51
|
You L, Jiang H. Cabergoline possesses a beneficial effect on blood-brain barrier (BBB) integrity against lipopolysaccharide (LPS). Bioengineered 2021; 12:8358-8369. [PMID: 34592907 PMCID: PMC8806944 DOI: 10.1080/21655979.2021.1987066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Sepsis is a disease induced by severe systemic inflammation and contributes to multiple acute organic dysfunctions. It is reported that disrupted blood-brain barrier (BBB) integrity is involved in sepsis-associated encephalopathy (SAE), which can be alleviated by repairing the damaged tight junction structure. Cabergoline is a specific dopamine D2 receptor agonist developed to treat Parkinson’s disease and hyperprolactinemia and is reported to exert promising anti-inflammatory properties. The present study aimed to explore the beneficial effect of Cabergoline for the treatment of sepsis. In the animal experiments, mice were separated into 4 groups: sham, LPS (5 mg/kg), Cabergoline (0.1 mg/kg/day), and Cabergoline+LPS. We found that the increased neurological deficits, disrupted BBB integrity, elevated production of inflammatory factors, and declined expression level of zonula occludens-1 (ZO-1) were observed in lipopolysaccharide (LPS)-treated mice, all of which were significantly reversed by the administration of Cabergoline. In the in vitro model, human brain microvascular endothelial cells (HBMECs) were challenged with 1 µg/mL LPS in the presence or absence of Cabergoline (10, 20 μM) for 24 hours. The elevated cell permeability Papp value of fluorescein disodium across the HBMECs monolayer and declined trans-endothelial electrical resistance (TEER) in the LPS-treated HBMECs were significantly alleviated by Cabergoline, accompanied by the upregulation of ZO-1. In addition, wnt1 and β-catenin were found downregulated, which was reversed by Cabergoline. Importantly, the protective benefits of Cabergoline were all abolished by the overexpression of Dickkopf 3 (DKK3). Taken together, our data reveal that Cabergoline possessed a protective effect on BBB integrity against LPS.
Collapse
Affiliation(s)
- Lina You
- Department of Gerontology, Traditional Chinese medicine hospital of Jiulongpo District in Chongqing, Chongqing, 400080, China
| | - Haidong Jiang
- Chongqing Infectious Disease Medical Center, Chongqing, 400080, China
| |
Collapse
|
52
|
Li W, Yuan W, Zhang D, Cai S, Luo J, Zeng K. LCZ696 Possesses a Protective Effect Against Homocysteine (Hcy)-Induced Impairment of Blood-Brain Barrier (BBB) Integrity by Increasing Occludin, Mediated by the Inhibition of Egr-1. Neurotox Res 2021; 39:1981-1990. [PMID: 34542838 DOI: 10.1007/s12640-021-00414-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/24/2021] [Accepted: 09/03/2021] [Indexed: 12/14/2022]
Abstract
Homocysteine (Hcy) is a non-essential amino acid produced from methionine. It has been reported that high concentrations of Hcy are related to the pathogenesis of neurodegenerative diseases and induce the disruption of the blood-brain barrier (BBB) by triggering oxidative stress and inflammation. LCZ696 is a novel antihypertensive agent that has been recently reported to possess promising anti-inflammatory properties. However, whether it has a protective effect on the BBB disruption is still unknown. For the first time, in this study, we aim to investigate whether LCZ696 exerts anti-inflammatory effects on Hcy-induced injury in brain endothelial cells and explore its neuroprotective properties. In in vivo experiments, we found that treatment with LCZ696 ameliorated oxidative stress by reducing malondialdehyde (MDA) and increasing glutathione (GSH). Furthermore, LCZ696 downregulated the excessive release of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) at mRNA and protein levels. Importantly, it reversed the disruption of the BBB induced by Hcy stimulation. In the in vitro human brain microvascular endothelial cell (HBMVEC) experiments, compared to the control, the permeability of the endothelial monolayer was significantly enlarged, the expression level of occludin declined, and Egr-1 upregulated by the introduction of Hcy, and these were all reversed by the treatment with LCZ696. Lastly, we found that the protective effects of LCZ696 against Hcy-induced reduction of occludin and hyper-permeability of the endothelial monolayer were greatly abolished by the overexpression of Egr-1. Taken together, we found that LCZ696 protected against Hcy-induced impairment of BBB integrity by increasing the expression of occludin, all mediated by the inhibition of Egr-1.
Collapse
Affiliation(s)
- Wenfeng Li
- Department of Cardiology, The First Affiliated Hospital of Ji'nan University, Guangzhou, 510630, Guangdong, China.,Department of Cardiology, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China
| | - Wenjin Yuan
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China
| | - Dandan Zhang
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China
| | - Shuchun Cai
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China
| | - Jun Luo
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China
| | - Kanghua Zeng
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
53
|
Saleem S, Kannan RR. Zebrafish: A Promising Real-Time Model System for Nanotechnology-Mediated Neurospecific Drug Delivery. NANOSCALE RESEARCH LETTERS 2021; 16:135. [PMID: 34424426 PMCID: PMC8382796 DOI: 10.1186/s11671-021-03592-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Delivering drugs to the brain has always remained a challenge for the research community and physicians. The blood-brain barrier (BBB) acts as a major hurdle for delivering drugs to specific parts of the brain and the central nervous system. It is physiologically comprised of complex network of capillaries to protect the brain from any invasive agents or foreign particles. Therefore, there is an absolute need for understanding of the BBB for successful therapeutic interventions. Recent research indicates the strong emergence of zebrafish as a model for assessing the permeability of the BBB, which is highly conserved in its structure and function between the zebrafish and mammals. The zebrafish model system offers a plethora of advantages including easy maintenance, high fecundity and transparency of embryos and larvae. Therefore, it has the potential to be developed as a model for analysing and elucidating the permeability of BBB to novel permeation technologies with neurospecificity. Nanotechnology has now become a focus area within the industrial and research community for delivering drugs to the brain. Nanoparticles are being developed with increased efficiency and accuracy for overcoming the BBB and delivering neurospecific drugs to the brain. The zebrafish stands as an excellent model system to assess nanoparticle biocompatibility and toxicity. Hence, the zebrafish model is indispensable for the discovery or development of novel technologies for neurospecific drug delivery and potential therapies for brain diseases.
Collapse
Affiliation(s)
- Suraiya Saleem
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology (Deemed to be University), Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, 600119, India
| | - Rajaretinam Rajesh Kannan
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology (Deemed to be University), Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, 600119, India.
| |
Collapse
|
54
|
Blockade of Autocrine CCL5 Responses Inhibits Zika Virus Persistence and Spread in Human Brain Microvascular Endothelial Cells. mBio 2021; 12:e0196221. [PMID: 34399621 PMCID: PMC8406327 DOI: 10.1128/mbio.01962-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is a neurovirulent flavivirus that uniquely causes fetal microcephaly, is sexually transmitted, and persists in patients for up to 6 months. ZIKV persistently infects human brain microvascular endothelial cells (hBMECs) that form the blood-brain barrier (BBB) and enables viral spread to neuronal compartments. We found that CCL5, a chemokine with prosurvival effects on immune cells, was highly secreted by ZIKV-infected hBMECs. Although roles for CCL5 in endothelial cell (EC) survival remain unknown, the presence of the CCL5 receptors CCR3 and CCR5 on ECs suggested that CCL5 could promote ZIKV persistence in hBMECs. We found that exogenous CCL5 induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in hBMECs and that ERK1/2 cell survival signaling was similarly activated by ZIKV infection. Neutralizing antibodies to CCL5, CCR3, or CCR5 inhibited persistent ZIKV infection of hBMECs. While knockout (KO) of CCL5 failed to prevent ZIKV infection of hBMECs, at 3 days postinfection (dpi), we observed a >90% reduction in ZIKV-infected CCL5-KO hBMECs and a multilog reduction in ZIKV titers. In contrast, the addition of CCL5 to CCL5-KO hBMECs dose-dependently rescued ZIKV persistence in hBMECs. Inhibiting CCL5 responses using CCR3 (UCB35625) and CCR5 (maraviroc) receptor antagonists reduced the number of ZIKV-infected hBMECs and ZIKV titers (50% inhibitory concentrations [IC50s] of 2.5 to 12 μM), without cytotoxicity (50% cytotoxic concentration [CC50] of >80 μM). These findings demonstrate that ZIKV-induced CCL5 directs autocrine CCR3/CCR5 activation of ERK1/2 survival responses that are required for ZIKV to persistently infect hBMECs. Our results establish roles for CCL5 in ZIKV persistence and suggest the potential for CCL5 receptor antagonists to therapeutically inhibit ZIKV spread and neurovirulence.
Collapse
|
55
|
Appelt-Menzel A, Oerter S, Mathew S, Haferkamp U, Hartmann C, Jung M, Neuhaus W, Pless O. Human iPSC-Derived Blood-Brain Barrier Models: Valuable Tools for Preclinical Drug Discovery and Development? ACTA ACUST UNITED AC 2021; 55:e122. [PMID: 32956578 DOI: 10.1002/cpsc.122] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Translating basic biological knowledge into applications remains a key issue for effectively tackling neurodegenerative, neuroinflammatory, or neuroendocrine disorders. Efficient delivery of therapeutics across the neuroprotective blood-brain barrier (BBB) still poses a demanding challenge for drug development targeting central nervous system diseases. Validated in vitro models of the BBB could facilitate effective testing of drug candidates targeting the brain early in the drug discovery process during lead generation. We here review the potential of mono- or (isogenic) co-culture BBB models based on brain capillary endothelial cells (BCECs) derived from human-induced pluripotent stem cells (hiPSCs), and compare them to several available BBB in vitro models from primary human or non-human cells and to rodent in vivo models, as well as to classical and widely used barrier models [Caco-2, parallel artificial membrane permeability assay (PAMPA)]. In particular, we are discussing the features and predictivity of these models and how hiPSC-derived BBB models could impact future discovery and development of novel CNS-targeting therapeutics. © 2020 The Authors.
Collapse
Affiliation(s)
- Antje Appelt-Menzel
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), Röntgenring 11, Würzburg, Germany.,University Hospital Würzburg, Chair Tissue Engineering and Regenerative Medicine (TERM), Röntgenring 11, Würzburg, Germany
| | - Sabrina Oerter
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), Röntgenring 11, Würzburg, Germany.,University Hospital Würzburg, Chair Tissue Engineering and Regenerative Medicine (TERM), Röntgenring 11, Würzburg, Germany
| | - Sanjana Mathew
- University Hospital Würzburg, Chair Tissue Engineering and Regenerative Medicine (TERM), Röntgenring 11, Würzburg, Germany
| | - Undine Haferkamp
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, Hamburg, Germany
| | - Carla Hartmann
- University Hospital Halle, University Clinic and Outpatient Clinic for Psychiatry, Psychotherapy, and Psychosomatic Medicine, Julius-Kuehn-Strasse 7, Halle (Saale), Germany
| | - Matthias Jung
- University Hospital Halle, University Clinic and Outpatient Clinic for Psychiatry, Psychotherapy, and Psychosomatic Medicine, Julius-Kuehn-Strasse 7, Halle (Saale), Germany
| | - Winfried Neuhaus
- AIT Austrian Institute of Technology GmbH, Center Health and Bioresources, Competence Unit Molecular Diagnostics, Giefinggasse 4, Vienna, Austria
| | - Ole Pless
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, Hamburg, Germany
| |
Collapse
|
56
|
Heidarzadeh M, Gürsoy-Özdemir Y, Kaya M, Eslami Abriz A, Zarebkohan A, Rahbarghazi R, Sokullu E. Exosomal delivery of therapeutic modulators through the blood-brain barrier; promise and pitfalls. Cell Biosci 2021; 11:142. [PMID: 34294165 PMCID: PMC8296716 DOI: 10.1186/s13578-021-00650-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Nowadays, a large population around the world, especially the elderly, suffers from neurological inflammatory and degenerative disorders/diseases. Current drug delivery strategies are facing different challenges because of the presence of the BBB, which limits the transport of various substances and cells to brain parenchyma. Additionally, the low rate of successful cell transplantation to the brain injury sites leads to efforts to find alternative therapies. Stem cell byproducts such as exosomes are touted as natural nano-drug carriers with 50-100 nm in diameter. These nano-sized particles could harbor and transfer a plethora of therapeutic agents and biological cargos to the brain. These nanoparticles would offer a solution to maintain paracrine cell-to-cell communications under healthy and inflammatory conditions. The main question is that the existence of the intact BBB could limit exosomal trafficking. Does BBB possess some molecular mechanisms that facilitate the exosomal delivery compared to the circulating cell? Although preliminary studies have shown that exosomes could cross the BBB, the exact molecular mechanism(s) beyond this phenomenon remains unclear. In this review, we tried to compile some facts about exosome delivery through the BBB and propose some mechanisms that regulate exosomal cross in pathological and physiological conditions.
