51
|
Li Q, Zhao M, Wang N, Liu S, Wang J, Zhang W, Yang N, Fan P, Wang R, Wang H, Du N. Water use strategies and drought intensity define the relative contributions of hydraulic failure and carbohydrate depletion during seedling mortality. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 153:106-118. [PMID: 32485615 DOI: 10.1016/j.plaphy.2020.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 05/08/2023]
Abstract
COMBINING HYDRAULIC: and carbon-related measurements can help elucidate drought-induced plant mortality. To study drought mortality mechanisms, seedlings of two woody species, including the anisohydric Robinia pseudoacacia and isohydric Quercus acutissima, were cultivated in a greenhouse and subjected to intense drought by withholding water and mild drought by adding half of the amount of daily water lost. Patterns of leaf and root gas exchange, leaf surface areas, growth, leaf and stem hydraulics, and carbohydrate dynamics were determined in drought-stressed and control seedlings. We detected a complete loss of hydraulic conductivity and partial depletion of total nonstructural carbohydrates contents (TNC) in the dead seedlings. We also found that intense drought triggered a more rapid decrease in plant water potential and a faster drop in net photosynthesis below zero, and a greater TNC loss in dead seedlings than mild drought. Additionally, anisohydric R. pseudoacacia suffered a rapider death than the isohydric Q. acutissima. Based on these findings, we propose that hydraulic conductivity loss and carbon limitation jointly contributed to drought-induced death, while the relative contributions could be altered by drought intensity. We thus believe that it is important to illustrate the mechanistic relationships between stress intensity and carbon-hydraulics coupling in the context of isohydric vs. anisohydric hydraulic strategies.
Collapse
Affiliation(s)
- Qiang Li
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Mingming Zhao
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Ning Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Shuna Liu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Jingwen Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Wenxin Zhang
- Shandong Academy of Forestry, 42 Wenhuadong Road, Jinan, 250014, China
| | - Ning Yang
- Qingdao Forestry Station, 106 Yan'an'yi Road, Qingdao, 266003, China
| | - Peixian Fan
- Qingdao Forestry Station, 106 Yan'an'yi Road, Qingdao, 266003, China
| | - Renqing Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Hui Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China.
| | - Ning Du
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China.
| |
Collapse
|
52
|
Bourbia I, Carins-Murphy MR, Gracie A, Brodribb TJ. Xylem cavitation isolates leaky flowers during water stress in pyrethrum. THE NEW PHYTOLOGIST 2020; 227:146-155. [PMID: 32130731 DOI: 10.1111/nph.16516] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Flowers underpin plant evolution, genetic legacy and global food supply. They are exposed to similar evaporative conditions as leaves, yet floral physiology is a product of different selective forces. We used Tanacetum cinerariifolium, a perennial daisy, to examine the response of flowers to whole-plant water stress, determining if flowers constitute a liability during drought, and how this species has adapted to minimize risk associated with reproduction. We determined the relative transpiration cost of flowers and leaves and confirmed that flowers in this species are xylem-hydrated. The relative water stress tolerance of leaves and flowers then was compared using xylem vulnerability measurements linked with observed tissue damage during an acute drought treatment. Flowers were a major source of water loss during drought but the xylem supplying them was much more vulnerable to cavitation than leaves. This xylem vulnerability segmentation was confirmed by observations that most flowers died whereas leaves were minimally affected during drought. Early cavitation and hydraulic isolation of flowers during drought benefits the plant by slowing the dehydration of perennial vegetative organs and delaying systemic xylem damage. Our results highlight the need to understand flower xylem vulnerability as a means of predicting plant reproductive failure under future drought.
Collapse
Affiliation(s)
- Ibrahim Bourbia
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tas., 7001, Australia
| | - Madeline R Carins-Murphy
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tas., 7001, Australia
| | - Alistair Gracie
- Tasmania Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas., 7001, Australia
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tas., 7001, Australia
| |
Collapse
|
53
|
Levionnois S, Coste S, Nicolini E, Stahl C, Morel H, Heuret P. Scaling of petiole anatomies, mechanics and vasculatures with leaf size in the widespread Neotropical pioneer tree species Cecropia obtusa Trécul (Urticaceae). TREE PHYSIOLOGY 2020; 40:245-258. [PMID: 31976541 DOI: 10.1093/treephys/tpz136] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 11/28/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Although the leaf economic spectrum has deepened our understanding of leaf trait variability, little is known about how leaf traits scale with leaf area. This uncertainty has resulted in the assumption that leaf traits should vary by keeping the same pace of variation with increases in leaf area across the leaf size range. We evaluated the scaling of morphological, tissue-surface and vascular traits with overall leaf area, and the functional significance of such scaling. We examined 1,271 leaves for morphological traits, and 124 leaves for anatomical and hydraulic traits, from 38 trees of Cecropia obtusa Trécul (Urticaceae) in French Guiana. Cecropia is a Neotropical genus of pioneer trees that can exhibit large laminas (0.4 m2 for C. obtusa), with leaf size ranging by two orders of magnitude. We measured (i) tissue fractions within petioles and their second moment of area, (ii) theoretical xylem hydraulic efficiency of petioles and (iii) the extent of leaf vessel widening within the hydraulic path. We found that different scaling of morphological trait variability allows for optimisation of lamina display among larger leaves, especially the positive allometric relationship between lamina area and petiole cross-sectional area. Increasing the fraction of pith is a key factor that increases the geometrical effect of supportive tissues on mechanical rigidity and thereby increases carbon-use efficiency. We found that increasing xylem hydraulic efficiency with vessel size results in lower leaf lamina area: xylem ratios, which also results in potential carbon savings for large leaves. We found that the vessel widening is consistent with hydraulic optimisation models. Leaf size variability modifies scaling of leaf traits in this large-leaved species.
Collapse
Affiliation(s)
- Sébastien Levionnois
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, UA, UG, 97379 Kourou Cedex, France
| | - Sabrina Coste
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, UA, UG, 97379 Kourou Cedex, France
| | - Eric Nicolini
- UMR AMAP, CIRAD, CNRS, INRAE, IRD, Université de Montpellier, 34398 Montpellier, France
| | - Clément Stahl
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, UA, UG, 97379 Kourou Cedex, France
| | - Hélène Morel
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, UA, UG, 97379 Kourou Cedex, France
| | - Patrick Heuret
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, UA, UG, 97379 Kourou Cedex, France
- UMR AMAP, CIRAD, CNRS, INRAE, IRD, Université de Montpellier, 34398 Montpellier, France
| |
Collapse
|
54
|
Li S, Wang J, Yin Y, Li X, Deng L, Jiang X, Chen Z, Li Y. Investigating Effects of Bordered Pit Membrane Morphology and Properties on Plant Xylem Hydraulic Functions-A Case Study from 3D Reconstruction and Microflow Modelling of Pit Membranes in Angiosperm Xylem. PLANTS (BASEL, SWITZERLAND) 2020; 9:E231. [PMID: 32054100 PMCID: PMC7076482 DOI: 10.3390/plants9020231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/18/2020] [Accepted: 02/08/2020] [Indexed: 01/12/2023]
Abstract
Pit membranes in between neighboring conduits of xylem play a crucial role in plant water transport. In this review, the morphological characteristics, chemical composition and mechanical properties of bordered pit membranes were summarized and linked with their functional roles in xylem hydraulics. The trade-off between xylem hydraulic efficiency and safety was closely related with morphology and properties of pit membranes, and xylem embolism resistance was also determined by the pit membrane morphology and properties. Besides, to further investigate the effects of bordered pit membranes morphology and properties on plant xylem hydraulic functions, here we modelled three-dimensional structure of bordered pit membranes by applying a deposition technique. Based on reconstructed 3D pit membrane structures, a virtual fibril network was generated to model the microflow pattern across inter-vessel pit membranes. Moreover, the mechanical behavior of intervessel pit membranes was estimated from a single microfibril's mechanical property. Pit membranes morphology varied among different angiosperm and gymnosperm species. Our modelling work suggested that larger pores of pit membranes do not necessarily contribute to major flow rate across pit membranes; instead, the obstructed degree of flow pathway across the pit membranes plays a more important role. Our work provides useful information for studying the mechanism of microfluid flow transport across pit membranes and also sheds light on investigating the response of pit membranes both at normal and stressed conditions, thus improving our understanding on functional roles of pit membranes in xylem hydraulic function. Further work could be done to study the morphological and mechanical response of bordered pit membranes under different dehydrated conditions, as well as the related microflow behavior, based on our constructed model.
Collapse
Affiliation(s)
- Shan Li
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (J.W.); (Y.Y.); (L.D.); (X.J.)
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing 100091, China
| | - Jie Wang
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (J.W.); (Y.Y.); (L.D.); (X.J.)
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing 100091, China
| | - Yafang Yin
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (J.W.); (Y.Y.); (L.D.); (X.J.)
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing 100091, China
| | - Xin Li
- College of Forestry, Beijing Forestry University, Beijing 100083, China;
| | - Liping Deng
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (J.W.); (Y.Y.); (L.D.); (X.J.)
- International Center for Bamboo and Rattan, Beijing 100102, China
| | - Xiaomei Jiang
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (J.W.); (Y.Y.); (L.D.); (X.J.)
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing 100091, China
| | - Zhicheng Chen
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing 100083, China;
| | - Yujun Li
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
55
|
Smith‐Martin CM, Skelton RP, Johnson KM, Lucani C, Brodribb TJ. Lack of vulnerability segmentation among woody species in a diverse dry sclerophyll woodland community. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13519] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chris M. Smith‐Martin
- Department of Ecology, Evolution and Evolutionary Biology Columbia University New York NY USA
| | - Robert Paul Skelton
- South African Environmental Observation NetworkKirstenbosch Botanical Gardens Cape Town South Africa
| | - Kate M. Johnson
- School of Biological Sciences University of Tasmania Hobart TAS Australia
| | - Christopher Lucani
- School of Biological Sciences University of Tasmania Hobart TAS Australia
| | | |
Collapse
|
56
|
Li X, Smith R, Choat B, Tissue DT. Drought resistance of cotton (Gossypium hirsutum) is promoted by early stomatal closure and leaf shedding. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:91-98. [PMID: 31825787 DOI: 10.1071/fp19093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/06/2019] [Indexed: 05/11/2023]
Abstract
Water relations have been well documented in tree species, but relatively little is known about the hydraulic characteristics of crops. Here, we report on the hydraulic strategy of cotton (Gossypium hirsutum L.). Leaf gas exchange and in vivo embolism formation were monitored simultaneously on plants that were dried down in situ under controlled environment conditions, and xylem vulnerability to embolism of leaves, stems and roots was measured using intact plants. Water potential inducing 50% embolised vessels (P50) in leaves was significantly higher (less negative) than P50 of stems and roots, suggesting that leaves were the most vulnerable organ to embolism. Furthermore, the water potential generating stomatal closure (Pgs) was higher than required to generate embolism formation, and complete stomatal closure always preceded the onset of embolism with declining soil water content. Although protracted drought resulted in massive leaf shedding, stem embolism remained minimal even after ~90% leaf area was lost. Overall, cotton maintained hydraulic integrity during long-term drought stress through early stomatal closure and leaf shedding, thus exhibiting a drought avoidance strategy. Given that water potentials triggering xylem embolism are uncommon under field conditions, cotton is unlikely to experience hydraulic dysfunction except under extreme climates. Results of this study provide physiological evidence for drought resistance in cotton with regard to hydraulics, and may provide guidance in developing irrigation schedules during periods of water shortage.
