51
|
Dietary Antiplatelets: A New Perspective on the Health Benefits of the Water-Soluble Tomato Concentrate Fruitflow ®. Nutrients 2021; 13:nu13072184. [PMID: 34201950 PMCID: PMC8308204 DOI: 10.3390/nu13072184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Our understanding of platelet functionality has undergone a sea change in the last decade. No longer are platelets viewed simply as regulators of haemostasis; they are now acknowledged to be pivotal in coordinating the inflammatory and immune responses. This expanded role for platelets brings new opportunities for controlling a range of health conditions, targeting platelet activation and their interactions with other vascular cells. Antiplatelet drugs may be of wider utility than ever expected but often cause platelet suppression too strong to be used out of clinical settings. Dietary antiplatelets represent a nutritional approach that can be efficacious while safe for general use. In this review, we discuss potential new uses for dietary antiplatelets outside the field of cardiovascular health, with specific reference to the water-soluble tomato extract Fruitflow®. Its uses in different aspects of inflammation and immune function are discussed, highlighting exercise-induced inflammation, mediating the effects of air pollution, and controlling thrombotic aspects of the immune response. Potential future developments in women’s health, erectile dysfunction, and the allergic response indicate how broad the utility of dietary antiplatelets can be.
Collapse
|
52
|
Sung PS, Hsieh SL. C-type lectins and extracellular vesicles in virus-induced NETosis. J Biomed Sci 2021; 28:46. [PMID: 34116654 PMCID: PMC8193014 DOI: 10.1186/s12929-021-00741-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Dysregulated formation of neutrophil extracellular traps (NETs) is observed in acute viral infections. Moreover, NETs contribute to the pathogenesis of acute viral infections, including those caused by the dengue virus (DV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Furthermore, excessive NET formation (NETosis) is associated with disease severity in patients suffering from SARS-CoV-2-induced multiple organ injuries. Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) and other members of C-type lectin family (L-SIGN, LSECtin, CLEC10A) have been reported to interact with viral glycans to facilitate virus spreading and exacerbates inflammatory reactions. Moreover, spleen tyrosine kinase (Syk)-coupled C-type lectin member 5A (CLEC5A) has been shown as the pattern recognition receptor for members of flaviviruses, and is responsible for DV-induced cytokine storm and Japanese encephalomyelitis virus (JEV)-induced neuronal inflammation. Moreover, DV activates platelets via CLEC2 to release extracellular vesicles (EVs), including microvesicles (MVs) and exosomes (EXOs). The DV-activated EXOs (DV-EXOs) and MVs (DV-MVs) stimulate CLEC5A and Toll-like receptor 2 (TLR2), respectively, to enhance NET formation and inflammatory reactions. Thus, EVs from virus-activated platelets (PLT-EVs) are potent endogenous danger signals, and blockade of C-type lectins is a promising strategy to attenuate virus-induced NETosis and intravascular coagulopathy.
Collapse
Affiliation(s)
- Pei-Shan Sung
- Genomics Research Center, Academia Sinica, 128, Academia Road, Sec. 2, Nankang District, Taipei, 115 Taiwan
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, 128, Academia Road, Sec. 2, Nankang District, Taipei, 115 Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
- Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
53
|
Rawish E, Sauter M, Sauter R, Nording H, Langer HF. Complement, inflammation and thrombosis. Br J Pharmacol 2021; 178:2892-2904. [PMID: 33817781 DOI: 10.1111/bph.15476] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/30/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022] Open
Abstract
A mutual relationship exists between immune activation and mechanisms of thrombus formation. In particular, elements of the innate immune response such as the complement system can modulate platelet activation and subsequently thrombus formation. Several components of the complement system including C3 or the membrane attack complex have been reported to be associated with platelets and become functionally active in the micromilieu of platelet activation. The exact mechanisms how this interplay is regulated and its consequences for tissue inflammation, damage or recovery remain to be defined. This review addresses the current state of knowledge on this topic and puts it into context with diseases featuring both thrombosis and complement activation. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Elias Rawish
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Reinhard Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Harald F Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
54
|
El-Kadiry AEH, Merhi Y. The Role of the Proteasome in Platelet Function. Int J Mol Sci 2021; 22:3999. [PMID: 33924425 PMCID: PMC8069084 DOI: 10.3390/ijms22083999] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Platelets are megakaryocyte-derived acellular fragments prepped to maintain primary hemostasis and thrombosis by preserving vascular integrity. Although they lack nuclei, platelets harbor functional genomic mediators that bolster platelet activity in a signal-specific manner by performing limited de novo protein synthesis. Furthermore, despite their limited protein synthesis, platelets are equipped with multiple protein degradation mechanisms, such as the proteasome. In nucleated cells, the functions of the proteasome are well established and primarily include proteostasis among a myriad of other signaling processes. However, the role of proteasome-mediated protein degradation in platelets remains elusive. In this review article, we recapitulate the developing literature on the functions of the proteasome in platelets, discussing its emerging regulatory role in platelet viability and function and highlighting how its functional coupling with the transcription factor NF-κB constitutes a novel potential therapeutic target in atherothrombotic diseases.
Collapse
Affiliation(s)
- Abed El-Hakim El-Kadiry
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, Montreal, QC H1T 1C8, Canada;
- Biomedical Sciences Program, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Yahye Merhi
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, Montreal, QC H1T 1C8, Canada;
- Biomedical Sciences Program, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
55
|
Rahmawati PL, Tini K, Susilawathi NM, Wijayanti IAS, Samatra DP. Pathomechanism and Management of Stroke in COVID-19: Review of Immunopathogenesis, Coagulopathy, Endothelial Dysfunction, and Downregulation of ACE2. J Clin Neurol 2021; 17:155-163. [PMID: 33835735 PMCID: PMC8053537 DOI: 10.3988/jcn.2021.17.2.155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) can reportedly manifest as an acute stroke, with most cases presenting as large vessel ischemic stroke in patients with or without comorbidities. The exact pathomechanism of stroke in COVID-19 remains ambiguous. The findings of previous studies indicate that the most likely underlying mechanisms are cerebrovascular pathological conditions following viral infection, inflammation-induced endothelial dysfunction, and hypercoagulability. Acute endothelial damage due to inflammation triggers a coagulation cascade, thrombosis propagation, and destabilization of atherosclerosis plaques, leading to large-vessel occlusion and plaque ulceration with concomitant thromboemboli, and manifests as ischemic stroke. Another possible mechanism is the downregulation of angiotensin-converting enzyme 2 as the target action of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Acute stroke management protocols need to be modified during the COVID-19 pandemic in order to adequately manage stroke patients with COVID-19.
Collapse
Affiliation(s)
- Putu Lohita Rahmawati
- Department of Neurology, Udayana University, Sanglah General Hospital, Denpasar, Bali, Indonesia.
| | - Kumara Tini
- Department of Neurology, Udayana University, Udayana University Hospital, Bali, Indonesia
| | - Ni Made Susilawathi
- Department of Neurology, Udayana University, Udayana University Hospital, Bali, Indonesia
| | - I A Sri Wijayanti
- Department of Neurology, Udayana University, Udayana University Hospital, Bali, Indonesia
| | - Dpg Purwa Samatra
- Department of Neurology, Udayana University, Udayana University Hospital, Bali, Indonesia
| |
Collapse
|
56
|
Raadsen M, Du Toit J, Langerak T, van Bussel B, van Gorp E, Goeijenbier M. Thrombocytopenia in Virus Infections. J Clin Med 2021; 10:jcm10040877. [PMID: 33672766 PMCID: PMC7924611 DOI: 10.3390/jcm10040877] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Thrombocytopenia, which signifies a low platelet count usually below 150 × 109/L, is a common finding following or during many viral infections. In clinical medicine, mild thrombocytopenia, combined with lymphopenia in a patient with signs and symptoms of an infectious disease, raises the suspicion of a viral infection. This phenomenon is classically attributed to platelet consumption due to inflammation-induced coagulation, sequestration from the circulation by phagocytosis and hypersplenism, and impaired platelet production due to defective megakaryopoiesis or cytokine-induced myelosuppression. All these mechanisms, while plausible and supported by substantial evidence, regard platelets as passive bystanders during viral infection. However, platelets are increasingly recognized as active players in the (antiviral) immune response and have been shown to interact with cells of the innate and adaptive immune system as well as directly with viruses. These findings can be of interest both for understanding the pathogenesis of viral infectious diseases and predicting outcome. In this review, we will summarize and discuss the literature currently available on various mechanisms within the relationship between thrombocytopenia and virus infections.
Collapse
Affiliation(s)
- Matthijs Raadsen
- Department of Viroscience, Erasmus MC Rotterdam, Doctor molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.R.); (T.L.); (E.v.G.)
| | - Justin Du Toit
- Department of Haematology, Wits University Donald Gordon Medical Centre Johannesburg, Johannesburg 2041, South Africa;
| | - Thomas Langerak
- Department of Viroscience, Erasmus MC Rotterdam, Doctor molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.R.); (T.L.); (E.v.G.)
| | - Bas van Bussel
- Department of Intensive Care Medicine, Maastricht University Medical Center Plus, 6229 HX Maastricht, The Netherlands;
- Care and Public Health Research Institute (CAPHRI), Maastricht University, 6229 GT Maastricht, The Netherlands
| | - Eric van Gorp
- Department of Viroscience, Erasmus MC Rotterdam, Doctor molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.R.); (T.L.); (E.v.G.)
- Department of Internal Medicine, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Marco Goeijenbier
- Department of Viroscience, Erasmus MC Rotterdam, Doctor molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.R.); (T.L.); (E.v.G.)
