94304, U.S.A
| | - Jacqueline A M Smith
- Neurobiology Unit, Roche Bioscience, 3401 Hillview Avenue, Palo Alto, CA 94304, U.S.A
| | - Caroline J Emmett
- Neurobiology Unit, Roche Bioscience, 3401 Hillview Avenue, Palo Alto, CA 94304, U.S.A
| | - Tania E Webb
- Cell Signalling Laboratory, School of Pharmacy, The Hawthorn Building, De Montfort University, Leicester LE1 9BH, UK
| | - Michael R Boarder
- Neurobiology Unit, Roche Bioscience, 3401 Hillview Avenue, Palo Alto, CA 94304, U.S.A
- Cell Signalling Laboratory, School of Pharmacy, The Hawthorn Building, De Montfort University, Leicester LE1 9BH, UK
- Author for correspondence:
| |
Collapse
|
60
|
Suadicani SO, De Pina-Benabou MH, Urban-Maldonado M, Spray DC, Scemes E. Acute downregulation of Cx43 alters P2Y receptor expression levels in mouse spinal cord astrocytes. Glia 2003; 42:160-71. [PMID: 12655600 PMCID: PMC2586891 DOI: 10.1002/glia.10197] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Propagation of intercellular calcium waves (ICW) between astrocytes depends on the diffusion of signaling molecules through gap junction channels and diffusion through the extracellular space of neuroactive substances acting on plasmalemmal receptors. The relative contributions of these two pathways vary in different brain regions and under certain pathological conditions. We have previously shown that in wild-type spinal cord astrocytes, ICW are primarily gap junction-dependent, but that deletion of the main gap junction protein (Cx43) by homologous recombination results in a switch in mode of ICW propagation to a purinoceptor-dependent mechanism. Such a compensatory mechanism for ICW propagation was related to changes in the pharmacological profile of P2Y receptors, from an adenine-sensitive P2Y(1), in wild-type, to a uridine-sensitive P2U receptor subtype, in Cx43 knockout (KO) astrocytes. Using oligonucleotide antisense to Cx43 mRNA for acute downregulation of connexin43 expression levels, we provide evidence for the molecular nature of such compensatory mechanism. Pharmacological studies and Western blot analysis indicate that there is a reciprocal regulation of P2Y(1) and P2Y(4) expression levels, such that downregulation of Cx43 leads to decreased expression of the adenine-sensitive P2Y(1) receptor and increased expression of the uridine-sensitive P2Y(4) receptor. This change in functional expression of the P2Y receptor subtype population in acutely downregulated Cx43 was paralleled by changes in the mode of ICW propagation, similar to that previously observed for Cx43 KO spinal cord astrocytes. On the basis of these results, we propose that Cx43 regulates both modes of ICW by altering P2Y receptor subtype expression in addition to providing intercellular coupling.
Collapse
Affiliation(s)
- Sylvia O Suadicani
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | |
Collapse
|
61
|
Darby M, Kuzmiski JB, Panenka W, Feighan D, MacVicar BA. ATP released from astrocytes during swelling activates chloride channels. J Neurophysiol 2003; 89:1870-7. [PMID: 12686569 DOI: 10.1152/jn.00510.2002] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
ATP release from astrocytes contributes to calcium ([Ca(2+)]) wave propagation and may modulate neuronal excitability. In epithelial cells and hepatocytes, cell swelling causes ATP release, which leads to the activation of a volume-sensitive Cl(-) current (I(Cl,swell)) through an autocrine pathway involving purinergic receptors. Astrocyte swelling is counterbalanced by a regulatory volume decrease, involving efflux of metabolites and activation of I(Cl,swell) and K(+) currents. We used whole cell patch-clamp recordings in cultured astrocytes to investigate the autocrine role of ATP in the activation of I(Cl,swell) by hypo-osmotic solution (HOS). Apyrase, an ATP/ADP nucleotidase, inhibited HOS-activated I(Cl,swell), whereas ATP and the P2Y agonists, ADPbetaS and ADP, induced Cl(-) currents similar to I(Cl,swell). Neither the P2U agonist, UTP nor the P2X agonist, alpha,beta-methylene ATP, were effective. BzATP was less effective than ATP, suggesting that P2X7 receptors were not involved. P2 purinergic antagonists, suramin, RB2, and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) reversibly inhibited activation of I(Cl,swell), suggesting that ATP-activated P2Y1 receptors. Thus ATP release mediates I(Cl,swell) in astrocytes through the activation of P2Y1-like receptors. The multidrug resistance protein (MRP) transport inhibitors probenicid, indomethacin, and MK-571 all potently inhibited I(Cl.swell). ATP release from astrocytes in HOS was observed directly using luciferin-luciferase and MK-571 reversibly depressed this HOS-induced ATP efflux. We conclude that ATP release via MRP and subsequent autocrine activation of purinergic receptors contributes to the activation of I(Cl,swell) in astrocytes by HOS-induced swelling.
Collapse
Affiliation(s)
- Mark Darby
- Neuroscience Research Group, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
62
|
Kittner H, Franke H, Fischer W, Schultheis N, Krügel U, Illes P. Stimulation of P2Y1 receptors causes anxiolytic-like effects in the rat elevated plus-maze: implications for the involvement of P2Y1 receptor-mediated nitric oxide production. Neuropsychopharmacology 2003; 28:435-44. [PMID: 12629523 DOI: 10.1038/sj.npp.1300043] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The widespread and abundant distribution of P2Y receptors in the mammalian brain suggests important functions for these receptors in the CNS. To study a possible involvement of the P2Y receptors in the regulation of fear and anxiety, the influences of the P2Y(1,11,12) receptor-specific agonist adenosine 5'-O-(2-thiodiphosphate) (ADPbetaS), the P2X(1,3) receptor agonist alpha,beta-methylene ATP (alpha,betameATP), the unspecific P2 receptor antagonist pyridoxalphosphate-6-azopheny l-2',4'-disulfonic acid (PPADS), and the specific P2Y(1) receptor antagonist N(6)-methyl-2'-deoxyadenosine-3',5'-bisphosphate (MRS 2179) on the elevated plus-maze behavior of the rat were investigated. All tested compounds were given intracerebroventricularly (0.5 microl). ADPbetaS (50 and 500 fmol) produced an anxiolytic-like behavioral profile reflected by an increase of the open arm exploration. The anxiolytic-like effects were antagonized by pretreatment with PPADS (5 pmol) or MRS 2179 (5 pmol). Both compounds caused anxiogenic-like effects when given alone. Furthermore, the anxiolytic-like effects of ADPbetaS could be antagonized by pretreatment with the nitric oxide synthase (NOS) inhibitor N(w)-nitro-L-arginine methyl ester (L-NAME). In addition, the anxiogenic-like effects of PPADS were reversed by the pretreatment with L-arginine (500 pmol), which is the natural substrate for NOS, but not by D-arginine (500 pmol), which is not. Immunofluorescence staining revealed the presence of P2Y(1) receptors on neurons in different brain regions such as hypothalamus, amygdala, hippocampus and the periaqueductal gray. Furthermore, the colocalization of P2Y(1) receptors and neuronal NOS (nNOS) on some neurons in these regions could be demonstrated. The highest density of P2Y(1)- and nNOS-immunoreactivity was detected in the dorsomedial hypothalamic nucleus. Taken together, the present results suggest that P2Y(1) receptors are involved in the modulation of anxiety in the rat. The anxiolytic-like effects after stimulation of P2Y(1) receptors seem to be in close connection with the related nitric oxide production.
Collapse
Affiliation(s)
- Holger Kittner
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
63
|
Molecular and Biological Properties of P2Y Receptors. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
64
|
Guo D, von Kügelgen I, Moro S, Kim YC, Jacobson KA. Evidence for the Recognition of Non-Nucleotide Antagonists Within the Transmembrane Domains of the Human P2Y(1) Receptor. Drug Dev Res 2002; 57:173-181. [PMID: 23105165 PMCID: PMC3479677 DOI: 10.1002/ddr.10145] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Site-directed mutagenesis was used to search for amino acid residues of the human P2Y(1) receptor involved in the binding of the P2 receptor antagonists pyridoxal-5'-phosphate-6-azophenyl-2,4-disulfonate (PPADS), its analogue 6-(2'-chloro-phenylazo)-pyridoxal-α(5)-phosphate (MRS 2210), the suramin analogue 8-8'-[carbonylbis(imino-3,1-phenylene)]bis(1,3,5-naphthalene-trisulfonate) (NF023), and Reactive blue 2. Receptors containing single amino acid replacements at positions in transmembrane helical domains (TMs) 3, 5, 6, and 7 critical for the activation of the receptor by nucleotide agonists were expressed in COS-7 (African green monkey kidney) cells. Inositol phosphate accumulation was induced by 2-methylthioadenosine 5'-diphosphate (2-MeSADP). In wild type human P2Y(1) receptors, PPADS (10 to 60 µM), MRS 2210 (10 µM), NF023 (100 µM), and Reactive blue 2 (10 µM) shifted the concentration-response curve of 2-MeSADP in a parallel manner to the right. For PPADS, a pA(2) value of 5.2 was estimated. The shifts caused by MRS 2210, NF023, and Reactive blue 2 corresponded to apparent pK(B) values of 5.6, 5.0, and 5.8, respectively. In K280A mutant receptors, the affinities of PPADS, MRS 2210, NF023, and Reactive blue 2 were about 6- to 60-fold lower than those observed at wild type receptors. The K280A mutation also caused an approximately 1,000-fold increase in the EC(50) value of the agonist 2-MeSADP, similar to previous observations. In contrast, no major change in antagonistic potency was observed at receptors with other mutations in TMs 3, 5, 6, and 7. Thus, the residue Lys(280) (6.55), which is located within the upper third of TM 6 of the human P2Y(1) receptor, is not only critical for the activation of the receptor but also plays an important role in the binding of pyridoxal derivatives and a number of other chemically unrelated P2 receptor antagonists. Lys(280) seems to belong to an overlapping region of the respective binding sites.