Collapse
Affiliation(s)
- Ximeng Li
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Renee Smith
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; and Corresponding author.
| |
Collapse
|
57
|
Shen Y, Gilbert GS, Li W, Fang M, Lu H, Yu S. Linking Aboveground Traits to Root Traits and Local Environment: Implications of the Plant Economics Spectrum. FRONTIERS IN PLANT SCIENCE 2019; 10:1412. [PMID: 31737024 PMCID: PMC6831723 DOI: 10.3389/fpls.2019.01412] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/11/2019] [Indexed: 06/02/2023]
Abstract
The plant economics spectrum proposes that ecological traits are functionally coordinated and adapt along environmental gradients. However, empirical evidence is mixed about whether aboveground and root traits are consistently linked and which environmental factors drive functional responses. Here we measure the strength of relationships between aboveground and root traits, and examine whether community-weighted mean trait values are adapted along gradients of light and soil fertility, based on the seedling censuses of 57 species in a subtropical forest. We found that aboveground traits were good predictors of root traits; specific leaf area, dry matter, nitrogen and phosphorus content were strongly correlated with root tissue density and specific root length. Traits showed patterns of adaptation along the gradients of soil fertility and light; species with fast resource-acquisitive strategies were more strongly associated with high soil phosphorus, potassium, openness, and with low nitrogen, organic matter conditions. This demonstrates the potential to estimate belowground traits from known aboveground traits in seedling communities, and suggests that soil fertility is one of the main factors driving functional responses. Our results extend our understanding of how ecological strategies shape potential responses of plant communities to environmental change.
Collapse
Affiliation(s)
- Yong Shen
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Gregory S. Gilbert
- Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Wenbin Li
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Miao Fang
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Huanping Lu
- Guangdong Ecological Meteorology Center, Guangzhou, China
| | - Shixiao Yu
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
58
|
McCulloh KA, Domec JC, Johnson DM, Smith DD, Meinzer FC. A dynamic yet vulnerable pipeline: Integration and coordination of hydraulic traits across whole plants. PLANT, CELL & ENVIRONMENT 2019; 42:2789-2807. [PMID: 31273812 DOI: 10.1111/pce.13607] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 06/09/2023]
Abstract
The vast majority of measurements in the field of plant hydraulics have been on small-diameter branches from woody species. These measurements have provided considerable insight into plant functioning, but our understanding of plant physiology and ecology would benefit from a broader view, because branch hydraulic properties are influenced by many factors. Here, we discuss the influence that other components of the hydraulic network have on branch vulnerability to embolism propagation. We also modelled the impact of changes in the ratio of root-to-leaf areas and soil texture on vulnerability to hydraulic failure along the soil-to-leaf continuum and showed that hydraulic function is better maintained through changes in root vulnerability and root-to-leaf area ratio than in branch vulnerability. Differences among species in the stringency with which they regulate leaf water potential and in reliance on stored water to buffer changes in water potential also affect the need to construct embolism resistant branches. Many approaches, such as measurements on fine roots, small individuals, combining sap flow and psychrometry techniques, and modelling efforts, could vastly improve our understanding of whole-plant hydraulic functioning. A better understanding of how traits are coordinated across the whole plant will improve predictions for plant function under future climate conditions.
Collapse
Affiliation(s)
| | - Jean-Christophe Domec
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Bordeaux Sciences Agro, UMR 1391 INRA-ISPA, 33175, Gradignan Cedex, France
| | - Daniel M Johnson
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
| | - Duncan D Smith
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Frederick C Meinzer
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR, 97331, USA
| |
Collapse
|
59
|
Waite PA, Schuldt B, Mathias Link R, Breidenbach N, Triadiati T, Hennings N, Saad A, Leuschner C. Soil moisture regime and palm height influence embolism resistance in oil palm. TREE PHYSIOLOGY 2019; 39:1696-1712. [PMID: 31135930 DOI: 10.1093/treephys/tpz061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
With the prospect of climate change and more frequent El Niño-related dry spells, the drought tolerance of oil palm (Elaeis guineensis Jacq.), one of the most important tropical crop species, is of major concern. We studied the influence of soil water availability and palm height on the plasticity of xylem anatomy of oil palm fronds and their embolism resistance at well-drained and seasonally flooded riparian sites in lowland Sumatra, Indonesia. We found overall mean P12 and P50 values, i.e., the xylem pressures at 12% or 50% loss of hydraulic conductance, of -1.05 and - 1.86 MPa, respectively, indicating a rather vulnerable frond xylem of oil palm. This matches diurnal courses of stomatal conductance, which in combination with the observed low xylem safety evidence a sensitive water loss regulation. While the xylem anatomical traits vessel diameter (Dh), vessel density and potential hydraulic conductivity (Kp) were not different between the sites, palms in the moister riparian plots had on average by 0.4 MPa higher P50 values than plants in the well-drained plots. This could largely be attributed to differences in palm height between systems. As a consequence, palms of equal height had 1.3 MPa less negative P50 values in the moister riparian plots than in the well-drained plots. While palm height was positively related to P50, Dh and Kp decreased with height. The high plasticity in embolism resistance may be an element of the drought response strategy of oil palm, which, as a monocot, has a relatively deterministic hydraulic architecture. We conclude that oil palm fronds develop a vulnerable water transport system, which may expose the palms to increasing drought stress in a warmer and drier climate. However, the risk of hydraulic failure may be reduced by considerable plasticity in the hydraulic system and the environmental control of embolism resistance, and a presumably large stem capacitance.
Collapse
Affiliation(s)
- Pierre-André Waite
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2,Goettingen, Germany
| | - Bernhard Schuldt
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2,Goettingen, Germany
- Chair of Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute for Biological Sciences, University of Wuerzburg, Julius-von-Sachs-Platz 3, Wuerzburg, Germany
| | - Roman Mathias Link
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2,Goettingen, Germany
- Chair of Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute for Biological Sciences, University of Wuerzburg, Julius-von-Sachs-Platz 3, Wuerzburg, Germany
| | - Natalie Breidenbach
- Department of Forest Genetic and Forest Tree Breeding, Forestry Faculty, Buesgen Institute, University of Goettingen, Buesgenweg 2, Goettingen, Germany
| | - Triadiati Triadiati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Darmaga Campus, Bogor, Indonesia
| | - Nina Hennings
- Department of Soil Science of Temperate Ecosystems, Forestry Faculty, Buesgen Institute, University of Goettingen, Buesgenweg 2, Goettingen, Germany
| | - Asmadi Saad
- Department of Soil Science, University of Jambi, Jalan Raya Jambi Muara Bulian KM 15 Mandalo Darat, Jambi, Sumatra, Indonesia
| | - Christoph Leuschner
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2,Goettingen, Germany
| |
Collapse
|
60
|
Liu X, Liu H, Gleason SM, Goldstein G, Zhu S, He P, Hou H, Li R, Ye Q. Water transport from stem to stomata: the coordination of hydraulic and gas exchange traits across 33 subtropical woody species. TREE PHYSIOLOGY 2019; 39:1665-1674. [PMID: 31314105 DOI: 10.1093/treephys/tpz076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/28/2019] [Accepted: 06/23/2019] [Indexed: 06/10/2023]
Abstract
Coordination between sapwood-specific hydraulic conductivity (Ks) and stomatal conductance (gs) has been identified in previous studies; however, coordination between leaf hydraulic conductance (Kleaf) and gs, as well as between Kleaf and Ks is not always consistent. This suggests that there is a need to improve our understanding of the coordination among hydraulic and gas exchange traits. In this study, hydraulic traits (e.g., Ks and Kleaf) and gas exchange traits, including gs, transpiration (E) and net CO2 assimilation (Aarea), were measured across 33 co-occurring subtropical woody species. Kleaf was divided into two components: leaf hydraulic conductance inside the xylem (Kleaf-x) and outside the xylem (Kleaf-ox). We found that both Kleaf-x and Kleaf-ox were coordinated with gs and E, but the correlations between Kleaf-ox and gs (or E) were substantially weaker, and that Ks was coordinated with Kleaf-x, but not with Kleaf-ox. In addition, we found that Ks, Kleaf-x and Kleaf-ox together explained 63% of the variation in gs and 42% of the variation in Aarea across species, with Ks contributing the largest proportion of explanatory power, whereas Kleaf-ox contributed the least explanatory power. Our results demonstrate that the coordination between leaf water transport and gas exchange, as well as the hydraulic linkage between leaf and stem, were weakened by Kleaf-ox. This highlights the possibility that water transport efficiencies of stem and leaf xylem, rather than that of leaf tissues outside the xylem, are important determinants of stomatal conductance and photosynthetic capacity across species.
Collapse
Affiliation(s)
- Xiaorong Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hui Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Sean M Gleason
- Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, USA
| | - Guillermo Goldstein
- Laboratorio de Ecología Funcional, Instituto de Ecologia Genetica y Evolucion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shidan Zhu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Pengcheng He
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Hou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ronghua Li
- Institute of Tropical and Subtropical Ecology, South China Agricultural University, Guangzhou, China
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
61
|
Drought-Induced Mortality Is Related to Hydraulic Vulnerability Segmentation of Tree Species in a Savanna Ecosystem. FORESTS 2019. [DOI: 10.3390/f10080697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vulnerability segmentation (VS) has been widely suggested to protect stems and trunks from hydraulic failure during drought events. In many ecosystems, some species have been shown to be non-segmented (NS species). However, it is unclear whether drought-induced mortality is related to VS. To understand this, we surveyed the mortality and recruitment rate and measured the hydraulic traits of leaves and stems as well as the photosynthesis of six tree species over five years (2012–2017) in a savanna ecosystem in Southwest China. Our results showed that the NS species exhibited a higher mortality rate than the co-occurring VS species. Across species, the mortality rate was not correlated with xylem tension at 50% loss of stem hydraulic conductivity (P50stem), but was rather significantly correlated with leaf water potential at 50% loss of leaf hydraulic conductance (P50leaf) and the difference in water potential at 50% loss of hydraulic conductance between the leaves and terminal stems (P50leaf-stem). The NS species had higher Huber values and maximum net photosynthetic rates based on leaf area, which compensated for a higher mortality rate and promoted rapid regeneration under the conditions of dry–wet cycles. To our knowledge, this study is the first to identify the difference in drought-induced mortality between NS species and VS species. Our results emphasize the importance of VS in maintaining hydraulic safety in VS species. Furthermore, the high mortality rate and fast regeneration in NS species may be another hydraulic strategy in regions where severe seasonal droughts are frequent.
