51
|
Bathgate RAD, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiol Rev 2013; 93:405-80. [PMID: 23303914 DOI: 10.1152/physrev.00001.2012] [Citation(s) in RCA: 399] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There are seven relaxin family peptides that are all structurally related to insulin. Relaxin has many roles in female and male reproduction, as a neuropeptide in the central nervous system, as a vasodilator and cardiac stimulant in the cardiovascular system, and as an antifibrotic agent. Insulin-like peptide-3 (INSL3) has clearly defined specialist roles in male and female reproduction, relaxin-3 is primarily a neuropeptide involved in stress and metabolic control, and INSL5 is widely distributed particularly in the gastrointestinal tract. Although they are structurally related to insulin, the relaxin family peptides produce their physiological effects by activating a group of four G protein-coupled receptors (GPCRs), relaxin family peptide receptors 1-4 (RXFP1-4). Relaxin and INSL3 are the cognate ligands for RXFP1 and RXFP2, respectively, that are leucine-rich repeat containing GPCRs. RXFP1 activates a wide spectrum of signaling pathways to generate second messengers that include cAMP and nitric oxide, whereas RXFP2 activates a subset of these pathways. Relaxin-3 and INSL5 are the cognate ligands for RXFP3 and RXFP4 that are closely related to small peptide receptors that when activated inhibit cAMP production and activate MAP kinases. Although there are still many unanswered questions regarding the mode of action of relaxin family peptides, it is clear that they have important physiological roles that could be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- R A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
52
|
Cernaro V, Lacquaniti A, Lupica R, Buemi A, Trimboli D, Giorgianni G, Bolignano D, Buemi M. Relaxin: new pathophysiological aspects and pharmacological perspectives for an old protein. Med Res Rev 2013; 34:77-105. [PMID: 23401142 DOI: 10.1002/med.21277] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human relaxin-2 (hereafter simply defined as "relaxin") is a 6-kDa peptidic hormone best known for the physiological role played during pregnancy in the growth and differentiation of the reproductive tract and in the renal and systemic hemodynamic changes. This factor can also be involved in the pathophysiology of arterial hypertension and heart failure, in the molecular pathways of fibrosis and cancer, and in angiogenesis and bone remodeling. It belongs to the relaxin peptide family, whose members comprehensively exert numerous effects through interaction with different types of receptors, classified as relaxin family peptide (RXFP) receptors (RXFP1, RXFP2, RXFP3, RXFP4). Research looks toward the in-depth examination and complete understanding of relaxin in its various pleiotropic actions. The intent is to evaluate the likelihood of employing this substance for therapeutic purposes, for instance in diseases where a deficit could be part of the underlying pathophysiological mechanisms, also avoiding any adverse effect. Relaxin is already being considered as a promising drug, especially in acute heart failure. A careful study of the different RXFPs and their receptors and the comprehension of all biological activities of these hormones will probably provide new drugs with a potential wide range of therapeutic applications in the near future.
Collapse
Affiliation(s)
- Valeria Cernaro
- Department of Internal Medicine, University of Messina, Via Consolare Valeria, 1, 98100, Italy
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Xiao J, Huang Z, Chen CZ, Agoulnik IU, Southall N, Hu X, Jones RE, Ferrer M, Zheng W, Agoulnik AI, Marugan JJ. Identification and optimization of small-molecule agonists of the human relaxin hormone receptor RXFP1. Nat Commun 2013; 4:1953. [PMID: 23764525 PMCID: PMC4915074 DOI: 10.1038/ncomms2953] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/29/2013] [Indexed: 11/09/2022] Open
Abstract
The anti-fibrotic, vasodilatory and pro-angiogenic therapeutic properties of recombinant relaxin peptide hormone have been investigated in several diseases, and recent clinical trial data has shown benefit in treating acute heart failure. However, the remodelling capacity of these peptide hormones is difficult to study in chronic settings because of their short half-life and the need for intravenous administration. Here we present the first small-molecule series of human relaxin/insulin-like family peptide receptor 1 agonists. These molecules display similar efficacy as the natural hormone in several functional assays. Mutagenesis studies indicate that the small molecules activate relaxin receptor through an allosteric site. These compounds have excellent physical and in vivo pharmacokinetic properties to support further investigation of relaxin biology and animal efficacy studies of the therapeutic benefits of relaxin/insulin-like family peptide receptor 1 activation.
Collapse
Affiliation(s)
- Jingbo Xiao
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Chow BSM, Chew EGY, Zhao C, Bathgate RAD, Hewitson TD, Samuel CS. Relaxin signals through a RXFP1-pERK-nNOS-NO-cGMP-dependent pathway to up-regulate matrix metalloproteinases: the additional involvement of iNOS. PLoS One 2012; 7:e42714. [PMID: 22936987 PMCID: PMC3425563 DOI: 10.1371/journal.pone.0042714] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 07/11/2012] [Indexed: 02/06/2023] Open
Abstract
The hormone, relaxin, inhibits aberrant myofibroblast differentiation and collagen deposition by disrupting the TGF-β1/Smad2 axis, via its cognate receptor, Relaxin Family Peptide Receptor 1 (RXFP1), extracellular signal-regulated kinase (ERK)1/2 phosphorylation (pERK) and a neuronal nitric oxide (NO) synthase (nNOS)-NO-cyclic guanosine monophosphate (cGMP)-dependent pathway. However, the signalling pathways involved in its additional ability to increase matrix metalloproteinase (MMP) expression and activity remain unknown. This study investigated the extent to which the NO pathway was involved in human gene-2 (H2) relaxin's ability to positively regulate MMP-1 and its rodent orthologue, MMP-13, MMP-2 and MMP-9 (the main collagen-degrading MMPs) in TGF-β1-stimulated human dermal fibroblasts and primary renal myofibroblasts isolated from injured rats; by gelatin zymography (media) and Western blotting (cell layer). H2 relaxin (10-100 ng/ml) significantly increased MMP-1 (by ~50%), MMP-2 (by ~80%) and MMP-9 (by ~80%) in TGF-β1-stimulated human dermal fibroblasts; and MMP-13 (by ~90%), MMP-2 (by ~130%) and MMP-9 (by ~115%) in rat renal myofibroblasts (all p<0.01 vs untreated cells) over 72 hours. The relaxin-induced up-regulation of these MMPs, however, was significantly blocked by a non-selective NOS inhibitor (L-nitroarginine methyl ester (hydrochloride); L-NAME; 75-100 µM), and specific inhibitors to nNOS (N-propyl-L-arginine; NPLA; 0.2-2 µM), iNOS (1400W; 0.5-1 µM) and guanylyl cyclase (ODQ; 5 µM) (all p<0.05 vs H2 relaxin alone), but not eNOS (L-N-(1-iminoethyl)ornithine dihydrochloride; L-NIO; 0.5-5 µM). However, neither of these inhibitors affected basal MMP expression at the concentrations used. Furthermore, of the NOS isoforms expressed in renal myofibroblasts (nNOS and iNOS), H2 relaxin only stimulated nNOS expression, which in turn, was blocked by the ERK1/2 inhibitor (PD98059; 1 µM). These findings demonstrated that H2 relaxin signals through a RXFP1-pERK-nNOS-NO-cGMP-dependent pathway to mediate its anti-fibrotic actions, and additionally signals through iNOS to up-regulate MMPs; the latter being suppressed by TGF-β1 in myofibroblasts, but released upon H2 relaxin-induced inhibition of the TGF-β1/Smad2 axis.
Collapse
Affiliation(s)
- Bryna Suet Man Chow
- Florey Neuroscience Institutes, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Elaine Guo Yan Chew
- Florey Neuroscience Institutes, University of Melbourne, Parkville, Victoria, Australia
| | - Chongxin Zhao
- Florey Neuroscience Institutes, University of Melbourne, Parkville, Victoria, Australia
| | - Ross A. D. Bathgate
- Florey Neuroscience Institutes, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Tim D. Hewitson
- Department of Nephrology, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Chrishan S. Samuel
- Florey Neuroscience Institutes, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
55
|
Halls ML. Constitutive formation of an RXFP1-signalosome: a novel paradigm in GPCR function and regulation. Br J Pharmacol 2012; 165:1644-1658. [PMID: 21557732 DOI: 10.1111/j.1476-5381.2011.01470.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The classical second messenger cAMP is important in diverse physiological processes, where its spatial and temporal compartmentalization allows precise control over multiple cellular events. Within this context, G-protein-coupled receptors (GPCRs) govern specialized pools of cAMP, which are functionally specific for the unique cellular effects attributed to a particular system. The relaxin receptor, RXFP1, is a GPCR that exerts pleiotropic physiological effects including a potent anti-fibrotic response, increased cancer metastases, and has efficacy as a vasodilator in heart failure. On a cellular level, relaxin stimulation of RXFP1 results in the activation of multiple G-protein pathways affecting cAMP accumulation. Specificity and diversity in the cAMP signal generated by RXFP1 is controlled by differential G-protein coupling dependent upon the background of cellular expression, and cAMP compartmentalization. Further complexity in cAMP signalling results from the constitutive assembly of an RXFP1-signalosome, which specifically responds to low concentrations of relaxin, and activates a distinct cAMP pathway. The RXFP1-signalosome is a higher-order protein complex that facilitates receptor sensitivity to attomolar concentration of peptide, exhibits constitutive activity and dual coupling to G-proteins and β-arrestins and reveals a concentration-biased agonism mediated by relaxin. The specific and directed formation of GPCR-centered signalosomes allows an even greater spatial and temporal control of cAMP, thus rationalizing the considerable physiological scope of this ubiquitous second messenger.