Collapse
Affiliation(s)
- Danping Guo
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland
| | - Ivar von Kügelgen
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland
- Department of Pharmacology, University of Bonn, Bonn, Germany
| | - Stefano Moro
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland
- Pharmaceutical Science Department, University of Padova, Padova, Italy
| | - Yong-Chul Kim
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju, Republic of Korea
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
65
|
Chootip K, Ness KF, Wang Y, Gurney AM, Kennedy C. Regional variation in P2 receptor expression in the rat pulmonary arterial circulation. Br J Pharmacol 2002; 137:637-46. [PMID: 12381677 PMCID: PMC1573537 DOI: 10.1038/sj.bjp.0704915] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2002] [Accepted: 08/06/2002] [Indexed: 11/09/2022] Open
Abstract
The P2 receptors that mediate contraction of the rat isolated small (SPA, 200-500 micro m i.d.) and large (LPA, 1-1.5 mM i.d.) intrapulmonary arteries were characterized. 2 In endothelium-denuded vessels the contractile order of potency was alpha,beta-methyleneATP (alpha,beta-meATP)>>UDP=UTP=ATP=2-methylthioATP>ADP in the SPA and alpha,beta-meATP=UTP>or=UDP>2-methylthioATP, ATP>>ADP in the LPA. alpha,beta-meATP, 2-methylthioATP and ATP had significantly greater effects in the SPA than the LPA (P<0.001), but there was no difference in the potency of UTP or UDP between the vessels. 3 In the SPA, P2X1 receptor desensitisation by alpha,beta-meATP (100 microM) inhibited contractions to alpha,beta-meATP (10 nM-300 microM), but not those to UTP or UDP (100 nM-300 microM). In the LPA, prolonged exposure to alpha,beta-meATP (100 microM) did not desensitize P2X receptors. 4 Pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), suramin and reactive blue 2 (RB2) (30-300 microM) inhibited contractions evoked by alpha,beta-meATP. UTP and UDP were potentiated by PPADS, unaffected by RB2 and inhibited, but not abolished by suramin. 1 and 3 mM suramin produced no further inhibition, indicating suramin-resistant components in the responses to UTP and UDP. 5 Thus, both P2X and P2Y receptors mediate contraction of rat large and small intrapulmonary arteries. P2Y agonist potency and sensitivity to antagonists were similar in small and large vessels, but P2X agonists were more potent in small arteries. This indicates differential expression of P2X, but not P2Y receptors along the pulmonary arterial tree.
Collapse
Affiliation(s)
- K Chootip
- Department of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, John Arbuthnott Building, 27 Taylor Street, Glasgow G4 0NR
| | - K F Ness
- Department of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, John Arbuthnott Building, 27 Taylor Street, Glasgow G4 0NR
| | - Y Wang
- Department of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, John Arbuthnott Building, 27 Taylor Street, Glasgow G4 0NR
| | - A M Gurney
- Department of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, John Arbuthnott Building, 27 Taylor Street, Glasgow G4 0NR
| | - C Kennedy
- Department of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, John Arbuthnott Building, 27 Taylor Street, Glasgow G4 0NR
| |
Collapse
|
66
|
Moore DJ, Chambers JK, Murdock PR, Emson PC. Human Ntera-2/D1 neuronal progenitor cells endogenously express a functional P2Y1 receptor. Neuropharmacology 2002; 43:966-78. [PMID: 12423666 DOI: 10.1016/s0028-3908(02)00177-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report here that human Ntera-2/D1 (NT-2) cells, an undifferentiated committed neuronal progenitor cell line, endogenously express a functional P2Y(1) receptor, while other P2Y subtypes, except perhaps P2Y(4), are not functionally expressed. Quantitative RT-PCR analysis showed that NT-2 cells abundantly express mRNA for P2Y(1) and P2Y(11) receptors, while P2Y(2) and P2Y(4) receptors were detected at considerably lower levels. Western blot analysis also demonstrated expression of P2Y(1) receptors and Galpha(q/11) subunits. Various nucleotides induced intracellular Ca(2+) mobilisation in NT-2 cells in a concentration-dependent manner with a rank order potency of 2-MeSADP > 2-MeSATP > ADP > ATP > UTP > ATPgammaS, a profile resembling that of human P2Y(1) receptors. Furthermore, P2Y(1) receptor-specific (A3P5P) and P2Y-selective (PPADS, suramin) antagonists inhibited adenine nucleotide-induced Ca(2+) responses in a concentration-dependent manner, consistent with expression of a P2Y(1) receptor. Moreover, of seven adenine nucleotides tested, only Bz-ATP and ATPgammaS elicited small increases in cAMP formation suggesting that few, if any, functional P2Y(11) receptors were expressed. P2Y(1) receptor-selective adenine nucleotides, including 2-MeSADP and ADP, also induced concentration-dependent phosphorylation and hence, activation of the extracellular-signal regulated protein kinases (ERK1/2). NT-2 cells, therefore, provide a useful neuronal-like cellular model for studying the precise signalling pathways and physiological responses mediated by a native P2Y(1) receptor.
Collapse
Affiliation(s)
- D J Moore
- Neurobiology Programme, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK.
| | | | | | | |
Collapse
|
67
|
Ziessen T, Cellek S. Purines and pyrimidines are not involved in NANC relaxant responses in the rabbit vaginal wall. Br J Pharmacol 2002; 137:513-21. [PMID: 12359633 PMCID: PMC1573520 DOI: 10.1038/sj.bjp.0704898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Non-adrenergic non-cholinergic (NANC) relaxant responses were elicited by electrical field stimulation (EFS) in rabbit vaginal wall strips after treatment with guanethidine and scopolamine and raising smooth muscle tone with phenylephrine. Under these conditions treatment with NOS inhibitors revealed a non-nitrergic NANC relaxant response. The possible role of purines and pyrimidines in these non-nitrergic NANC responses was investigated. 2. Exogenous application of ATP, ADP, adenosine, UTP, or UDP (all at 0.03-10 mM) induced concentration-dependent relaxant responses. 3. Responses to exogenous application of ATP were reduced by the general P2 antagonist cibacron blue (500 micro M), but not by suramin (100 micro M) and were unaffected by L-NAME (500 micro M), omega-conotoxin GVIA (omega-CTX, 500 nM) or tetrodotoxin (TTX, 1 micro M). 4. Responses to exogenous application of adenosine were reduced by the A(2A) antagonist ZM-241385 (30 micro M). 5. ATP- and ADP-induced responses were unaffected by the G-protein inhibitor pertussis toxin (100 ng ml(-1)), whilst ADP- but not ATP-induced responses were reduced by GDPbetaS (100 micro M), which stabilizes G-proteins in their inactive state. 6. EFS-induced non-nitrergic NANC relaxant responses were unaffected by suramin, cibacron blue, ZM-241385, pertussis toxin or GDPbetaS, but were completely inhibited by TTX. 7. Exogenous application of ATP (10 mM) and adenosine (10 mM) increased intracellular cyclic adenosine-3', 5'-monophosphate (cAMP). However, non-nitrergic NANC responses were not associated with increased cAMP. Neither non-nitrergic NANC responses nor responses to ATP or adenosine were associated with increased intracellular cyclic guanosine-3', 5'-monophosphate (cGMP) concentrations. 8. These results suggest that adenosine A(2A) receptors and P2 receptors are present in the rabbit vaginal wall, but that they are not involved in non-nitrergic NANC relaxant responses.
