51
|
Zghaib T, Te Riele ASJM, James CA, Rastegar N, Murray B, Tichnell C, Halushka MK, Bluemke DA, Tandri H, Calkins H, Kamel IR, Zimmerman SL. Left ventricular fibro-fatty replacement in arrhythmogenic right ventricular dysplasia/cardiomyopathy: prevalence, patterns, and association with arrhythmias. J Cardiovasc Magn Reson 2021; 23:58. [PMID: 34011348 PMCID: PMC8135158 DOI: 10.1186/s12968-020-00702-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Left ventricular (LV) fibrofatty infiltration in arrhythmogenic right ventricular (RV) dysplasia/cardiomyopathy (ARVD/C) has been reported, however, detailed cardiovascular magnetic resonance (CMR) characteristics and association with outcomes are uncertain. We aim to describe LV findings on CMR in ARVD/C patients and their relationship with arrhythmic outcomes. METHODS CMR of 73 subjects with ARVD/C according to the 2010 Task Force Criteria (TFC) were analyzed for LV involvement, defined as ≥ 1 of the following features: LV wall motion abnormality, LV late gadolinium enhancement (LGE), LV fat infiltration, or LV ejection fraction (LVEF) < 50%. Ventricular volumes and function, regional wall motion abnormalities, and the presence of ventricular fat or fibrosis were recorded. Findings on CMR were correlated with arrhythmic outcomes. RESULTS Of the 73 subjects, 50.7% had CMR evidence for LV involvement. Proband status and advanced RV dysfunction were independently associated with LV abnormalities. The most common pattern of LV involvement was focal fatty infiltration in the sub-epicardium of the apicolateral LV with a "bite-like" pattern. LGE in the LV was found in the same distribution and most often had a linear appearance. LV involvement was more common with non-PKP2 genetic mutation variants, regardless of proband status. Only RV structural disease on CMR (HR 3.47, 95% CI 1.13-10.70) and prior arrhythmia (HR 2.85, 95% CI 1.33-6.10) were independently associated with arrhythmic events. CONCLUSION Among patients with 2010 TFC for ARVD/C, CMR evidence for LV abnormalities are seen in half of patients and typically manifest as fibrofatty infiltration in the subepicardium of the apicolateral wall and are not associated with arrhythmic outcomes.
Collapse
Affiliation(s)
- Tarek Zghaib
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Cynthia A James
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neda Rastegar
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St.; Halsted B180, Baltimore, MD, USA
| | - Brittney Murray
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Crystal Tichnell
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David A Bluemke
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St.; Halsted B180, Baltimore, MD, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Harikrishna Tandri
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hugh Calkins
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ihab R Kamel
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St.; Halsted B180, Baltimore, MD, USA
| | - Stefan Loy Zimmerman
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St.; Halsted B180, Baltimore, MD, USA.
| |
Collapse
|
52
|
Bosman LP, Te Riele ASJM. Arrhythmogenic right ventricular cardiomyopathy: a focused update on diagnosis and risk stratification. Heart 2021; 108:90-97. [PMID: 33990412 DOI: 10.1136/heartjnl-2021-319113] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiomyopathy characterised by fibrofatty replacement of predominantly the right ventricle and high risk of ventricular arrhythmias and sudden cardiac death (SCD). Early diagnosis and accurate risk assessment are challenging yet essential for SCD prevention. This manuscript summarises the current state of the art on ARVC diagnosis and risk stratification. Improving the 2010 diagnostic criteria is an ongoing discussion. Several studies suggest that early diagnosis may be facilitated by including deformation imaging ('strain') for objective assessment of wall motion abnormalities, which was shown to have high sensitivity for preclinical disease. Adding fibrofatty replacement detected by late gadolinium enhancement or T1 mapping in cardiac MRI as criterion for diagnosis is increasingly suggested but requires more supporting evidence from consecutive patient cohorts. In addition to the traditional right-dominant ARVC, standard criteria for arrhythmogenic cardiomyopathy (ACM) and arrhythmogenic left ventricular cardiomyopathy (ALVC) are on the horizon. After diagnosis confirmation, the primary management goal is SCD prevention, for which an implantable cardioverter-defibrillator is the only proven therapy. Prior studies determined that younger age, male sex, previous (non-) sustained ventricular tachycardia, syncope, extent of T-wave inversion, frequent premature ectopic beats and lower biventricular ejection fraction are risk factors for subsequent events. Previous implantable cardioverter-defibrillator indication guidelines were however limited to three expert-opinion flow charts stratifying patients in risk groups. Now, two multivariable risk prediction models (arvcrisk.com) combine the abovementioned risk factors to estimate individual risks. Of note, both the flow charts and prediction models require clinical validation studies to determine which should be recommended.
Collapse
Affiliation(s)
- Laurens P Bosman
- Cardiology, UMC Utrecht, Utrecht, The Netherlands.,ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| | - Anneline S J M Te Riele
- Cardiology, UMC Utrecht, Utrecht, The Netherlands .,ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
53
|
Corrado D, van Tintelen PJ, McKenna WJ, Hauer RNW, Anastastakis A, Asimaki A, Basso C, Bauce B, Brunckhorst C, Bucciarelli-Ducci C, Duru F, Elliott P, Hamilton RM, Haugaa KH, James CA, Judge D, Link MS, Marchlinski FE, Mazzanti A, Mestroni L, Pantazis A, Pelliccia A, Marra MP, Pilichou K, Platonov PGA, Protonotarios A, Rampazzo A, Saffitz JE, Saguner AM, Schmied C, Sharma S, Tandri H, Te Riele ASJM, Thiene G, Tsatsopoulou A, Zareba W, Zorzi A, Wichter T, Marcus FI, Calkins H. Arrhythmogenic right ventricular cardiomyopathy: evaluation of the current diagnostic criteria and differential diagnosis. Eur Heart J 2021; 41:1414-1429. [PMID: 31637441 PMCID: PMC7138528 DOI: 10.1093/eurheartj/ehz669] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/04/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35121, Padova, Italy
| | - Peter J van Tintelen
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands.,Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - William J McKenna
- Department of Cardiology, Heart Hospital, Hamad Medical Corporation, 7GR5+RW Doha, Qatar.,Institute of Cardiovascular Science, University College London, 62 Huntley St, Fitzrovia, London WC1E 6DD, UK
| | - Richard N W Hauer
- Department of Cardiology, Netherlands Heart Institute, University Medical Center Utrecht, Moreelsepark 1, 3511 EP Utrecht, Netherlands
| | - Aris Anastastakis
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Centre, Leof. Andrea Siggrou 356, Kallithea 176 74, Greece
| | - Angeliki Asimaki
- Molecular and Clinical Sciences Research Institute, St. George's University of London NHS Trust, Cranmer Terrace, London SW17 0RE, UK
| | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35121, Padova, Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35121, Padova, Italy
| | - Corinna Brunckhorst
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Chiara Bucciarelli-Ducci
- Department of Cardiology, Bristol Heart Institute, University Hospitals Bristol NHS Foundation, Trust Headquarters, Marlborough St, Bristol BS1 3NU, UK
| | - Firat Duru
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Perry Elliott
- Institute of Cardiovascular Science, University College London, 62 Huntley St, Fitzrovia, London WC1E 6DD, UK
| | - Robert M Hamilton
- The Labatt Family Heart Centre and Division of Cardiology, Department of Pediatrics, the Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, Canada
| | - Kristina H Haugaa
- Department of Cardiology, Center for Cardiological Innovation, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, 0372 Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Problemveien 7, 0315 Oslo, Norway
| | - Cynthia A James
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Daniel Judge
- Department of Medicine, Medical University of South Carolina (MUSC), 30 Courtenay Drive Room 326 Gazes, Charleston, MSC 592, USA
| | - Mark S Link
- Department of Medicine, Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Francis E Marchlinski
- Cardiac Electrophysiology Program, Cardiovascular Division Hospital of the University of Pennsylvania, 9 Founders Pavilion - Cardiology, 3400 Spruce St., Philadelphia, PA, 19104, USA
| | - Andrea Mazzanti
- Department of Molecular Medicine, University of Pavia, Corso Str. Nuova 25, Pavia, Italy
| | - Luisa Mestroni
- Molecular Genetics, Cardiovascular Institute, University of Colorado, Denver Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Antonis Pantazis
- Inherited Cardiovascular Conditions services, The Royal Brompton and Harefield Hospitals, Sydney St, Chelsea, London SW3 6NP, UK
| | - Antonio Pelliccia
- Department of Cardiology, Institute of Sports Medicine and Science, Largo Piero Gabrielli, 1, 00197 Roma, Italy
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35121, Padova, Italy
| | - Kalliopi Pilichou
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35121, Padova, Italy
| | - Pyotr G A Platonov
- Department of Cardiology, Lund University Arrhythmia Clinic, Skåne University Hospital, Entrégatan 7, 222 42 Lund, Sweden
| | - Alexandros Protonotarios
- Inherited Cardiovascular Disease Unit, Barts Heart Centre, St Bartholomew's Hospital, W Smithfield, London EC1A 7BE, UK
| | - Alessandra Rampazzo
- Department of Biology, University of Padua, Viale Giuseppe Colombo, 3, 35131 Padova PD, Italy
| | - Jeffry E Saffitz
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, USA
| | - Ardan M Saguner
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Christian Schmied
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Sanjay Sharma
- Cardiology Clinical Academic Group, St George's University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - Hari Tandri
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Anneline S J M Te Riele
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands.,Netherlands Heart Institute, Utrecht, Moreelsepark 1, 3511 EP Utrecht, Netherlands
| | - Gaetano Thiene
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35121, Padova, Italy
| | | | - Wojciech Zareba
- Division of Cardiology, Department of Medicine, University of Rochester Medical Center, 150 Lucius Gordon Dr, West Henrietta, NY 14586, USA
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35121, Padova, Italy
| | - Thomas Wichter
- Heart Center Osnabrück, Bad Rothenfelde Niels-Stensen-Kliniken Marienhospital Osnabrück, Ulmenallee 5 - 11, 49214 Bad Rothenfelde, Germany
| | - Frank I Marcus
- Sarver Heart Center, The University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, USA
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | | |
Collapse
|
54
|
Haliot K, Dubes V, Constantin M, Pernot M, Labrousse L, Busuttil O, Walton RD, Bernus O, Rogier J, Nubret K, Dos Santos P, Benoist D, Haïssaguerre M, Magat J, Quesson B. A 3D high resolution MRI method for the visualization of cardiac fibro-fatty infiltrations. Sci Rep 2021; 11:9266. [PMID: 33927217 PMCID: PMC8084928 DOI: 10.1038/s41598-021-85774-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/22/2021] [Indexed: 11/29/2022] Open
Abstract
Modifications of the myocardial architecture can cause abnormal electrical activity of the heart. Fibro-fatty infiltrations have been implicated in various cardiac pathologies associated with arrhythmias and sudden cardiac death, such as arrhythmogenic right ventricular cardiomyopathy (ARVC). Here, we report the development of an MRI protocol to observe these modifications at 9.4 T. Two fixed ex vivo human hearts, one healthy and one ARVC, were imaged with an Iterative decomposition with echo asymmetry and least-square estimations (IDEAL) and a magnetization transfer (MT) 3D sequences. The resulting fat fraction and MT ratio (MTR) were analyzed and compared to histological analysis of the three regions (“ARVC triangle”) primarily involved in ARVC structural remodeling. In the ARVC heart, high fat content was observed in the “ARVC triangle” and the superimposition of the MTR and fat fraction allowed the identification of fibrotic regions in areas without the presence of fat. The healthy heart exhibited twice less fat than the ARVC heart (31.9%, 28.7% and 1.3% of fat in the same regions, respectively). Localization of fat and fibrosis were confirmed by means of histology. This non-destructive approach allows the investigation of structural remodeling in human pathologies where fibrosis and/or fatty tissue infiltrations are expected to occur.