Collapse
|
62
|
Roddy AB. Testing the benefits of early vessel evolution. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3024-3027. [PMID: 31250904 PMCID: PMC6598055 DOI: 10.1093/jxb/erz187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This article comments on: Trueba S, Delzon S, Isnard S, and Lens F. 2019. Similar hydraulic efficiency and safety across vesselless angiosperms and vessel-bearing species with scalariform perforation plates. Journal of Experimental Botany 70, 3227–3240.
Collapse
Affiliation(s)
- Adam B Roddy
- School of Forestry & Environmental Studies, Yale University, New Haven, CT, USA
- Correspondence:
| |
Collapse
|
63
|
Li X, Blackman CJ, Choat B, Rymer PD, Medlyn BE, Tissue DT. Drought tolerance traits do not vary across sites differing in water availability in Banksia serrata (Proteaceae). FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:624-633. [PMID: 30961787 DOI: 10.1071/fp18238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
Interspecific variation in plant hydraulic traits plays a major role in shaping species distributions across climates, yet variation within species is poorly understood. Here we report on intraspecific variation of hydraulic traits in Banksia serrata (L.f.) sampled from three sites characterised by contrasting climates (warm-wet, warm-dry and cool-wet). Hydraulic characteristics including vulnerability to embolism, hydraulic conductance, pressure-volume traits and key morphological traits were measured. Vulnerability to embolism in leaf and stem, defined by the water potential inducing 50 and 88% loss of hydraulic conductivity (P50 and P88 respectively), did not differ across sites. However, plants from the warm-dry environment exhibited higher stem conductivity (Ks) than the cool-wet environment. Leaf turgor loss point (TLP) did not vary among sites, but warm-dry site plants showed lower leaf capacitance (C*FT) and higher modulus of elasticity (ε) than the other two sites. Plants from the cool-wet site had lower specific leaf area (SLA) and plants from the warm-dry site had lower sapwood density (WD). Overall, key hydraulic traits were generally conserved across populations despite differences in mean site water availability, and the safety-efficiency trade-off was absent in this species. These results suggest that B. serrata has limited ability to adjust hydraulic architecture in response to environmental change and thus may be susceptible to climate change-type drought stress.
Collapse
Affiliation(s)
- Ximeng Li
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Chris J Blackman
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Paul D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; and Corresponding author.
| |
Collapse
|
64
|
Siddiq Z, Zhang YJ, Zhu SD, Cao KF. Canopy water status and photosynthesis of tropical trees are associated with trunk sapwood hydraulic properties. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:724-730. [PMID: 31055133 DOI: 10.1016/j.plaphy.2019.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Tree trunks not only provide physical support for canopy leaves but also supply and store water for transpiration. However, the relationships between trunk hydraulic properties and canopy leaf physiology in tropical trees are not well-understood. In this study we concurrently measured morning and midday canopy leaf photosynthesis (A), stomatal conductance (gs), and leaf water potentials (ΨL) in 40 tropical trees representing 14 species at the beginning of the rainy season in Xishuangbanna, Southwest China. We also measured trunk sapwood capacitance (C), wood density, and sap flux density to assess their association with canopy leaf physiology. Among the 14 studied species, only three and four species did not show a significant midday reduction in A and gs respectively. The diurnally maximum A and gs were significantly positively related to sapwood hydraulic capacitance, maximum sap flux density (midday), and sap flux density at 11:00. Those species with lower wood density and higher C showed a lower reduction in ΨL at midday, whereas, species with high C, and large values of maximum sap flux density also showed high carbon assimilation at midday. Our results provide new insights into the close coordination between canopy physiology and trunk sapwood hydraulic properties in tropical trees.
Collapse
Affiliation(s)
- Zafar Siddiq
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, China; Department of Botany, Government College University, Lahore, 54000, Pakistan; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
| | - Shi-Dan Zhu
- Plant Ecophysiology and Evolution Group, State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530005, China
| | - Kun-Fang Cao
- Plant Ecophysiology and Evolution Group, State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
65
|
Rodriguez-Zaccaro FD, Valdovinos-Ayala J, Percolla MI, Venturas MD, Pratt RB, Jacobsen AL. Wood structure and function change with maturity: Age of the vascular cambium is associated with xylem changes in current-year growth. PLANT, CELL & ENVIRONMENT 2019; 42:1816-1831. [PMID: 30707440 DOI: 10.1111/pce.13528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Xylem vessel structure changes as trees grow and mature. Age- and development-related changes in xylem structure are likely related to changes in hydraulic function. We examined whether hydraulic function, including hydraulic conductivity and vulnerability to water-stress-induced xylem embolism, changed over the course of cambial development in the stems of 17 tree species. We compared current-year growth of young (1-4 years), intermediate (2-7 years), and older (3-10 years) stems occurring in series along branches. Diffuse and ring porous species were examined, but nearly all species produced only diffuse porous xylem in the distal branches that were examined irrespective of their mature xylem porosity type. Vessel diameter and length increased with cambial age. Xylem became both more conductive and more cavitation resistant with cambial age. Ring porous species had longer and wider vessels and xylem that had higher conductivity and was more vulnerable to cavitation; however, these differences between porosity types were not present in young stem samples. Understanding plant hydraulic function and architecture requires the sampling of multiple-aged tissues because plants may vary considerably in their xylem structural and functional traits throughout the plant body, even over relatively short distances and closely aged tissues.
Collapse
Affiliation(s)
| | | | - Marta I Percolla
- Department of Biology, California State University, Bakersfield, Bakersfield, California
| | - Martin D Venturas
- Department of Biology, California State University, Bakersfield, Bakersfield, California
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - R Brandon Pratt
- Department of Biology, California State University, Bakersfield, Bakersfield, California
| | - Anna L Jacobsen
- Department of Biology, California State University, Bakersfield, Bakersfield, California
| |
Collapse
|
66
|
Abstract
Stable hydraulic conductivity in forest trees maintains healthy tree crowns and contributes to productivity in forest ecosystems. Drought conditions break down this relationship, but the mechanisms are poorly known and may depend on drought severity. To increase the understanding of changes in hydraulic conductivity during drought, we determined hydraulic parameters in Populus euphratica Oliv. (P. euphratica) in naturally arid conditions and in a simulated severe drought using a high-pressure flow meter. The results showed that leaf-specific hydraulic conductance (LSC) of leaf blades was less variable in mild drought, and increased significantly in severe drought. Plants attempted to maintain stability in leaf blade LSC under moderate water stress. In extreme drought, LSC was enhanced by increasing hydraulic conductance in plant parts with less hydraulic limitation, decreasing it in other parts, and decreasing leaf area; this mechanism protected the integrity of water transport in portions of tree crowns, and induced scorched branches and partial mortality in other parts of crowns. We conclude that limitation in water supply and elastic regulation of hydraulic characteristics may drive the mortality of tree branches as a result of severe drought. Evaluation of adaptive water transport capacity in riparian plants in arid areas provides a scientific basis for riparian forest restoration.
Collapse
|
67
|
Yang D, Zhang YJ, Song J, Niu CY, Hao GY. Compound leaves are associated with high hydraulic conductance and photosynthetic capacity: evidence from trees in Northeast China. TREE PHYSIOLOGY 2019; 39:729-739. [PMID: 30668831 DOI: 10.1093/treephys/tpy147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/08/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Characterizing differences in key functional traits between simple-leaved (SL) and compound-leaved (CL) tree species can contribute to a better understanding of the adaptive significance of compound leaf form. In particular, this information may provide a mechanistic explanation to the long-proposed fast-growth hypothesis of CL tree species. Here, using five SL and five CL tree species co-occurring in a typical temperate forest of Northeast China, we tested whether higher hydraulic efficiency underlies potentially high photosynthetic capacity in CL species. We found that the CL species had significantly higher hydraulic conductance at the whole-branch level than the SL species (0.52 ± 0.13 vs 0.15 ± 0.04 × 10-4 kg m-2 s-1 Pa-1, P = 0.029). No significant difference in net photosynthetic rate (14.7 ± 2.43 vs 12.5 ± 2.05 μmol m-2 s-1, P = 0.511) was detected between these two groups, but this was largely due to the existence of one outlier species in each of the two functional groups. Scrutinization of the intragroup variations in functional traits revealed that distinctions of the two outlier species in wood type (ring- vs diffuse-porous) from their respective functional groups have likely contributed to their aberrant physiological performances. The potentially high photosynthetic capacity of CL species seems to require ring-porous wood to achieve high hydraulic efficiency. Due to its limitation on leaf photosynthetic capacity, diffuse-porous wood with lower hydraulic conductivity largely precludes its combination with the 'throw-away' strategy (i.e., annually replacing the stem-like rachises) of compound-leaved tree species, which intrinsically requires high carbon assimilation rate to compensate for their extra carbon losses. Our results for the first time show clear differentiation in hydraulic architecture and CO2 assimilation between sympatric SL and CL species, which contributes to the probing of the underlying mechanism responsible for the potential fast growth of trees with compound leaves.
Collapse
Affiliation(s)
- Da Yang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, the University of Maine, Orono, ME, USA
| | - Jia Song
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cun-Yang Niu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
68
|
Li X, Blackman CJ, Peters JMR, Choat B, Rymer PD, Medlyn BE, Tissue DT. More than iso/anisohydry: Hydroscapes integrate plant water use and drought tolerance traits in 10 eucalypt species from contrasting climates. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13320] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ximeng Li
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| | - Chris J. Blackman
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| | - Jennifer M. R. Peters
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| | - Paul D. Rymer
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| | - Belinda E. Medlyn
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| | - David T. Tissue
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| |
Collapse
|
69
|
Qaderi MM, Martel AB, Dixon SL. Environmental Factors Influence Plant Vascular System and Water Regulation. PLANTS 2019; 8:plants8030065. [PMID: 30875945 PMCID: PMC6473727 DOI: 10.3390/plants8030065] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/28/2019] [Accepted: 03/11/2019] [Indexed: 11/16/2022]
Abstract
Developmental initiation of plant vascular tissue, including xylem and phloem, from the vascular cambium depends on environmental factors, such as temperature and precipitation. Proper formation of vascular tissue is critical for the transpiration stream, along with photosynthesis as a whole. While effects of individual environmental factors on the transpiration stream are well studied, interactive effects of multiple stress factors are underrepresented. As expected, climate change will result in plants experiencing multiple co-occurring environmental stress factors, which require further studies. Also, the effects of the main climate change components (carbon dioxide, temperature, and drought) on vascular cambium are not well understood. This review aims at synthesizing current knowledge regarding the effects of the main climate change components on the initiation and differentiation of vascular cambium, the transpiration stream, and photosynthesis. We predict that combined environmental factors will result in increased diameter and density of xylem vessels or tracheids in the absence of water stress. However, drought may decrease the density of xylem vessels or tracheids. All interactive combinations are expected to increase vascular cell wall thickness, and therefore increase carbon allocation to these tissues. A comprehensive study of the effects of multiple environmental factors on plant vascular tissue and water regulation should help us understand plant responses to climate change.