Collapse
Affiliation(s)
- Tom Ziessen
- Wolfson Institute for Biomedical Research, University College London, Cruciform Building, Gower Street, London WC1E 6BT
| | - Selim Cellek
- Wolfson Institute for Biomedical Research, University College London, Cruciform Building, Gower Street, London WC1E 6BT
- Author for correspondence:
| |
Collapse
|
68
|
Yamamoto T, Suzuki Y. Role of luminal ATP in regulating electrogenic Na(+) absorption in guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 2002; 283:G300-8. [PMID: 12121876 DOI: 10.1152/ajpgi.00541.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular ATP regulates a variety of functions in epithelial tissues by activating the membrane P2-receptor. The purpose of this study was to investigate the autocrine/paracrine regulation by luminal ATP of electrogenic amiloride-sensitive Na(+) absorption in the distal colon from guinea pigs treated with aldosterone by measuring the amiloride-sensitive short-circuit current (I(sc)) and (22)Na(+) flux in vitro with the Ussing chamber technique. ATP added to the luminal side inhibited the amiloride-sensitive I(sc) and (22)Na(+) absorption to a similar degree. The concentration dependence of the inhibitory effect of ATP on amiloride-sensitive I(sc) had an IC(50) value of 20-30 microM, with the maximum inhibition being approximately 50%. The effects of different nucleotides and of a nucleoside were also studied, the order of potency being ATP = UTP > ADP > adenosine. The effects of ATP were slightly, but significantly, reduced in the presence of suramin in the luminal solution. The inhibitory effect of luminal ATP was more potent in the absence of both Mg2+ and Ca2+ from the luminal solution. Pretreatment of the tissue with ionomycin or thapsigargin in the absence of serosal Ca2+ did not affect the percent inhibition of amiloride-sensitive I(sc) induced by ATP. Mechanical perturbation with a hypotonic luminal solution caused a reduction in amiloride-sensitive I(sc), this effect being prevented by the presence of hexokinase, an ATP-scavenging enzyme. These results suggest that ATP released into the luminal side by hypotonic stimulation could exert an inhibitory effect on the electrogenic Na(+) absorption. This effect was probably mediated by a P2Y(2) receptor on the apical membrane of colonic epithelial cells, and a change in the intracellular Ca2+ concentration may not be necessary for this process.
Collapse
Affiliation(s)
- Takeshi Yamamoto
- Laboratory of Physiology, School of Food and Nutritional Sciences, University of Shizuoka, Japan
| | | |
Collapse
|
69
|
Kassack MU, Höfgen B, Lehmann J, Eckstein N, Quillan JM, Sadée W. Functional screening of G protein-coupled receptors by measuring intracellular calcium with a fluorescence microplate reader. JOURNAL OF BIOMOLECULAR SCREENING 2002; 7:233-46. [PMID: 12097186 DOI: 10.1177/108705710200700307] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ligand binding studies reveal information about affinity to G protein-coupled receptors (GPCRs) rather than functional properties. Increase in intracellular Ca(2+) appears to represent a universal second messenger signal for a majority of recombinant GPCRs. Here, we exploit Ca(2+) signaling as a fast and sensitive functional screening method for a number of GPCRs coupled to different G proteins. Ca(2+) fluorescence measurements are performed using Oregon Green 488 BAPTA-1/AM and a microplate reader equipped with an injector. Buffer alone or test compounds dissolved in buffer are injected into a cell suspension, and fluorescence intensity is recorded for 30 s. Each of the GPCRs tested--G(q)-coupled P2Y(2), G(s)-coupled dopamine D1 and D5, G(i)-coupled dopamine D2L, and G(q/11)-coupled muscarinic acetylcholine M1--yielded a significant rise in intracellular free [Ca(2+)] on agonist stimulation. Agonist stimulation was dose dependent, as shown for ATP or UTP stimulation of P2Y(2) receptors (EC(50) = 1 microM), SKF38393 stimulation of hD1 and hD5 (EC(50) = 18.1 nM and 2.7 nM), and quinpirole at hD2L (EC(50) = 6.5 nM). SCH23390 (at hD1 and hD5) and spiperone, haloperidol, and clozapine (at hD2L) competitively antagonized the Ca(2+) response. Furthermore, the Ca(2+) assay served to screen suramin analogs for antagonistic activity at P2Y(2) receptors. Screening at dopamine receptors revealed LE300, a new lead for a dopamine receptor antagonist. Advantages of the assay include fast and simple 96- or 384-well plate format (high-throughput screening), use of a visible light-excitable fluorescent dye, applicability to a majority of GPCRs, and simultaneous analysis of distinct Ca(2+) fluxes.
Collapse
|
70
|
Pintor J, Peral A, Hoyle CHV, Redick C, Douglass J, Sims I, Yerxa B. Effects of diadenosine polyphosphates on tear secretion in New Zealand white rabbits. J Pharmacol Exp Ther 2002; 300:291-7. [PMID: 11752128 DOI: 10.1124/jpet.300.1.291] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular diadenosine polyphosphates play important signaling functions in a number of physiological responses. Here we show that diadenosine polyphosphates are normal constituents of tear fluid and are potent stimulators of tear secretion through their interaction with P2Y receptors. Diadenosine tetraphosphate (Ap(4)A) and Ap(5)A were found in rabbit tears under basal conditions at concentrations of 2.92 and 0.58 microM, respectively. Single applications of UTP, ATP, and Ap(4)A increased tear secretion to 160 +/- 8% (n = 16) (P < 0.001), 131 +/- 6% (P < 0.05), and 162 +/- 11% (P < 0.05) of placebo values, respectively. Ap(4)A, Ap(5)A, and Ap(6)A, but not Ap(2)A and Ap(3)A, were able to stimulate tear secretion in a dose-dependent manner. Concentration-response studies produced pD(2) values of 5.56 +/- 0.03, 5.75 +/- 0.12, and 5.50 +/- 0.09 for Ap(4)A, Ap(5)A, and Ap(6)A, respectively, with Ap(4)A showing the greatest efficacy. Diadenosine polyphosphates also stimulated P2Y(1) and P2Y(2) receptors expressed in 1321N1 cells with no apparent effect on the other P2Y receptors tested. Nonselective P2 antagonists did not modify the tear secretion induced by UTP or Ap(4)A in rabbit eyes in vivo or in cloned receptors, except for a weak but significant reduction in stimulated tear secretion by reactive blue 2. These results suggest that diadenosine polyphosphates stimulate tear secretion via a P2Y receptor-mediated mechanism. Comparing the effects of diadenosine polyphosphates applied to the rabbit eye and to cloned P2Y receptors, it appears that the P2Y(2) receptor subtype is responsible for the prosecretory effects of these compounds.
Collapse
Affiliation(s)
- J Pintor
- Optica, Universidad Complutense de Madrid, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
71
|
Kaiser RA, Buxton ILO. Nucleotide-mediated relaxation in guinea-pig aorta: selective inhibition by MRS2179. Br J Pharmacol 2002; 135:537-45. [PMID: 11815389 PMCID: PMC1573141 DOI: 10.1038/sj.bjp.0704476] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The vasodilatory effects of nucleotides in the guinea-pig thoracic aorta were examined to determine the relationship between molecular expression and function of P2Y receptors. In aortic rings precontracted with norepinephrine, vasodilatory responses to purine nucleotides exhibited a rank-order of potency of 2-methylthio-ATP>ADP>ATP. Responses to UTP, but not UDP suggested a functional role for P2Y4 but not P2Y6 receptors. Aortic endothelial cells express at least four P2Y receptors; P2Y1, P2Y2, P2Y4 and P2Y6. In primary culture, these cells exhibit desensitizing transient calcium responses characteristic of P2Y1, P2Y2 and P2Y4, but not P2Y6 receptors. UDP had no effect on endothelial cell calcium. The pyrimidinergic receptor agonist UTP is capable of eliciting robust vasodilation in aortic rings and causing calcium responses in cultured guineapig aortic endothelial cells. These responses are equivalent to the maximum responses observed to ATP and ADP. Measurement of intracellular calcium release in response to ATP and 2-methylthio-ATP were similar, however only the 2-methylthio-ATP response was sensitive to the P2Y1 antagonist N(6)-methyl-2'-deoxyadenosine-3',5'-bisphosphate (MRS2179). In aortic rings, vasodilatory responses to 2-methylthio-ATP, ATP and ADP were all blocked by pre-incubation of tissues with MRS2179. MRS2179 pretreatment had no effect of the ability of UTP to cause relaxation of norepinephrine responses in aortic rings or the ability of UTP to cause calcium release in aortic endothelial cells. We demonstrate robust effects of purine and pyrimidine nucleotides in guineapig aorta and provide functional and biochemical evidence that MRS2179 is a selective P2Y1 antagonist.