Collapse
Affiliation(s)
- K Haliot
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France. .,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France. .,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.
| | - V Dubes
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - M Constantin
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - M Pernot
- Bordeaux University Hospital (CHU), 33600, Pessac, France
| | - L Labrousse
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Bordeaux University Hospital (CHU), 33600, Pessac, France
| | - O Busuttil
- Bordeaux University Hospital (CHU), 33600, Pessac, France
| | - R D Walton
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - O Bernus
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - J Rogier
- Bordeaux University Hospital (CHU), 33600, Pessac, France
| | - K Nubret
- Bordeaux University Hospital (CHU), 33600, Pessac, France
| | - P Dos Santos
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,Bordeaux University Hospital (CHU), 33600, Pessac, France
| | - D Benoist
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - M Haïssaguerre
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,Bordeaux University Hospital (CHU), 33600, Pessac, France
| | - J Magat
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - B Quesson
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France
| |
Collapse
|
55
|
Mgbehoma AI, Onayemi OO, Soyemi SS, Obafunwa JO. Right ventricular dysplasia in the elderly: a case report from autopsy. Pan Afr Med J 2021; 38:404. [PMID: 34381548 PMCID: PMC8325468 DOI: 10.11604/pamj.2021.38.404.29250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 11/11/2022] Open
Abstract
Right ventricular dysplasia (RVD) is a rare disease of the heart that primarily affects the right ventricle. It is a clinical and pathological entity that presents classically with palpitations, syncope, or even sudden death. It presents rarely in the elderly. Where sudden death is the first and only presentation, an autopsy is required to make the diagnosis. However, the pathomorphological features of RVD can easily be overlooked or missed at autopsy. We report the case of a 68-year-old male with the past medical history of hypertension, gout and inflammatory bowel syndrome. He was admitted on account of difficulty in breathing, abdominal swelling and reduced urination. Physical examination revealed hypertension with cardiac murmurs, widespread crepitations, distended abdomen and lower limb oedema. Provisional diagnoses of acute-on-chronic kidney disease and congestive cardiac failure secondary to hypertensive heart disease, precipitated by probable gastrointestinal infection were made. While on admission, he had an episode of syncope. Electrocardiogram revealed bigeminy and bradycardic sinus rhythm with unifocal ventricular premature contraction. He died on the 8th week of admission. Autopsy revealed an enlarged heart weighing 600gm; there was thinning of the apical aspect of the right ventricular wall with subtotal fibrofatty replacement. Microscopic examination revealed a transmural replacement of cardiac myocytes by fibroadipose tissue extending inwards, in the most parts, from the epicardium to the endocardial surface. Our aim is to increase the awareness of these pathomorphological features among anatomic/forensic pathologists.
Collapse
Affiliation(s)
- Alban Ikenna Mgbehoma
- Department of Pathology and Forensic Medicine, Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| | - Oluwaseye Olumide Onayemi
- Department of Pathology and Forensic Medicine, Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| | - Sunday Sokunle Soyemi
- Department of Pathology and Forensic Medicine, Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| | - John Oladapo Obafunwa
- Department of Pathology and Forensic Medicine, Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| |
Collapse
|
56
|
Zhang N, Song Y, Hua W, Hu Y, Chen L, Cai M, Niu H, Cai C, Gu M, Zhao S, Zhang S. Left ventricular involvement assessed by LGE-CMR in predicting the risk of adverse outcomes of arrhythmogenic cardiomyopathy with ICDs. Int J Cardiol 2021; 337:79-85. [PMID: 33839174 DOI: 10.1016/j.ijcard.2021.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy (ACM) is characterized by a high incidence of ventricular tachyarrhythmia and sudden death. Implantable cardioverter-defibrillator (ICD) implantation is the cornerstone of management. OBJECTIVE This study aims to reveal the prognostic value of the contrast-enhanced cardiovascular magnetic resonance (CMR) with late gadolinium enhancement (LGE) amount in predicting varying lethal outcomes among ACM patients with ICDs. METHODS The 88 patients with definite ACM who were all referred for contrast-enhanced CMR received an ICD and were followed up for a median of 4.0 years. RESULTS Fifty-four patients had no left ventricular (LV) involvement and sixteen had an LV LGE amount > 15%. During the follow-up time, appropriate ICD therapy was seen in 57, electrical storm (ES) in 19, and cardiac death in 9 patients. Compared with those without LV involvement, patients with LV LGE amount > 15% had a higher risk of cardiac death (log-rank P = 0.021). LV LGE amount was associated with an increased risk of ICD therapy [adjusted hazard ratio (HR) 1.035, 95% confidence interval (CI) 1.008-1.062, P = 0.010], and cardiac death (adjusted HR 1.082, 95% 1.006-1.164, P = 0.034), independently of LV ejection fraction. LV LGE mass of >15% demonstrated an over 2-fold increase in ICD therapy (adjusted HR 2.180, 95%CI 1.058-4.488, P = 0.035) and an over 7-fold increase in cardiac death (unadjusted HR 7.198, 95%CI 1.399-37.043, P = 0.018) than those without LV involvement, respectively. CONCLUSIONS The LV LGE-CMR in ACM shows a dose-dependent association with ICD therapy and cardiac death. And LV LGE amount of >15% is a strong predictor.
Collapse
Affiliation(s)
- Nixiao Zhang
- Cardiac Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yanyan Song
- Departments of CMR, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Wei Hua
- Cardiac Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| | - Yiran Hu
- Cardiac Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Liang Chen
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Minsi Cai
- Cardiac Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Hongxia Niu
- Cardiac Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Chi Cai
- Cardiac Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Min Gu
- Cardiac Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Shihua Zhao
- Departments of CMR, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Shu Zhang
- Cardiac Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
57
|
van Osta N, Kirkels F, Lyon A, Koopsen T, van Loon T, Cramer MJ, Teske AJ, Delhaas T, Lumens J. Electromechanical substrate characterization in arrhythmogenic cardiomyopathy using imaging-based patient-specific computer simulations. Europace 2021; 23:i153-i160. [PMID: 33751081 PMCID: PMC7943356 DOI: 10.1093/europace/euaa407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 01/11/2023] Open
Abstract
AIMS Arrhythmogenic cardiomyopathy (AC) is an inherited cardiac disease, characterized by life-threatening ventricular arrhythmias and progressive cardiac dysfunction. The aim of this study is to use computer simulations to non-invasively estimate the individual patient's myocardial tissue substrates underlying regional right ventricular (RV) deformation abnormalities in a cohort of AC mutation carriers. METHODS AND RESULTS In 68 AC mutation carriers and 20 control subjects, regional longitudinal deformation patterns of the RV free wall (RVfw), interventricular septum (IVS), and left ventricular free wall (LVfw) were obtained using speckle-tracking echocardiography. We developed and used a patient-specific parameter estimation protocol based on the multi-scale CircAdapt cardiovascular system model to create virtual AC subjects. Using the individual's deformation data as model input, this protocol automatically estimated regional RVfw and global IVS and LVfw tissue properties. The computational model was able to reproduce clinically measured regional deformation patterns for all subjects, with highly reproducible parameter estimations. Simulations revealed that regional RVfw heterogeneity of both contractile function and compliance were increased in subjects with clinically advanced disease compared to mutation carriers without clinically established disease (17 ± 13% vs. 8 ± 4%, P = 0.01 and 18 ± 11% vs. 10 ± 7%, P < 0.01, respectively). No significant difference in activation delay was found. CONCLUSION Regional RV deformation abnormalities in AC mutation carriers were related to reduced regional contractile function and tissue compliance. In clinically advanced disease stages, a characteristic apex-to-base heterogeneity of tissue abnormalities was present in the majority of the subjects, with most pronounced disease in the basal region of the RVfw.
Collapse
Affiliation(s)
- Nick van Osta
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50 (UNS50), 6229 ER Maastricht, The Netherlands
| | - Feddo Kirkels
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50 (UNS50), 6229 ER Maastricht, The Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aurore Lyon
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50 (UNS50), 6229 ER Maastricht, The Netherlands
| | - Tijmen Koopsen
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50 (UNS50), 6229 ER Maastricht, The Netherlands
| | - Tim van Loon
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50 (UNS50), 6229 ER Maastricht, The Netherlands
| | - Maarten-Jan Cramer
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arco J Teske
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50 (UNS50), 6229 ER Maastricht, The Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50 (UNS50), 6229 ER Maastricht, The Netherlands
| |
Collapse
|
58
|
Kirkels FP, Lie ØH, Cramer MJ, Chivulescu M, Rootwelt-Norberg C, Asselbergs FW, Teske AJ, Haugaa KH. Right Ventricular Functional Abnormalities in Arrhythmogenic Cardiomyopathy: Association With Life-Threatening Ventricular Arrhythmias. JACC Cardiovasc Imaging 2021; 14:900-910. [PMID: 33582062 DOI: 10.1016/j.jcmg.2020.12.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/22/2023]
Abstract
OBJECTIVES This study aimed to perform an external validation of the value of right ventricular (RV) deformation patterns and RV mechanical dispersion in patients with arrhythmogenic cardiomyopathy (AC). Secondly, this study assessed the association of these parameters with life-threatening ventricular arrhythmia (VA). BACKGROUND Subtle RV dysfunction assessed by echocardiographic deformation imaging is valuable in AC diagnosis and risk prediction. Two different methods have emerged, the RV deformation pattern recognition and RV mechanical dispersion, but these have neither been externally validated nor compared. METHODS We analyzed AC probands and mutation-positive family members, matched from 2 large European referral centers. We performed speckle tracking echocardiography, whereby we classified the subtricuspid deformation patterns from normal to abnormal and assessed RV mechanical dispersion from 6 segments. We defined VA as sustained ventricular tachycardia, appropriate implantable cardioverter-defibrillator therapy, or aborted cardiac arrest. RESULTS We included 160 subjects, 80 from each center (43% proband, 55% women, age 41 ± 17 years). VA had occurred in 47 (29%) subjects. In both cohorts, patients with a history of VA showed abnormal deformation patterns (96% and 100%) and had greater RV mechanical dispersion (53 ± 30 ms vs. 30 ± 21 ms; p < 0.001 for the total cohort). Both parameters were independently associated to VA (adjusted odds ratio: 2.71 [95% confidence interval: 1.47 to 5.00] per class step-up, and 1.26 [95% confidence interval: 1.07 to 1.49]/10 ms, respectively). The association with VA significantly improved when adding RV mechanical dispersion to pattern recognition (net reclassification improvement 0.42; p = 0.02 and integrated diagnostic improvement 0.06; p = 0.01). CONCLUSIONS We externally validated 2 RV dysfunction parameters in AC. Adding RV mechanical dispersion to RV deformation patterns significantly improved the association with life-threatening VA, indicating incremental value.
Collapse
Affiliation(s)
- Feddo P Kirkels
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øyvind H Lie
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Maarten J Cramer
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Monica Chivulescu
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christine Rootwelt-Norberg
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands; Institute of Cardiovascular Science and Institute of Health Informatics, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Arco J Teske
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kristina H Haugaa
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
59
|
Jiang R, Nishimura T, Beaser AD, Aziz ZA, Upadhyay GA, Shatz DY, Nayak HM, Liao H, Zhan X, Chung FP, Xue Y, Wu S, Tung R. Spatial and transmural properties of the reentrant ventricular tachycardia circuit in arrhythmogenic right ventricular cardiomyopathy: Simultaneous epicardial and endocardial recordings. Heart Rhythm 2021; 18:916-925. [PMID: 33524624 DOI: 10.1016/j.hrthm.2021.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND While advances in the characterization of the structural substrate in arrhythmogenic right ventricular cardiomyopathy (ARVC) have been made, the ventricular tachycardia (VT) circuit remains incompletely described. OBJECTIVE The purpose of this study was to delineate the reentrant VT circuit with simultaneous epicardial and endocardial mapping (SEEM) in ARVC. METHODS Twenty-three consecutive patients with ARVC and VT underwent SEEM at 4 centers between 2014 and 2020. Retrospective analysis was performed on combined isochronal activation maps. RESULTS Of the 30 VT circuits, 24 were delineated with SEEM (956 [341-1843] endocardial points and 1763 [882-3054] epicardial points). The apex and outflow tract rarely harbored VT circuits, with 50% distributed in the inferior wall and 43% in the free wall. The entire tachycardia cycle length was recorded from the epicardium in 71% of circuits. In all circuits, a large proportion of the tachycardia cycle length was recorded from the epicardium relative to the endocardium. Localized epicardial reentry was observed in 35% of patients (14 mm × 15 mm), which was associated with smaller endocardial low voltage area (39 cm2 vs 104 cm2; P = .002) and preserved right ventricular ejection fraction (35% vs 25%; P = .046) compared with those with larger circuit dimensions. Seventy percent of termination sites were achieved from the epicardium. CONCLUSION High-resolution recordings from both myocardial surfaces confirm a consistent predominance of epicardial participation during reentry in ARVC. Only the perivalvular inflow region of the "triangle of dysplasia" had a strong propensity to harbor VT circuits, with the greatest proportion located in the inferior wall. Localized epicardial reentry may be a manifestation of earlier stage disease with a relative paucity of endocardial substrate.
