51
|
Robba C, Cardim D, Ball L, Battaglini D, Dabrowski W, Bassetti M, Giacobbe DR, Czosnyka M, Badenes R, Pelosi P, Matta B, The GeCovid group BrunettiIoleLoconteMaurizioTarantinoFabioSottanoMarcoMarramaoFrancescoGratarolaAngeloFrisoniPaoloCiaravoloElenaDentoneChiaraTaramassoLuciaMagnascoLauraVenaAntonioZonaGianluigiFiaschiPietro. The Use of Different Components of Brain Oxygenation for the Assessment of Cerebral Haemodynamics: A Prospective Observational Study on COVID-19 Patients. Front Neurol 2021; 12:735469. [PMID: 34987461 PMCID: PMC8722102 DOI: 10.3389/fneur.2021.735469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/29/2021] [Indexed: 11/10/2022] Open
Abstract
Introduction: The role of near-infrared spectroscopy (NIRS) for the evaluation of cerebral haemodynamics is gaining increasing popularity because of its noninvasive nature. The aim of this study was to evaluate the role of the integral components of regional cerebral oxygenation (rSO2) measured by NIRS [i.e., arterial-oxyhemoglobin (O2Hbi) and venous-deoxyhemoglobin (HHbi)-components], as indirect surrogates of cerebral blood flow (CBF) in a cohort of critically ill patients with coronavirus disease 2019 (COVID-19). We compared these findings to the gold standard technique for noninvasive CBF assessment, Transcranial Doppler (TCD). Methods: Mechanically ventilated patients with COVID-19 admitted to the Intensive Care Unit (ICU) of Policlinico San Martino Hospital, Genova, Italy, who underwent multimodal neuromonitoring (including NIRS and TCD), were included. rSO2 and its components [relative changes in O2Hbi, HHbi, and total haemoglobin (cHbi)] were compared with TCD (cerebral blood flow velocity, CBFV). Changes (Δ) in CBFV and rSO2, ΔO2Hbi, ΔHHbi, and ΔcHbi after systemic arterial blood pressure (MAP) modifications induced by different manoeuvres (e.g., rescue therapies and haemodynamic manipulation) were assessed using mixed-effect linear regression analysis and repeated measures correlation coefficients. All values were normalised as percentage changes from the baseline (Δ%). Results: One hundred and four measurements from 25 patients were included. Significant effects of Δ%MAP on Δ%CBF were observed after rescue manoeuvres for CBFV, ΔcHbi, and ΔO2Hbi. The highest correlation was found between ΔCBFV and ΔΔO2Hbi (R = 0.88, p < 0.0001), and the poorest between ΔCBFV and ΔΔHHbi (R = 0.34, p = 0.002). Conclusions: ΔO2Hbi had the highest accuracy to assess CBF changes, reflecting its role as the main component for vasomotor response after changes in MAP. The use of indexes derived from the different components of rSO2 can be useful for the bedside evaluation of cerebral haemodynamics in mechanically ventilated patients with COVID-19.
Collapse
Affiliation(s)
- Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy,San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Danilo Cardim
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy,San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Denise Battaglini
- San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Wojciech Dabrowski
- Department of Anesthesiology and Intensive Care, Medical University of Lublin, Lublin, Poland
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy,Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy,Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Marek Czosnyka
- Brain Physics Laboratory, Department of Clinical Neurosciences, Neurosurgery Unit, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Rafael Badenes
- Department of Anesthesia and Intensive Care, Hospital Clinic Universitari, INCLIVA Research Health Institute, University of Valencia, Valencia, Spain,*Correspondence: Rafael Badenes
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy,San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Basil Matta
- Neurocritical Care Unit, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | |
Collapse
|
52
|
Poon CS, Rinehart B, Langri DS, Rambo TM, Miller AJ, Foreman B, Sunar U. Noninvasive Optical Monitoring of Cerebral Blood Flow and EEG Spectral Responses after Severe Traumatic Brain Injury: A Case Report. Brain Sci 2021; 11:1093. [PMID: 34439712 PMCID: PMC8394546 DOI: 10.3390/brainsci11081093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022] Open
Abstract
Survivors of severe brain injury may require care in a neurointensive care unit (neuro-ICU), where the brain is vulnerable to secondary brain injury. Thus, there is a need for noninvasive, bedside, continuous cerebral blood flow monitoring approaches in the neuro-ICU. Our goal is to address this need through combined measurements of EEG and functional optical spectroscopy (EEG-Optical) instrumentation and analysis to provide a complementary fusion of data about brain activity and function. We utilized the diffuse correlation spectroscopy method for assessing cerebral blood flow at the neuro-ICU in a patient with traumatic brain injury. The present case demonstrates the feasibility of continuous recording of noninvasive cerebral blood flow transients that correlated well with the gold-standard invasive measurements and with the frequency content changes in the EEG data.