Collapse
Affiliation(s)
- Robert A Kaiser
- Department of Pharmacology, MS318, University of Nevada School of Medicine, Reno, Nevada, NV 89557-0046, U.S.A
- Department of Biochemistry, MS330, University of Nevada School of Medicine, Reno, Nevada, NV 89557-0046, U.S.A
| | - Iain L O Buxton
- Department of Pharmacology, MS318, University of Nevada School of Medicine, Reno, Nevada, NV 89557-0046, U.S.A
- Department of Biochemistry, MS330, University of Nevada School of Medicine, Reno, Nevada, NV 89557-0046, U.S.A
- Author for correspondence:
| |
Collapse
|
72
|
Gorodeski GI. Regulation of transcervical permeability by two distinct P2 purinergic receptor mechanisms. Am J Physiol Cell Physiol 2002; 282:C75-83. [PMID: 11742800 DOI: 10.1152/ajpcell.2002.282.1.c75] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Micromolar concentrations of ATP stimulate biphasic change in transepithelial conductance across CaSki cultures, an acute increase (phase I response) followed by a slower decrease (phase II response). Phase I and phase II responses involve two distinct calcium-dependent pathways, calcium mobilization and calcium influx. To test the hypothesis that phase I and phase II responses are mediated by distinct P2 purinergic receptors, changes in permeability were uncoupled by blocking calcium mobilization with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) or by lowering extracellular calcium, respectively. Under these conditions ATP EC(50) was 25 microM for phase I response and 2 microM for phase II response. The respective agonist profiles were ATP > UTP > adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma S) = N(6)-([6-aminohexyl]carbamoylmethyl)adenosine 5'-triphosphate (A8889) > GTP and UTP > ATP > GTP = A8889 > ATP-gamma S. Suramin blocked phase I response and ATP-induced calcium mobilization, whereas pyridoxal phosphate-6-azophenyl-2',4-disulfonic acid (PPADS) blocked phase II response and ATP-augmented calcium influx. ATP time course and pharmacological profiles for phase II response and augmented calcium influx were similar, with a time constant of 2 min and a saturable concentration-dependent effect (EC(50) of 2-3 microM). RT-PCR experiments revealed expression of mRNA for both the P2Y(2) and P2X(4) receptors. These results suggest that the ATP-induced phase I and phase II responses are mediated by distinct P2 purinergic receptor mechanisms.
Collapse
Affiliation(s)
- George I Gorodeski
- Department of Obstetrics and Gynecology, University MacDonald Women's Hospital, University Hospitals of Cleveland, Ohio 44106, USA.
| |
Collapse
|
73
|
Kruglikov I, Shutov L, Potapenko E, Voitenko N, Kostyuk P. Metabotropic purinoreceptors in rat dorsal horn neurones: predominant dendritic location. Neuroreport 2001; 12:3503-7. [PMID: 11733700 DOI: 10.1097/00001756-200111160-00026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Elevations of cytosolic free Ca2+ concentration ([Ca2+]i) induced by addition of ATP have been compared in rat dorsal horn neurones in slices and after their isolation. ATP application induced in neurones in situ a rise of [Ca2+]i by 201 +/- 12 nM. In Ca2+-free external solution the rise was 156 +/- 14 nM (n = 45 of 76), indicating the presence of active purinergic metabotropic receptors in about 59% of neurones. [Ca2+]i transients induced by 2MeSATP in Ca2+-free external solution were completely abolished by 10 microM PPADS, indicating that some of the corresponding receptors are of the P2Y1 type. In acutely isolated neurones which lost their dendrites, there were no metabotropic response. The results confirm the presence of metabotropic postsynaptic purinoreceptors located in the dendritic tree of dorsal horn neurones.
Collapse
Affiliation(s)
- I Kruglikov
- Department of General Physiology of Nervous System, Bogomoletz Institute of Physiology, 4, Bogomoletz St., Kiev 01024, Ukraine
| | | | | | | | | |
Collapse
|
74
|
Abstract
Increasing attention is being given to the role of neurotransmitters and other signaling substances in the damage induced by intense sound to the cochlea. Adenosine triphosphate (ATP) is one example of a putative neurotransmitter that may alter cochlear mechanics during sound exposure. The purpose of the present study was to test the hypothesis that endogenous extracellular ATP has a role in the generation of the changes in cochlear mechanics induced by moderate intense sound exposure. Guinea pigs were exposed to either: (1) a perilymphatic administration of pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS, 1 mM), an ATP antagonist; (2) a moderately intense sound (6 kHz tone, 95 dB SPL, 15 min); or (3) a combination of the PPADS and the sound. The effects on the cubic distortion product otoacoustic emissions (DPOAEs; 2f1-f2) were monitored using three sets of equal level primaries (f1=9.25 kHz, f2=10.8 kHz, 2f1-f2=7.7 kHz; f1=7.2 kHz, f2=8.4 kHz, 2f1-f2=6 kHz; f1=5.55 kHz, f2=6.5 kHz, 2f1-f2=4.6 kHz). PPADS alone had no effect on the cubic DPOAEs monitored. The intense sound alone suppressed all three cubic DPOAEs. The combination of PPADS with the intense sound induced a suppression of the cubic DPOAEs that was equal to or greater than induced by the intense sound alone at f2=10.8 kHz but was equal to or less than induced by the intense sound at f2=8.4 and 6.5 kHz. After washing the PPADS out of the cochlea with artificial perilymph, all three cubic DPOAEs were suppressed less in the PPADS with intense sound treatment group than in the intense sound alone group. The PPADS appeared to provide protection from the intense sound. Results are consistent with the hypothesis that extracellular ATP is involved in the changes in cochlear mechanics induced by moderately intense sound exposure.
Collapse
Affiliation(s)
- R P Bobbin
- Kresge Hearing Research Laboratory of the South, Department of Otorhinolaryngology and Biocommunication, Louisiana State University Medical Center, 533 Bolivar Street, 5th floor, New Orleans, LA 70112-2234, USA.
| |
Collapse
|
75
|
Marcus DC, Scofield MA. Apical P2Y4 purinergic receptor controls K+ secretion by vestibular dark cell epithelium. Am J Physiol Cell Physiol 2001; 281:C282-9. [PMID: 11401851 DOI: 10.1152/ajpcell.2001.281.1.c282] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It was previously shown that K+ secretion by vestibular dark cell epithelium is under control of G protein-coupled receptors of the P2Y family in the apical membrane that are activated by both purine and uridine nucleotides (P2Y2, P2Y4, or P2Y6). The present study was conducted to determine the subtype of purinergic receptor and to test whether these receptors undergo desensitization. The transepithelial short-circuit current represents electrogenic K+ secretion and was found to be reduced by UTP, ATP, and diadenosine tetraphosphate, but not UDP. Neither pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS, 30 microM) nor suramin (100 microM) inhibited the effect of UTP. The potencies of the agonists were consistent with rodent P2Y4 and P2Y2, but not P2Y6, receptors. The ineffectiveness of suramin was consistent with P2Y4, but not P2Y2. Transcripts for both P2Y2 and P2Y4 were found in vestibular labyrinth. Sustained exposure to ATP or UTP for 15 min caused a constant depression of short-circuit current with no apparent desensitization. The results support the conclusion that regulation of K+ secretion across vestibular dark cell epithelium occurs by P2Y4 receptors without desensitization of the response.
Collapse
Affiliation(s)
- D C Marcus
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, USA.
| | | |
Collapse
|
76
|
Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J Neurosci 2001. [PMID: 11245682 DOI: 10.1523/jneurosci.21-06-01975.2001] [Citation(s) in RCA: 428] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The initial microglial responses that occur after brain injury and in various neurological diseases are characterized by microglial accumulation in the affected sites of brain that results from the migration and proliferation of these cells. The early-phase signal responsible for this accumulation is likely to be transduced by rapidly diffusible factors. In this study, the possibility of ATP released from injured neurons and nerve terminals affecting cell motility was determined in rat primary cultured microglia. Extracellular ATP and ADP induced membrane ruffling and markedly enhanced chemokinesis in Boyden chamber assay. Further analyses using the Dunn chemotaxis chamber assay, which allows direct observation of cell movement, revealed that both ATP and ADP induced chemotaxis of microglia. The elimination of extracellular calcium or treatment with pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid, suramin, or adenosine-3'-phosphate-5'-phosphosulfate did not inhibit ATP- or ADP-induced membrane ruffling, whereas AR-C69931MX or pertussis toxin treatments clearly did so. As an intracellular signaling molecule underlying these phenomena, the small G-protein Rac was activated by ATP and ADP stimulation, and its activation was also inhibited by pretreatment with pertussis toxin. These results strongly suggest that membrane ruffling and chemotaxis of microglia induced by ATP or ADP are mediated by G(i/o)-coupled P2Y receptors.