Collapse
Affiliation(s)
- Michelle L Halls
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
56
|
Relaxin increases human endothelial progenitor cell NO and migration and vasculogenesis in mice. Blood 2011; 119:629-36. [PMID: 22028476 DOI: 10.1182/blood-2011-04-346007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ovarian peptide hormone, relaxin, circulates during pregnancy, contributing to profound maternal vasodilation through endothelial and nitric oxide (NO)-dependent mechanisms. Circulating numbers of bone marrow-derived endothelial cells (BMDECs), which facilitate angiogenesis and contribute to repair of vascular endothelium, increase during pregnancy. Thus, we hypothesized that relaxin enhances BMDEC NO production, circulating numbers, and function. Recombinant human relaxin-2 (rhRLX) stimulated PI3K/Akt B-dependent NO production in human BMDECs within minutes, and activated BMDEC migration that was inhibited by L-N(G)-nitroarginine methyl ester. In BMDECs isolated from relaxin/insulin-like family peptide receptor 2 gene (Rxfp2) knockout and wild-type mice, but not Rxfp1 knockout mice, rhRLX rapidly increased NO production. Similarly, rhRLX increased circulating BMDEC number in Rxfp2 knockout and wild-type mice, but not Rxfp1 knockout mice as assessed by colony formation and flow cytometry. Taken together, these results indicate that relaxin effects BMDEC function through the RXFP1 receptor. Finally, both vascularization and incorporation of GFP-labeled BMDECs were stimulated in rhRLX-impregnated Matrigel pellets implanted in mice. To conclude, relaxin is a novel regulator of BMDECs number and function, which has implications for angiogenesis and vascular remodeling in pregnancy, as well as therapeutic potential in vascular disease.
Collapse
|
57
|
Lee WJ, Yun CO, Yun IS, Kim YO, Choi IK, Yun TJ, Rah DK. Augmentation of rat skin flap viability by relaxin-expressing adenovirus. Wound Repair Regen 2011; 19:709-17. [DOI: 10.1111/j.1524-475x.2011.00733.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 08/15/2011] [Indexed: 11/28/2022]
Affiliation(s)
- Won Jai Lee
- Institute for Human Tissue Restoration; Department of Plastic and Reconstructive Surgery; Yonsei University; Seoul; Korea
| | | | - In Sik Yun
- Institute for Human Tissue Restoration; Department of Plastic and Reconstructive Surgery; Yonsei University; Seoul; Korea
| | - Yong-Oock Kim
- Institute for Human Tissue Restoration; Department of Plastic and Reconstructive Surgery; Yonsei University; Seoul; Korea
| | | | | | - Dong Kyun Rah
- Institute for Human Tissue Restoration; Department of Plastic and Reconstructive Surgery; Yonsei University; Seoul; Korea
| |
Collapse
|
58
|
McGuane JT, Danielson LA, Debrah JE, Rubin JP, Novak J, Conrad KP. Angiogenic growth factors are new and essential players in the sustained relaxin vasodilatory pathway in rodents and humans. Hypertension 2011; 57:1151-60. [PMID: 21536992 PMCID: PMC3114044 DOI: 10.1161/hypertensionaha.110.165027] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 03/23/2011] [Indexed: 02/07/2023]
Abstract
Relaxin is emerging as an important vasodilator of pregnancy and is being tested for afterload reduction in acute heart failure. However, the mechanisms underlying relaxin-induced vasodilation are incompletely understood. The aims of this study were to establish a new in vitro model for relaxin-induced vasodilation and to use this approach, as well as chronically instrumented, conscious rats, to investigate the role of angiogenic growth factors in the relaxin vasodilatory pathway. Incubation of rat and mouse small renal arteries with recombinant human H2 relaxin for 3 hours in vitro attenuated myogenic constriction, which was blocked by inhibitors of gelatinases, the endothelin B receptor, and NO synthase. These findings corroborate ex vivo observations in arteries isolated from relaxin-infused nonpregnant and midterm pregnant rats, thereby validating the new experimental approach and enabling the study of human arteries. Incubation of small human subcutaneous arteries with relaxin for 3 hours in vitro also attenuated myogenic constriction through the same molecular intermediates. Vascular endothelial growth factor receptor inhibitor SU5416, 3 different vascular endothelial growth factor, and 2 different placental growth factor neutralizing antibodies prevented relaxin from attenuating myogenic constriction in rat and mouse small renal and human subcutaneous arteries. SU5416 administration also prevented relaxin-induced renal vasodilation and hyperfiltration in chronically instrumented, conscious rats. Small renal arteries isolated from these rats demonstrated increased matrix metalloproteinase 2 activity in the relaxin-infused group, which was not prevented by SU5416. We conclude that there is concordance of relaxin vasodilatory mechanisms in rats, mice, and humans, and angiogenic growth factors are novel and essential intermediates.
Collapse
Affiliation(s)
- Jonathan T McGuane
- Department of Physiology and Functional Genomics and D H Barron Reproductive and Perinatal Biology Research Program, University of Florida College of Medicine, 1600 SW Archer Rd, M552, PO Box 100274, Gainesville, FL 32610-0274, USA.
| | | | | | | | | | | |
Collapse
|
59
|
Samuel CS, Cendrawan S, Gao XM, Ming Z, Zhao C, Kiriazis H, Xu Q, Tregear GW, Bathgate RAD, Du XJ. Relaxin remodels fibrotic healing following myocardial infarction. J Transl Med 2011; 91:675-90. [PMID: 21221074 DOI: 10.1038/labinvest.2010.198] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In the setting of myocardial infarction (MI), implanted stem cell viability is low and scar formation limits stem cell homing, viability, and integration. Thus, interventions that favorably remodel fibrotic healing may benefit stem cell therapies. However, it remains unclear whether it is feasible and safe to remodel fibrotic healing post-MI without compromising ventricular remodeling and dysfunction. This study, therefore, determined the anti-fibrotic and other effects of the hormone, relaxin in a mouse model of MI. Adult male mice underwent left coronary artery ligation-induced MI and were immediately treated with recombinant human relaxin (MI+RLX) or vehicle (MI+VEH) over 7 or 30 days, representing time points of early and mature fibrotic healing. Cardiac function was assessed by echocardiography and catheterization, while comprehensive immunohistochemistry, morphometry, and western blotting were performed to explore the relaxin-induced mechanisms of action post-MI. RLX significantly inhibited the MI-induced progression of cardiac fibrosis over 7 and 30 days, which was associated with a reduction in TGF-β1 expression, myofibroblast differentiation, and cardiomyocyte apoptosis in addition to a promotion of matrix metalloproteinase-13 levels and de novo blood vessel growth (all P<0.05 vs respective measurements from MI+VEH mice). Despite the evident fibrotic healing post-MI, relaxin did not adversely affect the incidence of ventricular free-wall rupture or the extent of LV remodeling and dysfunction. These combined findings demonstrate that RLX favorably remodels the process of fibrotic healing post-infarction by lowering the density of mature scar tissue in the infarcted myocardium, border zone, and non-infarcted myocardium, and may, therefore, facilitate cell-based therapies in the setting of ischemic heart disease.
Collapse
Affiliation(s)
- Chrishan S Samuel
- Howard Florey Institute, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Mu X, Urso ML, Murray K, Fu F, Li Y. Relaxin regulates MMP expression and promotes satellite cell mobilization during muscle healing in both young and aged mice. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2399-410. [PMID: 20934971 DOI: 10.2353/ajpath.2010.091121] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The polypeptide hormone relaxin has been proven to be effective in promoting both the remodeling and regeneration of various tissues, including cardiac muscle. In addition, our previous study demonstrated that relaxin is beneficial to skeletal muscle healing by both promoting muscle regeneration and preventing fibrosis formation. However, the molecular and cellular mechanisms of relaxin in regulating both myogenic cell differentiation and muscle healing process are still unclear. In this study, C2C12 mouse myoblasts and primary human myoblasts were treated with relaxin to investigate its potential effect in vitro; relaxin was also injected intramuscularly into the injured site of the mouse on the second day after injury to observe its function in vivo, especially in the aged muscle. Results showed that relaxin promoted myogenic differentiation, migration, and activation of matrix metalloproteinases (MMPs) of cultured myoblasts in vitro. In the injured muscle, relaxin administration promoted the activation of Pax7-positive skeletal muscle satellite cells and increased its local population compared with nontreated control muscles. Meanwhile, both angiogenesis and revascularization were increased, while the extended inflammatory reaction was repressed in the relaxin-treated injured muscle. Moreover, relaxin similarly promoted muscle healing in mice with aged muscle. These results revealed the multiple effects of relaxin in systematically improving muscle healing as well as its potential for clinical applications in patients with skeletal muscle injuries and diseases.
Collapse
Affiliation(s)
- Xiaodong Mu
- Laboratory of Molecular Pathology Stem Cell Research Center (SCRC), Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Office 217, Bridgeside Point II, 450 Technology Drive Pittsburgh, PA 15219, USA
| | | | | | | | | |
Collapse
|
61
|
|
62
|
Bonacchi M, Nistri S, Nanni C, Gelsomino S, Pini A, Cinci L, Maiani M, Zecchi-Orlandini S, Lorusso R, Fanti S, Silvertown J, Bani D. Functional and histopathological improvement of the post-infarcted rat heart upon myoblast cell grafting and relaxin therapy. J Cell Mol Med 2009; 13:3437-3448. [PMID: 18798866 PMCID: PMC4516499 DOI: 10.1111/j.1582-4934.2008.00503.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 09/07/2008] [Indexed: 01/14/2023] Open
Abstract
Although the myocardium contains progenitor cells potentially capable of regenerating tissue upon lethal ischaemic injury, their actual role in post-infarction heart healing is negligible. Therefore, transplantation of extra-cardiac stem cells is a promising therapeutic approach for post-infarction heart dysfunction. Paracrine cardiotropic factors released by the grafted cells, such as the cardiotropic hormone relaxin (RLX), may beneficially influence remodelling of recipient hearts. The current study was designed to address whether grafting of mouse C2C12 myoblasts, genetically engineered to express green fluorescent protein (C2C12/GFP) or GFP and RLX (C2C12/RLX), are capable of improving long-term heart remodelling in a rat model of surgically induced chronic myocardial infarction. One month after myocardial infarction, rats were treated with either culture medium (controls), or C2C12/GFP cells, or C2C12/RLX cells plus exogenous RLX, or exogenous RLX alone. The therapeutic effects were monitored for 2 further months. Cell transplantation and exogenous RLX improved the main echocardiographic parameters of cardiac function, increased myocardial viability (assessed by positron emission tomography), decreased cardiac sclerosis and myocardial cell apoptosis and increased microvascular density in the post-infarction scar tissue. These effects were maximal upon treatment with C2C12/RLX plus exogenous RLX. These functional and histopathological findings provide further experimental evidence that myoblast cell grafting can improve myocardial performance and survival during post-infarction heart remodelling and dysfunction. Further, this study provides a proof-of-principle to the novel concept that genetically engineered grafted cells can be effectively employed as cell-based vehicles for the local delivery of therapeutic cardiotropic substances, such as RLX, capable of improving adverse heart remodelling.