Collapse
Affiliation(s)
- Chien-Sing Poon
- Department of Biomedical Engineering, Wright State University, Dayton, OH 45435, USA; (C.-S.P.); (B.R.); (D.S.L.)
| | - Benjamin Rinehart
- Department of Biomedical Engineering, Wright State University, Dayton, OH 45435, USA; (C.-S.P.); (B.R.); (D.S.L.)
| | - Dharminder S. Langri
- Department of Biomedical Engineering, Wright State University, Dayton, OH 45435, USA; (C.-S.P.); (B.R.); (D.S.L.)
| | | | | | - Brandon Foreman
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - Ulas Sunar
- Department of Biomedical Engineering, Wright State University, Dayton, OH 45435, USA; (C.-S.P.); (B.R.); (D.S.L.)
| |
Collapse
|
53
|
Greco FA, McKee AC, Kowall NW, Hanlon EB. Near-Infrared Optical Spectroscopy In Vivo Distinguishes Subjects with Alzheimer's Disease from Age-Matched Controls. J Alzheimers Dis 2021; 82:791-802. [PMID: 34092628 PMCID: PMC8385529 DOI: 10.3233/jad-201021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Medical imaging methods such as PET and MRI aid clinical assessment of Alzheimer’s disease (AD). Less expensive, less technically demanding, and more widely deployable technologies are needed to expand objective screening for diagnosis, treatment, and research. We previously reported brain tissue near-infrared optical spectroscopy (NIR) in vitro indicating the potential to meet this need. Objective: To determine whether completely non-invasive, clinical, NIR in vivo can distinguish AD patients from age-matched controls and to show the potential of NIR as a clinical screen and monitor of therapeutic efficacy. Methods: NIR spectra were acquired in vivo. Three groups were studied: autopsy-confirmed AD, control and mild cognitive impairment (MCI). A feature selection approach using the first derivative of the intensity normalized spectra was used to discover spectral regions that best distinguished “AD-alone” (i.e., without other significant neuropathology) from controls. The approach was then applied to other autopsy-confirmed AD cases and to clinically diagnosed MCI cases. Results: Two regions about 860 and 895 nm completely separate AD patients from controls and differentiate MCI subjects according to the degree of impairment. The 895 nm feature is more important in separating MCI subjects from controls (ratio-of-weights: 1.3); the 860 nm feature is more important for distinguishing MCI from AD (ratio-of-weights: 8.2). Conclusion: These results form a proof of the concept that near-infrared spectroscopy can detect and classify diseased and normal human brain in vivo. A clinical trial is needed to determine whether the two features can track disease progression and monitor potential therapeutic interventions.
Collapse
Affiliation(s)
- Frank A Greco
- VA Bedford Healthcare System, Medical Research & Development Service, Bedford, MA, USA
| | - Ann C McKee
- VA Bedford Healthcare System, Medical Research & Development Service, Bedford, MA, USA.,VA Boston Healthcare System, Neurology Service, Boston, MA, USA.,Boston University School of Medicine, Alzheimer's Disease Center, and Chronic Traumatic Encephalopathy Center, Boston, MA, USA.,Boston University School of Medicine, Department of Pathology and Laboratory Medicine, and Department of Neurology, Boston, MA, USA
| | - Neil W Kowall
- VA Boston Healthcare System, Neurology Service, Boston, MA, USA.,Boston University School of Medicine, Alzheimer's Disease Center, and Chronic Traumatic Encephalopathy Center, Boston, MA, USA.,Boston University School of Medicine, Department of Pathology and Laboratory Medicine, and Department of Neurology, Boston, MA, USA
| | - Eugene B Hanlon
- VA Bedford Healthcare System, Medical Research & Development Service, Bedford, MA, USA
| |
Collapse
|
54
|
Mazumder D, Wu MM, Ozana N, Tamborini D, Franceschini MA, Carp SA. Optimization of time domain diffuse correlation spectroscopy parameters for measuring brain blood flow. NEUROPHOTONICS 2021; 8:035005. [PMID: 34395719 PMCID: PMC8358828 DOI: 10.1117/1.nph.8.3.035005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/15/2021] [Indexed: 05/05/2023]
Abstract
Significance: Time domain diffuse correlation spectroscopy (TD-DCS) can offer increased sensitivity to cerebral hemodynamics and reduced contamination from extracerebral layers by differentiating photons based on their travel time in tissue. We have developed rigorous simulation and evaluation procedures to determine the optimal time gate parameters for monitoring cerebral perfusion considering instrumentation characteristics and realistic measurement noise. Aim: We simulate TD-DCS cerebral perfusion monitoring performance for different instrument response functions (IRFs) in the presence of realistic experimental noise and evaluate metrics of sensitivity to brain blood flow, signal-to-noise ratio (SNR), and ability to reject the influence of extracerebral blood flow across a variety of time gates to determine optimal operating parameters. Approach: Light propagation was modeled on an MRI-derived human head geometry using Monte Carlo simulations for 765- and 1064-nm excitation wavelengths. We use a virtual probe with a source-detector separation of 1 cm placed in the pre-frontal region. Performance metrics described above were evaluated to determine optimal time gate(s) for different