51
|
Marusic U, Narici M, Simunic B, Pisot R, Ritzmann R. Nonuniform loss of muscle strength and atrophy during bed rest: a systematic review. J Appl Physiol (1985) 2021; 131:194-206. [PMID: 33703945 DOI: 10.1152/japplphysiol.00363.2020] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Muscle atrophy and decline in muscle strength appear very rapidly with prolonged disuse or mechanical unloading after acute hospitalization or experimental bed rest. The current study analyzed data from short-, medium-, and long-term bed rest (5-120 days) in a pooled sample of 318 healthy adults and modeled the mathematical relationship between muscle strength decline and atrophy. The results show a logarithmic disuse-induced loss of strength and muscle atrophy of the weight-bearing knee extensor muscles. The greatest rate of muscle strength decline and atrophy occurred in the earliest stages of bed rest, plateauing later, and likely contributed to the rapid neuromuscular loss of function in the early period. In addition, during the first 2 wk of bed rest, muscle strength decline is much faster than muscle atrophy: on day 5, the ratio of muscle atrophy to strength decline as a function of bed rest duration is 4.2, falls to 2.4 on day 14, and stabilizes to a value of 1.9 after ∼35 days of bed rest. Positive regression revealed that ∼79% of the muscle strength loss may be explained by muscle atrophy, while the remaining is most likely due to alterations in single fiber mechanical properties, excitation-contraction coupling, fiber architecture, tendon stiffness, muscle denervation, neuromuscular junction damage, and supraspinal changes. Future studies should focus on neural factors as well as muscular factors independent of atrophy (single fiber excitability and mechanical properties, architectural factors) and on the role of extracellular matrix changes. Bed rest results in nonuniform loss of isometric muscle strength and atrophy over time, where the magnitude of change was greater for muscle strength than for atrophy. Future research should focus on the loss of muscle function and the underlying mechanisms, which will aid in the development of countermeasures to mitigate or prevent the decline in neuromuscular efficiency.NEW & NOTEWORTHY Our study contributes to the characterization of muscle loss and weakness processes reflected by a logarithmic decline in muscle strength induced by chronic bed rest. Acute short-term hospitalization (≤5 days) associated with periods of disuse/immobilization/prolonged time in the supine position in the hospital bed is sufficient to significantly decrease muscle mass and size and induce functional changes related to weakness in maximal muscle strength. By bringing together integrated evaluation of muscle structure and function, this work identifies that 79% of the loss in muscle strength can be explained by muscle atrophy, leaving 21% of the functional loss unexplained. The outcomes of this study should be considered in the development of daily countermeasures for preserving neuromuscular integrity as well as preconditioning interventions to be implemented before clinical bed rest or chronic gravitational unloading (e.g., spaceflights).
Collapse
Affiliation(s)
- Uros Marusic
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia.,Department of Health Sciences, Alma Mater Europaea-European Center of Maribor, Maribor, Slovenia
| | - Marco Narici
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Bostjan Simunic
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia
| | - Rado Pisot
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia
| | | |
Collapse
|
52
|
Solbiati S, Martin-Yebra A, Vaïda P, Caiani EG. Evaluation of Cardiac Circadian Rhythm Deconditioning Induced by 5-to-60 Days of Head-Down Bed Rest. Front Physiol 2021; 11:612188. [PMID: 33519517 PMCID: PMC7838678 DOI: 10.3389/fphys.2020.612188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Head-down tilt (HDT) bed rest elicits changes in cardiac circadian rhythms, generating possible adverse health outcomes such as increased arrhythmic risk. Our aim was to study the impact of HDT duration on the circadian rhythms of heart beat (RR) and ventricular repolarization (QTend) duration intervals from 24-h Holter ECG recordings acquired in 63 subjects during six different HDT bed rest campaigns of different duration (two 5-day, two 21-day, and two 60-day). Circadian rhythms of RR and QTend intervals series were evaluated by Cosinor analysis, resulting in a value of midline (MESOR), oscillation amplitude (OA) and acrophase (φ). In addition, the QTc (with Bazett correction) was computed, and day-time, night-time, maximum and minimum RR, QTend and QTc intervals were calculated. Statistical analysis was conducted, comparing: (1) the effects at 5 (HDT5), 21 (HDT21) and 58 (HDT58) days of HDT with baseline (PRE); (2) trends in recovery period at post-HDT epochs (R) in 5-day, 21-day, and 60-day HDT separately vs. PRE; (3) differences at R + 0 due to bed rest duration; (4) changes between the last HDT acquisition and the respective R + 0 in 5-day, 21-day, and 60-day HDT. During HDT, major changes were observed at HDT5, with increased RR and QTend intervals' MESOR, mostly related to day-time lengthening and increased minima, while the QTc shortened. Afterward, a progressive trend toward baseline values was observed with HDT progression. Additionally, the φ anticipated, and the OA was reduced during HDT, decreasing system's ability to react to incoming stimuli. Consequently, the restoration of the orthostatic position elicited the shortening of RR and QTend intervals together with QTc prolongation, notwithstanding the period spent in HDT. However, the magnitude of post-HDT changes, as well as the difference between the last HDT day and R + 0, showed a trend to increase with increasing HDT duration, and 5/7 days were not sufficient for recovering after 60-day HDT. Additionally, the φ postponed and the OA significantly increased at R + 0 compared to PRE after 5-day and 60-day HDT, possibly increasing the arrhythmic risk. These results provide evidence that continuous monitoring of astronauts' circadian rhythms, and further investigations on possible measures for counteracting the observed modifications, will be key for future missions including long periods of weightlessness and gravity transitions, for preserving astronauts' health and mission success.
Collapse
Affiliation(s)
- Sarah Solbiati
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.,Institute of Electronics, Computer and Telecommunication Engineering, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Alba Martin-Yebra
- Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina, BSICoS Group, Universidad de Zaragoza, Zaragoza, Spain
| | - Pierre Vaïda
- College of Health Sciences, University of Bordeaux, Bordeaux, France
| | - Enrico G Caiani
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.,Institute of Electronics, Computer and Telecommunication Engineering, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
53
|
Bass JJ, Hardy EJO, Inns TB, Wilkinson DJ, Piasecki M, Morris RH, Spicer A, Sale C, Smith K, Atherton PJ, Phillips BE. Atrophy Resistant vs. Atrophy Susceptible Skeletal Muscles: "aRaS" as a Novel Experimental Paradigm to Study the Mechanisms of Human Disuse Atrophy. Front Physiol 2021; 12:653060. [PMID: 34017264 PMCID: PMC8129522 DOI: 10.3389/fphys.2021.653060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/01/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Disuse atrophy (DA) describes inactivity-induced skeletal muscle loss, through incompletely defined mechanisms. An intriguing observation is that individual muscles exhibit differing degrees of atrophy, despite exhibiting similar anatomical function/locations. We aimed to develop an innovative experimental paradigm to investigate Atrophy Resistant tibialis anterior (TA) and Atrophy Susceptible medial gastrocnemius (MG) muscles (aRaS) with a future view of uncovering central mechanisms. METHOD Seven healthy young men (22 ± 1 year) underwent 15 days unilateral leg immobilisation (ULI). Participants had a single leg immobilised using a knee brace and air-boot to fix the leg (75° knee flexion) and ankle in place. Dual-energy X-ray absorptiometry (DXA), MRI and ultrasound scans of the lower leg were taken before and after the immobilisation period to determine changes in muscle mass. Techniques were developed for conchotome and microneedle TA/MG muscle biopsies following immobilisation (both limbs), and preliminary fibre typing analyses was conducted. RESULTS TA/MG muscles displayed comparable fibre type distribution of predominantly type I fibres (TA 67 ± 7%, MG 63 ± 5%). Following 15 days immobilisation, MG muscle volume (-2.8 ± 1.4%, p < 0.05) and muscle thickness decreased (-12.9 ± 1.6%, p < 0.01), with a positive correlation between changes in muscle volume and thickness (R2 = 0.31, p = 0.038). Importantly, both TA muscle volume and thickness remained unchanged. CONCLUSION The use of this unique "aRaS" paradigm provides an effective and convenient means by which to study the mechanistic basis of divergent DA susceptibility in humans, which may facilitate new mechanistic insights, and by extension, mitigation of skeletal muscle atrophy during human DA.
Collapse
Affiliation(s)
- Joseph J. Bass
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
| | - Edward J. O. Hardy
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
- Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby, United Kingdom
| | - Thomas B. Inns
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
| | - Daniel J. Wilkinson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
| | - Mathew Piasecki
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
| | - Robert H. Morris
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Abi Spicer
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Ken Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
| | - Philip J. Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
- Philip J. Atherton,
| | - Bethan E. Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Bethan E. Phillips,
| |
Collapse
|
54
|
Resistance Exercises in Early Functional Rehabilitation for Achilles Tendon Ruptures Are Poorly Described: A Scoping Review. J Orthop Sports Phys Ther 2020; 50:681-690. [PMID: 33094667 PMCID: PMC8168134 DOI: 10.2519/jospt.2020.9463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To (1) describe which resistance exercises are used in the first 8 weeks of treatment for acute Achilles tendon rupture and (2) assess the completeness of reporting of the exercise descriptions. DESIGN Scoping review. LITERATURE SEARCH We searched the MEDLINE, Embase, CINAHL, Cochrane Library, and Physiotherapy Evidence Database (PEDro) databases. STUDY SELECTION CRITERIA Randomized controlled trials, cohort studies, and case series (10 or more participants) that reported using resistance exercise in the immobilization period in the first 8 weeks of treatment for acute Achilles tendon rupture were included. DATA SYNTHESIS Completeness of exercise description was assessed with the Consensus on Exercise Reporting Template (CERT) and the Toigo and Boutellier exercise descriptor framework. RESULTS Thirty-eight studies were included. Fifty-one resistance exercises were extracted and categorized as isometric exercises (n = 20), heel raises (n = 6), strengthening with external resistance (n = 13), or unspecified (n = 12). A median of 8 (interquartile range, 6-10) of a possible 19 CERT items was reported. The amount of items described of the 13 Toigo and and Boutellier exercise descriptors ranged from 0 to 11. CONCLUSION A variety of resistance exercises targeted at the ankle plantar flexors were used as part of early functional rehabilitation after Achilles tendon rupture. However, most studies provided inadequate description of resistance exercise interventions. J Orthop Sports Phys Ther 2020;50(12):681-691. Epub 23 Oct 2020. doi:10.2519/jospt.2020.9463.
Collapse
|
55
|
Collins J, Maughan RJ, Gleeson M, Bilsborough J, Jeukendrup A, Morton JP, Phillips SM, Armstrong L, Burke LM, Close GL, Duffield R, Larson-Meyer E, Louis J, Medina D, Meyer F, Rollo I, Sundgot-Borgen J, Wall BT, Boullosa B, Dupont G, Lizarraga A, Res P, Bizzini M, Castagna C, Cowie CM, D'Hooghe M, Geyer H, Meyer T, Papadimitriou N, Vouillamoz M, McCall A. UEFA expert group statement on nutrition in elite football. Current evidence to inform practical recommendations and guide future research. Br J Sports Med 2020; 55:416. [PMID: 33097528 DOI: 10.1136/bjsports-2019-101961] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 01/09/2023]
Abstract
Football is a global game which is constantly evolving, showing substantial increases in physical and technical demands. Nutrition plays a valuable integrated role in optimising performance of elite players during training and match-play, and maintaining their overall health throughout the season. An evidence-based approach to nutrition emphasising, a 'food first' philosophy (ie, food over supplements), is fundamental to ensure effective player support. This requires relevant scientific evidence to be applied according to the constraints of what is practical and feasible in the football setting. The science underpinning sports nutrition is evolving fast, and practitioners must be alert to new developments. In response to these developments, the Union of European Football Associations (UEFA) has gathered experts in applied sports nutrition research as well as practitioners working with elite football clubs and national associations/federations to issue an expert statement on a range of topics relevant to elite football nutrition: (1) match day nutrition, (2) training day nutrition, (3) body composition, (4) stressful environments and travel, (5) cultural diversity and dietary considerations, (6) dietary supplements, (7) rehabilitation, (8) referees and (9) junior high-level players. The expert group provide a narrative synthesis of the scientific background relating to these topics based on their knowledge and experience of the scientific research literature, as well as practical experience of applying knowledge within an elite sports setting. Our intention is to provide readers with content to help drive their own practical recommendations. In addition, to provide guidance to applied researchers where to focus future efforts.