Collapse
Affiliation(s)
- Massimo Bonacchi
- Department of Medical and Surgical Critical Area, Cardiac Surgery Unit, University of FlorenceFlorence, Italy
| | - Silvia Nistri
- Department of Anatomy, Histology & Forensic Medicine, University of FlorenceFlorence, Italy
| | - Cristina Nanni
- Nuclear Medicine Unit, S.Orsola-Malpighi HospitalBologna, Italy
| | | | - Alessandro Pini
- Department of Anatomy, Histology & Forensic Medicine, University of FlorenceFlorence, Italy
| | - Lorenzo Cinci
- Department of Anatomy, Histology & Forensic Medicine, University of FlorenceFlorence, Italy
| | - Massimo Maiani
- Department of Medical and Surgical Critical Area, Cardiac Surgery Unit, University of FlorenceFlorence, Italy
| | | | | | - Stefano Fanti
- Nuclear Medicine Unit, S.Orsola-Malpighi HospitalBologna, Italy
| | - Josh Silvertown
- Ontario Cancer Institute, University Health NetworkToronto, Canada
| | - Daniele Bani
- Department of Anatomy, Histology & Forensic Medicine, University of FlorenceFlorence, Italy
| |
Collapse
|
63
|
Bani D, Nistri S, Formigli L, Meacci E, Francini F, Zecchi-Orlandini S. Prominent role of relaxin in improving postinfarction heart remodeling. Ann N Y Acad Sci 2009; 1160:269-77. [PMID: 19416202 DOI: 10.1111/j.1749-6632.2008.03781.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Stem cell transplantation is a promising approach for treatment of the postinfarcted heart and prevention of deleterious cardiac remodeling and heart failure. We explored this issue by transplanting mouse C2C12 myoblasts, genetically engineered to express enhanced green fluorescent protein (eGFP) or eGFP and relaxin (eGFP/RLX), into swine with chronic myocardial infarction. One month later, C2C12 myoblasts selectively settled in the ischemic scar around blood vessels, showing an activated endothelium (ICAM-1 and VCAM positive). Although unable to differentiate to a muscle phenotype, these cells induced extracellular matrix (ECM) remodeling by matrix metalloprotease secretion and increased microvessel density by vascular endothelial growth factor expression. C2C12/RLX myoblasts gave better results than C2C12/GFP. By echocardiography, C2C12-engrafted swine, especially those that received C2C12/RLX, showed better heart contractility than the untreated controls. Hence, the advantage afforded by the grafted myoblasts on cardiac function is primarily dependent on their paracrine effects on ECM remodeling and vascularization.
Collapse
Affiliation(s)
- Daniele Bani
- Department of Anatomy, University of Florence, Florence, Italy.
| | | | | | | | | | | |
Collapse
|
64
|
Du XJ, Xu Q, Lekgabe E, Gao XM, Kiriazis H, Moore XL, Dart AM, Tregear GW, Bathgate RAD, Samuel CS. Reversal of cardiac fibrosis and related dysfunction by relaxin. Ann N Y Acad Sci 2009; 1160:278-84. [PMID: 19416203 DOI: 10.1111/j.1749-6632.2008.03780.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As a hallmark of heart disease, cardiac fibrosis contributes to the development of heart failure and arrhythmias and forms a key therapeutic target. There is a major unmet need for selective, potent, and safe antifibrotic drugs. Earlier studies revealed a cardiac fibrosis phenotype in relaxin-1-deficient mice. Recent studies in several rodent models of cardiac fibrosis have documented reversal of fibrosis by treatment with relaxin peptide or virally mediated relaxin gene delivery. In mice with surgically induced transmural myocardial infarction, relaxin therapy inhibited scar density. In these studies, however, functional benefits achieved by relaxin therapy were limited or less explored. Collectively, there is good experimental evidence that relaxin is able to reverse cardiac fibrosis due to distinct mechanisms. Future research needs to explore functional improvement following fibrosis reversal by relaxin and the usefulness of relaxin in antiarrhythmic or stem cell-based therapy.
Collapse
Affiliation(s)
- Xiao-Jun Du
- Experimental Cardiology Laboratory, Baker IDI Heart and Diabetes Institute, University of Melbourne, Melbourne, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
Relaxin has previously been tested in rodent wound healing models and been shown to promote angiogenesis and to speed healing. However, pigs have been shown to be a better model for human skin in dermatology studies, so juvenile pigs were selected for a study of scar reduction and cosmetic appearance. Twelve 20- by 6-mm excisional wounds were created on the backs of all animals. Topical formulations of relaxin with 0, 0.5, or 2.5 mg/mL were applied twice daily for weeks 2-3 and then daily for weeks 3-6 in all animals. In addition, some animals received systemic relaxin, which was administered via infusion pumps at a rate of 125 microg/kg of body weight/day. Assessments of healing and cosmetic appearance were made by a dermatologist at weeks 2, 4, and 6. Wound sites were collected at 6 weeks and evaluated histologically for granulation tissue, inflammation, and collagen organization. Wounds in animals receiving systemic relaxin had an improved appearance with less redness, reduced granulation tissue, and lower amounts of inflammation. They showed a more-well-knit collagen structure compared to controls. Wounds treated with topical formulations did not show improvement over controls. The topical formulation used was found to have a short residence time, which likely limited penetration of relaxin. Reformulated relaxin preparations with improved penetration might be useful as a topical treatment for wounds to prevent or reduce scarring.
Collapse
|
66
|
Simon C, Einspanier A. The hormonal induction of cervical remodeling in the common marmoset monkey (Callithrix jacchus). Reproduction 2009; 137:517-25. [DOI: 10.1530/rep-08-0417] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Controversy still exists regarding the involvement of relaxin (RLX) in cervical reorganization throughout parturition in the human, despite its well-known role in facilitating extensive extracellular matrix (ECM) remodeling in diverse organs. Therefore, the aim of the present study was to examine the influence of RLX and estrogen (E2) on the cervical tissue of the common marmoset monkey. Two experimental designs were used: 1)in vivoanalysis of the intracervical diameter under locally applied RLX and 2) ovariectomized (ov) marmosets were treated systemically with either recombinant human (rh) RLX, E2 or rhRLX+E2 to examine their action on the cervix.In vivo-locally applied rhRLX induced a distinct and significant widening of the cervix (before: 4.8±1.1 mm versus after: 5.7±0.9 mm in diameter;P<0.030, MV±s.e.m.). This widening effect was most pronounced in animals without previous pregnancies.In vitroinvestigation of cervical tissue showed significantly increased wet weights after all three hormone treatments (E2: 0.27±0.07 g, RLX: 0.25±0.04 g, E2+RLX: 0.30±0.11 g; allP<0.05; MV±s.e.m.) versus controls (0.10±0.04 g). Furthermore, morphological changes such as loosening of the connective tissue structure and decline in collagen content, an increase in the number of eosinophils, increased the expression of matrix metalloproteinases (MMP1) and MMP2, as well as gene and protein expression of the RLX receptor RXFP1 could be detected in the cervical tissue after all hormone treatments, compared with controls. In summary, RLX has a potent widening effect on the cervix of the common marmoset monkey. Although E2 is not required for this RLX effect, a combined application of E2 and RLX induced the most prominent cervical ripening.
Collapse
|
67
|
|
68
|
Jeyabalan A, Shroff SG, Novak J, Conrad KP. The Vascular Actions of Relaxin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 612:65-87. [DOI: 10.1007/978-0-387-74672-2_6] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
69
|
Yan W, Chen J, Wiley AA, Crean-Harris BD, Bartol FF, Bagnell CA. Relaxin (RLX) and estrogen affect estrogen receptor α, vascular endothelial growth factor, and RLX receptor expression in the neonatal porcine uterus and cervix. Reproduction 2008; 135:705-12. [DOI: 10.1530/rep-08-0014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The porcine female reproductive tract undergoes estrogen receptor (ER) α-dependent development after birth (postnatal day=PND 0), the course of which can determine adult uterine function. Uterotrophic effects of relaxin (RLX) in the porcine neonate are age specific and may involve ER activation. Here, objectives were to determine effects of RLX and estrogen administered from birth on uterine and cervical growth and expression of ERα, vascular endothelial growth factor (VEGF), and the RLX receptor (RXFP1). On PND 0, gilts were treated with the antiestrogen ICI 182 780 (ICI) or vehicle alone and, 2 h later, were given estradiol-17β (E) or porcine RLX for 2 days. Neither RLX nor E affected uterine wet weight or protein content on PND 2. However, RLX, but not E, increased cervical wet weight and protein content when compared with controls. Pretreatment with ICI did not inhibit RLX-stimulated cervical growth. Uterine and cervical ERα increased in response to RLX, but not E. Both RLX and E increased VEGF in the uterus and cervix on PND 2. Pretreatment with ICI increased VEGF in both tissues and increased RLX-induced cervical VEGF. In the uterus E, but not RLX, increased RXFP1 mRNA. In the cervix, E increased RXFP1 gene expression whereas RLX decreased it. Results indicate that the neonatal uterus and cervix are sensitive to E and RLX and that growth responses to RLX in these tissues differ by PND 2. Effects of RLX on uterine and cervical ERα and VEGF expression may be important for neonatal reproductive tract development.