IRFs. Validation of simulation noise estimates was done with experiments conducted on an intralipid-based liquid phantom. Results: We find that TD-DCS performance strongly depends on the system IRF. Among Gaussian pulse shapes, ∼ 300 ps pulse length appears to offer the best performance, at wide gates (500 ps and larger) with start times 400 and 600 ps after the peak of the TPSF at 765 and 1064 nm, respectively, for a 1-s integration time at photon detection rates seen experimentally (600 kcps at 765 nm and 4 Mcps at 1064 nm). Conclusions: Our work shows that optimal time gates satisfy competing requirements for sufficient sensitivity and sufficient SNR. The achievable performance is further impacted by system IRF with ∼ 300 ps quasi-Gaussian pulse obtained using electro-optic laser shaping providing the best results.
Collapse
Affiliation(s)
- Dibbyan Mazumder
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Address all correspondence to Dibbyan Mazumder,
| | - Melissa M. Wu
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Nisan Ozana
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Davide Tamborini
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Maria Angela Franceschini
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Stefan A. Carp
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| |
Collapse
|
55
|
Cortese L, Lo Presti G, Pagliazzi M, Contini D, Dalla Mora A, Dehghani H, Ferri F, Fischer JB, Giovannella M, Martelli F, Weigel UM, Wojtkiewicz S, Zanoletti M, Durduran T. Recipes for diffuse correlation spectroscopy instrument design using commonly utilized hardware based on targets for signal-to-noise ratio and precision. BIOMEDICAL OPTICS EXPRESS 2021; 12:3265-3281. [PMID: 34221659 PMCID: PMC8221932 DOI: 10.1364/boe.423071] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/18/2021] [Accepted: 05/04/2021] [Indexed: 05/09/2023]
Abstract
Over the recent years, a typical implementation of diffuse correlation spectroscopy (DCS) instrumentation has been adapted widely. However, there are no detailed and accepted recipes for designing such instrumentation to meet pre-defined signal-to-noise ratio (SNR) and precision targets. These require specific attention due to the subtleties of the DCS signals. Here, DCS experiments have been performed using liquid tissue simulating phantoms to study the effect of the detected photon count-rate, the number of parallel detection channels and the measurement duration on the precision and SNR to suggest scaling relations to be utilized for device design.
Collapse
Affiliation(s)
- Lorenzo Cortese
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- These authors equally contributed to this work. Authors are listed in alphabetical order except for the first three and the last
| | - Giuseppe Lo Presti
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- These authors equally contributed to this work. Authors are listed in alphabetical order except for the first three and the last
| | - Marco Pagliazzi
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | | | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham, B15 2TT, UK
| | - Fabio Ferri
- Università degli Studi dell’Insubria, Dipartimento di Scienza e Alta Tecnologia and To. Sca. Lab., 22100 Como, Italy
| | - Jonas B. Fischer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- HemoPhotonics S.L., 08860 Castelldefels (Barcelona), Spain
| | - Martina Giovannella
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Fabrizio Martelli
- Università degli Studi di Firenze, Dipartimento di Fisica, 50100 Firenze, Italy
| | - Udo M. Weigel
- HemoPhotonics S.L., 08860 Castelldefels (Barcelona), Spain
| | - Stanislaw Wojtkiewicz
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham, B15 2TT, UK
| | - Marta Zanoletti
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08015 Barcelona, Spain
| |
Collapse
|
56
|
Zhou W, Kholiqov O, Zhu J, Zhao M, Zimmermann LL, Martin RM, Lyeth BG, Srinivasan VJ. Functional interferometric diffusing wave spectroscopy of the human brain. SCIENCE ADVANCES 2021; 7:eabe0150. [PMID: 33980479 PMCID: PMC8115931 DOI: 10.1126/sciadv.abe0150] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/23/2021] [Indexed: 05/18/2023]
Abstract
Cerebral blood flow (CBF) is essential for brain function, and CBF-related signals can inform us about brain activity. Yet currently, high-end medical instrumentation is needed to perform a CBF measurement in adult humans. Here, we describe functional interferometric diffusing wave spectroscopy (fiDWS), which introduces and collects near-infrared light via the scalp, using inexpensive detector arrays to rapidly monitor coherent light fluctuations that encode brain blood flow index (BFI), a surrogate for CBF. Compared to other functional optical approaches, fiDWS measures BFI faster and deeper while also providing continuous wave absorption signals. Achieving clear pulsatile BFI waveforms at source-collector separations of 3.5 cm, we confirm that optical BFI, not absorption, shows a graded hypercapnic response consistent with human cerebrovascular physiology, and that BFI has a better contrast-to-noise ratio than absorption during brain activation. By providing high-throughput measurements of optical BFI at low cost, fiDWS will expand access to CBF.