Collapse
Affiliation(s)
- Mirwais M Qaderi
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS B3M 2J6, Canada.
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, NS B3H 3C3, Canada.
| | - Ashley B Martel
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, NS B3H 3C3, Canada.
| | - Sage L Dixon
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS B3M 2J6, Canada.
| |
Collapse
|
70
|
Losso A, Bär A, Dämon B, Dullin C, Ganthaler A, Petruzzellis F, Savi T, Tromba G, Nardini A, Mayr S, Beikircher B. Insights from in vivo micro-CT analysis: testing the hydraulic vulnerability segmentation in Acer pseudoplatanus and Fagus sylvatica seedlings. THE NEW PHYTOLOGIST 2019; 221:1831-1842. [PMID: 30347122 PMCID: PMC6492020 DOI: 10.1111/nph.15549] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/14/2018] [Indexed: 05/23/2023]
Abstract
The seedling stage is the most susceptible one during a tree's life. Water relations may be crucial for seedlings due to their small roots, limited water buffers and the effects of drought on water transport. Despite obvious relevance, studies on seedling xylem hydraulics are scarce as respective methodical approaches are limited. Micro-CT scans of intact Acer pseudoplatanus and Fagus sylvatica seedlings dehydrated to different water potentials (Ψ) allowed the simultaneous observation of gas-filled versus water-filled conduits and the calculation of percentage loss of conductivity (PLC) in stems, roots and leaves (petioles or main veins). Additionally, anatomical analyses were performed and stem PLC measured with hydraulic techniques. In A. pseudoplatanus, petioles showed a higher Ψ at 50% PLC (Ψ50 -1.13MPa) than stems (-2.51 MPa) and roots (-1.78 MPa). The main leaf veins of F. sylvatica had similar Ψ50 values (-2.26 MPa) to stems (-2.74 MPa) and roots (-2.75 MPa). In both species, no difference between root and stems was observed. Hydraulic measurements on stems closely matched the micro-CT based PLC calculations. Micro-CT analyses indicated a species-specific hydraulic architecture. Vulnerability segmentation, enabling a disconnection of the hydraulic pathway upon drought, was observed in A. pseudoplatanus but not in the especially shade-tolerant F. sylvatica. Hydraulic patterns could partly be related to xylem anatomical traits.
Collapse
Affiliation(s)
- Adriano Losso
- Department of BotanyUniversity of InnsbruckSternwarterstrasse 15InnsbruckA‐6020Austria
| | - Andreas Bär
- Department of BotanyUniversity of InnsbruckSternwarterstrasse 15InnsbruckA‐6020Austria
| | - Birgit Dämon
- Department of BotanyUniversity of InnsbruckSternwarterstrasse 15InnsbruckA‐6020Austria
| | - Christian Dullin
- Institute for Diagnostic and Interventional RadiologyUniversity Medical Center GoettingenRobert‐Koch‐Straße 40Göttingen37075Germany
- Max‐Plank‐Institute for Experimental MedicineHermann‐Rein‐Straße 3Göttingen37075Germany
- Elettra‐Sincrotrone TriesteArea Science ParkTriesteBasovizza34149Italy
| | - Andrea Ganthaler
- Department of BotanyUniversity of InnsbruckSternwarterstrasse 15InnsbruckA‐6020Austria
| | - Francesco Petruzzellis
- Dipartimento di Scienze della VitaUniversità di TriesteVia L. Giorgieri 10Trieste34127Italy
| | - Tadeja Savi
- Department of Crop SciencesDivision of Viticulture and PomologyUniversity of Natural Resources and Life Sciences ViennaKonrad Lorenzstrasse 24TullnA‐3430Austria
| | - Giuliana Tromba
- Elettra‐Sincrotrone TriesteArea Science ParkTriesteBasovizza34149Italy
| | - Andrea Nardini
- Dipartimento di Scienze della VitaUniversità di TriesteVia L. Giorgieri 10Trieste34127Italy
| | - Stefan Mayr
- Department of BotanyUniversity of InnsbruckSternwarterstrasse 15InnsbruckA‐6020Austria
| | - Barbara Beikircher
- Department of BotanyUniversity of InnsbruckSternwarterstrasse 15InnsbruckA‐6020Austria
| |
Collapse
|
71
|
Jin Y, Wang C, Zhou Z. Conifers but not angiosperms exhibit vulnerability segmentation between leaves and branches in a temperate forest. TREE PHYSIOLOGY 2019; 39:454-462. [PMID: 30321431 DOI: 10.1093/treephys/tpy111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/04/2018] [Accepted: 09/16/2018] [Indexed: 05/23/2023]
Abstract
Vulnerability segmentation (VS), an important mechanism for protecting plants from drought, hypothesizes that the distal organs of a plant should be more susceptible to embolism than the basal organs. However, experimental studies testing the VS hypothesis for trees are limited and have reached inconsistent conclusions. Here, we tested the VS hypothesis with three angiosperms and four conifers co-existing in a temperate forest in northeastern China. The results showed that the difference in vulnerability to cavitation between leaves and branches (P50leaf-branch) was positive for the conifers but negative for the angiosperms, implying that the conifers rather than the angiosperms exhibited VS. The conifers had lower leaf hydraulic safety margins and more embolism-resistant branches than the angiosperms. Although the angiosperms did not display VS, they took a hydraulic compensatory strategy (e.g., great leaf and branch hydraulic conductivities) to maintain the water supply of their leaves. In addition, we found a significant trade-off between the sapwood-specific hydraulic conductivity (KSS) and xylem pressure inducing 50% loss of hydraulic conductivity (P50branch) across all species. Both KSS and P50branch increased with the area-based light-saturated photosynthetic rate (Aarea), suggesting that increased embolism resistance of branches comes at the cost of reduced hydraulic efficiency, which in turn constrains the photosynthesis. Aarea was negatively correlated with P50leaf-branch, further indicating that the conifers had strong VS and were associated with a conservative strategy. Conversely, the angiosperms displayed an acquisitive strategy, tending to have higher Aarea, leaf and branch hydraulic conductivities, but lower embolism resistance. These differentiations in the functional traits between the angiosperms and conifers provide potential mechanisms for their co-existence in this temperate forest community.
Collapse
Affiliation(s)
- Ying Jin
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin, China
| | - Chuankuan Wang
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin, China
| | - Zhenghu Zhou
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin, China
| |
Collapse
|
72
|
Creek D, Blackman CJ, Brodribb TJ, Choat B, Tissue DT. Coordination between leaf, stem, and root hydraulics and gas exchange in three arid-zone angiosperms during severe drought and recovery. PLANT, CELL & ENVIRONMENT 2018; 41:2869-2881. [PMID: 30106477 DOI: 10.1111/pce.13418] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/30/2018] [Indexed: 05/13/2023]
Abstract
The ability to resist hydraulic dysfunction in leaves, stems, and roots strongly influences whether plants survive and recover from drought. However, the coordination of hydraulic function among different organs within species and their links to gas exchange during drought and recovery remains understudied. Here, we examine the interaction between gas exchange and hydraulic function in the leaves, stems, and roots of three semiarid evergreen species exposed to a cycle of severe water stress (associated with substantial cavitation) and recovery. In all species, stomatal closure occurred at water potentials well before 50% loss of stem hydraulic conductance, while in two species, leaves and/or roots were more vulnerable than stems. Following soil rewetting, leaf-level photosynthesis (Anet ) returned to prestress levels within 2-4 weeks, whereas stomatal conductance and canopy transpiration were slower to recover. The recovery of Anet was decoupled from the recovery of leaf, stem, and root hydraulics, which remained impaired throughout the recovery period. Our results suggest that in addition to high embolism resistance, early stomatal closure and hydraulic vulnerability segmentation confers drought tolerance in these arid zone species. The lack of substantial embolism refilling within all major organs suggests that vulnerability of the vascular system to drought-induced dysfunction is a defining trait for predicting postdrought recovery.
Collapse
Affiliation(s)
- Danielle Creek
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales, Australia
| | - Chris J Blackman
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales, Australia
| | - Timothy J Brodribb
- School of Biological Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales, Australia
| |
Collapse
|
73
|
Klepsch M, Zhang Y, Kotowska MM, Lamarque LJ, Nolf M, Schuldt B, Torres-Ruiz JM, Qin DW, Choat B, Delzon S, Scoffoni C, Cao KF, Jansen S. Is xylem of angiosperm leaves less resistant to embolism than branches? Insights from microCT, hydraulics, and anatomy. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5611-5623. [PMID: 30184113 PMCID: PMC6255699 DOI: 10.1093/jxb/ery321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/28/2018] [Indexed: 05/23/2023]
Abstract
According to the hydraulic vulnerability segmentation hypothesis, leaves are more vulnerable to decline of hydraulic conductivity than branches, but whether stem xylem is more embolism resistant than leaves remains unclear. Drought-induced embolism resistance of leaf xylem was investigated based on X-ray microcomputed tomography (microCT) for Betula pendula, Laurus nobilis, and Liriodendron tulipifera, excluding outside-xylem, and compared with hydraulic vulnerability curves for branch xylem. Moreover, bordered pit characters related to embolism resistance were investigated for both organs. Theoretical P50 values (i.e. the xylem pressure corresponding to 50% loss of hydraulic conductance) of leaves were generally within the same range as hydraulic P50 values of branches. P50 values of leaves were similar to branches for L. tulipifera (-2.01 versus -2.10 MPa, respectively), more negative for B. pendula (-2.87 versus -1.80 MPa), and less negative for L. nobilis (-6.4 versus -9.2 MPa). Despite more narrow conduits in leaves than branches, mean interconduit pit membrane thickness was similar in both organs, but significantly higher in leaves of B. pendula than in branches. This case study indicates that xylem shows a largely similar embolism resistance across leaves and branches, although differences both within and across organs may occur, suggesting interspecific variation with regard to the hydraulic vulnerability segmentation hypothesis.