Collapse
Affiliation(s)
- James Collins
- Intra Performance Group, London, UK.,Performance and Research Team, Arsenal Football Club, London, UK
| | | | - Michael Gleeson
- School of Sports Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Johann Bilsborough
- Faculty of Health, University of Technology, Sydney, New South Wales, Australia.,New England Patriots, Foxboro, MA, USA
| | - Asker Jeukendrup
- School of Sports Exercise and Health Sciences, Loughborough University, Loughborough, UK.,MySport Science, Birmingham, UK
| | - James P Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - S M Phillips
- Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Lawrence Armstrong
- Human Performance Laboratory, University of Connecticut, Storrs, CT, USA
| | - Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Graeme L Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Rob Duffield
- Faculty of Health, University of Technology, Sydney, New South Wales, Australia.,Medical Department, Football Federation Australia, Sydney, New South Wales, Australia
| | - Enette Larson-Meyer
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Julien Louis
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Daniel Medina
- Athlete Care and Performance, Monumental Sports & Entertainment, Washington, DC, USA
| | - Flavia Meyer
- Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ian Rollo
- School of Sports Exercise and Health Sciences, Loughborough University, Loughborough, UK.,PepsiCo Life Sciences, Global R&D, Gatorade Sports Science Institute, Birmingham, UK
| | | | - Benjamin T Wall
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | - Gregory Dupont
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | | | - Peter Res
- Dutch Olympic Team, Amsterdam, Netherlands
| | - Mario Bizzini
- Research and Human Performance Lab, Schulthess Clinic, Zurich, Switzerland
| | - Carlo Castagna
- University of Rome Tor Vergata, Rome, Italy.,Technical Department, Italian Football Federation (FIGC), Florence, Italy.,Italian Football Referees Association, Bologna, Italy
| | - Charlotte M Cowie
- Technical Directorate, Football Association, Burton upon Trent, UK.,Medical Committee, UEFA, Nyon, Switzerland
| | - Michel D'Hooghe
- Medical Committee, UEFA, Nyon, Switzerland.,Medical Centre of Excelence, Schulthess Clinic, Zurich, Switzerland
| | - Hans Geyer
- Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Tim Meyer
- Medical Committee, UEFA, Nyon, Switzerland.,Institute of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany
| | | | | | - Alan McCall
- Performance and Research Team, Arsenal Football Club, London, UK .,Medical Department, Football Federation Australia, Sydney, New South Wales, Australia.,Sport, Exercise and Health Sciences, School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| |
Collapse
|
56
|
Mekjavic IB, Eiken O, Mekjavic PJ, McDonnell AC. Do females and males exhibit a similar sarcopenic response as a consequence of normoxic and hypoxic bed rest? Exp Physiol 2020; 106:37-51. [PMID: 33016528 DOI: 10.1113/ep087834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do females and males exhibit a similar sarcopenic response as a consequence of normoxic and hypoxic bed rest? What is the main finding and its importance? During 10-day bed rest, exposure to a simulated (normobaric hypoxia) altitude of ∼4000 m does not exert additional significant structural or functional effect on the weight-bearing muscles in females compared to those noted under normoxic conditions. Whereas males and females exhibit decrements in muscle cross-sectional area and mass during normoxic and hypoxic bed rest, a concomitant strength decrement was only observed in males. ABSTRACT This study investigated the effects of hypoxia on the known processes of adaptation of body composition and muscle function to normoxic inactivity. Females (n = 12) and males (n = 11) took part in the following interventions: hypoxic ambulation (HAMB; ∼4000 m); hypoxic bed rest (HBR; ∼4000 m) and normoxic bed rest (NBR). Prior to and immediately following each intervention, body composition, thigh and lower leg cross-sectional area (CSA) and isometric muscular strength were recorded. Participants lost body mass (HAMB: male -1.5 ± 0.9 kg, female -1.9 ± 0.7 kg; HBR: male -2.0 ± 1.8 kg, female -2.4 ± 0.8 kg; NBR: male -1.4 ± 1.3 kg, female -1.4 ± 0.9 kg) and lean mass (HAMB: male -3.9 ± 3.0%, female -3.4 ± 2.0%; HBR: male -4.0 ± 4.4%, female -4.1 ± 2.0%; NBR: male -4.0 ± 3.4%, female -2.2 ± 2.7%) with no between-condition or sex differences. Knee extension decreased for males in NBR compared to HAMB (HAMB: male -0.2 ± 9.1%, female 1.3 ± 4.9%; HBR: male -7.8 ± 10.3%, female -3.3 ± 10.9%; NBR: male -14.5 ± 11%, female -3.4 ± 6.9%). Loss of force during maximal voluntary contraction (MVC) in the knee extensors was significantly different between males and females following NBR. There were no other significant changes noted following the experimental interventions. There were no differences recorded between sexes in maximal MVC for elbow or ankle joints. Female lower leg CSA decreased following bed rest (HAMB: -4.5 ± 2.0%; HBR: -9.9 ± 2.6%; NBR: -8.0 ± 1.6%). These findings indicate that a 10-day hypoxic bed rest does not exert any significant additional effect on muscle atrophy when compared to NBR, except for female thigh CSA. In contrast to males, who exhibited a significant loss of muscle strength, no such decrement in strength was observed in the female participants.
Collapse
Affiliation(s)
- Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Centre, Royal Institute of Echnology, Stockholm, Sweden
| | | | - Adam C McDonnell
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
57
|
Stokes KA, Jones B, Bennett M, Close GL, Gill N, Hull JH, Kasper AM, Kemp SP, Mellalieu SD, Peirce N, Stewart B, Wall BT, West SW, Cross M. Returning to Play after Prolonged Training Restrictions in Professional Collision Sports. Int J Sports Med 2020; 41:895-911. [PMID: 32483768 PMCID: PMC7799169 DOI: 10.1055/a-1180-3692] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic in 2020 has resulted in widespread training disruption in many sports. Some athletes have access to facilities and equipment, while others have limited or no access, severely limiting their training practices. A primary concern is that the maintenance of key physical qualities (e. g. strength, power, high-speed running ability, acceleration, deceleration and change of direction), game-specific contact skills (e. g. tackling) and decision-making ability, are challenged, impacting performance and injury risk on resumption of training and competition. In extended periods of reduced training, without targeted intervention, changes in body composition and function can be profound. However, there are strategies that can dramatically mitigate potential losses, including resistance training to failure with lighter loads, plyometric training, exposure to high-speed running to ensure appropriate hamstring conditioning, and nutritional intervention. Athletes may require psychological support given the challenges associated with isolation and a change in regular training routine. While training restrictions may result in a decrease in some physical and psychological qualities, athletes can return in a positive state following an enforced period of rest and recovery. On return to training, the focus should be on progression of all aspects of training, taking into account the status of individual athletes.
Collapse
Affiliation(s)
- Keith A. Stokes
- Department for Health, University of Bath, Bath, United Kingdom of Great
Britain and Northern Ireland
- Medical Services, Rugby Football Union, Twickenham, United Kingdom of Great
Britain and Northern Ireland
| | - Ben Jones
- Carnegie Applied Rugby Research (CARR) Centre, Leeds Beckett University
Carnegie Faculty, Leeds, United Kingdom of Great Britain and Northern
Ireland
- Leeds Rhinos Rugby League Club, Leeds, United Kingdom of Great Britain and
Northern Ireland
- England Performance Unit, Rugby Football League Ltd, Leeds, United Kingdom
of Great Britain and Northern Ireland
- Division of Exercise Science and Sports Medicine, University of Cape Town,
Faculty of Health Sciences, Cape Town, South Africa
| | - Mark Bennett
- Rugby Union of Russia, Moscow, Russian Federation
- Applied Sport Technology Exercise and Medicine Research Centre (A-STEM),
Swansea University College of Engineering, Swansea, United Kingdom of Great Britain
and Northern Ireland
| | - Graeme L. Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores
University, Liverpool, United Kingdom of Great Britain and Northern
Irelan
- Professional Rugby Department, Rugby Football Union, Twickenham, United
Kingdom of Great Britain and Northern Ireland
| | - Nicholas Gill
- New Zealand Rugby Union, Wellington, New Zealand
- Te HuatakiWaiora School of Health, University of Waikato, Hamilton, New
Zealand
| | - James H. Hull
- Department of Respiratory Medicine, Royal Brompton Hospital, London, United
Kingdom of Great Britain and Northern Ireland
| | - Andreas M. Kasper
- Professional Rugby Department, Rugby Football Union, Twickenham, United
Kingdom of Great Britain and Northern Ireland
| | - Simon P.T. Kemp
- Medical Services, Rugby Football Union, Twickenham, United Kingdom of Great
Britain and Northern Ireland
| | - Stephen D. Mellalieu
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan
University, Cardiff, United Kingdom of Great Britain and Northern
Ireland
| | - Nicholas Peirce
- Sport Science & Medicine, England and Wales Cricket Board,
Loughborough, United Kingdom of Great Britain and Northern Ireland
| | - Bob Stewart
- Medical Services, Rugby Football Union, Twickenham, United Kingdom of Great
Britain and Northern Ireland
| | - Benjamin T. Wall
- School of Sport and Health Sciences, University of Exeter, Exeter, United
Kingdom of Great Britain and Northern Ireland
| | - Stephen W. West
- Department for Health, University of Bath, Bath, United Kingdom of Great
Britain and Northern Ireland
| | - Matthew Cross
- Department for Health, University of Bath, Bath, United Kingdom of Great
Britain and Northern Ireland
- Professional Rugby Department, Rugby Football Union, Twickenham, United
Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
58
|
Impact of Potential Physiological Changes due to COVID-19 Home Confinement on Athlete Health Protection in Elite Sports: a Call for Awareness in Sports Programming. Sports Med 2020; 50:1417-1419. [PMID: 32468329 PMCID: PMC7254973 DOI: 10.1007/s40279-020-01297-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
59
|
Park J, Stanford DM, Buckner SL, Jessee MB. The acute muscular response to passive movement and blood flow restriction. Clin Physiol Funct Imaging 2020; 40:351-359. [PMID: 32511829 DOI: 10.1111/cpf.12649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/01/2020] [Accepted: 05/28/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE To compare the acute effects of passive movement combined with blood flow restriction (PM + BFR) to passive movement (PM) or blood flow restriction alone (BFR). METHODS A total of 20 healthy participants completed: time control (TC), PM, BFR and PM + BFR (one per leg, over 2 days; randomized). For PM, a dynamometer moved the leg through 3 sets of 15 knee extensions/flexions (90° at 45°/second). For BFR, a cuff was inflated to 80% arterial occlusion pressure on the upper leg. Measurements consisted of anterior muscle thickness at 60% and 70% of the upper leg before and after (-0, -5 and -10 min) conditions, ratings of perceived effort and discomfort before conditions and after each set, and of the vastus lateralis during conditions. Data, presented as mean (SD), were compared using Bayesian RMANOVA, except for perceived effort and discomfort, which were compared using a Friedman's test (non-parametric). RESULTS 60% (Δcm before-after-0: TC = 0.04 [0.09], PM = -0.01 [0.15], BFR = 0.00 [0.11], PM + BFR = 0.01 [0.22]) and 70% (Δcm before-after-0: TC = 0.01 [0.09], PM = -0.01 [0.15], BFR = 0.02 [0.11], PM + BFR = -0.03 [0.22]) muscle thickness did not change. Perceived effort was greater than TC following PM (p = .05) and PM + BFR (p = .001). Perceived discomfort was greater following BFR and PM + BFR compared to TC (all p ≤ .002) and PM (all p ≤ .010). Changes in deoxygenation (e.g. channel 1; ΔμM start set 1-end set 3: TC = 0.9 [1.2], PM = -1.2 [1.9], BFR = 10.3 [2.7], PM + BFR = 10.3 [3.0]) were generally greater with BFR and PM + BFR (BFinclusion = 1.210e + 13). CONCLUSION Acute muscular responses to PM + BFR are not augmented over the effect of BFR alone.
Collapse
Affiliation(s)
- Joonsun Park
- Applied Physiology Laboratory, School of Kinesiology and Nutrition, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Daphney M Stanford
- Applied Human Health and Physical Function Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, USA
| | - Samuel L Buckner
- USF Muscle Laboratory, Division of Exercise Science, University of South Florida, Tampa, FL, USA
| | - Matthew B Jessee
- Applied Human Health and Physical Function Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, USA
| |
Collapse
|
60
|
Brook MS, Wilkinson DJ. Contemporary stable isotope tracer approaches: Insights into skeletal muscle metabolism in health and disease. Exp Physiol 2020; 105:1081-1089. [PMID: 32362047 DOI: 10.1113/ep087492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review discusses the application of new stable isotope tracer techniques in understanding the control of skeletal muscle mass. What advances does it highlight? This review highlights current advances in stable isotope tracer techniques through their combination with high-throughput proteomics technologies. ABSTRACT Beyond its primary locomotory and key structural functions, skeletal muscle provides additional vital roles for maintenance of metabolic health, acting as a storage point for glucose and intramuscular lipids for energy production, alongside being the largest reservoir for amino acids in the body. Therefore, maintenance of muscle mass is key to the promotion of health and well-being across the lifespan and in several disease states. As such, when skeletal muscle is lost, in either clinical (cancer, organ failure etc.) or non-clinical (ageing, inactivity) situations, there are potentially devastating consequences attached, with robust links existing between muscle mass loss and mortality. Great efforts are being made to reverse or slow muscle mass declines in health and disease, through combinations of lifestyle changes and nutritional and/or pharmaceutical intervention. However, despite this comprehensive research effort, the underlying metabolic and molecular mechanisms have yet to be defined properly. However, with the rapid acceleration of analytical developments over recent years, the application of stable isotope tracers to the study of human muscle metabolism is providing unique insights into the mechanisms controlling skeletal muscle loss and allowing more targeted therapeutic strategies to be developed. The aim of this review is to highlight the technical breakthroughs in our understanding of muscle wasting in health and disease and how future directions and developments incorporating 'omics' with stable isotope tracers will allow for a more personalized and stratified therapeutic approach.