- Department of Internal Medicine, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
- Correspondence:
| |
Collapse
|
57
|
Jeyaraman M, Muthu S, Khanna M, Jain R, Anudeep TC, Muthukanagaraj P, Siddesh SE, Gulati A, Satish AS, Jeyaraman N, Khanna V. Platelet lysate for COVID-19 pneumonia-a newer adjunctive therapeutic avenue. Stem Cell Investig 2021; 8:11. [PMID: 34268440 PMCID: PMC8256133 DOI: 10.21037/sci-2020-042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/27/2021] [Indexed: 02/05/2023]
Abstract
The linchpin for COVID-19 pathogenesis is the severe inflammatory process in the respiratory tract wherein the accumulation of excessive cytokines paves the way for a series of systemic hemodynamic alterations and mortality. The mortality rate is higher in individuals with co-morbidities and advancing age. The absence of a specific therapy is responsible for this uncontrolled spread and the significant mortality. This renders potential insight for considering biologics as a plausible option to repair and regenerate the affected lung tissue and pulverize the causative organism. The plausible role of megakaryocytes against invading microbes was not clearly understood. Platelet lysate is an acellular product consisting of regenerative molecules released from a cluster of platelets. It attenuates the changes caused by immune reactions in allogenic utility with the introduction of growth factors, cytokines, and proteins at supraphysiologic levels and thereby serves as a regenerative immunomodulatory agent to combat COVID-19. This platelet lysate can be used in nebulized form for such acute respiratory distress conditions in COVID-19 elderly patients. Platelet lysate may emerge as a pivotal player provided investigations pace up in this context. Here, we discuss how the platelet lysate can plausibly perquisite to relegate COVID-19. Undertaking prospective randomized controlled trials to prove its efficacy is the need of the hour in this pandemic scenario.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, India
- Department of Orthopedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Sathish Muthu
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Orthopedics, Government Medical College & Hospital, Dindigul, Tamil Nadu, India
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, India
- Department of Orthopedics, Prasad Institute of Medical Science and Hospital, Lucknow, Uttar Pradesh, India
| | - Rashmi Jain
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, India
- School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Talagavadi Channaiah Anudeep
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, India
- Department of Plastic Surgery, Topiwala National Medical College and BYL Nair Ch. Hospital, Mumbai, Maharashtra, India
| | - Purushothaman Muthukanagaraj
- Department of Internal Medicine & Psychiatry, SUNY-Upstate Binghamton Clinical Campus, Binghamton, New York, USA
| | | | - Arun Gulati
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, India
- Department of Orthopedics, Kalpana Chawla Government Medical College & Hospital, Karnal, Haryana, India
| | | | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, India
- Department of Orthopedics, Kasturba Medical College, MAHE Unievrsity, Manipal, Karnataka, India
| | - Venus Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, India
- Department of Pathology, Prasad Institute of Medical Science and Hospital, Lucknow, Uttar Pradesh, India
| |
Collapse
|
58
|
Shannon O. The role of platelets in sepsis. Res Pract Thromb Haemost 2021; 5:27-37. [PMID: 33537527 PMCID: PMC7845078 DOI: 10.1002/rth2.12465] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/06/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
A State of the Art lecture titled "The role of platelets in sepsis" was presented at the ISTH congress in 2020. Sepsis is a life-threatening organ dysfunction caused by a dysregulated and multifaceted host response to infection. Platelets play a significant role in the coordinated immune response to infection and therefore in the inflammation and coagulation dysfunction that contributes to organ damage in sepsis. Thrombocytopenia has a high incidence in sepsis, and it is a marker of poor prognosis. The genesis of thrombocytopenia is likely multifactorial, and unraveling the involved molecular mechanisms will allow development of biomarkers of platelet function in sepsis. Such platelet biomarkers can facilitate study of antiplatelet interventions as immunomodulatory treatment in sepsis. Finally, relevant new data on this topic presented during the 2020 ISTH virtual congress are reviewed.
Collapse
Affiliation(s)
- Oonagh Shannon
- Division of Infection MedicineDepartment of Clinical SciencesFaculty of MedicineLund UniversityLundSweden
| |
Collapse
|
59
|
Yuan Y, Feng Z, Wang J. Vibrio vulnificus Hemolysin: Biological Activity, Regulation of vvhA Expression, and Role in Pathogenesis. Front Immunol 2020; 11:599439. [PMID: 33193453 PMCID: PMC7644469 DOI: 10.3389/fimmu.2020.599439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
The Vibrio vulnificus (V. vulnificus) hemolysin (VVH) is a pore-forming cholesterol-dependent cytolysin (CDC). Although there has been some debate surrounding the in vivo virulence effects of the VVH, it is becoming increasingly clear that it drives different cellular outcomes and is involved in the pathogenesis of V. vulnificus. This minireview outlines recent advances in our understanding of the regulation of vvhA gene expression, the biological activity of the VVH and its role in pathogenesis. An in-depth examination of the role of the VVH in V. vulnificus pathogenesis will help reveal the potential targets for therapeutic and preventive interventions to treat fatal V. vulnificus septicemia in humans. Future directions in VVH research will also be discussed.
Collapse
Affiliation(s)
- Yuan Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Zihan Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| |
Collapse
|
60
|
Acetylsalicylic acid inhibits intravascular coagulation during Staphylococcus aureus-induced sepsis in mice. Blood 2020; 135:1281-1286. [PMID: 31951648 DOI: 10.1182/blood.2019002783] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/05/2020] [Indexed: 12/19/2022] Open
Abstract
Antiplatelet therapies have been proposed for the treatment of sepsis, a syndrome resulting from a dysregulated immune response and inappropriate activation of coagulation. Acetylsalicylic acid (ASA) may serve as a potential therapeutic strategy to prevent infection-induced coagulopathy and associated tissue damage. Using intravital microscopy, we found that Staphylococcus aureus infection induced neutrophil recruitment, platelet aggregation, and neutrophil extracellular trap (NET) release in the liver. Mice pretreated with ASA, or animals receiving ASA 3 hours postinfection, had significantly reduced platelet aggregation and NET release. Additionally, ASA-treated mice had reduced intravascular thrombin activity and microvascular occlusion as compared with untreated S aureus-infected mice. This inhibition of coagulation was accompanied by decreased levels of alanine aminotransferase and aspartate aminotransferase in the plasma, indicating less liver damage. Finally, bacterial loads (colony-forming units per milliliter) in liver, lung, and spleen were not different between groups, and the phagocytic capacity of Kupffer cells was preserved following ASA treatment. These results suggest that ASA may serve as a therapeutic approach to sepsis through its ability to reduce the deleterious action of immunothrombi while maintaining innate immune functions.
Collapse
|
61
|
Singh A, Bisht P, Bhattacharya S, Guchhait P. Role of Platelet Cytokines in Dengue Virus Infection. Front Cell Infect Microbiol 2020; 10:561366. [PMID: 33102253 PMCID: PMC7554584 DOI: 10.3389/fcimb.2020.561366] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022] Open
Abstract
Platelets are anucleated blood cells derived from bone marrow megakaryocytes and play a crucial role in hemostasis and thrombosis. Platelets contain specialized storage organelles, called alpha-granules, contents of which are rich in cytokines such as C-X-C Motif Chemokine Ligand (CXCL) 1/4/7, (C-C motif) ligand (CCL) 5/3, CXCL8 (also called as interleukin 8, IL-8), and transforming growth factor β (TGF-β). Activation of platelets lead to degranulation and release of contents into the plasma. Platelet activation is a common event in many viral infections including human immunodeficiency virus (HIV), H1N1 influenza, Hepatitis C virus (HCV), Ebola virus (EBV), and Dengue virus (DENV). The cytokines CXCL8, CCL5 (also known as Regulated on Activation, Normal T Expressed and Secreted, RANTES), tumor necrosis factor α (TNF-α), CXCL1/5 and CCL3 released, promote development of a pro-inflammatory state along with the recruitment of other immune cells to the site of infection. Platelets also interact with Monocytes and Neutrophils and facilitate their activation to release different cytokines which further enhances inflammation. Upon activation, platelets also secrete factors such as CXCL4 (also known as platelet factor, PF4), CCL5 and fibrinopeptides which are critical regulators of replication and propagation of several viruses in the host. Studies suggest that CXCL4 can both inhibit as well as enhance HIV1 infection. Data from our lab show that CXCL4 inhibits interferon (IFN) pathway and promotes DENV replication in monocytes in vitro and in patients significantly. Inhibition of CXCL4 mediated signaling results in increased IFN production and suppressed DENV and JEV replication in monocytes. In this review, we discuss the role of platelets in viral disease progression with a focus on dengue infection.
Collapse
Affiliation(s)
- Anamika Singh
- Disease Biology Laboratory, Regional Center for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Piyush Bisht
- Disease Biology Laboratory, Regional Center for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Sulagna Bhattacharya
- Disease Biology Laboratory, Regional Center for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Prasenjit Guchhait
- Disease Biology Laboratory, Regional Center for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
62
|
Belizaire R, Makar RS. Non-Alloimmune Mechanisms of Thrombocytopenia and Refractoriness to Platelet Transfusion. Transfus Med Rev 2020; 34:242-249. [PMID: 33129606 PMCID: PMC7494440 DOI: 10.1016/j.tmrv.2020.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022]
Abstract
Refractoriness to platelet transfusion is a common clinical problem encountered by the transfusion medicine specialist. It is well recognized that most causes of refractoriness to platelet transfusion are not a consequence of alloimmunization to human leukocyte, platelet-specific, or ABO antigens, but are a consequence of platelet sequestration and consumption. This review summarizes the clinical factors that result in platelet refractoriness and highlights recent data describing novel biological mechanisms that contribute to this clinical problem.
Collapse
Affiliation(s)
- Roger Belizaire
- Associate Director, Adult Transfusion Medicine, Brigham and Women's Hospital, Boston, MA
| | - Robert S Makar
- Director, Blood Transfusion Service, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
63
|
Stanly TA, Suman R, Rani GF, O’Toole PJ, Kaye PM, Hitchcock IS. Quantitative Optical Diffraction Tomography Imaging of Mouse Platelets. Front Physiol 2020; 11:568087. [PMID: 33041864 PMCID: PMC7526686 DOI: 10.3389/fphys.2020.568087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
Platelets are specialized anucleate cells that play a major role in hemostasis following vessel injury. More recently, platelets have also been implicated in innate immunity and inflammation by directly interacting with immune cells and releasing proinflammatory signals. It is likely therefore that in certain pathologies, such as chronic parasitic infections and myeloid malignancies, platelets can act as mediators for hemostatic and proinflammatory responses. Fortunately, murine platelet function ex vivo is highly analogous to human, providing a robust model for functional comparison. However, traditional methods of studying platelet phenotype, function and activation status often rely on using large numbers of whole isolated platelet populations, which severely limits the number and type of assays that can be performed with mouse blood. Here, using cutting edge 3D quantitative phase imaging, holotomography, that uses optical diffraction tomography (ODT), we were able to identify and quantify differences in single unlabeled, live platelets with minimal experimental interference. We analyzed platelets directly isolated from whole blood of mice with either a JAK2V617F-positive myeloproliferative neoplasm (MPN) or Leishmania donovani infection. Image analysis of the platelets indicates previously uncharacterized differences in platelet morphology, including altered cell volume and sphericity, as well as changes in biophysical parameters such as refractive index (RI) and dry mass. Together, these data indicate that, by using holotomography, we were able to identify clear disparities in activation status and potential functional ability in disease states compared to control at the level of single platelets.