Collapse
Affiliation(s)
- Matthias Klepsch
- Institute of Systematic Botany and Ecology, Albert-Einstein-Allee 11, Ulm University, Ulm, Germany
| | - Ya Zhang
- Institute of Systematic Botany and Ecology, Albert-Einstein-Allee 11, Ulm University, Ulm, Germany
| | - Martyna M Kotowska
- Department of Biological Sciences Faculty of Science, Macquarie University, NSW, Australia
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Untere Karspüle, Göttingen, Germany
| | - Laurent J Lamarque
- BIOGECO, INRA, University of Bordeaux, Pessac, France
- EGFV, INRA, University of Bordeaux, Villenave d’Ornon, France
| | - Markus Nolf
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, New South Wales, Australia
| | - Bernhard Schuldt
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Untere Karspüle, Göttingen, Germany
| | - José M Torres-Ruiz
- BIOGECO, INRA, University of Bordeaux, Pessac, France
- Université Clermont-Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - De-Wen Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedonglu, Nanning, Guangxi, PR China
| | - Brendan Choat
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, New South Wales, Australia
| | | | - Christine Scoffoni
- Department of Biological Sciences, California State University, Los Angeles, State University Drive, Los Angeles, CA, USA
| | - Kun-Fang Cao
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedonglu, Nanning, Guangxi, PR China
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Albert-Einstein-Allee 11, Ulm University, Ulm, Germany
| |
Collapse
|
74
|
Pivovaroff AL, Cook VMW, Santiago LS. Stomatal behaviour and stem xylem traits are coordinated for woody plant species under exceptional drought conditions. PLANT, CELL & ENVIRONMENT 2018; 41:2617-2626. [PMID: 29904932 DOI: 10.1111/pce.13367] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Isohydry (maintenance of plant water potential at the cost of carbon gain) and anisohydry (gas exchange maintenance at the cost of declining plant water status) make up two ends of a stomatal drought response strategy continuum. However, few studies have merged measures of stomatal regulation with xylem hydraulic safety strategies based on in situ field measurements. The goal of this study was to characterize the stomatal and xylem hydraulic safety strategies of woody species in the biodiverse Mediterranean-type ecosystem region of California. Measurements were conducted in situ when California was experiencing the most severe drought conditions in the past 1,200 years. We found coordination among stomatal, hydraulic, and standard leaf functional traits. For example, stem xylem vulnerability to cavitation (P50 ) was correlated with the water potential at stomatal closure (Pclose ); more resistant species had a more negative water potential at stomatal closure. The degree of isohydry-anisohydry, defined at Pclose -P50 , was correlated with the hydraulic safety margin across species; more isohydric species had a larger hydraulic safety margin. In addition, we report for the first time Pclose values below -10 MPa. Measuring these traits in a biodiverse region under exceptional drought conditions contributes to our understanding of plant drought responses.
Collapse
Affiliation(s)
- Alexandria L Pivovaroff
- Departments of Biology and Environmental Science, Whittier College, Whittier, California
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California
| | - Victoria M W Cook
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California
| | - Louis S Santiago
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California
| |
Collapse
|
75
|
Li X, Blackman CJ, Rymer PD, Quintans D, Duursma RA, Choat B, Medlyn BE, Tissue DT. Xylem embolism measured retrospectively is linked to canopy dieback in natural populations of Eucalyptus piperita following drought. TREE PHYSIOLOGY 2018; 38:1193-1199. [PMID: 29757423 DOI: 10.1093/treephys/tpy052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Manipulative experiments have suggested that embolism-induced hydraulic impairment underpins widespread tree mortality during extreme drought, yet in situ evidence is rare. One month after drought-induced leaf and branch dieback was observed in field populations of Eucalyptus piperita Sm. in the Blue Mountains (Australia), we measured the level of native stem embolism and characterized the extent of leaf death in co-occurring dieback and healthy (non-dieback) trees. We found that canopy dieback-affected trees showed significantly higher levels of native embolism (26%) in tertiary order branchlets than healthy trees (11%). Furthermore, there was a significant positive correlation (R2 = 0.51) between the level of leaf death and the level of native embolism recorded in branchlets from dieback-affected trees. This retrospective study suggests that hydraulic failure was the primary mechanism of leaf and branch dieback in response to a natural drought event in the field. It also suggests that post-drought embolism refilling is minimal or absent in this species of eucalypt.
Collapse
Affiliation(s)
- Ximeng Li
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Chris J Blackman
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Paul D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Desi Quintans
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Remko A Duursma
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| |
Collapse
|
76
|
Blackman CJ. Leaf turgor loss as a predictor of plant drought response strategies. TREE PHYSIOLOGY 2018; 38:655-657. [PMID: 29726963 DOI: 10.1093/treephys/tpy047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Chris J Blackman
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 Australia
| |
Collapse
|
77
|
Zhu SD, Chen YJ, Ye Q, He PC, Liu H, Li RH, Fu PL, Jiang GF, Cao KF. Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits. TREE PHYSIOLOGY 2018; 38:658-663. [PMID: 29474684 DOI: 10.1093/treephys/tpy013] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/25/2018] [Indexed: 05/18/2023]
Abstract
Leaf turgor loss point (πtlp) indicates the capacity of a plant to maintain cell turgor pressure during dehydration, which has been proven to be strongly predictive of the plant response to drought. In this study, we compiled a data set of πtlp for 1752 woody plant individuals belonging to 389 species from nine major woody biomes in China, along with reduced sample size of hydraulic and leaf carbon economics data. We aimed to investigate the variation of πtlp across biomes varying in water availability. We also tested two hypotheses: (i) πtlp predicts leaf hydraulic safety margins and (ii) it is correlated with leaf carbon economics traits. Our results showed that there was a positive relationship between πtlp and aridity index: biomes from humid regions had less negative values than those from arid regions. This supports the idea that πtlp may reflect drought tolerance at the scale of woody biomes. As expected, πtlp was significantly positively correlated with leaf hydraulic safety margins that varied significantly across biomes, indicating that this trait may be useful in modelling changes of forest components in response to increasing drought. Moreover, πtlp was correlated with a suite of coordinated hydraulic and economics traits; therefore, it can be used to predict the position of a given species along the 'fast-slow' whole-plant economics spectrum. This study expands our understanding of the biological significance of πtlp not only in drought tolerance, but also in the plant economics spectrum.
Collapse
Affiliation(s)
- Shi-Dan Zhu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Ya-Jun Chen
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Peng-Cheng He
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hui Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Rong-Hua Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Pei-Li Fu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Guo-Feng Jiang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Kun-Fang Cao
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| |
Collapse
|
78
|
Lehnebach R, Beyer R, Letort V, Heuret P. The pipe model theory half a century on: a review. ANNALS OF BOTANY 2018; 121:773-795. [PMID: 29370362 PMCID: PMC5906905 DOI: 10.1093/aob/mcx194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/28/2017] [Indexed: 05/12/2023]
Abstract
Background More than a half century ago, Shinozaki et al. (Shinozaki K, Yoda K, Hozumi K, Kira T. 1964a. A quantitative analysis of plant form - the pipe model theory. I. Basic analyses. Japanese Journal of Ecology B: 97-105) proposed an elegant conceptual framework, the pipe model theory (PMT), to interpret the observed linear relationship between the amount of stem tissue and corresponding supported leaves. The PMT brought a satisfactory answer to two vividly debated problems that were unresolved at the moment of its publication: (1) What determines tree form and which rules drive biomass allocation to the foliar versus stem compartments in plants? (2) How can foliar area or mass in an individual plant, in a stand or at even larger scales be estimated? Since its initial formulation, the PMT has been reinterpreted and used in applications, and has undoubtedly become an important milestone in the mathematical interpretation of plant form and functioning. Scope This article aims to review the PMT by going back to its initial formulation, stating its explicit and implicit properties and discussing them in the light of current biological knowledge and experimental evidence in order to identify the validity and range of applicability of the theory. We also discuss the use of the theory in tree biomechanics and hydraulics as well as in functional-structural plant modelling. Conclusions Scrutinizing the PMT in the light of modern biological knowledge revealed that most of its properties are not valid as a general rule. The hydraulic framework derived from the PMT has attracted much more attention than its mechanical counterpart and implies that only the conductive portion of a stem cross-section should be proportional to the supported foliage amount rather than the whole of it. The facts that this conductive portion is experimentally difficult to measure and varies with environmental conditions and tree ontogeny might cause the commonly reported non-linear relationships between foliage and stem metrics. Nevertheless, the PMT can still be considered as a portfolio of properties providing a unified framework to integrate and analyse functional-structural relationships.
Collapse
Affiliation(s)
- Romain Lehnebach
- Centre de coopération Internationale de la Recherche Agronomique pour le Développement (CIRAD), UMR Amap, Kourou, France
- Botany and Modelling of Plant Architecture and Vegetation (Amap), Université Montpellier, CIRAD, CNRS, INRA, IRD, Montpellier, France
| | - Robert Beyer
- Laboratory of Mathematics in Interaction with Computer Science (MICS), CentraleSupélec, France
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Véronique Letort
- Laboratory of Mathematics in Interaction with Computer Science (MICS), CentraleSupélec, France
| | - Patrick Heuret
- Institut National de la Recherche Agronomique (INRA), UMR Ecofog, Kourou, France
| |
Collapse
|
79
|
Tomasella M, Beikircher B, Häberle KH, Hesse B, Kallenbach C, Matyssek R, Mayr S. Acclimation of branch and leaf hydraulics in adult Fagus sylvatica and Picea abies in a forest through-fall exclusion experiment. TREE PHYSIOLOGY 2018; 38:198-211. [PMID: 29177459 DOI: 10.1093/treephys/tpx140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/03/2017] [Indexed: 05/26/2023]
Abstract
Decreasing water availability due to climate change poses the question of whether and to what extent tree species are able to hydraulically acclimate and how hydraulic traits of stems and leaves are coordinated under drought. In a through-fall exclusion experiment, hydraulic acclimation was analyzed in a mixed forest stand of Fagus sylvatica L. and Picea abies (L.) Karst. In drought-stressed (TE, through-fall exclusion over 2 years) and control (CO) trees, hydraulic vulnerability was studied in branches as well as in leaves (F. sylvatica) and end-twigs (P. abies, entirely formed during the drought period) sampled at the same height in sun-exposed portions of the tree crown. In addition, relevant xylem anatomical traits and leaf pressure-volume relations were analyzed. The TE trees reached pre-dawn water potentials down to -1.6 MPa. In both species, water potentials at 50% loss of xylem hydraulic conductivity were ~0.4 MPa more negative in TE than in CO branches. Foliage hydraulic vulnerability (expressed as water potential at 50% loss of leaf/end-twig hydraulic conductance) and water potential at turgor loss point were also, respectively, 0.4 and 0.5 MPa lower in TE trees. Minor differences were observed in conduit mean hydraulic diameter and cell wall reinforcement. Our findings indicate significant and fast hydraulic acclimation under relatively mild drought in both tree species. Acclimation was well coordinated between branches and foliage, which might be essential for survival and productivity of mature trees under future drought periods.