Collapse
Affiliation(s)
- Matthew S Brook
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK.,School of Life Science, Queen's Medical Centre, Nottingham, UK
| | - Daniel J Wilkinson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK.,Division of Health Sciences and Graduate Entry Medicine, School of Medicine, Royal Derby Hospital Centre, Derby, UK
| |
Collapse
|
61
|
Narici M, Vito GD, Franchi M, Paoli A, Moro T, Marcolin G, Grassi B, Baldassarre G, Zuccarelli L, Biolo G, di Girolamo FG, Fiotti N, Dela F, Greenhaff P, Maganaris C. Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: Physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures. Eur J Sport Sci 2020; 21:614-635. [PMID: 32394816 DOI: 10.1080/17461391.2020.1761076] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic is an unprecedented health crisis as entire populations have been asked to self-isolate and live in home-confinement for several weeks to months, which in itself represents a physiological challenge with significant health risks. This paper describes the impact of sedentarism on the human body at the level of the muscular, cardiovascular, metabolic, endocrine and nervous systems and is based on evidence from several models of inactivity, including bed rest, unilateral limb suspension, and step-reduction. Data form these studies show that muscle wasting occurs rapidly, being detectable within two days of inactivity. This loss of muscle mass is associated with fibre denervation, neuromuscular junction damage and upregulation of protein breakdown, but is mostly explained by the suppression of muscle protein synthesis. Inactivity also affects glucose homeostasis as just few days of step reduction or bed rest, reduce insulin sensitivity, principally in muscle. Additionally, aerobic capacity is impaired at all levels of the O2 cascade, from the cardiovascular system, including peripheral circulation, to skeletal muscle oxidative function. Positive energy balance during physical inactivity is associated with fat deposition, associated with systemic inflammation and activation of antioxidant defences, exacerbating muscle loss. Importantly, these deleterious effects of inactivity can be diminished by routine exercise practice, but the exercise dose-response relationship is currently unknown. Nevertheless, low to medium-intensity high volume resistive exercise, easily implementable in home-settings, will have positive effects, particularly if combined with a 15-25% reduction in daily energy intake. This combined regimen seems ideal for preserving neuromuscular, metabolic and cardiovascular health.
Collapse
Affiliation(s)
- Marco Narici
- Department of Biomedical Sciences, CIR-MYO Myology Center, Neuromuscular Physiology Laboratory, University of Padova, Padua, Italy
| | - Giuseppe De Vito
- Department of Biomedical Sciences, CIR-MYO Myology Center, Neuromuscular Physiology Laboratory, University of Padova, Padua, Italy
| | - Martino Franchi
- Department of Biomedical Sciences, Neuromuscular Physiology Laboratory, University of Padova, Padua, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, Nutrition and Exercise Physiology Laboratory, University of Padova, Padua, Italy
| | - Tatiana Moro
- Department of Biomedical Sciences, Nutrition and Exercise Physiology Laboratory, University of Padova, Padua, Italy
| | - Giuseppe Marcolin
- Department of Biomedical Sciences, Nutrition and Exercise Physiology Laboratory, University of Padova, Padua, Italy
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy
| | | | | | - Gianni Biolo
- Department of Internal Medicine, University of Trieste, Ospedale di Cattinara, Trieste, Italy
| | | | - Nicola Fiotti
- Department of Internal Medicine, University of Trieste, Ospedale di Cattinara, Trieste, Italy
| | - Flemming Dela
- Xlab, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Geriatrics, Bispebjerg-Frederiksberg University Hospital, Copenhagen, Denmark
| | - Paul Greenhaff
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Centre for Sport, Exercise and Osteoarthritis Research Versus Arthritis, National Institute for Health Research Nottingham Biomedical Research Centre, School of Life Sciences, The Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | | |
Collapse
|
62
|
Abstract
BACKGROUND Muscle strength loss following immobilisation has been predominantly attributed to rapid muscle atrophy. However, this cannot fully explain the magnitude of muscle strength loss, so changes in neuromuscular function (NMF) may be involved. OBJECTIVES We systematically reviewed literature that quantified changes in muscle strength, size and NMF following periods of limb immobilisation in vivo in humans. METHODS Studies were identified following systematic searches, assessed for inclusion, data extracted and quality appraised by two reviewers. Data were tabulated and reported narratively. RESULTS Forty eligible studies were included, 22 immobilised lower and 18 immobilised upper limbs. Limb immobilisation ranged from 12 h to 56 days. Isometric muscle strength and muscle size declined following immobilisation; however, change magnitude was greater for strength than size. Evoked resting twitch force decreased for lower but increased for upper limbs. Rate of force development either remained unchanged or slowed for lower and typically slowed for upper limbs. Twitch relaxation rate slowed for both lower and upper limbs. Central motor drive typically decreased for both locations, while electromyography amplitude during maximum voluntary contractions decreased for the lower and presented mixed findings for the upper limbs. Trends imply faster rates of NMF loss relative to size earlier in immobilisation periods for all outcomes. CONCLUSIONS Limb immobilisation results in non-uniform loss of isometric muscle strength, size and NMF over time. Different outcomes between upper and lower limbs could be attributed to higher degrees of central neural control of upper limb musculature. Future research should focus on muscle function losses and mechanisms following acute immobilisation. REGISTRATION PROSPERO reference: CRD42016033692.
Collapse
|
63
|
Sinha U, Malis V, Csapo R, Narici M, Sinha S. Magnetic resonance imaging based muscle strain rate mapping during eccentric contraction to study effects of unloading induced by unilateral limb suspension. Eur J Transl Myol 2020; 30:8935. [PMID: 32499902 PMCID: PMC7254429 DOI: 10.4081/ejtm.2019.8935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 11/23/2022] Open
Abstract
Age- and disuse- related loss of muscle force is disproportionately larger than the loss of muscle mass. Earlier studies reported that comparing concentric and eccentric contractions, there is a significant age-related decrease in force only in concentric contractions. Magnetic Resonance Imaging enables mapping of muscle deformation and has been used to study isometric but not eccentric contractions. We report MRI based strain rate mapping of the medial gastrocnemius in subjects pre- and post-unloading induced by Unilateral Limb Suspension. In contrast to isometric contraction, no difference in strain rate indices were observed post-unloading, in conformance with preserved force during eccentric contractions.
Collapse
Affiliation(s)
- Usha Sinha
- Department of Physics, San Diego State University, San Diego, CA, USA
| | - Vadim Malis
- Department of Physics, University of California San Diego, San Diego, CA, USA
| | - Robert Csapo
- Private University for Health Sciences, Medical Informatics and Technology, ISAG, Research Unit for Orthopedic Sports Medicine and Injury Prevention, Hall, Austria
| | - Marco Narici
- Institute of Physiology, Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Shantanu Sinha
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
64
|
The Passive Mechanical Properties of Muscles and Tendons in Children Affected by Osgood-Schlatter Disease. J Pediatr Orthop 2020; 40:e243-e247. [PMID: 31343463 DOI: 10.1097/bpo.0000000000001426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Osgood-Schlatter disease (OSD) is a sports-related disorder involving apophysitis, which affects the tibial tuberosity. The identification of factors related to OSD is important for its prevention and early recovery from the disease. This study aimed to compare the passive mechanical properties of the muscle-tendon unit in children affected by an OSD and healthy children, by using ultrasound real-time tissue elastography. METHODS Eighteen legs affected by OSD (OSD group) and 42 healthy legs (control: CON group) were assessed. The elasticity was obtained from the quadriceps muscles and patella tendon (PT) using real-time tissue elastography. The strain ratio (SR; muscle or tendon/reference ratio: strain rate of the muscle or tendon divided by that of the reference material) was calculated as an indicator of the elasticity of the tissue of interest. RESULTS The SR of the PT in the OSD group was significantly lower than that in the CON group (P<0.05). We found no significant difference between the groups in terms of the SR value of all muscles (P>0.05). CONCLUSIONS The results suggest that a PT with a lower SR may be associated with an OSD and that the passive mechanical properties of the quadriceps muscles have limited association with an OSD. LEVELS OF EVIDENCE Level IV.
Collapse
|
65
|
Fiorilli G, Mariano I, Iuliano E, Giombini A, Ciccarelli A, Buonsenso A, Calcagno G, di Cagno A. Isoinertial Eccentric-Overload Training in Young Soccer Players: Effects on Strength, Sprint, Change of Direction, Agility and Soccer Shooting Precision. J Sports Sci Med 2020; 19:213-223. [PMID: 32132845 PMCID: PMC7039027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
The isoinertial training method owes its efficacy to an accommodated resistance and optimal individualized eccentric overload. The aim of this study was to assess the effects of a 6-week isoinertial eccentric-overload training program - using a flywheel inertial device during the execution of specific soccer exercises - on explosive and reactive strength, sprint ability, change of direction (COD) performance and soccer shooting precision. Thirty-four junior soccer players were randomly assigned to a plyometric training group (PT) (n = 16, aged 13.36 ± 0.80), which underwent a six-week traditional soccer training program, and a flywheel eccentric overload group (FEO) (n = 18, aged 13.21 ± 1.21), which received additional training consisting of two inertial eccentric-overload training sessions per week. Pre and post intervention tests were carried out to assess explosive and reactive strength, sprint ability, COD ability, agility using the Y-agility test (YT) and soccer shooting precision. The FEO showed significantly higher values than the PT in squat jump height (SJh) (p = 0.01), drop jump height (DJh) (p = 0.003), 7 repeated hop test heights (p = 0.001), the Illinois test (ILL) (p = 0.001), and the Loughborough Soccer Shooting Test (SHOT) (p = 0.02). Finally, the FEO showed significant between-group differences in DJh (p = 0.007), ILL (p = 0.0002), YT (p = 0.002), a linear sprint test (SPRINT) (p = 0.001), and SHOT (p = 0.003). These results confirmed the positive effect of isoinertial training. The use of an isoinertial device to overload multidirectional movements in specific sport conditions leads to greater performance improvements than conventional soccer training. The absence of knowledge of the eccentric overload applied by the isoinertial device, which is different in any exercise repetition, may stimulate the athlete's neural adaptations, improving their soccer skills and in particular their soccer shooting precision.
Collapse
Affiliation(s)
- Giovanni Fiorilli
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Intrieri Mariano
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Enzo Iuliano
- Faculty of Psychology, eCampus University, Novedrate, Italy
| | - Arrigo Giombini
- Department of Movement, Human and Health Sciences, Italian University of Sport and Movement of Rome "Foro Italico", Rome, Italy
| | - Antonello Ciccarelli
- Department of Movement, Human and Health Sciences, Italian University of Sport and Movement of Rome "Foro Italico", Rome, Italy
| | - Andrea Buonsenso
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Giuseppe Calcagno
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Alessandra di Cagno
- Department of Movement, Human and Health Sciences, Italian University of Sport and Movement of Rome "Foro Italico", Rome, Italy
| |
Collapse
|
66
|
Sibley AR, Strike S, Moudy SC, Tillin NA. The effects of long‐term muscle disuse on neuromuscular function in unilateral transtibial amputees. Exp Physiol 2020; 105:408-418. [DOI: 10.1113/ep088087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/04/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Amy R. Sibley
- Department of Life SciencesUniversity of Roehampton London UK
- School of Health and Social CareLondon South Bank University London UK
| | - Siobhán Strike
- Department of Life SciencesUniversity of Roehampton London UK
| | - Sarah C. Moudy
- Department of Life SciencesUniversity of Roehampton London UK
- Department of Family MedicineUniversity of North Texas Health Science Center Fort Worth TX USA
| | - Neale A. Tillin
- Department of Life SciencesUniversity of Roehampton London UK
| |
Collapse
|
67
|
English KL, Bloomberg JJ, Mulavara AP, Ploutz-Snyder LL. Exercise Countermeasures to Neuromuscular Deconditioning in Spaceflight. Compr Physiol 2019; 10:171-196. [PMID: 31853963 DOI: 10.1002/cphy.c190005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanical unloading of spaceflight elicits a host of physiological adaptations including reductions in muscle mass, muscle strength, and muscle function and alterations in central interpretation of visual, vestibular, and proprioceptive information. Upon return to a terrestrial, gravitational environment, these result in reduced function and performance, the potential consequences of which will be exacerbated during exploration missions to austere and distant destinations such as the moon and Mars. Exercise is a potent countermeasure to unloading-induced physiological maladaptations and has been employed since the early days of spaceflight. In-flight exercise hardware has evolved from rudimentary and largely ineffective devices to the current suite onboard the International Space Station (ISS) comprised of a cycle ergometer, treadmill, and resistance exercise device; these contemporary devices have either fully protected or significantly attenuated neuromuscular degradation in spaceflight. However, unlike current microgravity operations on the ISS, future exploration missions will include surface operations in partial gravity environments, which will require greater physiological capacity and work output of their crews. For these flights, it is critical to identify physiological thresholds below which task performance will be impaired and to develop exercise countermeasures-both pre- and in-flight-to ensure that crewmembers are able to safely and effectively complete physically demanding mission objectives. © 2020 American Physiological Society. Compr Physiol 10:171-196, 2020.