Collapse
Affiliation(s)
- Tess A. Stanly
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Rakesh Suman
- Technology Facility, Department of Biology, University of York, York, United Kingdom
| | - Gulab Fatima Rani
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Peter J. O’Toole
- Technology Facility, Department of Biology, University of York, York, United Kingdom
| | - Paul M. Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Ian S. Hitchcock
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
64
|
Abstract
INTRODUCTION Integrins are a family of 24 cell adhesion receptors that play a role in the biggest unmet needs in medicine - cardiovascular disease, immunology and cancer. Their discovery promised huge potential for the pharmaceutical industry. Areas covered. Over 35-years since their discovery, there is little to show for the hundreds of billions of dollars of investment in anti-integrin drug discovery programmes. In this review the author discusses the reasons for the failure of this promising class of drugs and the future for this class of drugs. Expert opinion. Within 10-years, there was a plethora of potent, specific anti-integrin molecules and since their discovery, many of these agents have entered clinical trials. The success in discovering these agents was due to recently discovered monoclonal antibody technology. The integrin-recognition domain Arg-Gly-Asp (RGD) provided the basis for discovering small molecule inhibitors to integrins - both cyclic peptides and peptidomimetics. Most agents failed in the Phase III clinical trials and those agents that did make it to the market were plagued with issues of toxicity and limited efficacy and were soon replaced with non-integrin targeting agents. Their failure was due to a combination of poor pharmacokinetics and pharmacodynamics, complicated by the complex pathophysiology of integrins.
Collapse
Affiliation(s)
- Dermot Cox
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland , Dublin, Ireland
| |
Collapse
|
65
|
Rodríguez AM, Trotta A, Melnyczajko AP, Miraglia MC, Kim KS, Delpino MV, Barrionuevo P, Giambartolomei GH. Brucella abortus-Stimulated Platelets Activate Brain Microvascular Endothelial Cells Increasing Cell Transmigration through the Erk1/2 Pathway. Pathogens 2020; 9:pathogens9090708. [PMID: 32867217 PMCID: PMC7558107 DOI: 10.3390/pathogens9090708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 01/18/2023] Open
Abstract
Central nervous system invasion by bacteria of the genus Brucella results in an inflammatory disorder called neurobrucellosis. A common feature associated with this pathology is blood-brain barrier (BBB) activation. However, the underlying mechanisms involved with such BBB activation remain unknown. The aim of this work was to investigate the role of Brucella abortus-stimulated platelets on human brain microvascular endothelial cell (HBMEC) activation. Platelets enhanced HBMEC activation in response to B. abortus infection. Furthermore, supernatants from B. abortus-stimulated platelets also activated brain endothelial cells, inducing increased secretion of IL-6, IL-8, CCL-2 as well as ICAM-1 and CD40 upregulation on HBMEC compared with supernatants from unstimulated platelets. Outer membrane protein 19, a B. abortus lipoprotein, recapitulated B. abortus-mediated activation of HBMECs by platelets. In addition, supernatants from B. abortus-activated platelets promoted transendothelial migration of neutrophils and monocytes. Finally, using a pharmacological inhibitor, we demonstrated that the Erk1/2 pathway is involved in the endothelial activation induced by B. abortus-stimulated platelets and also in transendothelial migration of neutrophils. These results describe a mechanism whereby B. abortus-stimulated platelets induce endothelial cell activation, promoting neutrophils and monocytes to traverse the BBB probably contributing to the inflammatory pathology of neurobrucellosis.
Collapse
Affiliation(s)
- Ana María Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1120AAD, Argentina; (A.M.R.); (A.P.M.); (M.C.M.); (M.V.D.)
| | - Aldana Trotta
- Instituto de Medicina Experimental (IMEX) (CONICET-Academia Nacional de Medicina), Buenos Aires C1425ASU, Argentina; (A.T.); (P.B.)
| | - Agustina P. Melnyczajko
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1120AAD, Argentina; (A.M.R.); (A.P.M.); (M.C.M.); (M.V.D.)
| | - M. Cruz Miraglia
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1120AAD, Argentina; (A.M.R.); (A.P.M.); (M.C.M.); (M.V.D.)
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - M. Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1120AAD, Argentina; (A.M.R.); (A.P.M.); (M.C.M.); (M.V.D.)
| | - Paula Barrionuevo
- Instituto de Medicina Experimental (IMEX) (CONICET-Academia Nacional de Medicina), Buenos Aires C1425ASU, Argentina; (A.T.); (P.B.)
| | - Guillermo Hernán Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1120AAD, Argentina; (A.M.R.); (A.P.M.); (M.C.M.); (M.V.D.)
- Correspondence:
| |
Collapse
|
66
|
Jayarangaiah A, Kariyanna PT, Chen X, Jayarangaiah A, Kumar A. COVID-19-Associated Coagulopathy: An Exacerbated Immunothrombosis Response. Clin Appl Thromb Hemost 2020; 26:1076029620943293. [PMID: 32735131 PMCID: PMC7401047 DOI: 10.1177/1076029620943293] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Since the onset of the global pandemic in early 2020, coronavirus disease 2019 (COVID-19) has posed a multitude of challenges to health care systems worldwide. In order to combat these challenges and devise appropriate therapeutic strategies, it becomes of paramount importance to elucidate the pathophysiology of this illness. Coronavirus disease 2019, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), is characterized by a dysregulated immune system and hypercoagulability. COVID-associated coagulopathy (CAC) was recognized based on profound d-dimer elevations and evidence of microthrombi and macrothrombi, both in venous and arterial systems. The underlying mechanisms associated with CAC have been suggested, but not clearly defined. The model of immunothrombosis illustrates the elaborate crosstalk between the innate immune system and coagulation. The rendering of a procoagulant state in COVID-19 involves the interplay of many innate immune pathways. The SARS-CoV2 virus can directly infect immune and endothelial cells, leading to endothelial injury and dysregulation of the immune system. Activated leukocytes potentiate a procoagulant state via release of intravascular tissue factor, platelet activation, NETosis, and inhibition of anticoagulant mechanisms. Additional pathways of specific relevance in CAC include cytokine release and complement activation. All these mechanisms have recently been reported in COVID-19. Immunothrombosis provides a comprehensive perspective of the several synergistic pathways pertinent to the pathogenesis of CAC.
Collapse
Affiliation(s)
- Apoorva Jayarangaiah
- Department of Hematology and Oncology, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Xiaoyi Chen
- Department of Internal Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Amog Jayarangaiah
- Trinity School of Medicine, Ratho Mill, St. Vincent, the Grenadines, WI, USA
| | - Abhishek Kumar
- Department of Hematology and Oncology, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
67
|
Altamimi H, Abid AR, Othman F, Patel A. Cardiovascular Manifestations of COVID-19. Heart Views 2020; 21:171-186. [PMID: 33688409 PMCID: PMC7898993 DOI: 10.4103/heartviews.heartviews_150_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the cause of COVID-19, was first reported in Wuhan, China. SARS-CoV-2 especially involves alveolar epithelial cells, which results in respiratory symptoms more severe in patients with cardiovascular disease (CVD) probably linked with increased secretion of angiotensin-converting enzyme 2 in these patients compared with healthy individuals. Cardiac manifestations may contribute to overall mortality and even be the primary cause of death in many of these patients. A higher prevalence of hypertension (HTN) followed by diabetes mellitus and CVD was observed in COVID-19 patients. A higher case-fatality rate was seen among patients with pre-existing comorbid conditions, such as diabetes, chronic respiratory disease, HTN, and cancer, compared to a lesser rate in the entire population. Cardiovascular (CV) manifestations of COVID-19 encompass a wide spectrum, including myocardial injury, infarction, myocarditis-simulating ST-segment elevation myocardial infarction, nonischemic cardiomyopathy, coronary vasospasm, pericarditis, or stress (takotsubo) cardiomyopathy. This review is intended to summarize our current understanding of the CV manifestations of COVID-19 and also to study the relationship between SARS-CoV-2 and CVDs and discuss possible mechanisms of action behind SARS-CoV-2 infection-induced damage to the CV system.
Collapse
Affiliation(s)
- Hasan Altamimi
- Department of Cardiology and Cardiovascular Surgery, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Rehman Abid
- Department of Cardiology and Cardiovascular Surgery, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Fahmi Othman
- Department of Cardiology and Cardiovascular Surgery, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Ashfaq Patel
- Department of Cardiology and Cardiovascular Surgery, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
68
|
Hannachi N, Ogé-Ganaye E, Baudoin JP, Fontanini A, Bernot D, Habib G, Camoin-Jau L. Antiplatelet Agents Have a Distinct Efficacy on Platelet Aggregation Induced by Infectious Bacteria. Front Pharmacol 2020; 11:863. [PMID: 32581813 PMCID: PMC7291881 DOI: 10.3389/fphar.2020.00863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/26/2020] [Indexed: 02/01/2023] Open
Abstract
Platelets are the cornerstone of hemostasis. However, their exaggerated aggregation induces deleterious consequences. In several diseases, such as infectious endocarditis and sepsis, the interaction between platelets and bacteria leads to platelet aggregation. Despite platelet involvement, no antiplatelet therapy is currently recommended in these infectious diseases. We aimed here, to evaluate, in vitro, the effect of antiplatelet drugs on platelet aggregation induced by two of the bacterial pathogens most involved in infectious endocarditis, Staphylococcus aureus and Streptococcus sanguinis. Blood samples were collected from healthy donors (n = 43). Treated platelet rich plasmas were incubated with three bacterial strains of each species tested. Platelet aggregation was evaluated by Light Transmission Aggregometry. CD62P surface exposure was evaluated by flow cytometry. Aggregate organizations were analyzed by scanning electron microscopy. All the strains tested induced a strong platelet aggregation. Antiplatelet drugs showed distinct effects depending on the bacterial species involved with different magnitude between strains of the same species. Ticagrelor exhibited the highest inhibitory effect on platelet activation (p <0.001) and aggregation (p <0.01) induced by S. aureus. In the case of S. sanguinis, platelet activation and aggregation were better inhibited using the combination of both aspirin and ticagrelor (p <0.05 and p <0.001 respectively). Aggregates ultrastructure and effect of antiplatelet drugs observed by scanning electron microscopy depended on the species involved. Our results highlighted that the effect of antiplatelet drugs depended on the bacterial species involved. We might recommend therefore to consider the germ involved before introduction of an optimal antiplatelet therapy.