Collapse
Affiliation(s)
- Martina Tomasella
- Department of Ecology and Ecosystem Management, Chair for Ecophysiology of Plants, Technical University of Munich, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Barbara Beikircher
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Karl-Heinz Häberle
- Department of Ecology and Ecosystem Management, Chair for Ecophysiology of Plants, Technical University of Munich, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Benjamin Hesse
- Department of Ecology and Ecosystem Management, Chair for Ecophysiology of Plants, Technical University of Munich, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Christian Kallenbach
- Department of Ecology and Ecosystem Management, Chair for Ecophysiology of Plants, Technical University of Munich, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Rainer Matyssek
- Department of Ecology and Ecosystem Management, Chair for Ecophysiology of Plants, Technical University of Munich, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| |
Collapse
|
80
|
Silva JLA, Souza AF, Caliman A, Voigt EL, Lichston JE. Weak whole-plant trait coordination in a seasonally dry South American stressful environment. Ecol Evol 2018; 8:4-12. [PMID: 29321846 PMCID: PMC5756860 DOI: 10.1002/ece3.3547] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/12/2017] [Accepted: 09/16/2017] [Indexed: 01/29/2023] Open
Abstract
A core question involving both plant physiology and community ecology is whether traits from different organs are coordinated across species, beyond pairwise trait correlations. The strength of within-community trait coordination has been hypothesized to increase along gradients of environmental harshness, due to the cost of adopting ecological strategies out of the viable niche space supported by the abiotic conditions. We evaluated the strength of trait relationship and coordination in a stressful environment using 21 leaf and stem traits of 21 deciduous and evergreen woody species from a heath vegetation growing on coastal sandy plain in northeastern South America. The study region faces marked dry season, high soil salinity and acidity, and poor nutritional conditions. Results from multiple factor analyses supported two weak and independent axes of trait coordination, which accounted for 25%-29% of the trait variance using phylogenetically independent contrasts. Trait correlations on the multiple factor analyses main axis fit well with the global plant economic spectrum, with species investing in small leaves and dense stems as opposed to species with softer stems and large leaves. The species' positions on the main functional axis corresponded to the competitor-stress-tolerant side of Grime's CSR triangle of plant strategies. The weak degree of trait coordination displayed by the heath vegetation species contradicted our expectation of high trait coordination in stressful environmental habitats. The distinct biogeographic origins of the species occurring in the study region and the prevalence of a regional environmental filter coupled with local homogeneous conditions could account for prevalence of trait independence we observed.
Collapse
Affiliation(s)
- José L. A. Silva
- Programa de Pós‐Graduação em EcologiaUniversidade Federal do Rio Grande do Norte (UFRN)NatalBrazil
| | | | | | | | | |
Collapse
|
81
|
Ávila-Lovera E, Zerpa AJ, Santiago LS. Stem photosynthesis and hydraulics are coordinated in desert plant species. THE NEW PHYTOLOGIST 2017; 216:1119-1129. [PMID: 28833259 DOI: 10.1111/nph.14737] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/06/2017] [Indexed: 05/15/2023]
Abstract
Coordination between stem photosynthesis and hydraulics in green-stemmed desert plants is important for understanding the physiology of stem photosynthesis and possible drought responses. Plants with photosynthetic stems have extra carbon gain that can help cope with the detrimental effects of drought. We studied photosynthetic, hydraulic and functional traits of 11 plant species with photosynthetic stems from three California desert locations. We compared relationships among traits between wet and dry seasons to test the effect of seasonality on these relationships. Finally, we compared stem trait relationships with analogous relationships in the leaf economics spectrum. We found that photosynthetic and hydraulic traits are coordinated in photosynthetic stems. The slope or intercept of all trait relationships was mediated by seasonality. The relationship between mass-based stem photosynthetic CO2 assimilation rate (Amass ) and specific stem area (SSA; stem surface area to dry mass ratio) was statistically indistinguishable from the leaf economics spectrum. Our results indicate that photosynthetic stems behave like leaves in the coordination of multiple traits related to carbon gain, water movement and water loss. Because of the similarity of the stem Amass -SSA relationship to the leaf Amass -specific leaf area relationship, we suggest the existence of a photosynthetic stem economic spectrum.
Collapse
Affiliation(s)
- Eleinis Ávila-Lovera
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA, 92521, USA
- Evolution, Ecology and Organismal Biology Graduate Program, Department of Biology, University of California, Riverside, CA, 92521, USA
| | - Antonio J Zerpa
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA, 92521, USA
| | - Louis S Santiago
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA, 92521, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama, Republic of Panama
| |
Collapse
|
82
|
Himeno S, Azuma W, Gyokusen K, Ishii HR. Leaf water maintains daytime transpiration in young Cryptomeria japonica trees. TREE PHYSIOLOGY 2017; 37:1394-1403. [PMID: 28575486 DOI: 10.1093/treephys/tpx056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
Compared with stem water storage, leaf water storage is understudied although it may be important for alleviating water stress by contributing quickly and directly to transpiration demand. To quantify the relative contribution of stem versus leaf water storage to daily water deficit, we measured diurnal changes in transpiration rate, sap-flow velocity and stem radius of 10-year-old Cryptomeria japonica D. Don trees. We assumed that the duration of time lags between transpiration rate and sap-flow velocity reflected stored water in the stem and leaf, and that stem volume change represented water content of elastic tissue. The relationship between fresh mass and water potential of the whole tree indicated that the study trees had capacity to store, on average, 91.4 ml of water per kg fresh mass at turgor loss. Leaves, sapwood and elastic tissue contributed around 51%, 29% and 20% of stored water, respectively. During morning, transpiration rates were higher than sap-flow velocity suggesting depletion of stored water. During the first 2 h after onset of transpiration, stored water contributed more than 100% of whole-tree transpiration. Depletion of leaf water (PLeaf) and sapwood water (PSap) coincided with the onset of transpiration and became maximum around 15:00 h. Depletion of elastic tissue water (PElastic) lagged behind that of PLeaf and PSap by 1-2 h, indicating that replenishment of stored water occurs late in the day when low leaf water potentials resulting from daytime transpiration drive water uptake. Maximum depletion of PLeaf was about 1-3 times and 5-10 times that of PSap and PElastic, respectively. The contribution of PLeaf to total daily transpiration was 5-8%, while those of PSap and PElastic were 3-4% and 0.7-1%, respectively. Our results suggest the importance of leaf water storage in maintaining daily transpiration in young C. japonica trees.
Collapse
Affiliation(s)
- Sawa Himeno
- Graduate School of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Wakana Azuma
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Koichiro Gyokusen
- Graduate School of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - H Roaki Ishii
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
83
|
Niglas A, Papp K, Sekiewicz M, Sellin A. Short-term effects of light quality on leaf gas exchange and hydraulic properties of silver birch (Betula pendula). TREE PHYSIOLOGY 2017; 37:1218-1228. [PMID: 28938056 DOI: 10.1093/treephys/tpx087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/10/2017] [Indexed: 06/07/2023]
Abstract
Leaves have to acclimatize to heterogeneous radiation fields inside forest canopies in order to efficiently exploit diverse light conditions. Short-term effects of light quality on photosynthetic gas exchange, leaf water use and hydraulic traits were studied on Betula pendula Roth shoots cut from upper and lower thirds of the canopy of 39- to 35-year-old trees growing in natural forest stand, and illuminated with white, red or blue light in the laboratory. Photosynthetic machinery of the leaves developed in different spectral conditions acclimated differently with respect to incident light spectrum: the stimulating effect of complete visible spectrum (white light) on net photosynthesis is more pronounced in upper-canopy layers. Upper-canopy leaves exhibit less water saving behaviour, which may be beneficial for the fast-growing pioneer species on a daily basis. Lower-canopy leaves have lower stomatal conductance resulting in more efficient water use. Spectral gradients existing within natural forest stands represent signals for the fine-tuning of stomatal conductance and tree water relations to afford lavish water use in sun foliage and enhance leaf water-use efficiency in shade foliage sustaining greater hydraulic limitations. Higher sensitivity of hydraulic conductance of shade leaves to blue light probably contributes to the efficient use of short duration sunflecks by lower-canopy leaves.
Collapse
Affiliation(s)
- Aigar Niglas
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia
| | - Kaisa Papp
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia
| | - Maciej Sekiewicz
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Arne Sellin
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia
| |
Collapse
|
84
|
Scoffoni C, Sack L, Ort D. The causes and consequences of leaf hydraulic decline with dehydration. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4479-4496. [PMID: 28981777 DOI: 10.1093/jxb/erx252] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Resolving the drivers of hydraulic decline during drought is crucial for understanding drought tolerance in crops and natural ecosystems. In the past 15 years, studies of the decline of leaf hydraulic conductance (Kleaf) have supported a major role in controlling plant drought responses. We analyzed the variation in Kleaf decline with dehydration in a global database of 310 species, providing novel insights into its underlying mechanisms, its co-ordination with stem hydraulics, its influence on gas exchange and drought tolerance, and its linkage with species ecological distributions. Kleaf vulnerability varied strongly within and across lineages, growth forms, and biomes. A critical literature review indicates that changes in hydraulic conductance outside the xylem with dehydration drive the overall decline of Kleaf. We demonstrate a significant leaf hydraulic safety-efficiency trade-off across angiosperm species and discuss the importance of the large variation around this trend. Leaves tend to be more vulnerable than stems, with their vulnerabilities co-ordinated across species, and importantly linked with adaptation across biomes. We hypothesize a novel framework to explain diversity across species in the co-ordination of Kleaf and gas exchange during dehydration. These findings reflect considerable recent progress, yet new tools for measurement, visualization, and modeling will result in ongoing discoveries important across fields in plant biology.
Collapse
Affiliation(s)
- Christine Scoffoni
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | | |
Collapse
|
85
|
Venturas MD, Sperry JS, Hacke UG. Plant xylem hydraulics: What we understand, current research, and future challenges. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:356-389. [PMID: 28296168 DOI: 10.1111/jipb.12534] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/09/2017] [Indexed: 05/22/2023]
Abstract
Herein we review the current state-of-the-art of plant hydraulics in the context of plant physiology, ecology, and evolution, focusing on current and future research opportunities. We explain the physics of water transport in plants and the limits of this transport system, highlighting the relationships between xylem structure and function. We describe the great variety of techniques existing for evaluating xylem resistance to cavitation. We address several methodological issues and their connection with current debates on conduit refilling and exponentially shaped vulnerability curves. We analyze the trade-offs existing between water transport safety and efficiency. We also stress how little information is available on molecular biology of cavitation and the potential role of aquaporins in conduit refilling. Finally, we draw attention to how plant hydraulic traits can be used for modeling stomatal responses to environmental variables and climate change, including drought mortality.
Collapse
Affiliation(s)
- Martin D Venturas
- Department of Biology, University of Utah, 257 S 1400E, Salt Lake City, UT, 84112, USA
| | - John S Sperry
- Department of Biology, University of Utah, 257 S 1400E, Salt Lake City, UT, 84112, USA
| | - Uwe G Hacke
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| |
Collapse
|
86
|
Martínez-Vilalta J, Garcia-Forner N. Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. PLANT, CELL & ENVIRONMENT 2017; 40:962-976. [PMID: 27739594 DOI: 10.1111/pce.12846] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 05/02/2023]
Abstract
In this review, we address the relationship between stomatal behaviour, water potential regulation and hydraulic transport in plants, focusing on the implications for the iso/anisohydric classification of plant drought responses at seasonal timescales. We first revise the history of the isohydric concept and its possible definitions. Then, we use published data to answer two main questions: (1) is greater stomatal control in response to decreasing water availability associated with a tighter regulation of leaf water potential (ΨL ) across species? and (2) is there an association between tighter ΨL regulation (~isohydric behaviour) and lower leaf conductance over time during a drought event? These two questions are addressed at two levels: across species growing in different sites and comparing only species coexisting at a given site. Our analyses show that, across species, a tight regulation of ΨL is not necessarily associated with greater stomatal control or with more constrained assimilation during drought. Therefore, iso/anisohydry defined in terms of ΨL regulation cannot be used as an indicator of a specific mechanism of drought-induced mortality or as a proxy for overall plant vulnerability to drought.