Collapse
|
77
|
Boarder MR, White PJ, Roberts JR, Webb TE. Regulation of vascular endothelial cells and vascular smooth muscle cells by multiple P2Y receptor subtypes. Drug Dev Res 2001. [DOI: 10.1002/ddr.1186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
78
|
Delicado EG, Jiménez AI, Castro E, Miras-Portugal MT. Cerebellar astrocytes coexpress different purinoceptors: Cross-talk between several transduction mechanisms. Drug Dev Res 2001. [DOI: 10.1002/ddr.1105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
79
|
Moccia F, Baruffi S, Spaggiari S, Coltrini D, Berra-Romani R, Signorelli S, Castelli L, Taglietti V, Tanzi F. P2y1 and P2y2 receptor-operated Ca2+ signals in primary cultures of cardiac microvascular endothelial cells. Microvasc Res 2001; 61:240-52. [PMID: 11336535 DOI: 10.1006/mvre.2001.2306] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular Ca2+ signals elicited by nucleotide agonists were investigated in primary cultures of rat cardiac microvascular endothelial cells using the fura-2 technique. UTP increased the intracellular [Ca2+] in 94% of the cells, whereas 2MeSATP was active in 32%. The rank order of potency was ATP = UTP > 2MeSATP and the maximal response to 2MeSATP was lower compared to UTP and ATP. ATP and UTP showed strong homologous and heterologous desensitization. ATP fully inhibited the 2MeSATP response, while UTP abolished 2MeSATP-elicited transients in 25% of cells. 2MeSATP did not desensitize the UTP or ATP response. Adenosine 2',5'-diphosphate inhibited the response to 2MeSATP, while it did not modify the response to ATP and UTP. 2MeSATP was more sensitive to suramin than UTP and ATP. These results indicate that P(2Y1) and P(2Y2) receptors may be coexpressed in CMEC. Nucleotide-induced Ca2+ signals lacked a sustained plateau and were almost independent from extracellular Ca2+. ATP and UTP elicited Ca2+ transients longer than 2MeSATP-evoked transients. The kinetics of Ca2+ responses was not affected by bath solution stirring or ectonucleotidase inhibition. Furthermore, the nonhydrolyzable ATP analogue AMP-PNP induced Ca2+ signals similar to those elicited by ATP and UTP. These results suggest that the distinct kinetics of nucleotide-evoked Ca2+ responses do not depend on the activity of ectonucleotidases or ATP autocrine stimulation. The possibility that Ca2+ signals with different time courses may modulate different cellular responses is discussed.
Collapse
Affiliation(s)
- F Moccia
- Department of Physiological and Pharmacological Sciences, University of Pavia, Pavia, 27100, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Honda S, Sasaki Y, Ohsawa K, Imai Y, Nakamura Y, Inoue K, Kohsaka S. Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J Neurosci 2001; 21:1975-82. [PMID: 11245682 PMCID: PMC6762617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
The initial microglial responses that occur after brain injury and in various neurological diseases are characterized by microglial accumulation in the affected sites of brain that results from the migration and proliferation of these cells. The early-phase signal responsible for this accumulation is likely to be transduced by rapidly diffusible factors. In this study, the possibility of ATP released from injured neurons and nerve terminals affecting cell motility was determined in rat primary cultured microglia. Extracellular ATP and ADP induced membrane ruffling and markedly enhanced chemokinesis in Boyden chamber assay. Further analyses using the Dunn chemotaxis chamber assay, which allows direct observation of cell movement, revealed that both ATP and ADP induced chemotaxis of microglia. The elimination of extracellular calcium or treatment with pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid, suramin, or adenosine-3'-phosphate-5'-phosphosulfate did not inhibit ATP- or ADP-induced membrane ruffling, whereas AR-C69931MX or pertussis toxin treatments clearly did so. As an intracellular signaling molecule underlying these phenomena, the small G-protein Rac was activated by ATP and ADP stimulation, and its activation was also inhibited by pretreatment with pertussis toxin. These results strongly suggest that membrane ruffling and chemotaxis of microglia induced by ATP or ADP are mediated by G(i/o)-coupled P2Y receptors.
Collapse
Affiliation(s)
- S Honda
- Department of Neurochemistry, National Institute of Neuroscience, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
81
|
Connolly GP. Methyl orange antagonizes uridine 5' triphosphate and not alpha,beta-methylene-adenosine 5' triphosphate-evoked depolarization of rat superior cervical ganglia. JOURNAL OF AUTONOMIC PHARMACOLOGY 2001; 21:1-5. [PMID: 11422572 DOI: 10.1046/j.1365-2680.2001.00174.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Compared with the effects of adenosine 5' triphosphate (ATP) on the nervous system, the actions of pyrimidine nucleosides and their 5'-nucleotides, such as uridine 5' triphosphate (UTP), have received less attention. In part, this is because there is a need for a selective antagonist for responses mediated by UTP-activated receptors. The objective of this study was to discover such an antagonist. 2. Superior cervical ganglia isolated from male rats were superfused with a physiological salt solution. Responses to alpha,beta-methylene-ATP (alpha,beta-Me-ATP), potassium, adenosine and UTP were determined before and in the presence of 1-300 microM methyl orange. 3. Methyl orange at 1-100 microM did not alter resting potential or depolarizing responses to alpha,beta-Me-ATP, potassium, or adenosine-evoked hyperpolarizations, but at 10 and 100 microM methyl orange significantly antagonized UTP-evoked depolarizations (P < 0.05). 4. Although the antagonistic effects of methyl orange were not dramatic, this is the first report of a putative pyrimidinoceptor antagonist. These observations also support the idea of distinct receptors for UTP and ATP on rat superior cervical ganglia.
Collapse
Affiliation(s)
- G P Connolly
- Purine NeuroScience Laboratory, Chemical Pathology, Guy's, King's and St Thomas' Medical School, King's College London, London SE1 9RT, UK
| |
Collapse
|
82
|
Kim YC, Brown SG, Harden TK, Boyer JL, Dubyak G, King BF, Burnstock G, Jacobson KA. Structure-activity relationships of pyridoxal phosphate derivatives as potent and selective antagonists of P2X1 receptors. J Med Chem 2001; 44:340-9. [PMID: 11462975 PMCID: PMC10790710 DOI: 10.1021/jm9904203] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel analogues of the P2 receptor antagonist pyridoxal-5'-phosphate 6-azophenyl-2',5'-disulfonate (2) were synthesized and studied as antagonists in functional assays at recombinant rat P2X1, P2X2, and P2X3 receptors expressed in Xenopus oocytes (ion flux stimulation) and at turkey erythrocyte P2Y1 receptors (phospholipase C activation). Selected compounds were also evaluated as antagonists of ion flux and the opening of a large pore at the recombinant human P2X7 receptor. Modifications were made in the 4-aldehyde and 5'-phosphate groups of the pyridoxal moiety: i.e. a CH2OH group at the 4-position in pyridoxine was either condensed as a cyclic phosphate or phosphorylated separately to form a bisphosphate, which reduced potency at P2 receptors. 5-Methylphosphonate substitution, anticipated to increase stability to hydrolysis, preserved P2 receptor potency. At the 6-position, halo, carboxylate, sulfonate, and phosphonate variations made on the phenylazo ring modulated potency at P2 receptors. The p-carboxyphenylazo analogue, 4, of phosphate 2 displayed an IC50 value of 9 nM at recombinant P2X1 receptors and was 1300-, 16-, and > 10,000-fold selective for P2X1 versus P2X2, P2X3, and P2Y1 subtypes, respectively. The corresponding 5-methylphosphonate was equipotent at P2X1 receptors. The 5-methylphosphonate analogue containing a 6-[3,5-bis(methylphosphonate)]phenylazo moiety, 9, had IC50 values of 11 and 25 nM at recombinant P2X1 and P2X3 receptors, respectively. The analogue containing a phenylazo 4-phosphonate group, 11, was also very potent at both P2X1 and P2X3 receptors. However, the corresponding 2,5-disulfonate analogue, 10, was 28-fold selective for P2X1 versus P2X3 receptors. None of the analogues were more potent at P2X7 and P2Y1 receptors than 2, which acted in the micromolar range at these two subtypes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kenneth A. Jacobson
- Correspondence to: Dr. K. A. Jacobson, Chief, MRS, Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC, Bethesda, MD 20892-0810. Tel: (301) 496-9024. Fax: (301) 480-8422.
| |
Collapse
|
83
|
Communi D, Janssens R, Robaye B, Zeelis N, Boeynaems JM. Role of P2Y11 receptors in hematopoiesis. Drug Dev Res 2001. [DOI: 10.1002/ddr.1110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
84
|
Braet K, Paemeleire K, D'herde K, Sanderson MJ, Leybaert L. Astrocyte-endothelial cell calcium signals conveyed by two signalling pathways. Eur J Neurosci 2001. [DOI: 10.1111/j.1460-9568.2001.01372.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
85
|
Jiménez AI, Castro E, Communi D, Boeynaems JM, Delicado EG, Miras-Portugal MT. Coexpression of several types of metabotropic nucleotide receptors in single cerebellar astrocytes. J Neurochem 2000; 75:2071-9. [PMID: 11032896 DOI: 10.1046/j.1471-4159.2000.0752071.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have examined the expression of mRNA for several P2Y nucleotide receptors by northern blot analysis in purified type 1 cerebellar astrocyte cultures. These results suggest that different P2Y subtypes could be responsible for ATP metabotropic calcium responses in single type 1 astrocytes. To identify these subtypes we have studied the pharmacological profile of ATP calcium responses using fura-2 microfluorimetry. All tested astrocytes responded to ATP and UTP stimulations evoking similar calcium transients. Most astrocytes also responded to 2-methylthioATP and ADP challenges. The agonist potency order was 2-methylthioATP > ADP > ATP = UTP. Cross-desensitization experiments carried out with ATP, UTP, and 2-methylthioATP showed that 2-methylthioATP and UTP interact with different receptors, P2Y(1) and P2Y(2) or P2Y(4). In a subpopulation of type 1 astrocytes, ATP prestimulation did not block UTP responses, and UDP elicited clear intracellular Ca(2+) concentration responses at very low concentrations. 2-MethylthioATP and UTP calcium responses exhibited different sensitivity to pertussis toxin and different inhibition patterns in response to P2 antagonists. The P2Y(1)-specific antagonist N:(6)-methyl-2'-deoxyadenosine 3', 5'-bisphosphate (MRS 2179) specifically blocked the 2-methylthio-ATP responses. We can conclude that all single astrocytes coexpressed at least two types of P2Y metabotropic receptors: P2Y(1) and either P2Y(2) or P2Y(4) receptors. Moreover, 30-40% of astrocytes also coexpressed specific pyrimidine receptors of the P2Y(6) subtype, highly selective for UDP coupled to pertussis-toxin insensitive G protein.