Collapse
|
70
|
Formigli L, Perna AM, Meacci E, Cinci L, Margheri M, Nistri S, Tani A, Silvertown J, Orlandini G, Porciani C, Zecchi-Orlandini S, Medin J, Bani D. Paracrine effects of transplanted myoblasts and relaxin on post-infarction heart remodelling. J Cell Mol Med 2008; 11:1087-100. [PMID: 17979884 PMCID: PMC4401276 DOI: 10.1111/j.1582-4934.2007.00111.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the post-infarcted heart, grafting of precursor cells may partially restore heart function but the improvement is modest and the mechanisms involved remain to be elucidated. Here, we explored this issue by transplanting C2C12 myoblasts, genetically engineered to express enhanced green fluorescent protein (eGFP) or eGFP and the cardiotropic hormone relaxin (RLX) through coronary venous route to swine with experimental chronic myocardial infarction. The rationale was to deliver constant, biologically effective levels of RLX at the site of cell engraftment. One month after engraftment, histological analysis showed that C2C12 myoblasts selectively settled in the ischaemic scar and were located around blood vessels showing an activated endothelium (ICAM-1-,VCAM-positive). C2C12 myoblasts did not trans-differentiate towards a cardiac phenotype, but did induce extracellular matrix remodelling by the secretion of matrix metalloproteases (MMP) and increase microvessel density through the expression of vascular endothelial growth factor (VEGF). Relaxin-producing C2C12 myoblasts displayed greater efficacy to engraft the post-ischaemic scar and to induce extracellular matrix re-modelling and angiogenesis as compared with the control cells. By echocardiography, C2C12-engrafted swine showed improved heart contractility compared with the ungrafted controls, especially those producing RLX. We suggest that the beneficial effects of myoblast grafting on cardiac function are primarily dependent on the paracrine effects of transplanted cells on extracellular matrix remodelling and vascularization. The combined treatment with myoblast transplantation and local RLX production may be helpful in preventing deleterious cardiac remodelling and may hold therapeutic possibility for post-infarcted patients.
Collapse
Affiliation(s)
- Lucia Formigli
- Department of Anatomy, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Du XJ. Re-modelling 'hostile' milieu of diseased myocardium via paracrine function of transplanted cells or relaxin. J Cell Mol Med 2008; 11:1101-4. [PMID: 17979885 PMCID: PMC4401275 DOI: 10.1111/j.1582-4934.2007.00115.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
While the approaches of regenerating cardiac muscle remain undetermined, recent evidence indicates that paracrine function of transplanted cells contributes significantly to the beneficial effects of cell therapy. Combination of such paracrine function of grafted cells with extracellular matrix remodelling by relaxin represents a promising complement to cell-based therapy for cardiac repair and muscle regeneration.
Collapse
Affiliation(s)
- Xiao-Jun Du
- Experimental Cardiology Laboratory, Baker Heart Research Institute, Melbourne, Australia.
| |
Collapse
|
72
|
Santora K, Rasa C, Visco D, Steinetz BG, Bagnell CA. Antiarthritic effects of relaxin, in combination with estrogen, in rat adjuvant-induced arthritis. J Pharmacol Exp Ther 2007; 322:887-93. [PMID: 17526806 DOI: 10.1124/jpet.107.122903] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The incidence and severity of rheumatoid arthritis (RA) are reduced during pregnancy. Estradiol-17beta and relaxin (RLX), hormones of pregnancy, are implicated in decreased immune responsiveness. The aim of this study was to determine the effects of estrogen and RLX, alone or in combination, on the development of adjuvant-induced arthritis (AIA) in ovariectomized (OVX) Lewis rats. Arthritis was induced on day 0 by adjuvant injection in the left hind paw. Rats were treated with estradiol valerate (E), porcine RLX, E + RLX, or vehicle. Healthy OVX control animals were used for comparison. Treatment with RLX or E alone decreased adjuvant-induced inflammation in both the injected (primary) and noninjected (secondary) hind paws. Combined treatment with E and RLX was more effective than either hormone alone in blocking secondary paw inflammation. Furthermore, E plus RLX reduced changes to spleen and thymus weights induced by adjuvant injection. Both E and RLX alone decreased circulating tumor necrosis factor (TNF) alpha. The combination of E and RLX resulted in a greater decline in TNFalpha than treatment with either hormone alone. There was no effect of hormones on the proinflammatory cytokine, interleukin (IL)-1beta. The anti-inflammatory cytokine IL-10 increased in response to E and E plus RLX. In conclusion, combined therapy with E and RLX was more effective than either hormone alone in reducing chronic inflammation, joint changes, and high circulating TNFalpha associated with AIA in rats. Accordingly, these hormones could play a role in reducing RA-induced inflammation during pregnancy by an effect on the immune system.
Collapse
Affiliation(s)
- Karen Santora
- Department of Animal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | | | | | | | | |
Collapse
|
73
|
Ho TY, Yan W, Bagnell CA. Relaxin-induced matrix metalloproteinase-9 expression is associated with activation of the NF-κB pathway in human THP-1 cells. J Leukoc Biol 2007; 81:1303-10. [PMID: 17289798 DOI: 10.1189/jlb.0906556] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Matrix metalloproteinases (MMPs) and relaxin (RLX) are reported to play an important role in tissue remodeling and wound repair. When macrophages populate wound sites, they secrete biologically active substances, including MMPs. The transcription factor NF-kappaB is important in MMP gene regulation in macrophage cells. Thus, a monocyte/macrophage cell line, THP-1, was used to study the molecular mechanism of RLX action on MMP-2 and MMP-9 expression. After 24 h incubation with porcine RLX (100 ng/ml), conditioned media (CM) and THP-1 cells were collected. Gelatin zymography demonstrated an increase in pro-MMP-9 activity in response to RLX in CM, and no significant change in pro-MMP-2 expression was observed. Immunoblot analysis also revealed an increase in pro-MMP-9 in CM from RLX-treated THP-1 cells. Gel EMSA showed that NF-kappaB DNA-binding activity was elevated in THP-1 cells treated with RLX for 10 min and reached a peak at 30 min. The NF-kappaB DNA complex was supershifted using antibodies against NF-kappaB subunits p50 and p65. Increased expression of the p50 and p65 NF-kappaB subunits was also detected in THP-1 cells after RLX treatment. Incubation with RLX (90 min) reduced THP-1 expression of the NF-kappaB inhibitor protein, IkappaB-alpha. Using a specific NF-kappaB inhibitor, pyrrolidine dithiocarmate (PDTC) inhibited nuclear binding of NF-kappaB. Pre-exposure to PDTC suppressed pro-MMP-9 activity and protein levels in RLX-treated THP-1 cells. In conclusion, these data suggest that RLX-induced tissue remodeling through increasing MMP-9 expression is dependent on NF-kappaB activation.
Collapse
Affiliation(s)
- Teh-Yuan Ho
- Department of Animal Sciences, Rutgers University, New Brunswick, NJ 08901-8525, USA
| | | | | |
Collapse
|
74
|
Thompson VC, Morris TGW, Cochrane DR, Cavanagh J, Wafa LA, Hamilton T, Wang S, Fazli L, Gleave ME, Nelson CC. Relaxin becomes upregulated during prostate cancer progression to androgen independence and is negatively regulated by androgens. Prostate 2006; 66:1698-709. [PMID: 16998820 DOI: 10.1002/pros.20423] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Relaxin is a potent peptide hormone normally secreted by the prostate. This study characterized relaxin expression during prostate cancer progression to androgen independence (AI), and in response to androgens. METHODS The prostate cancer cell line, LNCaP, was assayed by microarrays and confirmatory Northern analysis to assess changes in relaxin levels due to androgen treatment and in LNCaP xenografts following castration. Relaxin protein levels were examined by immunohistochemistry (IHC) in tissue microarrays of human prostate cancer samples following androgen ablation. RESULTS Relaxin levels decreased in a time and concentration-dependent manner due to androgens in vitro, and increased in xenografts post-castration. Relaxin increased in radical prostatectomy specimens after 6 months of androgen ablation and in AI tumors, was highest in bone metastases. CONCLUSIONS Relaxin is negatively regulated by androgens in vitro and in vivo, which correlates to clinical prostate cancer specimens following androgen ablation. The role of relaxin in angiogenesis and tissue remodeling suggests it may contribute to prostate cancer progression.
Collapse
Affiliation(s)
- Vanessa C Thompson
- The Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Dschietzig T, Bartsch C, Baumann G, Stangl K. Relaxin—a pleiotropic hormone and its emerging role for experimental and clinical therapeutics. Pharmacol Ther 2006; 112:38-56. [PMID: 16647137 DOI: 10.1016/j.pharmthera.2006.03.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 03/08/2006] [Indexed: 01/30/2023]
Abstract
The insulin-related peptide hormone relaxin (Rlx) is known as pregnancy hormone for decades. In the 1980s, researchers began to recognize the highly intriguing fact that Rlx plays a role in a multitude of physiological processes far beyond pregnancy and reproduction. So, Rlx's contribution to the regulation of vasotonus, plasma osmolality, angiogenesis, collagen turnover, and renal function has been established. In addition, the peptide has been demonstrated to represent a mediator of cardiovascular pathology. The ongoing efforts to identify Rlx receptors eventually precipitated the discovery of the G protein-coupled receptors (GPCR) LGR7 and LGR8 as membrane receptors for human Rlx-2 in 2002. This review will summarize the current state of insight into this rapidly evolving field, which has further been expanded by the discovery of GPCR135 and GPCR142 as receptors for Rlx-3. In addition, Rlx has also been shown to activate the human glucocorticoid receptor (GR). There is evidence from Rlx and Rlx receptor knockouts suggesting that LGR7 is the only relevant receptor for mouse Rlx-1 (corresponding to human Rlx-2) in vivo and that insulin-like peptide (INSL)-3 represents the physiological ligand for LGR8. Regarding Rlx signal transduction, the cyclic adenosine monophosphate (cAMP) and nitric oxide (NO) pathways will be characterized as major cascades. Investigation of downstream signaling remains an important field for future research. Finally, the current state of therapeutical strategies using Rlx in animal models as well as in humans is summarized.