Collapse
Affiliation(s)
- Ruhong Jiang
- Center for Arrhythmia Care, Pritzker School of Medicine, The University of Chicago Medicine, Chicago, Illinois; Department of Cardiology, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Takuro Nishimura
- Center for Arrhythmia Care, Pritzker School of Medicine, The University of Chicago Medicine, Chicago, Illinois
| | - Andrew D Beaser
- Center for Arrhythmia Care, Pritzker School of Medicine, The University of Chicago Medicine, Chicago, Illinois
| | - Zaid A Aziz
- Center for Arrhythmia Care, Pritzker School of Medicine, The University of Chicago Medicine, Chicago, Illinois
| | - Gaurav A Upadhyay
- Center for Arrhythmia Care, Pritzker School of Medicine, The University of Chicago Medicine, Chicago, Illinois
| | - Dalise Y Shatz
- Center for Arrhythmia Care, Pritzker School of Medicine, The University of Chicago Medicine, Chicago, Illinois
| | - Hemal M Nayak
- Center for Arrhythmia Care, Pritzker School of Medicine, The University of Chicago Medicine, Chicago, Illinois
| | - Hongtao Liao
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xianzhang Zhan
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fa Po Chung
- Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yumei Xue
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shulin Wu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Roderick Tung
- Center for Arrhythmia Care, Pritzker School of Medicine, The University of Chicago Medicine, Chicago, Illinois; Department of Cardiology, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
60
|
Huerta Robles R, Chávez Solsol F, Muñoz Moreno J, Ortecho Llanos D, Cabrera Saldaña M, Rodríguez Urteaga Z, Gutiérrez Garibay M. [Clinical profile and therapeutic strategies in patients with arrhythmogenic cardiomyopathy treated in a national reference institute]. ARCHIVOS PERUANOS DE CARDIOLOGIA Y CIRUGIA CARDIOVASCULAR 2021; 2:3-14. [PMID: 37727260 PMCID: PMC10506560 DOI: 10.47487/apcyccv.v2i1.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 09/21/2023]
Abstract
Objective To determine the epidemiological, clinical, electrocardiographic, imaging characteristics and main therapeutic strategies performed in patients with arrhythmogenic cardiomyopathy treated in a national reference cardiovascular institute. Materials and methods Observational, descriptive and retrospective study that attempts to identify the clinical characteristics, complementary tests and therapeutic strategies performed in patients with arrhythmogenic cardiomyopathy treated at the Instituto Nacional Cardiovascular - INCOR EsSalud in Lima, Peru. Results Thirteen patients were found with arrhythmogenic cardiomyopathy. The median age at which the diagnosis was made was 38.2 years and 69.3% were male. The most frequent clinical manifestations were tachycardic palpitations (92.3%), presyncope (84.6%) and heart failure (69.2%). 23% of the patients suffered a cardiac arrest. All the patients presented at least one episode of ventricular tachycardia, 92.3% with complete left bundle branch block morphology and upper axis. 76.9% received an implantable cardioverter defibrillator (ICD), 15.3% underwent ablation and 15.3% received a heart transplant. 84.6% of the patients live to this day. Conclusions Arrhythmogenic cardiomyopathy predominantly affected the young and male population. All the patients had a potentially fatal ventricular arrhythmia. Biventricular disease by echocardiography and cardiac magnetic resonance occurred in 69.2% and 100% of the cases, respectively. The therapeutic strategies used were antiarrhythmic medical treatment, placement of an ICD as secondary prevention, ablation, and heart transplantation. To date, 84.6% of patients survive.
Collapse
Affiliation(s)
- Rocío Huerta Robles
- Servicio de Cardiología Clínica. Instituto Nacional Cardiovascular INCOR - EsSalud. Lima, Perú.Servicio de Cardiología ClínicaInstituto Nacional Cardiovascular INCOR - EsSaludLimaPerú
| | - Francisco Chávez Solsol
- Servicio de Cardiología Clínica. Instituto Nacional Cardiovascular INCOR - EsSalud. Lima, Perú.Servicio de Cardiología ClínicaInstituto Nacional Cardiovascular INCOR - EsSaludLimaPerú
| | - Juan Muñoz Moreno
- Servicio de Cardiología Clínica. Instituto Nacional Cardiovascular INCOR - EsSalud. Lima, Perú.Servicio de Cardiología ClínicaInstituto Nacional Cardiovascular INCOR - EsSaludLimaPerú
| | - Diego Ortecho Llanos
- Servicio de Cardiología Clínica. Instituto Nacional Cardiovascular INCOR - EsSalud. Lima, Perú.Servicio de Cardiología ClínicaInstituto Nacional Cardiovascular INCOR - EsSaludLimaPerú
| | - Mario Cabrera Saldaña
- Servicio de Electrofisiología. Instituto Nacional Cardiovascular INCOR - EsSalud. Lima, PerúLimaPerú
| | - Zoila Rodríguez Urteaga
- Servicio de Ayuda al Diagnóstico y Tratamiento. Instituto Nacional Cardiovascular INCOR- EsSalud, Lima, PerúLimaPerú
| | - Marco Gutiérrez Garibay
- Servicio de Cardiología no Invasiva. Instituto Nacional Cardiovascular INCOR- EsSalud. Lima, Perú.LimaPerú
| |
Collapse
|
61
|
Altmayer S, Nazarian S, Han Y. Left Ventricular Dysfunction in Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC): Can We Separate ARVC From Other Arrhythmogenic Cardiomyopathies? J Am Heart Assoc 2020; 9:e018866. [PMID: 33222587 PMCID: PMC7763763 DOI: 10.1161/jaha.120.018866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arrhythmogenic right ventricular cardiomyopathy was first described as a right ventricular disease that is an important cause of death in young adults. However, with the advent of advanced imaging, arrhythmogenic right ventricular cardiomyopathy has been found to commonly have biventricular involvement, and a small portion of patients have left ventricular–dominant forms. On the other hand, a number of primarily left ventricular disease such as sarcoid and myocarditis can be arrhythmogenic and have right ventricular involvement. A few recent publications on arrhythmogenic right ventricular cardiomyopathy cohorts have average left ventricular functions that are comparable to sarcoid or myocarditis cohorts. We review the current literature and compare these cohorts of patients, and call for left ventricular functional criteria for arrhythmogenic right ventricular cardiomyopathy as inherited arrhythmogenic cardiomyopathy.
Collapse
Affiliation(s)
- Stephan Altmayer
- Department of Radiology Pontificia Universidade Catolica do Rio Grande do Sul Porto Alegre Brazil
| | - Saman Nazarian
- Cardiovascular Division Department of Medicine University of Pennsylvania Philadelphia PA
| | - Yuchi Han
- Cardiovascular Division Department of Medicine University of Pennsylvania Philadelphia PA
| |
Collapse
|
62
|
Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N, Aguinaga L, Leite LR, Al-Khatib SM, Anter E, Berruezo A, Callans DJ, Chung MK, Cuculich P, d'Avila A, Deal BJ, Della Bella P, Deneke T, Dickfeld TM, Hadid C, Haqqani HM, Kay GN, Latchamsetty R, Marchlinski F, Miller JM, Nogami A, Patel AR, Pathak RK, Sáenz Morales LC, Santangeli P, Sapp JL, Sarkozy A, Soejima K, Stevenson WG, Tedrow UB, Tzou WS, Varma N, Zeppenfeld K. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. Europace 2020; 21:1143-1144. [PMID: 31075787 DOI: 10.1093/europace/euz132] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ventricular arrhythmias are an important cause of morbidity and mortality and come in a variety of forms, from single premature ventricular complexes to sustained ventricular tachycardia and fibrillation. Rapid developments have taken place over the past decade in our understanding of these arrhythmias and in our ability to diagnose and treat them. The field of catheter ablation has progressed with the development of new methods and tools, and with the publication of large clinical trials. Therefore, global cardiac electrophysiology professional societies undertook to outline recommendations and best practices for these procedures in a document that will update and replace the 2009 EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias. An expert writing group, after reviewing and discussing the literature, including a systematic review and meta-analysis published in conjunction with this document, and drawing on their own experience, drafted and voted on recommendations and summarized current knowledge and practice in the field. Each recommendation is presented in knowledge byte format and is accompanied by supportive text and references. Further sections provide a practical synopsis of the various techniques and of the specific ventricular arrhythmia sites and substrates encountered in the electrophysiology lab. The purpose of this document is to help electrophysiologists around the world to appropriately select patients for catheter ablation, to perform procedures in a safe and efficacious manner, and to provide follow-up and adjunctive care in order to obtain the best possible outcomes for patients with ventricular arrhythmias.
Collapse
Affiliation(s)
| | | | | | - Petr Peichl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Minglong Chen
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Narayanan Namboodiri
- Sree Chitra Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | | | - Elad Anter
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | | | | | - Andre d'Avila
- Hospital Cardiologico SOS Cardio, Florianopolis, Brazil
| | - Barbara J Deal
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | - Claudio Hadid
- Hospital General de Agudos Cosme Argerich, Buenos Aires, Argentina
| | - Haris M Haqqani
- University of Queensland, The Prince Charles Hospital, Chermside, Australia
| | - G Neal Kay
- University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - John M Miller
- Indiana University School of Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana
| | | | - Akash R Patel
- University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | | | | | | | - John L Sapp
- Queen Elizabeth II Health Sciences Centre, Halifax, Canada
| | - Andrea Sarkozy
- University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Sayed A, Pal S, Poplawska M, Aronow WS, Frishman WH, Fuisz A, Jacobson JT. Arrhythmogenic Right Ventricular Cardiomyopathy Diagnosis. Cardiol Rev 2020; 28:319-324. [PMID: 32032135 DOI: 10.1097/crd.0000000000000292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Arrhythmogenic right ventricular cardiomyopathy, formerly called "arrhythmogenic right ventricular dysplasia," is an under-recognized clinical entity characterized by ventricular arrhythmias and a characteristic ventricular pathology. Diagnosis is often difficult due to the nonspecific nature of the disease and the broad spectrum of phenotypic variations. Therefore, consensus diagnostic criteria have been developed which combine electrocardiographic, echocardiographic, cardiac magnetic resonance imaging and histologic criteria. In 1994, an international task force first proposed the major and minor diagnostic criteria of arrhythmogenic right ventricular cardiomyopathy based on family history, arrhythmias, electrocardiographic abnormalities, tissue characterization, and structural and functional right ventricular abnormalities. In 2010, the task force criteria were revised to include quantitative abnormalities. These diagnostic modalities and the most recent task force criteria are discussed in this review.
Collapse
Affiliation(s)
- Amer Sayed
- From the Department of Medicine, Cardiology Division, New York Medical College/Westchester Medical Center, Valhalla, NY
| | | | | | | | | | | | | |
Collapse
|
64
|
Hauer RNW. Cardiac sarcoidosis mimicking definite arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm 2020; 18:239-240. [PMID: 33091604 DOI: 10.1016/j.hrthm.2020.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Richard N W Hauer
- Department of Cardiology, University Medical Center Utrecht, Netherlands Heart Institute, Utrecht, The Netherlands.
| |
Collapse
|
65
|
Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N, Aguinaga L, Leite LR, Al-Khatib SM, Anter E, Berruezo A, Callans DJ, Chung MK, Cuculich P, d'Avila A, Deal BJ, Bella PD, Deneke T, Dickfeld TM, Hadid C, Haqqani HM, Kay GN, Latchamsetty R, Marchlinski F, Miller JM, Nogami A, Patel AR, Pathak RK, Saenz Morales LC, Santangeli P, Sapp JL, Sarkozy A, Soejima K, Stevenson WG, Tedrow UB, Tzou WS, Varma N, Zeppenfeld K. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. J Interv Card Electrophysiol 2020; 59:145-298. [PMID: 31984466 PMCID: PMC7223859 DOI: 10.1007/s10840-019-00663-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ventricular arrhythmias are an important cause of morbidity and mortality and come in a variety of forms, from single premature ventricular complexes to sustained ventricular tachycardia and fibrillation. Rapid developments have taken place over the past decade in our understanding of these arrhythmias and in our ability to diagnose and treat them. The field of catheter ablation has progressed with the development of new methods and tools, and with the publication of large clinical trials. Therefore, global cardiac electrophysiology professional societies undertook to outline recommendations and best practices for these procedures in a document that will update and replace the 2009 EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias. An expert writing group, after reviewing and discussing the literature, including a systematic review and meta-analysis published in conjunction with this document, and drawing on their own experience, drafted and voted on recommendations and summarized current knowledge and practice in the field. Each recommendation is presented in knowledge byte format and is accompanied by supportive text and references. Further sections provide a practical synopsis of the various techniques and of the specific ventricular arrhythmia sites and substrates encountered in the electrophysiology lab. The purpose of this document is to help electrophysiologists around the world to appropriately select patients for catheter ablation, to perform procedures in a safe and efficacious manner, and to provide follow-up and adjunctive care in order to obtain the best possible outcomes for patients with ventricular arrhythmias.