Collapse
Affiliation(s)
- Jordi Martínez-Vilalta
- CREAF, Cerdanyola del Vallès, Barcelona, E-08193, Spain
- Universitat Autònoma Barcelona, Cerdanyola del Vallès, Barcelona, E-08193, Spain
| | | |
Collapse
|
87
|
Abstract
Succulent plants are iconic components of the florae of many terrestrial ecosystems, but despite having caused fascination and prompted investigation for centuries, they still harbour many secrets in terms of physiological function and evolution. Tackling these mysteries is important, as this will not only provide insights into the dynamics and details of the convergent evolution of a major adaptive syndrome, but also inform efforts to conserve endangered biodiversity and utilize the unique physiological characteristics of succulents for biofuel and biomass production. Here I review advances in the phylogeny and organismal biology of succulent plants, and discuss how insights from recent work in the wider fields of plant hydraulics and photosynthetic physiology may relate to succulents. The potential for the exploration of mechanistic relationships between anatomical structure and physiological function to improve our understanding of the constraints that have shaped the evolution of succulence is highlighted. Finally, attention is drawn to how new methodologies and technologies provide exciting opportunities to address the wide range of outstanding questions in succulent plant biology.
Collapse
Affiliation(s)
- Jamie Males
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
88
|
Scoffoni C, Albuquerque C, Brodersen CR, Townes SV, John GP, Cochard H, Buckley TN, McElrone AJ, Sack L. Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline. THE NEW PHYTOLOGIST 2017; 213:1076-1092. [PMID: 27861926 DOI: 10.1111/nph.14256] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/10/2016] [Indexed: 05/24/2023]
Abstract
Ecosystems worldwide are facing increasingly severe and prolonged droughts during which hydraulic failure from drought-induced embolism can lead to organ or whole plant death. Understanding the determinants of xylem failure across species is especially critical in leaves, the engines of plant growth. If the vulnerability segmentation hypothesis holds within leaves, higher order veins that are most terminal in the plant hydraulic system should be more susceptible to embolism to protect the rest of the water transport system. Increased vulnerability in the higher order veins would also be consistent with these experiencing the greatest tensions in the plant xylem network. To test this hypothesis, we combined X-ray micro-computed tomography imaging, hydraulic experiments, cross-sectional anatomy and 3D physiological modelling to investigate how embolisms spread throughout petioles and vein orders during leaf dehydration in relation to conduit dimensions. Decline of leaf xylem hydraulic conductance (Kx ) during dehydration was driven by embolism initiating in petioles and midribs across all species, and Kx vulnerability was strongly correlated with petiole and midrib conduit dimensions. Our simulations showed no significant impact of conduit collapse on Kx decline. We found xylem conduit dimensions play a major role in determining the susceptibility of the leaf water transport system during strong leaf dehydration.
Collapse
Affiliation(s)
- Christine Scoffoni
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Biology, Utah State University, Logan, UT, 84322, USA
| | - Caetano Albuquerque
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - Craig R Brodersen
- School of Forestry & Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT, 06511, USA
| | - Shatara V Townes
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Grace P John
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Hervé Cochard
- PIAF, INRA, Univ. Clermont-Auvergne, Clermont-Ferrand, 63100, France
| | - Thomas N Buckley
- Plant Breeding Institute, Faculty of Agriculture and Environment, The University of Sydney, 12656 Newell Hwy, Narrabri, NSW, 2390, Australia
| | - Andrew J McElrone
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
- USDA-Agricultural Research Service, Davis, CA, 95616, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| |
Collapse
|
89
|
Zhang SB, Zhang JL, Cao KF. Divergent Hydraulic Safety Strategies in Three Co-occurring Anacardiaceae Tree Species in a Chinese Savanna. FRONTIERS IN PLANT SCIENCE 2017; 7:2075. [PMID: 28149302 PMCID: PMC5241295 DOI: 10.3389/fpls.2016.02075] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/30/2016] [Indexed: 05/20/2023]
Abstract
Vulnerability segmentation, the condition under which plant leaves are more vulnerable to drought-induced cavitation than stems, may act as a "safety valve" to protect stems from hydraulic failure. Evergreen, winter-deciduous, and drought-deciduous tree species co-occur in tropical savannas, but there have been no direct studies on the role of vulnerability segmentation and stomatal regulation in maintaining hydraulic safety in trees with these three leaf phenologies. To this end, we selected three Anacardiaceae tree species co-occurring in a Chinese savanna, evergreen Pistacia weinmanniifolia, drought-deciduous Terminthia paniculata, and winter-deciduous Lannea coromandelica, to study inter-species differentiation in leaf and stem hydraulic safety. We found that the two deciduous species had significantly higher sapwood-specific hydraulic conductivity and leaf-specific hydraulic conductance than the evergreen species. Moreover, two deciduous species were more vulnerable to stem cavitation than the evergreen species, although both drought-deciduous species and evergreen species had drought-resistance leaves. The evergreen species maintained a wide hydraulic safety margin (HSM) in stems and leaves; which was achieved by embolism resistance of both stems and leaves and isohydric stomatal control. Both deciduous species had limited HSMs in stems and leaves, being isohydric in the winter-deciduous species and anisohydric in drought-deciduous species. The difference in water potential at 50% loss of hydraulic conductivity between the leaves and the terminal stems (P50leaf-stem) was positive in P. weinmanniifolia and L. coromandelica, whereas, T. paniculata exhibited a lack of vulnerability segmentation. In addition, differences in hydraulic architecture were found to be closely related to other structural traits, i.e., leaf mass per area, wood density, and sapwood anatomy. Overall, the winter-deciduous species exhibits a drought-avoidance strategy that maintains the hydraulic safety of the more carbon-costly stems by sacrificing cheaper and more vulnerable leaves, while the evergreen species exhibits a hydraulic strategy of drought tolerance with strong stomatal regulation. In contrast, the drought-deciduous species lacks vulnerability segmentation and sheds leaves at the expense of top shoots during peak drought. This study demonstrates that even sympatric tree species that differ in leaf phenology can exhibit divergent adaptive hydraulic safety strategies.
Collapse
Affiliation(s)
- Shu-Bin Zhang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMengla, China
| | - Jiao-Lin Zhang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMengla, China
| | - Kun-Fang Cao
- Plant Ecophysiology and Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi UniversityNanning, China
| |
Collapse
|
90
|
Jin Y, Wang C, Zhou Z, Li Z. Co-ordinated performance of leaf hydraulics and economics in 10 Chinese temperate tree species. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:1082-1090. [PMID: 32480528 DOI: 10.1071/fp16097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/21/2016] [Indexed: 06/11/2023]
Abstract
Exploring relationships between leaf hydraulics and economic traits is important in understanding the carbon-water coupling and in extending the leaf economics spectrum. In this study, leaf hydraulics, photosynthesis, structural and nutrient traits and photosynthetic resource use efficiency were measured for 10 temperate tree species in the north-eastern China. Leaf hydraulic conductance was positively correlated with photosynthetic traits, specific leaf area, leaf nitrogen concentration, photosynthetic water and nitrogen use efficiencies, suggesting co-ordination between leaf hydraulics and economic traits. Principal component analysis revealed that significant correlations existed among leaf hydraulic, photosynthetic and resource use traits (axis 1), and axis 2 was strongly associated with leaf structural and nutrient traits. The 10 species were distributed along the diagonal line between axis 1 and axis 2. Species displaying the 'fast' strategy tended to have higher photosynthetic rates, leaf hydraulic conductance and photosynthetic water and nutrient use efficiencies; however, they also had lower carbon investment and faced a greater risk of embolism. These findings indicate that leaf hydraulics, economics and resource uses together play an important role in determining species ecological strategies, and provide supports for the 'fast-slow' leaf economics spectrum.
Collapse
Affiliation(s)
- Ying Jin
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Chuankuan Wang
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Zhenghu Zhou
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Zhimin Li
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
91
|
Trifiló P, Raimondo F, Savi T, Lo Gullo MA, Nardini A. The contribution of vascular and extra-vascular water pathways to drought-induced decline of leaf hydraulic conductance. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5029-5039. [PMID: 27388214 DOI: 10.1093/jxb/erw268] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Drought stress can impair leaf hydraulic conductance (Kleaf), but the relative contribution of changes in the efficiency of the vein xylem water pathway and in the mesophyll route outside the xylem in driving the decline of Kleaf is still debated. We report direct measurements of dehydration-induced changes in the hydraulic resistance (R=1/K) of whole leaf (Rleaf), as well as of the leaf xylem (Rx) and extra-vascular pathways (Rox) in four Angiosperm species. Rleaf, Rx, and Rox were measured using the vacuum chamber method (VCM). Rleaf values during progressive leaf dehydration were also validated with measurements performed using the rehydration kinetic method (RKM). We analysed correlations between changes in Rx or Rox and Rleaf, as well as between morpho-anatomical traits (including dehydration-induced leaf shrinkage), vulnerability to embolism, and leaf water relation parameters. Measurements revealed that the relative contribution of vascular and extra-vascular hydraulic properties in driving Kleaf decline during dehydration is species-specific. Whilst in two study species the progressive impairment of both vascular and extra-vascular pathways contributed to leaf hydraulic vulnerability, in the other two species the vascular pathway remained substantially unaltered during leaf dehydration, and Kleaf decline was apparently caused only by changes in the hydraulic properties of the extra-vascular compartment.
Collapse
Affiliation(s)
- Patrizia Trifiló
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Salita F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Fabio Raimondo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Salita F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Tadeja Savi
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Maria A Lo Gullo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Salita F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| |
Collapse
|
92
|
Johnson DM, Wortemann R, McCulloh KA, Jordan-Meille L, Ward E, Warren JM, Palmroth S, Domec JC. A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. TREE PHYSIOLOGY 2016; 36:983-93. [PMID: 27146334 DOI: 10.1093/treephys/tpw031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/15/2016] [Indexed: 05/05/2023]
Abstract
Water transport from soils to the atmosphere is critical for plant growth and survival. However, we have a limited understanding about many portions of the whole-tree hydraulic pathway, because the vast majority of published information is on terminal branches. Our understanding of mature tree trunk hydraulic physiology, in particular, is limited. The hydraulic vulnerability segmentation hypothesis (HVSH) stipulates that distal portions of the plant (leaves, branches and roots) should be more vulnerable to embolism than trunks, which are nonredundant organs that require a massive carbon investment. In the current study, we compared vulnerability to loss of hydraulic function, leaf and xylem water potentials and the resulting hydraulic safety margins (in relation to the water potential causing 50% loss of hydraulic conductivity) in leaves, branches, trunks and roots of four angiosperms and four conifer tree species. Across all species, our results supported strongly the HVSH as leaves and roots were less resistant to embolism than branches or trunks. However, branches were consistently more resistant to embolism than any other portion of the plant, including trunks. Also, calculated whole-tree vulnerability to hydraulic dysfunction was much greater than vulnerability in branches. This was due to hydraulic dysfunction in roots and leaves at less negative water potentials than those causing branch or trunk dysfunction. Leaves and roots had narrow or negative hydraulic safety margins, but trunks and branches maintained positive safety margins. By using branch-based hydraulic information as a proxy for entire plants, much research has potentially overestimated embolism resistance, and possibly drought tolerance, for many species. This study highlights the necessity to reconsider past conclusions made about plant resistance to drought based on branch xylem only. This study also highlights the necessity for more research of whole-plant hydraulic physiology to better understand strategies of plant drought tolerance and the critical control points within the hydraulic pathway.