Collapse
Affiliation(s)
- Nadji Hannachi
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée infection, Marseille, France
| | - Emma Ogé-Ganaye
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée infection, Marseille, France
- Laboratoire d’Hématologie, Hôpital de la Timone, APHM, Boulevard Jean-Moulin, Marseille, France
| | - Jean-Pierre Baudoin
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée infection, Marseille, France
| | - Anthony Fontanini
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée infection, Marseille, France
| | - Denis Bernot
- Laboratoire d’Hématologie, Hôpital de la Timone, APHM, Boulevard Jean-Moulin, Marseille, France
| | - Gilbert Habib
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée infection, Marseille, France
- Département de cardiologie, Hôpital de la Timone, AP-HM, Boulevard Jean-Moulin, Marseille, France
| | - Laurence Camoin-Jau
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée infection, Marseille, France
- Laboratoire d’Hématologie, Hôpital de la Timone, APHM, Boulevard Jean-Moulin, Marseille, France
| |
Collapse
|
69
|
Wolff M, Handtke S, Palankar R, Wesche J, Kohler TP, Kohler C, Gruel Y, Hammerschmidt S, Greinacher A. Activated platelets kill Staphylococcus aureus, but not Streptococcus pneumoniae-The role of FcγRIIa and platelet factor 4/heparinantibodies. J Thromb Haemost 2020; 18:1459-1468. [PMID: 32237268 DOI: 10.1111/jth.14814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Heparin induced thrombocytopenia (HIT) is likely a misdirected bacterial host defense mechanism. Platelet factor 4 (PF4) binds to polyanions on bacterial surfaces exposing neo-epitopes to which HIT antibodies bind. Platelets are activated by the resulting immune complexes via FcγRIIA, release bactericidal substances, and kill Gram-negative Escherichia coli. OBJECTIVES To assess the role of PF4, anti-PF4/H antibodies and FcγRIIa in killing of Gram-positive bacteria by platelets. METHODS Binding of PF4 to protein-A deficient Staphylococcus aureus (SA113Δspa) and non-encapsulated Streptococcus pneumoniae (D39Δcps) and its conformational change were assessed by flow cytometry using monoclonal (KKO,5B9) and patient derived anti-PF4/H antibodies. Killing of bacteria was quantified by counting colony forming units (cfu) after incubation with platelets or platelet releasate. Using flow cytometry, platelet activation (CD62P-expression, PAC-1 binding) and phosphatidylserine (PS)-exposure were analyzed. RESULTS Monoclonal and patient-derived anti-PF4/H antibodies bound in the presence of PF4 to both S. aureus and S. pneumoniae (1.6-fold increased fluorescence signal for human anti-PF4/H antibodies to 24.0-fold increase for KKO). Staphylococcus aureus (5.5 × 104 cfu/mL) was efficiently killed by platelets (2.7 × 104 cfu/mL) or their releasate (2.9 × 104 cfu/mL). Killing was not further enhanced by PF4 or anti-PF4/H antibodies. Blocking FcγRIIa had no impact on killing of S. aureus by platelets. In contrast, S. pneumoniae was not killed by platelets or releasate. Instead, after incubation with pneumococci platelets were unresponsive to TRAP-6 stimulation and exposed high levels of PS. CONCLUSIONS Anti-PF4/H antibodies seem to have only a minor role for direct killing of Gram-positive bacteria by platelets. Staphylococcus aureus is killed by platelets or platelet releasate. In contrast, S. pneumoniae affects platelet viability.
Collapse
Affiliation(s)
- Martina Wolff
- Institut für Immunologie und Transfusion Medizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Stefan Handtke
- Institut für Immunologie und Transfusion Medizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Raghavendra Palankar
- Institut für Immunologie und Transfusion Medizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Jan Wesche
- Institut für Immunologie und Transfusion Medizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Christian Kohler
- Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Yves Gruel
- Département d'Hématologie-Hémostase, Hôpital Universitaire de Tours, Tours, France
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- Institut für Immunologie und Transfusion Medizin, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
70
|
de Figueiredo JA, Marcondes-Braga FG, Moura LZ, de Figueiredo AMES, de Figueiredo VMES, Mourilhe-Rocha R, Mesquita ET. Coronavirus Disease 2019 and the Myocardium. Arq Bras Cardiol 2020; 114:1051-1057. [PMID: 32638896 PMCID: PMC8416129 DOI: 10.36660/abc.20200373] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Infection with the coronavirus known as COVID-19 has promoted growing interest on the part of cardiologists, emergency care specialists, intensive care specialists, and researchers, due to the study of myocardial involvement based on different clinical forms resulting from immunoinflammatory and neurohumoral demodulation.Myocardial involvement may be minimal and identifiable only by electrocardiographic changes, mainly increased cardiac troponins, or, on the other side of the spectrum, by forms of fulminant myocarditis and takotsubo syndrome.The description of probable acute myocarditis has been widely supported by the observation of increased troponin in association with dysfunction. Classical definition of myocarditis, supported by endomyocardial biopsy of inflammatory infiltrate, is rare; it has been observed in only one case report to date, and the virus has not been identified inside cardiomyocytes.Thus, the phenomenon that has been documented is acute myocardial injury, making it necessary to rule our obstructive coronary disease based on increased markers of myocardial necrosis, whether or not they are associated with ventricular dysfunction, likely associated with cytokine storms and other factors that may synergistically promote myocardial injury, such as sympathetic hyperactivation, hypoxemia, arterial hypotension, and microvascular thrombotic phenomena.Systemic inflammatory and myocardial phenomena following viral infection have been well documented, and they may progress to cardiac remodeling and myocardial dysfunction. Cardiac monitoring of these patients is, therefore, important in order to monitor the development of the phenotype of dilated myocardiopathy.This review presents the main etiological and physiopathological findings, a description of the taxonomy of these types of cardiac involvement, and their correlation with the main clinical forms of the myocardial component present in patients in the acute phase of COVID-19.
Collapse
Affiliation(s)
| | - Fabiana G. Marcondes-Braga
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilInstituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo,São Paulo, SP - Brasil
| | - Lidia Zytinski Moura
- Pontifícia Universidade Católica do ParanáCuritibaPRBrasilPontifícia Universidade Católica do Paraná, Curitiba, PR - Brasil
| | | | | | - Ricardo Mourilhe-Rocha
- Universidade do Estado do Rio de JaneiroHospital Pró-cardíacoBrasilUniversidade do Estado do Rio de Janeiro e Hospital Pró-cardíaco. Brasil
| | | |
Collapse
|
71
|
Atri D, Siddiqi HK, Lang JP, Nauffal V, Morrow DA, Bohula EA. COVID-19 for the Cardiologist: Basic Virology, Epidemiology, Cardiac Manifestations, and Potential Therapeutic Strategies. JACC Basic Transl Sci 2020; 5:518-536. [PMID: 32292848 PMCID: PMC7151394 DOI: 10.1016/j.jacbts.2020.04.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease-2019 (COVID-19), a contagious disease caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), has reached pandemic status. As it spreads across the world, it has overwhelmed health care systems, strangled the global economy, and led to a devastating loss of life. Widespread efforts from regulators, clinicians, and scientists are driving a rapid expansion of knowledge of the SARS-CoV-2 virus and COVID-19. The authors review the most current data, with a focus on the basic understanding of the mechanism(s) of disease and translation to the clinical syndrome and potential therapeutics. The authors discuss the basic virology, epidemiology, clinical manifestation, multiorgan consequences, and outcomes. With a focus on cardiovascular complications, they propose several mechanisms of injury. The virology and potential mechanism of injury form the basis for a discussion of potential disease-modifying therapies.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- ARDS, acute respiratory distress syndrome
- CFR, case fatality rate
- COVID-19
- COVID-19, coronavirus disease-2019
- CoV, coronavirus
- DIC, disseminated intravascular coagulation
- ER, endoplasmic reticulum
- ICU, intensive care unit
- SARS-CoV, severe acute respiratory syndrome-coronavirus
- SARS-CoV-2
- SOFA, sequential organ failure assessment
- TMPRSS2, transmembrane serine protease 2
- cardiovascular
- hsCRP, high-sensitivity C-reactive protein
- treatments
- virology
Collapse
Affiliation(s)
| | | | - Joshua P. Lang
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Victor Nauffal
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - David A. Morrow
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Erin A. Bohula
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
72
|
Page MJ, Pretorius E. A Champion of Host Defense: A Generic Large-Scale Cause for Platelet Dysfunction and Depletion in Infection. Semin Thromb Hemost 2020; 46:302-319. [PMID: 32279287 PMCID: PMC7339151 DOI: 10.1055/s-0040-1708827] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thrombocytopenia is commonly associated with sepsis and infections, which in turn are characterized by a profound immune reaction to the invading pathogen. Platelets are one of the cellular entities that exert considerable immune, antibacterial, and antiviral actions, and are therefore active participants in the host response. Platelets are sensitive to surrounding inflammatory stimuli and contribute to the immune response by multiple mechanisms, including endowing the endothelium with a proinflammatory phenotype, enhancing and amplifying leukocyte recruitment and inflammation, promoting the effector functions of immune cells, and ensuring an optimal adaptive immune response. During infection, pathogens and their products influence the platelet response and can even be toxic. However, platelets are able to sense and engage bacteria and viruses to assist in their removal and destruction. Platelets greatly contribute to host defense by multiple mechanisms, including forming immune complexes and aggregates, shedding their granular content, and internalizing pathogens and subsequently being marked for removal. These processes, and the nature of platelet function in general, cause the platelet to be irreversibly consumed in the execution of its duty. An exaggerated systemic inflammatory response to infection can drive platelet dysfunction, where platelets are inappropriately activated and face immunological destruction. While thrombocytopenia may arise by condition-specific mechanisms that cause an imbalance between platelet production and removal, this review evaluates a generic large-scale mechanism for platelet depletion as a repercussion of its involvement at the nexus of responses to infection.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
73
|
Liu C, Zhou Y, He X, Ma J, Guo W, Dong B, Liang W, Wu Y, Owusu-Agyeman M, Xue R, Zhao J, Wu Z, Dong Y. Mean platelet volume/platelet count ratio predicts long-term mortality in patients with infective endocarditis. Biomark Med 2020; 14:293-302. [PMID: 32166976 DOI: 10.2217/bmm-2019-0258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: We aimed to examine the association between baseline mean platelet volume/platelet count ratio (MPR) and all-cause mortality in patients with infective endocarditis (IE). Patients & methods: This study analyzed 218 consecutive patients with IE and divided them into four groups based on MPR quartiles. We used Kaplan-Meier survival curves to determine the cumulative survival and Cox proportional hazards models to investigate the association between MPR and all-cause mortality after hospital discharge. Results: Kaplan-Meier curves showed a gradual increase in mortality risk from the lowest MPR quartile to the highest quartile. Multivariate analysis revealed that MPR was an independent predictor of increased risk for all-cause death. Conclusion: Elevated MPR was independently associated with long-term all-cause mortality in patients with IE.