Collapse
Affiliation(s)
- A I Jiménez
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
86
|
Abstract
Since the beginning of purinoceptor research turkey erythrocytes have been widely used as the model systems for studying the pharmacology of P2Y1 nucleotide receptors. In this report the statistical analysis of the activity parameters of several purinoceptor agonists and antagonists in the turkey erythrocytes and P2Y1 receptor transfected cells is presented. As a results of this analysis several differences in the ligand activity orders measured in these biological systems were found. These data indicate that the receptors expressed in turkey erythrocytes and P2Y1 transfected cells are probably not the same. Whether it has to do with co-expression of several purinoceptor subtypes in turkey erythrocytes or novel P2Y receptors needs the further investigation.
Collapse
Affiliation(s)
- K Sak
- Institute of Chemical Physics, Tartu University, Estonia.
| |
Collapse
|
87
|
Liu DM, Katnik C, Stafford M, Adams DJ. P2Y purinoceptor activation mobilizes intracellular Ca2+ and induces a membrane current in rat intracardiac neurones. J Physiol 2000; 526 Pt 2:287-98. [PMID: 10896718 PMCID: PMC2270009 DOI: 10.1111/j.1469-7793.2000.00287.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. The mobilization of Ca2+ by purinoceptor activation and the relative contributions of intra- and extracellular sources of Ca2+ were investigated using microfluorimetric measurements of fura-2 loaded in cultured neurones from rat intracardiac ganglia. 2. Reverse transcriptase-polymerase chain reaction (RT-PCR) revealed expression of mRNA for the G protein-coupled P2Y2 and P2Y4 receptors. 3. Brief application of either 300 microM ATP or 300 microM UTP caused transient increases in [Ca2+]i of 277 +/- 22 nM and 267 +/- 39 nM, respectively. Removal of external Ca2+ did not significantly reduce these [Ca2+]i responses. 4. The order of purinoceptor agonist potency for [Ca2+]i increases was ATP = UTP > 2-MeSATP > ADP >> adenosine, consistent with the profile for P2Y2 purinoceptors. ATP- and UTP-induced rises in [Ca2+]i were completely and reversibly blocked by 10 microM PPADS (a P2 purinoceptor antagonist) and partially inhibited by 100 microM suramin (a relatively non-specific purinoceptor antagonist). 5. In the presence of the endoplasmic reticulum Ca2+-ATPase inhibitor cyclopiazonic acid (10 microM) in Ca2+-free media, the [Ca2+]i responses evoked by ATP were progressively decreased and abolished. 6. ATP- and UTP-induced [Ca2+]i rises were insensitive to pertussis toxin, caffeine (5 mM) and ryanodine (10 microM) but were significantly reduced by U-73122, a phospholipase C (PLC) inhibitor. 7. In fura-2-loaded cells, perforated patch whole-cell recordings show that ATP and UTP evoked slow outward currents at -60 mV, concomitant with the rise in [Ca2+]i, in approximately 30 % of rat intracardiac neurones. 8. In conclusion, these results suggest that in r intracardiac neurones, ATP binds to P2Y2 purinoceptors to transiently raise [Ca2+]i and activate an outward current. The signalling pathway appears to involve a PTX-insensitive G protein coupled to PLC generation of IP3 which triggers the release of Ca2+ from a ryanodine-insensitive Ca2+ store(s).
Collapse
Affiliation(s)
- D M Liu
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | |
Collapse
|
88
|
King BF, Townsend-Nicholson A. Recombinant P2Y receptors: the UCL experience. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 2000; 81:164-70. [PMID: 10869716 DOI: 10.1016/s0165-1838(00)00134-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The beginning of the last decade heralded three important and sequential developments in our understanding of cell-to-cell signalling by extracellular ATP via its cell surface receptors, the P2 purinoceptors. One major development in ATP signalling culminated in a timely review in 1991, when it was established in the clearest of terms that ATP receptors exploited discrete signal transduction pathways (Dubyak, G.R., 1991. Signal transduction by P2-purinergic receptors for extracellular ATP. Am. J. Respir. Cell. Mol. Biol. 4, 295-300; and later in Dubyak, G.R., El-Moatassim, C., 1993. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am. J. Physiol. 265, C577-C606). Henceforth, it was universally acknowledged that some P2 purinoceptors interacted with heterotrimeric G-proteins to activate intracellular signalling cascades (metabotropic ATP receptors), whereas others contained intrinsic ion-channels (ionotropic ATP receptors). A second key development can be traced to 1992, from the discovery that ATP receptors were involved in excitatory neurotransmission in the CNS and PNS (Edwards, F.A., Gibb, A.J., Colquhoun, D., 1992. ATP receptor-mediated synaptic currents in the central nervous system. Nature 359, 144-147; Evans, R.J., Derkach, V., Surprenant, A., 1992. ATP mediates fast synaptic transmission in mammalian neurons. Nature 357, 503-505; Silinsky, E.M., Gerzanich, V., Vanner, S.M., 1992. ATP mediates excitatory synaptic transmission in mammalian neurones. Br. J. Pharmacol., 106, 762-763). Thereafter, it was accepted that ATP could play a neurotransmitter and/or modulatory role throughout the entire nervous system. The third key development stemmed from the isolation of a cDNA, from chick brain, encoding a metabotropic ATP receptor (Webb, T.E., Simon, J., Krishek, B.J., Bateson, A.N., Smart, T.G., King, B.F., Burnstock, G., Barnard, E.A., 1993. Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett. 324, 219-225). The cloning of a membrane protein serving as an ATP receptor ignited a widespread international interest in purinergic signalling. Investigators at University College London (UCL) - colleagues and associates of Geoffrey Burnstock - were at the forefront of this rapid phase of discovery. In this review, we highlight the UCL experience when the fields of molecular biology, physiology and cell biology converged to help advance our understanding of ATP as an extracellular signalling molecule.
Collapse
Affiliation(s)
- B F King
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, Royal Free Campus, Rowland Hill Street, Hampstead, NW3 2PF, London, UK.
| | | |
Collapse
|
89
|
de Joannon AC, Mancini F, Landolfi C, Soldo L, Leta A, Ruggieri A, Mangano G, Polenzani L, Pinza M, Milanese C. Adenosine triphosphate affects interleukin -1beta release by T98G glioblastoma cells through a purinoceptor-independent mechanism. Neurosci Lett 2000; 285:218-22. [PMID: 10806325 DOI: 10.1016/s0304-3940(00)01051-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
T98G glioblastoma cells were previously shown to significantly increase interleukin-1beta (IL-1beta) mRNA levels in response to IL-1beta stimulation. This work demonstrates that in such conditions T98G, despite possessing biologically active interleukin converting enzyme, do not release detectable amounts of IL-1beta, even in the presence of 20 mM adenosine triphosphate (ATP). IL-1beta secretion is observed only following concomitant stimulation with 1000 units/ml of IL-1beta and 20 mM ATP. ATP induces a dose-dependent depolarization of T98G plasma membrane, whereas it does not affect Ca(2+) concentration or cell membrane permeability. Our data, together with the observation that the depolarizing effects of ATP are retained after preincubation with 100 microM suramin, an antagonist of P2-purinoceptors, suggest that ATP plays a role in IL-1beta secretion by T98G but its effects do not occur through P2-purinoceptors.
Collapse
Affiliation(s)
- A C de Joannon
- A.C.R.A.F. - Angelini Ricerche, Piazzale della Stazione snc, 00040 Santa Palomba-Pomezia, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Paemeleire K, Leybaert L. ATP-dependent astrocyte-endothelial calcium signaling following mechanical damage to a single astrocyte in astrocyte-endothelial co-cultures. J Neurotrauma 2000; 17:345-58. [PMID: 10776917 DOI: 10.1089/neu.2000.17.345] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the brain, endfeet of perivascular astrocytes make close contact with capillary endothelial cells that form the blood-brain barrier. The aim of the present work was to investigate whether and how calcium signals can be communicated from astrocytes to endothelial cells following acute mechanical cell damage. The experiments were performed on astrocyte-endothelial co-cultures prepared from primary rat brain astrocytes and an endothelial cell line (ECV304). A single astrocyte was acutely damaged by mechanical stimulation of sufficient strength with a micropipette, and the resulting cytoplasmic calcium changes were monitored using fura-2 and digital calcium imaging. Mechanical damage to a single astrocyte triggered a large intercellular calcium wave that propagated to surrounding astrocytes and also to even remotely located (several hundred micrometers) endothelial cells. Astrocyte-endothelial calcium waves induced by mechanical cell damage were largely deflected by fast superfusion, were able to cross a cell-free lane, were dose-dependently inhibited by suramin, a P2-purinoceptor blocker, and were largely reduced in size in the presence of the ATP-degrading enzyme apyrase. Our results indicate that mechanical damage to a single astrocyte can produce far reaching calcium signals that are propagated by the release of a calcium mobilizing P2-purinergic agonist and that can be communicated to endothelial cells. As endothelial cytoplasmic calcium is an important factor in the regulation of blood-brain barrier permeability and transport, mechanical cell damage-induced astrocyte-endothelial calcium signals are hypothesized to play a role in the initiation of brain edema and the stimulation of brain glucose uptake.