Collapse
Affiliation(s)
- Morteza Heidarzadeh
- Koç University Research Center for Translational Medicine (KUTTAM), Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Yasemin Gürsoy-Özdemir
- Koç University Research Center for Translational Medicine (KUTTAM), Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey.,Neurology Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Mehmet Kaya
- Koç University Research Center for Translational Medicine (KUTTAM), Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey.,Physiology Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Aysan Eslami Abriz
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Emel Sokullu
- Koç University Research Center for Translational Medicine (KUTTAM), Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey. .,Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey.
| |
Collapse
|
57
|
Wang X, Yu JY, Sun Y, Wang H, Shan H, Wang S. Baicalin protects LPS-induced blood-brain barrier damage and activates Nrf2-mediated antioxidant stress pathway. Int Immunopharmacol 2021; 96:107725. [PMID: 34162131 DOI: 10.1016/j.intimp.2021.107725] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/13/2021] [Accepted: 04/25/2021] [Indexed: 12/14/2022]
Abstract
The integrity of the BBB is closely related to brain microvascular endothelial cells and TJs, and its dysfunction can lead to stroke, multiple sclerosis, extracranial injury and neurodegenerative diseases. Baicalin is one of the main bioactive extracts from Scutellaria Baicalensis Georgi, which has anti-inflammatory and anti-oxidation pharmacological functions. Preventive protection with baicalin for seven consecutive days can significantly improve the appearance of cell apoptosis and Fluorescein sodium infiltration in the brain tissue of BALB/C mice. In addition, baicalin can inhibit the production of pro-inflammatory cytokines induced by LPS in mice and bEnd.3 cells, including IL-1β and TNF-α. At the same time, LPS caused a decrease in tight junction proteins in the blood-brain barrier, but baicalin can alleviate the damage of the blood-brain barrier by up-regulating Claudin-5 and ZO-1 protein expression. In addition, the results showed that baicalin reduced the production of ROS and MDA in bEnd.3 cells and promoted the production of SOD, and up-regulated the expression of Nrf2, HO-1 and NQO1. The mechanism of this change was mediated by activating the Nrf2 signaling pathway. All in all, Baicalin protected LPS-induced blood-brain barrier damage and activateed Nrf2-mediated antioxidant stress pathway.
Collapse
Affiliation(s)
- Xin Wang
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Chang Cheng Road, Qingdao, Shandong 266109, China
| | - Jia-Ying Yu
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Chang Cheng Road, Qingdao, Shandong 266109, China
| | - Yan Sun
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Chang Cheng Road, Qingdao, Shandong 266109, China
| | - Heng Wang
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Chang Cheng Road, Qingdao, Shandong 266109, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Chang Cheng Road, Qingdao, Shandong 266109, China
| | - Shubai Wang
- College of Animal Science and Technology, Qingdao Agricultural University, No. 700 Chang Cheng Road, Qingdao, Shandong 266109, China.
| |
Collapse
|
58
|
Gozal E, Jagadapillai R, Cai J, Barnes GN. Potential crosstalk between sonic hedgehog-WNT signaling and neurovascular molecules: Implications for blood-brain barrier integrity in autism spectrum disorder. J Neurochem 2021. [PMID: 34169527 DOI: 10.1111/jnc.15081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disease originating from combined genetic and environmental factors. Post-mortem human studies and some animal ASD models have shown brain neuroinflammation, oxidative stress, and changes in blood-brain barrier (BBB) integrity. However, the signaling pathways leading to these inflammatory findings and vascular alterations are currently unclear. The BBB plays a critical role in controlling brain homeostasis and immune response. Its dysfunction can result from developmental genetic abnormalities or neuroinflammatory processes. In this review, we explore the role of the Sonic Hedgehog/Wingless-related integration site (Shh/Wnt) pathways in neurodevelopment, neuroinflammation, and BBB development. The balance between Wnt-β-catenin and Shh pathways controls angiogenesis, barriergenesis, neurodevelopment, central nervous system (CNS) morphogenesis, and neuronal guidance. These interactions are critical to maintain BBB function in the mature CNS to prevent the influx of pathogens and inflammatory cells. Genetic mutations of key components of these pathways have been identified in ASD patients and animal models, which correlate with the severity of ASD symptoms. Disruption of the Shh/Wnt crosstalk may therefore compromise BBB development and function. In turn, impaired Shh signaling and glial activation may cause neuroinflammation that could disrupt the BBB. Elucidating how ASD-related mutations of Shh/Wnt signaling could cause BBB leaks and neuroinflammation will contribute to our understanding of the role of their interactions in ASD pathophysiology. These observations may provide novel targeted therapeutic strategies to prevent or alleviate ASD symptoms while preserving normal developmental processes. Cover Image for this issue: https://doi.org/10.1111/jnc.15081.
Collapse
Affiliation(s)
- Evelyne Gozal
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Rekha Jagadapillai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Jun Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Gregory N Barnes
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA.,Department of Neurology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
59
|
Gozal E, Jagadapillai R, Cai J, Barnes GN. Potential crosstalk between sonic hedgehog-WNT signaling and neurovascular molecules: Implications for blood-brain barrier integrity in autism spectrum disorder. J Neurochem 2021; 159:15-28. [PMID: 34169527 DOI: 10.1111/jnc.15460] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/19/2021] [Accepted: 06/20/2021] [Indexed: 12/19/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disease originating from combined genetic and environmental factors. Post-mortem human studies and some animal ASD models have shown brain neuroinflammation, oxidative stress, and changes in blood-brain barrier (BBB) integrity. However, the signaling pathways leading to these inflammatory findings and vascular alterations are currently unclear. The BBB plays a critical role in controlling brain homeostasis and immune response. Its dysfunction can result from developmental genetic abnormalities or neuroinflammatory processes. In this review, we explore the role of the Sonic Hedgehog/Wingless-related integration site (Shh/Wnt) pathways in neurodevelopment, neuroinflammation, and BBB development. The balance between Wnt-β-catenin and Shh pathways controls angiogenesis, barriergenesis, neurodevelopment, central nervous system (CNS) morphogenesis, and neuronal guidance. These interactions are critical to maintain BBB function in the mature CNS to prevent the influx of pathogens and inflammatory cells. Genetic mutations of key components of these pathways have been identified in ASD patients and animal models, which correlate with the severity of ASD symptoms. Disruption of the Shh/Wnt crosstalk may therefore compromise BBB development and function. In turn, impaired Shh signaling and glial activation may cause neuroinflammation that could disrupt the BBB. Elucidating how ASD-related mutations of Shh/Wnt signaling could cause BBB leaks and neuroinflammation will contribute to our understanding of the role of their interactions in ASD pathophysiology. These observations may provide novel targeted therapeutic strategies to prevent or alleviate ASD symptoms while preserving normal developmental processes.
Collapse
Affiliation(s)
- Evelyne Gozal
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Rekha Jagadapillai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Jun Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Gregory N Barnes
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA.,Department of Neurology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
60
|
Baker TL, Agoston DV, Brady RD, Major B, McDonald SJ, Mychasiuk R, Wright DK, Yamakawa GR, Sun M, Shultz SR. Targeting the Cerebrovascular System: Next-Generation Biomarkers and Treatment for Mild Traumatic Brain Injury. Neuroscientist 2021; 28:594-612. [PMID: 33966527 DOI: 10.1177/10738584211012264] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diagnosis, prognosis, and treatment of mild traumatic brain injuries (mTBIs), such as concussions, are significant unmet medical issues. The kinetic forces that occur in mTBI adversely affect the cerebral vasculature, making cerebrovascular injury (CVI) a pathophysiological hallmark of mTBI. Given the importance of a healthy cerebrovascular system in overall brain function, CVI is likely to contribute to neurological dysfunction after mTBI. As such, CVI and related pathomechanisms may provide objective biomarkers and therapeutic targets to improve the clinical management and outcomes of mTBI. Despite this potential, until recently, few studies have focused on the cerebral vasculature in this context. This article will begin by providing a brief overview of the cerebrovascular system followed by a review of the literature regarding how mTBI can affect the integrity and function of the cerebrovascular system, and how this may ultimately contribute to neurological dysfunction and neurodegenerative conditions. We then discuss promising avenues of research related to mTBI biomarkers and interventions that target CVI, and conclude that a clinical approach that takes CVI into account could result in substantial improvements in the care and outcomes of patients with mTBI.
Collapse
Affiliation(s)
- Tamara L Baker
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Rhys D Brady
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Brendan Major
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
61
|
Wala K, Szlasa W, Saczko J, Rudno-Rudzińska J, Kulbacka J. Modulation of Blood-Brain Barrier Permeability by Activating Adenosine A2 Receptors in Oncological Treatment. Biomolecules 2021; 11:biom11050633. [PMID: 33923147 PMCID: PMC8146369 DOI: 10.3390/biom11050633] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
The blood–brain barrier (BBB) plays an important protective role in the central nervous system and maintains its homeostasis. It regulates transport into brain tissue and protects neurons against the toxic effects of substances circulating in the blood. However, in the case of neurological diseases or primary brain tumors, i.e., gliomas, the higher permeability of the blood-derived substances in the brain tissue is necessary. Currently applied methods of treatment for the primary brain neoplasms include surgical removal of the tumor, radiation therapy, and chemotherapy. Despite the abovementioned treatment methods, the prognosis of primary brain tumors remains bad. Moreover, chemotherapy options seem to be limited due to low drug penetration into the cancerous tissue. Modulation of the blood–brain barrier permeability may contribute to an increase in the concentration of the drug in the CNS and thus increase the effectiveness of therapy. Interestingly, endothelial cells in cerebral vessels are characterized by the presence of adenosine 2A receptors (A2AR). It has been shown that substances affecting these receptors regulate the permeability of the BBB. The mechanism of increasing the BBB permeability by A2AR agonists is the actin-cytoskeletal reorganization and acting on the tight junctions. In this case, the A2AR seems to be a promising therapy target. This article aims to assess the possibility of increasing the BBB permeability through A2AR agonists to increase the effectiveness of chemotherapy and to improve the results of cancer therapy.
Collapse
Affiliation(s)
- Kamila Wala
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.W.); (W.S.)
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.W.); (W.S.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Julia Rudno-Rudzińska
- Department of General and Oncological Surgery, Medical University Hospital, Borowska 213, 50-556 Wrocław, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-784-06-92
| |
Collapse
|
62
|
Janjua TI, Rewatkar P, Ahmed-Cox A, Saeed I, Mansfeld FM, Kulshreshtha R, Kumeria T, Ziegler DS, Kavallaris M, Mazzieri R, Popat A. Frontiers in the treatment of glioblastoma: Past, present and emerging. Adv Drug Deliv Rev 2021; 171:108-138. [PMID: 33486006 DOI: 10.1016/j.addr.2021.01.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/13/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is one of the most aggressive cancers of the brain. Despite extensive research over the last several decades, the survival rates for GBM have not improved and prognosis remains poor. To date, only a few therapies are approved for the treatment of GBM with the main reasons being: 1) significant tumour heterogeneity which promotes the selection of resistant subpopulations 2) GBM induced immunosuppression and 3) fortified location of the tumour in the brain which hinders the delivery of therapeutics. Existing therapies for GBM such as radiotherapy, surgery and chemotherapy have been unable to reach the clinical efficacy necessary to prolong patient survival more than a few months. This comprehensive review evaluates the current and emerging therapies including those in clinical trials that may potentially improve both targeted delivery of therapeutics directly to the tumour site and the development of agents that may specifically target GBM. Particular focus has also been given to emerging delivery technologies such as focused ultrasound, cellular delivery systems nanomedicines and immunotherapy. Finally, we discuss the importance of developing novel materials for improved delivery efficacy of nanoparticles and therapeutics to reduce the suffering of GBM patients.