Collapse
Affiliation(s)
- Thomas Dschietzig
- Medizinische Klinik m. S. Kardiologie und Angiologie, Charité-Universitätsmedizin Berlin, Campus Mitte, Schumannstr. 20/21, 10117 Berlin, Germany.
| | | | | | | |
Collapse
|
76
|
Rosivall L, Peti-Peterdi J. Heterogeneity of the afferent arteriole--correlations between morphology and function. Nephrol Dial Transplant 2006; 21:2703-7. [PMID: 16854849 DOI: 10.1093/ndt/gfl308] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- László Rosivall
- Hungarian Academy of Sciences and Semmelweis University Nephrology Research Group, Institute of Pathophysiology, Faculty of Medicine, Semmelweis University, Budapest, Nagyvarad ter 4, H-1089 Hungary.
| | | |
Collapse
|
77
|
Hombach-Klonisch S, Bialek J, Trojanowicz B, Weber E, Holzhausen HJ, Silvertown JD, Summerlee AJ, Dralle H, Hoang-Vu C, Klonisch T. Relaxin enhances the oncogenic potential of human thyroid carcinoma cells. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:617-32. [PMID: 16877360 PMCID: PMC1698779 DOI: 10.2353/ajpath.2006.050876] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/13/2006] [Indexed: 11/20/2022]
Abstract
The role of members of the insulin-like superfamily in human thyroid carcinoma is primarily unknown. Here we demonstrate the presence of RLN2 relaxin and relaxin receptor LGR7 in human papillary, follicular, and undifferentiated anaplastic thyroid carcinoma suggesting a specific involvement of relaxin-LGR7 signaling in thyroid carcinoma. Stable transfectants of the LGR7-positive human follicular thyroid carcinoma cell lines FTC-133 and FTC-238 that secrete bioactive proRLN2 revealed this hormone to act as a multifunctional endocrine factor in thyroid carcinoma cells. Although RLN2 did not act as a mitogen, it acted as an autocrine/paracrine factor and significantly increased anchorage-independent growth and thyroid carcinoma cell motility and invasiveness through elastin matrices. Suppression of LGR7 expression by LGR7-siRNA abolished the RLN2-mediated accelerated tumor cell motility. The increased elastinolytic activity correlated with enhanced production and secretion of the lysosomal proteinases cathepsin-D (cath-D) and cath-L forms hereby identified as new RLN2 target molecules in human neoplastic thyrocytes. We found the intracellular distribution of procath-L specifically altered in RLN2 transfectants, providing first evidence for selective actions of relaxin on the powerful elastinolytic cath-L production, storage, and secretion in thyroid carcinoma cells. Thus, relaxin enhances the oncogenic potential and acts as novel endocrine modulator of invasiveness in human thyroid carcinoma cells.
Collapse
Affiliation(s)
- Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Faculty of Medicine, University of Manitoba, 130 Basic Medical Sciences, 730 William Ave., Winnipeg, MB, R3E 0W3, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Samuel CS, Du XJ, Bathgate RAD, Summers RJ. 'Relaxin' the stiffened heart and arteries: the therapeutic potential for relaxin in the treatment of cardiovascular disease. Pharmacol Ther 2006; 112:529-52. [PMID: 16814863 DOI: 10.1016/j.pharmthera.2005.05.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Accepted: 05/15/2005] [Indexed: 12/20/2022]
Abstract
Although originally characterised as a reproductive hormone, relaxin has emerged as a multi-functional endocrine and paracrine factor that plays a number of important roles in several organs, including the normal and diseased cardiovascular system. The recent discovery of the H3/relaxin-3 gene, and the elusive receptors for relaxin (Relaxin family peptide receptor; RXFP1) and relaxin-3 (RXFP3/RXFP4) have led to the re-classification of a distinct relaxin peptide/receptor family. Additionally, the identification of relaxin and RXFP1 mRNA and/or relaxin binding sites in the heart and blood vessels has confirmed that the cardiovascular system is a target for relaxin peptides. While evidence for the production of relaxins within the cardiovascular system is limited, several studies have established that the relaxin genes are upregulated in the diseased human and rodent heart where they likely act as cardioprotective agents. The ability of relaxin to protect the heart is most likely mediated via its antifibrotic, anti-hypertrophic, anti-inflammatory and vasodilatory actions, but it may also directly stimulate myocardial regeneration and repair. This review describes relaxin and its primary receptor (RXFP1) in relation to the roles and effects of relaxin in the normal and pathological cardiovascular system. It is becoming increasingly clear that relaxin has a number of diverse physiological and pathological roles in the cardiovascular system that may have important therapeutic and clinical implications.
Collapse
Affiliation(s)
- Chrishan S Samuel
- Howard Florey Institute, University of Melbourne, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
79
|
Kilic T, Sohrabifar M, Kurtkaya O, Yildirim O, Elmaci I, Günel M, Pamir MN. Expression of structural proteins and angiogenic factors in normal arterial and unruptured and ruptured aneurysm walls. Neurosurgery 2006; 57:997-1007; discussion 997-1007. [PMID: 16284569 DOI: 10.1227/01.neu.0000180812.77621.6c] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To identify differences in the expression of certain structural proteins and angiogenic growth factors in vessel tissues that represent different phases of the process of intracranial aneurysm formation and rupture: normal vessel wall, intact (unruptured) aneurysm wall, and ruptured vessel wall. METHODS The novel study design involved 10 pairs of specimens (ruptured and unruptured aneurysm wall) obtained perioperatively during clipping operations in 10 patients with multiple aneurysms. All surgeries were performed within 5 days of subarachnoid hemorrhage. As controls, five circle of Willis specimens were obtained from five cadavers. Sections of each of the 25 specimens were separately immunostained for five structural proteins (collagen Types III and IV, alpha-smooth muscle actin, fibronectin, and laminin) and three angiogenic factors (vascular endothelial growth factor, basic fibroblast growth factor, and transforming growth factor-alpha). Levels of expression for each protein and factor were graded, and the average grades for each tissue group were recorded and compared. RESULTS Among the structural proteins studied, fibronectin specifically is densely expressed in ruptured aneurysms, which is graded as 2.0. However, its expression is less prominent both in nonaneurysmal vessel wall (Grade 1.0) and unruptured aneurysm vessel wall (Grade 1.1). Contrary to fibronectin, laminin is more intensely and regularly expressed in normal vessel wall (Grade 2.7) than in ruptured (Grade 1.1) and unruptured (Grade 1.0) aneurysmal specimens. Among the angiogenic growth factors studied, transforming growth factor-alpha shows a peculiar grading of staining, different from the other two angiogenic factors examined, so that it is more highly expressed in normal circle of Willis specimens (Grade 2.1) than in unruptured and ruptured aneurysm walls, graded as 0.5 and 0.6, respectively. CONCLUSION Normal vessel wall, unruptured aneurysm wall, and ruptured aneurysm wall exhibit different levels and patterns of expression for the structural proteins and regulator growth factors investigated. If one accepts the premise that immunohistochemical study has its inherent methodological problems, these results suggest that the biological mediators of aneurysm formation in a vessel wall differ from those of the biological mediators of aneurysm rupture. There was a novel finding related to fibronectin and laminin: the results indicated that a rise in the fibronectin-to-laminin ratio in an unruptured aneurysm wall may contribute to rupture. A drop in transforming growth factor-alpha expression in a vessel wall may also contribute to aneurysm formation.
Collapse
Affiliation(s)
- Türker Kilic
- Department of Neurosurgery, Marmara University, and Laboratory of Molecular Neurosurgery, Institute of Neurological Sciences, Istanbul, Turkey.
| | | | | | | | | | | | | |
Collapse
|
80
|
Ivell R, Bathgate R. Neohormone systems as exciting targets for drug development. Trends Endocrinol Metab 2006; 17:123. [PMID: 16580223 DOI: 10.1016/j.tem.2006.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 03/10/2006] [Accepted: 03/16/2006] [Indexed: 10/24/2022]
|
81
|
Wilson BC, Connell B, Saleh TM. Relaxin-induced reduction of infarct size in male rats receiving MCAO is dependent on nitric oxide synthesis and not estrogenic mechanisms. Neurosci Lett 2006; 393:160-4. [PMID: 16233954 DOI: 10.1016/j.neulet.2005.09.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 09/14/2005] [Accepted: 09/23/2005] [Indexed: 10/25/2022]
Abstract
Relaxins are members of the insulin peptide superfamily. Previous evidence has shown that relaxin pretreatment reduces cortical infarct size in anesthetized, male rats receiving permanent middle cerebral artery occlusion (MCAO). Therefore, the current study was designed to determine if estrogenic mechanisms or nitric oxide production are involved in mediating this relaxin-induced neuroprotection. In separate groups of rats (n=4-6), the following drugs were injected directly into the cortex 30 min prior to MCAO: (a) relaxin, (b) relaxin and estrogen, and (c) relaxin and an estrogen receptor antagonist (ICI 182,780). To investigate the involvement of nitric oxide, relaxin or relaxin and an inhibitor of endothelial nitric oxide synthase (L-NIO) were injected i.v. 30 min prior to MCAO. Saline-treated rats (both intracortical (i.c.) and intravenously (i.v.)) served as controls. Brains were harvested 4h post stroke, coronally sectioned using a brain matrix and stained using 2,3,5-triphenoltetrazolium chloride (TTC). Digital photographs were taken of brain sections and the ratio comparing the area of the infarct to the area of the ipsilateral hemisphere was calculated. Mean ratios were compared using ANOVA and Tukey's test. Intracortical and intravenous relaxin pretreatment significantly reduced the infarct area in the cortex by 33.7 and 58.6%, respectively compared to saline-treated controls. This effect was not dependent on an interaction with estrogenic receptors as co-injection of relaxin and ICI 182,780 did not reverse this effect. However, inhibition of nitric oxide synthase significantly reduced the relaxin-mediated neuroprotection suggesting that relaxin may induce the endothelin-NOS cascade in cerebral vasculature causing vasodilation and improved perfusion of neural tissue.