Collapse
Affiliation(s)
- Chen Liu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, PR China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, PR China
| | - Yuanyuan Zhou
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, PR China
| | - Xin He
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, PR China
| | - Junxiao Ma
- Sun Yat-sen University Zhongshan School of Medicine, Guangzhou 510080, PR China
| | - Wenyun Guo
- Sun Yat-sen University Zhongshan School of Medicine, Guangzhou 510080, PR China
| | - Bin Dong
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, PR China
| | - Weihao Liang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, PR China
| | - Yuzhong Wu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, PR China
| | - Marvin Owusu-Agyeman
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, PR China
| | - Ruicong Xue
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, PR China
| | - Jingjing Zhao
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, PR China
| | - Zexuan Wu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, PR China
| | - Yugang Dong
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, PR China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, PR China
| |
Collapse
|
74
|
Peetermans M, Meyers S, Liesenborghs L, Vanhoorelbeke K, De Meyer SF, Vandenbriele C, Lox M, Hoylaerts MF, Martinod K, Jacquemin M, Vanassche T, Verhamme P. Von Willebrand factor and ADAMTS13 impact on the outcome of Staphylococcus aureus sepsis. J Thromb Haemost 2020; 18:722-731. [PMID: 31758651 DOI: 10.1111/jth.14686] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/18/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Previous clinical evidence correlates levels of von Willebrand factor (VWF) and its cleaving protease ADAMTS13 with outcome in septic patients. No previous studies addressed if VWF and ADAMTS13 affected the outcome of Staphylococcus aureus sepsis. OBJECTIVES We studied the role of VWF and ADAMTS13 in S. aureus sepsis both in patients and in mice. METHODS VWF levels and ADAMTS13 activity levels were measured in plasma samples from 89 S. aureus bacteremia patients by chemiluminescent assays and were correlated with clinical sepsis outcome parameters. In wild-type mice and mice deficient in VWF and ADAMTS13, we investigated the outcome of S. aureus sepsis and quantified bacterial clearance and organ microthrombi. RESULTS In patients with S. aureus bloodstream infections, high VWF levels and low ADAMTS13 activity levels correlated with disease severity and with parameters of inflammation and disseminated intravascular coagulation. In septic mice, VWF deficiency attenuated mortality, whereas ADAMTS13 deficiency increased mortality. Bacterial clearance was enhanced in VWF-deficient mice. The differences in mortality for the studied genotypes were associated with differential loads of organ microthrombi in both liver and kidneys. CONCLUSIONS In conclusion, this study reports the consistent relation of VWF, ADAMTS13 and their ratio to disease severity in patients and mice with S. aureus sepsis. Targeting VWF multimers and/or the relative ADAMTS13 deficiency that occurs in sepsis should be explored as a potential new therapeutic target in S. aureus endovascular infections.
Collapse
Affiliation(s)
- Marijke Peetermans
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Severien Meyers
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Laurens Liesenborghs
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, University of Leuven campus Kulak Kortrijk, Kortrijk, Belgium
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, University of Leuven campus Kulak Kortrijk, Kortrijk, Belgium
| | - Christophe Vandenbriele
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Marleen Lox
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Marc F Hoylaerts
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Marc Jacquemin
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Thomas Vanassche
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Peter Verhamme
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| |
Collapse
|
75
|
Ploplis VA, Castellino FJ. Host Pathways of Hemostasis that Regulate Group A Streptococcus pyogenes Pathogenicity. Curr Drug Targets 2020; 21:193-201. [PMID: 31556853 PMCID: PMC7670306 DOI: 10.2174/1389450120666190926152914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/02/2019] [Accepted: 09/06/2019] [Indexed: 11/22/2022]
Abstract
A hallmark feature of severe Group A Streptococcus pyogenes (GAS) infection is dysregulated hemostasis. Hemostasis is the primary pathway for regulating blood flow through events that contribute towards clot formation and its dissolution. However, a number of studies have identified components of hemostasis in regulating survival and dissemination of GAS. Several proteins have been identified on the surface of GAS and they serve to either facilitate invasion to host distal sites or regulate inflammatory responses to the pathogen. GAS M-protein, a surface-exposed virulence factor, appears to be a major target for interactions with host hemostasis proteins. These interactions mediate biochemical events both on the surface of GAS and in the solution when M-protein is released into the surrounding environment through shedding or regulated proteolytic processes that dictate the fate of this pathogen. A thorough understanding of the mechanisms associated with these interactions could lead to novel approaches for altering the course of GAS pathogenicity.
Collapse
Affiliation(s)
- Victoria A. Ploplis
- University of Notre Dame, W.M. Keck Center for Transgene Research, 230 Raclin-Carmichael Hall, Notre Dame, IN 46556 USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Francis J. Castellino
- University of Notre Dame, W.M. Keck Center for Transgene Research, 230 Raclin-Carmichael Hall, Notre Dame, IN 46556 USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
76
|
Hannachi N, Baudoin JP, Prasanth A, Habib G, Camoin-Jau L. The distinct effects of aspirin on platelet aggregation induced by infectious bacteria. Platelets 2019; 31:1028-1038. [PMID: 31856631 DOI: 10.1080/09537104.2019.1704717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacteria induce platelet aggregation triggered by several mechanisms. The goal of this work was to characterize platelet aggregates induced by different bacterial strains and to quantify the effect of aspirin treatment using aggregation tests, as well as a novel approach based on confocal analysis. Blood samples were obtained from either healthy donors (n = 27) or patients treated with long-term aspirin (n = 15). The bacterial species included were Staphylococcus aureus, Enterococcus faecalis, and Streptococcus sanguinis. The different aggregate's ultrastructures depending on the bacterial strain were analyzed using Scanning electron microscopy. Quantification of the size of the platelet aggregates, their mean number as well as the bacterial impregnation within the aggregates was performed using confocal laser scanning light microscopy. Light Transmission Aggregometry was also performed. Our results reported distinct characteristics of platelet aggregates depending on the bacterial strain. Using confocal analysis, we have shown that aspirin significantly reduced platelet aggregation induced by S. aureus (p = .003) and E. faecalis (p = .006) with no effect in the case of S. sanguinis (p = .529). The results of the aggregometry were concordant with those of the confocal technique in the case of S. aureus and S. sanguinis. Interestingly, aggregation induced by E. faecalis was detected only with confocal analysis. In conclusion, our confocal scanning microscopy allowed a detailed study of the platelet aggregation induced by bacteria. We showed that aspirin acts on bacterial-induced platelet aggregation depending on the species. These results are in favor of the use of aspirin considering the species and the bacterial strain involved.
Collapse
Affiliation(s)
- Nadji Hannachi
- Département d'infectiologie, MEPHI, IHU Méditerranée infection, Aix Marseille Univ, IRD, AP-HM , Marseille, France
| | - Jean-Pierre Baudoin
- Département d'infectiologie, MEPHI, IHU Méditerranée infection, Aix Marseille Univ, IRD, AP-HM , Marseille, France
| | - Arsha Prasanth
- Département d'infectiologie, MEPHI, IHU Méditerranée infection, Aix Marseille Univ, IRD, AP-HM , Marseille, France
| | - Gilbert Habib
- Département d'infectiologie, MEPHI, IHU Méditerranée infection, Aix Marseille Univ, IRD, AP-HM , Marseille, France.,Département de cardiologie, la Timone Hospital, AP-HM , Marseille, France
| | - Laurence Camoin-Jau
- Département d'infectiologie, MEPHI, IHU Méditerranée infection, Aix Marseille Univ, IRD, AP-HM , Marseille, France.,Laboratoire d'Hématologie, La Timone Hospital, APHM , Marseille, France
| |
Collapse
|
77
|
McMahon SR, Chava S, Taatjes-Sommer HS, Meagher S, Brummel-Ziedins KE, Schneider DJ. Variation in platelet expression of FcγRIIa after myocardial infarction. J Thromb Thrombolysis 2019; 48:88-94. [PMID: 30968301 DOI: 10.1007/s11239-019-01852-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
FcγRIIa amplifies platelet activation and greater platelet expression of FcγRIIa identifies patients at greater risk of subsequent cardiovascular events. Thus, platelet expression of FcγRIIa may be useful to guide therapy. Because platelet function tests are impacted by preparative procedures and substantial intra-individual variability, we examined the impact of these factors on platelet expression of FcγRIIa in blood from healthy subjects and in patients after myocardial infarction (MI). Platelet expression of FcγRIIa was quantified with the use of flow cytometry. Blood was taken from healthy subjects and 114 patients after a MI in whom platelet expression of FcγRIIa was quantified before discharge and at 6 ± 1 months. Neither anticoagulants nor the antiplatelet agent cangrelor changed platelet expression of FcγRIIa. Intra-individual variation in platelet FcγRIIa expression was 8.5% ± 5% over the course of 1 month in healthy subjects. Platelet FcγRIIa expression was within 20% of the baseline value after 6 months in 71% of patients after MI. In summary, because FcγRIIa is a protein on the surface of platelets, assay conditions and antiplatelet agents do not change expression. Intra-individual variability in platelet expression of FcγRIIa is modest. Accordingly, platelet expression of FcγRIIa is a marker of increased platelet reactivity that can be reliably and repeatedly measured.Clinical Trial Registration: NCT02505217.
Collapse
Affiliation(s)
- Sean R McMahon
- Departments of Medicine and Biochemistry, The University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, The University of Vermont, 308 S. Park Drive, Colchester, Burlington, VT, 05446, USA
| | - Sreedivya Chava
- Departments of Medicine and Biochemistry, The University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, The University of Vermont, 308 S. Park Drive, Colchester, Burlington, VT, 05446, USA
| | - Heidi S Taatjes-Sommer
- Departments of Medicine and Biochemistry, The University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, The University of Vermont, 308 S. Park Drive, Colchester, Burlington, VT, 05446, USA
| | - Sean Meagher
- Departments of Medicine and Biochemistry, The University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, The University of Vermont, 308 S. Park Drive, Colchester, Burlington, VT, 05446, USA
| | - Kathleen E Brummel-Ziedins
- Departments of Medicine and Biochemistry, The University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, The University of Vermont, 308 S. Park Drive, Colchester, Burlington, VT, 05446, USA
| | - David J Schneider
- Departments of Medicine and Biochemistry, The University of Vermont, Burlington, VT, USA.
- Cardiovascular Research Institute, The University of Vermont, 308 S. Park Drive, Colchester, Burlington, VT, 05446, USA.
| |
Collapse
|
78
|
Affiliation(s)
- Dermot Cox
- Molecular & Cellular Therapeutics Royal College of Surgeons in Ireland Dublin Ireland
| |
Collapse
|
79
|
Esiaba I, Mousselli I, M. Faison G, M. Angeles D, S. Boskovic D. Platelets in the Newborn. NEONATAL MEDICINE 2019. [DOI: 10.5772/intechopen.86715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
80
|
Yadav VK, Singh PK, Agarwal V, Singh SK. Crosstalk between Platelet and Bacteria: A Therapeutic Prospect. Curr Pharm Des 2019; 25:4041-4052. [PMID: 31553286 DOI: 10.2174/1381612825666190925163347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022]
Abstract
Platelets are typically recognized for their roles in the maintenance of hemostasis and vascular wall repair to reduce blood loss. Beyond hemostasis, platelets also play a critical role in pathophysiological conditions like atherosclerosis, stroke, thrombosis, and infections. During infection, platelets interact directly and indirectly with bacteria through a wide range of cellular and molecular mechanisms. Platelet surface receptors such as GPIbα, FcγRIIA, GPIIbIIIa, and TLRs, etc. facilitate direct interaction with bacterial cells. Besides, the indirect interaction between platelet and bacteria involves host plasma proteins such as von Willebrand Factor (vWF), fibronectin, IgG, and fibrinogen. Bacterial cells induce platelet activation, aggregation, and thrombus formation in the microvasculature. The activated platelets induce the Neutrophil Extracellular Traps (NETs) formation, which further contribute to thrombosis. Thus, platelets are extensively anticipated as vital immune modulator cells during infection, which may further lead to cardiovascular complications. In this review, we cover the interaction mechanisms between platelets and bacteria that may lead to the development of thrombotic disorders. Platelet receptors and other host molecules involved in such interactions can be used to develop new therapeutic strategies to combat against infection-induced cardiovascular complications. In addition, we highlight other receptor and enzyme targets that may further reduce infection-induced platelet activation and various pathological conditions.
