51
|
Serradell A, Torrecillas S, Makol A, Valdenegro V, Fernández-Montero A, Acosta F, Izquierdo MS, Montero D. Prebiotics and phytogenics functional additives in low fish meal and fish oil based diets for European sea bass (Dicentrarchus labrax): Effects on stress and immune responses. FISH & SHELLFISH IMMUNOLOGY 2020; 100:219-229. [PMID: 32160965 DOI: 10.1016/j.fsi.2020.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
The use of terrestrial raw materials to replace fish meal (FM) and fish oil (FO) in marine fish diets may affect fish growth performance and health. In the last years functional additives have been profiled as good candidates to reduce the effects on health and disease resistance derived from this replacement, via reinforcement of the fish immune system. In the present study, three isoenergetic and isonitrogenous diets with low FM and FO (10% and 6% respectively) were tested based on supplementation either with 0.5% galactomannanoligosaccharides (GMOS diet) or 0.02% of a mixture of essential oils (PHYTO diet), a non-supplemented diet was defined as a control diet. Fish were fed the experimental diets in triplicate for 9 weeks and then they were subjected to a stress by confinement as a single challenge (C treatment) or combined with an experimental intestinal infection with Vibrio anguillarum (CI treatment). Along the challenge test, selected stress and immunological parameters were evaluated at 2, 24 and 168h after C or CI challenges. As stress indicators, circulating plasma cortisol and glucose concentrations were analyzed as well as the relative gene expression of cyp11b hydroxylase, hypoxia inducible factor, steroidogenic acute regulatory protein, heat shock protein 70 and heat shock protein 90 (cyp11b, hif-1α, StAR, hsp70 and hsp90). As immune markers, serum and skin mucus lysozyme, bactericidal and peroxidase activities were measured, as well as gene expression of Caspase-3 (casp-3) and interleukin 1β (il-1ß). The use of functional additives induced a significant (p < 0.05) reduction of circulating plasma cortisol concentration when confinement was the unique challenge test applied. Supplementation of PHYTO induced a down-regulation of cyp11b, hif-1α, casp-3 and il-1β gene expression 2h after stress test, whereas StAR expression was significantly (p < 0.05) up-regulated. However, when combination of confinement stress and infection was applied (CI treatment), the use of PHYTO significantly (p < 0.05) down-regulated StAR and casp-3 gene expression 2h after challenge test, denoting that PHYTO diet reinforced fish capacity of stress response via protection of head kidney leucocytes from stress-related apoptotic processes, with lower caspase-3 gene expression and a higher il-1β gene expression when an infection occurs. Additionally, dietary supplementation with GMOS and PHYTO compounds increased fish serum lysozyme after infection. Both functional additives entailed a better capability of the animals to cope with infection in European sea bass when fed low FM and FO diets.
Collapse
Affiliation(s)
- A Serradell
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte S/n, Las Palmas, Canary Islands, 35214, Telde, Spain
| | - S Torrecillas
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte S/n, Las Palmas, Canary Islands, 35214, Telde, Spain
| | - A Makol
- Delacon Biotechnik GmbH, Weissenwolffstrasse 14, 4221, Steyregg, Austria
| | - V Valdenegro
- Biomar A/S. BioMar AS, POB 1282 Sluppen, N-7462, Trondheim, Norway
| | - A Fernández-Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte S/n, Las Palmas, Canary Islands, 35214, Telde, Spain
| | - F Acosta
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte S/n, Las Palmas, Canary Islands, 35214, Telde, Spain
| | - M S Izquierdo
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte S/n, Las Palmas, Canary Islands, 35214, Telde, Spain
| | - D Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte S/n, Las Palmas, Canary Islands, 35214, Telde, Spain.
| |
Collapse
|
52
|
Fujii M, Kawashima N, Tazawa K, Hashimoto K, Nara K, Noda S, Nagai S, Okiji T. Hypoxia‐inducible factor 1α promotes interleukin 1β and tumour necrosis factor α expression in lipopolysaccharide‐stimulated human dental pulp cells. Int Endod J 2020; 53:636-646. [DOI: 10.1111/iej.13264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022]
Affiliation(s)
- M. Fujii
- Division of Oral Health Sciences Department of Pulp Biology and Endodontics Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) TokyoJapan
| | - N. Kawashima
- Division of Oral Health Sciences Department of Pulp Biology and Endodontics Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) TokyoJapan
| | - K. Tazawa
- Division of Oral Health Sciences Department of Pulp Biology and Endodontics Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) TokyoJapan
| | - K. Hashimoto
- Division of Oral Health Sciences Department of Pulp Biology and Endodontics Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) TokyoJapan
| | - K. Nara
- Division of Oral Health Sciences Department of Pulp Biology and Endodontics Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) TokyoJapan
| | - S. Noda
- Division of Oral Health Sciences Department of Pulp Biology and Endodontics Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) TokyoJapan
| | - S. Nagai
- Division of Oral Health Sciences Department of Molecular Immunology Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - T. Okiji
- Division of Oral Health Sciences Department of Pulp Biology and Endodontics Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) TokyoJapan
| |
Collapse
|
53
|
Alleboina S, Wong T, Singh MV, Dokun AO. Inhibition of protein kinase C beta phosphorylation activates nuclear factor-kappa B and improves postischemic recovery in type 1 diabetes. Exp Biol Med (Maywood) 2020; 245:785-796. [PMID: 32326759 PMCID: PMC7273893 DOI: 10.1177/1535370220920832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/30/2020] [Indexed: 01/01/2023] Open
Abstract
IMPACT STATEMENT Diabetes worsens the outcomes of peripheral arterial disease (PAD) likely in part through inducing chronic inflammation. However, in PAD, recovery requires the nuclear factor-kappa B (NF-κB) activation, a known contributor to inflammation. Our study shows that individually, both ischemia and high glucose activate the canonical and non-canonical arms of the NF-κB pathways. We show for the first time that prolonged high glucose specifically impairs ischemia-induced activation of the canonical NF-κB pathway through activation of protein kinase C beta (PKCβ). Accordingly, inhibition of PKCβ restores the ischemia-induced NF-κB activity both in vitroin endothelial cells and in vivoin hind limbs of type 1 diabetic mice and improves perfusion recovery after experimental PAD. Thus, this study provides a mechanistic insight into how diabetes contributes to poor outcomes in PAD and a potential translational approach to improve PAD outcomes.
Collapse
Affiliation(s)
- Satyanarayana Alleboina
- Division of Endocrinology, Diabetes and Metabolism,
University of Tennessee Health Sciences Center, Memphis, TN 38103,
USA
| | - Thomas Wong
- Division of Endocrinology and Metabolism, Carver
College of Medicine, University of Iowa, Iowa City, IA 52242,
USA
| | - Madhu V Singh
- Division of Endocrinology and Metabolism, Carver
College of Medicine, University of Iowa, Iowa City, IA 52242,
USA
| | - Ayotunde O Dokun
- Division of Endocrinology and Metabolism, Carver
College of Medicine, University of Iowa, Iowa City, IA 52242,
USA
| |
Collapse
|
54
|
Shi J, Wang J, Zhang J, Li X, Tian X, Wang W, Wang P, Li M. Polysaccharide extracted from Potentilla anserina L ameliorate acute hypobaric hypoxia-induced brain impairment in rats. Phytother Res 2020; 34:2397-2407. [PMID: 32298011 DOI: 10.1002/ptr.6691] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/15/2020] [Accepted: 03/20/2020] [Indexed: 12/24/2022]
Abstract
High altitude cerebral edema (HACE) is a high altitude malady caused by acute hypobaric hypoxia (AHH), in which pathogenesis is associated with oxidative stress and inflammatory cytokines. Potentilla anserina L is mainly distributed in Tibetan Plateau, and its polysaccharide possesses many physiological and pharmacological properties. In the present study, the protective effect and potential treatment mechanism of Potentilla anserina L polysaccharide (PAP) in HACE were explored. First, we measured the brain water content and observed the pathological changes in brain tissues, furthermore, malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), and glutathione (GSH) were evaluated by kits. Finally, the protein contents and mRNA expressions of pro-inflammatory (IL-1β, IL-6, TNF-α, vascular endothelial cell growth factor [VEGF], NF-κB, and hypoxia inducible factor-1 α [HIF-1α]) were detected by ELISA kits, RT-PCR, and western blotting. The results demonstrated that PAP reduced the brain water content, alleviated brain tissue injury, reduce the levels of MDA and NO, and increased the activity of SOD and GSH level. In addition, PAP blocking the NF-κB and HIF-1α signaling pathway activation inhibited the generation of downstream pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and VEGF). Therefore, PAP has a potential to treat and prevent of HACE by suppression of oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Jipeng Shi
- Key Laboratory of the Prevention and Treatment for Injury in Plateau of PLA, Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese PLA, Lanzhou, China.,Department of Biochemistry, College of Life Science, Northwest Normal University, Lanzhou, China.,Department of Biochemistry, Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou, China
| | - Jinhui Wang
- Department of Pharmacy, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ji Zhang
- Department of Biochemistry, College of Life Science, Northwest Normal University, Lanzhou, China.,Department of Biochemistry, Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou, China
| | - Xiaolin Li
- Key Laboratory of the Prevention and Treatment for Injury in Plateau of PLA, Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese PLA, Lanzhou, China.,Department of Pharmacy, College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiuyu Tian
- Key Laboratory of the Prevention and Treatment for Injury in Plateau of PLA, Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese PLA, Lanzhou, China.,Department of Pharmacy, College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Weigang Wang
- Key Laboratory of the Prevention and Treatment for Injury in Plateau of PLA, Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese PLA, Lanzhou, China.,Department of Pharmacy, College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Peng Wang
- Key Laboratory of the Prevention and Treatment for Injury in Plateau of PLA, Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese PLA, Lanzhou, China.,Department of Pharmacy, College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Maoxing Li
- Key Laboratory of the Prevention and Treatment for Injury in Plateau of PLA, Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese PLA, Lanzhou, China.,Department of Pharmacy, College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China.,Department of Pharmacy, College of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
55
|
Ashayeri Ahmadabad R, Khaleghi Ghadiri M, Gorji A. The role of Toll-like receptor signaling pathways in cerebrovascular disorders: the impact of spreading depolarization. J Neuroinflammation 2020; 17:108. [PMID: 32264928 PMCID: PMC7140571 DOI: 10.1186/s12974-020-01785-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
Cerebral vascular diseases (CVDs) are a group of disorders that affect the blood supply to the brain and lead to the reduction of oxygen and glucose supply to the neurons and the supporting cells. Spreading depolarization (SD), a propagating wave of neuroglial depolarization, occurs in different CVDs. A growing amount of evidence suggests that the inflammatory responses following hypoxic-ischemic insults and after SD plays a double-edged role in brain tissue injury and clinical outcome; a beneficial effect in the acute phase and a destructive role in the late phase. Toll-like receptors (TLRs) play a crucial role in the activation of inflammatory cascades and subsequent neuroprotective or harmful effects after CVDs and SD. Here, we review current data regarding the pathophysiological role of TLR signaling pathways in different CVDs and discuss the role of SD in the potentiation of the inflammatory cascade in CVDs through the modulation of TLRs.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Neuroscience research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
56
|
Prolyl hydroxylase 2 silencing enhances the paracrine effects of mesenchymal stem cells on necrotizing enterocolitis in an NF-κB-dependent mechanism. Cell Death Dis 2020; 11:188. [PMID: 32179740 PMCID: PMC7075868 DOI: 10.1038/s41419-020-2378-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Treatment options for necrotizing enterocolitis (NEC) remain inadequate. Here we examined if and how prolyl hydroxylase 2 (PHD2) silencing enhances the paracrine effects of bone-marrow-derived mesenchymal stem cells (BM-MSCs) on NEC. In this study, BM-MSCs were transduced with lentiviruses containing GFP (GFP-MSC) or shPHD2-GFP constructs (PHDMSC), followed by intraperitoneal injection of the PHDMSC-conditioned medium (PHDMSC-CM) or the GFP-MSC-conditioned medium (MSC-CM) into a rat pup model of NEC. Our results showed that systemic infusion of PHDMSC-CM, but not MSC-CM, significantly improved intestinal damage and survival of NEC rats. Such benefits may involve the modulation of epithelial regeneration and inflammation, as indicated by the regeneration of intestinal epithelial/stem cells, the regulation of Treg cells function and pro-/anti-inflammatory cytokine balance. The mechanism for the superior paracrine efficacy of PHDMSC is related to a higher release of pivotal factor IGF-1 and TGF-β2. NF-κB activation was induced by PHD2 silencing to induce IGF-1 and TGF-β2 secretion via binding to IGF-1 and TGF-β2 gene promoter. Our work indicated that PHD2 silencing enhanced the paracrine effect of BM-MSCs on NEC via the NF-κB-dependent mechanism which may be a novel strategy for stem cell therapy on NEC.