Collapse
Affiliation(s)
- K Paemeleire
- Department of Physiology and Pathophysiology, University of Ghent, Belgium
| | | |
Collapse
|
91
|
Dixon CJ, Woods NM, Webb TE, Green AK. Evidence that rat hepatocytes co-express functional P2Y1 and P2Y2 receptors. Br J Pharmacol 2000; 129:764-70. [PMID: 10683201 PMCID: PMC1571892 DOI: 10.1038/sj.bjp.0703103] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Previous studies have indicated the expression of multiple P2Y receptors by rat hepatocytes although they have not been identified. Here we show by reverse transcriptase-polymerase chain reaction (RT - PCR) that rat hepatocytes express mRNA encoding all of the four cloned rat P2Y receptors (P2Y(1), P2Y(2), P2Y(4) and P2Y(6)). The effects of UTP have been examined on single aequorin-injected rat hepatocytes. The [Ca(2+)](i) transients induced by UTP were indistinguishable from those induced by ATP in the same cell. The modulatory effects of elevated intracellular cyclic AMP concentration were the same on both UTP- and ATP-induced [Ca(2+)](i) transients. UDP, an agonist at the P2Y(6) receptor, failed to induce transients in hepatocytes, indicating that functional P2Y(6) receptors coupled to increased [Ca(2+)](i) are not expressed. The transients evoked by ADP were more sensitive to inhibition by suramin than those induced by either ATP or UTP. Within an individual cell, the transients induced by ATP and UTP were inhibited by the same concentration of suramin. This sensitivity of ATP and UTP responses to suramin suggests action through P2Y(2) rather than P2Y(4) receptors. Co-application of 30 microM pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) caused a decrease in frequency and amplitude of transients induced by ADP. ATP- and UTP-induced transients also displayed a decrease in amplitude in response to addition of PPADS, but this was accompanied by an increase in frequency of transients. In conclusion the data presented here are consistent with the co-expression of P2Y(1) and P2Y(2) receptors by rat hepatocytes.
Collapse
MESH Headings
- Adenosine Diphosphate/pharmacology
- Adenosine Triphosphate/pharmacology
- Animals
- Calcium/metabolism
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Liver/drug effects
- Liver/metabolism
- Male
- Pyridoxal Phosphate/analogs & derivatives
- Pyridoxal Phosphate/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Wistar
- Receptors, Purinergic P2/biosynthesis
- Receptors, Purinergic P2/classification
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/physiology
- Receptors, Purinergic P2Y1
- Reverse Transcriptase Polymerase Chain Reaction
- Suramin/pharmacology
- Uridine Diphosphate/pharmacology
- Uridine Triphosphate/pharmacology
Collapse
Affiliation(s)
- C J Dixon
- Department of Human Anatomy and Cell Biology, The University of Liverpool, Ashton Street, Liverpool, L69 3GE.
| | | | | | | |
Collapse
|
92
|
Weisman GA, Garrad RC, Erb LJ, Santos-Berrios C, Gonzalez FA. P2Y receptors in the nervous system: molecular studies of a P2Y2 receptor subtype from NG108-15 neuroblastoma x glioma hybrid cells. PROGRESS IN BRAIN RESEARCH 1999; 120:33-43. [PMID: 10550986 DOI: 10.1016/s0079-6123(08)63544-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- G A Weisman
- Department of Biochemistry, University of Missouri-Columbia 65212, USA.
| | | | | | | | | |
Collapse
|
93
|
Communi D, Robaye B, Boeynaems JM. Pharmacological characterization of the human P2Y11 receptor. Br J Pharmacol 1999; 128:1199-206. [PMID: 10578132 PMCID: PMC1571754 DOI: 10.1038/sj.bjp.0702909] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1 The human P2Y11 receptor is coupled to both the phosphoinositide and the cyclic AMP pathways. A pharmacological characterization of the recombinant human P2Y11 receptor has been conducted following stable expression in two different cell lines: the 1321N1 astrocytoma cells for inositol trisphosphate measurements and the CHO-K1 cells for cyclic AMP assays. The rank order of potency of a series of nucleotides was almost identical for the two pathways: ATPgammaS approximately BzATP > dATP > ATP > ADPbetaS > 2MeSATP. 2 ADPbetaS, AMPalphaS and A3P5PS behaved as partial agonists of the human P2Y11 receptor. At high concentrations, these three nucleotides were able to partially inhibit the ATP response. 3 Suramin was a more potent antagonist than reactive blue 2, whereas pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid was completely inactive. The P2Y11 receptor proved to be sensitive to suramin in a competitive way with an apparent Ki value of 0.82+/-0. 07 microM. 4 The ATP derivative AR-C67085 (2-propylthio-beta, gamma-dichloromethylene-D-ATP), a potent inhibitor of ADP-induced platelet aggregation, was the most potent agonist of the P2Y11 receptor, among the various nucleotides tested. 5 The pharmacological profile of the recombinant human P2Y11 receptor is closely similar to that of the cyclic AMP-coupled P2 receptor recently described in HL-60 cells, suggesting that it is the same receptor.
Collapse
Affiliation(s)
- D Communi
- Institute of Interdisciplinary Research, School of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium
| | | | | |
Collapse
|
94
|
van der Giet M, Cinkilic O, Jankowski J, Tepel M, Zidek W, Schlüter H. Evidence for two different P2X-receptors mediating vasoconstriction of Ap5A and Ap6A in the isolated perfused rat kidney. Br J Pharmacol 1999; 127:1463-9. [PMID: 10455297 PMCID: PMC1760649 DOI: 10.1038/sj.bjp.0702667] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The activation of various P2-receptor subtypes in rat renal vasculature by P1, P5-diadenosine pentaphosphate (ApsA) and P1, P6-diadenosine hexaphosphate (Ap6A) were studied by measuring their effects on perfusion pressure during continuous perfusion in a rat isolated perfused kidney. Permanent perfusion with Ap5A and Ap6A elicited both a transient and sustained vasoconstriction with both vasoconstrictions to be different: the transient vasoconstriction can be elicited with concentrations > or = 10 nM, whereas the sustained vasoconstriction is observed with concentrations > or = 1 nM. ApsA and Ap6A act via the same receptors as alpha,beta-methylene ATP (alpha,beta-meATP). The rank order of potency for transient vasconstriction was alpha,beta-meATP = ApsA>Ap6A>B,gamma-meATP, and for sustained vasoconstriction alpha,beta-meATP = Ap5A > beta,gamma-meATP > or = Ap6A. Suramin, a non-selective P2-receptor antagonist, and pyridoxal-phosphate-6-azophenyl-2;4-disulphonic acid (PPADS) a highly selective P2X-receptor antagonist antagonized both the transient and the sustained vasoconstriction. Taken together the results of the agonist profile of Ap5A and Ap6A and comparing its findings to literature it can be demonstrated that the transient but not the sustained vasoconstriction is mediated via the P2X1-receptor which is present in rat renal vasculature. It is demonstrated that the agonist profile of the sustained vasoconstriction induced by ApsA and Ap6A does not fit to any currently known P2X- or P2Y-receptor subtype. We conclude a yet unidentified P2X-receptor or chimeric P2X-receptor may contribute to the effects on rat renal vasculature produced by Ap5A and Ap6A and which may play an important role in glomerular perfusion pressure and blood pressure control.
Collapse
Affiliation(s)
- M van der Giet
- Ruhr-Universität Bochum, Marienhospital Herne, Med. Klinik I, Germany.
| | | | | | | | | | | |
Collapse
|
95
|
Janssens R, Paindavoine P, Parmentier M, Boeynaems JM. Human P2Y2 receptor polymorphism: identification and pharmacological characterization of two allelic variants. Br J Pharmacol 1999; 127:709-16. [PMID: 10401562 PMCID: PMC1566073 DOI: 10.1038/sj.bjp.0702619] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. In the process of cloning the human P2Y2 receptor in order to establish 1321N1 cell lines expressing this receptor, we detected a gene polymorphism characterized by an arginine 334 to cysteine 334 transition. 2. The frequency distribution of the polymorphism was studied in a European population. We observed that 66% of the tested persons are homozygotes R/R, 29% are heterozygotes R/C and 5% are homozygotes C/C. The frequency of the R allele was 0.8 versus 0.2 for the C allele. 3. We stably expressed each form of the human P2Y2 receptor into 1321N1 cells and isolated clones by limiting dilution. The effects of nucleotides and antagonists on inositol trisphosphate accumulation and cyclic AMP formation were compared between the two cell lines. 4. The time-courses of inositol trisphosphate accumulation as well as concentration-response curves characterizing the effects of UTP, ATP, AP4A and ATP gamma S were mostly similar, except for slight kinetic differences (slower time-course with the 334C form). 5. The sensitivity to pertussis toxin of inositol trisphosphates accumulation was critically dependent on the agonist concentration and stimulation duration, suggesting the involvement of a Gi.0 protein during the early stimulation by low nucleotide concentrations. No inhibition of cyclic AMP accumulation could be detected. These properties were observed with both polymorphic receptors.