Collapse
|
63
|
Abstract
Blood-brain barrier (BBB), although very important for protection of brain from major neurotoxins, negatively affects the treatment of central nervous system diseases by limiting the passage of neuropharmaceuticals from blood to the brain. Thus, researchers have to investigate the passage of the produced drug molecules through the BBB before they are introduced to the market. Although these experiments have been traditionally performed on experimental animals, drug permeability tests are now carried out mostly by in vitro BBB models due to ethical problems, differences between species, and expensive and troublesome in vivo test procedures. In this method, we explain how to model and characterize a realistic in vitro BBB model using human derived cells and perform a drug permeability test using this model.
Collapse
|
64
|
Jung S, Terörde K, Dörr HG, Trollmann R. Recombinant Human Growth Hormone Activates Neuroprotective Growth Factors in Hypoxic Brain Injury in Neonatal Mice. Endocrinology 2021; 162:6129199. [PMID: 33545716 DOI: 10.1210/endocr/bqab008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 01/10/2023]
Abstract
Perinatal hypoxia severely disrupts cerebral metabolic and maturational programs beyond apoptotic cell death. Antiapoptotic treatments such as erythropoietin are suggested to improve outcomes in hypoxic brain injury; however, the results are controversial. We analyzed the neuroprotective effects of recombinant human growth hormone (rhGH) on regenerative mechanisms in the hypoxic developing mouse brain in comparison to controls. Using an established model of neonatal acute hypoxia (8% O2, 6 hours), P7 mice were treated intraperitoneally with rhGH (4000 µg/kg) 0, 12, and 24 hours after hypoxic exposure. After a regeneration period of 48 hours, expression of hypoxia-inducible neurotrophic factors (erythropoietin [EPO], vascular endothelial growth factor A [VEGF-A], insulin-like growth factors 1 and 2 [IGF-1/-2], IGF binding proteins) and proinflammatory markers was analyzed. In vitro experiments were performed using primary mouse cortical neurons (E14, DIV6). rhGH increased neuronal gene expression of EPO, IGF-1, and VEGF (P < .05) in vitro and diminished apoptosis of hypoxic neurons in a dose-dependent manner. In the developing brain, rhGH treatment led to a notable reduction of apoptosis in the subventricular zone and hippocampus (P < .05), abolished hypoxia-induced downregulation of IGF-1/IGF-2 expression (P < .05), and led to a significant accumulation of endogenous EPO protein and anti-inflammatory effects through modulation of interleukin-1β and tumor necrosis factor α signaling as well as upregulation of cerebral phosphorylated extracellularly regulated kinase 1/2 levels (ERK1/2). Indicating stabilizing effects on the blood-brain barrier (BBB), rhGH significantly modified cerebrovascular occludin expression. Thus, we conclude that rhGH mediates neuroprotective effects by the activation of endogenous neurotrophic growth factors and BBB stabilization. In addition, the modification of ERK1/2 pathways is involved in neuroprotective actions of rhGH. The present study adds further evidence that pharmacologic activation of neurotrophic growth factors may be a promising target for neonatal neuroprotection.
Collapse
Affiliation(s)
- Susan Jung
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Klara Terörde
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Helmuth-Günther Dörr
- Department of Pediatrics, Pediatric Endocrinology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Regina Trollmann
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
65
|
Acharya A, Olwenyi OA, Thurman M, Pandey K, Morsey BM, Lamberty B, Ferguson N, Callen S, Fang Q, Buch SJ, Fox HS, Byrareddy SN. Chronic morphine administration differentially modulates viral reservoirs in SIVmac251 infected rhesus macaque model. J Virol 2021; 95:JVI.01657-20. [PMID: 33328304 PMCID: PMC8092838 DOI: 10.1128/jvi.01657-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
HIV persists in cellular reservoirs despite effective combined antiretroviral therapy (cART) and there is viremia flare up upon therapy interruption. Opioids modulate the immune system and suppress antiviral gene responses, which significantly impact people living with HIV (PLWH). However, the effect of opioids on viral reservoir dynamics remain elusive. Herein, we developed a morphine dependent SIVmac251 infected Rhesus macaque (RM) model to study the impact of opioids on HIV reservoirs. RMs on a morphine (or saline control) regimen were infected with SIVmac251. The cART was initiated in approximately half the animals five weeks post-infection, and morphine/saline administration continued until the end of the study. Among the untreated RM, we did not find any difference in plasma/CSF or in cell-associated DNA/RNA viral load in anatomical tissues. On the other hand, within the cART suppressed macaques, there was a reduction in cell-associated DNA load, intact proviral DNA levels, and in inducible SIV reservoir in lymph nodes (LNs) of morphine administered RMs. In distinction to LNs, in the CNS, the size of latent SIV reservoirs was higher in the CD11b+ microglia/macrophages in morphine dependent RMs. These results suggest that in the proposed model, morphine plays a differential role in SIV reservoirs by reducing the CD4+ T-cell reservoir in lymphoid tissues, while increasing the microglia/reservoir size in CNS tissue. The findings from this pre-clinical model will serve as a tool for screening therapeutic strategies to reduce/eliminate HIV reservoirs in opioid dependent PLWH.IMPORTANCE Identification and clearance of HIV reservoirs is a major challenge in achieving a cure for HIV. This is further complicated by co-morbidities that may alter the size of the reservoirs. There is an overlap between the risk factors for HIV and opioid abuse. Opiates have been recognized as prominent co-morbidities in HIV-infected populations. People infected with HIV also abusing opioids have immune modulatory effects and more severe neurological disease. However, the impact of opioid abuse on HIV reservoirs remains unclear. In this study, we used morphine dependent SIVmac251 infected rhesus macaque (RM) model to study the impact of opioids on HIV reservoirs. Our studies suggested that people with HIV who abuse opioids had higher reservoirs in CNS than the lymphoid system. Extrapolating the macaque findings in humans suggests that such differential modulation of HIV reservoirs among people living with HIV abusing opioids could be considered for future HIV cure research efforts.
Collapse
Affiliation(s)
- Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Omalla A Olwenyi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michellie Thurman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brenda M Morsey
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin Lamberty
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Natasha Ferguson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Qiu Fang
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shilpa J Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
66
|
Dietary GABA and its combination with vigabatrin mimic calorie restriction and induce antiobesity-like effects in lean mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
67
|
Choudhari M, Hejmady S, Narayan Saha R, Damle S, Singhvi G, Alexander A, Kesharwani P, Kumar Dubey S. Evolving new-age strategies to transport therapeutics across the blood-brain-barrier. Int J Pharm 2021; 599:120351. [PMID: 33545286 DOI: 10.1016/j.ijpharm.2021.120351] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 12/25/2022]
Abstract
A basic understanding of the blood-brain barrier (BBB) is essential for the novel advancements in targeting drugs specific to the brain. Neoplasm compromising the internal structure of BBB that results in impaired vasculature is called as blood tumor barrier (BTB). Besides, the BBB serves as a chief hindrance to the passage of a drug into the brain parenchyma. The small and hydrophilic drugs majorly display an absence of desired molecular characteristics required to cross the BBB. Furthermore, all classes of biologics have failed in the clinical trials of brain diseases over the past years since these biologics are large molecules that do not cross the BBB. Also, new strategies have been discovered that use the Trojan horse technology with the re-engineered biologics for BBB transport. Thus, this review delivers information about the different grades of tumors (I-IV) i.e. examples of BBB/BTB heterogenicity along with the different mechanisms for transporting the therapeutics into the brain tumors by crossing BBB. This review also provides insights into the emerging approaches of peptide delivery and the non-invasive and brain-specific molecular Trojan horse targeting technologies. Also, the several challenges in the clinical development of BBB penetrating IgG fusion protein have been discussed.
Collapse
Affiliation(s)
- Manisha Choudhari
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Siddhanth Hejmady
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Ranendra Narayan Saha
- Birla Institute of Technology and Science, Pilani, Dubai Campus, United Arab Emirates
| | - Shantanu Damle
- Colorcon Asia Pvt. Ltd., Verna Industrial Estate, Verna 403722, Goa, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER GUWAHATI), Department of Pharmaceutical Technology (Formulations), Department of Pharmaceuticals, Ministry of Chemical and Fertilizers, Government of India, Sila Village, Nizsundarighopa, Changsari, Kamrup (R), Guwahati, Assam 781101, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India; R&D Healthcare Division Emami Ltd., 13, BT Road, Belgharia, Kolkata 700056, India.
| |
Collapse
|
68
|
Ogawa K, Kato N, Kawakami S. Recent Strategies for Targeted Brain Drug Delivery. Chem Pharm Bull (Tokyo) 2021; 68:567-582. [PMID: 32611994 DOI: 10.1248/cpb.c20-00041] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because the brain is the most important human organ, many brain disorders can cause severe symptoms. For example, glioma, one type of brain tumor, is progressive and lethal, while neurodegenerative diseases cause severe disability. Nevertheless, medical treatment for brain diseases remains unsatisfactory, and therefore innovative therapies are desired. However, the development of therapies to treat some cerebral diseases is difficult because the blood-brain barrier (BBB) or blood-brain tumor barrier prevents drugs from entering the brain. Hence, drug delivery system (DDS) strategies are required to deliver therapeutic agents to the brain. Recently, brain-targeted DDS have been developed, which increases the quality of therapy for cerebral disorders. This review gives an overview of recent brain-targeting DDS strategies. First, it describes strategies to cross the BBB. This includes BBB-crossing ligand modification or temporal BBB permeabilization. Strategies to avoid the BBB using local administration are also summarized. Intrabrain drug distribution is a crucial factor that directly determines the therapeutic effect, and thus it is important to evaluate drug distribution using optimal methods. We introduce some methods for evaluating drug distribution in the brain. Finally, applications of brain-targeted DDS for the treatment of brain tumors, Alzheimer's disease, Parkinson's disease, and stroke are explained.
Collapse
Affiliation(s)
- Koki Ogawa
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Naoya Kato
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
69
|
Hyokai S, Tanaka H, Aihara N, Kamiie J. Expression of P-glycoprotein and breast cancer resistance protein in three cases of canine lymphoma showing drug resistance. J Vet Med Sci 2021; 83:473-477. [PMID: 33518631 PMCID: PMC8025433 DOI: 10.1292/jvms.20-0718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In canine lymphoma, drug resistance is the major factor hindering treatment. In this study, we performed immunohistochemical examination of P-glycoprotein
(P-gp) and breast cancer resistance protein (BCRP), which are considered as transporters related to multidrug resistance in three recurrent canine lymphomas.
All cases were negative for both transporters before anticancer drug administration, but became positive after this administration. The expression was confirmed
in capillary endothelial cells, such as in brain capillaries acting as the blood-brain barrier (BBB). It is suggested that both transporters expressed on
capillary endothelial cells in lymphoma tissue may inhibit the spread of anticancer drugs into tumor tissues from blood, the same as the BBB. Therefore,
capillary endothelial cells could act as a blood-tumor barrier, which might be involved in drug resistance in canine lymphoma.
