51
|
Burrow AK, Rumschlag SL, Boone MD. Host size influences the effects of four isolates of an amphibian chytrid fungus. Ecol Evol 2017; 7:9196-9202. [PMID: 29187961 PMCID: PMC5696404 DOI: 10.1002/ece3.3255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 06/14/2017] [Accepted: 06/28/2017] [Indexed: 11/11/2022] Open
Abstract
Understanding factors that influence host–pathogen interactions is key to predicting outbreaks in natural systems experiencing environmental change. Many amphibian population declines have been attributed to an amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd). While this fungus is widespread, not all Bd‐positive populations have been associated with declines, which could be attributed to differences in pathogen virulence or host susceptibility. In a laboratory experiment, we examined the effects of Bd isolate origin, two from areas with Bd‐associated amphibian population declines (El Copé, Panama, and California, USA) and two from areas without Bd‐related population declines (Ohio and Maine, USA), on the terrestrial growth and survival of American toad (Anaxyrus americanus) metamorphs reared in larval environments with low or high intraspecific density. We predicted that (1) Bd isolates from areas experiencing declines would have greater negative effects than Bd isolates from areas without declines, and (2) across all isolates, growth and survival of smaller toads from high‐density larval conditions would be reduced by Bd exposure compared to larger toads from low‐density larval conditions. Our results showed that terrestrial survival was reduced for smaller toads exposed to Bd with variation in the response to different isolates, suggesting that smaller size increased susceptibility to Bd. Toads exposed to Bd gained less mass, which varied by isolate. Bd isolates from areas with population declines, however, did not have more negative effects than isolates from areas without recorded declines. Most strikingly, our study supports that host condition, measured by size, can be indicative of the negative effects of Bd exposure. Further, Bd isolates’ impact may vary in ways not predictable from place of origin or occurrence of disease‐related population declines. This research suggests that amphibian populations outside of areas experiencing Bd‐associated declines could be impacted by this pathogen and that the size of individuals could influence the magnitude of Bd's impact.
Collapse
|
52
|
Bacigalupe LD, Soto-Azat C, García-Vera C, Barría-Oyarzo I, Rezende EL. Effects of amphibian phylogeny, climate and human impact on the occurrence of the amphibian-killing chytrid fungus. GLOBAL CHANGE BIOLOGY 2017; 23:3543-3553. [PMID: 28055125 DOI: 10.1111/gcb.13610] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
Chytridiomycosis, due to the fungus Batrachochytrium dendrobatidis (Bd), has been associated with the alarming decline and extinction crisis of amphibians worldwide. Because conservation programs are implemented locally, it is essential to understand how the complex interactions among host species, climate and human activities contribute to Bd occurrence at regional scales. Using weighted phylogenetic regressions and model selection, we investigated geographic patterns of Bd occurrence along a latitudinal gradient of 1500 km within a biodiversity hot spot in Chile (1845 individuals sampled from 253 sites and representing 24 species), and its association with climatic, socio-demographic and economic variables. Analyses show that Bd prevalence decreases with latitude although it has increased by almost 10% between 2008 and 2013, possibly reflecting an ongoing spread of Bd following the introduction of Xenopus laevis. Occurrence of Bd was higher in regions with high gross domestic product (particularly near developed centers) and with a high variability in rainfall regimes, whereas models including other bioclimatic or geographic variables, including temperature, exhibited substantially lower fit and virtually no support based on Akaike weights. In addition, Bd prevalence exhibited a strong phylogenetic signal, with five species having high numbers of infected individuals and higher prevalence than the average of 13.3% across all species. Taken together, our results highlight that Bd in Chile might still be spreading south, facilitated by a subset of species that seem to play an important epidemiological role maintaining this pathogen in the communities, in combination with climatic and human factors affecting the availability and quality of amphibian breeding sites. This information may be employed to design conservation strategies and mitigate the impacts of Bd in the biodiversity hot spot of southern Chile, and similar studies may prove useful to disentangle the role of different factors contributing to the emergence and spread of this catastrophic disease.
Collapse
Affiliation(s)
- Leonardo D Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Avda. Rector Eduardo Morales s/n, Edificio Pugín, Valdivia, Chile
| | - Claudio Soto-Azat
- Centro de Investigación para la Sustentabilidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile
| | - Cristobal García-Vera
- Dirección General de Aguas, Ministerio de Obras Públicas, Riquelme 465, Coyhaique, Chile
| | - Ismael Barría-Oyarzo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Avda. Rector Eduardo Morales s/n, Edificio Pugín, Valdivia, Chile
| | - Enrico L Rezende
- Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile
| |
Collapse
|
53
|
Blooi M, Laking AE, Martel A, Haesebrouck F, Jocque M, Brown T, Green S, Vences M, Bletz MC, Pasmans F. Host niche may determine disease-driven extinction risk. PLoS One 2017; 12:e0181051. [PMID: 28704480 PMCID: PMC5509289 DOI: 10.1371/journal.pone.0181051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 06/26/2017] [Indexed: 12/31/2022] Open
Abstract
The fungal pathogen Batrachochytrium dendrobatidis (Bd) drives declines and extinctions in amphibian communities. However, not all regions and species are equally affected. Here, we show that association with amphibian aquatic habitat types (bromeliad phytotelmata versus stream) across Central America results in the odds of being threatened by Bd being five times higher in stream microhabitats. This differential threat of Bd was supported in our study by a significantly lower prevalence of Bd in bromeliad-associated amphibian species compared to riparian species in Honduran cloud forests. Evidence that the bromeliad environment is less favorable for Bd transmission is exemplified by significantly less suitable physicochemical conditions and higher abundance of Bd-ingesting micro-eukaryotes present in bromeliad water. These factors may inhibit aquatic Bd zoospore survival and the development of an environmental reservoir of the pathogen. Bromeliad phytotelmata thus may act as environmental refuges from Bd, which contribute to protecting associated amphibian communities against chytridiomycosis-driven amphibian declines that threaten the nearby riparian communities.
Collapse
Affiliation(s)
- Mark Blooi
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Alexandra E. Laking
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Operation Wallacea, Hope House, Old Bolingbroke, Lincolnshire, United Kingdom
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Merlijn Jocque
- Operation Wallacea, Hope House, Old Bolingbroke, Lincolnshire, United Kingdom
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| | - Tom Brown
- Operation Wallacea, Hope House, Old Bolingbroke, Lincolnshire, United Kingdom
| | - Stephen Green
- Operation Wallacea, Hope House, Old Bolingbroke, Lincolnshire, United Kingdom
- Centre for Applied Zoology, Cornwall College Newquay, Cornwall, United Kingdom
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Molly C. Bletz
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
54
|
Gervasi SS, Stephens PR, Hua J, Searle CL, Xie GY, Urbina J, Olson DH, Bancroft BA, Weis V, Hammond JI, Relyea RA, Blaustein AR. Linking Ecology and Epidemiology to Understand Predictors of Multi-Host Responses to an Emerging Pathogen, the Amphibian Chytrid Fungus. PLoS One 2017; 12:e0167882. [PMID: 28095428 PMCID: PMC5240985 DOI: 10.1371/journal.pone.0167882] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 11/22/2016] [Indexed: 12/12/2022] Open
Abstract
Variation in host responses to pathogens can have cascading effects on populations and communities when some individuals or groups of individuals display disproportionate vulnerability to infection or differ in their competence to transmit infection. The fungal pathogen, Batrachochytrium dendrobatidis (Bd) has been detected in almost 700 different amphibian species and is implicated in numerous global amphibian population declines. Identifying key hosts in the amphibian-Bd system–those who are at greatest risk or who pose the greatest risk for others–is challenging due in part to many extrinsic environmental factors driving spatiotemporal Bd distribution and context-dependent host responses to Bd in the wild. One way to improve predictive risk models and generate testable mechanistic hypotheses about vulnerability is to complement what we know about the spatial epidemiology of Bd with data collected through comparative experimental studies. We used standardized pathogen challenges to quantify amphibian survival and infection trajectories across 20 post-metamorphic North American species raised from eggs. We then incorporated trait-based models to investigate the predictive power of phylogenetic history, habitat use, and ecological and life history traits in explaining responses to Bd. True frogs (Ranidae) displayed the lowest infection intensities, whereas toads (Bufonidae) generally displayed the greatest levels of mortality after Bd exposure. Affiliation with ephemeral aquatic habitat and breadth of habitat use were strong predictors of vulnerability to and intensity of infection and several other traits including body size, lifespan, age at sexual maturity, and geographic range also appeared in top models explaining host responses to Bd. Several of the species examined are highly understudied with respect to Bd such that this study represents the first experimental susceptibility data. Combining insights gained from experimental studies with observations of landscape-level disease prevalence may help explain current and predict future pathogen dynamics in the Bd system.
Collapse
Affiliation(s)
- Stephanie S. Gervasi
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Patrick R. Stephens
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
| | - Jessica Hua
- Biological Sciences Department, Binghamton University, Binghamton, New York, United States of America
| | - Catherine L. Searle
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Gisselle Yang Xie
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Jenny Urbina
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Deanna H. Olson
- United States Forest Service, Pacific Northwest Research Station, Corvallis, Oregon, United States of America
| | - Betsy A. Bancroft
- Biology Department, Gonzaga University, Spokane, Washington, United States of America
| | - Virginia Weis
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - John I. Hammond
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Rick A. Relyea
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Andrew R. Blaustein
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
55
|
Jones DK, Dang TD, Urbina J, Bendis RJ, Buck JC, Cothran RD, Blaustein AR, Relyea RA. Effect of Simultaneous Amphibian Exposure to Pesticides and an Emerging Fungal Pathogen, Batrachochytrium dendrobatidis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:671-679. [PMID: 28001054 DOI: 10.1021/acs.est.6b06055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Amphibian declines have been linked to numerous factors, including pesticide use and the fungal pathogen Batrachochytrium dendrobatidis (Bd). Moreover, research has suggested a link between amphibian sensitivity to Bd and pesticide exposure. We simultaneously exposed postmetamorphic American toads (Anaxyrus americanus), western toads (A. boreas), spring peepers (Pseudacris crucifer), Pacific treefrogs (P. regilla), leopard frogs (Lithobates pipiens), and Cascades frogs (Rana cascadae) to a factorial combination of two pathogen treatments (Bd+, Bd-) and four pesticide treatments (control, ethanol vehicle, herbicide mixture, and insecticide mixture) for 14 d to quantify survival and infection load. We found no interactive effects of pesticides and Bd on anuran survival and no effects of pesticides on infection load. Mortality following Bd exposure increased in spring peepers and American toads and was dependent upon snout-vent length in western toads, American toads, and Pacific treefrogs. Previous studies reported effects of early sublethal pesticide exposure on amphibian Bd sensitivity and infection load at later life stages, but we found simultaneous exposure to sublethal pesticide concentrations and Bd had no such effect on postmetamorphic juvenile anurans. Future research investigating complex interactions between pesticides and Bd should employ a variety of pesticide formulations and Bd strains and follow the effects of exposure throughout ontogeny.