Collapse
Affiliation(s)
- Kirk L English
- University of Houston-Clear Lake, Houston, Texas, USA.,Exercise and Nutritional Health Institute, University of Houston-Clear Lake, Houston, Texas, USA
| | | | | | | |
Collapse
|
68
|
Koryak YA. Changes in human skeletal muscle architecture and function induced by extended spaceflight. J Biomech 2019; 97:109408. [PMID: 31662199 DOI: 10.1016/j.jbiomech.2019.109408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/20/2019] [Accepted: 10/06/2019] [Indexed: 11/15/2022]
Abstract
The aim of this study was to quantitatively describe the relationships between joint angles and muscle architecture (lengths (Lf) and angles (Θf) of fascicles) of human triceps surae [medial (MG) and lateral (LG) gastrocnemius and soleus (SOL) muscles] invivo for three men-cosmonaut after long-duration spaceflight. Sagittal sonographs of MG, LG, SOL were taken at ankle was positioned at 15° (dorsiflexion), 0° (neutral position), +15°, and +30° (plantarflexion), with the knee at 90° at rest and after a long-duration spaceflight. At each position, longitudinal ultrasonic images of the MG and LG and SOL were obtained while the cosmonauts was relaxed from which fascicle lengths and angles with respect to the aponeuroses were determined. After space flight plantarflexor force declined significantly (26%; p < 0.001). The internal architecture of the GM, and LG, and SOL muscle was significantly altered. In the passive condition, Lf changed from 45, 53, and 39 mm (knee, 0°, ankle, -15°) to 26, 33, and 28 mm (knee, 90° ankle, 30°) for MG, LG, and SOL, respectively. Different lengths and angles of fascicles, and their changes by contraction, might be related to differences in force-producing capabilities of the muscles and elastic characteristics of tendons and aponeuroses. The three heads of the triceps surae muscle substantially differ in architecture, which probably reflects their functional roles. Differences in fiber length and pennation angle that were observed among the muscles and could be associated with differences in force production and in elastic properties of musculo-tendinous complex and aponeuroses.
Collapse
Affiliation(s)
- Yuri A Koryak
- State Scientific Center of the Russian Federation - Institute of Biomedical Problems of the Russian Academy of Sciences, Russia.
| |
Collapse
|
69
|
Stenroth L, Sefa S, Arokoski J, Töyräs J. Does Magnetic Resonance Imaging Provide Superior Reliability for Achilles and Patellar Tendon Cross-Sectional Area Measurements Compared with Ultrasound Imaging? ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:3186-3198. [PMID: 31493954 DOI: 10.1016/j.ultrasmedbio.2019.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the reliability of Achilles and patellar tendon cross-sectional area (CSA) measurement using ultrasound imaging (USI) and magnetic resonance imaging (MRI). Fifteen healthy adults were imaged twice on two occasions, interrupted by a tendon loading protocol. Tendon CSA segmentations were conducted by an experienced and an inexperienced rater blinded to information regarding subject, session and loading status. USI provided good test-retest reliability (intra-class correlation coefficient [ICC] 2,1 > 0.85, standard error of measurement [SEM] 5%-6%), while with MRI it was excellent (ICC 2,1 > 0.92, SEM 4%) for the experienced rater. This study suggests that MRI provides superior reliability for tendon CSA measurements compared with USI. However, the difference in reliability between the methods was small, and the results were inconclusive regarding objectivity and sensitivity to change when assessed based on the effect of loading. We concluded that both methods can be used for reliable CSA measurements of the Achilles and patellar tendons when using a highly standardized measurement protocol and when conducted by an experienced rater.
Collapse
Affiliation(s)
- Lauri Stenroth
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Sandra Sefa
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Jari Arokoski
- Department of Physical and Rehabilitation Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| |
Collapse
|
70
|
Tran PHT, Malmgaard-Clausen NM, Puggaard RS, Svensson RB, Nybing JD, Hansen P, Schjerling P, Zinglersen AH, Couppé C, Boesen M, Magnusson SP, Kjaer M. Early development of tendinopathy in humans: Sequence of pathological changes in structure and tissue turnover signaling. FASEB J 2019; 34:776-788. [PMID: 31914656 DOI: 10.1096/fj.201901309r] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/09/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
Abstract
Overloading of tendon tissue with resulting chronic pain (tendinopathy) is a common disorder in occupational-, leisure- and sports-activity, but its pathogenesis remains poorly understood. To investigate the very early phase of tendinopathy, Achilles and patellar tendons were investigated in 200 physically active patients and 50 healthy control persons. Patients were divided into three groups: symptoms for 0-1 months (T1), 1-2 months (T2) or 2-3 months (T3). Tendinopathic Achilles tendon cross-sectional area determined by ultrasonography (US) was ~25% larger than in healthy control persons. Both Achilles and patellar anterior-posterior diameter were elevated in tendinopathy, and only later in Achilles was the width increased. Increased tendon size was accompanied by an increase in hypervascularization (US Doppler flow) without any change in mRNA for angiogenic factors. From patellar biopsies taken bilaterally, mRNA for most growth factors and tendon components remained unchanged (except for TGF-beta1 and substance-P) in early tendinopathy. Tendon stiffness remained unaltered over the first three months of tendinopathy and was similar to the asymptomatic contra-lateral tendon. In conclusion, this suggests that tendinopathy pathogenesis represents a disturbed tissue homeostasis with fluid accumulation. The disturbance is likely induced by repeated mechanical overloading rather than a partial rupture of the tendon.
Collapse
Affiliation(s)
- Peter H T Tran
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj M Malmgaard-Clausen
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke S Puggaard
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - René B Svensson
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Janus D Nybing
- Department of Radiology, Bispebjerg-Frederiksberg Hospital, Frederiksberg, Denmark
| | - Philip Hansen
- Department of Radiology, Bispebjerg-Frederiksberg Hospital, Frederiksberg, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amanda H Zinglersen
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Couppé
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Physical & Occupational Therapy, Bispebjerg Hospital, Copenhagen, Denmark
| | - Mikael Boesen
- Department of Radiology, Bispebjerg-Frederiksberg Hospital, Frederiksberg, Denmark
| | - S Peter Magnusson
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Physical & Occupational Therapy, Bispebjerg Hospital, Copenhagen, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
71
|
Abstract
The interpretation of cerebral palsy (CP) is closely linked to points of view that are no longer acceptable: 1) the idea that it is primarily a motor problem (posture and movement disorder); 2) the idea that it is only a central (cerebral) pathology; 3) the idea that it is a non-progressive disease (fixed encephalopathy). Actually, the problems that contribute to producing the CP clinical picture are several and complex. First of all, building of the action, starting from subject motivation, through motor imagery and subsequent project elaboration. Sequentially, executive planning, disorder often hidden under the most remarkable alteration of motor patterns and muscle tone. Finally, realization, conditioned by the idea that the locomotor apparatus is only and always the victim of an incapable central nervous system. Little known and very neglected perceptive components can contribute to compromising subject motor control. The influences that primitive changes of musculoskeletal system, often depending on site, nature, size and time of the lesion, exert on the possible choices of the central nervous system are often overlooked. Peripheral structures can in fact modify considerably the expression of palsy (understood as the form of adaptive functions) primitively. At least six different sources of error can be identified in the cerebral palsied child. For a rehabilitative intervention with greater possibilities of effectiveness, it is necessary to recognize and evaluate each of them. Especially as regards the prevention of secondary deformities, the responsibility attributed to physiotherapy must be re-evaluated.
Collapse
Affiliation(s)
- Adriano Ferrari
- Full Professor of Physical and Rehabilitation Medicine, CHIMOMO Department, University of Modena and Reggio Emilia, Modena, Italy - .,UDGEE Mother-Child Department, S. Maria Nuova Hospital, IRCCS AUSL Reggio Emilia, Reggio Emilia, Italy -
| |
Collapse
|
72
|
Park JE, Seong YJ, Kim ES, Park D, Lee Y, Park H, Rha DW. Architectural Changes in the Medial Gastrocnemius on Sonography after Nerve Ablation in Healthy Adults. Yonsei Med J 2019; 60:876-881. [PMID: 31433586 PMCID: PMC6704021 DOI: 10.3349/ymj.2019.60.9.876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/09/2019] [Accepted: 07/17/2019] [Indexed: 11/27/2022] Open
Abstract
Architectural changes in healthy muscle after denervation have not yet been reported. This study aimed to investigate architectural changes in the medial head of the gastrocnemius muscle (GCM) after aesthetic tibial nerve ablation in healthy adults using ultrasonography (US). The effects of tibial nerve ablation were verified by visual observation and surface electromyography analysis. US images of medial GCMs were taken by one trained physician using B-mode and real-time US with a linear-array probe before nerve ablation, at 1 week after nerve ablation and at 3 months after nerve ablation in an anatomic standing position with the feet about shoulder-width apart in 19 healthy adults (17 females and 2 males). Muscle thickness was significantly reduced on the left side at 1 week and 3 months after the procedure and on the right side at 3 months after the procedure (p<0.050). Although fascicle length was not significantly changed, pennation angle was significantly reduced on both sides at 3 months after the procedure (p<0.050). Muscle thickness and pennation angle of the muscle fascicle were significantly reduced, although fascicle length was not significantly changed, after tibial nerve ablation in the medial GCM of healthy adults.
Collapse
Affiliation(s)
- Jae Eun Park
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | | | | | - Dongho Park
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yonghyun Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyerin Park
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Wook Rha
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
73
|
McDonnell AC, Eiken O, Frings-Meuthen P, Rittweger J, Mekjavic IB. The LunHab project: Muscle and bone alterations in male participants following a 10 day lunar habitat simulation. Exp Physiol 2019; 104:1250-1261. [PMID: 31273869 DOI: 10.1113/ep087482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022]
Abstract
NEW FINDINGS What is the central question of this study? It is well established that muscle and bone atrophy in conditions of inactivity or unloading, but there is little information regarding the effect of a hypoxic environment on the time course of these deconditioning physiological systems. What is the main finding and its importance? The main finding is that a horizontal 10 day bed rest in normoxia results in typical muscle atrophy, which is not aggravated by hypoxia. Changes in bone mineral content or in metabolism were not detected after either normoxic or hypoxic bed rest. ABSTRACT Musculoskeletal atrophy constitutes a typical adaptation to inactivity and unloading of weightbearing bones. The reduced-gravity environment in future Moon and Mars habitats is likely to be hypobaric hypoxic, and there is an urgent need to understand the effect of hypoxia on the process of inactivity-induced musculoskeletal atrophy. This was the principal aim of the present study. Eleven males participated in three 10 day interventions: (i) hypoxic ambulatory confinement; (ii) hypoxic bed rest; and (iii) normoxic bed rest. Before and after the interventions, the muscle strength (isometric maximal voluntary contraction), mass (lean mass, by dual-energy X-ray absorptiometry), cross-sectional area and total bone mineral content (determined with peripheral quantitative computed tomography) of the participants were measured. Blood and urine samples were collected before and on the 1st, 4th and 10th day of the intervention and analysed for biomarkers of bone resorption and formation. There was a significant reduction in thigh and lower leg muscle mass and volume after both normoxic and hypoxic bed rests. Muscle strength loss was proportionately greater than the loss in muscle mass for both thigh and lower leg. There was no indication of bone loss. Furthermore, the biomarkers of resorption and formation were not affected by any of the interventions. There was no significant effect of hypoxia on the musculoskeletal variables. Short-term normoxic (10 day) bed rest resulted in muscular deconditioning, but not in the loss of bone mineral content or changes in bone metabolism. Hypoxia did not modify these results.
Collapse
Affiliation(s)
- Adam C McDonnell
- Department of Automation, Biocybernetics and Robotics, Institute Jozef Stefan, Ljubljana, Slovenia
| | - Ola Eiken
- Department of Environmental Physiology, School of Technology and Health, Royal Institute of Technology, Solna, Sweden
| | - Petra Frings-Meuthen
- Institute for Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| | - Joern Rittweger
- Institute for Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany.,Department of Paediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Institute Jozef Stefan, Ljubljana, Slovenia.,Department of Biomedical Sciences and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
74
|
Abstract
Patellar tendinopathy is one of the most common afflictions in jumping sports. This case study outlines the rehabilitation of a professional basketball player diagnosed by magnetic resonance imaging (MRI) with a central core patellar tendinopathy within the proximal enthesis. The player undertook a nutrition and strength-based rehabilitation program combining gelatin ingestion and heavy isometric loading of the patellar tendon designed to produce significant stress relaxation as part of their competition schedule and a whole-body training plan. On follow-up one and a half years into the program an independent orthopedic surgeon declared the tendon normal on MRI. Importantly, the improved MRI results were associated with a decrease in pain and improved performance. This case study provides evidence that a nutritional intervention combined with a rehabilitation program that uses stress relaxation can improve clinical outcomes in elite athletes.