Collapse
Affiliation(s)
| | | | | | - Petr Peichl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Minglong Chen
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Narayanan Namboodiri
- Sree Chitra Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | | | - Elad Anter
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | | | - Andre d'Avila
- Hospital Cardiologico SOS Cardio, Florianopolis, Brazil
| | - Barbara J Deal
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | - Claudio Hadid
- Hospital General de Agudos Cosme Argerich, Buenos Aires, Argentina
| | - Haris M Haqqani
- University of Queensland, The Prince Charles Hospital, Chermside, Australia
| | - G Neal Kay
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - John M Miller
- Indiana University School of Medicine, Krannert Institute of Cardiology, Indianapolis, IN, USA
| | | | - Akash R Patel
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | | | | | | | - John L Sapp
- Queen Elizabeth II Health Sciences Centre, Halifax, Canada
| | - Andrea Sarkozy
- University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
66
|
Venlet J, Tao Q, de Graaf MA, Glashan CA, de Riva Silva M, van der Geest RJ, Scholte AJ, Piers SRD, Zeppenfeld K. RV Tissue Heterogeneity on CT: A Novel Tool to Identify the VT Substrate in ARVC. JACC Clin Electrophysiol 2020; 6:1073-1085. [PMID: 32972541 DOI: 10.1016/j.jacep.2020.04.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES This study sought to evaluate whether right ventricular (RV) tissue heterogeneity on computed tomography (CT): 1) is associated with conduction delay in arrhythmogenic right ventricular cardiomyopathy (ARVC); and 2) distinguishes patients with ARVC from those with exercise-induced arrhythmogenic remodeling (EIAR) and control individuals. BACKGROUND ARVC is characterized by fibrofatty replacement, related to conduction delay and ventricular tachycardias. Distinguishing ARVC from acquired, EIAR is challenging. METHODS Patients with ARVC or EIAR and combined endocardial-epicardial electroanatomic voltage mapping for VT ablation with CT integration were enrolled. Patients without structural heart disease served as control individuals. Tissue heterogeneity on CT (CT heterogeneity) was automatically quantified within the 2-mm subepicardium of the entire RV free wall at normal sites and low voltage sites harboring late potentials (LP+) in ARVC/EIAR. RESULTS Seventeen patients with ARVC (15 males; age: 50 ± 17 years), 9 patients with EIAR (7 males; age: 45 ± 14 years) and 17 control individuals (14 males; age: 50 ± 15 years) were enrolled. Of 5,215 ARVC mapping points, 560 (11%) showed LP+. CT heterogeneity was higher at sites with LP+ compared to normal sites (median: 31 HU/mm; IQR: 23 to 46 HU/mm vs. median: 16 HU/mm; IQR: 13 to 21 HU/mm; p < 0.001). The optimal CT heterogeneity cutoff for detection of LP+ was 25 HU/mm (area under the curve [AUC]: 0.80; sensitivity: 72%; specificity: 78%). Overall CT heterogeneity allowed highly accurate differentiation between patients with ARVC and control individuals (AUC: 0.97; sensitivity: 100%; specificity: 82%) and between ARVC and EIAR (AUC: 0.78; sensitivity: 65%; specificity: 89%). CONCLUSIONS In patients with ARVC, tissue heterogeneity on CT can be used to identify LP+ as a surrogate for ventricular tachycardia substrate. The overall tissue heterogeneity on CT allows the distinguishing of patients with ARVC from those with EIAR and control individuals.
Collapse
Affiliation(s)
- Jeroen Venlet
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Qian Tao
- Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Michiel A de Graaf
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Claire A Glashan
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marta de Riva Silva
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rob J van der Geest
- Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arthur J Scholte
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sebastiaan R D Piers
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
67
|
Aquaro GD, De Luca A, Cappelletto C, Raimondi F, Bianco F, Botto N, Barison A, Romani S, Lesizza P, Fabris E, Todiere G, Grigoratos C, Pingitore A, Stolfo D, Dal Ferro M, Merlo M, Di Bella G, Sinagra G. Comparison of different prediction models for the indication of implanted cardioverter defibrillator in patients with arrhythmogenic right ventricular cardiomyopathy. ESC Heart Fail 2020; 7:4080-4088. [PMID: 32965795 PMCID: PMC7755004 DOI: 10.1002/ehf2.13019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 01/07/2023] Open
Abstract
Aims Arrhythmogenic right ventricular cardiomyopathy (ARVC) is associated with a high risk of sudden cardiac death. Three different prediction models for the indication of implanted cardioverter defibrillator (ICD) are now available: the 5 year ARVC risk score, the International Task Force Consensus (ITFC) criteria, and the Heart Rhythm Society (HRS) criteria. We compared these three prediction models in a validation cohort of patients with definite ARVC. Methods and results In a cohort of 140 patients with definite ARVC, the 5 year ARVC risk score and the ITFC and HRS criteria were compared for the prediction of a major combined endpoint of sudden cardiac death, appropriate ICD intervention, resuscitated cardiac arrest, and sustained ventricular tachycardia. During the follow‐up, 65 major events occurred. The 5 year ARVC risk score with a threshold >10%, derived from the maximally selected rank statistic, predicted 62 (95%) events [odds ratio (OR) 9.1, 95% confidence interval (CI) 2.6–32, P = 0.0006], the ITFC criteria 53 (81%, OR 4.8, 95% CI 2.2–10.3, P = 0.0001), and the HRS criteria 29 (45%, OR 4.2, 95% CI 1.9–9.3, P = 0.0003). At the analysis of decision curve for ICD implantation, a 5 year ARVC risk score >10% showed a greater net benefit than the ITFC and HRS criteria over a wide range of threshold probability of events. Finally, at multivariate analysis, the 5 year ARVC risk score >10% was the only independent predictor of major events. Conclusions The 5 year score with a threshold of >10% was more effective for predicting events than the ITFC and HRS criteria.
Collapse
Affiliation(s)
| | - Antonio De Luca
- Cardio-thoraco-vascular Department, University of Trieste, Trieste, Italy
| | - Chiara Cappelletto
- Cardio-thoraco-vascular Department, University of Trieste, Trieste, Italy
| | | | - Francesco Bianco
- Institute of Cardiology, 'G. d'Annunzio' University, Chieti, Italy
| | - Nicoletta Botto
- Fondazione Toscana G. Monasterio, Via Giuseppe Moruzzi, 1, Pisa, 56124, Italy
| | - Andrea Barison
- Fondazione Toscana G. Monasterio, Via Giuseppe Moruzzi, 1, Pisa, 56124, Italy
| | - Simona Romani
- Cardio-thoraco-vascular Department, University of Trieste, Trieste, Italy
| | - Pierluigi Lesizza
- Cardio-thoraco-vascular Department, University of Trieste, Trieste, Italy
| | - Enrico Fabris
- Cardio-thoraco-vascular Department, University of Trieste, Trieste, Italy
| | - Giancarlo Todiere
- Fondazione Toscana G. Monasterio, Via Giuseppe Moruzzi, 1, Pisa, 56124, Italy
| | | | | | - Davide Stolfo
- Cardio-thoraco-vascular Department, University of Trieste, Trieste, Italy
| | - Matteo Dal Ferro
- Cardio-thoraco-vascular Department, University of Trieste, Trieste, Italy
| | - Marco Merlo
- Cardio-thoraco-vascular Department, University of Trieste, Trieste, Italy
| | | | - Gianfranco Sinagra
- Cardio-thoraco-vascular Department, University of Trieste, Trieste, Italy
| |
Collapse
|
68
|
Assis FR, Tandri H. Epicardial Ablation of Ventricular Tachycardia in Arrhythmogenic Right Ventricular Cardiomyopathy. Card Electrophysiol Clin 2020; 12:329-343. [PMID: 32771187 DOI: 10.1016/j.ccep.2020.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease characterized by progressive fibrofatty replacement of the myocardium, right ventricular enlargement, and malignant ventricular arrhythmias. Ventricular tachycardia (VT) may be seen in all stages of the disease and is associated with sudden cardiac death. In patients who failed anti-arrhythmic medical therapy, catheter ablation has become an attractive therapeutic option to reduce VT burden and implantable cardioverter-defibrillator interventions. In this article, the authors aim to address the overall concepts of epicardial catheter ablation in ARVC, focusing on substrate characterization and ablation strategies.
Collapse
Affiliation(s)
- Fabrizio R Assis
- ARVC Program, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Harikrishna Tandri
- ARVC Program, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
69
|
Mathew S, Saguner AM, Schenker N, Kaiser L, Zhang P, Yashuiro Y, Lemes C, Fink T, Maurer T, Santoro F, Wohlmuth P, Reißmann B, Heeger CH, Tilz R, Wissner E, Rillig A, Metzner A, Kuck KH, Ouyang F. Catheter Ablation of Ventricular Tachycardia in Patients With Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia: A Sequential Approach. J Am Heart Assoc 2020; 8:e010365. [PMID: 30813830 PMCID: PMC6474920 DOI: 10.1161/jaha.118.010365] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background It has been suggested that endocardial and epicardial ablation of ventricular tachycardia (VT) improves outcome in arrhythmogenic right ventricular cardiomyopathy/dysplasia. We investigated our sequential approach for VT ablation in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia in a single center. Methods and Results We included 47 patients (44±16 years) with definite (81%) or borderline (19%) arrhythmogenic right ventricular cardiomyopathy/dysplasia between 1998 and 2016. Our ablation strategy was to target the endocardial substrate. Epicardial ablation was performed in case of acute ablation failure or lack of an endocardial substrate. Single and multiple procedural 1‐ and 5‐year outcome data for the first occurrence of the study end points (sustained VT/ventricular fibrillation, heart transplant, and death after the index procedure, and sustained VT/ventricular fibrillation for multiple procedures) are reported. Eighty‐one radiofrequency ablation procedures were performed (mean 1.7 per patient, range 1–4). Forty‐five (56%) ablation procedures were performed via an endocardial, 11 (13%) via an epicardial, and 25 (31%) via a combined endo‐ and epicardial approach. Complete acute success was achieved in 65 (80%) procedures, and partial success in 13 (16%). After a median follow‐up of 50.8 (interquartile range, [18.6; 99.2]) months after the index procedure, 17 (36%) patients were free from the primary end point. After multiple procedures, freedom from sustained VT/ventricular fibrillation was 63% (95% CI, 52–75) at 1 year, and 45% (95% CI, 34–61) at 5 years, with 36% of patients receiving only endocardial radiofrequency ablation. A trend (log rank P=0.058) towards an improved outcome using a combined endo‐/epicardial approach was observed after multiple procedures. Conclusion Endocardial ablation can be effective in a considerable number of arrhythmogenic right ventricular cardiomyopathy/dysplasia patients with VT, potentially obviating the need for an epicardial approach.
Collapse
Affiliation(s)
- Shibu Mathew
- 1 Department of Cardiology Asklepios Klinik St. Georg Hamburg Germany
| | - Ardan M Saguner
- 1 Department of Cardiology Asklepios Klinik St. Georg Hamburg Germany.,2 Department of Cardiology University Heart Center Zurich Switzerland
| | - Niklas Schenker
- 1 Department of Cardiology Asklepios Klinik St. Georg Hamburg Germany
| | - Lukas Kaiser
- 1 Department of Cardiology Asklepios Klinik St. Georg Hamburg Germany
| | - Pengpai Zhang
- 1 Department of Cardiology Asklepios Klinik St. Georg Hamburg Germany
| | - Yoshiga Yashuiro
- 1 Department of Cardiology Asklepios Klinik St. Georg Hamburg Germany
| | - Christine Lemes
- 1 Department of Cardiology Asklepios Klinik St. Georg Hamburg Germany
| | - Thomas Fink
- 1 Department of Cardiology Asklepios Klinik St. Georg Hamburg Germany
| | - Tilman Maurer
- 1 Department of Cardiology Asklepios Klinik St. Georg Hamburg Germany
| | - Francesco Santoro
- 1 Department of Cardiology Asklepios Klinik St. Georg Hamburg Germany
| | - Peter Wohlmuth
- 1 Department of Cardiology Asklepios Klinik St. Georg Hamburg Germany
| | - Bruno Reißmann
- 1 Department of Cardiology Asklepios Klinik St. Georg Hamburg Germany
| | - Christian H Heeger
- 3 University Heart Center Lübeck Medical Clinic II University Hospital Schleswig Holstein Lübeck Germany
| | - Roland Tilz
- 3 University Heart Center Lübeck Medical Clinic II University Hospital Schleswig Holstein Lübeck Germany
| | - Erik Wissner
- 4 University of Illinois Chicago, College of Medicine Chicago IL
| | - Andreas Rillig
- 1 Department of Cardiology Asklepios Klinik St. Georg Hamburg Germany
| | - Andreas Metzner
- 1 Department of Cardiology Asklepios Klinik St. Georg Hamburg Germany
| | - Karl-Heinz Kuck
- 1 Department of Cardiology Asklepios Klinik St. Georg Hamburg Germany
| | - Feifan Ouyang
- 1 Department of Cardiology Asklepios Klinik St. Georg Hamburg Germany
| |
Collapse
|
70
|
Mascia G, Arbelo E, Porto I, Brugada R, Brugada J. The arrhythmogenic right ventricular cardiomyopathy in comparison to the athletic heart. J Cardiovasc Electrophysiol 2020; 31:1836-1843. [PMID: 32367567 DOI: 10.1111/jce.14526] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/25/2020] [Accepted: 04/24/2020] [Indexed: 01/02/2023]
Abstract
Intense exercise-induced right ventricular remodeling is a potential adaptation of cardiac function and structure. The features of the remodeling may overlap with those of a very early form of arrhythmogenic right ventricular cardiomyopathy (ARVC): at this early stage, it could be difficult to discriminate ARVC, from exercise-induced cardiac adaptation that may develop in normal individuals. The purpose of this paper is to discuss which exercise-induced remodeling may be a pathological or a physiological finding. A complete evaluation may be required to identify the pathological features of ARVC that would include potential risk of sudden cardiac death during sport or, to avoid the false diagnosis of ARVC. The most recent expert assessment of arrhythmogenic cardiomyopathy focuses on endurance athletes presenting with clinical features indistinguishable from ARVC.