Collapse
Affiliation(s)
- Devin K Jones
- Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | | | | | - Randall J Bendis
- Department of Biological Sciences, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Julia C Buck
- Marine Science Institute, University of California Santa Barbara , Santa Barbara, California 93106, United States
| | - Rickey D Cothran
- Department of Biological Sciences, Southwestern Oklahoma State University , Weatherford, Oklahoma 73096, United States
| | | | - Rick A Relyea
- Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|
56
|
Gabor C, Forsburg Z, Vörös J, Serrano-Laguna C, Bosch J. Differences in chytridiomycosis infection costs between two amphibian species from Central Europe. AMPHIBIA-REPTILIA 2017. [DOI: 10.1163/15685381-00003099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Batrachochytrium dendrobatidis (Bd) causes the disease chytridiomycosis associated with amphibian declines. Response and costs of infection varies greatly between species. Bd can induce a stress response in amphibians resulting in elevated corticosterone (CORT). We exposed Bombina variegata and Hyla arborea tadpoles to Bd+ or Bd- Salamandra salamandra larvae and measured CORT release rates, Bd infection loads, and survival through metamorphosis. Tadpoles of both species exposed to Bd+ larvae had elevated CORT release rates compared to tadpoles exposed to Bd- larvae. Bombina variegata appear less resistant to infection than H. arborea, showing higher Bd loads and more infected individuals. Within species, we did not find differences in cost of infection on survival, however more B. variegata tadpoles reached metamorphosis than H. arborea. The differences in resistance may be species specific, owing to higher immunity defenses with H. arborea having higher overall CORT release rates, and differences in antimicrobial peptides, or to differences in Bd strain or other unexplored mechanisms.
Collapse
Affiliation(s)
- Caitlin Gabor
- Texas State University, 601 University Drive, San Marcos, Texas, 78666, USA
| | - Zachery Forsburg
- Texas State University, 601 University Drive, San Marcos, Texas, 78666, USA
| | - Judit Vörös
- Department of Zoology, Hungarian Natural History Museum, 1088 Budapest, Baross u. 13., Hungary
| | - Celia Serrano-Laguna
- Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Jaime Bosch
- Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Centro de Investigación, Seguimiento y Evaluación, Parque Nacional de la Sierra de Guadarrama, Cta. M-604, km 27.6, 28740 Rascafría, Spain
| |
Collapse
|
57
|
Poorten TJ, Rosenblum EB. Comparative study of host response to chytridiomycosis in a susceptible and a resistant toad species. Mol Ecol 2016; 25:5663-5679. [PMID: 27696594 DOI: 10.1111/mec.13871] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 08/23/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022]
Abstract
In the past century, recently emerged infectious diseases have become major drivers of species decline and extinction. The fungal disease chytridiomycosis has devastated many amphibian populations and exacerbated the amphibian conservation crisis. Biologists are beginning to understand what host traits contribute to disease susceptibility, but more work is needed to determine why some species succumb to chytridiomycosis while others do not. We conducted an integrative laboratory experiment to examine how two toad species respond to infection with the pathogen Batrachochytrium dendrobatidis in a controlled environment. We selected two toad species thought to differ in susceptibility - Bufo marinus (an invasive and putatively resistant species) and Bufo boreas (an endangered and putatively susceptible species). We measured infection intensity, body weight, histological changes and genomewide gene expression using a custom assay developed from transcriptome sequencing. Our results confirmed that the two species differ in susceptibility with the more susceptible species, B. boreas, showing higher infection intensities, loss in body weight, more dramatic histological changes and larger perturbations in gene expression. We found key differences in skin expression responses in multiple pathways including upregulation of skin integrity-related genes in the resistant B. marinus. Together, our results show intrinsic differences in host response between related species, which are likely to be important in explaining variation in response to a deadly emerging pathogen in wild populations. Our study also underscores the importance of understanding differences among host species to better predict disease outcomes and reveal generalities about host response to emerging infectious diseases of wildlife.
Collapse
Affiliation(s)
- T J Poorten
- Department of Environmental Science, Policy and Management, University of California, Rm. 54 Mulford Hall, Berkeley, CA, USA
| | - E B Rosenblum
- Department of Environmental Science, Policy and Management, University of California, Rm. 54 Mulford Hall, Berkeley, CA, USA
| |
Collapse
|
58
|
Battaglin WA, Smalling KL, Anderson C, Calhoun D, Chestnut T, Muths E. Potential interactions among disease, pesticides, water quality and adjacent land cover in amphibian habitats in the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:320-332. [PMID: 27232962 DOI: 10.1016/j.scitotenv.2016.05.062] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 05/21/2023]
Abstract
To investigate interactions among disease, pesticides, water quality, and adjacent land cover, we collected samples of water, sediment, and frog tissue from 21 sites in 7 States in the United States (US) representing a variety of amphibian habitats. All samples were analyzed for >90 pesticides and pesticide degradates, and water and frogs were screened for the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) using molecular methods. Pesticides and pesticide degradates were detected frequently in frog breeding habitats (water and sediment) as well as in frog tissue. Fungicides occurred more frequently in water, sediment, and tissue than was expected based upon their limited use relative to herbicides or insecticides. Pesticide occurrence in water or sediment was not a strong predictor of occurrence in tissue, but pesticide concentrations in tissue were correlated positively to agricultural and urban land, and negatively to forested land in 2-km buffers around the sites. Bd was detected in water at 45% of sites, and on 34% of swabbed frogs. Bd detections in water were not associated with differences in land use around sites, but sites with detections had colder water. Frogs that tested positive for Bd were associated with sites that had higher total fungicide concentrations in water and sediment, but lower insecticide concentrations in sediments relative to frogs that were Bd negative. Bd concentrations on frog swabs were positively correlated to dissolved organic carbon, and total nitrogen and phosphorus, and negatively correlated to pH and water temperature. Data were collected from a range of locations and amphibian habitats and represent some of the first field-collected information aimed at understanding the interactions between pesticides, land use, and amphibian disease. These interactions are of particular interest to conservation efforts as many amphibians live in altered habitats and may depend on wetlands embedded in these landscapes to survive.
Collapse
Affiliation(s)
- W A Battaglin
- U.S. Geological Survey, Colorado Water Science Center, Lakewood, CO, United States
| | - K L Smalling
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ, United States
| | - C Anderson
- U.S. Geological Survey, Oregon Water Science Center, Portland, OR, United States
| | - D Calhoun
- U.S. Geological Survey South Atlantic Water Science Center, Atlanta, GA, United States
| | - T Chestnut
- National Park Service, Mount Rainer National Park, Ashford, WA, United States
| | - E Muths
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, United States
| |
Collapse
|
59
|
Terrestrial Growth in Northern Leopard Frogs Reared in the Presence or Absence of Predators and Exposed to the Amphibian Chytrid Fungus at Metamorphosis. J HERPETOL 2016. [DOI: 10.1670/15-102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
60
|
Love CN, Winzeler ME, Beasley R, Scott DE, Nunziata SO, Lance SL. Patterns of amphibian infection prevalence across wetlands on the Savannah River Site, South Carolina, USA. DISEASES OF AQUATIC ORGANISMS 2016; 121:1-14. [PMID: 27596855 DOI: 10.3354/dao03039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Amphibian diseases, such as chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd) and ranaviral disease caused by ranaviruses, are often linked to global amphibian population declines, yet the ecological dynamics of both pathogens are poorly understood. The goal of our study was to determine the baseline prevalence, pathogen loads, and co-infection rate of Bd and ranavirus across the Savannah River Site (SRS) in South Carolina, USA, a region with rich amphibian diversity and a history of amphibian-based research. We tested over 1000 individuals, encompassing 21 amphibian species from 11 wetlands for both Bd and ranavirus. The prevalence of Bd across individuals was 9.7%. Using wetland means, the mean (±SE) Bd prevalence was 7.9 ± 2.9%. Among toad species, Anaxyrus terrestris had 95 and 380% greater odds of being infected with Bd than Scaphiopus holbrookii and Gastrophryne carolinensis, respectively. Odds of Bd infection in adult A. terrestris and Lithobates sphenocephalus were 75 to 77% greater in metal-contaminated sites. The prevalence of ranavirus infections across all individuals was 37.4%. Mean wetland ranavirus prevalence was 29.8 ± 8.8% and was higher in post-metamorphic individuals than in aquatic larvae. Ambystoma tigrinum had 83 to 85% higher odds of ranavirus infection than A. opacum and A. talpoideum. We detected a 4.8% co-infection rate, with individuals positive for ranavirus having a 5% higher occurrence of Bd. In adult Anaxyrus terrestris, odds of Bd infection were 13% higher in ranavirus-positive animals and odds of co-infection were 23% higher in contaminated wetlands. Overall, we found the pathogen prevalence varied by wetland, species, and life stage.
Collapse
Affiliation(s)
- Cara N Love
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina 29802, USA
| | | | | | | | | | | |
Collapse
|
61
|
Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures. PLoS One 2016; 11:e0160746. [PMID: 27513565 PMCID: PMC4981458 DOI: 10.1371/journal.pone.0160746] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 07/25/2016] [Indexed: 11/19/2022] Open
Abstract
Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats.
Collapse
|
62
|
Preuss JF, Lambertini C, Leite DDS, Toledo LF, Lucas EM. Crossing the threshold: an amphibian assemblage highly infected withBatrachochytrium dendrobatidisin the southern Brazilian Atlantic forest. STUDIES ON NEOTROPICAL FAUNA AND ENVIRONMENT 2016. [DOI: 10.1080/01650521.2016.1163857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
63
|
Susceptibility to disease varies with ontogeny and immunocompetence in a threatened amphibian. Oecologia 2016; 181:997-1009. [DOI: 10.1007/s00442-016-3607-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/09/2016] [Indexed: 10/22/2022]
|
64
|
Abstract
The ubiquitous use of pesticides has increased concerns over their direct and indirect effects on disease dynamics. While studies examining the effects of pesticides on host-parasite interactions have largely focused on how pesticides influence the host, few studies have considered the effects of pesticides on parasites. We investigated the toxicity of six common insecticides at six environmentally-relevant concentrations to cercariae of the trematode Echinoparyphium from two populations. All six insecticides reduced the survival of cercariae (overall difference between mortality in control vs pesticide exposure = 86·2 ± 8·7%) but not in a predictable dose-dependent manner. These results suggest that Echinoparyphium are sensitive to a broad range of insecticides commonly used in the USA. The lack of a clear dose-dependent response in Echinoparyphium highlights the potential limitations of toxicity assays in predicting pesticide toxicity to parasites. Finally, population-level variation in cercarial susceptibility to pesticides underscores the importance of accounting for population variation as overlooking this variation can limit our ability to predict toxicity in nature. Collectively, this work demonstrates that consideration of pesticide toxicity to parasites is important to understanding how pesticides ultimately shape disease dynamics in nature.