Collapse
Affiliation(s)
- Brian C Wilson
- Department of Biology, Acadia University, Wolfville, NS, Canada B4P 2R6.
| | | | | |
Collapse
|
82
|
Ho TY, Bagnell CA. Relaxin Induces Matrix Metalloproteinase-9 through Activation of Nuclear Factor Kappa B in Human THP-1 Cells. Ann N Y Acad Sci 2006; 1041:314-6. [PMID: 15956726 DOI: 10.1196/annals.1282.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Matrix metalloproteinase (MMP) and relaxin are important for tissue remodeling and wound repair. Macrophages populate wound sites and secrete MMPs. Nuclear factor kappa B (NF-kappaB) is linked to MMP gene regulation. Thus, a monocyte/macrophage cell line, THP-1, was used to study the mechanism of relaxin's action on MMPs. Relaxin increased MMP-9 protein and activity in THP-1 cell-conditioned media, with no significant change in MMP-2 activity. NF-kappaB DNA binding activity was elevated in response to relaxin, and supershift assay showed activation of both NF-kappaB subunits p50 and p65. Relaxin also reduced NF-kappaB inhibitor protein, IkappaB-alpha. In conclusion, these data suggest that relaxin-induced MMP-9 expression in THP-1 cells involves NF-kappaB activation.
Collapse
Affiliation(s)
- Teh-Yuan Ho
- Department of Animal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
83
|
Wilson BC, Milne P, Saleh TM. Relaxin Pretreatment Decreases Infarct Size in Male Rats after Middle Cerebral Artery Occlusion. Ann N Y Acad Sci 2006; 1041:223-8. [PMID: 15956712 DOI: 10.1196/annals.1282.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We studied the possible neuroprotective action of relaxin in a rat stroke model. Relaxin (10 ng in 200 nL saline) or saline was injected into the secondary somatosensory cortex of anesthetized rats. Thirty minutes after treatment, the right middle cerebral artery was occluded, causing ischemic conditions. Brains were removed 4 hours after stroke, and 1-mm coronal sections were stained using 2-3-5-triphenoltetrazolium chloride. Digital photographs were taken of the sections, and the ratio of infarct area to ipsilateral hemispheric area was calculated. Relaxin treatment significantly (P < .05) reduced this ratio compared with that of saline-treated controls. Results suggest that relaxin may prevent ischemia-induced cell death.
Collapse
Affiliation(s)
- Brian C Wilson
- Department of Biology, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada.
| | | | | |
Collapse
|
84
|
Ryan PL, Youngblood RC, Harvill J, Willard ST. Photonic Monitoring in Real Time of Vascular Endothelial Growth Factor Receptor 2 Gene Expression under Relaxin-Induced Conditions in a Novel Murine Wound Model. Ann N Y Acad Sci 2006; 1041:398-414. [PMID: 15956738 DOI: 10.1196/annals.1282.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Relaxin is known to promote vascular endothelial growth factor (VEGF) expression in reproductive tissue, and successful wound healing depends on good vascularization of wound sites, a process that relaxin may facilitate. Thus, the objective of this study was to evaluate the efficacy of relaxin on the development of vascular tissue at wound sites in a novel VEGF receptor 2-luc (VEGFR2-luc) transgenic mouse wound model by monitoring the rate of VEGFR2-luc-mediated gene expression using bioluminescence and real-time imaging. To this end, 12 FVB/N VEGFR2-luc transgenic male mice were assigned to treatments (six per group): saline alone or relaxin (1 g/6 h/14 days) administered intraperitoneally (i.p.). On day 0, a set of full-thickness wounds (6-mm punch) were generated under anesthesia on the dorsal aspect of each mouse. Photonic emissions were recorded (5-min collection of photons) from wound sites 10 min after the administration of luciferin (150 mg/kg i.p.) on day 0 and on days 1, 2, 4, 7, 9, 11, and 14 postwounding to quantify luciferase activity using an IVIS 100 biophotonic imaging system. Animals were sacrificed (three per group) on day 7 or 14, and wound tissue specimens were recovered for molecular and histologic analyses. Although photonic emission from wound sites increased (P < .001) over time with peak values obtained by day 7, no significant (P > .05) effect of relaxin treatment on VEGFR2-luc gene expression was noted at wound sites. Whereas measuring relaxin's effect on angiogenesis indirectly via the VEGFR2 model was not successful, photonic imaging provides an exciting new tool using alternative models (i.e., VEGF-luc mouse) to study relaxin-induced gene expression in normal (i.e., wound healing) or tumorigenic tissues in real time.
Collapse
Affiliation(s)
- Peter L Ryan
- Department of Animal and Dairy Sciences, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, Mississippi 39762, USA.
| | | | | | | |
Collapse
|
85
|
Bani D, Nistri S, Sacchi TB, Bigazzi M. Basic Progress and Future Therapeutic Perspectives of Relaxin in Ischemic Heart Disease. Ann N Y Acad Sci 2006; 1041:423-30. [PMID: 15956740 DOI: 10.1196/annals.1282.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Relaxin has been validated as a cardiotropic hormone, being produced by the heart and acting on specific heart receptors. Evidence is accumulating that it could hamper the pathophysiologic mechanisms of ischemic heart disease. Time is ripe to study relaxin as a cardiotropic drug, as recombinant human relaxin (hrRLX) is now available and previous clinical trials have shown a virtual lack of toxicity and adverse side effects, even at high doses. Our recent observations suggest that relaxin, besides being a preventative agent, may also be effective in the treatment of acute myocardial infarction and may be an adjuvant for precursor cell grafting to repair postinfarct myocardium. In a swine model of myocardial infarction currently used to test cardiotropic drugs due to its similarities with human ischemic heart disease, hrRLX, given at reperfusion upon 30 min of ischemia, markedly reduced serum and tissue markers of myocardial injury, cardiomyocyte apoptosis and leukocyte recruitment, resulting in overall improvement in cardiac performance compared with the controls. In in vitro mixed cultures of mouse skeletal myoblasts and adult rat cardiomyocytes, relaxin increased gap junction formation and potentiated gap junction-mediated intercellular exchanges and signaling between the coupled cells. In view of the therapeutic use of myoblast grafting for cardiac repair, relaxin could hence favor the electromechanical coupling of grafted myoblasts with the resident cardiomyocytes and facilitate their transdifferentiation towards a cardiac phenotype. Relaxin, therefore, shows promising therapeutic potential in cardiology and cardiac surgery.
Collapse
Affiliation(s)
- Daniele Bani
- Department of Anatomy, Histology and Forensic Medicine, Viale G. Pieraccini 6, I-50139, Florence, Italy.
| | | | | | | |
Collapse
|
86
|
Santora K, Rasa C, Visco D, Steinetz B, Bagnell C. Effects of Relaxin in a Model of Rat Adjuvant-Induced Arthritis. Ann N Y Acad Sci 2006; 1041:481-5. [PMID: 15956749 DOI: 10.1196/annals.1282.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A reduction in the incidence and severity of rheumatoid arthritis is seen in pregnant women. Relaxin, a hormone of pregnancy, has been implicated in decreased immune responsiveness. Consequently, the effects of relaxin and estradiol valerate, alone or in combination, were assessed in the development of adjuvant-induced arthritis in the rat. Combination hormone therapy reduced adjuvant-induced paw inflammation. Radiographic analysis of the tarsal joints showed that estradiol valerate plus relaxin treatment minimized soft tissue damage and bone changes when compared to vehicle-treated arthritic controls. These results indicate that relaxin may be a factor in reducing inflammation during pregnancy.
Collapse
Affiliation(s)
- Karen Santora
- Laboratory Animal Resources, Merck & Co. Inc., Rahway, New Jersey 07065, USA
| | | | | | | | | |
Collapse
|
87
|
Silvertown JD, Fraser R, Poterski RS, Geddes B, Summerlee AJS. Central Effects of Long-Term Relaxin Expression in the Rat. Ann N Y Acad Sci 2006; 1041:216-22. [PMID: 15956711 DOI: 10.1196/annals.1282.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A recombinant adenovirus containing the human H2 preprorelaxin (hH2) cDNA and a reporter gene was coinjected with a transactivator virus (Ad-tTA) into the lateral cerebral ventricles of female rats. Cardiovascular effects were measured over a 21-day period. Circulating vasopressin in the periphery was significantly greater (P < .0001) in the relaxin-treated group throughout the experimental period, compared with controls. There was a significant decrease in plasma osmolality (P < .05) by approximately 10 mmol/L in the treated group by day 14. Immunofluorescence for hH2 present in cryosections showed rAd transduction and hH2 expression from ependymal cells of the ventricular system. Adenovirus-mediated delivery of hH2 to the brain is capable of producing bioactive relaxin that affects cardiovascular parameters.
Collapse
Affiliation(s)
- Josh D Silvertown
- Division of Experimental Therapeutics, Ontario Cancer Institute, University Health Network, Toronto, Ontario, M5g-2M1, Canada
| | | | | | | | | |
Collapse
|
88
|
Formigli L, Francini F, Chiappini L, Zecchi-Orlandini S, Bani D. Relaxin Favors the Morphofunctional Integration between Skeletal Myoblasts and Adult Cardiomyocytes in Coculture. Ann N Y Acad Sci 2006; 1041:444-5. [PMID: 15956744 DOI: 10.1196/annals.1282.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have investigated the interaction between mouse skeletal myoblasts and rat cardiomyocytes in coculture and the influence of relaxin. Connexin43 expression, Lucifer yellow microinjection, Ca2+ propagation, and electrophysiological analysis have shown that myoblasts and cardiomyocytes are coupled by functional gap junctions. Cardiomyocytes and relaxin upregulated connexin43 expression and gap junctional communication in myoblasts. Relaxin also increased transjunctional current between myoblasts and between myoblasts and cardiomyocytes. In conclusion, relaxin potentiates the intercellular coupling, upregulating the transcellular exchange of regulatory molecules between myoblasts and cardiomyocytes, including Ca2+. This could favor the transdifferentiation of myoblasts toward a cardiac phenotype.