Collapse
Affiliation(s)
- Sachiko Hyokai
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.,Pfizer R&D Japan G.K., 3-22-7 Yoyogi, Shibuya-ku, Tokyo 151-8589, Japan
| | - Hiroyo Tanaka
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Noriyuki Aihara
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Junichi Kamiie
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
70
|
WANG KAI, ZHANG FENGTIAN, WEN CHANGLONG, HUANG ZHIHUA, HU ZHIHAO, ZHANG YUWEN, HU FUQIANG, WEN LIJUAN. Regulation of pathological blood-brain barrier for intracranial enhanced drug delivery and anti-glioblastoma therapeutics. Oncol Res 2021. [DOI: 10.32604/or.2022.025696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
71
|
Belei O, Ancusa O, Mara A, Olariu L, Amaricai E, Folescu R, Zamfir CL, Gurgus D, Motoc AG, Stânga LC, Strat L, Marginean O. Current Paradigm of Hepatitis E Virus Among Pediatric and Adult Patients. Front Pediatr 2021; 9:721918. [PMID: 34660485 PMCID: PMC8515027 DOI: 10.3389/fped.2021.721918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022] Open
Abstract
Hepatitis E virus (HEV) infection is a polymorphic condition, present throughout the world and involving children and adults. Multiple studies over the last decade have contributed to a better understanding of the natural evolution of this infection in various population groups, several reservoirs and transmission routes being identified. To date, acute or chronic HEV-induced hepatitis has in some cases remained underdiagnosed due to the lower accuracy of serological tests and due to the evolutionary possibility with extrahepatic manifestations. Implementation of diagnostic tests based on nucleic acid analysis has increased the detection rate of this disease. The epidemiological and clinical features of HEV hepatitis differ depending on the geographical areas studied. HEV infection is usually a self-limiting condition in immunocompetent patients, but in certain categories of vulnerable patients it can induce a sudden evolution toward acute liver failure (pregnant women) or chronicity (immunosuppressed patients, post-transplant, hematological, or malignant diseases). In acute HEV infections in most cases supportive treatment is sufficient. In patients who develop chronic hepatitis with HEV, dose reduction of immunosuppressive medication should be the first therapeutic step, especially in patients with transplant. In case of unfavorable response, the initiation of antiviral therapy is recommended. In this review, the authors summarized the essential published data related to the epidemiological, clinical, paraclinical, and therapeutic aspects of HEV infection in adult and pediatric patients.
Collapse
Affiliation(s)
- Oana Belei
- First Pediatric Clinic, Disturbance of Growth and Development on Children Research Center, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Oana Ancusa
- Fifth Department of Internal Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Adelina Mara
- Department of Internal Medicine, Emergency City Hospital, Timisoara, Romania
| | - Laura Olariu
- First Pediatric Clinic, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Elena Amaricai
- Department of Rehabilitation Physical Medicine and Rheumatology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Roxana Folescu
- Department of Balneology, Medical Recovery and Rheumatology, Family Discipline, Center for Preventive Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Carmen Lacramioara Zamfir
- Department of Morpho-Functional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Daniela Gurgus
- Department of Balneology, Medical Recovery and Rheumatology, Family Discipline, Center for Preventive Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Andrei G Motoc
- Department of Anatomy and Embriology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Livia Claudia Stânga
- Department of Microbiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Liliana Strat
- Department of Mother and Child Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Otilia Marginean
- First Pediatric Clinic, Disturbance of Growth and Development on Children Research Center, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
72
|
Wang Z, Zhang Y, Hu F, Ding J, Wang X. Pathogenesis and pathophysiology of idiopathic normal pressure hydrocephalus. CNS Neurosci Ther 2020; 26:1230-1240. [PMID: 33242372 PMCID: PMC7702234 DOI: 10.1111/cns.13526] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH), the most common type of adult-onset hydrocephalus, is a potentially reversible neuropsychiatric entity characterized by dilated ventricles, cognitive deficit, gait apraxia, and urinary incontinence. Despite its relatively typical imaging features and clinical symptoms, the pathogenesis and pathophysiology of iNPH remain unclear. In this review, we summarize current pathogenetic conceptions of iNPH and its pathophysiological features that lead to neurological deficits. The common consensus is that ventriculomegaly resulting from cerebrospinal fluid (CSF) dynamics could initiate a vicious cycle of neurological damages in iNPH. Pathophysiological factors including hypoperfusion, glymphatic impairment, disturbance of metabolism, astrogliosis, neuroinflammation, and blood-brain barrier disruption jointly cause white matter and gray matter lesions, and eventually lead to various iNPH symptoms. Also, we review the current treatment options and discuss the prospective treatment strategies for iNPH. CSF diversion with ventriculoperitoneal or lumboperitonealshunts remains as the standard therapy, while its complications prompt attempts to refine shunt insertion and develop new therapeutic procedures. Recent progress on advanced biomaterials and improved understanding of pathogenesis offers new avenues to treat iNPH.
Collapse
Affiliation(s)
- Zhangyang Wang
- Department of NeurologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yiying Zhang
- Department of NeurologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Fan Hu
- Department of NeurosugeryZhongshan Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Jing Ding
- Department of NeurologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Xin Wang
- Department of NeurologyZhongshan Hospital, Fudan UniversityShanghaiChina
- Department of The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
73
|
JLX001 attenuates blood-brain barrier dysfunction in MCAO/R rats via activating the Wnt/β-catenin signaling pathway. Life Sci 2020; 260:118221. [PMID: 32768578 DOI: 10.1016/j.lfs.2020.118221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
JLX001, a new dihydrochloride of Cyclovirobuxine D (CVB-D), has bioactivities against ischemia injury. The blood-brain barrier (BBB) disruption is involved in the pathogeneses of ischemic stroke. This study was designed to explore the effect and potential mechanism of JLX001 on the BBB after ischemic stroke. Rats were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) to mimic cerebral ischemia in vivo. In vitro, rat primary brain microvascular endothelial cells (PBMECs) were cultured and exposed to oxygen-glucose deprivation/reoxygenation (OGD/R). Posttreatment of JLX001 for 15 days after MCAO/R improved the behavior, learning and memory ability. Pretreatment of JLX001 for 3 days significantly attenuated infarct volume, lessened brain edema, mitigated BBB disruption and decreased the neurological deficit score in MCAO/R rats. Moreover, JLX001 increased cell viability and reduced sodium fluorescein leakage after OGD/R injury. In addition, JLX001 increased the expressions of Claudin-5 and Occludin, decreased the expression of MMP-9 both in vivo and in vitro. Moreover, immunofluorescence staining and western immunoblotting results showed that JLX001 increased the expressions of tight junction proteins via activating Wnt/β-catenin signal pathway in vivo and in vitro, which may be associated with the activation of PI3K/Akt signaling. Besides, XAV939 (an inhibitor of the Wnt/β-catenin pathway) proved the connection of JLX001 and Wnt/β-catenin pathway. These results suggest that JLX001 alleviates BBB disruption after MCAO/R and OGD/R possibly by alleviating MMP-9 and activating the Wnt/β-catenin signaling pathway.
Collapse
|
74
|
Sharma HS, Sahib S, Tian ZR, Muresanu DF, Nozari A, Castellani RJ, Lafuente JV, Wiklund L, Sharma A. Protein kinase inhibitors in traumatic brain injury and repair: New roles of nanomedicine. PROGRESS IN BRAIN RESEARCH 2020; 258:233-283. [PMID: 33223036 DOI: 10.1016/bs.pbr.2020.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) causes physical injury to the cell membranes of neurons, glial and axons causing the release of several neurochemicals including glutamate and cytokines altering cell-signaling pathways. Upregulation of mitogen associated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) occurs that is largely responsible for cell death. The pharmacological blockade of these pathways results in cell survival. In this review role of several protein kinase inhibitors on TBI induced oxidative stress, blood-brain barrier breakdown, brain edema formation, and resulting brain pathology is discussed in the light of current literature.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bilbao, Spain
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
75
|
Stover PJ, Garza C, Durga J, Field MS. Emerging Concepts in Nutrient Needs. J Nutr 2020; 150:2593S-2601S. [PMID: 33000157 PMCID: PMC7527270 DOI: 10.1093/jn/nxaa117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/12/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
Dietary reference intakes (DRIs) are quantitative, nutrient intake-based standards used for assessing the diets and specific nutrient intakes of healthy individuals and populations and for informing national nutrition policy and nutrition programs. Because nutrition needs vary by age, sex, and physiological state, DRIs are often specified for healthy subgroups within a population. Diet is known to be the leading modifiable risk factor for chronic disease, and the prevalence of chronic disease is growing in all populations globally and across all subgroups, but especially in older adults. It is known that nutrient needs can change in some chronic disease and other clinical states. Disease states and/or disease treatment can cause whole-body or tissue-specific nutrient depletion or excess, resulting in the need for altered nutrient intakes. In other cases, disease-related biochemical dysfunction can result in a requirement for a nonessential nutrient, rendering it as conditionally essential, or result in toxicity for a food component at levels usually tolerated by healthy people, as seen in inborn errors of metabolism. Here we summarize examples from a growing body of literature of disease-altering nutrient requirements, supporting the need to give more consideration to special nutrient requirements in disease states.
Collapse
Affiliation(s)
| | - Cutberto Garza
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Jane Durga
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| |
Collapse
|
76
|
Lee BK, Hyun SW, Jung YS. Yuzu and Hesperidin Ameliorate Blood-Brain Barrier Disruption during Hypoxia via Antioxidant Activity. Antioxidants (Basel) 2020; 9:antiox9090843. [PMID: 32916895 PMCID: PMC7555663 DOI: 10.3390/antiox9090843] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Yuzu and its main component, hesperidin (HSP), have several health benefits owing to their anti-inflammatory and antioxidant properties. We examined the effects of yuzu and HSP on blood-brain barrier (BBB) dysfunction during ischemia/hypoxia in an in vivo animal model and an in vitro BBB endothelial cell model, and also investigated the underlying mechanisms. In an in vitro BBB endothelial cell model, BBB permeability was determined by measurement of Evans blue extravasation in vivo and in vitro. The expression of tight junction proteins, such as claudin-5 and zonula occludens-1 (ZO-1), was detected by immunochemistry and western blotting, and the reactive oxygen species (ROS) level was measured by 2'7'-dichlorofluorescein diacetate intensity. Yuzu and HSP significantly ameliorated the increase in BBB permeability and the disruption of claudin-5 and ZO-1 in both in vivo and in vitro models. In bEnd.3 cells, yuzu and HSP were shown to inhibit the disruption of claudin-5 and ZO-1 during hypoxia, and the protective effects of yuzu and HSP on claudin-5 degradation seemed to be mediated by Forkhead box O 3a (FoxO3a) and matrix metalloproteinase (MMP)-3/9. In addition, well-known antioxidants, trolox and N-acetyl cysteine, significantly attenuated the BBB permeability increase, disruption of claudin-5 and ZO-1, and FoxO3a activation during hypoxia, suggesting that ROS are important mediators of BBB dysfunction during hypoxia. Collectively, these results indicate that yuzu and HSP protect the BBB against dysfunction via maintaining integrity of claudin-5 and ZO-1, and these effects of yuzu and HSP appear to be a facet of their antioxidant properties. Our findings may contribute to therapeutic strategies for BBB-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Bo Kyung Lee
- College of Pharmacy, Ajou University, Suwon 16499, Korea, (S.-W.H.)
| | - Soo-Wang Hyun
- College of Pharmacy, Ajou University, Suwon 16499, Korea, (S.-W.H.)
| | - Yi-Sook Jung
- College of Pharmacy, Ajou University, Suwon 16499, Korea, (S.-W.H.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-31-219-3444
| |
Collapse
|
77
|
Song MK, Kim YJ, Lee JM, Kim YJ. Neurovascular integrative effects of long-term environmental enrichment on chronic cerebral hypoperfusion rat model. Brain Res Bull 2020; 163:160-169. [PMID: 32711044 DOI: 10.1016/j.brainresbull.2020.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/02/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
Vascular dementia (VaD) is one of the most common types of dementia followed by Alzheimer's disease (AD). Recent studies showed that approximately 30 %-35 % of patients with AD at post-mortem exhibited vascular pathologies, which suggested that mixed dementia may be the most common type of dementia. Permanent bilateral common carotid artery occlusion (2VO) is a well-characterized method for investigating cognitive functions and the histopathological consequences of chronic cerebral hypoperfusion (CCH) in rats. In the present study, we investigated the effects of environmental enrichment (EE) on cognitive impairment after CCH, as well as the effects of CCH-induced neurovascular damage on cognitive function. Wistar rats were randomly allocated to a sham group, a 2VO group, and a 2VO + EE group. The 2VO procedure was performed at 12 weeks, while EE was performed for 8 weeks before and 6 weeks after 2VO. The effect of EE on cognitive functions in 2VO rats was investigated using the radial-arm maze and Morris Water Maze tests. Neurovascular integrity was assessed based on immunoreactivity for glial fibrillary acidic protein (GFAP), morphological changes in microvessels, and the expression of matrix metalloproteinase-9 (MMP-9) and zonula occludens-1 (ZO-1) in the motor cortex and hippocampus. EE ameliorated microvessel fragmentation by sustaining the tight junction through increases of ZO-1 expression after CCH, resulting in preserving the neurovascular unit. In summary, EE mitigated cognitive impairment by restoring neurovascular integrity. These findings suggest that EE can be a valuable and meaningful environmental intervention for patients with cognitive impairment.