Collapse
Affiliation(s)
- Giuseppe Mascia
- Department of Internal Medicine (DIMI) Clinic of Cardiovascular Diseases, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Italian IRCCS Cardiovascular Network, Genoa, Italy.,Cardiology and Electrophysiology Unit, Department of Internal Medicine, Azienda USL Toscana Centro, Florence, Italy
| | - Elena Arbelo
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Institut d'Investigaciò August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Italo Porto
- Department of Internal Medicine (DIMI) Clinic of Cardiovascular Diseases, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Italian IRCCS Cardiovascular Network, Genoa, Italy
| | - Ramon Brugada
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica Girona (IDIBGI), University of Girona, Girona, Spain
| | - Josep Brugada
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Institut d'Investigaciò August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
71
|
Romero J, Patel K, Briceno D, Alviz I, Gabr M, Diaz JC, Trivedi C, Mohanty S, Della Rocca D, Al-Ahmad A, Yang R, Rios S, Cerna L, Du X, Tarantino N, Zhang XD, Lakkireddy D, Natale A, Di Biase L. Endo-epicardial ablation vs endocardial ablation for the management of ventricular tachycardia in arrhythmogenic right ventricular cardiomyopathy: A systematic review and meta-analysis. J Cardiovasc Electrophysiol 2020; 31:2022-2031. [PMID: 32478430 DOI: 10.1111/jce.14593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/28/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND The pathologic process of ARVC (arrhythmogenic right ventricular cardiomyopathy) typically originates in the epicardium or subepicardial layers with progression toward endocardium. However, in the most recent ARVC international task force consensus statement, epicardial ventricular tachycardia (VT) ablation is recommended as a Class I indication only in patients with at least one failed endocardial VT ablation attempt. OBJECTIVE The aim of this meta-analysis is to assess the outcomes of ARVC patients undergoing combined endo-epicardial VT ablation, as compared to endocardial ablation alone. METHODS A systematic review of PubMed, Embase, and Cochrane was performed for studies reporting clinical outcomes of endo-epicardial VT ablation vs endocardial-only VT ablation in patients with ARVC. Fixed-Effect model was used if I2 < 25 and the Random-Effects Model was used if I2 ≥ 25%. RESULTS Nine studies consisting of 452 patients were included (mean age 42.3 ± 5.7 years; 70% male). After a mean follow-up of 48.1 ± 21.5 months, endo-epicardial ablation was associated with 42% relative risk reduction in VA recurrence as opposed to endocardial ablation alone (risk ratio [RR], 0.58; 95% confidence interval [CI], 0.45-0.75; P < .0001). No significant differences were noted between endo-epicardial and endocardial VT ablation groups in terms of all-cause mortality (RR, 1.19; 95% CI, 0.03-47.08; P = .93) and acute procedural complications (RR, 5.39; 95% CI, 0.60-48.74; P = .13). CONCLUSIONS Our findings suggest that in patients with ARVC, endo-epicardial VT ablation is associated with a significant reduction in VA recurrence as opposed to endocardial ablation alone, without a significant difference in all-cause mortality or acute procedural complications.
Collapse
Affiliation(s)
- Jorge Romero
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Kavisha Patel
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - David Briceno
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Isabella Alviz
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Mohamed Gabr
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Juan Carlos Diaz
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Chintan Trivedi
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, Texas
| | - Sanghamitra Mohanty
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, Texas
| | | | - Amin Al-Ahmad
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, Texas
| | - Ruike Yang
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.,Division of Cardiology, Department of Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Saul Rios
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Luis Cerna
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Xianfeng Du
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Nicola Tarantino
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Xiao-Dong Zhang
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, Texas
| | - Luigi Di Biase
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
72
|
Prognostic Value of Magnetic Resonance Phenotype in Patients With Arrhythmogenic Right Ventricular Cardiomyopathy. J Am Coll Cardiol 2020; 75:2753-2765. [DOI: 10.1016/j.jacc.2020.04.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 11/20/2022]
|
73
|
Groen MHA, Bosman LP, Teske AJ, Mast TP, Taha K, Van Slochteren FJ, Cramer MJ, Doevendans PA, van Es R. Development of an algorithm for automatic classification of right ventricle deformation patterns in arrhythmogenic right ventricular cardiomyopathy. Echocardiography 2020; 37:698-705. [PMID: 32362023 PMCID: PMC7317368 DOI: 10.1111/echo.14671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/24/2020] [Accepted: 04/08/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Different disease stages of arrhythmogenic right ventricular cardiomyopathy (ARVC) can be identified by right ventricle (RV) longitudinal deformation (strain) patterns. This requires assessment of the onset of shortening, (systolic) peak strain, and postsystolic index, which is time-consuming and prone to inter- and intra-observer variability. The aim of this study was to design and validate an algorithm to automatically classify RV deformation patterns. METHODS We developed an algorithm based on specific local characteristics from the strain curves to detect the parameters required for classification. Determination of the onset of shortening by the algorithm was compared to manual determination by an experienced operator in a dataset containing 186 RV strain curves from 26 subjects carrying a pathogenic plakophilin-2 (PKP2) mutation and 36 healthy subjects. Classification agreement between operator and algorithm was solely based on differences in onset shortening, as the remaining parameters required for classification of RV deformation patterns could be directly obtained from the strain curves. RESULTS The median difference between the onset of shortening determined by the experienced operator and by the automatic detector was 5.3 ms [inter-quartile range (IQR) 2.7-8.6 ms]. 96% of the differences were within 1 time frame. Both methods correlated significantly with ρ = 0.97 (P < .001). For 26 PKP2 mutation carriers, there was 100% agreement in classification between the algorithm and experienced operator. CONCLUSION The determination of the onset of shortening by the experienced operator was comparable to the algorithm. Our computer algorithm seems a promising method for the automatic classification of RV deformation patterns. The algorithm is publicly available at the MathWorks File Exchange.
Collapse
Affiliation(s)
- Marijn H. A. Groen
- Division of Heart and LungsDepartment of CardiologyUniversity Medical Center UtrechtUniversity of UtrechtUtrechtThe Netherlands
| | - Laurens P. Bosman
- Division of Heart and LungsDepartment of CardiologyUniversity Medical Center UtrechtUniversity of UtrechtUtrechtThe Netherlands
- Netherlands Heart InstituteUtrechtThe Netherlands
| | - Arco J. Teske
- Division of Heart and LungsDepartment of CardiologyUniversity Medical Center UtrechtUniversity of UtrechtUtrechtThe Netherlands
| | - Thomas P. Mast
- Division of Heart and LungsDepartment of CardiologyUniversity Medical Center UtrechtUniversity of UtrechtUtrechtThe Netherlands
- Department of CardiologyCatharina Hospital EindhovenEindhovenThe Netherlands
| | - Karim Taha
- Division of Heart and LungsDepartment of CardiologyUniversity Medical Center UtrechtUniversity of UtrechtUtrechtThe Netherlands
- Netherlands Heart InstituteUtrechtThe Netherlands
| | - Frebus J. Van Slochteren
- Division of Heart and LungsDepartment of CardiologyUniversity Medical Center UtrechtUniversity of UtrechtUtrechtThe Netherlands
| | - Maarten J. Cramer
- Division of Heart and LungsDepartment of CardiologyUniversity Medical Center UtrechtUniversity of UtrechtUtrechtThe Netherlands
| | - Pieter A. Doevendans
- Division of Heart and LungsDepartment of CardiologyUniversity Medical Center UtrechtUniversity of UtrechtUtrechtThe Netherlands
- Netherlands Heart InstituteUtrechtThe Netherlands
| | - René van Es
- Division of Heart and LungsDepartment of CardiologyUniversity Medical Center UtrechtUniversity of UtrechtUtrechtThe Netherlands
| |
Collapse
|
74
|
Maione AS, Pilato CA, Casella M, Gasperetti A, Stadiotti I, Pompilio G, Sommariva E. Fibrosis in Arrhythmogenic Cardiomyopathy: The Phantom Thread in the Fibro-Adipose Tissue. Front Physiol 2020; 11:279. [PMID: 32317983 PMCID: PMC7147329 DOI: 10.3389/fphys.2020.00279] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/12/2020] [Indexed: 12/22/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited heart disorder, predisposing to malignant ventricular arrhythmias leading to sudden cardiac death, particularly in young and athletic patients. Pathological features include a progressive loss of myocardium with fibrous or fibro-fatty substitution. During the last few decades, different clinical aspects of ACM have been well investigated but still little is known about the molecular mechanisms that underlie ACM pathogenesis, leading to these phenotypes. In about 50% of ACM patients, a genetic mutation, predominantly in genes that encode for desmosomal proteins, has been identified. However, the mutation-associated mechanisms, causing the observed cardiac phenotype are not always clear. Until now, the attention has been principally focused on the study of molecular mechanisms that lead to a prominent myocardium adipose substitution, an uncommon marker for a cardiac disease, thus often recognized as hallmark of ACM. Nonetheless, based on Task Force Criteria for the diagnosis of ACM, cardiomyocytes death associated with fibrous replacement of the ventricular free wall must be considered the main tissue feature in ACM patients. For this reason, it urges to investigate ACM cardiac fibrosis. In this review, we give an overview on the cellular effectors, possible triggers, and molecular mechanisms that could be responsible for the ventricular fibrotic remodeling in ACM patients.
Collapse
Affiliation(s)
- Angela Serena Maione
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Chiara Assunta Pilato
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Michela Casella
- Heart Rhythm Center, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Alessio Gasperetti
- Heart Rhythm Center, Centro Cardiologico Monzino IRCCS, Milan, Italy
- University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Ilaria Stadiotti
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
75
|
Miles C, Finocchiaro G, Papadakis M, Gray B, Westaby J, Ensam B, Basu J, Parry-Williams G, Papatheodorou E, Paterson C, Malhotra A, Robertus JL, Ware JS, Cook SA, Asimaki A, Witney A, Ster IC, Tome M, Sharma S, Behr ER, Sheppard MN. Sudden Death and Left Ventricular Involvement in Arrhythmogenic Cardiomyopathy. Circulation 2020; 139:1786-1797. [PMID: 30700137 PMCID: PMC6467560 DOI: 10.1161/circulationaha.118.037230] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy (ACM) is an inherited heart muscle disorder characterized by myocardial fibrofatty replacement and an increased risk of sudden cardiac death (SCD). Originally described as a right ventricular disease, ACM is increasingly recognized as a biventricular entity. We evaluated pathological, genetic, and clinical associations in a large SCD cohort. METHODS We investigated 5205 consecutive cases of SCD referred to a national cardiac pathology center between 1994 and 2018. Hearts and tissue blocks were examined by expert cardiac pathologists. After comprehensive histological evaluation, 202 cases (4%) were diagnosed with ACM. Of these, 15 (7%) were diagnosed antemortem with dilated cardiomyopathy (n=8) or ACM (n=7). Previous symptoms, medical history, circumstances of death, and participation in competitive sport were recorded. Postmortem genetic testing was undertaken in 24 of 202 (12%). Rare genetic variants were classified according to American College of Medical Genetics and Genomics criteria. RESULTS Of 202 ACM decedents (35.4±13.2 years; 82% male), no previous cardiac symptoms were reported in 157 (78%). Forty-one decedents (41/202; 20%) had been participants in competitive sport. The adjusted odds of dying during physical exertion were higher in men than in women (odds ratio, 4.58; 95% CI, 1.54-13.68; P=0.006) and in competitive athletes in comparison with nonathletes (odds ratio, 16.62; 95% CI, 5.39-51.24; P<0.001). None of the decedents with an antemortem diagnosis of dilated cardiomyopathy fulfilled definite 2010 Task Force criteria. The macroscopic appearance of the heart was normal in 40 of 202 (20%) cases. There was left ventricular histopathologic involvement in 176 of 202 (87%). Isolated right ventricular disease was seen in 13%, isolated left ventricular disease in 17%, and biventricular involvement in 70%. Among whole hearts, the most common areas of fibrofatty infiltration were the left ventricular posterobasal (68%) and anterolateral walls (58%). Postmortem genetic testing yielded pathogenic variants in ACM-related genes in 6 of 24 (25%) decedents. CONCLUSIONS SCD attributable to ACM affects men predominantly, most commonly occurring during exertion in athletic individuals in the absence of previous reported cardiac symptoms. Left ventricular involvement is observed in the vast majority of SCD cases diagnosed with ACM at autopsy. Current Task Force criteria may fail to diagnose biventricular ACM before death.