Collapse
|
57
|
The Role of NFκB in Healthy and Preeclamptic Placenta: Trophoblasts in the Spotlight. Int J Mol Sci 2020; 21:ijms21051775. [PMID: 32150832 PMCID: PMC7084575 DOI: 10.3390/ijms21051775] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 02/01/2023] Open
Abstract
The NFκB protein family regulates numerous pathways within the cell-including inflammation, hypoxia, angiogenesis and oxidative stress-all of which are implicated in placental development. The placenta is a critical organ that develops during pregnancy that primarily functions to supply and transport the nutrients required for fetal growth and development. Abnormal placental development can be observed in numerous disorders during pregnancy, including fetal growth restriction, miscarriage, and preeclampsia (PE). NFκB is highly expressed in the placentas of women with PE, however its contributions to the syndrome are not fully understood. In this review we discuss the molecular actions and related pathways of NFκB in the placenta and highlight areas of research that need attention.
Collapse
|
58
|
Yu XH, Wu JX, Chen L, Gu YD. Inflammation and apoptosis accelerate progression to irreversible atrophy in denervated intrinsic muscles of the hand compared with biceps: proteomic analysis of a rat model of obstetric brachial plexus palsy. Neural Regen Res 2020; 15:1326-1332. [PMID: 31960820 PMCID: PMC7047792 DOI: 10.4103/1673-5374.272619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In treating patients with obstetric brachial plexus palsy, we noticed that denervated intrinsic muscles of the hand become irreversibly atrophic at a faster than denervated biceps. In a rat model of obstetric brachial plexus palsy, denervated intrinsic musculature of the forepaw entered the irreversible atrophy far earlier than denervated biceps. In this study, isobaric tags for relative and absolute quantitation were examined in the intrinsic musculature of forepaw and biceps on denervated and normal sides at 3 and 5 weeks to identify dysregulated proteins. Enrichment of pathways mapped by those proteins was analyzed by Kyoto Encyclopedia of Genes and Genomes analysis. At 3 weeks, 119 dysregulated proteins in denervated intrinsic musculature of the forepaw were mapped to nine pathways for muscle regulation, while 67 dysregulated proteins were mapped to three such pathways at 5 weeks. At 3 weeks, 27 upregulated proteins were mapped to five pathways involving inflammation and apoptosis, while two upregulated proteins were mapped to one such pathway at 5 weeks. At 3 and 5 weeks, 53 proteins from pathways involving regrowth and differentiation were downregulated. At 3 weeks, 64 dysregulated proteins in denervated biceps were mapped to five pathways involving muscle regulation, while, five dysregulated proteins were mapped to three such pathways at 5 weeks. One protein mapped to inflammation and apoptotic pathways was upregulated from one pathway at 3 weeks, while three proteins were downregulated from two other pathways at 5 weeks. Four proteins mapped to regrowth and differentiation pathways were upregulated from three pathways at 3 weeks, while two proteins were downregulated in another pathway at 5 weeks. These results implicated inflammation and apoptosis as critical factors aggravating atrophy of denervated intrinsic muscles of the hand during obstetric brachial plexus palsy. All experimental procedures and protocols were approved by the Experimental Animal Ethics Committee of Fudan University, China (approval No. DF-325) in January 2015.
Collapse
Affiliation(s)
- Xiao-Heng Yu
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Ji-Xin Wu
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Liang Chen
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Yu-Dong Gu
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| |
Collapse
|
59
|
Fujii M, Kawashima N, Tazawa K, Hashimoto K, Nara K, Noda S, Kuramoto M, Orikasa S, Nagai S, Okiji T. HIF1α inhibits LPS-mediated induction of IL-6 synthesis via SOCS3-dependent CEBPβ suppression in human dental pulp cells. Biochem Biophys Res Commun 2019; 522:308-314. [PMID: 31767145 DOI: 10.1016/j.bbrc.2019.11.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
Abstract
Hypoxia-inducible factor 1 alpha (HIF1α) is a transcriptional factor that plays a key role in the regulation of various molecules expressed in hypoxic conditions. Ischemic/hypoxic conditions are regarded as a distinct characteristic of dental pulp inflammation due to the encasement of pulp tissue within the rigid tooth structure. This study was performed to examine the role of HIF1α in the regulation of interleukin (IL)-6, a proinflammatory cytokine expressed in inflamed dental pulp, in lipopolysaccharide (LPS)-stimulated human dental pulp cells (hDPCs). LPS stimulation promoted the expression of IL-6 in hDPCs, while HIF1α suppressed the expression of IL-6. Moreover, HIF1α induced suppressor of cytokine signaling 3 (SOCS3) expression in LPS-stimulated hDPCs, and SOCS3 activity led to downregulate expression of CCAAT enhancer-binding protein beta (CEBPβ), an inducer of IL-6. LPS stimulation promoted HIF1α expression in hDPCs and mouse pulp tissue explants cultured under hypoxic conditions. These findings suggest that HIF1α negatively regulates IL-6 synthesis in LPS-stimulated hDPCs via upregulation of SOCS3 and subsequent downregulation of CEBPβ.
Collapse
Affiliation(s)
- Mayuko Fujii
- Department of Pulp Biology and Endodontics, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Nobuyuki Kawashima
- Department of Pulp Biology and Endodontics, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Kento Tazawa
- Department of Pulp Biology and Endodontics, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Kentaro Hashimoto
- Department of Pulp Biology and Endodontics, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Keisuke Nara
- Department of Pulp Biology and Endodontics, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Sonoko Noda
- Department of Pulp Biology and Endodontics, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Masashi Kuramoto
- Department of Pulp Biology and Endodontics, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Shion Orikasa
- Department of Pulp Biology and Endodontics, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Shigenori Nagai
- Department of Molecular Immunology, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Takashi Okiji
- Department of Pulp Biology and Endodontics, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8549, Japan
| |
Collapse
|
60
|
Sharma P, Tulsawani R, Agrawal U. Pharmacological effects of Ganoderma lucidum extract against high-altitude stressors and its subchronic toxicity assessment. J Food Biochem 2019; 43:e13081. [PMID: 31609024 DOI: 10.1111/jfbc.13081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/11/2022]
Abstract
Acclimatization is a major pathophysiological concern during ascent to high altitude and may cause mortality in unacclimatized individuals. Absence of target drugs, especially prophylactics, emphasizes the need for development of herbal agents. Present study revealed that animals pre-administered with aqueous extract of Ganoderma lucidum (GLAQ) dose dependently (50, 100, 200 mg/kg) delayed onset of convulsion following severe hypoxia (SH) and restored rectal temperature post-cold restraint (CR) and hypobaric hypoxia (HBH). The compromised antioxidant status (MDA, GSH, SOD, GPx), biochemical (ALT, AST, glucose, triglycerides, cholesterol, urea), and hematological parameters (red blood cells, white blood cells) were ameliorated with GLAQ treatment. Further, extract modulated inflammatory and thermogenic response by attenuating pro-inflammatory cytokines (NFĸB, TNFα, IL6) and restoring UCP1, SIRT1, respectively. Notably, extract did not produce any noxious effects subchronically in rats of both sexes with GLAQ administered at 100, 500, and 1,000 mg/kg in a single dose/day for 90 days, deeming it fit for therapeutic purpose. PRACTICAL APPLICATIONS: GLAQ exhibited better efficacy compared to internal control (gallic acid) suggest that array of bioactive compounds in extract might contribute toward efficacy. Further, antistress properties of GLAQ against multiple stressors including SH, CR, and HBH demonstrate its therapeutic potential for inducing rapid acclimatization and preventing mountain sickness. Conclusively, the present study based on Ganoderma lucidum extract intents to fill the lacunae behind development of nontoxic therapeutic agent for controlling high altitude-related maladies.
Collapse
Affiliation(s)
- Purva Sharma
- Department of Biochemical Sciences, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Rajkumar Tulsawani
- Department of Biochemical Sciences, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Usha Agrawal
- Department of Histopathology, ICMR-National Institute of Pathology, New Delhi, India
| |
Collapse
|
61
|
Xu H, Wang J, Cai J, Feng W, Wang Y, Liu Q, Cai L. Protective Effect of Lactobacillus rhamnosus GG and its Supernatant against Myocardial Dysfunction in Obese Mice Exposed to Intermittent Hypoxia is Associated with the Activation of Nrf2 Pathway. Int J Biol Sci 2019; 15:2471-2483. [PMID: 31595164 PMCID: PMC6775312 DOI: 10.7150/ijbs.36465] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023] Open
Abstract
Prolonged intermittent hypoxia (IH) has been shown to impair myocardial function (mainly via oxidative stress and inflammation) and modify gut microbiota in mice. Gut microbiota plays an important role in health and disease, including obesity and cardiovascular disease (CVD). Probiotics refer to live microorganisms that confer health benefits on the host after administration in adequate amounts. Research on novel probiotics related therapies has evoked much attention. In our previous study, both Lactobacillus rhamnosus GG (LGG) and LGG cell-free supernatant (LGGs) were found to protect against alcohol-induced liver injury and steatosis; however, the effects of LGG and LGGs on cardiac tissues of obese mice exposed to IH have not been determined. Here we exposed high-fat high-fructose diet (HFHFD)-induced obese mice to IH, to establish a model of obesity with obstructive sleep apnea (OSA). Mice were divided into four groups: (1) HFHFD for 15 weeks; (2) HFHFD for 15 weeks with IH in the last 12 weeks (HFHFD/IH); (3) and (4) HFHFD/IH plus oral administration of either LGG (109 CFU bacteria/day) or LGGs (dose equivalent to 109 CFU bacteria/day) over the 15 weeks, respectively. Compared to HFHFD mice, HFHFD/IH-mice showed heart dysfunction with significant cardiac remodeling and inflammation; all these pathological and functional alterations were prevented by treatment with both LGG and LGGs (no significant difference between LGG and LGGs in this respect). The cardioprotective effect of LGG and LGGs against IH/HFHFD was associated with up-regulation of nuclear factor erythroid 2-related factor 2(Nrf2)-mediated antioxidant pathways. Our findings suggest a cardioprotective effect of LGG and LGGs in obese mice with OSA.
Collapse
Affiliation(s)
- Hui Xu
- Cardiovascular Center, the First Hospital of Jilin University, Changchun, 130021 China.,Pediatric Research Institute, Department of Pediatrics, the University of Louisville, Norton Healthcare, Louisville, KY 40202, USA
| | - Jiqun Wang
- Cardiovascular Center, the First Hospital of Jilin University, Changchun, 130021 China.,Pediatric Research Institute, Department of Pediatrics, the University of Louisville, Norton Healthcare, Louisville, KY 40202, USA
| | - Jun Cai
- Pediatric Research Institute, Department of Pediatrics, the University of Louisville, Norton Healthcare, Louisville, KY 40202, USA.,Department of Pharmacology and Toxicology, the University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Pharmacology and Toxicology, the University of Louisville School of Medicine, Louisville, KY 40202, USA.,Division of Gastroenterology, Department of Medicine, the University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Yonggang Wang
- Cardiovascular Center, the First Hospital of Jilin University, Changchun, 130021 China
| | - Quan Liu
- Cardiovascular Center, the First Hospital of Jilin University, Changchun, 130021 China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, the University of Louisville, Norton Healthcare, Louisville, KY 40202, USA.,Department of Pharmacology and Toxicology, the University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
62
|
Halvarsson C, Rörby E, Eliasson P, Lang S, Soneji S, Jönsson JI. Putative Role of Nuclear Factor-Kappa B But Not Hypoxia-Inducible Factor-1α in Hypoxia-Dependent Regulation of Oxidative Stress in Hematopoietic Stem and Progenitor Cells. Antioxid Redox Signal 2019; 31:211-226. [PMID: 30827134 PMCID: PMC6590716 DOI: 10.1089/ars.2018.7551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Aims: Adaptation to low oxygen of hematopoietic stem cells (HSCs) in the bone marrow has been demonstrated to depend on the activation of hypoxia-inducible factor (HIF)-1α as well as the limited production of reactive oxygen species (ROS). In this study, we aimed at determining whether HIF-1α is involved in protecting HSCs from ROS. Results: Oxidative stress was induced by DL-buthionine-(S,R)-sulfoximine (BSO)-treatment, which increases the mitochondrial ROS level. Hypoxia rescued Lineage-Sca-1+c-kit+ (LSK) cells from BSO-induced apoptosis, whereas cells succumbed to apoptosis in normoxia. Apoptosis in normoxia was inhibited with the antioxidant N-acetyl-L-cysteine or by overexpression of anti-apoptotic BCL-2. Moreover, stabilized expression of oxygen-insensitive HIFs could not protect LSK cells from oxidative stress-induced apoptosis at normoxia, neither could short hairpin RNA to Hif-1α inhibit the protective effects by hypoxia in LSK cells. Likewise, BSO treatment of LSK cells from Hif-1α knockout mice did not suppress the effects seen in hypoxia. Microarray analysis identified the nuclear factor-kappa B (NF-κB) pathway as a pathway induced by hypoxia. By using NF-κB lentiviral construct and DNA-binding assay, we found increased NF-κB activity in cells cultured in hypoxia compared with normoxia. Using an inhibitor against NF-κB activation, we could confirm the involvement of NF-κB signaling as BSO-mediated cell death was significantly increased in hypoxia after adding the inhibitor. Innovation: HIF-1α is not involved in protecting HSCs and progenitors to elevated levels of ROS on glutathione depletion during hypoxic conditions. Conclusion: The study proposes a putative role of NF-κB signaling as a hypoxia-induced regulator in early hematopoietic cells.