Collapse
Affiliation(s)
- Min Kyung Song
- Department of Nursing, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yoon Ju Kim
- Department of Nursing, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae-Min Lee
- Department of Nursing, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Youn-Jung Kim
- College of Nursing Science, Kyung Hee University, East-west Nursing Research Institute, Seoul, 02447, Republic of Korea.
| |
Collapse
|
78
|
Gao P, Chen Q, Hu J, Lin Y, Lin J, Guo Q, Yue H, Zhou Y, Zeng L, Li J, Ding G, Guo G. Effect of ultra‑wide‑band electromagnetic pulses on blood‑brain barrier permeability in rats. Mol Med Rep 2020; 22:2775-2782. [PMID: 32945403 PMCID: PMC7453585 DOI: 10.3892/mmr.2020.11382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
The restrictive nature of the blood brain barrier (BBB) brings a particular challenge to the treatment of central nervous system (CNS) disorders. The effect of ultra-wide band electromagnetic pulses (UWB-EMPs) on BBB permeability was examined in the present study in order to develop a safe and effective technology that opens the BBB to improve treatment options for CNS diseases. Rats were exposed to a single UWB-EMP at various field strengths (50, 200 or 400 kV/m) and the BBB was examined using albumin immunohistochemistry and Evans blue staining at different time periods (0.5, 3, 6 and 24 h) after exposure. The expression and distribution of zonula occludens 1 (ZO-1) were evaluated using western blotting to identify a potential mechanism underlying BBB permeability. The results showed that the BBB permeability of rats exposed to UWB-EMP increased immediately following UWM-EMP treatment and peaked between 3 and 6 h after UWB-EMP exposure, returning to pre-exposure levels 24 h later. The data suggested that UWB-EMP at 200 and 400 kV/m could induce BBB opening, while 50 kV/m UWB-EMP could not. The levels of ZO-1 in the cerebral cortex were significantly decreased at 3 and 6 h after exposure; however, no change was observed in the distribution of ZO-1. The present study indicated that UWB-EMP-induced BBB opening was field strength-dependent and reversible. Decreased expression of ZO-1 may be involved in the effect of UWB-EMP on BBB permeability.
Collapse
Affiliation(s)
- Peng Gao
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qin Chen
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Junfeng Hu
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yanyun Lin
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jiajin Lin
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qiyan Guo
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hao Yue
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yan Zhou
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lihua Zeng
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jing Li
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guirong Ding
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guozhen Guo
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
79
|
Abstract
Multiple sclerosis (MS) is a common, severe neurological disease that affects millions of people worldwide. Nevertheless, the actual cause of MS remains unknown. Smoking has been studied with respect to MS development and progression. The objectives of this review were to examine the relationship between smoking and MS and to understand the possible molecular mechanisms underlying the association. PubMed was searched for articles related to the study topic published between 2012 and 2020 using the search terms "multiple sclerosis," "smoking," "risk factors," "cigarettes," and "molecular mechanisms." Studies show a significant relationship between smoking and the risk of MS. Furthermore, smoking has been linked to the progression of MS at the patient and population levels. However, the underlying mechanism remains to be explored in further studies; researchers still disagree on how the relationship between smoking and MS arises in different populations. Evidence from randomized controlled trials, systematic reviews, and epidemiological studies shows that smokers have a higher risk of developing MS and experiencing related adverse symptoms and complications.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg UKGM, Justus Liebig University Giessen, Giessen, Hessen Germany.
| |
Collapse
|
80
|
Lee MJ, Jang Y, Han J, Kim SJ, Ju X, Lee YL, Cui J, Zhu J, Ryu MJ, Choi SY, Chung W, Heo C, Yi HS, Kim HJ, Huh YH, Chung SK, Shong M, Kweon GR, Heo JY. Endothelial-specific Crif1 deletion induces BBB maturation and disruption via the alteration of actin dynamics by impaired mitochondrial respiration. J Cereb Blood Flow Metab 2020; 40:1546-1561. [PMID: 31987007 PMCID: PMC7308523 DOI: 10.1177/0271678x19900030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cerebral endothelial cells (ECs) require junctional proteins to maintain blood-brain barrier (BBB) integrity, restricting toxic substances and controlling peripheral immune cells with a higher concentration of mitochondria than ECs of peripheral capillaries. The mechanism underlying BBB disruption by defective mitochondrial oxidative phosphorylation (OxPhos) is unclear in a mitochondria-related gene-targeted animal model. To assess the role of EC mitochondrial OxPhos function in the maintenance of the BBB, we developed an EC-specific CR6-interactin factor1 (Crif1) deletion mouse. We clearly observed defects in motor behavior, uncompacted myelin and leukocyte infiltration caused by BBB maturation and disruption in this mice. Furthermore, we investigated the alteration in the actin cytoskeleton, which interacts with junctional proteins to support BBB integrity. Loss of Crif1 led to reorganization of the actin cytoskeleton and a decrease in tight junction-associated protein expression through an ATP production defect in vitro and in vivo. Based on these results, we suggest that mitochondrial OxPhos is important for the maturation and maintenance of BBB integrity by supplying ATP to cerebral ECs.
Collapse
Affiliation(s)
- Min Joung Lee
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yunseon Jang
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jeongsu Han
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Soo J Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Xianshu Ju
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yu Lim Lee
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jianchen Cui
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jiebo Zhu
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Min Jeong Ryu
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Song-Yi Choi
- Department of Pathology, Chungnam National University, Daejeon, Republic of Korea
| | - Woosuk Chung
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Anesthesiology and Pain Medicine, School of Medicine, Chungnam National University, Daejeon, Republic of Korea.,Department of Anesthesiology and Pain medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Chaejeong Heo
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, South Korea.,Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea
| | - Hyon-Seung Yi
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Yang H Huh
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, Chungcheongbukdo, Republic of Korea
| | - Sookja K Chung
- Medical Faculty at Macau University of Science and Technology, Taipa, Macau
| | - Minho Shong
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea.,Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Gi-Ryang Kweon
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Jun Young Heo
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
81
|
Manukjan N, Ahmed Z, Fulton D, Blankesteijn WM, Foulquier S. A Systematic Review of WNT Signaling in Endothelial Cell Oligodendrocyte Interactions: Potential Relevance to Cerebral Small Vessel Disease. Cells 2020; 9:cells9061545. [PMID: 32630426 PMCID: PMC7349551 DOI: 10.3390/cells9061545] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Key pathological features of cerebral small vessel disease (cSVD) include impairment of the blood brain barrier (BBB) and the progression of white matter lesions (WMLs) amongst other structural lesions, leading to the clinical manifestations of cSVD. The function of endothelial cells (ECs) is of major importance to maintain a proper BBB. ECs interact with several cell types to provide structural and functional support to the brain. Oligodendrocytes (OLs) myelinate axons in the central nervous system and are crucial in sustaining the integrity of white matter. The interplay between ECs and OLs and their precursor cells (OPCs) has received limited attention yet seems of relevance for the study of BBB dysfunction and white matter injury in cSVD. Emerging evidence shows a crosstalk between ECs and OPCs/OLs, mediated by signaling through the Wingless and Int-1 (WNT)/β-catenin pathway. As the latter is involved in EC function (e.g., angiogenesis) and oligodendrogenesis, we reviewed the role of WNT/β-catenin signaling for both cell types and performed a systematic search to identify studies describing a WNT-mediated interplay between ECs and OPCs/OLs. Dysregulation of this interaction may limit remyelination of WMLs and render the BBB leaky, thereby initiating a vicious neuroinflammatory cycle. A better understanding of the role of this signaling pathway in EC-OL crosstalk is essential in understanding cSVD development.
Collapse
Affiliation(s)
- Narek Manukjan
- Department of Pharmacology and Toxicology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands; or (W.M.B.)
- CARIM—School for Cardiovascular Diseases, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (Z.A.); (D.F.)
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (Z.A.); (D.F.)
| | - Daniel Fulton
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (Z.A.); (D.F.)
| | - W. Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands; or (W.M.B.)
- CARIM—School for Cardiovascular Diseases, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands; or (W.M.B.)
- CARIM—School for Cardiovascular Diseases, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
- Department of Neurology, MHeNs—School for Mental Health and Neuroscience, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-3881409
| |
Collapse
|
82
|
Harun MSR, Marsh V, Elsaied NA, Webb KF, Elsheikha HM. Effects of Toxoplasma gondii infection on the function and integrity of human cerebrovascular endothelial cells and the influence of verapamil treatment in vitro. Brain Res 2020; 1746:147002. [PMID: 32592740 DOI: 10.1016/j.brainres.2020.147002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 06/07/2020] [Accepted: 06/20/2020] [Indexed: 12/16/2022]
Abstract
Toxoplasma gondii can cause parasitic encephalitis, a life-threatening infection that predominately occurs in immunocompromised individuals. T. gondii has the ability to invade the brain, but the mechanisms by which this parasite crosses the blood-brain-barrier (BBB) remain incompletely understood. The present study reports the changes associated with infection and replication of T. gondii within human brain microvascular endothelial cells (BMECs) in vitro. Our results indicated that exposure to T. gondii had an adverse impact on the function and integrity of the BMECs - through induction of cell cycle arrest, disruption of the BMEC barrier integrity, reduction of cellular viability and vitality, depolarization of the mitochondrial membrane potential, increase of the DNA fragmentation, and alteration of the expression of immune response and tight junction genes. The calcium channel/P-glycoprotein transporter inhibitor verapamil was effective in inhibiting T. gondii crossing the BMECs in a dose-dependent manner. The present study showed that T. gondii can compromise several functions of BMECs and demonstrated the ability of verapamil to inhibit T. gondii crossing of the BMECs in vitro.