Collapse
Affiliation(s)
- Chris Miles
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Gherardo Finocchiaro
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Michael Papadakis
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Belinda Gray
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Joseph Westaby
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Bode Ensam
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Joyee Basu
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Gemma Parry-Williams
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Efstathios Papatheodorou
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Casey Paterson
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Aneil Malhotra
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Jan Lukas Robertus
- Department of Pathology, Royal Brompton and Harefield NHS Foundation Trust, Imperial College London, United Kingdom (J.L.R.)
| | - James S Ware
- National Heart and Lung Institute & MRC London Institute of Medical Sciences, Imperial College London, and Royal Brompton and Harefield NHS Foundation Trust, United Kingdom (J.S.W., S.A.C.)
| | - Stuart A Cook
- National Heart and Lung Institute & MRC London Institute of Medical Sciences, Imperial College London, and Royal Brompton and Harefield NHS Foundation Trust, United Kingdom (J.S.W., S.A.C.)
| | - Angeliki Asimaki
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Adam Witney
- Institute of Infection and Immunity, St George's University of London, United Kingdom (A.W., I.C.S.)
| | - Irina Chis Ster
- Institute of Infection and Immunity, St George's University of London, United Kingdom (A.W., I.C.S.)
| | - Maite Tome
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Sanjay Sharma
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Elijah R Behr
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Mary N Sheppard
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| |
Collapse
|
76
|
Han Y, Chen Y, Ferrari VA. Contemporary Application of Cardiovascular Magnetic Resonance Imaging. Annu Rev Med 2020; 71:221-234. [PMID: 31986088 DOI: 10.1146/annurev-med-041818-015923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cardiovascular magnetic resonance imaging (CMR) is a comprehensive and versatile diagnostic and prognostic imaging modality that plays an increasingly important role in management of patients with cardiovascular disease. In this review, we discuss CMR applications in nonischemic cardiomyopathy, ischemic heart disease, arrhythmias, right ventricular diseases, and valvular heart disease. We emphasize the quantitative nature of CMR in current practice, from volumes, function, myocardial strain analysis, and late gadolinium enhancement to parametric mapping, including T1, T2, and T2* relaxation times and extracellular volume fraction assessment.
Collapse
Affiliation(s)
- Yuchi Han
- Departments of Medicine (Cardiovascular Division) and Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yucheng Chen
- Departments of Cardiology and Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Victor A. Ferrari
- Departments of Medicine (Cardiovascular Division) and Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
77
|
Arrhythmogenic Left Ventricular Cardiomyopathy: A Clinical and CMR Study. Sci Rep 2020; 10:533. [PMID: 31953454 PMCID: PMC6969116 DOI: 10.1038/s41598-019-57203-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022] Open
Abstract
The clinical features, CMR characteristics and outcomes of arrhythmogenic left ventricular cardiomyopathy (ALVC), which is a very rare nonischemic cardiomyopathy, are currently not well studied. The purpose of the study is to investigate the clinical and cardiovascular magnetic resonance (CMR) imaging characteristics of arrhythmogenic left ventricular cardiomyopathy (ALVC). Fifty-three consecutive patients with ALVC were divided into two groups: ALVC patients without right ventricular (RV) involvement (n = 36, group 1) and those with RV involvement (n = 17, group 2). Clinical symptoms, cardiac electrophysiological findings, and CMR parameters (morphology, ventricular function, and myocardial fibrosis and fatty infiltration) were evaluated in both groups. The two groups showed no significant difference in age, gender, or presenting symptoms (P > 0.05). Right bundle branch block ventricular arrhythmia was less common in patients without RV involvement (50.0% vs.64.7%, P = 0.031). There were no significant differences in left ventricular function between the two groups, however right ventricular ejection fraction was significantly lower in group 2 (40.1 ± 4.0% vs. 48.7 ± 3.9%, P < 0.001). Inverse correlations of left ventricular ejection fraction with fat volume (r = −0.883, p = 0.001), late gadolinium enhancement (LGE) volume (r = −0.892, 0.013), ratio of fat/LGE (r = −0.848, p < 0.001), indexed left ventricular end diastolic volume (r = −0.877, p < 0.001) and indexed left ventricular end systolic volume (r = −0.943, p < 0.001) were all significant. ALVC is a rare disease with fibro-fatty replacement predominantly in the left ventricle, impaired left ventricular systolic function, and ventricular arrhythmias originating from the left ventricle. ALVC with right ventricular involvement may have a worse prognosis.
Collapse
|
78
|
Left Ventricular Involvement in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Predicts Adverse Clinical Outcomes: A Cardiovascular Magnetic Resonance Feature Tracking Study. Sci Rep 2019; 9:14235. [PMID: 31578430 PMCID: PMC6775112 DOI: 10.1038/s41598-019-50535-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/12/2019] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to investigate left ventricular (LV) global myocardial strain and LV involvement characteristics in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) and to evaluate their predictive value of adverse cardiac events. Sixty consecutive ARVD/C patients with a definite diagnosis of ARVD/C who underwent CMR examination and thirty-four healthy controls were enrolled retrospectively. The CMR images were analyzed for LV myocardial strain and the presence of LV involvement. The endpoint was defined as a composite of sustained ventricular tachycardia or fibrillation, cardiac death, resuscitated cardiac arrest, heart transplantation, and appropriate implantable cardioverter-defibrillator shock. LV global longitudinal (GLS), circumferential (GCS), and radial strain (GRS) were significantly impaired in ARVC/D patients compared to healthy controls (GLS: −13.89 ± 3.26% vs. −16.68 ± 2.74%, GCS: −15.65 ± 3.40% vs. −19.20 ± 2.23%, GRS: 34.57 ± 11.98% vs. 49.92 ± 12.59%; P < 0.001 for all). Even in ARVC/D patients with preserved LVEF, LV GLS, GCS and GRS were also significantly reduced than in controls. During a mean follow-up period of 4.10 ± 1.77 years, the endpoint was reached in 17 patients. LV GLS >−12.65% (HR, 3.58; 95%CI, 1.14 to 11.25; p = 0.029) and history of syncope (HR, 4.99; 95%CI, 1.88 to 13.24; p = 0.001) were the only independent predictors of cardiac outcomes. The LV myocardial deformation derived from FT CMR was significantly impaired in ARVD/C patients, and this alteration can occur before the impairment of LVEF. LV GLS >−12.65% and history of syncope were the only independent prognostic markers of adverse cardiac outcomes.
Collapse
|
79
|
Clinical Diagnosis, Imaging, and Genetics of Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 72:784-804. [PMID: 30092956 DOI: 10.1016/j.jacc.2018.05.065] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 01/30/2023]
Abstract
Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is an inherited cardiomyopathy that can lead to sudden cardiac death and heart failure. Our understanding of its pathophysiology and clinical expressivity is continuously evolving. The diagnosis of ARVC/D remains particularly challenging due to the absence of specific unique diagnostic criteria, its variable expressivity, and incomplete penetrance. Advances in genetics have enlarged the clinical spectrum of the disease, highlighting possible phenotypes that overlap with arrhythmogenic dilated cardiomyopathy and channelopathies. The principal challenges for ARVC/D diagnosis include the following: earlier detection of the disease, particularly in cases of focal right ventricular involvement; differential diagnosis from other arrhythmogenic diseases affecting the right ventricle; and the development of new objective electrocardiographic and imaging criteria for diagnosis. This review provides an update on the diagnosis of ARVC/D, focusing on the contribution of emerging imaging techniques, such as echocardiogram/magnetic resonance imaging strain measurements or computed tomography scanning, new electrocardiographic parameters, and high-throughput sequencing.
Collapse
|
80
|
Chen X, Li L, Cheng H, Song Y, Ji K, Chen L, Han T, Lu M, Zhao S. Early Left Ventricular Involvement Detected by Cardiovascular Magnetic Resonance Feature Tracking in Arrhythmogenic Right Ventricular Cardiomyopathy: The Effects of Left Ventricular Late Gadolinium Enhancement and Right Ventricular Dysfunction. J Am Heart Assoc 2019; 8:e012989. [PMID: 31441357 PMCID: PMC6755833 DOI: 10.1161/jaha.119.012989] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Left ventricular (LV) involvement is common in arrhythmogenic right ventricular cardiomyopathy (ARVC). We aim to evaluate LV involvement in ARVC patients by cardiovascular magnetic resonance feature tracking. Methods and Results Sixty‐eight patients with ARVC and 30 controls were prospectively enrolled. ARVC patients were divided into 2 subgroups: the preserved LV ejection fraction (LVEF) group (LVEF ≥55%, n=27) and the reduced LVEF group (LVEF <55%, n=41). Cardiovascular magnetic resonance with late gadolinium enhancement (LGE) and cardiovascular magnetic resonance feature tracking were performed in all subjects. LV global and regional (basal, mid, apical) peak strain (PS) in radial, circumferential and longitudinal directions were assessed, respectively. Right ventricular global PS in three directions were also analyzed. Compared with the controls, LV global and regional PS were all significantly impaired in the reduced LVEF group (all P<0.05). However, only LV global longitudinal PS as well as mid and apical longitudinal PS were impaired in the preserved LVEF group (all P<0.05), and all these parameters were significantly associated with right ventricular global radial PS (r=−0.47, −0.47, and −0.49, respectively, all P<0.001). The reduced LVEF group showed significantly higher prevalence of LGE (95.10% versus 63.00%, P=0.002) than the preserved LVEF group. Moreover, LV radial PS was significantly reduced in LV segments with LGE (33.15±20.42%, n=46) than those without LGE (41.25±15.98%, n=386) in the preserved LVEF group (P=0.016). Conclusions In patients with ARVC, cardiovascular magnetic resonance feature tracking could detect early LV dysfunction, which was associated with LV myocardial LGE and right ventricular dysfunction.
Collapse
Affiliation(s)
- Xiuyu Chen
- Department of CMR State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Lu Li
- Department of CMR State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Huaibin Cheng
- Department of Function Test Center State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Yanyan Song
- Department of CMR State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Keshan Ji
- Department of CMR State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Lin Chen
- Department of CMR State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Tongtong Han
- Circle Cardiovascular Imaging Inc. Calgary Alberta Canada
| | - Minjie Lu
- Department of CMR State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Shihua Zhao
- Department of CMR State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| |
Collapse
|
81
|
Markman TM, Nazarian S. Treatment of ventricular arrhythmias: What's New? Trends Cardiovasc Med 2019; 29:249-261. [DOI: 10.1016/j.tcm.2018.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 12/17/2022]
|
82
|
Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N, Aguinaga L, Leite LR, Al-Khatib SM, Anter E, Berruezo A, Callans DJ, Chung MK, Cuculich P, d'Avila A, Deal BJ, Della Bella P, Deneke T, Dickfeld TM, Hadid C, Haqqani HM, Kay GN, Latchamsetty R, Marchlinski F, Miller JM, Nogami A, Patel AR, Pathak RK, Saenz Morales LC, Santangeli P, Sapp JL, Sarkozy A, Soejima K, Stevenson WG, Tedrow UB, Tzou WS, Varma N, Zeppenfeld K. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. Heart Rhythm 2019; 17:e2-e154. [PMID: 31085023 PMCID: PMC8453449 DOI: 10.1016/j.hrthm.2019.03.002] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Indexed: 01/10/2023]
Abstract
Ventricular arrhythmias are an important cause of morbidity and mortality and come in a variety of forms, from single premature ventricular complexes to sustained ventricular tachycardia and fibrillation. Rapid developments have taken place over the past decade in our understanding of these arrhythmias and in our ability to diagnose and treat them. The field of catheter ablation has progressed with the development of new methods and tools, and with the publication of large clinical trials. Therefore, global cardiac electrophysiology professional societies undertook to outline recommendations and best practices for these procedures in a document that will update and replace the 2009 EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias. An expert writing group, after reviewing and discussing the literature, including a systematic review and meta-analysis published in conjunction with this document, and drawing on their own experience, drafted and voted on recommendations and summarized current knowledge and practice in the field. Each recommendation is presented in knowledge byte format and is accompanied by supportive text and references. Further sections provide a practical synopsis of the various techniques and of the specific ventricular arrhythmia sites and substrates encountered in the electrophysiology lab. The purpose of this document is to help electrophysiologists around the world to appropriately select patients for catheter ablation, to perform procedures in a safe and efficacious manner, and to provide follow-up and adjunctive care in order to obtain the best possible outcomes for patients with ventricular arrhythmias.