Collapse
Affiliation(s)
- Wenjun Zhou
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Oybek Kholiqov
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Jun Zhu
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Mingjun Zhao
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Lara L Zimmermann
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, USA
| | - Ryan M Martin
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, USA
| | - Bruce G Lyeth
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, USA
| | - Vivek J Srinivasan
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA.
- Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, CA, USA
- Department of Ophthalmology, NYU Langone Health, New York, NY, USA
- Department of Radiology, NYU Langone Health, New York, NY, USA
- Tech4Health Institute, NYU Langone Health, New York, NY, USA
| |
Collapse
|
57
|
Gregori-Pla C, Mesquita RC, Favilla CG, Busch DR, Blanco I, Zirak P, Frisk LK, Avtzi S, Maruccia F, Giacalone G, Cotta G, Camps-Renom P, Mullen MT, Martí-Fàbregas J, Prats-Sánchez L, Martínez-Domeño A, Kasner SE, Greenberg JH, Zhou C, Edlow BL, Putt ME, Detre JA, Yodh AG, Durduran T, Delgado-Mederos R. Blood flow response to orthostatic challenge identifies signatures of the failure of static cerebral autoregulation in patients with cerebrovascular disease. BMC Neurol 2021; 21:154. [PMID: 33836684 PMCID: PMC8033703 DOI: 10.1186/s12883-021-02179-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background The cortical microvascular cerebral blood flow response (CBF) to different changes in head-of-bed (HOB) position has been shown to be altered in acute ischemic stroke (AIS) by diffuse correlation spectroscopy (DCS) technique. However, the relationship between these relative ΔCBF changes and associated systemic blood pressure changes has not been studied, even though blood pressure is a major driver of cerebral blood flow. Methods Transcranial DCS data from four studies measuring bilateral frontal microvascular cerebral blood flow in healthy controls (n = 15), patients with asymptomatic severe internal carotid artery stenosis (ICA, n = 27), and patients with acute ischemic stroke (AIS, n = 72) were aggregated. DCS-measured CBF was measured in response to a short head-of-bed (HOB) position manipulation protocol (supine/elevated/supine, 5 min at each position). In a sub-group (AIS, n = 26; ICA, n = 14; control, n = 15), mean arterial pressure (MAP) was measured dynamically during the protocol. Results After elevated positioning, DCS CBF returned to baseline supine values in controls (p = 0.890) but not in patients with AIS (9.6% [6.0,13.3], mean 95% CI, p < 0.001) or ICA stenosis (8.6% [3.1,14.0], p = 0.003)). MAP in AIS patients did not return to baseline values (2.6 mmHg [0.5, 4.7], p = 0.018), but in ICA stenosis patients and controls did. Instead ipsilesional but not contralesional CBF was correlated with MAP (AIS 6.0%/mmHg [− 2.4,14.3], p = 0.038; ICA stenosis 11.0%/mmHg [2.4,19.5], p < 0.001). Conclusions The observed associations between ipsilateral CBF and MAP suggest that short HOB position changes may elicit deficits in cerebral autoregulation in cerebrovascular disorders. Additional research is required to further characterize this phenomenon. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02179-8.