Collapse
Affiliation(s)
- Camilla Halvarsson
- Experimental Hematology Unit, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Emma Rörby
- Experimental Hematology Unit, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Pernilla Eliasson
- Experimental Hematology Unit, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Stefan Lang
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Shamit Soneji
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jan-Ingvar Jönsson
- Experimental Hematology Unit, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
63
|
Tripathi A, Kumar B, Sagi SSK. Prophylactic efficacy of Quercetin in ameliorating the hypoxia induced vascular leakage in lungs of rats. PLoS One 2019; 14:e0219075. [PMID: 31251771 PMCID: PMC6599121 DOI: 10.1371/journal.pone.0219075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/14/2019] [Indexed: 01/20/2023] Open
Abstract
The objective of the study was to find out the prophylactic efficacy of Quercetin in ameliorating the hypoxia induced vascular leakage in lungs of rats. Male SD rats received different doses of quercetin @ 25mg, 50mg, 100mg and 200mg/Kg BW, 1h prior to hypobaric hypoxia exposure (7,620m, for 6h). Quercetin 50 mg/kg BW supplemented orally 1h prior to hypoxia exposure was considered to be the optimum dose, due to significant reduction (p<0.001) in lung water content and lung transvascular leakage compared to control (hypoxia, 6h). Further, biochemical analysis (ROS, MDA, GSH, GPx, LDH, and albumin) and differential expressions of proteins (IKK-α/β, NFĸB, Nrf-2,TNF-α, ICAM-1, VCAM, P-selectin, Hif-1α, VEGF, TNF-α, TGF-β, INF-γ and IL-4) were determined by western blotting and ELISA. Changes in lung parenchyma were assessed by histopathology. Quercetin (50 mg/kg BW) prophylaxis under hypoxia showed significant reduction in oxidative stress (ROS and MDA), concomitant increase in antioxidants (GSH, GPx and SOD) followed by decreased LDH and albumin extravasation in BAL fluid over hypoxia. Quercetin prophylaxis significantly down regulated hypoxia induced increase in IKKα/β and NFĸB expressions leading to reduction in the levels of pro-inflammatory cytokines (TNF-α and INF-γ) followed by up regulation of anti-inflammatory cytokines (IL-4 and INF-γ) in lungs. Further, hypoxia mediated increase in HIF-1α was stabilized and VEGF levels in lungs were significantly down regulated by quercetin supplementation, leading to reduction in vascular leakage in lungs of rats under hypoxia. However, Quercetin has also enacted as Nrf-2 activator which significantly boosted up the synthesis of GSH under hypoxic condition compared to hypoxia. Histopathological observations further confirmed that quercetin preconditioning has an inhibitory effect on progression of oxidative stress and inflammation via attenuation of NFκB and stabilization HIF-1α in lungs of rats under hypoxia.These studies indicated that quercetin prophylaxis abrogates the possibility of hypobaric hypoxia induced pulmonary edema in rats.
Collapse
Affiliation(s)
- Ankit Tripathi
- Nutrition Division, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | - Bhuvnesh Kumar
- Nutrition Division, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | - Sarada S. K. Sagi
- Nutrition Division, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
- * E-mail:
| |
Collapse
|
64
|
Modulation of hypoxia-inducible factor-1 α/cyclo-oxygenase-2 pathway associated with attenuation of intestinal mucosa inflammatory damage by Acanthopanax senticosus polysaccharides in lipopolysaccharide-challenged piglets. Br J Nutr 2019; 122:666-675. [PMID: 31177998 DOI: 10.1017/s0007114519001363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Intestinal barrier inflammatory damage is commonly accompanied by hypoxia. The hypothesis that dietary Acanthopanax senticosus polysaccharides (ASPS) might modulate the hypoxia-inducible factor-1α (HIF-1α) signalling pathway and contribute to attenuate intestinal injury was tested in lipopolysaccharide (LPS)-challenged piglets. Thirty-six weaned pigs were randomly allocated to one of the following three groups: (1) basal diet + saline challenge; (2) basal diet + LPS challenge; (3) basal diet with 800 mg/kg ASPS + LPS challenge. LPS was injected at 15, 18 and 21 d, and intestinal sections were sampled following blood collection at 21 d . The results showed ASPS reversed (P < 0·05) LPS-induced decrease in average daily feed intake and rise (P < 0·05) of diarrhoea incidence and index. Biochemical index reflecting gut barrier damage and function involving ileal pro-inflammatory cytokines (TNF-α and IL-1β) and enzyme activity (diamine oxidase and lactase), as well as circulatory d-xylose, was normalised (P < 0·05) in LPS-challenged piglets receiving ASPS. ASPS also ameliorated intestinal morphological deterioration of LPS-challenged piglets, proved by elevated ileal villus height (P < 0·05) and improved appearance of epithelial villus and tight junction ultrastructure. Moreover, ASPS prevented LPS-induced amplification of inflammatory mediators, achieved by depressed ileal mRNA abundance of TNF-α, inducible NO synthase and IL-1β concentration. Importantly, ileal protein expressions of HIF-1α, cyclo-oxygenase-2 (COX-2) and NFκB p65 were also suppressed with ASPS administration (P < 0·05). Collectively, these results suggest the improvement of mucosal inflammatory damage and diarrhoea in immune stress piglets is possibly associated with a novel finding where HIF-1α/COX-2 pathway down-regulation is involved in NFκB p65-inducible releasing of inflammatory cytokines by dietary ASPS.
Collapse
|
65
|
Kyotani Y, Takasawa S, Yoshizumi M. Proliferative Pathways of Vascular Smooth Muscle Cells in Response to Intermittent Hypoxia. Int J Mol Sci 2019; 20:ijms20112706. [PMID: 31159449 PMCID: PMC6600262 DOI: 10.3390/ijms20112706] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by intermittent hypoxia (IH) and is a risk factor for cardiovascular diseases (e.g., atherosclerosis) and chronic inflammatory diseases (CID). The excessive proliferation of vascular smooth muscle cells (VSMCs) plays a pivotal role in the progression of atherosclerosis. Hypoxia-inducible factor-1 and nuclear factor-κB are thought to be the main factors involved in responses to IH and in regulating adaptations or inflammation pathways, however, further evidence is needed to demonstrate the underlying mechanisms of this process in VSMCs. Furthermore, few studies of IH have examined smooth muscle cell responses. Our previous studies demonstrated that increased interleukin (IL)-6, epidermal growth factor family ligands, and erbB2 receptor, some of which amplify inflammation and, consequently, induce CID, were induced by IH and were involved in the proliferation of VSMCs. Since IH increased IL-6 and epiregulin expression in VSMCs, the same phenomenon may also occur in other smooth muscle cells, and, consequently, may be related to the incidence or progression of several diseases. In the present review, we describe how IH can induce the excessive proliferation of VSMCs and we develop the suggestion that other CID may be related to the effects of IH on other smooth muscle cells.
Collapse
Affiliation(s)
- Yoji Kyotani
- Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan.
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521, Japan.
| | - Masanori Yoshizumi
- Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan.
| |
Collapse
|
66
|
Regulation of glyceraldehyde-3-phosphate dehydrogenase by hypoxia inducible factor 1 in the white shrimp Litopenaeus vannamei during hypoxia and reoxygenation. Comp Biochem Physiol A Mol Integr Physiol 2019; 235:56-65. [PMID: 31100464 DOI: 10.1016/j.cbpa.2019.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022]
Abstract
Hypoxia is a frequent source of stress in the estuarine habitat of the white shrimp Litopenaeus vannamei. During hypoxia, L. vannamei gill cells rely more heavily on anaerobic glycolysis to obtain ATP. This is mediated by transcriptional up-regulation of glycolytic enzymes including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The hypoxia inducible factor 1 (HIF-1) is an important transcriptional activator of several glycolytic enzymes during hypoxia in diverse animals, including crustaceans. In this work, we cloned and sequenced a fragment corresponding to the 5' flank of the GAPDH gene and identified a putative HIF-1 binding site, as well as sites for other transcription factors involved in the hypoxia signaling pathway. To investigate the role of HIF-1 in GAPDH regulation, we simultaneously injected double-stranded RNA (dsRNA) into shrimp to silence HIF-1α and HIF-1β under normoxia, hypoxia, and hypoxia followed by reoxygenation, and then measured gill HIF-1α, HIF-1β expression, GAPDH expression and activity, and glucose and lactate concentrations at 0, 3, 24 and 48 h. During normoxia, HIF-1 silencing induced up-regulation of GAPDH transcripts and activity, suggesting that expression is down-regulated via HIF-1 under these conditions. In contrast, HIF-1 silencing during hypoxia abolished the increases in GAPDH expression and activity, glucose and lactate concentrations. Finally, HIF-1 silencing during hypoxia-reoxygenation prevented the increase in GAPDH expression, however, those changes were not reflected in GAPDH activity and lactate accumulation. Altogether, these results indicate that GAPDH and glycolysis are transcriptionally regulated by HIF-1 in gills of white shrimp.
Collapse
|
67
|
Lima-Silveira L, Accorsi-Mendonça D, Bonagamba LGH, Almado CEL, da Silva MP, Nedoboy PE, Pilowsky PM, Machado BH. Enhancement of excitatory transmission in NTS neurons projecting to ventral medulla of rats exposed to sustained hypoxia is blunted by minocycline. J Physiol 2019; 597:2903-2923. [PMID: 30993693 DOI: 10.1113/jp277532] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/16/2019] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS Rats subjected to sustained hypoxia (SH) present increases in arterial pressure (AP) and in glutamatergic transmission in the nucleus tractus solitarius (NTS) neurons sending projections to ventrolateral medulla (VLM). Treatment with minocycline, a microglial inhibitor, attenuated the increase in AP in response to SH. The increase in the amplitude of glutamatergic postsynaptic currents in the NTS-VLM neurons, induced by postsynaptic mechanisms, was blunted by minocycline treatment. The number of microglial cells was increased in the NTS of vehicle-treated SH rats but not in the NTS of minocycline-treated rats. The data show that microglial recruitment/proliferation induced by SH is associated with the enhancement of excitatory neurotransmission in NTS-VLM neurons, which may contribute to the observed increase in AP. ABSTRACT Short-term sustained hypoxia (SH) produces significant autonomic and respiratory adjustments and triggers activation of microglia, the resident immune cells in the brain. SH also enhances glutamatergic neurotransmission in the NTS. Here we evaluated the role of microglial activation induced by SH on the cardiovascular changes and mainly on glutamatergic neurotransmission in NTS neurons sending projections to the ventrolateral medulla (NTS-VLM), using a microglia inhibitor (minocycline). Direct measurement of arterial pressure (AP) in freely moving rats showed that SH (24 h, fraction of inspired oxygen ( F I , O 2 ) 0.1) in vehicle and minocycline (30 mg/kg i.p. for 3 days)-treated groups produced a significant increase in AP in relation to control groups under normoxic conditions, but this increase was significantly lower in minocycline-treated rats. Whole-cell patch-clamp recordings revealed that the active properties of the membrane were comparable among the groups. Nevertheless, the amplitudes of glutamatergic postsynaptic currents, evoked by tractus solitarius stimulation, were increased in NTS-VLM neurons of SH rats. Changes in asynchronous glutamatergic currents indicated that the observed increase in amplitude was due to postsynaptic mechanisms. These changes were blunted in the SH group previously treated with minocycline. Using immunofluorescence, we found that the number of microglial cells was increased in the NTS of vehicle-treated SH rats but not in the NTS neurons of minocycline-treated rats. Our data support the concept that microglial activation induced by SH is associated with the enhancement of excitatory neurotransmission in NTS-VLM neurons, which may contribute to the increase in AP observed in this experimental model.