Collapse
Affiliation(s)
| | | | | | - Petr Peichl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Minglong Chen
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Narayanan Namboodiri
- Sree Chitra Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | | | - Elad Anter
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | | | | | - Andre d'Avila
- Hospital Cardiologico SOS Cardio, Florianopolis, Brazil
| | - Barbara J Deal
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | - Claudio Hadid
- Hospital General de Agudos Cosme Argerich, Buenos Aires, Argentina
| | - Haris M Haqqani
- University of Queensland, The Prince Charles Hospital, Chermside, Australia
| | - G Neal Kay
- University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - John M Miller
- Indiana University School of Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana
| | | | - Akash R Patel
- University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | | | | | | | - John L Sapp
- Queen Elizabeth II Health Sciences Centre, Halifax, Canada
| | - Andrea Sarkozy
- University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
83
|
Towbin JA, McKenna WJ, Abrams DJ, Ackerman MJ, Calkins H, Darrieux FCC, Daubert JP, de Chillou C, DePasquale EC, Desai MY, Estes NAM, Hua W, Indik JH, Ingles J, James CA, John RM, Judge DP, Keegan R, Krahn AD, Link MS, Marcus FI, McLeod CJ, Mestroni L, Priori SG, Saffitz JE, Sanatani S, Shimizu W, van Tintelen JP, Wilde AAM, Zareba W. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm 2019; 16:e301-e372. [PMID: 31078652 DOI: 10.1016/j.hrthm.2019.05.007] [Citation(s) in RCA: 499] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Indexed: 02/08/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an arrhythmogenic disorder of the myocardium not secondary to ischemic, hypertensive, or valvular heart disease. ACM incorporates a broad spectrum of genetic, systemic, infectious, and inflammatory disorders. This designation includes, but is not limited to, arrhythmogenic right/left ventricular cardiomyopathy, cardiac amyloidosis, sarcoidosis, Chagas disease, and left ventricular noncompaction. The ACM phenotype overlaps with other cardiomyopathies, particularly dilated cardiomyopathy with arrhythmia presentation that may be associated with ventricular dilatation and/or impaired systolic function. This expert consensus statement provides the clinician with guidance on evaluation and management of ACM and includes clinically relevant information on genetics and disease mechanisms. PICO questions were utilized to evaluate contemporary evidence and provide clinical guidance related to exercise in arrhythmogenic right ventricular cardiomyopathy. Recommendations were developed and approved by an expert writing group, after a systematic literature search with evidence tables, and discussion of their own clinical experience, to present the current knowledge in the field. Each recommendation is presented using the Class of Recommendation and Level of Evidence system formulated by the American College of Cardiology and the American Heart Association and is accompanied by references and explanatory text to provide essential context. The ongoing recognition of the genetic basis of ACM provides the opportunity to examine the diverse triggers and potential common pathway for the development of disease and arrhythmia.
Collapse
Affiliation(s)
- Jeffrey A Towbin
- Le Bonheur Children's Hospital, Memphis, Tennessee; University of Tennessee Health Science Center, Memphis, Tennessee
| | - William J McKenna
- University College London, Institute of Cardiovascular Science, London, United Kingdom
| | | | | | | | | | | | | | | | | | - N A Mark Estes
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Wei Hua
- Fu Wai Hospital, Beijing, China
| | - Julia H Indik
- University of Arizona, Sarver Heart Center, Tucson, Arizona
| | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, Australia
| | | | - Roy M John
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel P Judge
- Medical University of South Carolina, Charleston, South Carolina
| | - Roberto Keegan
- Hospital Privado Del Sur, Buenos Aires, Argentina; Hospital Español, Bahia Blanca, Argentina
| | | | - Mark S Link
- UT Southwestern Medical Center, Dallas, Texas
| | - Frank I Marcus
- University of Arizona, Sarver Heart Center, Tucson, Arizona
| | | | - Luisa Mestroni
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Silvia G Priori
- University of Pavia, Pavia, Italy; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart); ICS Maugeri, IRCCS, Pavia, Italy
| | | | | | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - J Peter van Tintelen
- University of Amsterdam, Academic Medical Center, Amsterdam, the Netherlands; Utrecht University Medical Center Utrecht, University of Utrecht, Department of Genetics, Utrecht, the Netherlands
| | - Arthur A M Wilde
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart); University of Amsterdam, Academic Medical Center, Amsterdam, the Netherlands; Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | | |
Collapse
|
84
|
Sanz J, Sánchez-Quintana D, Bossone E, Bogaard HJ, Naeije R. Anatomy, Function, and Dysfunction of the Right Ventricle. J Am Coll Cardiol 2019; 73:1463-1482. [DOI: 10.1016/j.jacc.2018.12.076] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/12/2018] [Accepted: 12/22/2018] [Indexed: 12/27/2022]
|
85
|
Abstract
Postmortem imaging is increasingly used in forensic practice as good complementary tool to conventional autopsy investigations. Over the last decade, postmortem cardiac magnetic resonance (PMCMR) imaging was introduced in forensic investigations of natural deaths related to cardiovascular diseases, which represent the most common causes of death in developed countries. Postmortem CMR application has yielded interesting results in ischemic myocardium injury investigations and in visualizing other pathological findings in the heart. This review presents the actual state of postmortem imaging for cardiovascular pathologies in cases of sudden cardiac death (SCD), taking into consideration both the advantages and limitations of PMCMR application.
Collapse
|
86
|
Heermann P, Fritsch H, Koopmann M, Sporns P, Paul M, Heindel W, Schulze-Bahr E, Schülke C. Biventricular myocardial strain analysis using cardiac magnetic resonance feature tracking (CMR-FT) in patients with distinct types of right ventricular diseases comparing arrhythmogenic right ventricular cardiomyopathy (ARVC), right ventricular outflow-tract tachycardia (RVOT-VT), and Brugada syndrome (BrS). Clin Res Cardiol 2019; 108:1147-1162. [DOI: 10.1007/s00392-019-01450-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/05/2019] [Indexed: 12/25/2022]
|
87
|
Mast TP, Taha K, Cramer MJ, Lumens J, van der Heijden JF, Bouma BJ, van den Berg MP, Asselbergs FW, Doevendans PA, Teske AJ. The Prognostic Value of Right Ventricular Deformation Imaging in Early Arrhythmogenic Right Ventricular Cardiomyopathy. JACC Cardiovasc Imaging 2019; 12:446-455. [PMID: 29550307 DOI: 10.1016/j.jcmg.2018.01.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the prognostic value of echocardiographic deformation imaging in arrhythmogenic right ventricular cardiomyopathy (ARVC) to optimize family screening protocols. BACKGROUND ARVC is characterized by variable disease expressivity among family members, which complicates family screening protocols. Previous reports have shown that echocardiographic deformation imaging detects abnormal right ventricular (RV) deformation in the absence of established disease expression in ARVC. METHODS First-degree relatives of patients with ARVC were evaluated according to 2010 task force criteria, including RV deformation imaging (n = 128). Relatives fulfilling structural task force criteria were excluded for further analysis. At baseline, deformation patterns of the subtricuspid region were scored as type I (normal deformation), type II (delayed onset, decreased systolic peak, and post-systolic shortening), or type III (systolic stretching and large post-systolic shortening). The final study population comprised relatives who underwent a second evaluation during follow-up. Disease progression was defined as the development of a new 2010 task force criterion during follow-up that was absent at baseline. RESULTS Sixty-five relatives underwent a second evaluation after a mean follow-up period of 3.7 ± 2.1 years. At baseline, 28 relatives (43%) had normal deformation (type I), and 37 relatives (57%) had abnormal deformation (type II or III) in the subtricuspid region. Disease progression occurred in 4% of the relatives with normal deformation at baseline and in 43% of the relatives with abnormal deformation at baseline (p < 0.001). Positive and negative predictive values of abnormal deformation were, respectively, 43% (95% confidence interval: 27% to 61%) and 96% (95% confidence interval: 82% to 100%). CONCLUSIONS Normal RV deformation in the subtricuspid region is associated with absence of disease progression during nearly 4-year follow-up in relatives of patients with ARVC. Abnormal RV deformation seems to precede the established signs of ARVC. RV deformation imaging may potentially play an important role in ARVC family screening protocols.
Collapse
Affiliation(s)
- Thomas P Mast
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Cardiology, Catharina Hospital Eindhoven, Eindhoven, the Netherlands
| | - Karim Taha
- University of Amsterdam, Amsterdam, the Netherlands
| | - Maarten J Cramer
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Jeroen F van der Heijden
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Berto J Bouma
- Division of Cardiology, Academic Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Maarten P van den Berg
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands; Durrer Center for Cardiovascular Research, ICIN-Netherlands Heart Institute, Utrecht, the Netherlands; Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Pieter A Doevendans
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Arco J Teske
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
88
|
Protonotarios A, Elliott PM. Arrhythmogenic cardiomyopathies (ACs): diagnosis, risk stratification and management. Heart 2019; 105:1117-1128. [PMID: 30792239 DOI: 10.1136/heartjnl-2017-311160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Alexandros Protonotarios
- UCL Institute of Cardiovascular Science, University College London, London, UK.,Inherited Cardiovascular Disease Unit, Barts Heart Centre, London, UK
| | - Perry M Elliott
- UCL Institute of Cardiovascular Science, University College London, London, UK.,Inherited Cardiovascular Disease Unit, Barts Heart Centre, London, UK
| |
Collapse
|
89
|
Wang W, James CA, Calkins H. Diagnostic and therapeutic strategies for arrhythmogenic right ventricular dysplasia/cardiomyopathy patient. Europace 2019; 21:9-21. [PMID: 29688316 PMCID: PMC6321962 DOI: 10.1093/europace/euy063] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/16/2018] [Indexed: 12/21/2022] Open
Abstract
Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is a rare inherited heart muscle disease characterized by ventricular tachyarrhythmia, predominant right ventricular dysfunction, and sudden cardiac death. Its pathophysiology involves close interaction between genetic mutations and exposure to physical activity. Mutations in genes encoding desmosomal protein are the most common genetic basis. Genetic testing plays important roles in diagnosis and screening of family members. Syncope, palpitation, and lightheadedness are the most common symptoms. The 2010 Task Force Criteria is the standard for diagnosis today. Implantation of a defibrillator in high-risk patients is the only therapy that provides adequate protection against sudden death. Selection of patients who are best candidates for defibrillator implantation is challenging. Exercise restriction is critical in affected individuals and at-risk family members. Antiarrhythmic drugs and ventricular tachycardia ablation are valuable but palliative components of the management. This review focuses on the current diagnostic and therapeutic strategies in ARVD/C and outlines the future area of development in this field.
Collapse
Affiliation(s)
- Weijia Wang
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 600 N. Wolfe Street, Sheikh Zayed Tower 7125R, Baltimore, MD, USA
| | - Cynthia A James
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 600 N. Wolfe Street, Sheikh Zayed Tower 7125R, Baltimore, MD, USA
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 600 N. Wolfe Street, Sheikh Zayed Tower 7125R, Baltimore, MD, USA
| |
Collapse
|
90
|
Vives-Gilabert Y, Sanz-Sánchez J, Molina P, Cebrián A, Igual B, Calvillo-Batllés P, Domingo D, Millet J, Martínez-Dolz L, Castells F, Zorio E. Left ventricular myocardial dysfunction in arrhythmogenic cardiomyopathy with left ventricular involvement: A door to improving diagnosis. Int J Cardiol 2019; 274:237-244. [DOI: 10.1016/j.ijcard.2018.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/20/2018] [Accepted: 09/05/2018] [Indexed: 12/30/2022]
|
91
|
Bennett RG, Haqqani HM, Berruezo A, Della Bella P, Marchlinski FE, Hsu CJ, Kumar S. Arrhythmogenic Cardiomyopathy in 2018-2019: ARVC/ALVC or Both? Heart Lung Circ 2018; 28:164-177. [PMID: 30446243 DOI: 10.1016/j.hlc.2018.10.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 01/27/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is now commonly used to describe any form of non-hypertrophic, progressive cardiomyopathy characterised by fibrofatty infiltration of the ventricular myocardium. Right ventricular (RV) involvement refers to the classical arrhythmogenic right ventricular cardiomyopathy, but left ventricular, or bi-ventricular involvement are now recognised. ACM is mostly hereditary and associated with mutations in genes encoding proteins of the intercalated disc. ACM classically manifests as ventricular arrhythmias, and sudden death may be the first presentation of the disease. Heart failure is seen with advanced stages of the disease. Diagnosis can be challenging due to variable expressivity and incomplete penetrance, and is guided by established Taskforce criteria that incorporate electrical features (12-lead electrocardiography (ECG), features of ventricular arrhythmias), structural features (on imaging via echo and cardiac magnetic resonance imaging [MRI]), tissue characteristics (via biopsy), and familial/genetic evaluation. Electrical abnormalities may precede structural alterations, which also make diagnosis challenging, especially in differentiating ACM from other conditions such as benign right ventricular arrhythmias, channelopathies such as Brugada, or the Athlete's Heart. Genetic testing is critical in identifying familial mutations and initiating cascade testing, but finds a pathogenic mutation in only ∼50% of patients. Some critical genotype-phenotype correlations do exist and may help guide risk stratification and give clues to disease progression. Therapeutic strategies include restriction from high endurance and competitive sports, ß-blockers, antiarrhythmic drugs, heart failure medications, implantable cardioverter-defibrillators and combined endocardial/epicardial catheter ablation. Ablation has emerged as the treatment of choice for recurrent ventricular arrhythmias in ACM. This state-of-the-art review outlines the pathogenesis, diagnosis and treatment of ACM in the contemporary era.