Collapse
|
65
|
Rebollar EA, Antwis RE, Becker MH, Belden LK, Bletz MC, Brucker RM, Harrison XA, Hughey MC, Kueneman JG, Loudon AH, McKenzie V, Medina D, Minbiole KPC, Rollins-Smith LA, Walke JB, Weiss S, Woodhams DC, Harris RN. Using "Omics" and Integrated Multi-Omics Approaches to Guide Probiotic Selection to Mitigate Chytridiomycosis and Other Emerging Infectious Diseases. Front Microbiol 2016; 7:68. [PMID: 26870025 PMCID: PMC4735675 DOI: 10.3389/fmicb.2016.00068] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/14/2016] [Indexed: 12/20/2022] Open
Abstract
Emerging infectious diseases in wildlife are responsible for massive population declines. In amphibians, chytridiomycosis caused by Batrachochytrium dendrobatidis, Bd, has severely affected many amphibian populations and species around the world. One promising management strategy is probiotic bioaugmentation of antifungal bacteria on amphibian skin. In vivo experimental trials using bioaugmentation strategies have had mixed results, and therefore a more informed strategy is needed to select successful probiotic candidates. Metagenomic, transcriptomic, and metabolomic methods, colloquially called "omics," are approaches that can better inform probiotic selection and optimize selection protocols. The integration of multiple omic data using bioinformatic and statistical tools and in silico models that link bacterial community structure with bacterial defensive function can allow the identification of species involved in pathogen inhibition. We recommend using 16S rRNA gene amplicon sequencing and methods such as indicator species analysis, the Kolmogorov-Smirnov Measure, and co-occurrence networks to identify bacteria that are associated with pathogen resistance in field surveys and experimental trials. In addition to 16S amplicon sequencing, we recommend approaches that give insight into symbiont function such as shotgun metagenomics, metatranscriptomics, or metabolomics to maximize the probability of finding effective probiotic candidates, which can then be isolated in culture and tested in persistence and clinical trials. An effective mitigation strategy to ameliorate chytridiomycosis and other emerging infectious diseases is necessary; the advancement of omic methods and the integration of multiple omic data provide a promising avenue toward conservation of imperiled species.
Collapse
Affiliation(s)
- Eria A. Rebollar
- Department of Biology, James Madison UniversityHarrisonburg, VA, USA
| | - Rachael E. Antwis
- Unit for Environmental Sciences and Management, North-West UniversityPotchefstroom, South Africa
- Institute of Zoology, Zoological Society of LondonLondon, UK
- School of Environment and Life Sciences, University of SalfordSalford, UK
| | - Matthew H. Becker
- Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological ParkWashington, DC, USA
| | - Lisa K. Belden
- Department of Biological Sciences, Virginia TechBlacksburg, VA, USA
| | - Molly C. Bletz
- Zoological Institute, Technische Universität BraunschweigBraunschweig, Germany
| | | | | | - Myra C. Hughey
- Department of Biological Sciences, Virginia TechBlacksburg, VA, USA
| | - Jordan G. Kueneman
- Department of Ecology and Evolutionary Biology, University of ColoradoBoulder, CO, USA
| | - Andrew H. Loudon
- Department of Zoology, Biodiversity Research Centre, University of British ColumbiaVancouver, BC, Canada
| | - Valerie McKenzie
- Department of Ecology and Evolutionary Biology, University of ColoradoBoulder, CO, USA
| | - Daniel Medina
- Department of Biological Sciences, Virginia TechBlacksburg, VA, USA
| | | | - Louise A. Rollins-Smith
- Department of Pathology, Microbiology and Immunology and Department of Pediatrics, Vanderbilt University School of Medicine, Department of Biological Sciences, Vanderbilt UniversityNashville, TN, USA
| | - Jenifer B. Walke
- Department of Biological Sciences, Virginia TechBlacksburg, VA, USA
| | - Sophie Weiss
- Department of Chemical and Biological Engineering, University of Colorado at BoulderBoulder, CO, USA
| | | | - Reid N. Harris
- Department of Biology, James Madison UniversityHarrisonburg, VA, USA
| |
Collapse
|
66
|
Bovo RP, Andrade DV, Toledo LF, Longo AV, Rodriguez D, Haddad CFB, Zamudio KR, Becker CG. Physiological responses of Brazilian amphibians to an enzootic infection of the chytrid fungus Batrachochytrium dendrobatidis. DISEASES OF AQUATIC ORGANISMS 2016; 117:245-52. [PMID: 26758658 DOI: 10.3354/dao02940] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pathophysiological effects of clinical chytridiomycosis in amphibians include disorders of cutaneous osmoregulation and disruption of the ability to rehydrate, which can lead to decreased host fitness or mortality. Less attention has been given to physiological responses of hosts where enzootic infections of Batrachochytrium dendrobatidis (Bd) do not cause apparent population declines in the wild. Here, we experimentally tested whether an enzootic strain of Bd causes significant mortality and alters host water balance (evaporative water loss, EWL; skin resistance, R(s); and water uptake, WU) in individuals of 3 Brazilian amphibian species (Dendropsophus minutus, n = 19; Ischnocnema parva, n = 17; Brachycephalus pitanga, n = 15). Infections with enzootic Bd caused no significant mortality, but we found an increase in R(s) in 1 host species concomitant with a reduction in EWL. These results suggest that enzootic Bd infections can indeed cause sub-lethal effects that could lead to reduction of host fitness in Brazilian frogs and that these effects vary among species. Thus, our findings underscore the need for further assessment of physiological responses to Bd infections in different host species, even in cases of sub-clinical chytridiomycosis and long-term enzootic infections in natural populations.
Collapse
Affiliation(s)
- Rafael P Bovo
- Departamento de Zoologia, c. p. 199, Universidade Estadual Paulista, 13506-900, Rio Claro, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Ackleh AS, Carter J, Chellamuthu VK, Ma B. A model for the interaction of frog population dynamics with Batrachochytrium dendrobatidis, Janthinobacterium lividum and temperature and its implication for chytridiomycosis management. Ecol Modell 2016. [DOI: 10.1016/j.ecolmodel.2015.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
68
|
Buck JC, Rohr JR, Blaustein AR. Effects of nutrient supplementation on host-pathogen dynamics of the amphibian chytrid fungus: a community approach. FRESHWATER BIOLOGY 2016; 61:110-120. [PMID: 28956554 PMCID: PMC4857202 DOI: 10.1111/fwb.12685] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Anthropogenic stressors may influence hosts and their pathogens directly or may alter host-pathogen dynamics indirectly through interactions with other species. For example, in aquatic ecosystems, eutrophication may be associated with increased or decreased disease risk. Conversely, pathogens can influence community structure and function and are increasingly recognised as important members of the ecological communities in which they exist.In outdoor mesocosms, we experimentally manipulated nutrients (nitrogen and phosphorus) and the presence of a fungal pathogen, Batrachochytrium dendrobatidis (Bd), and examined the effects on Bd abundance on larval amphibian hosts (Pseudacris regilla: Hylidae), amphibian traits and community dynamics. We predicted that resource supplementation would mitigate negative effects of Bd on tadpole growth and development and that indirect effects of treatments would propagate through the community.Nutrient additions caused changes in algal growth, which benefitted tadpoles through increased mass, development and survival. Bd-exposed tadpoles metamorphosed sooner than unexposed individuals, but their mass at metamorphosis was not affected by Bd exposure. We detected additive rather than interactive effects of nutrient supplementation and Bd in this experiment.Nutrient supplementation was not a significant predictor of infection load of larval amphibians. However, a structural equation model revealed that resource supplementation and exposure of amphibians to Bd altered the structure of the aquatic community. This is the first demonstration that sublethal effects of Bd on amphibians can alter aquatic community dynamics.
Collapse
Affiliation(s)
- Julia C Buck
- Texas Research Institute for Environmental Studies, Sam Houston State University, Huntsville, TX, U.S.A
- Department of Integrative Biology, Oregon State University, Corvallis, OR, U.S.A
| | - Jason R Rohr
- Department of Integrative Biology, University of South Florida, Tampa, FL, U.S.A
| | - Andrew R Blaustein
- Department of Integrative Biology, Oregon State University, Corvallis, OR, U.S.A
| |
Collapse
|
69
|
Bataille A, Cashins SD, Grogan L, Skerratt LF, Hunter D, McFadden M, Scheele B, Brannelly LA, Macris A, Harlow PS, Bell S, Berger L, Waldman B. Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation. Proc Biol Sci 2015; 282:rspb.2014.3127. [PMID: 25808889 PMCID: PMC4389617 DOI: 10.1098/rspb.2014.3127] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause precipitous population declines in its amphibian hosts. Responses of individuals to infection vary greatly with the capacity of their immune system to respond to the pathogen. We used a combination of comparative and experimental approaches to identify major histocompatibility complex class II (MHC-II) alleles encoding molecules that foster the survival of Bd-infected amphibians. We found that Bd-resistant amphibians across four continents share common amino acids in three binding pockets of the MHC-II antigen-binding groove. Moreover, strong signals of selection acting on these specific sites were evident among all species co-existing with the pathogen. In the laboratory, we experimentally inoculated Australian tree frogs with Bd to test how each binding pocket conformation influences disease resistance. Only the conformation of MHC-II pocket 9 of surviving subjects matched those of Bd-resistant species. This MHC-II conformation thus may determine amphibian resistance to Bd, although other MHC-II binding pockets also may contribute to resistance. Rescuing amphibian biodiversity will depend on our understanding of amphibian immune defence mechanisms against Bd. The identification of adaptive genetic markers for Bd resistance represents an important step forward towards that goal.
Collapse
Affiliation(s)
- Arnaud Bataille
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea
| | - Scott D Cashins
- School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Townsville, Queensland 4811, Australia
| | - Laura Grogan
- School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Townsville, Queensland 4811, Australia
| | - Lee F Skerratt
- School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Townsville, Queensland 4811, Australia
| | - David Hunter
- New South Wales Office of Environment and Heritage, Biodiversity Conservation Section, Queanbeyan, New South Wales 2620, Australia
| | - Michael McFadden
- Taronga Conservation Society Australia, Herpetofauna Division, Mosman, New South Wales 2088, Australia
| | - Benjamin Scheele
- Fenner School of Environment and Society, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Laura A Brannelly
- School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Townsville, Queensland 4811, Australia
| | - Amy Macris
- Fenner School of Environment and Society, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Peter S Harlow
- Taronga Conservation Society Australia, Herpetofauna Division, Mosman, New South Wales 2088, Australia
| | - Sara Bell
- School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Townsville, Queensland 4811, Australia
| | - Lee Berger
- School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Townsville, Queensland 4811, Australia
| | - Bruce Waldman
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea
| |
Collapse
|
70
|
Van Rooij P, Martel A, Haesebrouck F, Pasmans F. Amphibian chytridiomycosis: a review with focus on fungus-host interactions. Vet Res 2015; 46:137. [PMID: 26607488 PMCID: PMC4660679 DOI: 10.1186/s13567-015-0266-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/05/2015] [Indexed: 01/30/2023] Open
Abstract
Amphibian declines and extinctions are emblematic for the current sixth mass extinction event. Infectious drivers of these declines include the recently emerged fungal pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans (Chytridiomycota). The skin disease caused by these fungi is named chytridiomycosis and affects the vital function of amphibian skin. Not all amphibians respond equally to infection and host responses might range from resistant, over tolerant to susceptible. The clinical outcome of infection is highly dependent on the amphibian host, the fungal virulence and environmental determinants. B. dendrobatidis infects the skin of a large range of anurans, urodeles and caecilians, whereas to date the host range of B. salamandrivorans seems limited to urodeles. So far, the epidemic of B. dendrobatidis is mainly limited to Australian, neotropical, South European and West American amphibians, while for B. salamandrivorans it is limited to European salamanders. Other striking differences between both fungi include gross pathology and thermal preferences. With this review we aim to provide the reader with a state-of-the art of host-pathogen interactions for both fungi, in which new data pertaining to the interaction of B. dendrobatidis and B. salamandrivorans with the host’s skin are integrated. Furthermore, we pinpoint areas in which more detailed studies are necessary or which have not received the attention they merit.