Collapse
Affiliation(s)
- M S R Harun
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK; Infectomics Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Victoria Marsh
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Nashwa A Elsaied
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Kevin F Webb
- Department of Electrical & Electronic Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK.
| |
Collapse
|
83
|
Gondim BLC, da Silva Catarino J, de Sousa MAD, de Oliveira Silva M, Lemes MR, de Carvalho-Costa TM, de Lima Nascimento TR, Machado JR, Rodrigues V, Oliveira CJF, Cançado Castellano LR, da Silva MV. Nanoparticle-Mediated Drug Delivery: Blood-Brain Barrier as the Main Obstacle to Treating Infectious Diseases in CNS. Curr Pharm Des 2020; 25:3983-3996. [PMID: 31612822 DOI: 10.2174/1381612825666191014171354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Parasitic infections affecting the central nervous system (CNS) present high morbidity and mortality rates and affect millions of people worldwide. The most important parasites affecting the CNS are protozoans (Plasmodium sp., Toxoplasma gondii, Trypanosoma brucei), cestodes (Taenia solium) and free-living amoebae (Acantamoeba spp., Balamuthia mandrillaris and Naegleria fowleri). Current therapeutic regimens include the use of traditional chemicals or natural compounds that have very limited access to the CNS, despite their elevated toxicity to the host. Improvements are needed in drug administration and formulations to treat these infections and to allow the drug to cross the blood-brain barrier (BBB). METHODS This work aims to elucidate the recent advancements in the use of nanoparticles as nanoscaled drug delivery systems (NDDS) for treating and controlling the parasitic infections that affect the CNS, addressing not only the nature and composition of the polymer chosen, but also the mechanisms by which these nanoparticles may cross the BBB and reach the infected tissue. RESULTS There is a strong evidence in the literature demonstrating the potential usefulness of polymeric nanoparticles as functional carriers of drugs to the CNS. Some of them demonstrated the mechanisms by which drugloaded nanoparticles access the CNS and control the infection by using in vivo models, while others only describe the pharmacological ability of these particles to be utilized in in vitro environments. CONCLUSION The scarcity of the studies trying to elucidate the compatibility as well as the exact mechanisms by which NDDS might be entering the CNS infected by parasites reveals new possibilities for further exploratory projects. There is an urgent need for new investments and motivations for applying nanotechnology to control parasitic infectious diseases worldwide.
Collapse
Affiliation(s)
- Brenna Louise Cavalcanti Gondim
- Human Immunology Research and Education Group-GEPIH, Technical School of Health, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil.,Post-Graduation Program in Dentistry, Department of Dentistry, State University of Paraíba, Campina Grande, Paraíba, Brazil
| | - Jonatas da Silva Catarino
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | - Mariana de Oliveira Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcela Rezende Lemes
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | - Tatiana Rita de Lima Nascimento
- Human Immunology Research and Education Group-GEPIH, Technical School of Health, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
| | - Juliana Reis Machado
- Department of Pathology, Genetics and Evolution, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Carlo José Freire Oliveira
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Lúcio Roberto Cançado Castellano
- Human Immunology Research and Education Group-GEPIH, Technical School of Health, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
84
|
Schwefel K, Spiegler S, Kirchmaier BC, Dellweg PKE, Much CD, Pané-Farré J, Strom TM, Riedel K, Felbor U, Rath M. Fibronectin rescues aberrant phenotype of endothelial cells lacking either CCM1, CCM2 or CCM3. FASEB J 2020; 34:9018-9033. [PMID: 32515053 DOI: 10.1096/fj.201902888r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
Abstract
Loss-of-function variants in CCM1/KRIT1, CCM2, and CCM3/PDCD10 are associated with autosomal dominant cerebral cavernous malformations (CCMs). CRISPR/Cas9-mediated CCM3 inactivation in human endothelial cells (ECs) has been shown to induce profound defects in cell-cell interaction as well as actin cytoskeleton organization. We here show that CCM3 inactivation impairs fibronectin expression and consequently leads to reduced fibers in the extracellular matrix. Despite the complexity and high molecular weight of fibronectin fibrils, our in vitro model allowed us to reveal that fibronectin supplementation restored aberrant spheroid formation as well as altered EC morphology, and suppressed actin stress fiber formation. Yet, fibronectin replacement neither enhanced the stability of tube-like structures nor inhibited the survival advantage of CCM3-/- ECs. Importantly, CRISPR/Cas9-mediated introduction of biallelic loss-of-function variants into either CCM1 or CCM2 demonstrated that the impaired production of a functional fibronectin matrix is a common feature of CCM1-, CCM2-, and CCM3-deficient ECs.
Collapse
Affiliation(s)
- Konrad Schwefel
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Stefanie Spiegler
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Bettina C Kirchmaier
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Frankfurt am Main, Germany
| | - Patricia K E Dellweg
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Christiane D Much
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Katharina Riedel
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Ute Felbor
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Matthias Rath
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| |
Collapse
|
85
|
NF-κB mediates early blood-brain barrier disruption in a rat model of traumatic shock. J Trauma Acute Care Surg 2020; 86:240-249. [PMID: 30399134 DOI: 10.1097/ta.0000000000002124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Blood-brain barrier (BBB) disruption is associated with a large number of central nervous system and systemic disorders. The aim of the present study was to investigate the dynamic change of BBB changes during traumatic shock and resuscitation as well as the mechanisms involved. METHODS The experiments were performed on male Sprague-Dawley rats anesthetized with pentobarbital sodium. To produce traumatic shock, the rats were subjected to bilateral femoral traumatic fracture and blood withdrawal from the femoral artery to decrease mean arterial pressure (MAP) to 35 mm Hg. Hypovolemic status (at a MAP of 35 to 40 mm Hg) was sustained for 1 hour followed by fluid resuscitation with shed blood and 20 mL/kg of lactated Ringer's solution. RESULTS The rats were sacrificed at 1 hour, 2 hours, or 6 hours after fluid resuscitation. Blood-brain barrier permeability studies showed that traumatic shock significantly increased brain water contents and sodium fluorescein leakage, which was aggravated by fluid resuscitation. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analyses revealed that Na-K-Cl cotransporter-1 and vascular endothelial growth factor (VEGF) expression were upregulated in cortical brain tissue of traumatic shock rats, and this change was accompanied by downregulation of occludin and claudin-5. Traumatic shock also significantly increased the protein levels of NF-κB-p65 subunit. Of note, administration of NF-κB inhibitor PDTC effectively attenuated augmentation of the above changes. CONCLUSION Our results suggest that traumatic shock is associated with early BBB disruption, and inhibition of NF-κB may be an effective therapeutic strategy in protecting the BBB under traumatic shock conditions.
Collapse
|
86
|
Pimentel E, Sivalingam K, Doke M, Samikkannu T. Effects of Drugs of Abuse on the Blood-Brain Barrier: A Brief Overview. Front Neurosci 2020; 14:513. [PMID: 32670001 PMCID: PMC7326150 DOI: 10.3389/fnins.2020.00513] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
The use of psychostimulants and alcohol disrupts blood-brain barrier (BBB) integrity, resulting in alterations to cellular function, and contributes to neurotoxicity. The BBB is the critical boundary of the central nervous system (CNS) where it maintains intracellular homeostasis and facilitates communication with the peripheral circulation. The BBB is regulated by tight junction (TJ) proteins that closely interact with endothelial cells (EC). The complex TJ protein network consists of transmembrane proteins, including claudins, occludins, and junction adhesion molecules (JAM), as well as cytoskeleton connected scaffolding proteins, zonula occludentes (ZO-1, 2, and 3). The use of psychostimulants and alcohol is known to affect the CNS and is implicated in various neurological disorders through neurotoxicity that partly results from increased BBB permeability. The present mini review primarily focuses on BBB structure and permeability. Moreover, we assess TJ protein and cytoskeletal changes induced by cocaine, methamphetamine, morphine, heroin, nicotine, and alcohol. These changes promote glial activation, enzyme potentiation, and BBB remodeling, which affect neuroinflammatory pathways. Although the effect of drugs of abuse on BBB integrity and the underlying mechanisms are well studied, the present review enhances the understanding of the underlying mechanisms through which substance abuse disorders cause BBB dysfunction.
Collapse
Affiliation(s)
- Emely Pimentel
- School of Medicine, St. George's University, Great River, NY, United States
| | - Kalaiselvi Sivalingam
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, TX, United States
| | - Mayur Doke
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, TX, United States
| | - Thangavel Samikkannu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, TX, United States
| |
Collapse
|
87
|
Kumrungsee T, Arima T, Sato K, Komaru T, Sato M, Oishi Y, Egusa A, Yanaka N. Dietary GABA induces endogenous synthesis of a novel imidazole peptide homocarnosine in mouse skeletal muscles. Amino Acids 2020; 52:743-753. [PMID: 32361909 DOI: 10.1007/s00726-020-02848-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
Carnosine (β-alanyl-L-histidine) is an imidazole dipeptide present at high concentrations in skeletal muscles, where it plays a beneficial role. However, oral intake of carnosine or β-alanine to increase skeletal muscle carnosine levels has disadvantages such as low efficiency and side effects. Therefore, we proposed homocarnosine (γ-aminobutyryl-L-histidine) as a novel alternative imidazole peptide for skeletal muscle based on its structural similarity to carnosine. To induce endogenous homocarnosine synthesis in skeletal muscles, mice were fed a basal diet mixed with 0, 0.5, 2, or 5% γ-aminobutyric acid (GABA) for 6 weeks. As expected, in the control group (0% GABA), GABA and homocarnosine were present in trace concentrations. Skeletal muscle homocarnosine levels were significantly increased in the 2% and 5% GABA intake groups (tenfold, P < 0.01 and 53-fold, P < 0.01; respectively) relative to those of the control group, whereas 0.5% GABA intake induced no such effect. GABA intake had no effect on the levels of carnosine, anserine, and β-alanine. Vigabatrin (inhibitor of GABA transaminase (GABA-T)) administration to mice receiving 2% GABA intake for 2 weeks led to GABA-T inhibition in the liver. Subsequently, a 43-fold increase in circulating GABA levels and a tendency increase in skeletal muscle homocarnosine levels were observed. Therefore, skeletal muscle homocarnosine synthesis can be induced by supplying its substrate GABA in tissues. As GABA availability is tightly regulated by GABA-T via GABA degradation, inhibitors of GABA or β-alanine degradation could be novel potential interventions for increasing skeletal muscle imidazole dipeptides.
Collapse
Affiliation(s)
- Thanutchaporn Kumrungsee
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, 1-4-4 Kagamiyama, Hiroshima, 739-8528, Japan.
| | - Takeshi Arima
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, 1-4-4 Kagamiyama, Hiroshima, 739-8528, Japan
| | - Kanako Sato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, 1-4-4 Kagamiyama, Hiroshima, 739-8528, Japan
| | - Takumi Komaru
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, 1-4-4 Kagamiyama, Hiroshima, 739-8528, Japan
| | - Mikako Sato
- NH Foods Ltd. R&D Center, Tsukuba, Ibaraki, 300-2646, Japan
| | - Yasuyuki Oishi
- NH Foods Ltd. R&D Center, Tsukuba, Ibaraki, 300-2646, Japan
| | - Ai Egusa
- Department of Food Science and Technology, Nippon Veterinary and Life Science University, Tokyo, 180-8602, Japan
| | - Noriyuki Yanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, 1-4-4 Kagamiyama, Hiroshima, 739-8528, Japan.
| |
Collapse
|
88
|
Guo C, Wang H, Liang W, Xu W, Li Y, Song L, Zhang D, Hu Y, Han B, Wang W, Yang Y, Bei W, Guo J. Bilobalide reversibly modulates blood-brain barrier permeability through promoting adenosine A1 receptor-mediated phosphorylation of actin-binding proteins. Biochem Biophys Res Commun 2020; 526:1077-1084. [PMID: 32312522 DOI: 10.1016/j.bbrc.2020.03.186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 01/01/2023]
Abstract
Bilobalide, one of the key bioactive components of Ginkgo biloba leaves, exerts prominent neuroprotective properties in central nervous system (CNS) disease. However, the effect of bilobalide on blood-brain barrier (BBB) permeability remains unknown. In this study, we investigated the effect of bilobalide on BBB permeability and its potential mechanism involved. Both the in vitro and in vivo results showed that significant enhancement of BBB permeability was found following bilobalide treatment, evidenced by the reduced transendothelial electrical resistance (TEER), the increased fluorescein sodium (Na-F) penetration rate in vitro and the leakage of FITC-dextran in vivo. Transmission electron microscope (TEM) images demonstrated that bilobalide modulated BBB permeability by changing the ultrastructure of tight junctions (TJs). In addition, actin-binding proteins ezrin, radixin and moesin (ERM) and Myosin light chain (MLC) phosphorylation was observed following bilobalide treatment. Moreover, the effect of bilobalide on TEER reduction and ERM/MLC phosphorylation was counteracted by adenosine A1 receptor (A1R) siRNA. The current findings suggested that bilobalide might reversibly modulate BBB permeability by the alteration of TJs ultrastructure through A1R-mediated phosphorylation of actin-binding proteins.