Collapse
Affiliation(s)
| | - Haris M Haqqani
- Prince Charles Hospital, University of Queensland, Brisbane, Qld, Australia
| | - Antonio Berruezo
- Cardiology Department, Heart Institute, Teknon Medical Center, Barcelona, Spain
| | - Paolo Della Bella
- Arrhythmia Unit and Electrophysiology Laboratories, San Raffaele Hospital, Milan, Italy
| | - Francis E Marchlinski
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Chi-Jen Hsu
- Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia
| | - Saurabh Kumar
- Department of Cardiology, Westmead Applied Research Centre, Westmead Hospital, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
92
|
Blom LJ, Te Riele AS, Vink A, Hauer RN, Hassink RJ. Late evolution of arrhythmogenic cardiomyopathy in patients with initial presentation as idiopathic ventricular fibrillation. HeartRhythm Case Rep 2018; 5:25-30. [PMID: 30693201 PMCID: PMC6342730 DOI: 10.1016/j.hrcr.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Lennart J. Blom
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Address reprint requests and correspondence: Dr Lennart J. Blom, Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands.
| | | | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Richard N.W. Hauer
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rutger J. Hassink
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
93
|
2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Heart Rhythm 2018; 15:e73-e189. [DOI: 10.1016/j.hrthm.2017.10.036] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Indexed: 02/07/2023]
|
94
|
Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, Deal BJ, Dickfeld T, Field ME, Fonarow GC, Gillis AM, Granger CB, Hammill SC, Hlatky MA, Joglar JA, Kay GN, Matlock DD, Myerburg RJ, Page RL. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 2018; 138:e272-e391. [PMID: 29084731 DOI: 10.1161/cir.0000000000000549] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - William G Stevenson
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Michael J Ackerman
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - William J Bryant
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - David J Callans
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Anne B Curtis
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Barbara J Deal
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Timm Dickfeld
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Michael E Field
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Gregg C Fonarow
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Anne M Gillis
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Christopher B Granger
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Stephen C Hammill
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Mark A Hlatky
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - José A Joglar
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - G Neal Kay
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Daniel D Matlock
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Robert J Myerburg
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Richard L Page
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| |
Collapse
|
95
|
Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, Deal BJ, Dickfeld T, Field ME, Fonarow GC, Gillis AM, Granger CB, Hammill SC, Hlatky MA, Joglar JA, Kay GN, Matlock DD, Myerburg RJ, Page RL. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol 2018; 72:e91-e220. [PMID: 29097296 DOI: 10.1016/j.jacc.2017.10.054] [Citation(s) in RCA: 784] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
96
|
Qasem M, George K, Somauroo J, Forsythe L, Brown B, Oxborough D. Right ventricular function in elite male athletes meeting the structural echocardiographic task force criteria for arrhythmogenic right ventricular cardiomyopathy. J Sports Sci 2018; 37:306-312. [PMID: 30022711 DOI: 10.1080/02640414.2018.1499392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Athlete pre-participation screening is focused on detecting pathological conditions like arrhythmogenic right ventricular cardiomyopathy (ARVC). The diagnosis of ARVC is established by applying the revised 2010 ARVC Task Force Criteria (TFC) that assesses RV structure and function. Some athletes may meet structural TFC without having ARVC but we do not know the consequences for RV function. This study compared RV structural and functional indices in male athletes that meet the structural TFC (MTFC) for ARVC and those that do not (NMTFC). We recruited 214 male elite athletes. All participants underwent 2D, Doppler, tissue Doppler and strain (ε) echocardiography with a focused and comprehensive assessment of the right heart. Athletes were grouped on RV structural data: MTFC n = 34; NMTFC n = 180. Functional data were compared between groups. By selection, MTFC had larger absolute and scaled RV outflow tract (RVOT) diameter compared to NMTFC (P ˂0.05) but these athletes did not develop a proportional increase in the RV inflow dimensions. There was no difference in global conventional RV systolic function between both groups however, there was significantly lower global RV ε in athletes that MTFC which can be explained, in part, by the RVOT dimension.
Collapse
Affiliation(s)
- Mohammad Qasem
- a Research Institute for Sport and Exercise Sciences , Liverpool John Moores University , Liverpool , UK
| | - Keith George
- a Research Institute for Sport and Exercise Sciences , Liverpool John Moores University , Liverpool , UK
| | - John Somauroo
- a Research Institute for Sport and Exercise Sciences , Liverpool John Moores University , Liverpool , UK
| | - Lynsey Forsythe
- a Research Institute for Sport and Exercise Sciences , Liverpool John Moores University , Liverpool , UK
| | - Benjamin Brown
- a Research Institute for Sport and Exercise Sciences , Liverpool John Moores University , Liverpool , UK
| | - David Oxborough
- a Research Institute for Sport and Exercise Sciences , Liverpool John Moores University , Liverpool , UK
| |
Collapse
|
97
|
Bari O, Skillman S, Lah MD, Haggstrom AN. Compound heterozygous mutations in desmoplakin associated with skin fragility, follicular hyperkeratosis, alopecia, and nail dystrophy. Pediatr Dermatol 2018; 35:e218-e220. [PMID: 29633331 DOI: 10.1111/pde.13498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Desmoplakin mutations are associated with a wide variety of phenotypes affecting the skin, nails, hair, and heart. A 21-month-old boy was born with multiple erosions resembling epidermolysis bullosa, complete alopecia, nail dystrophy, palmoplantar keratoderma, and areas of follicular hyperkeratosis. He was found to have two heterozygous mutations in the desmoplakin gene: c.478 C>T in exon 4 (p.Arg160X) and c.3630T>A in exon 23 (Tyr1210X). This case expands the clinical spectrum associated with desmoplakin mutations and highlights a mutation in exon 23 that has not been previously reported in the literature.
Collapse
Affiliation(s)
- Omar Bari
- School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sarah Skillman
- Department of Dermatology, MetroDerm P.C., Atlanta, GE, USA
| | - Melissa D Lah
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Anita N Haggstrom
- Department of Dermatology, School of Medicine, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
98
|
Dorn T, Kornherr J, Parrotta EI, Zawada D, Ayetey H, Santamaria G, Iop L, Mastantuono E, Sinnecker D, Goedel A, Dirschinger RJ, My I, Laue S, Bozoglu T, Baarlink C, Ziegler T, Graf E, Hinkel R, Cuda G, Kääb S, Grace AA, Grosse R, Kupatt C, Meitinger T, Smith AG, Laugwitz KL, Moretti A. Interplay of cell-cell contacts and RhoA/MRTF-A signaling regulates cardiomyocyte identity. EMBO J 2018; 37:e98133. [PMID: 29764980 PMCID: PMC6003642 DOI: 10.15252/embj.201798133] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Cell-cell and cell-matrix interactions guide organ development and homeostasis by controlling lineage specification and maintenance, but the underlying molecular principles are largely unknown. Here, we show that in human developing cardiomyocytes cell-cell contacts at the intercalated disk connect to remodeling of the actin cytoskeleton by regulating the RhoA-ROCK signaling to maintain an active MRTF/SRF transcriptional program essential for cardiomyocyte identity. Genetic perturbation of this mechanosensory pathway activates an ectopic fat gene program during cardiomyocyte differentiation, which ultimately primes the cells to switch to the brown/beige adipocyte lineage in response to adipogenesis-inducing signals. We also demonstrate by in vivo fate mapping and clonal analysis of cardiac progenitors that cardiac fat and a subset of cardiac muscle arise from a common precursor expressing Isl1 and Wt1 during heart development, suggesting related mechanisms of determination between the two lineages.
Collapse
Affiliation(s)
- Tatjana Dorn
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Jessica Kornherr
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Elvira I Parrotta
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
- Department of Experimental and Clinical Medicine, Medical School, University of Magna Grecia, Catanzaro, Italy
| | - Dorota Zawada
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Harold Ayetey
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, Medical School, University of Magna Grecia, Catanzaro, Italy
| | - Laura Iop
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Elisa Mastantuono
- Institute of Human Genetics, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Daniel Sinnecker
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| | - Alexander Goedel
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| | - Ralf J Dirschinger
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Ilaria My
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Svenja Laue
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Tarik Bozoglu
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | | | - Tilman Ziegler
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Rabea Hinkel
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
- IPEK Institute for Cardiovascular Prevention, Klinikum der Universität München - Ludwig-Maximillians-Universität, Munich, Germany
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, Medical School, University of Magna Grecia, Catanzaro, Italy
| | - Stefan Kääb
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München - Ludwig-Maximillians-Universität, Munich, Germany
| | - Andrew A Grace
- Papworth Hospital NHS Foundation Trust, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Robert Grosse
- Pharmacology Institute, Philipps University Marburg, Marburg, Germany
| | - Christian Kupatt
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Austin G Smith
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Karl-Ludwig Laugwitz
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| | - Alessandra Moretti
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
99
|
Hoorntje ET, Te Rijdt WP, James CA, Pilichou K, Basso C, Judge DP, Bezzina CR, van Tintelen JP. Arrhythmogenic cardiomyopathy: pathology, genetics, and concepts in pathogenesis. Cardiovasc Res 2018; 113:1521-1531. [PMID: 28957532 DOI: 10.1093/cvr/cvx150] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a rare, heritable heart disease characterized by fibro-fatty replacement of the myocardium and a high degree of electric instability. It was first thought to be a congenital disorder, but is now regarded as a dystrophic heart muscle disease that develops over time. There is no curative treatment and current treatment strategies focus on attenuating the symptoms, slowing disease progression, and preventing life-threatening arrhythmias and sudden cardiac death. Identification of mutations in genes encoding desmosomal proteins and in other genes has led to insights into the disease pathogenesis and greatly facilitated identification of family members at risk. The disease phenotype is, however, highly variable and characterized by incomplete penetrance. Although the reasons are still poorly understood, sex, endurance exercise and a gene-dosage effect seem to play a role in these phenomena. The discovery of the genes and mutations implicated in ACM has allowed animal and cellular models to be generated, enabling researchers to start unravelling it's underlying molecular mechanisms. Observations in humans and in animal models suggest that reduced cell-cell adhesion affects gap junction and ion channel remodelling at the intercalated disc, and along with impaired desmosomal function, these can lead to perturbations in signalling cascades like the Wnt/β-catenin and Hippo/YAP pathways. Perturbations of these pathways are also thought to lead to fibro-fatty replacement. A better understanding of the molecular processes may lead to new therapies that target specific pathways involved in ACM.
Collapse
Affiliation(s)
- Edgar T Hoorntje
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,Netherlands Heart Institute, Moreelsepark 1, 3511 EP, Utrecht, The Netherlands
| | - Wouter P Te Rijdt
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Cynthia A James
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD, USA
| | - Kalliopi Pilichou
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua 35121, Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua 35121, Italy
| | - Daniel P Judge
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD, USA
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Heart Centre, Academic Medical Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - J Peter van Tintelen
- Netherlands Heart Institute, Moreelsepark 1, 3511 EP, Utrecht, The Netherlands.,Department of Clinical Genetics, Academic Medical Centre Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
100
|
te Rijdt WP, ten Sande JN, Gorter TM, van der Zwaag PA, van Rijsingen IA, Boekholdt SM, van Tintelen JP, van Haelst PL, Planken RN, de Boer RA, Suurmeijer AJH, van Veldhuisen DJ, Wilde AAM, Willems TP, van Dessel PFHM, van den Berg MP. Myocardial fibrosis as an early feature in phospholamban p.Arg14del mutation carriers: phenotypic insights from cardiovascular magnetic resonance imaging. Eur Heart J Cardiovasc Imaging 2018; 20:92-100. [DOI: 10.1093/ehjci/jey047] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 03/12/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wouter P te Rijdt
- Department of Clinical and Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Netherlands Heart Institute (Nl-HI), Utrecht, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Judith N ten Sande
- Netherlands Heart Institute (Nl-HI), Utrecht, the Netherlands
- Department of Clinical and Experimental Cardiology, Heart Center, University of Amsterdam, Academic Medical Center, Amsterdam, the Netherlands
| | - Thomas M Gorter
- Department of Clinical and Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Paul A van der Zwaag
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ingrid A van Rijsingen
- Department of Clinical and Experimental Cardiology, Heart Center, University of Amsterdam, Academic Medical Center, Amsterdam, the Netherlands
| | - S Matthijs Boekholdt
- Department of Clinical and Experimental Cardiology, Heart Center, University of Amsterdam, Academic Medical Center, Amsterdam, the Netherlands
| | - J Peter van Tintelen
- Department of Clinical Genetics, University of Amsterdam, Academic Medical Center, Amsterdam, the Netherlands
| | - Paul L van Haelst
- Department of Cardiology, Antonius Hospital, Sneek, the Netherlands
- Roche Diagnostics, Basel, Switzerland
| | - R Nils Planken
- Department of Radiology, University of Amsterdam, Academic Medical Center, Amsterdam, the Netherlands
| | - Rudolf A de Boer
- Department of Clinical and Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Albert J H Suurmeijer
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dirk J van Veldhuisen
- Department of Clinical and Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Heart Center, University of Amsterdam, Academic Medical Center, Amsterdam, the Netherlands
| | - Tineke P Willems
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Pascal F H M van Dessel
- Department of Clinical and Experimental Cardiology, Heart Center, University of Amsterdam, Academic Medical Center, Amsterdam, the Netherlands
- Department of Cardiology, Medisch Spectrum Twente, Enschede, the Netherlands
| | - Maarten P van den Berg
- Department of Clinical and Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|