Collapse
Affiliation(s)
- Ludmila Lima-Silveira
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Daniela Accorsi-Mendonça
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Leni G H Bonagamba
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Carlos Eduardo L Almado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Polina E Nedoboy
- The Heart Research Institute, Sydney, New South Wales, 2042, Australia
| | - Paul M Pilowsky
- The Heart Research Institute, Sydney, New South Wales, 2042, Australia
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| |
Collapse
|
68
|
Intermittent normobaric hypoxia facilitates high altitude acclimatization by curtailing hypoxia-induced inflammation and dyslipidemia. Pflugers Arch 2019; 471:949-959. [DOI: 10.1007/s00424-019-02273-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/26/2019] [Accepted: 03/20/2019] [Indexed: 12/23/2022]
|
69
|
Xu Z, Jia Z, Shi J, Zhang Z, Gao X, Jia Q, Liu B, Liu J, Liu C, Zhao X, He K. Transcriptional profiling in the livers of rats after hypobaric hypoxia exposure. PeerJ 2019; 7:e6499. [PMID: 30993032 PMCID: PMC6461035 DOI: 10.7717/peerj.6499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/21/2019] [Indexed: 12/26/2022] Open
Abstract
Ascent to high altitude feels uncomfortable in part because of a decreased partial pressure of oxygen due to the decrease in barometric pressure. The molecular mechanisms causing injury in liver tissue after exposure to a hypoxic environment are widely unknown. The liver must physiologically and metabolically change to improve tolerance to altitude-induced hypoxia. Since the liver is the largest metabolic organ and regulates many physiological and metabolic processes, it plays an important part in high altitude adaptation. The cellular response to hypoxia results in changes in the gene expression profile. The present study explores these changes in a rat model. To comprehensively investigate the gene expression and physiological changes under hypobaric hypoxia, we used genome-wide transcription profiling. Little is known about the genome-wide transcriptional response to acute and chronic hypobaric hypoxia in the livers of rats. In this study, we carried out RNA-Sequencing (RNA-Seq) of liver tissue from rats in three groups, normal control rats (L), rats exposed to acute hypobaric hypoxia for 2 weeks (W2L) and rats chronically exposed to hypobaric hypoxia for 4 weeks (W4L), to explore the transcriptional profile of acute and chronic mountain sickness in a mammal under a controlled time-course. We identified 497 differentially expressed genes between the three groups. A principal component analysis revealed large differences between the acute and chronic hypobaric hypoxia groups compared with the control group. Several immune-related and metabolic pathways, such as cytokine-cytokine receptor interaction and galactose metabolism, were highly enriched in the KEGG pathway analysis. Similar results were found in the Gene Ontology analysis. Cogena analysis showed that the immune-related pathways were mainly upregulated and enriched in the acute hypobaric hypoxia group.
Collapse
Affiliation(s)
- Zhenguo Xu
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Zhilong Jia
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Jinlong Shi
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Zeyu Zhang
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Xiaojian Gao
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Qian Jia
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Bohan Liu
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Jixuan Liu
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Chunlei Liu
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Xiaojing Zhao
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Kunlun He
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
70
|
Crifo B, Schaible B, Brown E, Halligan DN, Scholz CC, Fitzpatrick SF, Kirwan A, Roche HM, Criscuoli M, Naldini A, Giffney H, Crean D, Blanco A, Cavadas MA, Cummins EP, Fabian Z, Taylor CT. Hydroxylase Inhibition Selectively Induces Cell Death in Monocytes. THE JOURNAL OF IMMUNOLOGY 2019; 202:1521-1530. [DOI: 10.4049/jimmunol.1800912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/19/2018] [Indexed: 12/21/2022]
|
71
|
Molecular Characterization of Hypoxic Alveolar Epithelial Cells After Lung Contusion Indicates an Important Role for HIF-1α. Ann Surg 2019; 267:382-391. [PMID: 27811509 DOI: 10.1097/sla.0000000000002070] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To understand the fate and regulation of hypoxic type II alveolar epithelial cells (AECs) after lung contusion (LC). BACKGROUND LC due to thoracic trauma is a major risk factor for the development of acute respiratory distress syndrome. AECs have recently been implicated as a primary driver of inflammation in LC. The main pathological consequence of LC is hypoxia, and a key mediator of adaptation to hypoxia is hypoxia-inducible factor (HIF)-1. We have recently published that HIF-1α is a major driver of acute inflammation after LC through type II AEC. METHODS LC was induced in wild-type mice (C57BL/6), luciferase-based hypoxia reporter mice (ODD-Luc), and HIF-1α conditional knockout mice. The degree of hypoxia was assessed using hypoxyprobe and in vivo imaging system. The fate of hypoxic AEC was evaluated by luciferase dual staining with caspases-3 and Ki-67, terminal deoxynucleotidyl transferase dUTP nick end labeling, and flow cytometry with ApoStat. NLRP-3 expression was determined by western blot. Laser capture microdissection was used to isolate AECs in vivo, and collected RNA was analyzed by Q-PCR for HIF-related pathways. RESULTS Global hypoxia was present after LC, but hypoxic foci were not uniform. Hypoxic AECs preferentially undergo apoptosis. There were significant reductions in NLRP-3 in HIF-1α conditional knockout mice. The expression of proteins involved in HIF-related pathways and inflammasome activation were significantly increased in hypoxic AECs. CONCLUSIONS These are the first in vivo data to identify, isolate, and characterize hypoxic AECs. HIF-1α regulation through hypoxic AECs is critical to the initiation of acute inflammation after LC.
Collapse
|
72
|
EL-Hajjar L, Jalaleddine N, Shaito A, Zibara K, Kazan JM, El-Saghir J, El-Sabban M. Bevacizumab induces inflammation in MDA-MB-231 breast cancer cell line and in a mouse model. Cell Signal 2019; 53:400-412. [DOI: 10.1016/j.cellsig.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
|
73
|
Zhang X, Shi J, Sun Y, Habib YJ, Yang H, Zhang Z, Wang Y. Integrative transcriptome analysis and discovery of genes involving in immune response of hypoxia/thermal challenges in the small abalone Haliotis diversicolor. FISH & SHELLFISH IMMUNOLOGY 2019; 84:609-626. [PMID: 30366091 DOI: 10.1016/j.fsi.2018.10.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
In recent years, the abalone aquaculture industry has been threatened by the deteriorating environmental conditions, such as hypoxia and thermal stress in the hot summers. It is necessary to investigate the molecular mechanism in response to these environmental challenges, and subsequently understand the immune defense system. In this study, the transcriptome profiles by RNA-seq of hemocytes from the small abalone Haliotis diversicolor after exposure to hypoxia, thermal stress, and hypoxia plus thermal stress were established. A total of 103,703,074 clean reads were obtained and 99,774 unigenes were assembled. Of the 99,774 unigenes, 47,154 and 20,455 had homologous sequences in the Nr and Swiss-Prot protein databases, while 16,944 and 10,840 unigenes could be classified by COG or KEGG databases, respectively. RNAseq analysis revealed that the differentially expressed genes (DEGs) after challenges of hypoxia, thermal stress, or hypoxia plus thermal stress were 24,189, 29,165 and 23,665, among which more than 3000 genes involved in at least 230 pathways, including several classical immune-related pathways. The genes and pathways that were involved in immune response to hypoxia/thermal challenges were identified by transcriptome analysis and further validated by quantitative real-time PCR and RNAi technology. The findings in this study can provide information on H. diversicolor innate immunity to improve the abalone aquaculture industry, and the analysis of the potential immune-related genes in innate immunity signaling pathways and the obtained transcriptome data can provide an invaluable genetic resource for the study of the genome and functional genes.
Collapse
Affiliation(s)
- Xin Zhang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China
| | - Jialong Shi
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China
| | - Yulong Sun
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China
| | - Yusuf Jibril Habib
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China
| | - Huiping Yang
- School of Forest Resources and Conservation, Institute of Food and Agricultural Sciences, University of Florida, 7922 NW 71st Street, Gainesville, FL, 32653, USA
| | - Ziping Zhang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China.
| | - Yilei Wang
- Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
74
|
Zhang Y, Xing Y, Yuan H, Gang X, Guo W, Li Z, Wang G. Impaired Glucose Metabolisms of Patients with Obstructive Sleep Apnea and Type 2 Diabetes. J Diabetes Res 2018; 2018:6714392. [PMID: 30671481 PMCID: PMC6323486 DOI: 10.1155/2018/6714392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/04/2018] [Indexed: 01/17/2023] Open
Abstract
AIMS Obstructive sleep apnea (OSA) is a very common disorder which is associated with metabolic comorbidities. The aims of this study were to analyze clinical data of patients with OSA and evaluate influence of sleep-disordered breathing on glycometabolism and its underlying mechanisms. METHODS We designed a cross-sectional study involving 53 OSA patients in The First Hospital of Jilin University from March 2015 to March 2016. They underwent a full-night polysomnography, measurement of fasting blood glucose and blood lipid profiles. Besides, we chose 20 individuals with type 2 diabetes mellitus (T2DM) as a subgroup for an in-depth study. This group additionally underwent a steamed bread meal test and measurement of HbA1c, C-reactive protein, tumor necrosis factor-α, interleukin 6, morning plasma cortisol, and growth hormone. RESULTS The two groups which with or without T2DM showed no significant differences in baseline characteristics. As for OSA patients with T2DM, the severe OSA group had higher homeostasis model assessment of insulin resistance (HOMA-IR) (P = 0.013) than the mild-to-moderate OSA group, whereas had lower morning plasma cortisol levels (P = 0.005) than the mild-to-moderate OSA group. AHI was positive correlated with HOMA-IR (r = 0.523, P = 0.018), yet negative correlated with morning plasma cortisol (r = -0.694, P = 0.001). However, nadir SpO2 was positive correlated with morning plasma cortisol (r s = 0.646, P = 0.002), while negative correlated with HOMA-IR (r s = -0.489, P = 0.029). CONCLUSIONS Our study showed that sleep-disordered breathing exerted negative influence on glucose metabolisms. The impairment of hypothalamic-pituitary-adrenal axis activity may be one of the underlying mechanisms of the glycometabolic dysfunctions in OSA with T2DM patients.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanpeng Xing
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Haibo Yuan
- Department of Respiratory, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaokun Gang
- Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Weiying Guo
- Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhuo Li
- Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guixia Wang
- Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
75
|
Caris AV, Santos RVT. Performance and altitude: Ways that nutrition can help. Nutrition 2018; 60:35-40. [PMID: 30529882 DOI: 10.1016/j.nut.2018.09.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/29/2018] [Indexed: 12/18/2022]
Abstract
High altitudes are a challenge for human physiology and for sports enthusiasts. Several reasons lead to deterioration in performance at high altitudes. Hypoxia owing to high altitude causes a breakdown of homeostasis with imbalance in several physiological systems, including the immune system. The reduction in mucosal immunity and inflammation and the predominance of the humoral immune response causes a condition of immunosuppression and an increased likelihood of infection. In addition, it is known that worsening of the immune response is associated with reduced performance. On the other hand, immunonutrition plays an important role in modulating the effects of physical exercise on the immune system. However, to our knowledge, few studies have evaluated the effect of nutrition on the immune system after exercise in hypoxia. Although the association between exercise and hypoxia has been shown to be more severe for the body owing to the sum of stressful agents, supplementation with carbohydrates and glutamine seems to play a relevant role in mitigating immunosuppressive effects. These findings, although limited by the fact that they are the result of very few studies, shed light on a relevant theme for sports physiology and nutrition and suggest that both supplements may be useful for athletes, visitors, and workers in high-altitude regions. The aim of this review was to discuss the effects of high-altitude hypoxia on the human body from the point of view of exercise immunology because it is known that transient immunosuppression after strenuous exercise and competition should be followed by reduction in training overload and worse performance.
Collapse
Affiliation(s)
- Aline V Caris
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
76
|
The Different Facades of Retinal and Choroidal Endothelial Cells in Response to Hypoxia. Int J Mol Sci 2018; 19:ijms19123846. [PMID: 30513885 PMCID: PMC6321100 DOI: 10.3390/ijms19123846] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
Ocular angiogenic diseases, such as proliferative diabetic retinopathy and neovascular age-related macular degeneration, are associated with severe loss of vision. These pathologies originate from different vascular beds, retinal and choroidal microvasculatures, respectively. The activation of endothelial cells (EC) plays pivotal roles in angiogenesis, often triggered by oxygen deficiency. Hypoxia-inducible factors in ECs mediate the transcription of multiple angiogenic genes, including the canonical vascular endothelial growth factors. ECs show notable heterogeneity in function, structure, and disease, therefore the understanding of retinal/choroidal ECs (REC; CEC) biochemical and molecular responses to hypoxia may offer key insights into tissue-specific vascular targeting treatments. The aim of this review is to discuss the differences spanning between REC and CEC, with focus on their response to hypoxia, which could provide innovative and sustainable strategies for site specific targeting of ocular neovascularization.