Collapse
|
75
|
Simoneau-Buessinger É, Jakobi JM, Toumi A, Mathys A, Bassement J, Barbier F, Leteneur S. Does Unilateral Lower Limb Amputation Influence Ankle Joint Torque in the Intact Leg? Arch Phys Med Rehabil 2019; 100:1259-1266. [DOI: 10.1016/j.apmr.2018.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 01/11/2023]
|
76
|
Le Sant G, Gross R, Hug F, Nordez A. Influence of low muscle activation levels on the ankle torque and muscle shear modulus during plantar flexor stretching. J Biomech 2019; 93:111-117. [PMID: 31280899 DOI: 10.1016/j.jbiomech.2019.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022]
Abstract
During stretching studies, surface electromyography (sEMG) is used to ensure the passive state of the muscle, for the characterization of passive muscle mechanical properties. Different thresholds (1%, 2% or 5% of maximal) are indifferently used to set "passive state". This study aimed to investigate the effects of a slight activity on the joint and muscle mechanical properties during stretching. The joint torque and muscle shear modulus of the triceps surae muscles were measured in fifteen healthy volunteers during ankle dorsiflexions: (i) in a "fully relaxed" state, (ii) during active conditions where participants were asked to produce an sEMG amplitude of 1%, 2% or 5% of their maximal sEMG amplitude of the triceps surae. The 1% condition was the only that did not result in significant differences in joint torque or shear modulus compared to the relaxed condition. In the 2% condition, increases in joint torque were found at 80% of the maximal angle in dorsiflexion, and in the shear modulus of gastrocnemius medialis and gastrocnemius lateralis at the maximal angle in dorsiflexion. During the 5% condition, joint torque and the shear modulus of gastrocnemius medialis were higher than during relaxed condition at angles larger than 40% of maximal angle in dorsiflexion. The results provide new insights on the thresholds that should be considered for the design of stretching studies. A threshold of 1% seems much more appropriate than a 2% or 5% threshold in healthy participants. Further studies are required to define similar thresholds for patients.
Collapse
Affiliation(s)
- Guillaume Le Sant
- Nantes Université, Movement - Interactions - Performance, MIP, EA 4334, F-44000 Nantes, France; School of Physiotherapy (IFM3R), Nantes, France.
| | - Raphaël Gross
- Nantes Université, CHU Nantes, Movement - Interactions - Performance, MIP, EA 4334, F-44000 Nantes, France
| | - François Hug
- Nantes Université, Movement - Interactions - Performance, MIP, EA 4334, F-44000 Nantes, France; Institut Universitaire de France (IUF), Paris, France; The University of Queensland, Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia
| | - Antoine Nordez
- Nantes Université, Movement - Interactions - Performance, MIP, EA 4334, F-44000 Nantes, France; Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
77
|
Koryak YA. Architectural and functional specifics of the human triceps surae muscle in vivo and its adaptation to microgravity. J Appl Physiol (1985) 2019; 126:880-893. [DOI: 10.1152/japplphysiol.00634.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Long-term exposure to microgravity (μG) is known to reduce the strength of a skeletal muscle contraction and the level of general physical performance in humans, while little is known about its effect on muscle architecture. Architectural and contractile properties of the triceps surae (TS) muscle were determined in vivo for male cosmonauts in response ( n = 8) to a spaceflight (213.0 ± 30.5 days). The maximal voluntary contraction (MVC), tetanic tension ( Ро), and voluntary and electrically evoked contraction times and force deficiency (Pd) were determined. The ankle was positioned at 15° dorsiflexion (−15°) and 0, 15, and 30° plantar flexion, with the knee set at 90°. At each position, longitudinal ultrasonic images of the medial (MG) and lateral (LG) gastrocnemius and soleus (SOL) muscles were obtained while the subject was relaxed. After a spaceflight, MVC and Pо decreased by 42 and 26%, respectively, and Pd increased by 50%. The rate of tension of a voluntary contraction substantially reduced but evoked contractions remained unchanged. In the passive condition, fiber length ( Lf) changed from 43, 57, and 35 mm (knee, 0°; ankle, −15°) to 34, 38, and 25 mm (knee, 0°; ankle, 30°) for MG, LG, and SOL, respectively, and Θf changed from 27, 21, and 23° (knee, 0°; ankle, −15°) to 43, 29, and 34° (knee, 0°; ankle, 30°) for MG, LG, and SOL, respectively. Different Lf and Θf, and their changes after spaceflight, might be related to differences in force-producing capabilities of the muscles and elastic characteristics of tendons and aponeuroses. NEW & NOTEWORTHY The present work was the first to combine measuring the fiber length and pennation angle (ultrasound imaging) as main determinants of mechanical force production and evaluating the muscle function after a long-duration spaceflight. The results demonstrate that muscles with different functional roles may differently respond to unloading, and this circumstance is important to consider when planning rehabilitation after unloading of any kind, paying particular attention to postural muscles.
Collapse
Affiliation(s)
- Yuri A. Koryak
- State Scientific Center of the Russian Federation, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
78
|
Franchi MV, Monti E, Carter A, Quinlan JI, Herrod PJJ, Reeves ND, Narici MV. Bouncing Back! Counteracting Muscle Aging With Plyometric Muscle Loading. Front Physiol 2019; 10:178. [PMID: 30890953 PMCID: PMC6411845 DOI: 10.3389/fphys.2019.00178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 02/12/2019] [Indexed: 12/22/2022] Open
Abstract
The preservation of muscle power is crucial in aging for maintaining mobility and performing daily tasks. Resistance training involving high movement velocities represents a valid strategy to slow down the rate of sarcopenia, counteracting the loss of muscle mass and muscle power. Plyometric exercise may represent an effective training modality for increasing muscle power; however, its application in older populations has been sparingly investigated, as the high impact actions involved may reduce its feasibility for older individuals. By adopting a safer modality of plyometric training, we investigated if a 6-week plyometric training intervention could increase knee extensor muscle size, architecture, force and power in 14 young (YM, age = 25.4 ± 3.5 y; means ± SD) and nine older males (OM, age = 69.7 ± 3.4 y). Volunteers trained 3 times/week using a device similar to a leg press machine where the user was required to bounce against his body mass on a trampoline. Pre-to-post training changes in isometric maximum voluntary torque (MVT), leg extension power and vastus lateralis (VL) architecture were assessed. Muscle power increased in both groups (+27% OM -P < 0.001, 20% YM -P < 0.001), although the total external work performed during the training period was significantly lower for OM (i.e., ~-47%). Both groups showed significant increases in muscle thickness (MT) (+5.8 OM -P < 0.01 vs. +3.8% YM -P < 0.01), fascicle length (Lf) (+8% OM -P < 0.001 vs. +6% YM -P < 0.001), and pennation angle (PA) (+7.5% OM -P < 0.001 vs. +4.1% YM -P < 0.001). The current study shows that trampoline-based plyometric training is an effective intervention producing a rapid increase in muscle mass and power in both young and older individuals. The training modality used in this study seems to particularly benefit the older population, targeting the morphological and functional effects of sarcopenia in human muscle.
Collapse
Affiliation(s)
- Martino V Franchi
- Laboratory for Muscle Plasticity, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Sports Medicine Research Group, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Elena Monti
- Department of Biomedical Sciences, Institute of Physiology, University of Padua, Padua, Italy
| | - Austin Carter
- MRC-ARUK Centre for Musculoskeletal Ageing, University of Nottingham, Derby, United Kingdom
| | - Jonathan I Quinlan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Philip J J Herrod
- MRC-ARUK Centre for Musculoskeletal Ageing, University of Nottingham, Derby, United Kingdom
| | - Neil D Reeves
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - Marco V Narici
- Department of Biomedical Sciences, Institute of Physiology, University of Padua, Padua, Italy
| |
Collapse
|
79
|
Boström A, Channon S, Jokinen T, Junnila J, Hielm-Björkman A, Laitinen-Vapaavuori O. Structural characteristics and predicted functional capacities of epaxial muscles in chondrodystrophic and non-chondrodystrophic dogs with and without suspected intervertebral disc herniation- a preliminary study. Res Vet Sci 2019; 123:204-215. [PMID: 30684907 DOI: 10.1016/j.rvsc.2019.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 10/09/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
Abstract
Epaxial muscle atrophy is related to spinal diseases in dogs. However, the influence of intervertebral disc herniation (IVDH) on the functional capacity of epaxial muscles has not been investigated. We aimed to estimate force and power-generating capacity of epaxial muscles in chondrodystrophic Dachshunds and non-chondrodystrophic Border terriers bred for similar purposes. Further we aimed to compare these features in Dachshunds with and without IVDH. Cadavers of Dachshunds (n = 16) and Border terriers (n = 7) were investigated with MRI. In the absence of clinical information, MRI findings were used to categorize the Dachshunds into affected (n = 8) and non-affected (n = 8). Epaxial muscle mass, muscle belly length, fascicle length, architectural index and physiological cross-sectional area (PCSA) were obtained through dissections, pain and exercise history through questionnaires. Difference between groups and effect of covariates were assessed with ANCOVA models. Dachshunds had greater muscle mass in M. splenius, M. longissimus capitis and M. iliocostalis thoracis (all P < .05). Dachshunds had higher PCSA in M. semispinalis complexus (P = .004) and M. iliocostalis lumborum (P = .016) than Border terriers, which had longer muscle fascicles in these muscles (P = .004 and P = .002, respectively). Affected Dachshunds had longer muscle fascicles than non-affected Dachshunds in M. longissimus thoracis et lumborum (P = .004) and M. longissimus cervicis (P = .011). Body weight had a significant impact on all muscle variables, but pain and exercise had none. Dachshund epaxial muscles have greater potential for force production than those of the Border terrier. This may imply that Dachshunds, due to predisposition to IVDH, require more spinal stability provided by the epaxial muscles.
Collapse
Affiliation(s)
- Anna Boström
- Small Animal Surgery, Department of Equine and Small Animal Medicine, P.O. Box 57, Faculty of Veterinary Medicine, University of Helsinki, 00014, Finland.
| | - Sarah Channon
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, 4 Royal College Street, London NW1 0TU, UK
| | - Tarja Jokinen
- Small Animal Surgery, Department of Equine and Small Animal Medicine, P.O. Box 57, Faculty of Veterinary Medicine, University of Helsinki, 00014, Finland
| | - Jouni Junnila
- 4Pharma Ltd, Arkadiankatu 7, 00100 Helsinki, Finland
| | - Anna Hielm-Björkman
- Small Animal Surgery, Department of Equine and Small Animal Medicine, P.O. Box 57, Faculty of Veterinary Medicine, University of Helsinki, 00014, Finland
| | - Outi Laitinen-Vapaavuori
- Small Animal Surgery, Department of Equine and Small Animal Medicine, P.O. Box 57, Faculty of Veterinary Medicine, University of Helsinki, 00014, Finland
| |
Collapse
|
80
|
Malis V, Sinha U, Csapo R, Narici M, Smitaman E, Sinha S. Diffusion tensor imaging and diffusion modeling: Application to monitoring changes in the medial gastrocnemius in disuse atrophy induced by unilateral limb suspension. J Magn Reson Imaging 2018; 49:1655-1664. [PMID: 30569482 DOI: 10.1002/jmri.26295] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diffusion tensor imaging (DTI) assesses underlying tissue microstructure, and has been applied to studying skeletal muscle. Unloading of the lower leg causes decreases in muscle force, mass, and muscle protein synthesis as well as changes in muscle architecture. PURPOSE To monitor the change in DTI indices in the medial gastrocnemius (MG) after 4-week unilateral limb suspension (ULLS) and to explore the feasibility of extracting tissue microstructural parameters based on a two-compartment diffusion model. STUDY TYPE Prospective cohort study. SUBJECTS Seven moderately active subjects (29.1 ± 5.7 years). FIELD STRENGTH/SEQUENCE 3T, single-shot fat-suppressed echo planar spin echo sequence. ASSESSMENT Suspension-related changes in the DTI indices (eigenvalues: λ1 , λ2 , λ3 , fractional anisotropy; coefficient of planarity) were statistically analyzed. Changes in model-derived tissue parameters (muscle fiber circularity and diameter, intracellular volume fraction, and residence time) after suspension are qualitatively discussed. STATISTICAL TESTS Changes in the DTI indices of the MG between pre- and postsuspension were assessed using repeated-measures two-way analysis of variance (ANOVA). RESULTS All the eigenvalues (λ1 : P = 0.025, λ2 : P = 0.035, λ3 : P = 0.049) as well as anisotropic diffusion coefficient (P = 0.029) were significantly smaller post-ULLS. Diffusion modeling revealed that fibers were more circular (circularity index increased from 0.55 to 0.95) with a smaller diameter (diameter decreased from 82-60 μm) postsuspension. DATA CONCLUSION We have shown that DTI indices change with disuse and modeling can relate these voxel level changes to changes in the tissue microarchitecture. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018.