Collapse
Affiliation(s)
- R Janssens
- Institute of Interdisciplinary Research, School of Medicine, Université Libre de Bruxelles, Belgium.
| | | | | | | |
Collapse
|
96
|
Sugioka M, Zhou WL, Hofmann HD, Yamashita M. Involvement of P2 purinoceptors in the regulation of DNA synthesis in the neural retina of chick embryo. Int J Dev Neurosci 1999; 17:135-44. [PMID: 10221673 DOI: 10.1016/s0736-5748(98)00066-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The activation of P2 purinoceptors induces Ca2+ mobilization in the early embryonic chick neural retina. This purinergic Ca2+ response declines parallel with the decrease in mitotic activity during retinal development. To investigate the role of P2 purinoceptors in the regulation of retinal cell proliferation, we studied the effects of the P2 purinoceptor antagonists suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), and of the agonist ATP on DNA synthesis in retinal organ cultures from embryonic day 3 (E3) chick. Suramin inhibited [3H]-thymidine incorporation in a dose-dependent manner (IC50: approximately 70 microM). PPADS also reduced [3H]-thymidine incorporation with maximum inhibition of 46% at 100 microM. Exogenous ATP enhanced [3H]-thymidine incorporation in a dose-dependent manner to maximally 200% of control (EC50: approximately 70 microM). In dissociated retinal cultures from E7 chick, both antagonists showed similar inhibitory effects on [3H]-thymidine incorporation without affecting cell viability. In line with these observations, the presence of extracellular ATP was demonstrated both in vitro and in vivo. In the medium of E3 retinal organ cultures, the concentration of ATP increased 25-fold within 1 h of incubation and this concentration was kept for at least 24 h. In the chick amniotic fluid, the ATP concentration was nearly 3 microM at E3 and declined to 0.15 microM at E7. The results indicate that P2 purinoceptors activated by autocrine or paracrine release of ATP are involved in the regulation of DNA synthesis in the neural retina at early embryonic stages.
Collapse
Affiliation(s)
- M Sugioka
- Institute of Anatomy I, University of Freiburg, Germany
| | | | | | | |
Collapse
|
97
|
Dol-Gleizes F, Marés AM, Savi P, Herbert JM. Relaxant effect of 2-methyl-thio-adenosine diphosphate on rat thoracic aorta: effect of clopidogrel. Eur J Pharmacol 1999; 367:247-53. [PMID: 10078999 DOI: 10.1016/s0014-2999(98)00985-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The main aim of this study was to determine the functional effect of 2-methyl-thio-adenosine diphosphate (2MeS-ADP) on vascular purinoceptors, in comparison with that of a characterised agonist of the P2Y1 receptor, 2-methyl-thio-adenosine triphosphate (2MeS-ATP), and of the P2Y2 receptor, uridine triphosphate (UTP). On phenylephrine-precontracted rat aortic rings, mounted isometrically in organ baths, we found that 2MeS-ADP (10(-9) to 10(-6) M) induced concentration-dependent relaxation of rings with a functional endothelium. Mechanical removal of the endothelium abolished the relaxant effect of 2MeS-ADP. The 2MeS-ADP-induced relaxation of phenylephrine-precontracted rings was inhibited by Nomega-nitro-L-arginine methyl ester (L-NAME) (100 microM) but not by indomethacin (100 microM) or aspirin (1 mM), indicating that the 2MeS-ADP-induced relaxation was nitric oxide (NO) synthase-mediated but not cyclooxygenase-dependent. Repeated stimulation with 2MeS-ADP resulted in desensitisation of the receptor. Under these conditions, the relaxant effect of 2MeS-ATP was abolished. On the contrary, UTP-induced relaxation was not affected, showing that 2MeS-ADP and 2MeS-ATP but not UTP shared the same receptor. Suramin (100 microM), a non-specific P2 inhibitor, abolished the effect of 2MeS-ADP, 2MeS-ATP and UTP. In contrast, pyridoxal-phosphate-6-azophenyl-2'-4'-disulphonic acid (PPADS) and adenosine-3'-phosphate-5'-phosphosulphate (A3P5PS) abolished only the vasodilator responses to 2MeS-ADP and 2MeS-ATP and did not affect the relaxant effect of UTP, showing that 2MeS-ADP acted through the P2Y1 receptor. Clopidogrel, a potent platelet ADP receptor antagonist, at a dose that strongly inhibited ADP-induced platelet aggregation ex vivo, did not modify the relaxant responses to 2MeS-ADP or 2MeS-ATP. In conclusion, these results showed that 2MeS-ADP induces endothelium-dependent, NO-mediated relaxation of rat aortic rings. This effect, resistant to clopidogrel treatment, occurred through activation of the P2Y1 receptor.
Collapse
|
98
|
Jacobson KA, Hoffmann C, Kim YC, Camaioni E, Nandanan E, Jang SY, Guo DP, Ji XD, von Kügelgen I, Moro S, Ziganshin AU, Rychkov A, King BF, Brown SG, Wildman SS, Burnstock G, Boyer JL, Mohanram A, Harden TK. Molecular recognition in P2 receptors: ligand development aided by molecular modeling and mutagenesis. PROGRESS IN BRAIN RESEARCH 1999; 120:119-32. [PMID: 10550992 PMCID: PMC4321826 DOI: 10.1016/s0079-6123(08)63550-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- K A Jacobson
- Molecular Recognition Section, LBC, NIDDK, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Ohara N, Konishi C, Naito Y. ATP-induced, P2U purinoceptor-mediated constriction of isolated, perfused mesenteric beds of the rat. Eur J Pharmacol 1998; 363:157-60. [PMID: 9881584 DOI: 10.1016/s0014-2999(98)00829-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
alpha,beta-Methylene ATP (alpha, beta-mATP), ATP and UTP dose dependently increased the perfusion pressure of rat mesenteric arteries with a potency order of alpha, beta-mATP >> ATP > UTP. In the veins, while alpha, beta-mATP did not affect the pressure, both ATP and UTP equi-potently increased it. The arterial ATP response was attenuated to some degree by suramin (100 microM), but markedly and to a similar extent by pyridoxal-phosphate-6-azophenyl-2',4-disulphonic acid (PPADS 30 microM) and alpha, beta-mATP (100 nmol). The venous response was not affected by PPADS or alpha, beta-mATP, but was slightly attenuated by suramin. Thus, ATP seems to elicit arterial constriction predominantly by stimulating P2X, but venous constriction by stimulating P2U purinoceptors.
Collapse
Affiliation(s)
- N Ohara
- Department of Pharmacology, Hatano Research Institute, Food and Drug Safety Center Ochiai, Kanagawa, Japan.
| | | | | |
Collapse
|
100
|
Abstract
Extracellular nucleotides have been implicated in a number of physiological functions. Nucleotides act on cell-surface receptors known as P2 receptors, of which several subtypes have been cloned. Both ATP and ADP are stored in platelets and are released upon platelet activation. Furthermore, nucleotides are also released from damaged or broken cells. Thus during vascular injury nucleotides play an important role in haemostasis through activation of platelets, modulation of vascular tone, recruitment of neutrophils and monocytes to the site of injury, and facilitation of adhesion of leucocytes to the endothelium. Nucleotides also moderate these functions by generating nitric oxide and prostaglandin I2 through activation of endothelial cells, and by activating different receptor subtypes on vascular smooth muscle cells. In the heart, P2 receptors regulate contractility through modulation of L-type Ca2+ channels, although the molecular mechanisms involved are still under investigation. Classical pharmacological studies have identified several P2 receptor subtypes in the cardiovascular system. Molecular pharmacological studies have clarified the nature of some of these receptors, but have complicated the picture with others. In platelets, the classical P2T receptor has now been resolved into three P2 receptor subtypes: the P2Y1, P2X1 and P2TAC receptors (the last of these, which is coupled to the inhibition of adenylate cyclase, is yet to be cloned). In peripheral blood leucocytes, endothelial cells, vascular smooth muscle cells and cardiomyocytes, the effects of classical P2X, P2Y and P2U receptors have been found to be mediated by more than one P2 receptor subtype. However, the exact functions of these multiple receptor subtypes remain to be understood, as P2-receptor-selective agonists and antagonists are still under development.
Collapse
Affiliation(s)
- S P Kunapuli
- Department of Physiology, Temple University Medical School, Philadelphia, PA 19140, USA.
| | | |
Collapse
|