Collapse
Affiliation(s)
- Pascale Van Rooij
- Laboratory of Veterinary Bacteriology and Mycology, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - An Martel
- Laboratory of Veterinary Bacteriology and Mycology, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Freddy Haesebrouck
- Laboratory of Veterinary Bacteriology and Mycology, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Frank Pasmans
- Laboratory of Veterinary Bacteriology and Mycology, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
71
|
Hess A, McAllister C, DeMarchi J, Zidek M, Murone J, Venesky MD. Salamanders increase their feeding activity when infected with the pathogenic chytrid fungus Batrachochytrium dendrobatidis. DISEASES OF AQUATIC ORGANISMS 2015; 116:205-212. [PMID: 26503775 DOI: 10.3354/dao02915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Immune function is a costly line of defense against parasitism. When infected with a parasite, hosts frequently lose mass due to these costs. However, some infected hosts (e.g. highly resistant individuals) can clear infections with seemingly little fitness losses, but few studies have tested how resistant hosts mitigate these costly immune defenses. We explored this topic using eastern red-backed salamanders Plethodon cinereus and the fungal pathogen Batrachochytrium dendrobatidis (Bd). Bd is generally lethal for amphibians, and stereotypical symptoms of infection include loss in mass and deficits in feeding. However, individuals of P. cinereus can clear their Bd infections with seemingly few fitness costs. We conducted an experiment in which we repeatedly observed the feeding activity of Bd-infected and non-infected salamanders. We found that Bd-infected salamanders generally increased their feeding activity compared to non-infected salamanders. The fact that we did not observe any differences in mass change between the treatments suggests that increased feeding might help Bd-infected salamanders minimize the costs of an effective immune response.
Collapse
Affiliation(s)
- Alexandra Hess
- Department of Biology, Allegheny College, Meadville, PA 16335, USA
| | | | | | | | | | | |
Collapse
|
72
|
Bradley PW, Gervasi SS, Hua J, Cothran RD, Relyea RA, Olson DH, Blaustein AR. Differences in sensitivity to the fungal pathogen Batrachochytrium dendrobatidis among amphibian populations. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2015; 29:1347-1356. [PMID: 26219571 DOI: 10.1111/cobi.12566] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 01/27/2015] [Accepted: 02/22/2015] [Indexed: 05/22/2023]
Abstract
Contributing to the worldwide biodiversity crisis are emerging infectious diseases, which can lead to extirpations and extinctions of hosts. For example, the infectious fungal pathogen Batrachochytrium dendrobatidis (Bd) is associated with worldwide amphibian population declines and extinctions. Sensitivity to Bd varies with species, season, and life stage. However, there is little information on whether sensitivity to Bd differs among populations, which is essential for understanding Bd-infection dynamics and for formulating conservation strategies. We experimentally investigated intraspecific differences in host sensitivity to Bd across 10 populations of wood frogs (Lithobates sylvaticus) raised from eggs to metamorphosis. We exposed the post-metamorphic wood frogs to Bd and monitored survival for 30 days under controlled laboratory conditions. Populations differed in overall survival and mortality rate. Infection load also differed among populations but was not correlated with population differences in risk of mortality. Such population-level variation in sensitivity to Bd may result in reservoir populations that may be a source for the transmission of Bd to other sensitive populations or species. Alternatively, remnant populations that are less sensitive to Bd could serve as sources for recolonization after epidemic events.
Collapse
Affiliation(s)
- Paul W Bradley
- Environmental Sciences Graduate Program, Oregon State University, 104 Wilkinson Hall, Corvallis, OR, 97331, U.S.A
| | - Stephanie S Gervasi
- Department of Integrative Biology, University of South Florida, 4202 E Fowler Avenue, Tampa, FL, 33620, U.S.A
| | - Jessica Hua
- Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN, 47907, U.S.A
| | - Rickey D Cothran
- Department of Biological Sciences, Southwestern Oklahoma University, 100 Campus Drive, Weatherford, OK, 73096, U.S.A
| | - Rick A Relyea
- Department of Biological Sciences, BT2115, Rensselaer Polytechnic Institute, Troy, NY, 12180, U.S.A
| | - Deanna H Olson
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, U.S.A
| | - Andrew R Blaustein
- Environmental Sciences Graduate Program, Oregon State University, 104 Wilkinson Hall, Corvallis, OR, 97331, U.S.A
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR, 97331, U.S.A
| |
Collapse
|
73
|
James TY, Toledo LF, Rödder D, da Silva Leite D, Belasen AM, Betancourt-Román CM, Jenkinson TS, Soto-Azat C, Lambertini C, Longo AV, Ruggeri J, Collins JP, Burrowes PA, Lips KR, Zamudio KR, Longcore JE. Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: lessons from the first 15 years of amphibian chytridiomycosis research. Ecol Evol 2015; 5:4079-97. [PMID: 26445660 PMCID: PMC4588650 DOI: 10.1002/ece3.1672] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/25/2015] [Indexed: 12/18/2022] Open
Abstract
The amphibian fungal disease chytridiomycosis, which affects species across all continents, recently emerged as one of the greatest threats to biodiversity. Yet, many aspects of the basic biology and epidemiology of the pathogen, Batrachochytrium dendrobatidis (Bd), are still unknown, such as when and from where did Bd emerge and what is its true ecological niche? Here, we review the ecology and evolution of Bd in the Americas and highlight controversies that make this disease so enigmatic. We explore factors associated with variance in severity of epizootics focusing on the disease triangle of host susceptibility, pathogen virulence, and environment. Reevaluating the causes of the panzootic is timely given the wealth of data on Bd prevalence across hosts and communities and the recent discoveries suggesting co-evolutionary potential of hosts and Bd. We generate a new species distribution model for Bd in the Americas based on over 30,000 records and suggest a novel future research agenda. Instead of focusing on pathogen "hot spots," we need to identify pathogen "cold spots" so that we can better understand what limits the pathogen's distribution. Finally, we introduce the concept of "the Ghost of Epizootics Past" to discuss expected patterns in postepizootic host communities.
Collapse
Affiliation(s)
- Timothy Y James
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan 48109
| | - L Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB) Departamento de Biologia Animal Instituto de Biologia Universidade Estadual de Campinas Caixa Postal 6109 Campinas São Paulo CEP 13083-863 Brazil
| | - Dennis Rödder
- Section of Herpetology Zoologisches Forschungsmuseum Alexander Koenig Adenauerallee 160 53113 Bonn Germany
| | - Domingos da Silva Leite
- Laboratório de Antígenos Bacterianos II Departamento de Genética, Evolução e Bioagentes Instituto de Biologia Universidade Estadual de Campinas Caixa Postal 6109 Campinas São Paulo CEP 13083-862 Brazil
| | - Anat M Belasen
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan 48109
| | | | - Thomas S Jenkinson
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan 48109
| | - Claudio Soto-Azat
- Centro de Investigación para la Sustentabilidad Facultad de Ecología y Recursos Naturales, Universidad Andres Bello Santiago Chile
| | - Carolina Lambertini
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB) Departamento de Biologia Animal Instituto de Biologia Universidade Estadual de Campinas Caixa Postal 6109 Campinas São Paulo CEP 13083-863 Brazil
| | - Ana V Longo
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York 14853
| | - Joice Ruggeri
- Departamento de Zoologia Laboratório de Anfíbios e Répteis Universidade Federal do Rio de Janeiro, Instituto de Biologia Ilha do Fundão, Caixa postal: 68044 Rio de Janeiro RJ CEP 21941-590 Brazil
| | - James P Collins
- School of Life Sciences Arizona State University PO Box 874501 Tempe Arizona 85287-4501
| | | | - Karen R Lips
- Department of Biology University of Maryland College Park Maryland 20901
| | - Kelly R Zamudio
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York 14853
| | - Joyce E Longcore
- School of Biology and Ecology University of Maine Orono Maine 04469-5722
| |
Collapse
|
74
|
Rumschlag SL, Boone MD. How Time of Exposure to the Amphibian Chytrid Fungus AffectsHyla chrysoscelisin the Presence of an Insecticide1. HERPETOLOGICA 2015. [DOI: 10.1655/herpetologica-d-13-00070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
75
|
Eskew EA, Worth SJ, Foley JE, Todd BD. American Bullfrogs (Lithobates catesbeianus) Resist Infection by Multiple Isolates of Batrachochytrium dendrobatidis, Including One Implicated in Wild Mass Mortality. ECOHEALTH 2015; 12:513-8. [PMID: 26065669 DOI: 10.1007/s10393-015-1035-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 04/16/2015] [Accepted: 04/29/2015] [Indexed: 05/22/2023]
Abstract
The emerging amphibian disease chytridiomycosis varies in severity depending on host species. Within species, disease susceptibility can also be influenced by pathogen variation and environmental factors. Here, we report on experimental exposures of American bullfrogs (Lithobates catesbeianus) to three different isolates of Batrachochytrium dendrobatidis (Bd), including one implicated in causing mass mortality of wild American bullfrogs. Exposed frogs showed low infection prevalence, relatively low infection load, and lack of clinical disease. Our results suggest that environmental cofactors are likely important contributors to Bd-associated American bullfrog mortality and that this species both resists and tolerates Bd infection.