Collapse
Affiliation(s)
- Vadim Malis
- Muscle Imaging and Modeling Lab, Department of Radiology, UC San Diego, San Diego, California, USA.,Physics, UC San Diego, San Diego, California, USA
| | - Usha Sinha
- Physics, San Diego State University, California, USA
| | - Robert Csapo
- Muscle Imaging and Modeling Lab, Department of Radiology, UC San Diego, San Diego, California, USA.,Institute for Sports Medicine, Alpine Medicine and Health Tourism, University for Health Sciences, Medical Informatics and Technology, Hall, Austria
| | - Marco Narici
- School of Graduate Entry Medicine and Health University of Nottingham, Derby, UK
| | - Edward Smitaman
- Department of Radiology, UC San Diego, San Diego, California, USA
| | - Shantanu Sinha
- Muscle Imaging and Modeling Lab, Department of Radiology, UC San Diego, San Diego, California, USA
| |
Collapse
|
81
|
Assessing sarcopenia with vastus lateralis muscle ultrasound: an operative protocol. Aging Clin Exp Res 2018; 30:1437-1443. [PMID: 29700758 DOI: 10.1007/s40520-018-0958-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Muscle ultrasound (MUS) has so far not been implemented for sarcopenia assessment in clinical geriatric practice due to allegedly low reproducibility of results in the absence of standardization of procedures. However, rigorous and standardized application of this technique yields highly reproducible results. Its application, especially if integrated with clinical evaluation and comprehensive geriatric assessment, proofs very useful for rapidly obtaining information on muscle mass and architecture. OBJECTIVE Here, we present a standardized protocol for performing right vastus lateralis (RVL) MUS and measuring parameters of muscle size and architecture. METHODS RVL muscle thickness (MT), fascicle length (FL), pennation angle (PA), echo-intensity (EI) and cross-sectional area (CSA) can be assessed with this protocol. A portable instrument equipped with a 5-cm long 3-11 mHz linear probe should be used with both B-mode real-time and extended-field-of-view (EFOV) techniques. Longitudinal B-mode and transverse EFOV images should be acquired during each exam, and analyzed with NIH-ImageJ software. CONCLUSIONS This operative protocol represents a good compromise between the feasibility of MUS in clinical settings and the need of obtaining precise measurements of muscle parameters. Future studies should verify the reproducibility of the proposed technique, and its correlation with appendicular lean mass and parameters of muscle function.
Collapse
|
82
|
Pons C, Borotikar B, Garetier M, Burdin V, Ben Salem D, Lempereur M, Brochard S. Quantifying skeletal muscle volume and shape in humans using MRI: A systematic review of validity and reliability. PLoS One 2018; 13:e0207847. [PMID: 30496308 PMCID: PMC6264864 DOI: 10.1371/journal.pone.0207847] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022] Open
Abstract
AIMS The aim of this study was to report the metrological qualities of techniques currently used to quantify skeletal muscle volume and 3D shape in healthy and pathological muscles. METHODS A systematic review was conducted (Prospero CRD42018082708). PubMed, Web of Science, Cochrane and Scopus databases were searched using relevant keywords and inclusion/exclusion criteria. The quality of the articles was evaluated using a customized scale. RESULTS Thirty articles were included, 6 of which included pathological muscles. Most evaluated lower limb muscles. Partially or completely automatic and manual techniques were assessed in 10 and 24 articles, respectively. Manual slice-by-slice segmentation reliability was good-to-excellent (n = 8 articles) and validity against dissection was moderate to good(n = 1). Manual slice-by-slice segmentation was used as a gold-standard method in the other articles. Reduction of the number of manually segmented slices (n = 6) provided good to excellent validity if a sufficient number of appropriate slices was chosen. Segmentation on one slice (n = 11) increased volume errors. The Deformation of a Parametric Specific Object (DPSO) method (n = 5) decreased the number of manually-segmented slices required for any chosen level of error. Other automatic techniques combined with different statistical shape or atlas/images-based methods (n = 4) had good validity. Some particularities were highlighted for specific muscles. Except for manual slice by slice segmentation, reliability has rarely been reported. CONCLUSIONS The results of this systematic review help the choice of appropriate segmentation techniques, according to the purpose of the measurement. In healthy populations, techniques that greatly simplified the process of manual segmentation yielded greater errors in volume and shape estimations. Reduction of the number of manually segmented slices was possible with appropriately chosen segmented slices or with DPSO. Other automatic techniques showed promise, but data were insufficient for their validation. More data on the metrological quality of techniques used in the cases of muscle pathology are required.
Collapse
Affiliation(s)
- Christelle Pons
- Pediatric rehabilitation department, Fondation ILDYS, Brest, France
- Laboratoire de Traitement de l’Information Médicale, INSERM, Brest, France
| | - Bhushan Borotikar
- Laboratoire de Traitement de l’Information Médicale, INSERM, Brest, France
| | - Marc Garetier
- Laboratoire de Traitement de l’Information Médicale, INSERM, Brest, France
- Radiology department, hôpital d'Instruction des Armées Clermont-Tonnerre, Brest, France
| | - Valérie Burdin
- Laboratoire de Traitement de l’Information Médicale, INSERM, Brest, France
- IMT Atlantique, Brest, France
| | - Douraied Ben Salem
- Laboratoire de Traitement de l’Information Médicale, INSERM, Brest, France
- Université de Bretagne Occidentale, Brest, France
- Radiology department, CHRU de Brest, Brest, France
| | - Mathieu Lempereur
- Laboratoire de Traitement de l’Information Médicale, INSERM, Brest, France
- Université de Bretagne Occidentale, Brest, France
- PMR department, CHRU de Brest, Hopital Morvan, Brest, France
| | - Sylvain Brochard
- Pediatric rehabilitation department, Fondation ILDYS, Brest, France
- Laboratoire de Traitement de l’Information Médicale, INSERM, Brest, France
- Université de Bretagne Occidentale, Brest, France
- PMR department, CHRU de Brest, Hopital Morvan, Brest, France
| |
Collapse
|
83
|
Chino K, Takahashi H. Influence of pennation angle on measurement of shear wave elastography: in vivo observation of shear wave propagation in human pennate muscle. Physiol Meas 2018; 39:115003. [DOI: 10.1088/1361-6579/aae7e2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
84
|
Wilkinson D, Piasecki M, Atherton P. The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res Rev 2018; 47:123-132. [PMID: 30048806 PMCID: PMC6202460 DOI: 10.1016/j.arr.2018.07.005] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/20/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022]
Abstract
Loss of muscle mass with age is due to atrophy and loss of individual muscle fibres. Anabolic resistance is fundamental in age-related fibre atrophy. Fibre loss is associated with denervation and remodelling of motor units. The plasticity of both factors should be considered in future research.
Age-related loss of skeletal muscle mass and function, sarcopenia, is associated with physical frailty and increased risk of morbidity (chronic diseases), in addition to all-cause mortality. The loss of muscle mass occurs incipiently from middle-age (∼1%/year), and in severe instances can lead to a loss of ∼50% by the 8–9th decade of life. This review will focus on muscle deterioration with ageing and highlight the two underpinning mechanisms regulating declines in muscle mass and function: muscle fibre atrophy and muscle fibre loss (hypoplasia) – and their measurement. The mechanisms of muscle fibre atrophy in humans relate to imbalances in muscle protein synthesis (MPS) and breakdown (MPB); however, since there is limited evidence for basal alterations in muscle protein turnover, it would appear that “anabolic resistance” to fundamental environmental cues regulating diurnal muscle homeostasis (namely physical activity and nutrition), underlie age-related catabolic perturbations in muscle proteostasis. While the ‘upstream’ drivers of the desensitization of aged muscle to anabolic stimuli are poorly defined, they most likely relate to impaired efficiency of the conversion of nutritional/exercise stimuli into signalling impacting mRNA translation and proteolysis. Additionally, loss of muscle fibres has been shown in cadaveric studies using anatomical fibre counts, and from iEMG studies demonstrating motor unit loss, albeit with few molecular investigations of this in humans. We suggest that defining countermeasures against sarcopenia requires improved understandings of the co-ordinated regulation of muscle fibre atrophy and fibre loss, which are likely to be inextricably linked.
Collapse
|
85
|
Yoshiko A, Yamauchi K, Kato T, Ishida K, Koike T, Oshida Y, Akima H. Effects of post-fracture non-weight-bearing immobilization on muscle atrophy, intramuscular and intermuscular adipose tissues in the thigh and calf. Skeletal Radiol 2018; 47:1541-1549. [PMID: 29948037 DOI: 10.1007/s00256-018-2985-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/22/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Disuse and/or a non-weight-bearing condition changes muscle composition, with decreased skeletal muscle tissue and increased fat within (intramuscular adipose tissue, IntraMAT) and between (intermuscular adipose tissue, InterMAT) given muscles. Excessive adipose tissue contributes to dysfunctional and metabolically impaired muscle. How these adipose tissues change during orthopedic treatment (e.g., cast immobilization, daily use of crutches) is not well documented. This study aimed to quantify changes in IntraMAT, InterMAT, and thigh and calf muscle tissue during orthopedic treatment. MATERIALS AND METHODS We studied 8 patients with fifth metatarsal bone or fibular fractures. The ankle joint involved underwent plaster casting for approximately 4 weeks, with crutches used during that time. Axial T1-weighted MRI at the mid-thigh and a 30% proximal site at the calf were obtained to measure IntraMAT and InterMAT cross-sectional areas (CSAs) and skeletal muscle tissue CSA before treatment and 4 weeks afterward. RESULTS Thigh and calf muscle tissue CSAs were significantly decreased from before to after treatment: thigh, 85.8 ± 7.6 to 77.1 ± 7.3 cm2; calf, 53.3 ± 5.5 to 48.9 ± 5.0 cm2 (p < 0.05). None of the IntraMAT or InterMAT changes was statistically significant. There was a relation between the percentage change of thigh IntraMAT CSA and muscle tissue CSA (rs = -0.86, p < 0.01). CONCLUSIONS The 4 weeks of treatment primarily induced skeletal muscle atrophy with less of an effect on IntraMAT or InterMAT. There is a risk of increasing IntraMAT relatively by decreasing skeletal muscle tissue size during orthopedic treatment.
Collapse
Affiliation(s)
- Akito Yoshiko
- Graduate School of Medicine, Nagoya University, Nagoya, Japan.
| | - Koun Yamauchi
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Department of Orthopedic Surgery, Akita Hospital, Chiryu, Japan
| | - Takayuki Kato
- Department of Orthopedic Surgery, Akita Hospital, Chiryu, Japan
| | - Koji Ishida
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Research Center of Health, Physical Fitness & Sports, Nagoya University, Nagoya, Japan
| | - Teruhiko Koike
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Research Center of Health, Physical Fitness & Sports, Nagoya University, Nagoya, Japan
| | - Yoshiharu Oshida
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Research Center of Health, Physical Fitness & Sports, Nagoya University, Nagoya, Japan
| | - Hiroshi Akima
- Research Center of Health, Physical Fitness & Sports, Nagoya University, Nagoya, Japan
- Graduate School of Education and Human Development, Nagoya University, Nagoya, Japan
| |
Collapse
|
86
|
Parry SM, Chapple LAS, Mourtzakis M. Exploring the Potential Effectiveness of Combining Optimal Nutrition With Electrical Stimulation to Maintain Muscle Health in Critical Illness: A Narrative Review. Nutr Clin Pract 2018; 33:772-789. [PMID: 30358183 DOI: 10.1002/ncp.10213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Muscle wasting occurs rapidly within days of an admission to the intensive care unit (ICU). Concomitant muscle weakness and impaired physical functioning can ensue, with lasting effects well after hospital discharge. Early physical rehabilitation is a promising intervention to minimize muscle weakness and physical dysfunction. However, there is an often a delay in commencing active functional exercises (such as sitting on the edge of bed, standing and mobilizing) due to sedation, patient alertness, and impaired ability to cooperate in the initial days of ICU admission. Therefore, there is high interest in being able to intervene early through nonvolitional exercise strategies such as electrical muscle stimulation (EMS). Muscle health characterized as the composite of muscle quantity, as well as functional and metabolic integrity, may be potentially maintained when optimal nutrition therapy is provided in complement with early physical rehabilitation in critically ill patients; however, the type, dosage, and timing of these interventions are unclear. This article explores the potential role of nutrition and EMS in maintaining muscle health in critical illness. Within this article, we will evaluate fundamental concepts of muscle wasting and evaluate the effects of EMS, as well as the effects of nutrition therapy on muscle health and the clinical and functional outcomes in critically ill patients. We will also highlight current research gaps in order to advance the field forward in this important area.