Collapse
Affiliation(s)
- Clara Gregori-Pla
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain.
| | | | | | - David R Busch
- Departments of Anesthesiology and Pain Management and Neurology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Igor Blanco
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Peyman Zirak
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Lisa Kobayashi Frisk
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Stella Avtzi
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Federica Maruccia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain.,Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Giacomo Giacalone
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain.,San Raffaele Scientific Institute, Milan, Italy
| | - Gianluca Cotta
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Pol Camps-Renom
- Department of Neurology (Stroke Unit). Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Michael T Mullen
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Joan Martí-Fàbregas
- Department of Neurology (Stroke Unit). Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Luís Prats-Sánchez
- Department of Neurology (Stroke Unit). Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Alejandro Martínez-Domeño
- Department of Neurology (Stroke Unit). Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Scott E Kasner
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Joel H Greenberg
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Chao Zhou
- McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
| | - Mary E Putt
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, USA
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08015, Barcelona, Spain
| | - Raquel Delgado-Mederos
- Department of Neurology (Stroke Unit). Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| |
Collapse
|
58
|
Amendola C, Spinelli L, Contini D, Carli AD, Martinelli C, Fumagalli M, Torricelli A. Accuracy of homogeneous models for photon diffusion in estimating neonatal cerebral hemodynamics by TD-NIRS. BIOMEDICAL OPTICS EXPRESS 2021; 12:1905-1921. [PMID: 33996206 PMCID: PMC8086468 DOI: 10.1364/boe.417357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
We assessed the accuracy of homogenous (semi-infinite, spherical) photon diffusion models in estimating absolute hemodynamic parameters of the neonatal brain in realistic scenarios (ischemia, hyperoxygenation, and hypoventilation) from 1.5 cm interfiber distance TD NIRS measurements. Time-point-spread-functions in 29- and 44-weeks postmenstrual age head meshes were simulated by the Monte Carlo method, convoluted with a real instrument response function, and then fitted with photon diffusion models. The results show good accuracy in retrieving brain oxygen saturation, and severe underestimation of total cerebral hemoglobin, suggesting the need for more complex models of analysis or of larger interfiber distances to precisely monitor all hemodynamic parameters.
Collapse
Affiliation(s)
| | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Davide Contini
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| | - Agnese De Carli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy
| | - Cesare Martinelli
- University of Milan - Department of Clinical Sciences and Community Health, Milan, Italy
| | - Monica Fumagalli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy
- University of Milan - Department of Clinical Sciences and Community Health, Milan, Italy
| | - Alessandro Torricelli
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
59
|
Relationship Between Age and Cerebral Hemodynamic Response to Breath Holding: A Functional Near-Infrared Spectroscopy Study. Brain Topogr 2021; 34:154-166. [PMID: 33544290 DOI: 10.1007/s10548-021-00818-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
Cerebrovascular reactivity (CVR) is routinely measured as a predictor of stroke in people with a high risk of ischemic attack. Neuroimaging techniques such as emission tomography, magnetic resonance imaging, and transcranial doppler are frequently used to measure CVR even though each technique has its limitations. Functional near-infrared spectroscopy (fNIRS), also based on the principle of neurovascular coupling, is relatively inexpensive, portable, and allows for the quantification of oxy- and deoxy-hemoglobin concentration changes at a high temporal resolution. This study examines the relationship between age and CVR using fNIRS in 45 young healthy adult participants aged 18-41 years (6 females, 26.64 ± 5.49 years) performing a simple breath holding task. Eighteen of the 45 participants were scanned again after a week to evaluate the feasibility of fNIRS in reliably measuring CVR. Results indicate (a) a negative relationship between age and hemodynamic measures of breath holding task in the sensorimotor cortex of 45 individuals and (b) widespread positive coactivation within medial sensorimotor regions and between medial sensorimotor regions with supplementary motor area and prefrontal cortex during breath holding with increasing age. The intraclass correlation coefficient (ICC) indicated only a low to fair/good reliability of the breath hold hemodynamic measures from sensorimotor and prefrontal cortices. However, the average hemodynamic response to breath holding from the two sessions were found to be temporally and spatially in correspondence. Future improvements in the sensitivity and reliability of fNIRS metrics could facilitate fNIRS-based assessment of cerebrovascular function as a potential clinical tool.