Collapse
Affiliation(s)
- Evan A Eskew
- Graduate Group in Ecology, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA.
| | - S Joy Worth
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Janet E Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Brian D Todd
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|
76
|
Refsnider JM, Poorten TJ, Langhammer PF, Burrowes PA, Rosenblum EB. Genomic Correlates of Virulence Attenuation in the Deadly Amphibian Chytrid Fungus, Batrachochytrium dendrobatidis. G3 (BETHESDA, MD.) 2015; 5:2291-8. [PMID: 26333840 PMCID: PMC4632049 DOI: 10.1534/g3.115.021808] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/28/2015] [Indexed: 11/18/2022]
Abstract
Emerging infectious diseasespose a significant threat to global health, but predicting disease outcomes for particular species can be complicated when pathogen virulence varies across space, time, or hosts. The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused worldwide declines in frog populations. Not only do Bd isolates from wild populations vary in virulence, but virulence shifts can occur over short timescales when Bd is maintained in the laboratory. We leveraged changes in Bd virulence over multiple generations of passage to better understand mechanisms of pathogen virulence. We conducted whole-genome resequencing of two samples of the same Bd isolate, differing only in passage history, to identify genomic processes associated with virulence attenuation. The isolate with shorter passage history (and greater virulence) had greater chromosome copy numbers than the isolate maintained in culture for longer, suggesting that virulence attenuation may be associated with loss of chromosome copies. Our results suggest that genomic processes proposed as mechanisms for rapid evolution in Bd are correlated with virulence attenuation in laboratory culture within a single lineage of Bd. Moreover, these genomic processes can occur over extremely short timescales. On a practical level, our results underscore the importance of immediately cryo-archiving new Bd isolates and using fresh isolates, rather than samples cultured in the laboratory for long periods, for laboratory infection experiments. Finally, when attempting to predict disease outcomes for this ecologically important pathogen, it is critical to consider existing variation in virulence among isolates and the potential for shifts in virulence over short timescales.
Collapse
Affiliation(s)
- Jeanine M Refsnider
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720-3114
| | - Thomas J Poorten
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720-3114
| | | | - Patricia A Burrowes
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico 00931-3360
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720-3114
| |
Collapse
|
77
|
Crespi EJ, Rissler LJ, Mattheus NM, Engbrecht K, Duncan SI, Seaborn T, Hall EM, Peterson JD, Brunner JL. Geophysiology of Wood Frogs: Landscape Patterns of Prevalence of Disease and Circulating Hormone Concentrations across the Eastern Range. Integr Comp Biol 2015; 55:602-17. [PMID: 26269462 DOI: 10.1093/icb/icv096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
One of the major challenges for conservation physiologists is to determine how current or future environmental conditions relate to the health of animals at the population level. In this study, we measured prevalence of disease, mean condition of the body, and mean resting levels of corticosterone and testosterone in a total of 28 populations across the years 2011 and 2012, and correlated these measures of health to climatic suitability of habitat, using estimates from a model of the ecological niche of the wood frog's geographic range. Using the core-periphery hypothesis as a theoretical framework, we predicted a higher prevalence and intensity of infection of Batrachochytrium dendrobatidis (Bd) and ranaviruses, two major amphibian pathogens causing disease, and higher resting levels of circulating corticosterone, an indicator of allostatic load incurred from living in marginal habitats. We found that Bd infections were rare (2% of individuals tested), while infections with ranavirus were much more common: ranavirus-infected individuals were found in 92% of ponds tested over the 2 years. Contrary to our predictions, rates of infection with ranaviruses were positively correlated with quality of the habitat with the highest prevalence at the core of the range, and plasma corticosterone concentrations measured when frogs were at rest were not correlated with quality of the habitat, the prevalence of ranavirus, or the intensity of infection. Prevalence and mean viral titers of ranavirus infection were higher in 2012 than in 2011, which coincided with lower levels of circulating corticosterone and testosterone and an extremely early time of breeding due to relatively higher temperatures during the winter. In addition, the odds of having a ranavirus infection increased with decreased body condition, and if animals had an infection, viral titers were positively correlated to levels of circulating testosterone concentration. By resolving these patterns, experiments can be designed to test hypotheses about the mechanisms that produce them, such as whether transmission of the ranavirus and tolerance of the host are greater or whether virulence is lower in populations within core habitats. While there is debate about which metrics serve as the best bioindicators of population health, the findings of this study demonstrate the importance of long-term monitoring of multiple physiological parameters to better understand the dynamic relationship between the environment and the health of wildlife populations over space and time.
Collapse
Affiliation(s)
- Erica J Crespi
- *School of Biological Sciences, Washington State University, Pullman, WA 99164, USA;
| | - Leslie J Rissler
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Nichole M Mattheus
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kristin Engbrecht
- *School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Sarah I Duncan
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Travis Seaborn
- *School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Emily M Hall
- *School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - John D Peterson
- *School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; Department of Biology, University of Wisconsin-Platteville, Platteville, WI 538183, USA
| | - Jesse L Brunner
- *School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
78
|
Buck JC, Hua J, Brogan WR, Dang TD, Urbina J, Bendis RJ, Stoler AB, Blaustein AR, Relyea RA. Effects of Pesticide Mixtures on Host-Pathogen Dynamics of the Amphibian Chytrid Fungus. PLoS One 2015; 10:e0132832. [PMID: 26181492 PMCID: PMC4504700 DOI: 10.1371/journal.pone.0132832] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/19/2015] [Indexed: 01/22/2023] Open
Abstract
Anthropogenic and natural stressors often interact to affect organisms. Amphibian populations are undergoing unprecedented declines and extinctions with pesticides and emerging infectious diseases implicated as causal factors. Although these factors often co-occur, their effects on amphibians are usually examined in isolation. We hypothesized that exposure of larval and metamorphic amphibians to ecologically relevant concentrations of pesticide mixtures would increase their post-metamorphic susceptibility to the fungus Batrachochytrium dendrobatidis (Bd), a pathogen that has contributed to amphibian population declines worldwide. We exposed five anuran species (Pacific treefrog, Pseudacris regilla; spring peeper, Pseudacris crucifer; Cascades frog, Rana cascadae; northern leopard frog, Lithobates pipiens; and western toad, Anaxyrus boreas) from three families to mixtures of four common insecticides (chlorpyrifos, carbaryl, permethrin, and endosulfan) or herbicides (glyphosate, acetochlor, atrazine, and 2,4-D) or a control treatment, either as tadpoles or as newly metamorphic individuals (metamorphs). Subsequently, we exposed animals to Bd or a control inoculate after metamorphosis and compared survival and Bd load. Bd exposure significantly increased mortality in Pacific treefrogs, spring peepers, and western toads, but not in Cascades frogs or northern leopard frogs. However, the effects of pesticide exposure on mortality were negligible, regardless of the timing of exposure. Bd load varied considerably across species; Pacific treefrogs, spring peepers, and western toads had the highest loads, whereas Cascades frogs and northern leopard frogs had the lowest loads. The influence of pesticide exposure on Bd load depended on the amphibian species, timing of pesticide exposure, and the particular pesticide treatment. Our results suggest that exposure to realistic pesticide concentrations has minimal effects on Bd-induced mortality, but can alter Bd load. This result could have broad implications for risk assessment of amphibians; the outcome of exposure to multiple stressors may be unpredictable and can differ between species and life stages.
Collapse
Affiliation(s)
- Julia C. Buck
- Texas Research Institute for Environmental Studies, Sam Houston State University, Huntsville, Texas, United States of America
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Jessica Hua
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William R. Brogan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Trang D. Dang
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Jenny Urbina
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Randall J. Bendis
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aaron B. Stoler
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Andrew R. Blaustein
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Rick A. Relyea
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
79
|
Bielby J, Fisher MC, Clare FC, Rosa GM, Garner TWJ. Host species vary in infection probability, sub-lethal effects, and costs of immune response when exposed to an amphibian parasite. Sci Rep 2015; 5:10828. [PMID: 26022346 PMCID: PMC4448222 DOI: 10.1038/srep10828] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/20/2015] [Indexed: 11/11/2022] Open
Abstract
The amphibian parasite Batrachochytrium dendrobatidis (Bd) is regarded as an extreme generalist, infecting over 500 species, but amongst these hosts there exists a great deal of variation in the susceptibility to and the costs of parasite exposure. We use two infection experiments to determine whether inter-specific variation in the sublethal and lethal effects of parasite exposure exist in two host species. We then tested the relative roles of host density and diversity on infection probability of a focal susceptible host. Our results show significant heterogeneity in host species response to parasite exposure, and that both lethal and sub-lethal costs exist in individuals that are able to resist infection, indicating that successful immune response to infection comes at a cost. Further, we show that increasing host density significantly increased the likelihood of susceptible individuals becoming infected with Bd irrespective of host diversity and variation in host susceptibility. These results suggest that populations of resistant species are likely to suffer ill-effects of exposure to Bd regardless of their infection status, and that at the stage of initial infection there was no support for the dilution of transmission events, in contrast to other studies that focus on subsequent transmission of infection.
Collapse
Affiliation(s)
- Jon Bielby
- 1] The Institute of Zoology, The Zoological Society of London, Regent's Park, London, NW1 4RY, UK [2] Department of Infectious Disease Epidemiology, Imperial College London W2 1PG, UK
| | - Matthew C Fisher
- Department of Infectious Disease Epidemiology, Imperial College London W2 1PG, UK
| | - Frances C Clare
- 1] The Institute of Zoology, The Zoological Society of London, Regent's Park, London, NW1 4RY, UK [2] Department of Infectious Disease Epidemiology, Imperial College London W2 1PG, UK
| | - Gonçalo M Rosa
- 1] The Institute of Zoology, The Zoological Society of London, Regent's Park, London, NW1 4RY, UK [2] Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, UK [3] Centre for Ecology, Evolution and Environmental Changes (CE3C), Faculdade de Ciências da Universidade de Lisboa, Bloco C2, Campo Grande, 1749-016 Lisboa, Portugal
| | - Trenton W J Garner
- The Institute of Zoology, The Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| |
Collapse
|
80
|
Valencia-Aguilar A, Ruano-Fajardo G, Lambertini C, da Silva Leite D, Toledo LF, Mott T. Chytrid fungus acts as a generalist pathogen infecting species-rich amphibian families in Brazilian rainforests. DISEASES OF AQUATIC ORGANISMS 2015; 114:61-67. [PMID: 25958806 DOI: 10.3354/dao02845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The fungus Batrachochytrium dendrobatidis (Bd) is among the main causes of declines in amphibian populations. This fungus is considered a generalist pathogen because it infects several species and spreads rapidly in the wild. To date, Bd has been detected in more than 100 anuran species in Brazil, mostly in the southern portion of the Atlantic forest. Here, we report survey data from some poorly explored regions; these data considerably extend current information on the distribution of Bd in the northern Atlantic forest region. In addition, we tested the hypothesis that Bd is a generalist pathogen in this biome. We also report the first positive record for Bd in an anuran caught in the wild in Amazonia. In total, we screened 90 individuals (from 27 species), of which 39 individuals (from 22 species) were Bd-positive. All samples collected in Bahia (2 individuals), Pernambuco (3 individuals), Pará (1 individual), and Minas Gerais (1 individual) showed positive results for Bd. We found a positive correlation between anuran richness per family and the number of infected species in the Atlantic forest, supporting previous observations that Bd lacks strong host specificity; of 38% of the anuran species in the Atlantic forest that were tested for Bd infection, 25% showed positive results. The results of our study exemplify the pandemic and widespread nature of Bd infection in amphibians.