Collapse
Affiliation(s)
- Lucia Formigli
- Department of Anatomy, Histology and Forensic Medicine, Viale G. Pieraccini 6, Florence I-50139, Italy
| | | | | | | | | |
Collapse
|
89
|
Affiliation(s)
- Leni Moldovan
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave., Room 305A, Columbus, OH 43210, USA.
| | | |
Collapse
|
90
|
Figueiredo KA, Mui AL, Nelson CC, Cox ME. Relaxin stimulates leukocyte adhesion and migration through a relaxin receptor LGR7-dependent mechanism. J Biol Chem 2005; 281:3030-9. [PMID: 16303766 DOI: 10.1074/jbc.m506665200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Leukocytes are critical effectors of inflammation and tumor biology. Chemokine-like factors produced by such inflammatory sites are key mediators of tumor growth that activate leukocytic recruitment and tumor infiltration and suppress immune surveillance. Here we report that the endocrine peptide hormone, relaxin, is a regulator of leukocyte biology with properties important in recruitment to sites of inflammation. This study uses the human monocytic cell line THP-1 and normal human peripheral blood mononuclear cells to define a novel role for relaxin in regulation of leukocyte adhesion and migration. Our studies indicate that relaxin promotes adenylate cyclase activation, substrate adhesion, and migratory capacity of mononuclear leukocytes through a relaxin receptor LGR7-dependent mechanism. Relaxin-stimulated cAMP accumulation was observed to occur primarily in non-adherent cells. Relaxin stimulation results in increased substrate adhesion and increased migratory activity of leukocytes. In addition, relaxin-stimulated substrate adhesion resulted in enhanced chemotaxis to monocyte chemoattractant protein-1. These responses in THP-1 and peripheral blood mononuclear cells are relaxin dose-dependent and proportional to cAMP accumulation. We further demonstrate that LGR7 is critical for mediating these biological responses by use of RNA interference lentiviral short hairpin constructs. In summary, we provide evidence that relaxin is a novel leukocyte stimulatory agent with properties affecting adhesion and chemomigration.
Collapse
Affiliation(s)
- Kevin A Figueiredo
- Genetics Program and Department of Surgery, University of British Columbia, Canada
| | | | | | | |
Collapse
|
91
|
Dessauer CW, Nguyen BT. Relaxin stimulates multiple signaling pathways: activation of cAMP, PI3K, and PKCzeta in THP-1 cells. Ann N Y Acad Sci 2005; 1041:272-9. [PMID: 15956717 PMCID: PMC2846546 DOI: 10.1196/annals.1282.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Relaxin has been shown previously to stimulate cyclic AMP production and the activation of MAPK. We reported that phosphoinositide-3 kinase (PI3K) activity is required for biphasic stimulation of cAMP by relaxin and that relaxin treatment increased PI3K activity in THP-1 cells. A downstream target of PI3K is protein kinase C zeta (PKCzeta). Relaxin stimulated translocation of PKCzeta to the plasma membrane in THP-1, MCF-7, pregnant human myometrial (PHM1-31), and mouse mesangial (MMC) cells. PKCzeta translocation is PI3K dependent and independent of cAMP production. Pharmacological and antisense approaches, utilized to inhibit or knock down PKCzeta, resulted in a 40% inhibition of relaxin-stimulated cAMP production. The stimulation of PKCzeta by relaxin therefore is downstream of PI3K leading to increased cAMP production. To determine the role of PI3K/PKCzeta stimulation by relaxin on downstream-mediated events, we examined the increase in vascular endothelial growth factor (VEGF) gene expression by relaxin. Treatment of THP-1 or MMC cells with the PI3K inhibitor, LY294002, abolished the relaxin-mediated stimulation of VEGF transcript levels. In summary, relaxin has pleiotropic signaling effects in THP-1 cells activating ERK1/2, cAMP, PI3K, and PKCzeta. We have described a novel bifurcated pathway by which relaxin stimulates Gs alpha and PI3K/PKCzeta leading to increased cAMP production and increased VEGF gene expression. Some, but not all, of these pathways are detected in other cell lines which may cause the unique diversity of downstream responses from this interesting hormone.
Collapse
Affiliation(s)
- Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA.
| | | |
Collapse
|
92
|
Debrah DO, Conrad KP, Jeyabalan A, Danielson LA, Shroff SG. Relaxin Increases Cardiac Output and Reduces Systemic Arterial Load in Hypertensive Rats. Hypertension 2005; 46:745-50. [PMID: 16172427 DOI: 10.1161/01.hyp.0000184230.52059.33] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic administration of recombinant human relaxin (rhRLX) to conscious, normotensive rats (male and female) increases cardiac output (CO) and global arterial compliance (ACg) and reduces systemic vascular resistance (SVR) with no change in mean arterial pressure (MAP). Effects (magnitude and temporal pattern) of relaxin on systemic hemodynamics and arterial properties in hypertensive animal models are not known. Accordingly, the major goal of the present study was to determine the cardiovascular effects of rhRLX in hypertensive rats using 2 models: Long-Evans rats chronically administered angiotensin II (AII) and spontaneously hypertensive rats (SHR). CO and systemic arterial load, as quantified by SVR and ACg, were obtained using methods reported previously by us. In rats with AII-induced hypertension, acute rhRLX administration (up to 6 hours) significantly increased CO and ACg (24.9+/-3.9 and 34.3+/-12.6% above baseline, respectively) and significantly decreased SVR (17.2+/-3.5%) without changing MAP. In contrast, acute rhRLX administration to SHR and normotensive rats for up to 6 hours failed to produce any significant changes in CO, ACg, SVR, or MAP. However, chronic rhRLX administration (1 to 7 days) to SHR yielded significant changes (24.0+/-8.1 and 22.3+/-6.6% increases in CO and ACg, respectively, and a 13.3+/-5.3% decrease in SVR, with no change in MAP). In conclusion, rhRLX increases CO and reduces arterial load in hypertensive rats without reducing MAP. However, the time course of response to rhRLX treatment is dependent on the model of hypertension such that rats characterized by AII-mediated hypertension responded more rapidly to rhRLX administration than SHR.
Collapse
Affiliation(s)
- Dan O Debrah
- Department of Bioengineering, University of Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
93
|
Ruel M, Song J, Sellke FW. Protein-, gene-, and cell-based therapeutic angiogenesis for the treatment of myocardial ischemia. Mol Cell Biochem 2005; 264:119-31. [PMID: 15544041 DOI: 10.1023/b:mcbi.0000044381.01098.03] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Therapeutic angiogenesis aims at restoring perfusion to chronically ischemic myocardial territories by using growth factors or cells, without intervening on the epicardial coronary arteries. Despite angiogenesis having received considerable scientific attention over the last decade, it has not yet been shown to provide clinical benefit and is still reserved for patients who have failed conventional therapies. Nevertheless, angiogenesis is a very potent physiologic process involved in the growth and development of every animal and human, and it is likely that its use for therapeutic purposes, once its underlying mechanistic basis is better understood, will one day become an important modality for patients with CAD and other types of organ ischemia. This review summarizes current knowledge in therapeutic angiogenesis research.
Collapse
Affiliation(s)
- Marc Ruel
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
94
|
Debrah DO, Conrad KP, Danielson LA, Shroff SG. Effects of relaxin on systemic arterial hemodynamics and mechanical properties in conscious rats: sex dependency and dose response. J Appl Physiol (1985) 2005; 98:1013-20. [PMID: 15489259 DOI: 10.1152/japplphysiol.01083.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously showed that chronic administration of recombinant human relaxin (rhRLX; 4 μg/h) to conscious female, nonpregnant rats to reach serum levels corresponding to early to midgestation (∼20 ng/ml) increases cardiac output (CO) and global arterial compliance (AC) and decreases systemic vascular resistance (SVR), comparable to changes observed in midterm pregnancy. The goals of this study were to test whether chronic administration of rhRLX (4 μg/h) to conscious male rats will yield similar changes in CO and systemic arterial load and to determine whether higher infusion rates of rhRLX (50 μg/h) administered to nonpregnant female rats yielding serum concentrations corresponding to late pregnancy (∼80 ng/ml) will further modify CO and SVR and global AC comparable to late gestation. CO and systemic arterial load, as quantified by SVR and AC, were obtained by using the same methods as in our previous studies. With respect to baseline, chronic rhRLX administration to male rats over 10 days at 4 μg/h increased both CO (20.5 ± 4.2%) and AC (19.4 ± 6.9%) and reduced SVR (12.7 ± 3.9%). These results were comparable to those elicited by the hormone in nonpregnant female rats. In contrast, neither acute (over 4 h) nor chronic (over 6 days) infusion of the higher dose of rhRLX administered to conscious female rats resulted in significant changes in CO, AC, or SVR from baseline. We conclude that 1) rhRLX increases CO and AC and reduces SVR irrespective of sex, and 2) the rhRLX dose response is biphasic insofar as significant alterations in CO and systemic arterial load fail to occur at high serum concentrations.
Collapse
Affiliation(s)
- Dan O Debrah
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
95
|
Silvertown JD, Ng J, Sato T, Summerlee AJ, Medin JA. H2 relaxin overexpression increasesin vivo prostate xenograft tumor growth and angiogenesis. Int J Cancer 2005; 118:62-73. [PMID: 16049981 DOI: 10.1002/ijc.21288] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Our study reports a preliminary investigation into the role of human H2 relaxin in prostate tumor growth. A luciferase-expressing human prostate cancer cell line, PC-3, was generated and termed PC3-Luc. PC3-Luc cells were transduced with lentiviral vectors engineering the expression of either enhanced green fluorescent protein (eGFP) or both H2 relaxin and eGFP in a bicistronic format. These transduced cells were termed PC3-Luc-eGFP and PC3-Luc-H2/eGFP, respectively. To gauge effects, PC3-Luc-H2/eGFP and PC3-Luc-eGFP cells were injected into NOD/SCID mice and monitored over 6 weeks. PC-3 tumor xenografts overexpressing H2 relaxin exhibited greater tumor volumes compared to control tumors. Circulating H2 relaxin levels in sera increased with the relative size of the tumor, with moderately elevated H2 relaxin levels in mice bearing PC3-Luc-H2/eGFP tumors compared to PC3-Luc-eGFP tumors. Zymographic analysis demonstrated that proMMP-9 enzyme activity was significantly downregulated in H2 relaxin-overexpressing tumors. An advanced angiogenic phenotype was observed in H2 relaxin-overexpressing tumors indicated by greater intratumoral vascularization by immunohistochemical staining of endothelial cells with anti-mouse CD31. Moreover, PC3-Luc-H2/eGFP tumors exhibited increased VEGF transcript by reverse-transcription PCR, compared to basal levels in control animals. Taken together, our study provides the first account of a potential role of H2 relaxin in prostate tumor development.