Collapse
|
77
|
Mendes RT, Nguyen D, Stephens D, Pamuk F, Fernandes D, Hasturk H, Van Dyke TE, Kantarci A. Hypoxia-induced endothelial cell responses - possible roles during periodontal disease. Clin Exp Dent Res 2018; 4:241-248. [PMID: 30603105 PMCID: PMC6305913 DOI: 10.1002/cre2.135] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/12/2018] [Accepted: 07/23/2018] [Indexed: 02/05/2023] Open
Abstract
Background and objective Inflammatory periodontal pockets are known to be hypoxic. Hypoxia influences vascular response to periodontal inflammation, including angiogenesis, which is critical for oxygen and nutrient delivery to periodontal tissues and granulation tissue formation. Our previous work suggests that periodontal bacteria may actively contribute to pocket hypoxia. Herein, we test the hypothesis that Fusobacterium nucleatum actively induces low oxygen tension, which modulates angiogenesis and endothelial cell activity. HUVEC cells were incubated in 1.5% oxygen for (Folkman & Shing, 1992)48 hours. Cell proliferation was measured by MTT; surface expression of CD31, CD34 and VEGF receptors (VEGFR1, VEGFR2) were analyzed by FACS. mRNA expression of HIF isoforms, iNOS, eNOS, COX-2, and VEGF was measured by quantitative PCR. Supernatants were analyzed for the release of IL-1α, TNF-α, and VEGF by ELISA or multiplex immunoassays and nitric oxide was measured by colorimetric assay. F. nucleatum actively depleted oxygen. Hypoxia resulted in a significant increase of HIF isoforms. iNOS was increased while nitric oxide was unchanged. VEGF release was increased at 4 hours followed by an increase in VEGFR1 at 12 hours, but not VEGFR2. CD31 expression was reduced and CD34 was increased after 48 hours (p < 0.05). IL-1α and TNF-α release were decreased at 4 hours (p < 0.05), but both increased by 24 hours; TNF-α increased at 24 h. The data highlight the role of hypoxia in endothelial cell inflammatory changes. F. nucleatum, considered a bridging species in the development of periodontopathic biofilms induces hypoxia in the periodontium leading to angiogenic changes in periodontal disease pathogenesis.
Collapse
Affiliation(s)
- Reila T. Mendes
- Forsyth InstituteMAUSA
- Ponta Grossa State UniversityBrazil
- Faculdade HerreroBrazil
| | | | | | - Ferda Pamuk
- Beykent University ‐ Faculty of Dentistry Department of PeriodontologyIstanbulTurkey
| | | | | | | | | |
Collapse
|
78
|
Concerning "Comments and question on "Selective inhibition of endothelial NF-kB signaling attenuates chronic intermittent hypoxia-induced atherosclerosis in mice" ". Atherosclerosis 2018; 277:227-228. [PMID: 29961598 DOI: 10.1016/j.atherosclerosis.2018.06.862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/15/2018] [Indexed: 11/22/2022]
|
79
|
Kim IS, Zhang F, Bhawal UK. The Role of the Hypoxia Responsive Gene DEC1 in Periodontal Inflammation. J HARD TISSUE BIOL 2018. [DOI: 10.2485/jhtb.27.227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Il-Shin Kim
- Department of Dental Hygiene, Honam University
| | - Fengzhu Zhang
- Department of Anesthesiology, Nihon University School of Dentistry at Matsudo
| | - Ujjal K. Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo
- Research Institute of Oral Health, Nihon University School of Dentistry at Matsudo
- Department of Oral Health, Graduate School of Dentistry, Kanagawa Dental University
| |
Collapse
|
80
|
An allometric approach of tumor-angiogenesis. Med Hypotheses 2018; 116:74-78. [DOI: 10.1016/j.mehy.2018.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/13/2018] [Accepted: 03/25/2018] [Indexed: 01/27/2023]
|
81
|
Gautier-Veyret E, Bäck M, Arnaud C, Belaïdi E, Tamisier R, Lévy P, Arnol N, Perrin M, Pépin JL, Stanke-Labesque F. Cysteinyl-leukotriene pathway as a new therapeutic target for the treatment of atherosclerosis related to obstructive sleep apnea syndrome. Pharmacol Res 2018; 134:311-319. [PMID: 29920371 DOI: 10.1016/j.phrs.2018.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/18/2018] [Accepted: 06/15/2018] [Indexed: 11/26/2022]
Abstract
AIMS Obstructive sleep apnea (OSA) characterized by nocturnal intermittent hypoxia (IH) is associated with atherosclerosis and cysteinyl-leukotrienes (CysLT) pathway activation. We aimed to identify the determinants of CysLT pathway activation and the role of CysLT in OSA-related atherosclerosis. METHODS AND RESULTS Determinants of the urinary excretion of LTE4 (U-LTE4) including history of cardiovascular events, polysomnographic and biological parameters were studied in a cohort of 170 OSA patients and 29 controls, and in a subgroup of OSA patients free of cardiovascular event (n = 136). Mechanisms linking IH, the CysLT pathway and atherogenesis were investigated in Apolipoprotein E deficient (ApoE-/-) mice exposed to 8-week IH. In the whole cohort, U-LTE4 was independently influenced by age, minimal oxygen saturation, and a history of cardiovascular events, and correlated significantly with intima-media thickness. In the subgroup of OSA patients free of cardiovascular event, increased U-LTE4 was increased compared to controls and independently related to hypoxia severity and traditional risk factors aggregated in the 10-year cardiovascular risk score of European Society of Cardiology. In IH mice, atherosclerosis lesion size and mRNA levels of 5-lipoxygenase, 5-lipoxygenase activating protein (FLAP) and CysLT1 receptor were significantly increased. This transcriptional activation was associated with the binding of HIF-1 to the FLAP promoter and was strongly associated with atherosclerosis lesion size. CysLT1 receptor antagonism (montelukast) significantly reduced atherosclerosis progression in IH mice. CONCLUSIONS IH-related CysLT pathway activation contributes to OSA-induced atherogenesis. In the era of personalized medicine, U-LTE4 may be a useful biomarker to identify OSA patients for whom CysLT1 blockade could represent a new therapeutic avenue for reducing cardiovascular risk.
Collapse
Affiliation(s)
- Elodie Gautier-Veyret
- Univ. Grenoble Alpes, HP2, F-38041, Grenoble, France; INSERM U1042, 38041, Grenoble, France; Centre Hospitalier Universitaire des Alpes, 38043, Grenoble, France.
| | - Magnus Bäck
- Department of Medicine, Karolinska Institute and University Hospital, Stockholm, Sweden.
| | - Claire Arnaud
- Univ. Grenoble Alpes, HP2, F-38041, Grenoble, France; INSERM U1042, 38041, Grenoble, France.
| | - Elise Belaïdi
- Univ. Grenoble Alpes, HP2, F-38041, Grenoble, France; INSERM U1042, 38041, Grenoble, France.
| | - Renaud Tamisier
- Univ. Grenoble Alpes, HP2, F-38041, Grenoble, France; INSERM U1042, 38041, Grenoble, France; Centre Hospitalier Universitaire des Alpes, 38043, Grenoble, France.
| | - Patrick Lévy
- Univ. Grenoble Alpes, HP2, F-38041, Grenoble, France; INSERM U1042, 38041, Grenoble, France; Centre Hospitalier Universitaire des Alpes, 38043, Grenoble, France.
| | - Nathalie Arnol
- Centre Hospitalier Universitaire des Alpes, 38043, Grenoble, France.
| | - Marion Perrin
- Centre Hospitalier Universitaire des Alpes, 38043, Grenoble, France.
| | - Jean-Louis Pépin
- Univ. Grenoble Alpes, HP2, F-38041, Grenoble, France; INSERM U1042, 38041, Grenoble, France; Centre Hospitalier Universitaire des Alpes, 38043, Grenoble, France.
| | - Françoise Stanke-Labesque
- Univ. Grenoble Alpes, HP2, F-38041, Grenoble, France; INSERM U1042, 38041, Grenoble, France; Centre Hospitalier Universitaire des Alpes, 38043, Grenoble, France.
| |
Collapse
|
82
|
SIRT1 Mediates Apelin-13 in Ameliorating Chronic Normobaric Hypoxia-induced Anxiety-like Behavior by Suppressing NF-κB Pathway in Mice Hippocampus. Neuroscience 2018; 381:22-34. [DOI: 10.1016/j.neuroscience.2018.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
|
83
|
Kasai M, Van Damme N, Berardi G, Geboes K, Laurent S, Troisi RI. The inflammatory response to stress and angiogenesis in liver resection for colorectal liver metastases: a randomized controlled trial comparing open versus laparoscopic approach. Acta Chir Belg 2018; 118:172-180. [PMID: 29179666 DOI: 10.1080/00015458.2017.1407118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND This study evaluates the surgical stress response following laparoscopic and open liver resection for colorectal liver metastasis (CRLM). METHODS Patients with CRLM were prospectively randomized to receive open or laparoscopic liver resection (NCT03131778). Blood samples were drawn preoperatively and 24 h after resection. The serum interleukin-6 (IL-6) and IL-8 levels were measured. Furthermore, the mRNA levels of angiogenesis-related factors (vascular endothelial growth factor [VEGF] and HIF-1) and inflammation-related factors (COX-2 and MMP-9) in both tumor tissue and normal liver parenchyma were detected. RESULTS Twenty patients for each arm were included. Size of metastasis, type of resection, and neoadjuvant therapy were comparable between groups. Postoperative stay was shorter in the laparoscopic group. Higher levels of IL-6 were observed after the operation in both open and laparoscopic groups, although no differences in the post-operative levels between the groups was noted. Similarly, there were no significant differences in the mRNA expression of VEGF, HIF-1, MMP-9, and COX-2 between the treatment groups. No differences were observed in terms of overall survival and disease free survival. CONCLUSIONS The immunological effects of treatment were similar between the groups. Thus, the laparoscopic approach does not seem to significantly influence the surgical stress and tumor related factors in patients suffering from colorectal liver metastases.
Collapse
Affiliation(s)
- Meidai Kasai
- Department of General, Hepatobiliary and Liver Transplantation Surgery, Ghent University Hospital and Medical School, Ghent, Belgium
- Department of Surgery, Aso Iizuka Hospital, Fukuoka, Japan
| | | | - Giammauro Berardi
- Department of General, Hepatobiliary and Liver Transplantation Surgery, Ghent University Hospital and Medical School, Ghent, Belgium
| | - Karen Geboes
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Stéphanie Laurent
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Roberto I. Troisi
- Department of General, Hepatobiliary and Liver Transplantation Surgery, Ghent University Hospital and Medical School, Ghent, Belgium
| |
Collapse
|
84
|
Synaptic transmission and excitability during hypoxia with inflammation and reoxygenation in hippocampal CA1 neurons. Neuropharmacology 2018; 138:20-31. [PMID: 29775678 DOI: 10.1016/j.neuropharm.2018.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/19/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022]
Abstract
Although a number of experimental and clinical studies have shown that hypoxia typically accompanies acute inflammatory responses, the combinatorial effect of the two insults on basic neural function has not been thoroughly investigated. Previous studies have predominantly suggested that hypoxia reduces network activity; however, several studies suggest the opposite effect. Of note, inflammation is known to increase neural activity. In the current study, we examined the effects of limited oxygen in combination with an inflammatory stimulus, as well as the effects of reoxygenation, on synaptic transmission and excitability. We observed a significant reduction of both synaptic transmission and excitability when hypoxia and inflammation occurred in combination, whereas reoxygenation caused hyperexcitability of neurons. Further, we found that the observed reduction in synaptic transmission was due to compromised presynaptic release efficiency based on an adenosine-receptor-dependent increase in synaptic facilitation. Excitability changes in both directions were attributable to dynamic regulation of the hyperpolarization-activated cation current (Ih) and to changes in the input resistance and the voltage difference between resting membrane potential and action potential threshold. We found that zatebradine, an Ih current inhibitor, reduced the fluctuation in excitability, suggesting that it may have potential as a drug to ameliorate reperfusion brain injury.
Collapse
|
85
|
Remels AHV, Derks WJA, Cillero-Pastor B, Verhees KJP, Kelders MC, Heggermont W, Carai P, Summer G, Ellis SR, de Theije CC, Heeren RMA, Heymans S, Papageorgiou AP, van Bilsen M. NF-κB-mediated metabolic remodelling in the inflamed heart in acute viral myocarditis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2579-2589. [PMID: 29730342 DOI: 10.1016/j.bbadis.2018.04.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/29/2018] [Accepted: 04/28/2018] [Indexed: 11/28/2022]
Abstract
Acute viral myocarditis (VM), characterised by leukocyte infiltration and dysfunction of the heart, is an important cause of sudden cardiac death in young adults. Unfortunately, to date, the pathological mechanisms underlying cardiac failure in VM remain incompletely understood. In the current study, we investigated if acute VM leads to cardiac metabolic rewiring and if this process is driven by local inflammation. Transcriptomic analysis of cardiac biopsies from myocarditis patients and a mouse model of VM revealed prominent reductions in the expression of a multitude of genes involved in mitochondrial oxidative energy metabolism. In mice, this coincided with reductions in high-energy phosphate and NAD levels, as determined by Imaging Mass Spectrometry, as well as marked decreases in the activity, protein abundance and mRNA levels of various enzymes and key regulators of cardiac oxidative metabolism. Indicative of fulminant cardiac inflammation, NF-κB signalling and inflammatory cytokine expression were potently induced in the heart during human and mouse VM. In cultured cardiomyocytes, cytokine-mediated NF-κB activation impaired cardiomyocyte oxidative gene expression, likely by interfering with the PGC-1 (peroxisome proliferator-activated receptor (PPAR)-γ co-activator) signalling network, the key regulatory pathway controlling cardiomyocyte oxidative metabolism. In conclusion, we provide evidence that acute VM is associated with extensive cardiac metabolic remodelling and our data support a mechanism whereby cytokines secreted primarily from infiltrating leukocytes activate NF-κB signalling in cardiomyocytes thereby inhibiting the transcriptional activity of the PGC-1 network and consequently modulating myocardial energy metabolism.