Collapse
|
60
|
Pham T, Blaney G, Sassaroli A, Fernandez C, Fantini S. Sensitivity of frequency-domain optical measurements to brain hemodynamics: simulations and human study of cerebral blood flow during hypercapnia. BIOMEDICAL OPTICS EXPRESS 2021; 12:766-789. [PMID: 33680541 PMCID: PMC7901322 DOI: 10.1364/boe.412766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 05/20/2023]
Abstract
This study characterizes the sensitivity of noninvasive measurements of cerebral blood flow (CBF) by using frequency-domain near-infrared spectroscopy (FD-NIRS) and coherent hemodynamics spectroscopy (CHS). We considered six FD-NIRS methods: single-distance intensity and phase (SDI and SDϕ), single-slope intensity and phase (SSI and SSϕ), and dual-slope intensity and phase (DSI and DSϕ). Cerebrovascular reactivity (CVR) was obtained from the relative change in measured CBF during a step hypercapnic challenge. Greater measured values of CVR are assigned to a greater sensitivity to cerebral hemodynamics. In a first experiment with eight subjects, CVRSDϕ was greater than CVRSDI (p < 0.01), whereas CVRDSI and CVRDSϕ showed no significant difference (p > 0.5). In a second experiment with four subjects, a 5 mm scattering layer was added between the optical probe and the scalp tissue to increase the extracerebral layer thickness (L ec ), which caused CVRDSϕ to become significantly greater than CVRDSI (p < 0.05). CVRSS measurements yielded similar results as CVRDS measurements but with a greater variability, possibly resulting from instrumental artifacts in SS measurements. Theoretical simulations with two-layered media confirmed that, if the top (extracerebral) layer is more scattering than the bottom (brain) layer, the relative values of CVRDSI and CVRDSϕ depend on L ec . Specifically, the sensitivity to the brain is greater for DSI than DSϕ for a thin extracerebral layer (L ec < 13 mm), whereas it is greater for DSϕ than DSI for a thicker extracerebral layer.
Collapse
Affiliation(s)
- Thao Pham
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, MA 02155, USA
| | - Giles Blaney
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, MA 02155, USA
| | - Angelo Sassaroli
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, MA 02155, USA
| | - Cristianne Fernandez
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, MA 02155, USA
| | - Sergio Fantini
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
61
|
Wu MM, Chan ST, Mazumder D, Tamborini D, Stephens KA, Deng B, Farzam P, Chu JY, Franceschini MA, Qu JZ, Carp SA. Improved accuracy of cerebral blood flow quantification in the presence of systemic physiology cross-talk using multi-layer Monte Carlo modeling. NEUROPHOTONICS 2021; 8:015001. [PMID: 33437846 PMCID: PMC7779997 DOI: 10.1117/1.nph.8.1.015001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/09/2020] [Indexed: 05/08/2023]
Abstract
Significance: Contamination of diffuse correlation spectroscopy (DCS) measurements of cerebral blood flow (CBF) due to systemic physiology remains a significant challenge in the clinical translation of DCS for neuromonitoring. Tunable, multi-layer Monte Carlo-based (MC) light transport models have the potential to remove extracerebral flow cross-talk in cerebral blood flow index ( CBF i ) estimates. Aim: We explore the effectiveness of MC DCS models in recovering accurate CBF i changes in the presence of strong systemic physiology variations during a hypercapnia maneuver. Approach: Multi-layer slab and head-like realistic (curved) geometries were used to run MC simulations of photon propagation through the head. The simulation data were post-processed into models with variable extracerebral thicknesses and used to fit DCS multi-distance intensity autocorrelation measurements to estimate CBF i timecourses. The results of the MC CBF i values from a set of human subject hypercapnia sessions were compared with CBF i values estimated using a semi-infinite analytical model, as commonly used in the field. Results: Group averages indicate a gradual systemic increase in blood flow following a different temporal profile versus the expected rapid CBF response. Optimized MC models, guided by several intrinsic criteria and a pressure modulation maneuver, were able to more effectively separate CBF i changes from scalp blood flow influence than the analytical fitting, which assumed a homogeneous medium. Three-layer models performed better than two-layer ones; slab and curved models achieved largely similar results, though curved geometries were closer to physiological layer thicknesses. Conclusion: Three-layer, adjustable MC models can be useful in separating distinct changes in scalp and brain blood flow. Pressure modulation, along with reasonable estimates of physiological parameters, can help direct the choice of appropriate layer thicknesses in MC models.