Collapse
Affiliation(s)
- Josh D Silvertown
- Division of Stem Cell and Differentiation, Ontario Cancer Institute, University Health Network, Toronto, Canada
| | | | | | | | | |
Collapse
|
96
|
Nguyen BT, Dessauer CW. Relaxin stimulates protein kinase C zeta translocation: requirement for cyclic adenosine 3',5'-monophosphate production. Mol Endocrinol 2004; 19:1012-23. [PMID: 15604116 DOI: 10.1210/me.2004-0279] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Relaxin is a polypeptide hormone that activates the leucine-rich repeat containing G protein-coupled receptors, LGR7 and LGR8. In an earlier study, we reported that relaxin produces a biphasic time course and the second wave of cAMP is highly sensitive to phosphoinositide-3 kinase inhibitors (LY294002 and wortmannin). LY294002 inhibits relaxin-mediated increases in cAMP production by 40-50% across a large range of relaxin concentrations. Here we show that protein kinase C zeta (PKCzeta) is a component of relaxin signaling in THP-1 cells. Sphingomyelinase increases cAMP production due to the release of ceramide, a direct activator of PKCzeta. Chelerythrine chloride (a general PKC inhibitor) inhibits relaxin induced cAMP production to the same degree (approximately 40%) as LY294002. Relaxin stimulates PKCzeta translocation to the plasma membrane in THP-1, MCF-7, pregnant human myometrial 1-31, and mouse mesangial cells, as shown by immunocytochemistry. PKCzeta translocation is phosphoinositide-3 kinase dependent and independent of cAMP production. Antisense PKCzeta oligodeoxynucleotides (PKCzeta-ODNs) deplete both PKCzeta transcript and protein levels in THP-1 cells. PKCzeta-ODNs abolish relaxin-mediated PKCzeta translocation and inhibit relaxin stimulation of cAMP by 40%, as compared with mock and random ODN controls. Treatment with LY294002 in the presence of PKCzeta-ODNs results in little further inhibition. In summary, we present a novel role for PKCzeta in relaxin-mediated stimulation of cAMP.
Collapse
Affiliation(s)
- Bao T Nguyen
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, USA
| | | |
Collapse
|
97
|
Formigli L, Francini F, Tani A, Squecco R, Nosi D, Polidori L, Nistri S, Chiappini L, Cesati V, Pacini A, Perna AM, Orlandini GE, Zecchi Orlandini S, Bani D. Morphofunctional integration between skeletal myoblasts and adult cardiomyocytes in coculture is favored by direct cell-cell contacts and relaxin treatment. Am J Physiol Cell Physiol 2004; 288:C795-804. [PMID: 15537709 DOI: 10.1152/ajpcell.00345.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The success of cellular cardiomyoplasty, a novel therapy for the repair of postischemic myocardium, depends on the anatomical integration of the engrafted cells with the resident cardiomyocytes. Our aim was to investigate the interaction between undifferentiated mouse skeletal myoblasts (C2C12 cells) and adult rat ventricular cardiomyocytes in an in vitro coculture model. Connexin43 (Cx43) expression, Lucifer yellow microinjection, Ca2+ transient propagation, and electrophysiological analysis demonstrated that myoblasts and cardiomyocytes were coupled by functional gap junctions. We also showed that cardiomyocytes upregulated gap junctional communication and expression of Cx43 in myoblasts. This effect required direct cell-to-cell contact between the two cell types and was potentiated by treatment with relaxin, a cardiotropic hormone with potential effects on cardiac development. Analysis of the gating properties of gap junctions by dual cell patch clamping showed that the copresence of cardiomyocytes in the cultures significantly increased the transjunctional current and conductance between myoblasts. Relaxin enhanced this effect in both the myoblast-myoblast and myoblast-cardiomyocyte cell pairs, likely acting not only on gap junction formation but also on the electrical properties of the preexisting channels. Our findings suggest that myoblasts and cardiomyocytes interact actively through gap junctions and that relaxin potentiates the intercellular coupling. A potential role for gap junctional communication in favoring the intercellular exchange of regulatory molecules, including Ca2+, in the modulation of myoblast differentiation is discussed.
Collapse
Affiliation(s)
- Lucia Formigli
- Dept. of Anatomy, Univ. of Florence, Viale Morgagni 85, I-50134 Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Binder C, Simon A, Binder L, Hagemann T, Schulz M, Emons G, Trümper L, Einspanier A. Elevated Concentrations of Serum Relaxin are Associated with Metastatic Disease in Breast Cancer Patients. Breast Cancer Res Treat 2004; 87:157-66. [PMID: 15377840 DOI: 10.1023/b:brea.0000041622.30169.16] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Relaxin (RLX) is known to induce remodeling of benign stromal tissues through upregulation of matrix metalloproteases (MMPs). Recently, we could show that RLX also induces MMPs in breast cancer cells and enhances in vitro invasiveness. To investigate its potential role for progression of breast cancer in vivo, RLX serum concentrations were determined in 160 breast cancer patients during post-surgical follow-up. RLX concentrations in cancer patients were significantly higher than in a control population of healthy blood donors and patients with various other diseases (0.47 versus 0.29 ng/ml, p < 0.0001). There was a significant difference between patients with metastases (0.62 ng/ml) and those without (0.38 ng/ml, p < 0.0001). Overall survival was shorter in RLX-positive ( > 0.4 ng/ml) than in RLX-negative patients (p = 0.016). Cox regression analysis showed that RLX was not an independent variable, in contrast to metastatic disease and primary lymph node involvement. Taken together, the detection of elevated RLX concentrations especially in patients with metastases supports the assumption that there is a role for RLX in tissue remodeling during breast cancer progression.
Collapse
Affiliation(s)
- C Binder
- Department of Haematology/Oncology, Georg-August-University, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Conrad KP, Novak J. Emerging role of relaxin in renal and cardiovascular function. Am J Physiol Regul Integr Comp Physiol 2004; 287:R250-61. [PMID: 15271674 DOI: 10.1152/ajpregu.00672.2003] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although traditionally associated with reproductive processes, relaxin is emerging as an important player in renal and cardiovascular function. Much of our recently acquired understanding of relaxin in this new context has arisen from studies of maternal renal and cardiovascular adaptations to pregnancy in rats where the hormone is turning out to be an important mediator. First, we highlight the influence of relaxin on renal hemodynamics and glomerular filtration rate, as well as on other peripheral circulations. Second, we discuss the effect of relaxin on both the steady and pulsatile systemic arterial load, as well as on the heart, in particular, coronary blood flow. Third, we consider the impact of the hormone on cultured endothelial and vascular smooth muscle cells. Fourth, we address the interaction of relaxin with renal and cardiac disease, as well as its role in angiogenesis. Finally, in Perspectives, we point out several key research questions in need of investigation that relate to a potential autocrine/paracrine role of relaxin in renal and cardiovascular tissues. Furthermore, on the basis of its potent vasodilatory and matrix-degrading attributes, we speculate about the therapeutic potential of relaxin in renal and cardiovascular diseases.
Collapse
Affiliation(s)
- Kirk P Conrad
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, and Magee-Women's Research Institute, Pittsburgh, Pennsylvania 15213, USA.
| | | |
Collapse
|
100
|
Garibay-Tupas JL, Okazaki KJ, Tashima LS, Yamamoto S, Bryant-Greenwood GD. Regulation of the human relaxin genes H1 and H2 by steroid hormones. Mol Cell Endocrinol 2004; 219:115-25. [PMID: 15149733 DOI: 10.1016/j.mce.2004.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Accepted: 01/08/2004] [Indexed: 10/26/2022]
Abstract
Relaxin, a peptide hormone important to the outcome of human pregnancy is expressed in a tissue specific manner as two genes known as relaxins H1 and H2, in addition to a third human relaxin H3, expressed primarily in the brain. The H1 and H2 genes are highly homologous, differentially expressed in reproductive tissues and appear to activate the same receptor, but their regulation is poorly understood. Based upon the known physiology of these hormones and the response elements in their 5'- and 3'-flanking regions, the possibility that progesterone and/or the glucocorticoids might influence their differential expression was therefore investigated. The changes in the mRNA levels of the relaxin genes in response to either medroxyprogesterone acetate (MPA) or dexamethasone (Dex) were analyzed by RT-PCR using a choriocarcinoma cell line (JAR) as a model system, because the expression of these genes in any primary human cell type is too low for such a study. The addition of 0.5 microM MPA to JAR cells, significantly upregulated the mRNA of only the relaxin H2, while the addition of 0.5 microM Dex significantly upregulated the mRNAs for both the relaxins, after 6h of treatment. Promoter assays indicated an early activation of transcription (1 h), which by 6 h had decreased. Progesterone and/or glucocorticoids could exert their effects via the GRE motif found on the 5'-flanking region of the relaxin genes. The H1-GRE differs from the H2-GRE by a single nucleotide, which may affect H1-GRE binding to the progesterone receptor (PR) but not the glucocorticoid receptor (GR). The antiprogestin RU486 inhibited the binding of the GR to both H1-GRE and H2-GRE, while it enhanced the binding of the PR to these GREs. As determined by gel shift assays, this GRE motif could bind to both the PR and GR and was therefore considered to be functional. Thus, both progesterone and glucocorticoids are capable of differentially regulating the expression of the two human relaxin genes in a model system.
Collapse
Affiliation(s)
- Jermelina L Garibay-Tupas
- Molecular Endocrinology Laboratory, Pacific Biomedical Research Center, University of Hawaii at Manoa, 1960 East-West Road, Honolulu, HI 968222, USA
| | | | | | | | | |
Collapse
|