Collapse
Affiliation(s)
- Caijuan Guo
- Guangdong Metabolic Disease Research Centre of Integrated Chinese and Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong TCM Key Laboratory for Metabolic Diseases, Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Hong Wang
- Guangdong Metabolic Disease Research Centre of Integrated Chinese and Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong TCM Key Laboratory for Metabolic Diseases, Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Wenyi Liang
- Guangdong Metabolic Disease Research Centre of Integrated Chinese and Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong TCM Key Laboratory for Metabolic Diseases, Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Wei Xu
- Guangdong Metabolic Disease Research Centre of Integrated Chinese and Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong TCM Key Laboratory for Metabolic Diseases, Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Yuping Li
- Guangdong Metabolic Disease Research Centre of Integrated Chinese and Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong TCM Key Laboratory for Metabolic Diseases, Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Lixia Song
- Guangdong Metabolic Disease Research Centre of Integrated Chinese and Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong TCM Key Laboratory for Metabolic Diseases, Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Dongxing Zhang
- Guangdong Metabolic Disease Research Centre of Integrated Chinese and Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong TCM Key Laboratory for Metabolic Diseases, Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Yinming Hu
- Guangdong Metabolic Disease Research Centre of Integrated Chinese and Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong TCM Key Laboratory for Metabolic Diseases, Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Bin Han
- Guangdong Metabolic Disease Research Centre of Integrated Chinese and Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong TCM Key Laboratory for Metabolic Diseases, Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Weixuan Wang
- Guangdong Metabolic Disease Research Centre of Integrated Chinese and Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong TCM Key Laboratory for Metabolic Diseases, Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Yiqi Yang
- Guangdong Metabolic Disease Research Centre of Integrated Chinese and Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong TCM Key Laboratory for Metabolic Diseases, Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Weijian Bei
- Guangdong Metabolic Disease Research Centre of Integrated Chinese and Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong TCM Key Laboratory for Metabolic Diseases, Institute of Chinese Medicine, Guangdong Pharmaceutical University, China.
| | - Jiao Guo
- Guangdong Metabolic Disease Research Centre of Integrated Chinese and Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong TCM Key Laboratory for Metabolic Diseases, Institute of Chinese Medicine, Guangdong Pharmaceutical University, China.
| |
Collapse
|
89
|
Jia J, Wang Z, Yue T, Su G, Teng C, Yan B. Crossing Biological Barriers by Engineered Nanoparticles. Chem Res Toxicol 2020; 33:1055-1060. [PMID: 32223181 DOI: 10.1021/acs.chemrestox.9b00483] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Engineered nanoparticles (ENPs) may cause toxicity if they cross various biological barriers and are accumulated in vital organs. Which factors affect barrier crossing efficiency of ENPs are crucial to understand. Here, we present strong data showing that various nanoparticles crossed biological barriers to enter vital animal organs and cause toxicity. We also point out that physicochemical properties of ENPs, modifications of ENPs in biofluid, and physiological and pathological conditions of the body all affect barrier crossing efficiency. We also summarized our limited understanding of the related mechanisms. On the basis of this summary, major research gaps and direction of further efforts are then discussed.
Collapse
Affiliation(s)
- Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Zengjin Wang
- School of Public Health, Shandong University, Jinan 250100, China
| | - Tongtao Yue
- Center for Bioengineering and Biotechnology, State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Chuanfeng Teng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China.,School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
90
|
Glioblastoma precision therapy: From the bench to the clinic. Cancer Lett 2020; 475:79-91. [DOI: 10.1016/j.canlet.2020.01.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
|
91
|
Marchetti L, Engelhardt B. Immune cell trafficking across the blood-brain barrier in the absence and presence of neuroinflammation. VASCULAR BIOLOGY 2020; 2:H1-H18. [PMID: 32923970 PMCID: PMC7439848 DOI: 10.1530/vb-19-0033] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022]
Abstract
To maintain the homeostatic environment required for proper function of CNS neurons the endothelial cells of CNS microvessels tightly regulate the movement of ions and molecules between the blood and the CNS. The unique properties of these blood vascular endothelial cells are termed blood-brain barrier (BBB) and extend to regulating immune cell trafficking into the immune privileged CNS during health and disease. In general, extravasation of circulating immune cells is a multi-step process regulated by the sequential interaction of adhesion and signalling molecules between the endothelial cells and the immune cells. Accounting for the unique barrier properties of CNS microvessels, immune cell migration across the BBB is distinct and characterized by several adaptations. Here we describe the mechanisms that regulate immune cell trafficking across the BBB during immune surveillance and neuroinflammation, with a focus on the current state-of-the-art in vitro and in vivo imaging observations.
Collapse
Affiliation(s)
- Luca Marchetti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | |
Collapse
|
92
|
Brockhaus K, Melkonyan H, Prokosch-Willing V, Liu H, Thanos S. Alterations in Tight- and Adherens-Junction Proteins Related to Glaucoma Mimicked in the Organotypically Cultivated Mouse Retina Under Elevated Pressure. Invest Ophthalmol Vis Sci 2020; 61:46. [PMID: 32207812 PMCID: PMC7401456 DOI: 10.1167/iovs.61.3.46] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To scrutinize alterations in cellular interactions and cell signaling in the glaucomatous retina, mouse retinal explants were exposed to elevated pressure. Methods Retinal explants were prepared from C57bl6 mice and cultivated in a pressure chamber under normotensive (atmospheric pressure + 0 mm Hg), moderately elevated (30 mm Hg), and highly elevated (60 mm Hg) pressure conditions. The expression levels of proteins involved in the formation of tight junctions (zonula occludens 1 [ZO-1], occludin, and claudin-5) and adherens junctions (VE-cadherin and β-catenin) and in cell-signaling cascades (Cdc42 and activated Cdc42 kinase 1 [ACK1]), as well as the expression levels of the growth-factor receptors platelet-derived growth factor receptor beta and vascular endothelial growth factor receptors 1 and 2 (VEGFR-1, VEGFR-2) and of diverse intracellular proteins (β-III-tubulin, glial fibrillary acidic protein transcript variant 1, α-smooth muscle actin, vimentin, and von Willebrand factor VIII), were analyzed using immunohistochemistry, western blotting, and quantitative real-time polymerase chain reactions. Results The retinal explants were well preserved when cultured in the pressure chambers used in this study. The responses to pressure elevation varied among diverse retinal cells. Under elevated pressure, the expression of ZO-1 increased in the large vessels, neuronal cells began to express VEGFR-1, and the Cdc42 expression in the optic nerve head was downregulated. Overall we found significant transcriptional downregulation of VE-cadherin, β-catenin, VEGFR-1, VEGFR-2, vimentin, Cdc42, and ACK1. Western blotting and immunohistochemistry indicated a loss of VE-cadherin with pressure elevation, whereas the protein levels of ZO-1, occludin, VEGFR-1, and ACK1 increased. Conclusions The pressure chamber used for cultivating mouse retinal explants can serve as an in vitro model system for investigating molecular alterations in glaucoma. In this system, responses of the entire retinal cells toward elevated pressure with conspicuous changes in the vasculature and the optic nerve head can be seen. In particular, our investigations indicate that changes in the blood–retina barrier and in cellular signaling are induced by pressure elevation.
Collapse
|
93
|
Zhang Y, Hu Y, Li M, Wang J, Guo G, Li F, Yu B, Kou J. The Traditional Chinese Medicine Compound, GRS, Alleviates Blood-Brain Barrier Dysfunction. Drug Des Devel Ther 2020; 14:933-947. [PMID: 32184562 PMCID: PMC7053822 DOI: 10.2147/dddt.s229302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/10/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Traditional Chinese medicine (TCM) provides unique advantages for treatment of ischemic stroke, an aging-related vascular disease. Shengmai powder (GRS) is composed of three active components, specifically, ginsenoside Rb1, ruscogenin and schisandrin A, at a ratio of 6:0.75:6. The main objective of this study was to evaluate the effects of GRS on blood–brain barrier (BBB) dysfunction under conditions of middle cerebral artery occlusion/reperfusion (MCAO/R). Methods C57BL/6J mice subjected to MCAO/R were used as a model to assess the protective effects of varying doses of GRS (6.4, 12.8, and 19.2 mg/kg) on BBB dysfunction. Results GRS reduced cerebral infarct volume and degree of brain tissue damage, improved behavioral scores, decreased water content and BBB permeability, and restored cerebral blood flow. Moreover, GRS promoted expression of zona occludens-1 (ZO-1) and claudin-5 while inhibiting matrix metalloproteinase 2/9 (MMP-2/9) expression and myosin light chain (MLC) phosphorylation. In vitro, GRS (1, 10, and 100 ng/mL) enhanced the viability of bEnd.3 cells subjected to oxygen glucose deprivation/reoxygenation (OGD/R) and decreased sodium fluorescein permeability. Conclusion Consistent with in vivo findings, ZO-1 and claudin-5 were significantly upregulated by GRS in bEnd.3 cells under OGD/R and MMP-2/9 levels and MLC phosphorylation reduced through the Rho-associated coil-forming protein kinase (ROCK)/cofilin signaling pathway. Based on the collective findings, we propose that the TCM compound, GRS, plays a protective role against I/R-induced BBB dysfunction.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yang Hu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Min Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jieman Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Gengshuo Guo
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
94
|
Wen L, Wang K, Zhang F, Tan Y, Shang X, Zhu Y, Zhou X, Yuan H, Hu F. AKT activation by SC79 to transiently re-open pathological blood brain barrier for improved functionalized nanoparticles therapy of glioblastoma. Biomaterials 2020; 237:119793. [PMID: 32044521 DOI: 10.1016/j.biomaterials.2020.119793] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/30/2019] [Accepted: 01/14/2020] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is one of the malignant tumors with high mortality, and the presence of the blood brain barrier (BBB) severely limits the penetration and tissue accumulation of therapeutic agents in the lesion of GBM. Active targeting nanotechnologies can achieve efficient drug delivery in the brain, while still have a very low success rate. Here we revealed a previously unexplored phenomenon that chemotherapy with active targeting nanotechnologies causes pathological BBB functional recovery through VEGF-PI3K-AKT signaling pathway inhibition, accompanied with up-regulated expression of Claudin-5 and Occludin. Seriously, pathological BBB functional recovery induces a significant decrease of intracerebral active targeting nanotechnologies transport during GBM multiple administration, leading to chemotherapy failure in GBM therapeutics. To address this issue, we chose AKT agonist SC79 to transiently re-open functional recovering pathological BBB for continuously intracerebral delivery of brain targeted nanotherapeutics, finally producing an observable anti-GBM effect in vivo, which may offer new sight for other CNS disease treatment.