Collapse
Affiliation(s)
- Melissa M. Wu
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Suk-Tak Chan
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Dibbyan Mazumder
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Davide Tamborini
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Kimberly A. Stephens
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Bin Deng
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Parya Farzam
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Joyce Yawei Chu
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Maria Angela Franceschini
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Jason Zhensheng Qu
- Massachusetts General Hospital, Harvard Medical School, Department of Anesthesia, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Address all correspondence to Stefan A. Carp,
| |
Collapse
|
62
|
Yang HC(S, Liang Z, Vike NL, Lee T, Rispoli JV, Nauman EA, Talavage TM, Tong Y. Characterizing near-infrared spectroscopy signal under hypercapnia. JOURNAL OF BIOPHOTONICS 2020; 13:e202000173. [PMID: 32706517 PMCID: PMC11726491 DOI: 10.1002/jbio.202000173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Vasoactive stress tests (i.e. hypercapnia, elevated partial pressure of arterial CO2 [PaCO2 ]) are commonly used in functional MRI (fMRI), to induce cerebral blood flow changes and expose hidden perfusion deficits in the brain. Compared with fMRI, near-infrared spectroscopy (NIRS) is an alternative low-cost, real-time, and non-invasive tool, which can be applied in out-of-hospital settings. To develop and optimize vasoactive stress tests for NIRS, several hypercapnia-induced tasks were tested using concurrent-NIRS/fMRI on healthy subjects. The results indicated that the cerebral and extracerebral reactivity to elevated PaCO2 depended on the rate of the CO2 increase. A steep increase resulted in different cerebral and extracerebral reactivities, leading to unpredictable NIRS measurements compared with fMRI. However, a ramped increase, induced by ramped-CO2 inhalation or breath-holding tasks, induced synchronized cerebral, and extracerebral reactivities, resulting in consistent NIRS and fMRI measurements. These results demonstrate that only tasks that increase PaCO2 gradually can produce reliable NIRS results.
Collapse
Affiliation(s)
| | - Zhenhu Liang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Nicole L. Vike
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN
| | - Taylor Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN
| | - Joseph V. Rispoli
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN
| | - Eric A. Nauman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
- School of Mechanical Engineering, Purdue University, West Lafayette, IN
| | - Thomas M. Talavage
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN
| | - Yunjie Tong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| |
Collapse
|
63
|
Rajaram A, Milej D, Suwalski M, Yip LCM, Guo LR, Chu MWA, Chui J, Diop M, Murkin JM, St. Lawrence K. Optical monitoring of cerebral perfusion and metabolism in adults during cardiac surgery with cardiopulmonary bypass. BIOMEDICAL OPTICS EXPRESS 2020; 11:5967-5981. [PMID: 33149999 PMCID: PMC7587277 DOI: 10.1364/boe.404101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 05/23/2023]
Abstract
During cardiac surgery with cardiopulmonary bypass (CPB), adequate maintenance of cerebral blood flow (CBF) is vital in preventing postoperative neurological injury - i.e. stroke, delirium, cognitive impairment. Reductions in CBF large enough to impact cerebral energy metabolism can lead to tissue damage and subsequent brain injury. Current methods for neuromonitoring during surgery are limited. This study presents the clinical translation of a hybrid optical neuromonitor for continuous intraoperative monitoring of cerebral perfusion and metabolism in ten patients undergoing non-emergent cardiac surgery with non-pulsatile CPB. The optical system combines broadband near-infrared spectroscopy (B-NIRS) to measure changes in the oxidation state of cytochrome c oxidase (oxCCO) - a direct marker of cellular energy metabolism - and diffuse correlation spectroscopy (DCS) to provide an index of cerebral blood flow (CBFi). As the heart was arrested and the CPB-pump started, increases in CBFi (88.5 ± 125.7%) and significant decreases in oxCCO (-0.5 ± 0.2 µM) were observed; no changes were noted during transitions off CPB. Fifteen hypoperfusion events, defined as large and sustained reductions in CPB-pump flow rate, were identified across all patients and resulted in significant decreases in perfusion and metabolism when mean arterial pressure dropped to 30 mmHg or below. The maximum reduction in cerebral blood flow preceded the corresponding metabolic reduction by 18.2 ± 15.0 s. Optical neuromonitoring provides a safe and non-invasive approach for assessing intraoperative perfusion and metabolism and has potential in guiding patient management to prevent adverse clinical outcomes.