Collapse
Affiliation(s)
- Vivek K Yadav
- Department of Biotechnology Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Pradeep K Singh
- Department of Biotechnology Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Vishnu Agarwal
- Department of Biotechnology Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Sunil K Singh
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
81
|
Abstract
Dysregulation of lymphocyte function, accumulation of autoantibodies and defective clearance of circulating immune complexes and apoptotic cells are hallmarks of systemic lupus erythematosus (SLE). Moreover, it is now evident that an intricate interplay between the adaptive and innate immune systems contributes to the pathogenesis of SLE, ultimately resulting in chronic inflammation and organ damage. Platelets circulate in the blood and are chiefly recognized for their role in the prevention of bleeding and promotion of haemostasis; however, accumulating evidence points to a role for platelets in both adaptive and innate immunity. Through a broad repertoire of receptors, platelets respond promptly to immune complexes, complement and damage-associated molecular patterns, and represent a major reservoir of immunomodulatory molecules in the circulation. Furthermore, evidence suggests that platelets are activated in patients with SLE, and that they could contribute to the circulatory autoantigenic load through the release of microparticles and mitochondrial antigens. Herein, we highlight how platelets contribute to the immune response and review evidence implicating platelets in the pathogenesis of SLE.
Collapse
|
82
|
Kerrigan SW, Devine T, Fitzpatrick G, Thachil J, Cox D. Early Host Interactions That Drive the Dysregulated Response in Sepsis. Front Immunol 2019; 10:1748. [PMID: 31447831 PMCID: PMC6691039 DOI: 10.3389/fimmu.2019.01748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/10/2019] [Indexed: 01/18/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. While many individual cells and systems in the body are involved in driving the excessive and sometimes sustained host response, pathogen engagement with endothelial cells and platelets early in sepsis progression, are believed to be key. Significant progress has been made in establishing key molecular interactions between platelets and pathogens and endothelial cells and pathogens. This review will explore the growing number of compensatory connections between bacteria and viruses with platelets and endothelial cells and how a better understanding of these interactions are informing the field of potential novel ways to treat the dysregulated host response during sepsis.
Collapse
Affiliation(s)
- Steven W Kerrigan
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tatyana Devine
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Glenn Fitzpatrick
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jecko Thachil
- Department of Haematology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Dermot Cox
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
83
|
Assinger A, Schrottmaier WC, Salzmann M, Rayes J. Platelets in Sepsis: An Update on Experimental Models and Clinical Data. Front Immunol 2019; 10:1687. [PMID: 31379873 PMCID: PMC6650595 DOI: 10.3389/fimmu.2019.01687] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/04/2019] [Indexed: 12/22/2022] Open
Abstract
Beyond their important role in hemostasis, platelets play a crucial role in inflammatory diseases. This becomes apparent during sepsis, where platelet count and activation correlate with disease outcome and survival. Sepsis is caused by a dysregulated host response to infection, leading to organ dysfunction, permanent disabilities, or death. During sepsis, tissue injury results from the concomitant uncontrolled activation of the complement, coagulation, and inflammatory systems as well as platelet dysfunction. The balance between the systemic inflammatory response syndrome (SIRS) and the compensatory anti-inflammatory response (CARS) regulates sepsis outcome. Persistent thrombocytopenia is considered as an independent risk factor of mortality in sepsis, although it is still unclear whether the drop in platelet count is the cause or the consequence of sepsis severity. The role of platelets in sepsis development and progression was addressed in different experimental in vivo models, particularly in mice, that represent various aspects of human sepsis. The immunomodulatory function of platelets depends on the experimental model, time, and type of infection. Understanding the molecular mechanism of platelet regulation in inflammation could bring us one step closer to understand this important aspect of primary hemostasis which drives thrombotic as well as bleeding complications in patients with sterile and infectious inflammation. In this review, we summarize the current understanding of the contribution of platelets to sepsis severity and outcome. We highlight the differences between platelet receptors in mice and humans and discuss the potential and limitations of animal models to study platelet-related functions in sepsis.
Collapse
Affiliation(s)
- Alice Assinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Manuel Salzmann
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Julie Rayes
- Institute of Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
84
|
Vardon-Bounes F, Ruiz S, Gratacap MP, Garcia C, Payrastre B, Minville V. Platelets Are Critical Key Players in Sepsis. Int J Mol Sci 2019; 20:ijms20143494. [PMID: 31315248 PMCID: PMC6679237 DOI: 10.3390/ijms20143494] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 01/13/2023] Open
Abstract
Host defense against infection is based on two crucial mechanisms: the inflammatory response and the activation of coagulation. Platelets are involved in both hemostasis and immune response. These mechanisms work together in a complex and synchronous manner making the contribution of platelets of major importance in sepsis. This is a summary of the pathophysiology of sepsis-induced thrombocytopenia, microvascular consequences, platelet-endothelial cells and platelet–pathogens interactions. The critical role of platelets during sepsis and the therapeutic implications are also reviewed.
Collapse
Affiliation(s)
- Fanny Vardon-Bounes
- Anesthesiology and Critical Care Unit, Toulouse University Hospital, 31059 Toulouse, France.
- INSERM I2MC (Institut des Maladies Cardiovasculaires et Métaboliques) UMR 1048, Toulouse University Hospital, 31059 Toulouse, France.
| | - Stéphanie Ruiz
- Anesthesiology and Critical Care Unit, Toulouse University Hospital, 31059 Toulouse, France
| | - Marie-Pierre Gratacap
- INSERM I2MC (Institut des Maladies Cardiovasculaires et Métaboliques) UMR 1048, Toulouse University Hospital, 31059 Toulouse, France
| | - Cédric Garcia
- Hematology Laboratory, Toulouse University Hospital, 31059 Toulouse, France
| | - Bernard Payrastre
- INSERM I2MC (Institut des Maladies Cardiovasculaires et Métaboliques) UMR 1048, Toulouse University Hospital, 31059 Toulouse, France
- Hematology Laboratory, Toulouse University Hospital, 31059 Toulouse, France
| | - Vincent Minville
- Anesthesiology and Critical Care Unit, Toulouse University Hospital, 31059 Toulouse, France
- INSERM I2MC (Institut des Maladies Cardiovasculaires et Métaboliques) UMR 1048, Toulouse University Hospital, 31059 Toulouse, France
| |
Collapse
|
85
|
Miao S, Shu D, Zhu Y, Lu M, Zhang Q, Pei Y, He AD, Ma R, Zhang B, Ming ZY. Cancer cell-derived immunoglobulin G activates platelets by binding to platelet FcγRIIa. Cell Death Dis 2019; 10:87. [PMID: 30692520 PMCID: PMC6349849 DOI: 10.1038/s41419-019-1367-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 12/14/2022]
Abstract
Tumor-associated thrombosis is the second leading risk factor for cancer patient death, and platelets activity is abnormal in cancer patients. Discovering the mechanism of platelet activation and providing effective targets for therapy are urgently needed. Cancer cell- derived IgG has been reported to regulate development of tumors. However, studies on the functions of cancer cell-derived IgG are quite limited. Here we investigated the potential role of cancer cell-derived IgG in platelet activation. We detected the expression of CD62P on platelets by flow cytometry and analyzed platelet function by platelets aggregation and ATP release. The content of IgG in cancer cell supernatants was detected by enzyme-linked immune sorbent assay. The distribution of cancer-derived IgG in cancer cells was analyzed by immunofluorescence assay. Western blot was performed to quantify the relative expression of FcγRIIa, syk, PLCγ2. The interaction between cancer cell-derived IgG and platelet FcγRIIa was analyzed by co-immunoprecipitation. The results showed that higher levels of CD62P were observed in cancer patients' platelets compared with that of healthy volunteers. Cancer cell culture supernatants increased platelet CD62P and PAC-1 expression, sensitive platelet aggregation and ATP release in response to agonists, while blocking FcγRIIa or knocking down IgG reduced the activation of platelets. Coimmunoprecipitation results showed that cancer cell-derived IgG interacted directly with platelet FcγRIIa. In addition, platelet FcγRIIa was highly expressed in liver cancer patients. In summary, cancer cell-derived IgG interacted directly with FcγRIIa and activated platelets; targeting this interaction may be an approach to prevent and treat tumor-associated thrombosis.
Collapse
Affiliation(s)
- Shuo Miao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Dan Shu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Meng Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Qingsong Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Youliang Pei
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ao-Di He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Bixiang Zhang
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang-Yin Ming
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.
| |
Collapse
|
86
|
Beutier H, Hechler B, Godon O, Wang Y, Gillis CM, de Chaisemartin L, Gouel-Chéron A, Magnenat S, Macdonald LE, Murphy AJ, Chollet-Martin S, Longrois D, Gachet C, Bruhns P, Jönsson F. Platelets expressing IgG receptor FcγRIIA/CD32A determine the severity of experimental anaphylaxis. Sci Immunol 2019; 3:3/22/eaan5997. [PMID: 29654057 DOI: 10.1126/sciimmunol.aan5997] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 12/04/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022]
Abstract
Platelets are key regulators of vascular integrity; however, their role in anaphylaxis, a life-threatening systemic allergic reaction characterized by the loss of vascular integrity and vascular leakage, remains unknown. Anaphylaxis is a consequence of inappropriate cellular responses triggered by antibodies to generally harmless antigens, resulting in a massive mediator release and rapidly occurring organ dysfunction. Human platelets express receptors for immunoglobulin G (IgG) antibodies and can release potent mediators, yet their contribution to anaphylaxis has not been previously addressed in mouse models, probably because mice do not express IgG receptors on platelets. We investigated the contribution of platelets to IgG-dependent anaphylaxis in human IgG receptor-expressing mouse models and a cohort of patients suffering from drug-induced anaphylaxis. Platelet counts dropped immediately and markedly upon anaphylaxis induction only when they expressed the human IgG receptor FcγRIIA/CD32A. Platelet depletion attenuated anaphylaxis, whereas thrombocythemia substantially worsened its severity. FcγRIIA-expressing platelets were directly activated by IgG immune complexes in vivo and were sufficient to restore susceptibility to anaphylaxis in resistant mice. Serotonin released by activated platelets contributed to anaphylaxis severity. Data from a cohort of patients suffering from drug-induced anaphylaxis indicated that platelet activation was associated with anaphylaxis severity and was accompanied by a reduction in circulating platelet numbers. Our findings identify platelets as critical players in IgG-dependent anaphylaxis and provide a rationale for the design of platelet-targeting strategies to attenuate the severity of anaphylactic reactions.