Collapse
Affiliation(s)
- Alexander H V Remels
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.
| | - Wouter J A Derks
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Berta Cillero-Pastor
- The Maastricht Multimodal Molecular Imaging institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands
| | - Koen J P Verhees
- Department of Respiratory Medicine, NUTRIM, Maastricht University, Maastricht, The Netherlands
| | - Marco C Kelders
- Department of Respiratory Medicine, NUTRIM, Maastricht University, Maastricht, The Netherlands
| | - Ward Heggermont
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Paolo Carai
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Georg Summer
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; TNO, Microbiology & Systems Biology, Zeist, The Netherlands
| | - Shane R Ellis
- The Maastricht Multimodal Molecular Imaging institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands
| | - Chiel C de Theije
- Department of Respiratory Medicine, NUTRIM, Maastricht University, Maastricht, The Netherlands
| | - Ron M A Heeren
- The Maastricht Multimodal Molecular Imaging institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Ana P Papageorgiou
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marc van Bilsen
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Department of Physiology, CARIM, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
86
|
Wang C, Jiang H, Duan J, Chen J, Wang Q, Liu X, Wang C. Exploration of Acute Phase Proteins and Inflammatory Cytokines in Early Stage Diagnosis of Acute Mountain Sickness. High Alt Med Biol 2018; 19:170-177. [PMID: 29608374 DOI: 10.1089/ham.2017.0126] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Wang, Chi, Hui Jiang, Jinyan Duan, Jingwen Chen, Qi Wang, Xiaoting Liu, and Chengbin Wang. Exploration of acute phase proteins and inflammatory cytokines in early stage diagnosis of acute mountain sickness. High Alt Med Biol. 19:170-177, 2018. BACKGROUND Early diagnosis of acute mountain sickness (AMS) is currently based on personal appreciation of the severity of symptoms. A more objective method to diagnose AMS is required. Inflammatory cytokines and acute phase proteins have been reported to be different at high altitude. METHODS A total of 104 male soldiers rapidly ascending from Beijing (20-60 m) to Germu, Qinghai (3200 m), were divided into AMS group and non-AMS group according to the Lake Louis Score system. Blood pressure, pulse rate, and oxygen saturation were measured. Forty-nine blood samples were collected before and on the 3rd day after ascending to the high altitude. Serum haptoglobin (Hp), transferrin (Tf), and complement C3 were detected by immune scattered nephelometry, whereas serum interleukin-1beta (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) were detected by chemical luminescence immunity analyzer. The sensitivity, specificity, and receiver operating characteristic curve were evaluated. Youden index with the maximum value was used to determine cutoff values of each parameter. Logistic regression was performed to determine the diagnostic efficiency of combination of three cytokines. RESULTS Differences of physical indexes between AMS group and non-AMS group were of no statistical significance. In AMS group, serum Tf significantly increased while Hp decreased when compared with non-AMS group. Serum IL-1β, IL-6, and TNF-α were higher in the AMS group than in the non-AMS group. The cutoff values for Tf, Hp, IL-1β, IL-6, and TNF-α were 263.5 mg/dL, 119.35 mg/dL, 6.2 pg/mL, 15.05 pg/mL, and 18.35 pg/mL, respectively. Area under the curve (AUC) of combining three cytokines together was higher than AUC of each cytokine separately. CONCLUSIONS Acute phase proteins and inflammatory cytokines (IL-1β, IL-6, and TNF-α) show significant changes between the AMS group and the non-AMS group. Combination of inflammatory cytokines or acute phase proteins improves the specificity for diagnosis of AMS. This might provide objective indexes for scanning and screening individuals susceptible to AMS in the early stage of rapid ascending.
Collapse
Affiliation(s)
- Chi Wang
- 1 Department of Clinical Laboratory, People's Liberation Army General Hospital , Beijing, China
| | - Hui Jiang
- 2 Department of Hyperbaric Chamber, People's Liberation Army General Hospital , Beijing, China
| | - Jinyan Duan
- 1 Department of Clinical Laboratory, People's Liberation Army General Hospital , Beijing, China
| | - Jingwen Chen
- 2 Department of Hyperbaric Chamber, People's Liberation Army General Hospital , Beijing, China
| | - Qi Wang
- 3 Outpatient Department of Chinese People's Liberation Army Aviation School , Beijing, China
| | - Xiaoting Liu
- 1 Department of Clinical Laboratory, People's Liberation Army General Hospital , Beijing, China
| | - Chengbin Wang
- 1 Department of Clinical Laboratory, People's Liberation Army General Hospital , Beijing, China
| |
Collapse
|
87
|
Yeh YH, Hsiao HF, Yeh YC, Chen TW, Li TK. Inflammatory interferon activates HIF-1α-mediated epithelial-to-mesenchymal transition via PI3K/AKT/mTOR pathway. J Exp Clin Cancer Res 2018; 37:70. [PMID: 29587825 PMCID: PMC5870508 DOI: 10.1186/s13046-018-0730-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/09/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Tumor microenvironments (TMEs) activate various axes/pathways, predominantly inflammatory and hypoxic responses, impact tumorigenesis, metastasis and therapeutic resistance significantly. Although molecular pathways of individual TME are extensively studied, evidence showing interaction and crosstalk between hypoxia and inflammation remain unclear. Thus, we examined whether interferon (IFN) could modulate both inflammatory and hypoxic responses under normoxia and its relation with cancer development. METHODS IFN was used to induce inflammation response and HIF-1α expression in various cancer cell lines. Corresponding signaling pathways were then analyzed by a combination of pharmacological inhibitors, immunoblotting, GST-Raf pull-down assays, dominant-negative and short-hairpin RNA-mediated knockdown approaches. Specifically, roles of functional HIF-1α in the IFN-induced epithelial-mesenchymal transition (EMT) and other tumorigenic propensities were examined by knockdown, pharmacological inhibition, luciferase reporter, clonogenic, anchorage-independent growth, wound-healing, vasculogenic mimicry, invasion and sphere-formation assays as well as cellular morphology observation. RESULTS We showed for the first time that IFN induced functional HIF-1α expression in a time- and dose- dependent manner in various cancer cell lines under both hypoxic and normoxic conditions, and then leading to an activated HIF-1α pathway in an IFN-mediated pro-inflammatory TME. IFN regulates anti-apoptosis activity, cellular metastasis, EMT and vasculogenic mimicry by a novel mechanism through mainly the activation of PI3K/AKT/mTOR axis. Subsequently, pharmacological and genetic modulations of HIF-1α, JAK, PI3K/AKT/mTOR or p38 pathways efficiently abrogate above IFN-induced tumorigenic propensities. Moreover, HIF-1α is required for the IFN-induced invasiveness, tumorigenesis and vasculogenic mimicry. Further supports for the HIF-1α-dependent tumorigenesis were obtained from results of xenograft mouse model and sphere-formation assay. CONCLUSIONS Our mechanistic study showed an induction of HIF-1α and EMT ability in an IFN-mediated inflammatory TME and thus demonstrating a novel interaction between inflammatory and hypoxic TMEs. Moreover, targeting HIF-1α may be a potential target for inhibiting tumor tumorigenesis and EMT by decreasing cancer cells wound healing and anchorage-independent colony growth. Our results also lead to rationale guidance for developing new therapeutic strategies to prevent relapse via targeting TME-providing IFN signaling and HIF-1α programming.
Collapse
Affiliation(s)
- Yen-Hsiu Yeh
- Department and Graduate Institute of Microbiology, College of Medicine, Taipei, Taiwan, Republic of China
| | - Ho-Fu Hsiao
- Department of Emergency Medicine, Sijhih Cathay General Hospital, New Taipei City, Taiwan, Republic of China
| | - Yen-Cheng Yeh
- Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan, Republic of China
| | - Tien-Wen Chen
- Department and Graduate Institute of Microbiology, College of Medicine, Taipei, Taiwan, Republic of China
| | - Tsai-Kun Li
- Department and Graduate Institute of Microbiology, College of Medicine, Taipei, Taiwan, Republic of China.
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China.
- Center for Genomic Medicine, National Taiwan University, Taipei, Taiwan, Republic of China.
| |
Collapse
|
88
|
Song D, Fang G, Mao SZ, Ye X, Liu G, Miller EJ, Greenberg H, Liu SF. Reply to: "Comments and question on "Selective inhibition of endothelial NF-κB signaling attenuates chronic intermittent hypoxia-induced atherosclerosis in mice"". Atherosclerosis 2018; 272:248. [PMID: 29587962 DOI: 10.1016/j.atherosclerosis.2018.03.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Dongmei Song
- The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
| | - Guoqiang Fang
- Center for Pulmonary, Critical Care and Sleep Medicine, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA
| | - Sun-Zhong Mao
- Center for Pulmonary, Critical Care and Sleep Medicine, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA
| | - Xiaobing Ye
- Center for Pulmonary, Critical Care and Sleep Medicine, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA
| | - Gang Liu
- Center for Pulmonary, Critical Care and Sleep Medicine, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA
| | - Edmund J Miller
- Center for Pulmonary, Critical Care and Sleep Medicine, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA
| | - Harly Greenberg
- Center for Pulmonary, Critical Care and Sleep Medicine, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA
| | - Shu Fang Liu
- Center for Pulmonary, Critical Care and Sleep Medicine, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA; The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China.
| |
Collapse
|
89
|
HIF1A gene rs10873142 polymorphism is associated with risk of chronic obstructive pulmonary disease in a Chinese Han population: a case-control study. Biosci Rep 2018; 38:BSR20171309. [PMID: 29339421 PMCID: PMC5843754 DOI: 10.1042/bsr20171309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a type of obstructive lung disease characterized by long-term poor airflow. Recently, variants in the hypoxia inducible factor 1α (HIF1A) gene were found to be associated with COPD risk. The present study aimed to identify whether rs10873142 polymorphism (an intronic polymorphism) in HIF1A gene was related to COPD in a Chinese population. We genotyped HIF1A gene rs10873142 polymorphism in a case–control study with 235 COPD cases and 548 controls in a Chinese Han population. Odd ratios (ORs) and 95% confidence intervals (CIs) were estimated using the chi-squared (χ2) test, genetic model analysis, and stratification analysis. In the genetic model analysis, we found that the TT genotype (TT compared with CC: OR: 1.63; 95% CI: 1.02–2.60; P=0.042) and T allele (T compared with C: OR: 1.29; 95%CI, 1.02–1.60; P=0.032) showed significant correlation with the risk of COPD. However, in stratification analyses of age, BMI, and forced expiratory volume in 1 s (FEV1)/FEV, we failed to find any association between HIF1A gene rs10873142 polymorphism with COPD risk. The present study supports that HIF1A gene rs10873142 polymorphism may be associated with increased risk of COPD in a Chinese Han population. To the best of our knowledge, this is the first case–control study uncovering that the HIF1A gene rs10873142 polymorphism increases the risk of COPD in a Chinese Han population.