Collapse
Affiliation(s)
- Selina M Parry
- Department of Physiotherapy, The University of Melbourne, Victoria, Australia
| | - Lee-Anne S Chapple
- Intensive Care Research, Royal Adelaide Hospital, South Australia, Australia
| | | |
Collapse
|
87
|
Rittweger J, Albracht K, Flück M, Ruoss S, Brocca L, Longa E, Moriggi M, Seynnes O, Di Giulio I, Tenori L, Vignoli A, Capri M, Gelfi C, Luchinat C, Francheschi C, Bottinelli R, Cerretelli P, Narici M. Sarcolab pilot study into skeletal muscle's adaptation to long-term spaceflight. NPJ Microgravity 2018; 4:18. [PMID: 30246141 PMCID: PMC6141586 DOI: 10.1038/s41526-018-0052-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022] Open
Abstract
Spaceflight causes muscle wasting. The Sarcolab pilot study investigated two astronauts with regards to plantar flexor muscle size, architecture, and function, and to the underlying molecular adaptations in order to further the understanding of muscular responses to spaceflight and exercise countermeasures. Two crew members (A and B) spent 6 months in space. Crew member A trained less vigorously than B. Postflight, A showed substantial decrements in plantar flexor volume, muscle architecture, in strength and in fiber contractility, which was strongly mitigated in B. The difference between these crew members closely reflected FAK-Y397 abundance, a molecular marker of muscle's loading history. Moreover, crew member A showed downregulation of contractile proteins and enzymes of anaerobic metabolism, as well as of systemic markers of energy and protein metabolism. However, both crew members exhibited decrements in muscular aerobic metabolism and phosphate high energy transfer. We conclude that countermeasures can be effective, particularly when resistive forces are of sufficient magnitude. However, to fully prevent space-related muscular deterioration, intersubject variability must be understood, and intensive exercise countermeasures programs seem mandatory. Finally, proteomic and metabolomic analyses suggest that exercise benefits in space may go beyond mere maintenance of muscle mass, but rather extend to the level of organismic metabolism.
Collapse
Affiliation(s)
- Jörn Rittweger
- 1Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.,2Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Kirsten Albracht
- 3Faculty of Medical Engineering and Technomathematics, FH Aachen University of Applied Science Aachen, Aachen, Germany.,4Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany
| | - Martin Flück
- 5Department of Orthopaedics, University of Zürich, Zürich, Switzerland
| | - Severin Ruoss
- 5Department of Orthopaedics, University of Zürich, Zürich, Switzerland
| | - Lorenza Brocca
- 6Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Emanuela Longa
- 6Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Olivier Seynnes
- 8Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Irene Di Giulio
- 9Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Leonardo Tenori
- 10Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessia Vignoli
- CERM Centro di Ricerca di Risonanze Magnetiche, Florence, Italy
| | - Miriam Capri
- 12Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Cecilia Gelfi
- 13Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | | | - Claudio Francheschi
- 12Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Roberto Bottinelli
- 6Department of Molecular Medicine, University of Pavia, Pavia, Italy.,14Fondazione Salvatore Maugeri (IRCSS), Scientific Institute of Pavia, Pavia, Italy
| | | | - Marco Narici
- 15Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
88
|
Kjær BH, Magnusson SP, Warming S, Henriksen M, Krogsgaard MR, Juul-Kristensen B. Progressive early passive and active exercise therapy after surgical rotator cuff repair - study protocol for a randomized controlled trial (the CUT-N-MOVE trial). Trials 2018; 19:470. [PMID: 30176943 PMCID: PMC6122575 DOI: 10.1186/s13063-018-2839-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/04/2018] [Indexed: 01/08/2023] Open
Abstract
Background Rotator cuff tear is a common cause of shoulder disability and results in patients predominantly complaining of pain and loss of motion and strength. Traumatic rotator cuff tears are typically managed surgically followed by ~ 20 weeks of rehabilitation. However, the timing and intensity of the postoperative rehabilitation strategy required to reach an optimal clinical outcome is unknown. Early controlled and gradually increased tendon loading has been suggested to positively influence tendon healing and recovery. The aim of this trial is therefore to examine the effect of a progressive rehabilitation strategy on pain, physical function and quality of life compared to usual care (that limits tendon loading in the early postoperative phase) in patients who have a rotator cuff repair of a traumatic tear. Methods The current study is a randomized, controlled, outcome-assessor blinded, multicenter, superiority trial with a two-group paralleled design. A total of 100 patients with surgically repaired traumatic rotator cuff tears will be recruited from up to three orthopedic departments in Denmark, and randomized to either a progressive early passive and active movement program or a limited early passive movement program (usual care). The primary outcome measure will be the change from pre-surgery to 12 weeks post-surgery in the Western Ontario Rotator Cuff Index questionnaire. Secondary outcomes include the Disabilities Arm, Shoulder and Hand questionnaire (DASH), range of motion, strength and tendon healing characteristics from ultrasound measurements at 12 months follow up. Discussion We hypothesized that patients who receive the progressive rehabilitation strategy will benefit more with respect to pain reduction, physical function and quality of life than those who receive care as usual. If this is confirmed our study can be used clinically to enhance the recovery of patients with traumatic rotator cuff tear. Trial registration ClinicalTrials.gov, NCT02969135. Registered on 15 November 2016. Electronic supplementary material The online version of this article (10.1186/s13063-018-2839-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Birgitte Hougs Kjær
- Department of Physical and Occupational Therapy, Bispebjerg-Frederiksberg Hospital, Bispebjerg Bakke 23, DK-2400, Copenhagen, Denmark. .,Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| | - S Peter Magnusson
- Department of Physical and Occupational Therapy, Bispebjerg-Frederiksberg Hospital, Bispebjerg Bakke 23, DK-2400, Copenhagen, Denmark.,Institute of Sports Medicine, Department of Orthopaedic Surgery M, Copenhagen Bispebjerg-Frederiksberg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susan Warming
- Department of Physical and Occupational Therapy, Bispebjerg-Frederiksberg Hospital, Bispebjerg Bakke 23, DK-2400, Copenhagen, Denmark
| | - Marius Henriksen
- Department of Physical and Occupational Therapy, Bispebjerg-Frederiksberg Hospital, Bispebjerg Bakke 23, DK-2400, Copenhagen, Denmark.,The Parker Institute, Bispebjerg-Frederiksberg Hospital, Ndr. Fasanvej 57, DK-2000, Frederiksberg, Copenhagen, Denmark
| | - Michael Rindom Krogsgaard
- Section for Sports Traumatology M51, Department of Orthopaedic Surgery, Bispebjerg-Frederiksberg Hospital, Bispebjerg Bakke 23, DK-2400, Copenhagen, Denmark
| | - Birgit Juul-Kristensen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark
| |
Collapse
|
89
|
Kemp GJ, Birrell F, Clegg PD, Cuthbertson DJ, De Vito G, van Dieën JH, Del Din S, Eastell R, Garnero P, Goljanek–Whysall K, Hackl M, Hodgson R, Jackson MJ, Lord S, Mazzà C, McArdle A, McCloskey EV, Narici M, Peffers MJ, Schiaffino S, Mathers JC. Developing a toolkit for the assessment and monitoring of musculoskeletal ageing. Age Ageing 2018; 47:iv1-iv19. [PMID: 30203052 PMCID: PMC6127513 DOI: 10.1093/ageing/afy143] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
The complexities and heterogeneity of the ageing process have slowed the development of consensus on appropriate biomarkers of healthy ageing. The Medical Research Council–Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA) is a collaboration between researchers and clinicians at the Universities of Liverpool, Sheffield and Newcastle. One of CIMA’s objectives is to ‘Identify and share optimal techniques and approaches to monitor age-related changes in all musculoskeletal tissues, and to provide an integrated assessment of musculoskeletal function’—in other words to develop a toolkit for assessing musculoskeletal ageing. This toolkit is envisaged as an instrument that can be used to characterise and quantify musculoskeletal function during ‘normal’ ageing, lend itself to use in large-scale, internationally important cohorts, and provide a set of biomarker outcome measures for epidemiological and intervention studies designed to enhance healthy musculoskeletal ageing. Such potential biomarkers include: biochemical measurements in biofluids or tissue samples, in vivo measurements of body composition, imaging of structural and physical properties, and functional tests. This review assesses candidate biomarkers of musculoskeletal ageing under these four headings, details their biological bases, strengths and limitations, and makes practical recommendations for their use. In addition, we identify gaps in the evidence base and priorities for further research on biomarkers of musculoskeletal ageing.
Collapse
Affiliation(s)
- Graham J Kemp
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease (IACD), University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - Fraser Birrell
- Institute of Cellular Medicine, Musculoskeletal Research Group, Newcastle University, Newcastle upon Tyne, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - Peter D Clegg
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease (IACD), University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - Daniel J Cuthbertson
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease (IACD), University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - Giuseppe De Vito
- School of Public Health, Physiotherapy and Sports Science, Institute for Sport and Health, University College Dublin, Belfield, Dublin, Ireland
| | - Jaap H van Dieën
- Department of Human Movement Sciences, VU University Amsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 9, Amsterdam, The Netherlands
| | - Silvia Del Din
- Clinical Ageing Research Unit, Institute of Neuroscience/Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Richard Eastell
- Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - Patrick Garnero
- Division of Bone Diseases, Geneva University Hospital and Faculty of Medicine, 1205 Geneva, Switzerland
| | - Katarzyna Goljanek–Whysall
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease (IACD), University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | | | - Richard Hodgson
- Centre for Imaging Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, UK
| | - Malcolm J Jackson
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease (IACD), University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - Sue Lord
- Clinical Ageing Research Unit, Institute of Neuroscience/Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Claudia Mazzà
- Department of Mechanical Engineering & INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - Anne McArdle
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease (IACD), University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - Eugene V McCloskey
- Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - Marco Narici
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Derby Royal Hospital, Uttoxeter Road, Derby, UK
| | - Mandy J Peffers
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease (IACD), University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - Stefano Schiaffino
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, Padova, Italy
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine and Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| |
Collapse
|
90
|
Bayer ML, Hoegberget-Kalisz M, Jensen MH, Olesen JL, Svensson RB, Couppé C, Boesen M, Nybing JD, Kurt EY, Magnusson SP, Kjaer M. Role of tissue perfusion, muscle strength recovery, and pain in rehabilitation after acute muscle strain injury: A randomized controlled trial comparing early and delayed rehabilitation. Scand J Med Sci Sports 2018; 28:2579-2591. [DOI: 10.1111/sms.13269] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Monika L. Bayer
- Department of Orthopedic Surgery M; Faculty of Health and Medical Sciences; Institute of Sports Medicine Copenhagen; Bispebjerg Hospital and Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - Maren Hoegberget-Kalisz
- Department of Orthopedic Surgery M; Faculty of Health and Medical Sciences; Institute of Sports Medicine Copenhagen; Bispebjerg Hospital and Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - Mikkel H. Jensen
- Department of Orthopedic Surgery M; Faculty of Health and Medical Sciences; Institute of Sports Medicine Copenhagen; Bispebjerg Hospital and Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - Jens L. Olesen
- Department of Orthopedic Surgery M; Faculty of Health and Medical Sciences; Institute of Sports Medicine Copenhagen; Bispebjerg Hospital and Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
- Research Unit for General Practice in Aalborg; Department of Clinical Medicine; Aalborg University; Aalborg Denmark
| | - Rene B. Svensson
- Department of Orthopedic Surgery M; Faculty of Health and Medical Sciences; Institute of Sports Medicine Copenhagen; Bispebjerg Hospital and Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - Christian Couppé
- Department of Orthopedic Surgery M; Faculty of Health and Medical Sciences; Institute of Sports Medicine Copenhagen; Bispebjerg Hospital and Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
- Department of Physical Therapy; Bispebjerg Hospital; Copenhagen Denmark
| | - Mikael Boesen
- Radiology; Bispebjerg Frederiksberg Hospital; University of Copenhagen; Copenhagen Denmark
| | - Janus D. Nybing
- Radiology; Bispebjerg Frederiksberg Hospital; University of Copenhagen; Copenhagen Denmark
| | - Engin Y. Kurt
- Radiology; Bispebjerg Frederiksberg Hospital; University of Copenhagen; Copenhagen Denmark
| | - S. Peter Magnusson
- Department of Orthopedic Surgery M; Faculty of Health and Medical Sciences; Institute of Sports Medicine Copenhagen; Bispebjerg Hospital and Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
- Department of Physical Therapy; Bispebjerg Hospital; Copenhagen Denmark
| | - Michael Kjaer
- Department of Orthopedic Surgery M; Faculty of Health and Medical Sciences; Institute of Sports Medicine Copenhagen; Bispebjerg Hospital and Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
91
|
Hartley DR, McMahon JJ. The Role of Strength Training for Lower Extremity Tendinopathy. Strength Cond J 2018. [DOI: 10.1519/ssc.0000000000000376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
92
|
Magnusson SP, Kjaer M. The impact of loading, unloading, ageing and injury on the human tendon. J Physiol 2018; 597:1283-1298. [PMID: 29920664 DOI: 10.1113/jp275450] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/30/2018] [Indexed: 12/28/2022] Open
Abstract
A tendon transfers force from the contracting muscle to the skeletal system to produce movement and is therefore a crucial component of the entire muscle-tendon complex and its function. However, tendon research has for some time focused on mechanical properties without any major appreciation of potential cellular and molecular changes. At the same time, methodological developments have permitted determination of the mechanical properties of human tendons in vivo, which was previously not possible. Here we review the current understanding of how tendons respond to loading, unloading, ageing and injury from cellular, molecular and mechanical points of view. A mechanistic understanding of tendon tissue adaptation will be vital for development of adequate guidelines in physical training and rehabilitation, as well as for optimal injury treatment.