Collapse
Affiliation(s)
- Héloïse Beutier
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France.,INSERM U1222, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Béatrice Hechler
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand Est, Biologie et Pharmacologie des plaquettes sanguines (BPPS) UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), F-67000 Strasbourg, France
| | - Ophélie Godon
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France.,INSERM U1222, Paris, France
| | - Yu Wang
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France.,INSERM U1222, Paris, France.,Université Diderot Paris VII, Paris, France
| | - Caitlin M Gillis
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France.,INSERM U1222, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Luc de Chaisemartin
- Unité Fonctionnelle Auto-immunité et Hypersensibilités, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,UMR996-Inflammation, Chemokines et Immunopathology, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Aurélie Gouel-Chéron
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France.,INSERM U1222, Paris, France.,Département d'Anesthésie-Réanimation, Hôpital Bichat, AP-HP, Paris, France
| | - Stéphanie Magnenat
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand Est, Biologie et Pharmacologie des plaquettes sanguines (BPPS) UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), F-67000 Strasbourg, France
| | | | | | | | - Sylvie Chollet-Martin
- Unité Fonctionnelle Auto-immunité et Hypersensibilités, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,UMR996-Inflammation, Chemokines et Immunopathology, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Dan Longrois
- Département d'Anesthésie-Réanimation, Hôpital Bichat, AP-HP, Paris, France.,INSERM UMR1152, Université Paris Diderot Paris 7, Paris, France
| | - Christian Gachet
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand Est, Biologie et Pharmacologie des plaquettes sanguines (BPPS) UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), F-67000 Strasbourg, France
| | - Pierre Bruhns
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France. .,INSERM U1222, Paris, France
| | - Friederike Jönsson
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France. .,INSERM U1222, Paris, France
| |
Collapse
|
87
|
Minasyan H, Flachsbart F. Blood coagulation: a powerful bactericidal mechanism of human innate immunity. Int Rev Immunol 2019; 38:3-17. [DOI: 10.1080/08830185.2018.1533009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hayk Minasyan
- Private laboratory, Immunology Microbiology, Yerevan, Armenia
| | | |
Collapse
|
88
|
|
89
|
Mechanisms of receptor shedding in platelets. Blood 2018; 132:2535-2545. [DOI: 10.1182/blood-2018-03-742668] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Abstract
The ability to upregulate and downregulate surface-exposed proteins and receptors is a powerful process that allows a cell to instantly respond to its microenvironment. In particular, mobile cells in the bloodstream must rapidly react to conditions where infection or inflammation are detected, and become proadhesive, phagocytic, and/or procoagulant. Platelets are one such blood cell that must rapidly acquire and manage proadhesive and procoagulant properties in order to execute their primary function in hemostasis. The regulation of platelet membrane properties is achieved via several mechanisms, one of which involves the controlled metalloproteolytic release of adhesion receptors and other proteins from the platelet surface. Proteolysis effectively lowers receptor density and reduces the reactivity of platelets, and is a mechanism to control robust platelet activation. Recent research has also established clear links between levels of platelet receptors and platelet lifespan. In this review, we will discuss the current knowledge of metalloproteolytic receptor regulation in the vasculature with emphasis on the platelet receptor system to highlight how receptor density can influence both platelet function and platelet survival.
Collapse
|
90
|
Palm F, Sjöholm K, Malmström J, Shannon O. Complement Activation Occurs at the Surface of Platelets Activated by Streptococcal M1 Protein and This Results in Phagocytosis of Platelets. THE JOURNAL OF IMMUNOLOGY 2018; 202:503-513. [PMID: 30541884 DOI: 10.4049/jimmunol.1800897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022]
Abstract
Platelets circulate the bloodstream and principally maintain hemostasis. Disturbed hemostasis, a dysregulated inflammatory state, and a decreased platelet count are all hallmarks of severe invasive Streptococcus pyogenes infection, sepsis. We have previously demonstrated that the released M1 protein from S. pyogenes activates platelets, and this activation is dependent on the binding of M1 protein, fibrinogen, and M1-specific IgG to platelets in susceptible donors. In this study, we characterize the M1-associated protein interactions in human plasma and investigate the acquisition of proteins to the surface of activated platelets and the consequences for platelet immune function. Using quantitative mass spectrometry, M1 protein was determined to form a protein complex in plasma with statistically significant enrichment of fibrinogen, IgG3, and complement components, especially C1q. Using flow cytometry, these plasma proteins were also confirmed to be acquired to the platelet surface, resulting in complement activation on M1-activated human platelets. Furthermore, we demonstrated an increased phagocytosis of M1-activated platelets by monocytes, which was not observed with other physiological platelet agonists. This reveals a novel mechanism of complement activation during streptococcal sepsis, which contributes to the platelet consumption that occurs in sepsis.
Collapse
Affiliation(s)
- Frida Palm
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Kristoffer Sjöholm
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Oonagh Shannon
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
91
|
|
92
|
Vardon Bounes F, Mémier V, Marcaud M, Jacquemin A, Hamzeh-Cognasse H, Garcia C, Series J, Sié P, Minville V, Gratacap MP, Payrastre B. Platelet activation and prothrombotic properties in a mouse model of peritoneal sepsis. Sci Rep 2018; 8:13536. [PMID: 30201980 PMCID: PMC6131186 DOI: 10.1038/s41598-018-31910-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023] Open
Abstract
Sepsis is associated with thrombocytopenia and microvascular thrombosis. Studies have described platelets implication in this pathology but their kinetics of activation and behavior remain poorly known. We show in a mouse model of peritonitis, the appearance of platelet-rich thrombi in organ microvessels and organ damage. Complementary methods are necessary to characterize platelet activation during sepsis as circulating soluble markers and platelet-monocyte aggregates revealed early platelet activation, while surface activation markers were detected at later stage. A microfluidic based ex-vivo thrombosis assay demonstrated that platelets from septic mice have a prothrombotic behavior at shear rate encountered in microvessels. Interestingly, we found that even though phosphoinositide-3-kinase β-deficient platelet mice formed less thrombi in liver microcirculation, peritoneal sepsis activates a platelet alternative pathway to compensate the otherwise mandatory role of this lipid-kinase to form stable thrombi at high shear rate. Platelets are rapidly activated during sepsis. Thrombocytopenia can be attributed in part to platelet-rich thrombi formation in capillaries and platelet-leukocytes interactions. Platelets from septic mice have a prothrombotic phenotype at a shear rate encountered in arterioles. Further studies are necessary to unravel molecular mechanisms leading to this prothrombotic state of platelets in order to guide the development of future treatments of polymicrobial sepsis.
Collapse
Affiliation(s)
- Fanny Vardon Bounes
- INSERM, U1048 et Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, 31400, France.
- Anesthesiology and Critical Care Unit, Centre hospitalier universitaire de Toulouse, Toulouse, 31400, France.
| | - Vincent Mémier
- INSERM, U1048 et Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, 31400, France
- Haematology laboratory, Centre hospitalier universitaire de Toulouse, Toulouse, 31400, France
| | - Marina Marcaud
- INSERM, U1048 et Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, 31400, France
| | - Aemilia Jacquemin
- INSERM, U1048 et Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, 31400, France
- Anesthesiology and Critical Care Unit, Centre hospitalier universitaire de Toulouse, Toulouse, 31400, France
| | | | - Cédric Garcia
- Haematology laboratory, Centre hospitalier universitaire de Toulouse, Toulouse, 31400, France
| | - Jennifer Series
- Haematology laboratory, Centre hospitalier universitaire de Toulouse, Toulouse, 31400, France
| | - Pierre Sié
- INSERM, U1048 et Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, 31400, France
- Haematology laboratory, Centre hospitalier universitaire de Toulouse, Toulouse, 31400, France
| | - Vincent Minville
- INSERM, U1048 et Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, 31400, France
- Anesthesiology and Critical Care Unit, Centre hospitalier universitaire de Toulouse, Toulouse, 31400, France
| | - Marie-Pierre Gratacap
- INSERM, U1048 et Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, 31400, France
| | - Bernard Payrastre
- INSERM, U1048 et Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, 31400, France
- Haematology laboratory, Centre hospitalier universitaire de Toulouse, Toulouse, 31400, France
| |
Collapse
|
93
|
Palankar R, Binsker U, Haracska B, Wesche J, Greinacher A, Hammerschmidt S. Interaction between the Staphylococcus aureus extracellular adherence protein Eap and its subdomains with platelets. Int J Med Microbiol 2018; 308:683-691. [DOI: 10.1016/j.ijmm.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/30/2018] [Accepted: 04/14/2018] [Indexed: 12/20/2022] Open
|
94
|
Middleton EA, Rondina MT, Schwertz H, Zimmerman GA. Amicus or Adversary Revisited: Platelets in Acute Lung Injury and Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 2018; 59:18-35. [PMID: 29553813 PMCID: PMC6039872 DOI: 10.1165/rcmb.2017-0420tr] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Platelets are essential cellular effectors of hemostasis and contribute to disease as circulating effectors of pathologic thrombosis. These are their most widely known biologic activities. Nevertheless, recent observations demonstrate that platelets have a much more intricate repertoire beyond these traditional functions and that they are specialized for contributions to vascular barrier integrity, organ repair, antimicrobial host defense, inflammation, and activities across the immune continuum. Paradoxically, on the basis of clinical investigations and animal models of disease, some of these newly discovered activities of platelets appear to contribute to tissue injury. Studies in the last decade indicate unique interactions of platelets and their precursor, the megakaryocyte, in the lung and implicate platelets as essential effectors in experimental acute lung injury and clinical acute respiratory distress syndrome. Additional discoveries derived from evolving work will be required to precisely define the contributions of platelets to complex subphenotypes of acute lung injury and to determine if these remarkable and versatile blood cells are therapeutic targets in acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Elizabeth A. Middleton
- Division of Pulmonary and Critical Care Medicine, and
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Matthew T. Rondina
- Division of General Internal Medicine, Department of Internal Medicine
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Hansjorg Schwertz
- Division of Vascular Surgery, Department of Surgery, and
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guy A. Zimmerman
- Division of Pulmonary and Critical Care Medicine, and
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
95
|
Palankar R, Kohler TP, Krauel K, Wesche J, Hammerschmidt S, Greinacher A. Platelets kill bacteria by bridging innate and adaptive immunity via platelet factor 4 and FcγRIIA. J Thromb Haemost 2018; 16:1187-1197. [PMID: 29350833 DOI: 10.1111/jth.13955] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Indexed: 12/15/2022]
Abstract
Essentials Human platelets specifically interact with IgG opsonized bacteria through FcγRIIA. Platelet factor 4 (PF4) binds to polyanions (P) and undergoes a conformational change. Anti-PF4/P IgG opsonizes PF4-coated Gram-positive and Gram-negative bacteria. Platelets specifically kill E.coli opsonized with PF4 and human anti-PF4/P IgG. SUMMARY Background Activated platelets release the chemokine platelet factor 4 (PF4) stored in their granules. PF4 binds to polyanions (P) on bacteria, undergoes a conformational change and exposes neoepitopes. These neoepitopes induce production of anti-PF4/P antibodies. As PF4 binds to a variety of bacteria, anti-PF4/P IgG can bind and opsonize several bacterial species. Objective Here we investigated whether platelets are able to kill bacteria directly after recognizing anti-PF4/P IgG opsonized bacteria in the presence of PF4 via their FcγRIIA. Methods Using platelet-bacteria suspension co-culture experiments and micropatterns with immobilized viable bacteria, in combination with pharmacological inhibitors and human anti- PF4/P IgG we analyzed the role of platelet-mediated killing of bacteria. Results In the presence of PF4, human anti-PF4/P IgG and platelets, E. coli killing (> 50%) with colony forming units (CFU mL-1 ) 0.71 × 104 ± 0.19 was observed compared with controls incubated only with anti-PF4/P IgG (CFU mL-1 3.4 × 104 ± 0.38). Blocking of platelet FcγRIIA using mAb IV.3 (CFU mL-1 2.5 × 104 ± 0.45), or integrin αIIbβ3 (CFU mL-1 2.26 × 104 ± 0.31), or disruption of cytoskeletal functions (CFU mL-1 2.7 × 104 ± 0.4) markedly reduced E. coli killing by this mechanism. Our observation of E. coli killing by platelets on micropatterned arrays is compatible with the model that platelets kill bacteria by covering them, actively concentrating them into the area under their granulomere and then releasing antimicrobial substances of platelet α-granules site directed towards bacteria. Conclusion These findings collectively indicate that by bridging of innate and adaptive immune mechanisms, platelets and anti-PF4/polyanion antibodies cooperate in an antibacterial host response.