Collapse
|
90
|
Murugesan M, Premkumar K. Hypoxia stimulates microenvironment in human embryonic stem cell through inflammatory signalling: An integrative analysis. Biochem Biophys Res Commun 2018; 498:437-444. [PMID: 29501494 DOI: 10.1016/j.bbrc.2018.02.194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 02/27/2018] [Indexed: 02/08/2023]
Abstract
Despite, several lines of evidence suggesting the possible role of hypoxia in stem cell development and differentiation its significance in conferring the stemness and pluripotency remains elusive. In the present study we sought to delineate the candidate genes and molecular pathways imposed during hypoxic microenvironment and its physiological relevance in tipping the balance between the niche and cellular differentiation. Integrated meta-analysis was performed between the hypoxia exposed and normal human embryonic stem cells, employing three transcriptomic cohorts (GSE35819, GSE9510 and GSE37761) retrieved from Gene expression omnibus (GEO) database. Results reveal that a total number of 12 genes were consistently differentially expressed (6up regulated and 6 down regulated) with FDR <0.05 and fold change >1.5. The Gene Ontology (GO) functions and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis was performed using DAVID. The GO analysis showed DEG significantly enriched in terms of Cellular process (GO:0009987), protein binding (GO:0005515) and cell part (GO:0044464). KEGG analysis indicated participation of genes associated with circadian rthyum regulation and PPAR signalling pathway. Further, gene-set signature (MsigDB) enrichment analysis showed positive regulation with inflammatory signals and negative association with PPAR and p53 pathway. Protein-protein network of gene modules suggests significant hub proteins viz. CTTNB1 (Degree = 18), IL8 (Degree = 15), NFKB1 (Degree = 15) and RELA (Degree = 15) in the PPI network. MCODE algorithm was used for subnetworks of the PPI network. Our integrative analysis documents the potential candidate genes which serves distinct roles influencing metabolic shift and induce inflammatory effectors contributing to hypoxic mediated stem cell niche.
Collapse
Affiliation(s)
- Manikandan Murugesan
- Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Kumpati Premkumar
- Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
91
|
Gautier-Veyret E, Pépin JL, Stanke-Labesque F. Which place of pharmacological approaches beyond continuous positive airway pressure to treat vascular disease related to obstructive sleep apnea? Pharmacol Ther 2017; 186:45-59. [PMID: 29277633 DOI: 10.1016/j.pharmthera.2017.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Obstructive sleep apnea (OSA) is characterized by recurrent episodes of partial or complete upper airway obstruction, occurring during sleep, leading to chronic intermittent hypoxia (IH), which harms the cardiovascular system. OSA is associated with both functional and structural vascular alterations that contribute to an increased prevalence of fatal and non-fatal cardiovascular events. OSA is a heterogeneous disease with respect to the severity of hypoxia, the presence of daytime symptoms, obesity, and cardiovascular comorbidities. Various clusters of OSA phenotypes have been described leading to more highly personalized treatment. The aim of this review is to describe the various therapeutic strategies including continuous positive airway pressure (CPAP), oral appliances, surgery, weight loss, and especially pharmacological interventions that have been evaluated to reduce vascular alterations in both OSA patients and preclinical animal models. Conventional therapies, predominantly CPAP, have a limited impact on vascular alterations in the presence of co-morbidities. A better knowledge of pharmacological therapies targeting IH-induced vascular alterations will facilitate the use of combined therapies and is crucial for designing clinical trials in well-defined OSA phenotypes.
Collapse
Affiliation(s)
- Elodie Gautier-Veyret
- Univ. Grenoble Alpes, HP2, F-38041 Grenoble, France; INSERM U1042, 38041 Grenoble, France; Centre hospitalier Universitaire Grenoble Alpes, 38043 Grenoble, France.
| | - Jean-Louis Pépin
- Univ. Grenoble Alpes, HP2, F-38041 Grenoble, France; INSERM U1042, 38041 Grenoble, France; Centre hospitalier Universitaire Grenoble Alpes, 38043 Grenoble, France
| | - Françoise Stanke-Labesque
- Univ. Grenoble Alpes, HP2, F-38041 Grenoble, France; INSERM U1042, 38041 Grenoble, France; Centre hospitalier Universitaire Grenoble Alpes, 38043 Grenoble, France
| |
Collapse
|
92
|
Abstract
Solid tumor growth and metastasis require the interaction of tumor cells with the surrounding tissue, leading to a view of tumors as tissue-level phenomena rather than exclusively cell-intrinsic anomalies. Due to the ubiquitous nature of adipose tissue, many types of solid tumors grow in proximate or direct contact with adipocytes and adipose-associated stromal and vascular components, such as fibroblasts and other connective tissue cells, stem and progenitor cells, endothelial cells, innate and adaptive immune cells, and extracellular signaling and matrix components. Excess adiposity in obesity both increases risk of cancer development and negatively influences prognosis in several cancer types, in part due to interaction with adipose tissue cell populations. Herein, we review the cellular and noncellular constituents of the adipose "organ," and discuss the mechanisms by which these varied microenvironmental components contribute to tumor development, with special emphasis on obesity. Due to the prevalence of breast and prostate cancers in the United States, their close anatomical proximity to adipose tissue depots, and their complex epidemiologic associations with obesity, we particularly highlight research addressing the contribution of adipose tissue to the initiation and progression of these cancer types. Obesity dramatically modifies the adipose tissue microenvironment in numerous ways, including induction of fibrosis and angiogenesis, increased stem cell abundance, and expansion of proinflammatory immune cells. As many of these changes also resemble shifts observed within the tumor microenvironment, proximity to adipose tissue may present a hospitable environment to developing tumors, providing a critical link between adiposity and tumorigenesis. © 2018 American Physiological Society. Compr Physiol 8:237-282, 2018.
Collapse
Affiliation(s)
- Alyssa J. Cozzo
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ashley M. Fuller
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Liza Makowski
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
93
|
Souza RF, Bayeh L, Spechler SJ, Tambar UK, Bruick RK. A new paradigm for GERD pathogenesis. Not acid injury, but cytokine-mediated inflammation driven by HIF-2α: a potential role for targeting HIF-2α to prevent and treat reflux esophagitis. Curr Opin Pharmacol 2017; 37:93-99. [PMID: 29112883 PMCID: PMC5922421 DOI: 10.1016/j.coph.2017.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
Traditionally, reflux esophagitis was assumed to develop as a caustic, chemical injury inflicted by refluxed acid. Recently, however, studies in rats and humans suggest that reflux esophagitis develops as a cytokine-mediated inflammatory injury, with hypoxia inducible factor (HIF)-2α playing a major role. In response to the reflux of acid and bile, HIF-2α in esophageal epithelial cells becomes stabilized, thereby increasing production of pro-inflammatory cytokines that attract T lymphocytes and other inflammatory cells to damage the esophagus. Recent studies have identified small molecule inhibitors of HIF-2α that demonstrate exquisite isoform selectivity, and clinical trials for treatment of HIF-2α-driven kidney cancers are ongoing. It is conceivable that a HIF-2α-directed therapy might be a novel approach to prevention and treatment of reflux esophagitis.
Collapse
Affiliation(s)
- Rhonda F Souza
- Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott and White Research Institute, Dallas, TX, USA.
| | - Liela Bayeh
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stuart J Spechler
- Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott and White Research Institute, Dallas, TX, USA
| | - Uttam K Tambar
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Richard K Bruick
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
94
|
Taylor CT, Colgan SP. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat Rev Immunol 2017; 17:774-785. [PMID: 28972206 PMCID: PMC5799081 DOI: 10.1038/nri.2017.103] [Citation(s) in RCA: 424] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunological niches are focal sites of immune activity that can have varying microenvironmental features. Hypoxia is a feature of physiological and pathological immunological niches. The impact of hypoxia on immunity and inflammation can vary depending on the microenvironment and immune processes occurring in a given niche. In physiological immunological niches, such as the bone marrow, lymphoid tissue, placenta and intestinal mucosa, physiological hypoxia controls innate and adaptive immunity by modulating immune cell proliferation, development and effector function, largely via transcriptional changes driven by hypoxia-inducible factor (HIF). By contrast, in pathological immunological niches, such as tumours and chronically inflamed, infected or ischaemic tissues, pathological hypoxia can drive tissue dysfunction and disease development through immune cell dysregulation. Here, we differentiate between the effects of physiological and pathological hypoxia on immune cells and the consequences for immunity and inflammation in different immunological niches. Furthermore, we discuss the possibility of targeting hypoxia-sensitive pathways in immune cells for the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Cormac T Taylor
- UCD Conway Institute, Systems Biology Ireland and the School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sean P Colgan
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, 80045 Colorado, USA
| |
Collapse
|
95
|
Pedrotti E, Demasi CL, Bruni E, Bosello F, Di Sarro PP, Passilongo M, Fasolo A, Gennaro N, De Gregorio A, Ferrari M, Marchini G. Prevalence and risk factors of eye diseases in adult patients with obstructive sleep apnoea: results from the SLE.E.P.Y cohort study. BMJ Open 2017; 7:e016142. [PMID: 29061607 PMCID: PMC5665218 DOI: 10.1136/bmjopen-2017-016142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES To assess the occurrence of glaucoma, eyelid, corneal and macular disorders in a cohort of patients with obstructive sleep apnoea (OSA) diagnosed by overnight polysomnography and to investigate into the risk factors for the above eye diseases (EDs). DESIGN Cross-sectional cohort study between 2014 and 2015. SETTING Unit of Respiratory Medicine and Eye Clinic of the University of Verona. PARTICIPANTS 431 consecutive patients were considered eligible. Of these, 87 declined to participate, 35 were untraceable and 13 were deceased. INTERVENTIONS A complete ophthalmic evaluation of both eyes for each patient. PRIMARY AND SECONDARY OUTCOME MEASURES Best-corrected distance visual acuity, intraocular pressure, corneal, macular and optic nerve optical coherence tomography, ocular aberrometry, optic nerve laser polarimetry, visual field test, and eyelid examination. RESULTS 296 patients aged 64.5±12.8 years, 23% female and 77% male, underwent ophthalmic examination. There was 56% (n=166) prevalence of eyelid disorders, 27% (n=80) of corneal disorders, 13% (n=39) of macular disorders and 11% (n=33) of glaucoma. Advancing age was not associated with the severity of OSA, while significant differences were found for gender, body mass index, Oxygen Desaturation Index, smoking habit, hypertension and diabetes. Severe OSA was significantly associated with glaucoma (OR, 95% CI 1.05 to 5.93, p=0.037). CONCLUSIONS EDs were more prevalent in our patinets with OSA than in the general population. Severe Apnoea/Hypopnoea Index level seemed to play a role as risk factor only for glaucoma.
Collapse
Affiliation(s)
- Emilio Pedrotti
- Department of Neurosciences, Biomedicine and Movement Sciences, Eye Clinic, University of Verona, Verona, Italy
| | - Christian Luigi Demasi
- Department of Neurosciences, Biomedicine and Movement Sciences, Eye Clinic, University of Verona, Verona, Italy
| | - Enrico Bruni
- Department of Neurosciences, Biomedicine and Movement Sciences, Eye Clinic, University of Verona, Verona, Italy
| | - Francesca Bosello
- Department of Neurosciences, Biomedicine and Movement Sciences, Eye Clinic, University of Verona, Verona, Italy
| | - Paolo Plinio Di Sarro
- Department of Neurosciences, Biomedicine and Movement Sciences, Eye Clinic, University of Verona, Verona, Italy
| | - Mattia Passilongo
- Department of Neurosciences, Biomedicine and Movement Sciences, Eye Clinic, University of Verona, Verona, Italy
| | - Adriano Fasolo
- Department of Neurosciences, Biomedicine and Movement Sciences, Eye Clinic, University of Verona, Verona, Italy
- The Veneto Eye Bank Foundation, Venezia Zelarino, Italy
| | | | | | - Marcello Ferrari
- Unit of Respiratory Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Giorgio Marchini
- Department of Neurosciences, Biomedicine and Movement Sciences, Eye Clinic, University of Verona, Verona, Italy
| |
Collapse
|
96
|
Wang C, Yan M, Jiang H, Wang Q, He S, Chen J, Wang C. Mechanism of aquaporin 4 (AQP 4) up-regulation in rat cerebral edema under hypobaric hypoxia and the preventative effect of puerarin. Life Sci 2017; 193:270-281. [PMID: 29054452 DOI: 10.1016/j.lfs.2017.10.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/08/2017] [Accepted: 10/17/2017] [Indexed: 01/05/2023]
Abstract
AIM We aim to investigate the mechanism of aquaporin 4 (AQP 4) up-regulation during high-altitude cerebral edema (HACE) in rats under hypobaric hypoxia and preventative effect of puerarin. METHODS Rats were exposed to a hypobaric chamber with or without the preventative treatment of puerarin or dexamethasone. Morriz water maze was used to evaluate the spatial memory injury. HE staining and W/D ratio were used to evaluate edema injury. Rat astrocytes and microglia were co-cultured under the condition of hypoxia with the administration of p38 inhibitor, NF-κB inhibitor or puerarin. Interleukin 6 (IL-6) and tumor necrosis factor α (TNF α) of cortex and culture supernatant were measured with ELISA. AQP4, phosphorylation of MAPKs, NF-κB pathway of cortex and astrocytes were measured by Western blot. KEY FINDINGS Weakened spatial memory and cerebral edema were observed after hypobaric hypoxia exposure. AQP4, phosphorylation of NF-κB and MAPK signal pathway of cortex increased after hypoxia exposure and decreased with preventative treatment of puerarin. Hypoxia increased TNF-α and IL-6 levels in cortex and microglia and puerarin could prevent the increase of them. AQP4 of astrocytes increased after co-cultured with microglia when both were exposed to hypoxia. AQP4 showed a decrease after administered with p38 inhibitor, NF-κB inhibitor or puerarin. SIGNIFICANCE Hypoxia triggers inflammatory response, during which AQP4 of astrocytes can be up regulated through the release of TNF-α and IL-6 from microglia. Puerarin can exert a preventative effect on the increase of AQP4 through inhibiting the release of TNF-α and phosphorylation of NF-κB, MAPK pathway.