Collapse
Affiliation(s)
- Lijuan Wen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China; National Engineering Research Center for Modernization of Tranditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Kai Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Fengtian Zhang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, PR China; Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, 215004, PR China
| | - Yanan Tan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China; Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, PR China
| | - Xuwei Shang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Yun Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China; Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Xueqing Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
| |
Collapse
|
95
|
Liang W, Xu W, Zhu J, Zhu Y, Gu Q, Li Y, Guo C, Huang Y, Yu J, Wang W, Hu Y, Zhao Y, Han B, Bei W, Guo J. Ginkgo biloba extract improves brain uptake of ginsenosides by increasing blood-brain barrier permeability via activating A1 adenosine receptor signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112243. [PMID: 31541722 DOI: 10.1016/j.jep.2019.112243] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/04/2019] [Accepted: 09/15/2019] [Indexed: 12/24/2022]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginkgo biloba leaves and Panax ginseng are Chinese medicine commonly used in combination for cerebral disease. AIM OF THE STUDY To investigate the effect of standard extract of Ginkgo biloba leaves (EGb) on facilitating brain uptake of ginsenoside and its underlying mechanisms. MATERIALS AND METHODS The increasing uptake of ginsenosides in the brain of rats by EGb were detected by LC-MS/MS analysis. Evans blue and FITC-dextran leakage were determined to evaluate blood-brain barrier (BBB) permeability in vivo. Transendothelial electrical resistance (TEER) and Na-F penetration rate were measured with a co-culture of the human cerebral microvascular endothelial cell line (hCMEC/D3) and human normal glial cell line (HEB) in vitro BBB model. WB were used to analyzed the expression of BBB tight junctions (TJs) related protein (ZO-1, Occludin, Claudin-3, p-ERM, and p-MLC), ultrastructure of TJs was determined by transmission electron microscope. RESULTS LC-MS/MS analysis demonstrated that EGb could improve brain uptake of ginsenoside Rg1, Re, Rd and Rb1. In vivo study showed that, BBB permeability was significantly increased after EGb administration, evidenced by the markedly increased penetration of FITC-dextran and Evans Blue into the mice brain parenchyma. In the in vitro BBB model, reduced TEER and increased Na-F penetration rate was observed in EGb group, which was associated with alteration of TJs ultrastructure. Furthermore, the expression of p-ERM and p-MLC in hCMEC/D3 as well as mice brain microvessels were significantly upregulated, but no significant change on the expression of TJs proteins (ZO-1, Occludin and Claudin-3). Moreover, the effect of EGb on in vitro BBB permeability and ERM, MLC phosphorylation was counteracted by DPCPX, an A1 adenosine receptor (A1R) antagonist. CONCLUSIONS EGb might induce ERM/MLC phosphorylation and increase the cell-cell junction gaps to cause a reversible increase of the BBB permeability via A1R signaling pathway. Our results may contribute to better use of EGb in the treatment of brain diseases.
Collapse
Affiliation(s)
- Wenyi Liang
- The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Wei Xu
- The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Jing Zhu
- The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Yadong Zhu
- The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Quanlin Gu
- The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Yuping Li
- The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Caijuan Guo
- The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Yijian Huang
- The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Jiangfeng Yu
- The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Weixuan Wang
- Guangdong Province Research Centre for Chinese Integrative Medicine Against Metabolic Disease, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Guangdong TCM Key Laboratory for Metabolic Diseases, China; The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Yinming Hu
- Guangdong Province Research Centre for Chinese Integrative Medicine Against Metabolic Disease, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Guangdong TCM Key Laboratory for Metabolic Diseases, China; The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Yanqun Zhao
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou,510515, China
| | - Bin Han
- College of Traditional Chinese Medicine (TCM), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Weijian Bei
- Guangdong Province Research Centre for Chinese Integrative Medicine Against Metabolic Disease, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Guangdong TCM Key Laboratory for Metabolic Diseases, China; The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China.
| | - Jiao Guo
- Guangdong Province Research Centre for Chinese Integrative Medicine Against Metabolic Disease, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Guangdong TCM Key Laboratory for Metabolic Diseases, China; The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China.
| |
Collapse
|
96
|
Liu H, Ma Y. Hepatitis E virus-associated Guillain-Barre syndrome: Revision of the literature. Brain Behav 2020; 10:e01496. [PMID: 31828968 PMCID: PMC6955827 DOI: 10.1002/brb3.1496] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/12/2019] [Accepted: 11/16/2019] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION The association between preceding infection of hepatitis E virus (HEV) and Guillain-Barre syndrome (GBS) has been found for more than a decade, while hepatitis E virus-associated Guillain-Barre syndrome (HEV-associated GBS) still remains poorly understood. Initially discovered in 2000, the association between GBS and HEV has been focused by neurologists increasingly. Five percent of patients with GBS had preceding acute HEV infection in the Netherlands and higher rate was found in Bangladesh (11%) where HEV is endemic. METHOD An extensive review of relevant literature was undertaken. RESULTS Hepatitis E virus infection may induce GBS via direct viral damage according to recent research findings. On the other hand, the presence of antiganglioside GM1 or GM2 antibodies in serum of some HEV-associated GBS patients indicates that HEV infection may trigger GBS by activating autoimmune response to destroy myelin or axon mistakenly. Management of HEV-associated GBS has no obvious difference from GBS. It mainly consists of supportive therapy and immunotherapy. Intravenous immunoglobulin (IVIG) or plasma exchange (PLEX) was used in most reported cases, which is the main strategy for clinical treatment of HEV-associated GBS. Whether antiviral therapy could be additional strategy other than the routine therapy to shorten the length of disease course is one of the most urgent problems and requires further study. CONCLUSIONS An overview of possible pathogenesis will gain a first insight into why HEV, traditionally recognized as only hepatotropic, can induce many neurological disorders represented by GBS. Moreover, understanding of the underlying mechanisms may contribute to development of a novel therapeutic strategy. This review also summarizes management and clinical characteristics of HEV-associated GBS, aiming to achieve early recognition and good recovery.
Collapse
Affiliation(s)
- Hang Liu
- Department of NeurologyShengjing HospitalChina Medical UniversityShenyangChina
| | - Ying Ma
- Department of NeurologyShengjing HospitalChina Medical UniversityShenyangChina
| |
Collapse
|
97
|
Seo S, Kim H, Sung JH, Choi N, Lee K, Kim HN. Microphysiological systems for recapitulating physiology and function of blood-brain barrier. Biomaterials 2019; 232:119732. [PMID: 31901694 DOI: 10.1016/j.biomaterials.2019.119732] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 12/27/2022]
Abstract
Central nervous system (CNS) diseases are emerging as a major issue in an aging society. Although extensive research has focused on the development of CNS drugs, the limited transport of therapeutic agents across the blood-brain barrier (BBB) remains a major challenge. Conventional two-dimensional culture dishes do not recapitulate in vivo physiology and real-time observations of molecular transport are not possible in animal models. Recent advances in engineering techniques have enabled the generation of more physiologically relevant in vitro BBB models, and their applications have expanded from fundamental biological research to practical applications in the pharmaceutical industry. In this article, we provide an overview of recent advances in the development of in vitro BBB models, with a particular focus on the recapitulation of BBB function. The development of biomimetic BBB models is postulated to revolutionize not only fundamental biological studies but also drug screening.
Collapse
Affiliation(s)
- Suyeong Seo
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwieun Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Kangwon Lee
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hong Nam Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
98
|
Hybrid elastomer-plastic microfluidic device as a convenient model for mimicking the blood-brain barrier in vitro. Biomed Microdevices 2019; 21:90. [PMID: 31686217 DOI: 10.1007/s10544-019-0446-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, we fabricated a hybrid elastomer-plastic microdevice using the silicone elastomer poly(dimethylsiloxane) (PDMS) and the plastic polycarbonate (PC), to mimic the human blood-brain barrier (BBB) in vitro. Specifically, the microchannel-imprinted elastomer was first coated with 3-aminopropyltriethoxysilane to produce amine-terminated PDMS. Then, simply by conformal contact at room temperature, the amine-functionalized PDMS was bonded to pristine PC through the formation of urethane linkages. Aside from realizing device bonding, the amine functionalization also assisted in subsequent dopamine coating to form polydopamine and provide a stable surface for culturing human endothelial cells and central nervous system-related cells (e.g., astrocytes) inside the microchannels. Successful mimicking of the BBB-like microenvironment was assessed by 3D co-culturing of human endothelial cells and astrocytes, where the microdevice was verified as an acceptable in vitro BBB model according to the following four criteria: the formation of tight junctions at the cell-cell boundaries of the endothelial cells, evaluated by the expression of the tight junction marker ZO-1; the formation of actin filaments, evaluated using rhodamine phalloidin dye; low permeability, tested using the fluorescent tracer 40-kDa FITC-dextran; and good transendothelial electrical resistance (a measure of the tight junction integrity formed between the endothelial cells). The fabricated PDMS-PC microfluidic device ensured simple yet stable device sealing, and simultaneously enhanced BBB-mimicking cell attachment, thus fulfilling all major criteria for its application as a convenient in vitro BBB model.
Collapse
|
99
|
Inselman A, Liu F, Wang C, Shi Q, Pang L, Mattes W, White M, Lyn-Cook B, Rosas-Hernandez H, Cuevas E, Lantz S, Imam S, Ali S, Petibone DM, Shemansky JM, Xiong R, Wang Y, Tripathi P, Cao X, Heflich RH, Slikker W. Dr. Daniel Acosta and In Vitro toxicology at the U.S. Food and Drug Administration's National Center for Toxicological Research. Toxicol In Vitro 2019; 64:104471. [PMID: 31628011 DOI: 10.1016/j.tiv.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 10/25/2022]
Abstract
For the past five years, Dr. Daniel Acosta has served as the Deputy Director of Research at the National Center for Toxicological Research (NCTR), a principle research laboratory of the U.S. Food and Drug Administration (FDA). Over his career at NCTR, Dr. Acosta has had a major impact on developing and promoting the use of in vitro assays in regulatory toxicity and product safety assessments. As Dr. Acosta nears his retirement we have dedicated this paper to his many accomplishments at the NCTR. Described within this paper are some of the in vitro studies that have been conducted under Dr. Acosta's leadership. These studies include toxicological assessments involving developmental effects, and the development and application of in vitro reproductive, heart, liver, neurological and airway cell and tissue models.
Collapse
Affiliation(s)
- Amy Inselman
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Fang Liu
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Cheng Wang
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Qiang Shi
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Li Pang
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - William Mattes
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Matthew White
- Arkansas College of Osteopathic Medicine, Fort Smith, AR 72916, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | | | - Elvis Cuevas
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Susan Lantz
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Syed Imam
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Syed Ali
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Dayton M Petibone
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Jennifer M Shemansky
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Rui Xiong
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Yiying Wang
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Priya Tripathi
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Xuefei Cao
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | | |
Collapse
|
100
|
Metformin Improves Fertility in Obese Males by Alleviating Oxidative Stress-Induced Blood-Testis Barrier Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9151067. [PMID: 31583050 PMCID: PMC6754953 DOI: 10.1155/2019/9151067] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/08/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022]
Abstract
Background/Aims Obesity, which is related to increased oxidative stress in various tissues, is a risk factor for male infertility. Metformin is reported to have an antioxidant effect; however, the precise role of metformin in obesity-induced male infertility remains unknown. The current study is aimed at exploring the effects of metformin and characterizing its underlying mechanism in the fertility of obese males. Methods An obese male mouse model was generated by feeding mice with a high-fat diet; then, the mice were administered metformin in water for 8 weeks. Reproductive ability, metabolic parameters, and follicle-stimulating hormone (FSH) were assessed by cohabitation, enzymatic methods, and ELISA, respectively. Damage to the integrity of the blood-testis barrier (BTB), which ensures spermatogenesis, was assessed by transmission electron microscopy and immunofluorescence with a biotin tracer. Malondialdehyde (MDA), superoxide dismutase (SOD), and reactive oxygen species (ROS) were employed for the assessments of oxidative stress. BTB-related proteins were measured by immunoblotting. Nuclear factor κB (NF-κB) was assessed by immunofluorescence. Results High-fat-diet-fed mice presented evident lipid metabolic disturbances, disrupted BTB integrity, and decreased reproductive function. Metformin alleviated the decrease in male fertility, decreased ectopic lipid deposition in the testis, and increased serum FSH levels. A further mechanistic analysis revealed that metformin ameliorated the high-fat-diet-induced injury to the BTB structure and permeability and restored the disordered BTB-related proteins, which might be associated with an improvement in oxidative stress and a recovery of NF-κB activity in Sertoli cells (SCs). Conclusion Metformin improves obese male fertility by alleviating oxidative stress-induced BTB damage. These findings provide new insights into the effect of metformin on various diseases and suggest future possibilities in the treatment of male infertility.
Collapse
|