Collapse
Affiliation(s)
- Anyelet Valencia-Aguilar
- Programa de Pós-Graduação em Diversidade Biológica e Conservação nos Trópicos, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, Tabuleiro, 57052-970, Maceió, AL, Brazil
| | | | | | | | | | | |
Collapse
|
81
|
Cothran RD, Gervasi SS, Murray C, French BJ, Bradley PW, Urbina J, Blaustein AR, Relyea RA. Carotenoids and amphibians: effects on life history and susceptibility to the infectious pathogen, Batrachochytrium dendrobatidis. CONSERVATION PHYSIOLOGY 2015; 3:cov005. [PMID: 27293690 PMCID: PMC4778475 DOI: 10.1093/conphys/cov005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 01/02/2015] [Accepted: 01/26/2015] [Indexed: 05/23/2023]
Abstract
Carotenoids are considered beneficial nutrients because they provide increased immune capacity. Although carotenoid research has been conducted in many vertebrates, little research has been done in amphibians, a group that is experiencing global population declines from numerous causes, including disease. We raised two amphibian species through metamorphosis on three carotenoid diets to quantify the effects on life-history traits and post-metamorphic susceptibility to a fungal pathogen (Batrachochytrium dendrobatidis; Bd). Increased carotenoids had no effect on survival to metamorphosis in gray treefrogs (Hyla versicolor) but caused lower survival to metamorphosis in wood frogs [Lithobates sylvaticus (Rana sylvatica)]. Increased carotenoids caused both species to experience slower development and growth. When exposed to Bd after metamorphosis, wood frogs experienced high mortality, and the carotenoid diets had no mitigating effects. Gray treefrogs were less susceptible to Bd, which prevented an assessment of whether carotenoids could mitigate the effects of Bd. Moreover, carotenoids had no effect on pathogen load. As one of only a few studies examining the effects of carotenoids on amphibians and the first to examine potential interactions with Bd, our results suggest that carotenoids do not always serve amphibians in the many positive ways that have become the paradigm in other vertebrates.
Collapse
Affiliation(s)
- Rickey D Cothran
- Department of Biological Sciences, Southwestern Oklahoma State University, Weatherford, OK 73096, USA
| | - Stephanie S Gervasi
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Cindy Murray
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Beverly J French
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Paul W Bradley
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR 97331, USA
| | - Jenny Urbina
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR 97331, USA
| | - Andrew R Blaustein
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Rick A Relyea
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
82
|
Han BA, Kerby JL, Searle CL, Storfer A, Blaustein AR. Host species composition influences infection severity among amphibians in the absence of spillover transmission. Ecol Evol 2015; 5:1432-9. [PMID: 25897383 PMCID: PMC4395173 DOI: 10.1002/ece3.1385] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 11/23/2022] Open
Abstract
Wildlife epidemiological outcomes can depend strongly on the composition of an ecological community, particularly when multiple host species are affected by the same pathogen. However, the relationship between host species richness and disease risk can vary with community context and with the degree of spillover transmission that occurs among co-occurring host species. We examined the degree to which host species composition influences infection by Batrachochytrium dendrobatidis (Bd), a widespread fungal pathogen associated with amphibian population declines around the world, and whether transmission occurs from one highly susceptible host species to other co-occurring host species. By manipulating larval assemblages of three sympatric amphibian species in the laboratory, we characterized the relationship between host species richness and infection severity, whether infection mediates growth and survivorship differently across various combinations of host species, and whether Bd is transmitted from experimentally inoculated tadpoles to uninfected tadpoles. We found evidence of a dilution effect where Bd infection severity was dramatically reduced in the most susceptible of the three host species (Anaxyrus boreas). Infection also mediated survival and growth of all three host species such that the presence of multiple host species had both positive (e.g., infection reduction) and negative (e.g., mortality) effects on focal species. However, we found no evidence that Bd infection is transmitted by this species. While these results demonstrate that host species richness as well as species identity underpin infection dynamics in this system, dilution is not the product of reduced transmission via fewer infectious individuals of a susceptible host species. We discuss various mechanisms, including encounter reduction and antagonistic interactions such as competition and opportunistic cannibalism that may act in concert to mediate patterns of infection severity, growth, and mortality observed in multihost communities.
Collapse
Affiliation(s)
- Barbara A Han
- Cary Institute of Ecosystem Studies Millbrook, New York, 12545
| | - Jacob L Kerby
- Biology Department, University of South Dakota 414 E. Clark St., Vermillion, South Dakota, 57069
| | - Catherine L Searle
- Department of Ecology and Evolutionary Biology, University of Michigan Ann Arbor, Michigan, 48109
| | - Andrew Storfer
- School of Biological Sciences, Washington State University Pullman, Washington, 99164
| | - Andrew R Blaustein
- Department of Zoology, Oregon State University 3029 Cordley Hall, Corvallis, Oregon, 97331
| |
Collapse
|
83
|
Abstract
Hosts strongly influence parasite fitness. However, it is challenging to disentangle host effects on genetic vs plasticity-driven traits of parasites, since parasites can evolve quickly. It remains especially difficult to determine the causes and magnitude of parasite plasticity. In successive generations, parasites may respond plastically to better infect their current type of host, or hosts may produce generally 'good' or 'bad' quality parasites. Here, we characterized parasite plasticity by taking advantage of a system in which the parasite (the yeast Metschnikowia bicuspidata, which infects Daphnia) has no detectable heritable variation, preventing rapid evolution. In experimental infection assays, we found an effect of rearing host genotype on parasite infectivity, where host genotypes produced overall high or low quality parasite spores. Additionally, these plastically induced differences were gained or lost in just a single host generation. Together, these results demonstrate phenotypic plasticity in infectivity driven by the within-host rearing environment. Such plasticity is rarely investigated in parasites, but could shape epidemiologically important traits.
Collapse
|
84
|
Bletz MC, Rebollar EA, Harris RN. Differential efficiency among DNA extraction methods influences detection of the amphibian pathogen Batrachochytrium dendrobatidis. DISEASES OF AQUATIC ORGANISMS 2015; 113:1-8. [PMID: 25667331 DOI: 10.3354/dao02822] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is responsible for massive declines and extinctions of amphibians worldwide. The most common method for detecting Bd is quantitative polymerase chain reaction (qPCR). qPCR is a highly sensitive detection technique, but its ability to determine the presence and accurately quantify the amount of Bd is also contingent on the efficiency of the DNA extraction method used prior to PCR. Using qPCR, we compared the extraction efficiency of 3 different extraction methods commonly used for Bd detection across a range of zoospore quantities: PrepMan Ultra Reagent, Qiagen DNeasy Blood and Tissue Kit, and Mobio PowerSoil DNA Isolation Kit. We show that not all extraction methods led to successful detection of Bd for the low zoospore quantities and that there was variation in the estimated zoospore equivalents among the methods, which demonstrates that these methods have different extraction efficiencies. These results highlight the importance of considering the extraction method when comparing across studies. The Qiagen DNeasy kit had the highest efficiency. We also show that replicated estimates of less than 1 zoospore can result from known zoospore concentrations; therefore, such results should be considered when obtained from field data. Additionally, we discuss the implications of our findings for interpreting previous studies and for conducting future Bd surveys. It is imperative to use the most efficient DNA extraction method in tandem with the highly sensitive qPCR technique in order to accurately diagnose the presence of Bd as well as other pathogens.
Collapse
Affiliation(s)
- M C Bletz
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA 22807, USA
| | | | | |
Collapse
|
85
|
Bucciarelli GM, Blaustein AR, Garcia TS, Kats LB. Invasion Complexities: The Diverse Impacts of Nonnative Species on Amphibians. COPEIA 2014. [DOI: 10.1643/ot-14-014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
86
|
Ellison AR, Tunstall T, DiRenzo GV, Hughey MC, Rebollar EA, Belden LK, Harris RN, Ibáñez R, Lips KR, Zamudio KR. More than skin deep: functional genomic basis for resistance to amphibian chytridiomycosis. Genome Biol Evol 2014; 7:286-98. [PMID: 25539724 PMCID: PMC4316636 DOI: 10.1093/gbe/evu285] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The amphibian-killing chytrid fungus Batrachochytrium dendrobatidis (Bd) is one of the most generalist pathogens known, capable of infecting hundreds of species globally and causing widespread population declines and extinctions. However, some host species are seemingly unaffected by Bd, tolerating or clearing infections without clinical signs of disease. Variation in host immune responses is commonly evoked for these resistant or tolerant species, yet to date, we have no direct comparison of amphibian species responses to infection at the level of gene expression. In this study, we challenged four Central American frog species that vary in Bd susceptibility, with a sympatric virulent strain of the pathogen. We compared skin and spleen orthologous gene expression using differential expression tests and coexpression gene network analyses. We found that resistant species have reduced skin inflammatory responses and increased expression of genes involved in skin integrity. In contrast, only highly susceptible species exhibited suppression of splenic T-cell genes. We conclude that resistance to chytridiomycosis may be related to a species’ ability to escape the immunosuppressive activity of the fungus. Moreover, our results indicate that within-species differences in splenic proteolytic enzyme gene expression may contribute to intraspecific variation in survival. This first comparison of amphibian functional immunogenomic architecture in response to Bd provides insights into key genetic mechanisms underlying variation in disease outcomes among amphibian species.
Collapse
Affiliation(s)
- Amy R Ellison
- Department of Ecology and Evolutionary Biology, Cornell University
| | - Tate Tunstall
- Department of Biology, University of Maryland, College Park
| | | | | | | | | | | | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panamá
| | - Karen R Lips
- Department of Biology, University of Maryland, College Park
| | - Kelly R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University
| |
Collapse
|
87
|
Buck JC, Scholz KI, Rohr JR, Blaustein AR. Trophic dynamics in an aquatic community: interactions among primary producers, grazers, and a pathogenic fungus. Oecologia 2014; 178:239-48. [PMID: 25432573 DOI: 10.1007/s00442-014-3165-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
Abstract
Free-living stages of parasites are consumed by a variety of predators, which might have important consequences for predators, parasites, and hosts. For example, zooplankton prey on the infectious stage of the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen responsible for amphibian population declines and extinctions worldwide. Predation on parasites is predicted to influence community structure and function, and affect disease risk, but relatively few studies have explored its consequences empirically. We investigated interactions among Rana cascadae tadpoles, zooplankton, and Bd in a fully factorial experiment in outdoor mesocosms. We measured growth, development, survival, and infection of amphibians and took weekly measurements of the abundance of zooplankton, phytoplankton (suspended algae), and periphyton (attached algae). We hypothesized that zooplankton might have positive indirect effects on tadpoles by consuming Bd zoospores and by consuming phytoplankton, thus reducing the shading of a major tadpole resource, periphyton. We also hypothesized that zooplankton would have negative effects on tadpoles, mediated by competition for algal resources. Mixed-effects models, repeated-measures ANOVAs, and a structural equation model revealed that zooplankton significantly reduced phytoplankton but had no detectable effects on Bd or periphyton. Hence, the indirect positive effects of zooplankton on tadpoles were negligible when compared to the indirect negative effect mediated by competition for phytoplankton. We conclude that examination of host-pathogen dynamics within a community context may be necessary to elucidate complex community dynamics.