Collapse
Affiliation(s)
- Chi Wang
- Department of Clinical Laboratory, PLA General Hospital, 100853 Beijing, China
| | - Muyang Yan
- Department of Hyperbaric Chamber, PLA General Hospital, 100853 Beijing, China
| | - Hui Jiang
- Department of Hyperbaric Chamber, PLA General Hospital, 100853 Beijing, China
| | - Qi Wang
- Outpatient Department of Chinese People's Liberation Army Aviation School, 101023 Beijing, China
| | - Shang He
- Department of Clinical Laboratory, PLA General Hospital, 100853 Beijing, China
| | - Jingwen Chen
- Department of Hyperbaric Chamber, PLA General Hospital, 100853 Beijing, China
| | - Chengbin Wang
- Department of Clinical Laboratory, PLA General Hospital, 100853 Beijing, China.
| |
Collapse
|
97
|
Ryan D, Sinha A, Bogan D, Davies J, Koziol J, ElShamy WM. A niche that triggers aggressiveness within BRCA1-IRIS overexpressing triple negative tumors is supported by reciprocal interactions with the microenvironment. Oncotarget 2017; 8:103182-103206. [PMID: 29262555 PMCID: PMC5732721 DOI: 10.18632/oncotarget.20892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 08/15/2017] [Indexed: 12/12/2022] Open
Abstract
Production of metastasis capable precursors begins within the primary tumor. Here, we define the bidirectional interactions with stromal cells involved in promoting these precursors within BRCA1-IRIS (hereafter IRIS) overexpressing (IRISOE) TNBC tumors. We define an aggressiveness niche, functionally defined as the necrotic/hypoxic core of the tumor, in which metabolically stressed, hypoxic, and inflamed IRISOE TNBC cells secrete higher levels of cytokines, chemokines and growth factors. One cytokine; IL-1β attracts mesenchymal stem cells (MSCs) to the niche and activates them to secrete CXCL1 that entrains IRISOE cells to secrete higher levels of CCL2 and VEGF. CCL2 attracts macrophages (TAMs) to the niche and activates them to secrete S100A8, and VEGF attracts endothelial cells (ECs) and activates them to secrete IL-8. In concert, CXCL1, S100A8 and IL-8 entrain aggressiveness in IRISOE TNBC cells within the niche. Indeed, compared to IRISOE cells alone, tumors developed by co-injecting IRISOE cells admixed with MSCs (10:1) in athymic mice were bigger and more aggressive. They contained more TAMs and ECs, expressed higher-levels of basal, epithelial to mesenchymal transition, and stemness biomarkers, quickly progressed to lymph-node or visceral metastases, and were highly sensitive to the IL-1β inhibitor “Anakinra”. Our findings supported by human data show that breast cancer patients with high-levels of IL-1β, CXCL1, CCL2, S100A8, VEGF, and IL-8 would show worse clinical outcomes. Our findings argue that this cytokine set is a diagnostic biomarker for patients who may benefit from an IRIS inhibitor-based therapy, and is a blue print for translation of approaches to combining that therapy with inhibitors of these bidirectional interactions to overcome TNBC metastasis.
Collapse
Affiliation(s)
- Daniel Ryan
- Breast Cancer Program, San Diego Biomedical Research Institute, San Diego, CA, USA
| | | | - Danielle Bogan
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Joanna Davies
- Breast Cancer Program, San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Jim Koziol
- Department of Molecular and Experimental Medicine, Scripps Research Institute, San Diego, CA, USA
| | - Wael M ElShamy
- Breast Cancer Program, San Diego Biomedical Research Institute, San Diego, CA, USA
| |
Collapse
|
98
|
Huo X, Agoston AT, Dunbar KB, Cipher DJ, Zhang X, Yu C, Cheng E, Zhang Q, Pham TH, Tambar UK, Bruick RK, Wang DH, Odze RD, Spechler SJ, Souza RF. Hypoxia-inducible factor-2α plays a role in mediating oesophagitis in GORD. Gut 2017; 66:1542-1554. [PMID: 27694141 PMCID: PMC5464991 DOI: 10.1136/gutjnl-2016-312595] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/24/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE In an earlier study wherein we induced acute reflux by interrupting proton pump inhibitor (PPI) therapy in patients with reflux oesophagitis (RO) healed by PPIs, we refuted the traditional concept that RO develops as an acid burn. The present study explored our alternative hypothesis that RO results from reflux-stimulated production of pro-inflammatory molecules mediated by hypoxia-inducible factors (HIFs). DESIGN Using oesophageal biopsies taken from patients in our earlier study at baseline and at 1 and 2 weeks off PPIs, we immunostained for HIF-1α, HIF-2α and phospho-p65, and measured pro-inflammatory molecule mRNAs. We exposed human oesophageal squamous cell lines to acidic bile salts, and evaluated effects on HIF activation, p65 function, pro-inflammatory molecule production and immune cell migration. RESULTS In patient biopsies, increased immunostaining for HIF-2α and phospho-p65, and increased pro-inflammatory molecule mRNA levels were seen when RO redeveloped 1 or 2 weeks after stopping PPIs. In oesophageal cells, exposure to acidic bile salts increased intracellular reactive oxygen species, which decreased prolyl hydroxylase function and stabilised HIF-2α, causing a p65-dependent increase in pro-inflammatory molecules; conditioned media from these cells increased T cell migration rates. HIF-2α inhibition by small hairpin RNA or selective small molecule antagonist blocked the increases in pro-inflammatory molecule expression and T cell migration induced by acidic bile salts. CONCLUSIONS In patients developing RO, increases in oesophageal HIF-2α correlate with increased pro-inflammatory molecule expression. In oesophageal epithelial cells, acidic bile salts stabilise HIF-2α, which mediates expression of pro-inflammatory molecules. HIF-2α appears to have a role in RO pathogenesis. TRIAL REGISTRATION NUMBER NCT01733810; Results.
Collapse
Affiliation(s)
- Xiaofang Huo
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX
| | - Agoston T. Agoston
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Kerry B. Dunbar
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX
| | - Daisha J. Cipher
- College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX
| | - Xi Zhang
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX
| | - Chunhua Yu
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX
| | - Edaire Cheng
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Pediatrics, Children's Medical Center and the University of Texas Southwestern Medical Center, Dallas, TX
| | - Qiuyang Zhang
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX
| | - Thai H. Pham
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Surgery, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX
| | - Uttam K. Tambar
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Richard K. Bruick
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - David H. Wang
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Robert D. Odze
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Stuart J. Spechler
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX,Correspondence to: Rhonda F. Souza, M.D., Department of Gastroenterology, MC# 111B1, Dallas VA Medical Center, 4500 South Lancaster Road, Dallas, TX 75216, Phone 214-857-0301, FAX 214-857-0328, ; Stuart J. Spechler, M.D., Department of Gastroenterology, MC# 111B1, Dallas VA Medical Center, 4500 South Lancaster Road, Dallas, TX 75216, Phone 214-857-0403, FAX 214-857-1571,
| | - Rhonda F. Souza
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX,Correspondence to: Rhonda F. Souza, M.D., Department of Gastroenterology, MC# 111B1, Dallas VA Medical Center, 4500 South Lancaster Road, Dallas, TX 75216, Phone 214-857-0301, FAX 214-857-0328, ; Stuart J. Spechler, M.D., Department of Gastroenterology, MC# 111B1, Dallas VA Medical Center, 4500 South Lancaster Road, Dallas, TX 75216, Phone 214-857-0403, FAX 214-857-1571,
| |
Collapse
|
99
|
De Luna N, Suárez-Calvet X, Lleixà C, Diaz-Manera J, Olivé M, Illa I, Gallardo E. Hypoxia triggers IFN-I production in muscle: Implications in dermatomyositis. Sci Rep 2017; 7:8595. [PMID: 28819164 PMCID: PMC5561123 DOI: 10.1038/s41598-017-09309-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022] Open
Abstract
Dermatomyositis is an inflammatory myopathy characterized by symmetrical proximal muscle weakness and skin changes. Muscle biopsy hallmarks include perifascicular atrophy, loss of intramuscular capillaries, perivascular and perimysial inflammation and the overexpression of IFN-inducible genes. Among them, the retinoic-acid inducible gene 1 (RIG-I) is specifically overexpressed in perifascicular areas of dermatomyositis muscle. The aim of this work was to study if RIG-I expression may be modulated by hypoxia using an in vitro approach. We identified putative hypoxia response elements (HRE) in RIG-I regulatory regions and luciferase assays confirmed that RIG-I is a new HIF-inducible gene. We observed an increase expression of RIG-I both by Real time PCR and Western blot in hypoxic conditions in human muscle cells. Cell transfection with a constitutive RIG-I expression vector increased levels of phospho-IRF-3, indicating that RIG-I promotes binding of transcription factors to the enhancer sequence of IFN. Moreover, release of IFN-β was observed in hypoxic conditions. Finally, HIF-1α overexpression was confirmed in the muscle biopsies and in some RIG-I positive perifascicular muscle fibres but not in controls. Our results indicate that hypoxia triggers the production of IFN-I in vitro, and may contribute to the pathogenesis of DM together with other inflammatory factors.
Collapse
Affiliation(s)
- Noemí De Luna
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Institut de Recerca Sant Pau, (Barcelona) and Biomedical Network Research Centre on Rare Diseases (CIBERER), Sant Pau, Spain
| | - Xavier Suárez-Calvet
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Institut de Recerca Sant Pau, (Barcelona) and Biomedical Network Research Centre on Rare Diseases (CIBERER), Sant Pau, Spain
| | - Cinta Lleixà
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Institut de Recerca Sant Pau, (Barcelona) and Biomedical Network Research Centre on Rare Diseases (CIBERER), Sant Pau, Spain
| | - Jordi Diaz-Manera
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Institut de Recerca Sant Pau, (Barcelona) and Biomedical Network Research Centre on Rare Diseases (CIBERER), Sant Pau, Spain
| | - Montse Olivé
- Department of Pathology and Neuromuscular Unit, IDIBELL-Hospital Universitari de Bellvitge, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Isabel Illa
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Institut de Recerca Sant Pau, (Barcelona) and Biomedical Network Research Centre on Rare Diseases (CIBERER), Sant Pau, Spain.
| | - Eduard Gallardo
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Institut de Recerca Sant Pau, (Barcelona) and Biomedical Network Research Centre on Rare Diseases (CIBERER), Sant Pau, Spain.
| |
Collapse
|
100
|
Souza RF. Reflux esophagitis and its role in the pathogenesis of Barrett's metaplasia. J Gastroenterol 2017; 52:767-776. [PMID: 28451845 PMCID: PMC5488728 DOI: 10.1007/s00535-017-1342-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 02/04/2023]
Abstract
Reflux esophagitis damages the squamous epithelium that normally lines the esophagus, and promotes replacement of the damaged squamous lining by the intestinal metaplasia of Barrett's esophagus, the precursor of esophageal adenocarcinoma. Therefore, to prevent the development of Barrett's metaplasia and esophageal adenocarcinoma, the pathogenesis of reflux esophagitis must be understood. We have reported that reflux esophagitis, both in a rat model and in humans, develops as a cytokine-mediated inflammatory injury (i.e., cytokine sizzle), not as a caustic chemical injury (i.e., acid burn), as traditionally has been assumed. Moreover, reflux induces activation of hypoxia inducible factor (HIF)-2α, which enhances the transcriptional activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) causing increases in pro-inflammatory cytokines and in migration of T lymphocytes, an underlying molecular mechanism for this cytokine-mediated injury. In some individuals, reflux esophagitis heals with Barrett's metaplasia. A number of possibilities exist for the origin of the progenitor cells that give rise to this intestinal metaplasia including those of the esophagus, the proximal stomach, or the bone marrow. However, intestinal cells are not normally found in the esophagus, the stomach, or the bone marrow. Thus, the development of Barrett's intestinal metaplasia must involve some molecular reprogramming of key developmental transcription factors within the progenitor cell, a process termed transcommitment, which may be initiated by the noxious components of the gastric refluxate. This review will highlight recent studies on the pathogenesis of reflux esophagitis and on reflux-related molecular reprogramming of esophageal squamous epithelial cells in the pathogenesis of Barrett's metaplasia.
Collapse
Affiliation(s)
- Rhonda F. Souza
- Center for Esophageal Research, Baylor Scott and White Research Institute, Dallas, TX, USA
| |
Collapse
|