Collapse
Affiliation(s)
- R Palankar
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - T P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - K Krauel
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - J Wesche
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - S Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - A Greinacher
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
96
|
Luu S, Gardiner EE, Andrews RK. Bone Marrow Defects and Platelet Function: A Focus on MDS and CLL. Cancers (Basel) 2018; 10:E147. [PMID: 29783667 PMCID: PMC5977120 DOI: 10.3390/cancers10050147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
The bloodstream typically contains >500 billion anucleate circulating platelets, derived from megakaryocytes in the bone marrow. This review will focus on two interesting aspects of bone marrow dysfunction and how this impacts on the quality of circulating platelets. In this regard, although megakaryocytes are from the myeloid lineage leading to granulocytes (including neutrophils), erythrocytes, and megakaryocytes/platelets, recent evidence has shown that defects in the lymphoid lineage leading to B cells, T cells, and natural killer (NK) cells also result in abnormal circulating platelets. Current evidence is limited regarding whether this latter phenomenon might potentially arise from (a) some form of as-yet-undetected defect common to both lineages; (b) adverse interactions occurring between cells of different lineages within the bone marrow environment; and/or (c) unknown disease-related factor(s) affecting circulating platelet receptor expression/function after their release from megakaryocytes. Understanding the mechanisms underlying how both myeloid and lymphoid lineage bone marrow defects lead to dysfunction of circulating platelets is significant because of the potential diagnostic and predictive value of peripheral platelet analysis for bone marrow disease progression, the additional potential effects of new anti-cancer drugs on platelet function, and the critical role platelets play in regulation of bleeding risk, inflammation, and innate immunity.
Collapse
Affiliation(s)
- Sarah Luu
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia.
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| | - Robert K Andrews
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
97
|
Jockel-Schneider Y, Kobsar A, Stellzig-Eisenhauer A, Vogel U, Störk S, Frantz S, Schlagenhauf U, Eigenthaler M. Wild-type isolates ofPorphyromonas gingivalisderived from periodontitis patients display major variability in platelet activation. J Clin Periodontol 2018; 45:693-700. [DOI: 10.1111/jcpe.12895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2018] [Indexed: 01/15/2023]
Affiliation(s)
| | - Anne Kobsar
- Institute of Clinical Transfusion Medicine and Hemotherapy; University Hospital Würzburg; Würzburg Germany
| | | | - Ulrich Vogel
- Institute for Hygiene and Microbiology; University of Würzburg; Würzburg Germany
| | - Stefan Störk
- Comprehensive Heart Failure Center Würzburg; Department of Internal Medicine I; University Hospital and University of Würzburg; Würzburg Germany
| | - Stefan Frantz
- Department of Internal Medicine I; University Hospital Würzburg; Würzburg Germany
| | | | - Martin Eigenthaler
- Divison of Periodontology; University Hospital Würzburg; Würzburg Germany
- Department of Orthodontics; University Hospital of Julius-Maximilians-University; Würzburg Germany
| |
Collapse
|
98
|
Trotta A, Velásquez LN, Milillo MA, Delpino MV, Rodríguez AM, Landoni VI, Giambartolomei GH, Pozner RG, Barrionuevo P. Platelets Promote Brucella abortus Monocyte Invasion by Establishing Complexes With Monocytes. Front Immunol 2018; 9:1000. [PMID: 29867977 PMCID: PMC5949576 DOI: 10.3389/fimmu.2018.01000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/23/2018] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is an infectious disease elicited by bacteria of the genus Brucella. Platelets have been extensively described as mediators of hemostasis and responsible for maintaining vascular integrity. Nevertheless, they have been recently involved in the modulation of innate and adaptive immune responses. Although many interactions have been described between Brucella abortus and monocytes/macrophages, the role of platelets during monocyte/macrophage infection by these bacteria remained unknown. The aim of this study was to investigate the role of platelets in the immune response against B. abortus. We first focused on the possible interactions between B. abortus and platelets. Bacteria were able to directly interact with platelets. Moreover, this interaction triggered platelet activation, measured as fibrinogen binding and P-selectin expression. We further investigated whether platelets were involved in Brucella-mediated monocyte/macrophage early infection. The presence of platelets promoted the invasion of monocytes/macrophages by B. abortus. Moreover, platelets established complexes with infected monocytes/macrophages as a result of a carrier function elicited by platelets. We also evaluated the ability of platelets to modulate functional aspects of monocytes in the context of the infection. The presence of platelets during monocyte infection enhanced IL-1β, TNF-α, IL-8, and MCP-1 secretion while it inhibited the secretion of IL-10. At the same time, platelets increased the expression of CD54 (ICAM-1) and CD40. Furthermore, we showed that soluble factors released by B. abortus-activated platelets, such as soluble CD40L, platelet factor 4, platelet-activating factor, and thromboxane A2, were involved in CD54 induction. Overall, our results indicate that platelets can directly sense and react to B. abortus presence and modulate B. abortus-mediated infection of monocytes/macrophages increasing their pro-inflammatory capacity, which could promote the resolution of the infection.
Collapse
Affiliation(s)
- Aldana Trotta
- Instituto de Medicina Experimental (IMEX), CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Lis N Velásquez
- Instituto de Medicina Experimental (IMEX), CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - M Ayelén Milillo
- Instituto de Medicina Experimental (IMEX), CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - M Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana M Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Verónica I Landoni
- Instituto de Medicina Experimental (IMEX), CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Roberto G Pozner
- Instituto de Medicina Experimental (IMEX), CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Paula Barrionuevo
- Instituto de Medicina Experimental (IMEX), CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| |
Collapse
|
99
|
Liesenborghs L, Verhamme P, Vanassche T. Staphylococcus aureus, master manipulator of the human hemostatic system. J Thromb Haemost 2018; 16:441-454. [PMID: 29251820 DOI: 10.1111/jth.13928] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Indexed: 12/15/2022]
Abstract
The coagulation system does not only offer protection against bleeding, but also aids in our defense against invading microorganisms. The hemostatic system and innate immunity are strongly entangled, which explains why so many infections are complicated by either bleeding or thrombosis. Staphylococcus aureus (S. aureus), currently the most deadly infectious agent in the developed world, causes devastating intravascular infections such as sepsis and infective endocarditis. During these infections S. aureus comes in close contact with the host hemostatic system and proves to be a master in manipulating coagulation. The coagulases of S. aureus directly induce coagulation by activating prothrombin. S. aureus also manipulates fibrinolysis by triggering plasminogen activation via staphylokinase. Furthermore, S. aureus binds and activates platelets and interacts with key coagulation proteins such as fibrin(ogen), fibronectin and von Willebrand factor. By manipulating the coagulation system S. aureus gains a significant advantage over the host defense mechanisms. Studying the interplay between S. aureus and the hemostatic system can therefore lead to new innovative therapies for battling S. aureus infections.
Collapse
Affiliation(s)
- L Liesenborghs
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven - University Hospitals Leuven, Leuven, Belgium
| | - P Verhamme
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven - University Hospitals Leuven, Leuven, Belgium
| | - T Vanassche
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven - University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
100
|
Handtke S, Steil L, Greinacher A, Thiele T. Toward the Relevance of Platelet Subpopulations for Transfusion Medicine. Front Med (Lausanne) 2018; 5:17. [PMID: 29459897 PMCID: PMC5807390 DOI: 10.3389/fmed.2018.00017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/18/2018] [Indexed: 12/11/2022] Open
Abstract
Circulating platelets consist of subpopulations with different age, maturation state and size. In this review, we address the association between platelet size and platelet function and summarize the current knowledge on platelet subpopulations including reticulated platelets, procoagulant platelets and platelets exposing signals to mediate their clearance. Thereby, we emphasize the impact of platelet turnover as an important condition for platelet production in vivo. Understanding of the features that characterize platelet subpopulations is very relevant for the methods of platelet concentrate production, which may enrich or deplete particular platelet subpopulations. Moreover, the concept of platelet size being associated with platelet function may be attractive for transfusion medicine as it holds the perspective to separate platelet subpopulations with specific functional capabilities.
Collapse
Affiliation(s)
- Stefan Handtke
- Institut für Immunologie und Transfusionsmedizin, Greifswald, Germany
| | - Leif Steil
- Interfakultäres Institut für Funktionelle Genomforschung, Greifswald, Germany
| | | | - Thomas Thiele
- Institut für Immunologie und Transfusionsmedizin, Greifswald, Germany
| |
Collapse
|