Collapse
Affiliation(s)
- Julia C Buck
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA,
| | | | | | | |
Collapse
|
88
|
Balá V, Vojar J, Civi P, Andera M, Rozínek R. Chytridiomycosis risk among Central European amphibians based on surveillance data. DISEASES OF AQUATIC ORGANISMS 2014; 112:1-8. [PMID: 25392037 DOI: 10.3354/dao02799] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The Czech Republic hosts a surprisingly rich biodiversity of amphibians representing the majority of amphibian species present in all of Central and Eastern Europe. Surveillance data of Batrachochytrium dendrobatidis (Bd) collected during 2008 to 2012 were analysed for basic patterns of prevalence and infection intensity among species, age groups and localities. In addition, an investigation was made into possible data bias due to varying PCR inhibition. Infection prevalence in the genus Pelophylax was significantly higher than in other sampled taxa, while Bombina and Bufo were infected with intermediate prevalence. Individual mortalities putatively caused by chytridiomycosis were detected in Bombina and Bufo, but not in Pelophylax. Differences among localities were seen to modulate the pathogen's infection rate and influence overall individual infection intensities. PCR inhibition occurred significantly more often in samples from the genus Pelophylax than in other tested taxa (Bufo bufo, B. viridis, Bombina bombina, Pelobates fuscus and Rana dalmatina). Although we found no completely inhibited samples within the genus Bombina, the infection loads were lower in the sample set processed without bovine serum albumin, suggesting some level of PCR inhibition. The combination of high Bd prevalence with no apparent deleterious effect and the high dispersal abilities of water frogs predispose them to act as vectors for chytridiomycosis. It is possible that the role of Pelophylax frogs in the spread of Bd is overlooked due to a large proportion of unrecognized false negatives, but this issue needs further confirmation.
Collapse
Affiliation(s)
- Vojtech Balá
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého trˇ. 1/3, Brno 612 42, Czech Republic
| | | | | | | | | |
Collapse
|
89
|
Drift rather than selection dominates MHC class II allelic diversity patterns at the biogeographical range scale in natterjack toads Bufo calamita. PLoS One 2014; 9:e100176. [PMID: 24937211 PMCID: PMC4061088 DOI: 10.1371/journal.pone.0100176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 05/23/2014] [Indexed: 12/31/2022] Open
Abstract
Study of major histocompatibility complex (MHC) loci has gained great popularity in recent years, partly due to their function in protecting vertebrates from infections. This is of particular interest in amphibians on account of major threats many species face from emergent diseases such as chytridiomycosis. In this study we compare levels of diversity in an expressed MHC class II locus with neutral genetic diversity at microsatellite loci in natterjack toad (Bufo (Epidalea) calamita) populations across the whole of the species' biogeographical range. Variation at both classes of loci was high in the glacial refugium areas (REF) and much lower in postglacial expansion areas (PGE), especially in range edge populations. Although there was clear evidence that the MHC locus was influenced by positive selection in the past, congruence with the neutral markers suggested that historical demographic events were the main force shaping MHC variation in the PGE area. Both neutral and adaptive genetic variation declined with distance from glacial refugia. Nevertheless, there were also some indications from differential isolation by distance and allele abundance patterns that weak effects of selection have been superimposed on the main drift effect in the PGE zone.
Collapse
|
90
|
Walke JB, Becker MH, Loftus SC, House LL, Cormier G, Jensen RV, Belden LK. Amphibian skin may select for rare environmental microbes. ISME JOURNAL 2014; 8:2207-17. [PMID: 24858782 DOI: 10.1038/ismej.2014.77] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 02/26/2014] [Accepted: 04/08/2014] [Indexed: 12/12/2022]
Abstract
Host-microbe symbioses rely on the successful transmission or acquisition of symbionts in each new generation. Amphibians host a diverse cutaneous microbiota, and many of these symbionts appear to be mutualistic and may limit infection by the chytrid fungus, Batrachochytrium dendrobatidis, which has caused global amphibian population declines and extinctions in recent decades. Using bar-coded 454 pyrosequencing of the 16S rRNA gene, we addressed the question of symbiont transmission by examining variation in amphibian skin microbiota across species and sites and in direct relation to environmental microbes. Although acquisition of environmental microbes occurs in some host-symbiont systems, this has not been extensively examined in free-living vertebrate-microbe symbioses. Juvenile bullfrogs (Rana catesbeiana), adult red-spotted newts (Notophthalmus viridescens), pond water and pond substrate were sampled at a single pond to examine host-specificity and potential environmental transmission of microbiota. To assess population level variation in skin microbiota, adult newts from two additional sites were also sampled. Cohabiting bullfrogs and newts had distinct microbial communities, as did newts across the three sites. The microbial communities of amphibians and the environment were distinct; there was very little overlap in the amphibians' core microbes and the most abundant environmental microbes, and the relative abundances of OTUs that were shared by amphibians and the environment were inversely related. These results suggest that, in a host species-specific manner, amphibian skin may select for microbes that are generally in low abundance in the environment.
Collapse
Affiliation(s)
- Jenifer B Walke
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Matthew H Becker
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Stephen C Loftus
- Department of Statistics, Virginia Tech, Blacksburg, Virginia, USA
| | - Leanna L House
- Department of Statistics, Virginia Tech, Blacksburg, Virginia, USA
| | - Guy Cormier
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Roderick V Jensen
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
91
|
Susceptibility to the amphibian chytrid fungus varies with ontogeny in the direct-developing frog, Eleutherodactylus coqui. J Wildl Dis 2014; 50:438-46. [PMID: 24807186 DOI: 10.7589/2013-10-268] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Age-related differences in susceptibility to infectious disease are known from a wide variety of plant and animal taxonomic groups. For example, the immature immune systems of young vertebrates, along with limited prior exposure to pathogens and behavioral factors, can place juveniles at greater risk of acquiring and succumbing to a pathogen. We studied the ontogenetic susceptibility of terrestrial direct-developing frogs (Eleutherodactylus coqui) to the fungal pathogen, Batrachochytrium dendrobatidis (Bd), which is responsible for the decline of amphibian species worldwide. By exposing juvenile and adult frogs to the same dose and strain of Bd, we uncovered ontogenetic differences in susceptibility. Froglets exposed to the pathogen had significantly lower survival rates compared with control froglets, while adult frogs largely cleared infection and had survival rates indistinguishable from control frogs, even when exposed to a much higher dose of Bd. The high disease-induced mortality rate of juveniles may explain ongoing population declines in eastern Puerto Rico, where Bd is endemic and juveniles experience higher prevalence and infection intensity compared to adults. Our results have important implications for understanding and modeling the decline, possibly to extinction, of amphibian populations and species.
Collapse
|
92
|
Woodhams DC, Brandt H, Baumgartner S, Kielgast J, Küpfer E, Tobler U, Davis LR, Schmidt BR, Bel C, Hodel S, Knight R, McKenzie V. Interacting symbionts and immunity in the amphibian skin mucosome predict disease risk and probiotic effectiveness. PLoS One 2014; 9:e96375. [PMID: 24789229 PMCID: PMC4005770 DOI: 10.1371/journal.pone.0096375] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/04/2014] [Indexed: 01/21/2023] Open
Abstract
Pathogenesis is strongly dependent on microbial context, but development of probiotic therapies has neglected the impact of ecological interactions. Dynamics among microbial communities, host immune responses, and environmental conditions may alter the effect of probiotics in human and veterinary medicine, agriculture and aquaculture, and the proposed treatment of emerging wildlife and zoonotic diseases such as those occurring on amphibians or vectored by mosquitoes. Here we use a holistic measure of amphibian mucosal defenses to test the effects of probiotic treatments and to assess disease risk under different ecological contexts. We developed a non-invasive assay for antifungal function of the skin mucosal ecosystem (mucosome function) integrating host immune factors and the microbial community as an alternative to pathogen exposure experiments. From approximately 8500 amphibians sampled across Europe, we compared field infection prevalence with mucosome function against the emerging fungal pathogen Batrachochytrium dendrobatidis. Four species were tested with laboratory exposure experiments, and a highly susceptible species, Alytes obstetricans, was treated with a variety of temperature and microbial conditions to test the effects of probiotic therapies and environmental conditions on mucosome function. We found that antifungal function of the amphibian skin mucosome predicts the prevalence of infection with the fungal pathogen in natural populations, and is linked to survival in laboratory exposure experiments. When altered by probiotic therapy, the mucosome increased antifungal capacity, while previous exposure to the pathogen was suppressive. In culture, antifungal properties of probiotics depended strongly on immunological and environmental context including temperature, competition, and pathogen presence. Functional changes in microbiota with shifts in temperature provide an alternative mechanistic explanation for patterns of disease susceptibility related to climate beyond direct impact on host or pathogen. This nonlethal management tool can be used to optimize and quickly assess the relative benefits of probiotic therapies under different climatic, microbial, or host conditions.
Collapse
Affiliation(s)
- Douglas C. Woodhams
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| | - Hannelore Brandt
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Simone Baumgartner
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jos Kielgast
- Section for Freshwater Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Eliane Küpfer
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Evolutionary Biology, Technical University of Braunschweig, Braunschweig, Germany
| | - Ursina Tobler
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- KARCH, Neuchâtel, Switzerland
| | - Leyla R. Davis
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Benedikt R. Schmidt
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- KARCH, Neuchâtel, Switzerland
| | - Christian Bel
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Sandro Hodel
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Rob Knight
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, Colorado, United States of America
| | - Valerie McKenzie
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| |
Collapse
|
93
|
DiRenzo GV, Langhammer PF, Zamudio KR, Lips KR. Fungal infection intensity and zoospore output of Atelopus zeteki, a potential acute chytrid supershedder. PLoS One 2014; 9:e93356. [PMID: 24675899 PMCID: PMC3968150 DOI: 10.1371/journal.pone.0093356] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 03/04/2014] [Indexed: 11/30/2022] Open
Abstract
Amphibians vary in their response to infection by the amphibian-killing chytrid fungus, Batrachochytrium dendrobatidis (Bd). Highly susceptible species are the first to decline and/or disappear once Bd arrives at a site. These competent hosts likely facilitate Bd proliferation because of ineffective innate and/or acquired immune defenses. We show that Atelopus zeteki, a highly susceptible species that has undergone substantial population declines throughout its range, rapidly and exponentially increases skin Bd infection intensity, achieving intensities that are several orders of magnitude greater than most other species reported. We experimentally infected individuals that were never exposed to Bd (n = 5) or previously exposed to an attenuated Bd strain (JEL427-P39; n = 3). Within seven days post-inoculation, the average Bd infection intensity was 18,213 zoospores (SE: 9,010; range: 0 to 66,928). Both average Bd infection intensity and zoospore output (i.e., the number of zoospores released per minute by an infected individual) increased exponentially until time of death (t50 = 7.018, p<0.001, t46 = 3.164, p = 0.001, respectively). Mean Bd infection intensity and zoospore output at death were 4,334,422 zoospores (SE: 1,236,431) and 23.55 zoospores per minute (SE: 22.78), respectively, with as many as 9,584,158 zoospores on a single individual. The daily percent increases in Bd infection intensity and zoospore output were 35.4% (SE: 0.05) and 13.1% (SE: 0.04), respectively. We also found that Bd infection intensity and zoospore output were positively correlated (t43 = 3.926, p<0.001). All animals died between 22 and 33 days post-inoculation (mean: 28.88; SE: 1.58). Prior Bd infection had no effect on survival, Bd infection intensity, or zoospore output. We conclude that A. zeteki, a highly susceptible amphibian species, may be an acute supershedder. Our results can inform epidemiological models to estimate Bd outbreak probability, especially as they relate to reintroduction programs.