Collapse
Affiliation(s)
- Daniel M Johnson
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, 875 Perimeter Drive MS1133, Moscow, ID 83844, USA
| | - Remi Wortemann
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | | | | | - Eric Ward
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27607, USA
| | - Jeffrey M Warren
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Sari Palmroth
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Jean-Christophe Domec
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA Bordeaux Sciences Agro, UMR INRA-ISPA 1391, 33195 Gradignan, France
| |
Collapse
|
93
|
Affiliation(s)
- Shi‐Dan Zhu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems South China Botanical Garden Chinese Academy of Sciences Xingke Road 723, Tianhe District Guangzhou 510650 GuangdongChina
- Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden Chinese Academy of Sciences Xingke Road 723, Tianhe District Guangzhou 510650 GuangdongChina
| | - Hui Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems South China Botanical Garden Chinese Academy of Sciences Xingke Road 723, Tianhe District Guangzhou 510650 GuangdongChina
- Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden Chinese Academy of Sciences Xingke Road 723, Tianhe District Guangzhou 510650 GuangdongChina
| | - Qiu‐Yuan Xu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems South China Botanical Garden Chinese Academy of Sciences Xingke Road 723, Tianhe District Guangzhou 510650 GuangdongChina
- University of Chinese Academy of Sciences Yuquan Road 19A Beijing 100049 China
| | - Kun‐Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources College of Forestry Guangxi University Nanning 530004 GuangxiChina
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems South China Botanical Garden Chinese Academy of Sciences Xingke Road 723, Tianhe District Guangzhou 510650 GuangdongChina
- Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden Chinese Academy of Sciences Xingke Road 723, Tianhe District Guangzhou 510650 GuangdongChina
| |
Collapse
|
94
|
Yoshimura K, Saiki ST, Yazaki K, Ogasa MY, Shirai M, Nakano T, Yoshimura J, Ishida A. The dynamics of carbon stored in xylem sapwood to drought-induced hydraulic stress in mature trees. Sci Rep 2016; 6:24513. [PMID: 27079677 PMCID: PMC4832204 DOI: 10.1038/srep24513] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/23/2016] [Indexed: 11/09/2022] Open
Abstract
Climate-induced forest die-off is widespread in multiple biomes, strongly affecting the species composition, function and primary production in forest ecosystems. Hydraulic failure and carbon starvation in xylem sapwood are major hypotheses to explain drought-induced tree mortality. Because it is difficult to obtain enough field observations on drought-induced mortality in adult trees, the current understanding of the physiological mechanisms for tree die-offs is still controversial. However, the simultaneous examination of water and carbon uses throughout dehydration and rehydration processes in adult trees will contribute to clarify the roles of hydraulic failure and carbon starvation in tree wilting. Here we show the processes of the percent loss of hydraulic conductivity (PLC) and the content of nonstructural carbohydrates (NSCs) of distal branches in woody plants with contrasting water use strategy. Starch was converted to soluble sugar during PLC progression under drought, and the hydraulic conductivity recovered following water supply. The conversion of NSCs is strongly associated with PLC variations during dehydration and rehydration processes, indicating that stored carbon contributes to tree survival under drought; further carbon starvation can advance hydraulic failure. We predict that even slow-progressing drought degrades forest ecosystems via carbon starvation, causing more frequent catastrophic forest die-offs than the present projection.
Collapse
Affiliation(s)
- Kenichi Yoshimura
- Kansai Research Center, Forestry and Forest Products Research Institute, Fushimi, Kyoto 612-0855, Japan
| | - Shin-Taro Saiki
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
| | - Kenichi Yazaki
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | - Mayumi Y. Ogasa
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | - Makoto Shirai
- Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Takashi Nakano
- Mount Fuji Research Institute, Yamanashi Prefectural Government. Fuji-Yoshida, Yamanashi 403-0005, Japan
| | - Jin Yoshimura
- Department of Mathematical and Systems Engineering, Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
- Marine Biosystems Research Center, Chiba University, Kamogawa, Chiba 299-5502, Japan
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY13210, USA
| | - Atsushi Ishida
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
| |
Collapse
|
95
|
Savi T, Marin M, Luglio J, Petruzzellis F, Mayr S, Nardini A. Leaf hydraulic vulnerability protects stem functionality under drought stress in Salvia officinalis. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:370-379. [PMID: 32480468 DOI: 10.1071/fp15324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 12/23/2015] [Indexed: 06/11/2023]
Abstract
Functional coordination between leaf and stem hydraulics has been proposed as a key trait of drought-resistant plants. A balanced water transport efficiency and safety of different plant organs might be of particular importance for plant survival in the Mediterranean climate. We monitored seasonal changes of leaf and stem water relations of Salvia officinalis L. in order to highlight strategies adopted by this species to survive in harsh environmental conditions. During summer drought, the water potential dropped below the turgor loss point thus reducing water loss by transpiration, whereas the photosynthetic efficiency remained relatively high. Leaves lost their water transport efficiency earlier than stems, although in both plant organs P50 (water potential inducing 50% loss of hydraulic conductivity) indicated surprisingly high vulnerability when compared with other drought-tolerant species. The fast recovery of leaf turgor upon restoration of soil water availability suggests that the reduction of leaf hydraulic conductance is not only a consequence of vein embolism, but cell shrinkage and consequent increase of resistance in the extra-xylem pathway may play an important role. We conclude that the drought tolerance of S. officinalis arises at least partly as a consequence of vulnerability segmentation.
Collapse
Affiliation(s)
- Tadeja Savi
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italia
| | - Maria Marin
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italia
| | - Jessica Luglio
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italia
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italia
| | - Sefan Mayr
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italia
| |
Collapse
|
96
|
Braga NDS, Vitória AP, Souza GM, Barros CF, Freitas L. Weak relationships between leaf phenology and isohydric and anisohydric behavior in lowland wet tropical forest trees. Biotropica 2016. [DOI: 10.1111/btp.12324] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Angela P. Vitória
- Laboratório de Ciências Ambientais; Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense; Av. Alberto Lamego 2000 sala 205 28013-602 Campos dos Goytacazes RJ Brazil
| | - Gustavo Maia Souza
- Departamento de Botânica Instituto de Biologia; Universidade Federal de Pelotas - UFPel; Campus Universitário S/N C.P. 345 96010-900 Capão do Leão RS Brazil
| | - Claudia F. Barros
- Jardim Botânico do Rio de Janeiro; Rua Pacheco Leão 915 22460-030 Rio de Janeiro RJ Brazil
| | - Leandro Freitas
- Jardim Botânico do Rio de Janeiro; Rua Pacheco Leão 915 22460-030 Rio de Janeiro RJ Brazil
| |
Collapse
|
97
|
The Greenness of Major Shrublands in China Increased from 2001 to 2013. REMOTE SENSING 2016. [DOI: 10.3390/rs8020121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
98
|
Climatic events inducing die-off in Mediterranean shrublands: are species’ responses related to their functional traits? Oecologia 2016; 180:961-73. [DOI: 10.1007/s00442-016-3550-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 01/04/2016] [Indexed: 11/25/2022]
|
99
|
Liu YY, Song J, Wang M, Li N, Niu CY, Hao GY. Coordination of xylem hydraulics and stomatal regulation in keeping the integrity of xylem water transport in shoots of two compound-leaved tree species. TREE PHYSIOLOGY 2015. [PMID: 26209618 DOI: 10.1093/treephys/tpv061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hydraulic segmentation between proximal and distal organs has been hypothesized to be an important protective mechanism for plants to minimize the detrimental effects of drought-induced hydraulic failure. Uncertainties still exist regarding the degree of segmentation and the role of stomatal regulation in keeping hydraulic integrity of organs at different hierarchies. In the present study, we measured hydraulic conductivity and vulnerability in stems, compound leaf petioles and leaflet laminas of Fraxinus mandshurica Rupr. and Juglans mandshurica Maxim. growing in Changbai Mountain of Northeast China to identify the main locality where hydraulic segmentation occurs along the shoot water transport pathway. Stomatal conductance in response to leaf water potential change was also measured to investigate the role of stomatal regulation in avoiding extensive transpiration-induced embolism. No major contrasts were found between stems and compound leaf petioles in either hydraulic conductivity or vulnerability to drought-induced embolism, whereas a large difference in hydraulic vulnerability exists between compound leaf petioles and leaflet laminas. Furthermore, in contrast to the relatively large safety margins in stems (4.13 and 2.04 MPa) and compound leaf petioles (1.33 and 1.93 MPa), leaflet lamina hydraulic systems have substantially smaller or even negative safety margins (-0.17 and 0.47 MPa) in F. mandshurica and J. mandshurica. Under unstressed water conditions, gas exchange may be better optimized by allowing leaflet vascular system function with small safety margins. In the meantime, hydraulic safety of compound leaf petioles and stems are guaranteed by their large safety margins. In facing severe drought stress, larger safety margins in stems than in compound leaf petioles would allow plants to minimize the risk of catastrophic embolism in stems by sacrificing the whole compound leaves. A strong coordination between hydraulic and stomatal regulation appears to play a critical role in balancing the competing efficiency and safety requirements for xylem water transport and use in plants.
Collapse
Affiliation(s)
- Yan-Yan Liu
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Song
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Wang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| | - Na Li
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| | - Cun-Yang Niu
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-You Hao
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| |
Collapse
|
100
|
Pivovaroff AL, Pasquini SC, De Guzman ME, Alstad KP, Stemke JS, Santiago LS. Multiple strategies for drought survival among woody plant species. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12518] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Alexandria L. Pivovaroff
- Department of Botany & Plant Sciences University of California 2150 Batchelor Hall Riverside CA 92521‐0124 USA
| | - Sarah C. Pasquini
- Department of Botany & Plant Sciences University of California 2150 Batchelor Hall Riverside CA 92521‐0124 USA
| | - Mark E. De Guzman
- Department of Botany & Plant Sciences University of California 2150 Batchelor Hall Riverside CA 92521‐0124 USA
| | - Karrin P. Alstad
- Department of Botany & Plant Sciences University of California 2150 Batchelor Hall Riverside CA 92521‐0124 USA
| | - Jenessa S. Stemke
- Department of Botany & Plant Sciences University of California 2150 Batchelor Hall Riverside CA 92521‐0124 USA
| | - Louis S. Santiago
- Department of Botany & Plant Sciences University of California 2150 Batchelor Hall Riverside CA 92521‐0124 USA
| |
Collapse
|