Collapse
Affiliation(s)
- S Peter Magnusson
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, NV.,Department of Physical and Occupational Therapy Bispebjerg Hospital, Copenhagen, NV.,Center for Healthy Aging, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, NV.,Center for Healthy Aging, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
93
|
The Influence of Ambulatory Aid on Lower-Extremity Muscle Activation During Gait. J Sport Rehabil 2018; 27:230-236. [DOI: 10.1123/jsr.2016-0148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Context: Foot and ankle injuries are common and often require a nonweight-bearing period of immobilization for the involved leg. This nonweight-bearing period usually results in muscle atrophy for the involved leg. There is a dearth of objective data describing muscle activation for different ambulatory aids that are used during the aforementioned nonweight-bearing period. Objective: To compare activation amplitudes for 4 leg muscles during (1) able-bodied gait and (2) ambulation involving 3 different ambulatory aids that can be used during the acute phase of foot and ankle injury care. Design: Within-subject, repeated measures. Setting: University biomechanics laboratory. Participants: Sixteen able-bodied individuals (7 females and 9 males). Intervention: Each participant performed able-bodied gait and ambulation using 3 different ambulatory aids (traditional axillary crutches, knee scooter, and a novel lower-leg prosthesis). Main Outcome Measure: Muscle activation amplitude quantified via mean surface electromyography amplitude throughout the stance phase of ambulation. Results: Numerous statistical differences (P < .05) existed for muscle activation amplitude between the 4 observed muscles, 3 ambulatory aids, and able-bodied gait. For the involved leg, comparing the 3 ambulatory aids: (1) knee scooter ambulation resulted in the greatest vastus lateralis activation, (2) ambulation using the novel prosthesis and traditional crutches resulted in greater biceps femoris activation than knee scooter ambulation, and (3) ambulation using the novel prosthesis resulted in the greatest gastrocnemius activation (P < .05). Generally speaking, muscle activation amplitudes were most similar to able-bodied gait when subjects were ambulating using the knee scooter or novel prosthesis. Conclusions: Type of ambulatory aid influences muscle activation amplitude. Traditional axillary crutches appear to be less likely to mitigate muscle atrophy during the nonweighting, immobilization period that often follows foot or ankle injuries. Researchers and clinicians should consider these results when recommending ambulatory aids for foot or ankle injuries.
Collapse
|
94
|
Choe YR, Kim JS, Kim KH, Yi TI. Relationship Between Functional Level and Muscle Thickness in Young Children With Cerebral Palsy. Ann Rehabil Med 2018; 42:286-295. [PMID: 29765882 PMCID: PMC5940605 DOI: 10.5535/arm.2018.42.2.286] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/08/2017] [Indexed: 11/17/2022] Open
Abstract
Objective To investigate the relationship between functional level and muscle thickness (MT) of the rectus femoris (RF) and the gastrocnemius (GCM) in young children with cerebral palsy (CP). Methods The study participants were comprised of 26 children (50 legs) with spastic CP, aged 3–6 years, and 25 age-matched children with typical development (TD, 50 legs). The MT of the RF, medial GCM, and lateral GCM was measured with ultrasound imaging. The functional level was evaluated using the Gross Motor Function Measurement-88 (GMFM-88), Gross Motor Function Classification System (GMFCS), and based on the mobility area of the Korean version of the Modified Barthel Index (K-MBI). The measurement of spasticity was evaluated with the Modified Ashworth Scale (MAS). Results We note that the height, weight, body mass index, and MT of the RF, and the medial and lateral GCM were significantly higher in the TD group (p<0.05). There was a direct relationship between MT of the RF and medial GCM and the GMFM-88, GMFCS, and mobility scores of the K-MBI in individuals with early CP. In addition, we have noted that there was a direct relationship between MT of the lateral GCM and the GMFM-88 and GMFCS. Although there was a tendency toward lower MT with increasing MAS ratings in the knee and ankle, the correlation was not statistically significant. Conclusion In young children with CP, MT of the RF and GCM was lower than in age-matched children with TD. Furthermore, it is noted with confidence that a significant positive correlation existed between MT and functional level as evaluated using the GMFM-88, GMFCS, and mobility area of K-MBI.
Collapse
Affiliation(s)
- Yeo Reum Choe
- Department of Rehabilitation Medicine, Bundang Jesaeng General Hospital, Seongnam, Korea
| | - Joo Sup Kim
- Department of Rehabilitation Medicine, Bundang Jesaeng General Hospital, Seongnam, Korea
| | - Kee Hoon Kim
- Department of Rehabilitation Medicine, Bundang Jesaeng General Hospital, Seongnam, Korea
| | - Tae Im Yi
- Department of Rehabilitation Medicine, Bundang Jesaeng General Hospital, Seongnam, Korea
| |
Collapse
|
95
|
Hilberg T. Programmed Sports Therapy (PST) in People with Haemophilia (PwH) "Sports Therapy Model for Rare Diseases". Orphanet J Rare Dis 2018; 13:38. [PMID: 29506547 PMCID: PMC5836382 DOI: 10.1186/s13023-018-0777-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/15/2018] [Indexed: 12/30/2022] Open
Abstract
Sports and exercise therapy becomes more and more integrated in the treatment plan of different diseases. Although the benefits of this therapy are of high quality evidence, e.g. in cardiovascular diseases, no concepts of sports therapy are available as a treatment option for rare diseases. During the last eighteen years, we analyzed the situation as well as necessity, and developed a model, contents and the concept of the “Programmed Sports Therapy (PST)” for the treatment of PwH (people with haemophilia) as our model of rare disease. Many studies have shown that motoric skills are depressed in PwH, and that this gap to healthy people increases during age. The only way to reduce this progression is an appropriate therapy, adapted to the necessities of PwH. In haemophilia, in particular, physio- and sports therapy treatments should go hand in hand, the first in the acute phase after bleeding, the second later, after the acute phase has finished. One model, which considers all the different challenges, can be the cogwheel model presented here. Since haemophilia is a rare disease, new training concepts are necessary because classical group therapies are often impossible. PST based on the combination of sports therapy camps together with a supervised autonomous home training helps to directly bring the training to the trainee, in order to enhance key competences and improve the individual situation in PwH, and perhaps in patients with other rare diseases. The experience and scientific data substantiate the success of “Programmed Sports Therapy (PST)” and even this can be a model for other rare diseases.
Collapse
Affiliation(s)
- Thomas Hilberg
- Department of Sports Medicine, University of Wuppertal, Pauluskirchstr. 7, D-42285, Wuppertal, Germany.
| |
Collapse
|
96
|
Chen Y, He L, Xu K, Li J, Guan B, Tang H. Comparison of calf muscle architecture between Asian children with spastic cerebral palsy and typically developing peers. PLoS One 2018; 13:e0190642. [PMID: 29304114 PMCID: PMC5755874 DOI: 10.1371/journal.pone.0190642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/18/2017] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To compare the muscle thickness, fascicle length, and pennation angle of the gastrocnemius, soleus, and tibialis anterior between Asian children with spastic cerebral palsy (CP) and typically developing (TD) peers. METHODS This cross-sectional study involved a total of 72 children with hemiplegic CP (n = 24), and diplegic CP (n = 24) and their TD peers (n = 24). Muscle architecture was measured at rest using ultrasound. Clinical measures included gross motor function and a modified Ashworth scale. RESULTS The thicknesses of the tibialis anterior and medial gastrocnemius muscles were smaller in the affected calf of children with CP (p<0.05) than in those of their TD peers. Additionally, the lengths of the lateral gastrocnemius and soleus fascicle were shorter (p<0.05) in children with diplegic CP than in their TD peers. The fascicle length was shorter in the affected calf of children with CP (p<0.05) than in the calves of their TD peers or the unaffected calf of children with hemiplegic CP. However, the length of the lateral gastrocnemius fascicle was similar between the two legs of children with hemiplegic CP. The pennation angles of the medial gastrocnemius and soleus muscles were larger (p<0.05) in the affected calf in children with hemiplegic CP than in the calves of their TD peers. The fascicle length of the lateral gastrocnemius and the thickness of the soleus muscle were positively correlated with gross motor function scores in children with CP (p<0.05). CONCLUSIONS Muscle thickness and fascicle length were lower in the affected tibialis anterior, gastrocnemius, and soleus in children with spastic CP. These changes may limit the ability to stand and walk, and indicate a need to strengthen the affected muscle.
Collapse
Affiliation(s)
- Ying Chen
- Department of Rehabilitation, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- * E-mail:
| | - Jinling Li
- Department of Rehabilitation, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Buyun Guan
- Department of Ultrasonography, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
97
|
|
98
|
Fisher AG, Seaborne RA, Hughes TM, Gutteridge A, Stewart C, Coulson JM, Sharples AP, Jarvis JC. Transcriptomic and epigenetic regulation of disuse atrophy and the return to activity in skeletal muscle. FASEB J 2017; 31:5268-5282. [DOI: 10.1096/fj.201700089rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/25/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Andrew G. Fisher
- Institute for Ageing and Chronic DiseaseUniversity of Liverpool Liverpool United Kingdom
| | - Robert A. Seaborne
- Institute for Science and Technology in MedicineKeele University Medical SchoolKeele University Staffordshire United Kingdom
- Stem Cells, Ageing, and Molecular Physiology Research UnitExercise Metabolism and Adaptation Research GroupResearch Institute for Sport and Exercise SciencesLiverpool John Moores University Liverpool United Kingdom
| | - Thomas M. Hughes
- Instituto de Física y AstronomíaUniversidad de Valparaíso Valparaíso Chile
| | | | - Claire Stewart
- Institute for Science and Technology in MedicineKeele University Medical SchoolKeele University Staffordshire United Kingdom
| | - Judy M. Coulson
- Department of Cellular and Molecular PhysiologyInstitute of Translational MedicineUniversity of Liverpool Liverpool United Kingdom
| | - Adam P. Sharples
- Institute for Science and Technology in MedicineKeele University Medical SchoolKeele University Staffordshire United Kingdom
- Stem Cells, Ageing, and Molecular Physiology Research UnitExercise Metabolism and Adaptation Research GroupResearch Institute for Sport and Exercise SciencesLiverpool John Moores University Liverpool United Kingdom
| | - Jonathan C. Jarvis
- Stem Cells, Ageing, and Molecular Physiology Research UnitExercise Metabolism and Adaptation Research GroupResearch Institute for Sport and Exercise SciencesLiverpool John Moores University Liverpool United Kingdom
| |
Collapse
|
99
|
Atherton PJ, Smith K. Michael J. Rennie: a perspective on a scientist whose life's work helped sculpt knowledge about the regulation of the musculoskeletal system by nutrition, exercise and inactivity. Exp Physiol 2017; 102:611-613. [PMID: 28382735 DOI: 10.1113/ep086361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Philip J Atherton
- University of Nottingham, Graduate Entry Medical School, Royal Derby Hospital, Derby, UK
| | - Ken Smith
- University of Nottingham, Graduate Entry Medical School, Royal Derby Hospital, Derby, UK
| |
Collapse
|
100
|
Malis V, Sinha U, Csapo R, Narici M, Sinha S. Relationship of changes in strain rate indices estimated from velocity-encoded MR imaging to loss of muscle force following disuse atrophy. Magn Reson Med 2017; 79:912-922. [PMID: 28560822 DOI: 10.1002/mrm.26759] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/30/2017] [Accepted: 05/01/2017] [Indexed: 11/06/2022]
Abstract
PURPOSE This study explores changes in strain rate (SR) (rate of regional deformation) parameters extracted from velocity-encoded MRI and their relationship to muscle force loss following 4-week unilateral lower limb suspension in healthy humans. METHODS Two-dimensional SR maps were derived from three directional velocity-encoded MR phase-contrast images of the medial gastrocnemius in seven subjects. Atrophy-related and regional differences in the SR eigenvalues, angle between the SR and muscle fiber (SR-fiber angle), and strain rates in the fiber basis were statistically analyzed using analysis of variance and linear regression. RESULTS During isometric contraction, SR in the fiber cross section (SRin-plane ) was significantly lower, and the SR-fiber angle was significantly higher postsuspension (P < 0.05). On multiple variable regression analysis, the volume of medial gastrocnemius, SRin-plane , and SR-fiber angle were significantly associated with force and changes in the, and the SR eigenvalues and shear SR were significantly associated with change in force with disuse. CONCLUSIONS Changes in SR-fiber angle, SRin-plane , and shear SR as well as their ability to predict force and force changes may reflect the role of remodeling of the extracellular matrix in disuse atrophy and its functional consequence in reducing lateral transmission of force. Magn Reson Med 79:912-922, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Vadim Malis
- Muscle Imaging and Modeling Lab, Department of Radiology, University of California, San Diego, California, USA.,Physics, University of California, San Diego, California, USA
| | - Usha Sinha
- Physics, San Diego State University, San Diego, California, USA
| | - Robert Csapo
- Muscle Imaging and Modeling Lab, Department of Radiology, University of California, San Diego, California, USA
| | - Marco Narici
- School of Graduate Entry Medicine and Health University of Nottingham, Derby, UK
| | - Shantanu Sinha
- Muscle Imaging and Modeling Lab, Department of Radiology, University of California, San Diego, California, USA
| |
Collapse
|