Collapse
Affiliation(s)
- Graziella V. DiRenzo
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Penny F. Langhammer
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Kelly R. Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
| | - Karen R. Lips
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
94
|
Searle CL, Belden LK, Du P, Blaustein AR. Stress and chytridiomycosis: exogenous exposure to corticosterone does not alter amphibian susceptibility to a fungal pathogen. ACTA ACUST UNITED AC 2014; 321:243-53. [PMID: 24610865 DOI: 10.1002/jez.1855] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 12/19/2013] [Accepted: 01/15/2014] [Indexed: 11/11/2022]
Abstract
Recent emergence and spread of the amphibian fungal pathogen, Batrachochytrium dendrobatidis (Bd) has been attributed to a number of factors, including environmental stressors that increase host susceptibility to Bd. Physiological stress can increase circulating levels of the hormone, corticosterone, which can alter a host's physiology and affect its susceptibility to pathogens. We experimentally elevated whole-body levels of corticosterone in both larval and post-metamorphic amphibians, and subsequently tested their susceptibility to Bd. Larvae of three species were tested (Anaxyrus boreas, Rana cascadae, and Lithobates catesbeianus) and one species was tested after metamorphosis (R. cascadae). After exposure to Bd, we measured whole-body corticosterone, infection, mortality, growth, and development. We found that exposure to exogenous corticosterone had no effect on Bd infection in any species or at either life stage. Species varied in whole-body corticosterone levels and exposure to corticosterone reduced mass in A. boreas and R. cascadae larvae. Exposure to Bd did not affect mortality, but had a number of sublethal effects. Across species, larvae exposed to Bd had higher corticosterone levels than unexposed larvae, but the opposite pattern was found in post-metamorphic R. cascadae. Bd exposure also increased larval length in all species and increased mass in R. cascadae larvae. Our results indicate that caution is warranted in assuming a strong link between elevated levels of corticosterone and disease susceptibility in amphibians. The role of physiological stress in altering Bd prevalence in amphibian populations is likely much more complicated than can be explained by examining a single "stress" endpoint.
Collapse
Affiliation(s)
- Catherine L Searle
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan; Department of Zoology, Oregon State University, Corvallis, Oregon
| | | | | | | |
Collapse
|
95
|
Windstam ST, Olori JC. Proportion of Hosts CarryingBatrachochytrium dendrobatidis, Causal Agent of Amphibian Chytridiomycosis, in Oswego County, NY in 2012. Northeast Nat (Steuben) 2014. [DOI: 10.1656/045.021.0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
96
|
Abstract
A parasitic fungus,Batrachochytrium dendrobatidisis now recognised as an important factor in the amphibian biodiversity crisis. Toad species of the genusBufoare among those susceptible to infection by the pathogen in Europe. The aim of this study was to observe the presence and impact of infection in adults of two toad species collected for captive breeding. The total number of animals included in the study was 162, but only subsets were used for sampling at different occasions (35 specimens in the initial sampling in summer 2011, 48 post hibernation during winter 2011, and 31 in summer 2012, after all toads in captivity were treated with itraconazole). We performed TaqMan real-time quantification PCR to detect and quantify the pathogen. We found that a large infection load was linked to mortality in a single adult green toad (Bufo viridis). However, low infection loads observed in fiveB. viridisand five natterjack toads (B. calamita)were lost over time, with no apparent adverse effect. Intraconazole treated animals were all clear of infection. As infection in these two toad species either led to mortality or recovery, it seems unlikely they could act as permanent carriers ofB. dendrobatidisand therefore persistence of the pathogen is likely maintained by different host species. This is the first study to date that has detected infection and observed its impact and persistence in wild-infected toads in Europe.
Collapse
|
97
|
Baláž V, Vörös J, Civiš P, Vojar J, Hettyey A, Sós E, Dankovics R, Jehle R, Christiansen DG, Clare F, Fisher MC, Garner TWJ, Bielby J. Assessing risk and guidance on monitoring of Batrachochytrium dendrobatidis in Europe through identification of taxonomic selectivity of infection. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2014; 28:213-223. [PMID: 24033675 DOI: 10.1111/cobi.12128] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 04/04/2013] [Indexed: 06/02/2023]
Abstract
Amphibians are globally threatened, but not all species are affected equally by different threatening processes. This is true for the threat posed by the chytridiomycete fungus (Batrachochytrium dendrobatidis). We compiled a European data set for B. dendrobatidis to analyze the trends of infection in European amphibians. The risk of infection was not randomly distributed geographically or taxonomically across Europe. Within countries with different prevalence, infection was nonrandom in certain amphibian taxa. Brown frogs of the genus Rana were unlikely to be infected, whereas frogs in the families Alytidae and Bombinatoridae were significantly more likely to be infected than predicted by chance. Frogs in the 2 families susceptible to B. dendrobatidis should form the core of attempts to develop spatial surveillance studies of chytridiomycosis in Europe. Ideally, surveys for B. dendrobatidis should be augmented by sampling the widespread genus Pelophylax because this taxon exhibits geographically inconsistent overinfection with B. dendrobatidis and surveillance of it may facilitate recognition of factors causing spatial variability of infection intensity. Several European amphibian taxa were not represented in our data set; however, surveillance of unsampled species should also occur when warranted.
Collapse
Affiliation(s)
- Vojtech Baláž
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1/3, 612 42, Brno Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Gervasi SS, Hunt EG, Lowry M, Blaustein AR. Temporal patterns in immunity, infection load and disease susceptibility: understanding the drivers of host responses in the amphibian‐chytrid fungus system. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12194] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stephanie S. Gervasi
- Department of Zoology Oregon State University 3029 Cordley Hall Corvallis OR 97330 USA
| | - Emily G. Hunt
- Environmental Sciences Graduate Program Oregon State University 104 Wilkinson Hall Corvallis OR 97330 USA
| | - Malcolm Lowry
- Microbiology Department Oregon State University 220 Nash Hall Corvallis OR 97331 USA
| | - Andrew R. Blaustein
- Department of Zoology Oregon State University 3029 Cordley Hall Corvallis OR 97330 USA
- Environmental Sciences Graduate Program Oregon State University 104 Wilkinson Hall Corvallis OR 97330 USA
| |
Collapse
|
99
|
Villarroel L, García CZ, Nava-González F, Lampo M. Susceptibility of the endangered frog Dendropsophus meridensis to the pathogenic fungus Batrachochytrium dendrobatidis. DISEASES OF AQUATIC ORGANISMS 2013; 107:69-75. [PMID: 24270025 DOI: 10.3354/dao02669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Chytridiomycosis is an emerging disease that has driven some amphibian species to extinction while leaving others apparently unharmed. Its causative agent, Batrachochytrium dendrobatidis (Bd), now persists endemically in many amphibian communities. Understanding host species response to Bd infection is critical for managing chytridiomycosis because the epidemiology of this disease is host-specific. Dendropsophus meridensis is an endangered hylid frog endemic to the Venezuelan Andes. This species is sympatric with the American bullfrog Lithobates catesbeianus, an introduced species known to act as a reservoir for Bd. High prevalence of infection and high zoospore burdens in wild populations of D. meridensis in the Venezuelan Andes suggested some tolerance for Bd. However, experimental exposure of post-metamorphic frogs resulted in 53% mortality, a value that represents a 14-fold increase in the odds of dying compared to control frogs. Repeated diagnostics using real-time polymerase chain reaction assays demonstrated that individuals that died accumulated a higher number of zoospores than those that survived, although this value was lower than the mean zoospore burdens observed in natural populations. Given the susceptibility of D. meridensis to a strain of Bd isolated from a nearby population of bullfrogs, we emphasize the need to limit the dispersion of this invasive species.
Collapse
Affiliation(s)
- Leomar Villarroel
- Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, AP 47058 Caracas 1041-A, Venezuela
| | | | | | | |
Collapse
|
100
|
Gold KK, Reed PD, Bemis DA, Miller DL, Gray MJ, Souza MJ. Efficacy of common disinfectants and terbinafine in inactivating the growth of Batrachochytrium dendrobatidis in culture. DISEASES OF AQUATIC ORGANISMS 2013; 107:77-81. [PMID: 24270026 DOI: 10.3354/dao02670] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Use of disinfectants by biologists, veterinarians, and zoological facilities is a standard biosecurity procedure to prevent contamination and the spread of pathogens. We tested the efficacy of 5 disinfectants and 1 anti-fungal treatment, at 1 and 5 min contact durations, in inactivating Batrachochytrium dendrobatidis (Bd) grown on tryptone media. Our study focused on concentrations of disinfectants known to inactivate ranaviruses, which can be found at the same sites as Bd and can concurrently infect amphibians. Disinfectants tested were chlorhexidine gluconate (0.25, 0.75, and 2%), Pro-San (0.19, 0.35, and 0.47%), Virkon S (1%), household bleach (0.2, 1, and 3%), and Xtreme Mic (5%). The anti-fungal was terbinafine HCl at 0.005, 0.05, 0.1, and 1 mg ml-1. Inactivation of Bd was determined by microscopic evaluation of zoospore motility and growth of colony mass after 14 d. All disinfectants were effective at inactivating zoospore motility and colony growth of Bd at all concentrations and both contact times; however, terbinafine HCl inactivated Bd at only the highest concentration tested (1 mg ml-1) and 5 min duration. Thus, a minimum of 0.25% chlorhexidine gluconate, 0.19% Pro-San, 1% Virkon, 0.2% bleach, and 5% Xtreme Mic with 1 min contact was sufficient to inactivate Bd. Also, terbinafine HCl (1 mg ml-1) with a 5 min contact time might be effective in treating amphibians infected with Bd. Based on this study and previously published findings, 0.75% Nolvasan, 1% Virkon S, and 3% bleach with 1 min contact are sufficient to inactivate both Bd and ranaviruses.
Collapse
Affiliation(s)
- Kienan K Gold
- College of Veterinary Medicine, Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | |
Collapse
|