Collapse
Affiliation(s)
- Ajay Rajaram
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
| | - Marianne Suwalski
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Lawrence C. M. Yip
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Linrui R. Guo
- Division of Cardiac Surgery, London Health Science Centre, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Michael W. A. Chu
- Division of Cardiac Surgery, London Health Science Centre, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Jason Chui
- Department of Anesthesiology and Perioperative Medicine, London Health Science Centre, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - John M. Murkin
- Department of Anesthesiology and Perioperative Medicine, London Health Science Centre, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Keith St. Lawrence
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| |
Collapse
|
64
|
Milej D, Abdalmalak A, Rajaram A, St. Lawrence K. Direct assessment of extracerebral signal contamination on optical measurements of cerebral blood flow, oxygenation, and metabolism. NEUROPHOTONICS 2020; 7:045002. [PMID: 33062801 PMCID: PMC7540337 DOI: 10.1117/1.nph.7.4.045002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/04/2020] [Indexed: 05/08/2023]
Abstract
Significance: Near-infrared spectroscopy (NIRS) combined with diffuse correlation spectroscopy (DCS) provides a noninvasive approach for monitoring cerebral blood flow (CBF), oxygenation, and oxygen metabolism. However, these methods are vulnerable to signal contamination from the scalp. Our work evaluated methods of reducing the impact of this contamination using time-resolved (TR) NIRS and multidistance (MD) DCS. Aim: The magnitude of scalp contamination was evaluated by measuring the flow, oxygenation, and metabolic responses to a global hemodynamic challenge. Contamination was assessed by collecting data with and without impeding scalp blood flow. Approach: Experiments involved healthy participants. A pneumatic tourniquet was used to cause scalp ischemia, as confirmed by contrast-enhanced NIRS, and a computerized gas system to generate a hypercapnic challenge. Results: Comparing responses acquired with and without the tourniquet demonstrated that the TR-NIRS technique could reduce scalp contributions in hemodynamic signals up to 4 times (r SD = 3 cm ) and 6 times (r SD = 4 cm ). Similarly, blood flow responses from the scalp and brain could be separated by analyzing MD DCS data with a multilayer model. Using these techniques, there was no change in metabolism during hypercapnia, as expected, despite large increases in CBF and oxygenation. Conclusion: NIRS/DCS can accurately monitor CBF and metabolism with the appropriate enhancement to depth sensitivity, highlighting the potential of these techniques for neuromonitoring.
Collapse
Affiliation(s)
- Daniel Milej
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Androu Abdalmalak
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Ajay Rajaram
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| |
Collapse
|
65
|
Robinson M, Boas D, Sakadžic S, Franceschini MA, Carp S. Interferometric diffuse correlation spectroscopy improves measurements at long source-detector separation and low photon count rate. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200232R. [PMID: 33000571 PMCID: PMC7525153 DOI: 10.1117/1.jbo.25.9.097004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/11/2020] [Indexed: 05/04/2023]
Abstract
SIGNIFICANCE The use of diffuse correlation spectroscopy (DCS) has shown efficacy in research studies as a technique capable of noninvasively monitoring blood flow in tissue with applications in neuromonitoring, exercise science, and breast cancer management. The ability of DCS to resolve blood flow in these tissues is related to the optical sensitivity and signal-to-noise ratio (SNR) of the measurements, which in some cases, particularly adult cerebral blood flow measurements, is inadequate in a significant portion of the population. Improvements to DCS sensitivity and SNR could allow for greater clinical translation of this technique. AIM Interferometric diffuse correlation spectroscopy (iDCS) was characterized and compared to traditional homodyne DCS to determine possible benefits of utilizing heterodyne detection. APPROACH An iDCS system was constructed by modifying a homodyne DCS system with fused fiber couplers to create a Mach-Zehnder interferometer. Comparisons between homodyne and heterodyne detection were performed using an intralipid phantom characterized at two extended source-detector separations (2.4, 3.6 cm), different photon count rates, and a range of reference arm power levels. Characterization of the iDCS signal mixing was compared to theory. Precision of the estimation of the diffusion coefficient and SNR of the autocorrelation curve were compared between different measurement conditions that mimicked what would be seen in vivo. RESULTS The mixture of signals present in the heterodyne autocorrelation function was found to agree with the derived theory and resulted in accurate measurement of the diffusion coefficient of the phantom. Improvement of the SNR of the autocorrelation curve up to ∼2 × and up to 80% reduction in the variability of the diffusion coefficient fit were observed for all measurement cases as a function of increased reference arm power. CONCLUSIONS iDCS has the potential to improve characterization of blood flow in tissue at extended source-detector separations, enhancing depth sensitivity and SNR.
Collapse
Affiliation(s)
- Mitchell Robinson
- Athinoula A. Martinos Ctr. for Biomedical Imaging, Massachusetts General Hospital, United States
- Harvard-MIT Health Sciences and Technology, United States
- Harvard Medical School, United States
| | - David Boas
- Neurophotonics Ctr., Boston Univ., United States
| | - Sava Sakadžic
- Athinoula A. Martinos Ctr. for Biomedical Imaging, Massachusetts General Hospital, United States
- Harvard Medical School, United States
| | - Maria Angela Franceschini
- Athinoula A. Martinos Ctr. for Biomedical Imaging, Massachusetts General Hospital, United States
- Harvard Medical School, United States
| | - Stefan Carp
- Athinoula A. Martinos Ctr. for Biomedical Imaging, Massachusetts General Hospital, United States
- Harvard Medical School, United States
| |
Collapse
|
66
|
Carp SA, Tamborini D, Mazumder D, Wu KC(T, Robinson MR, Stephens KA, Shatrovoy O, Lue N, Ozana N, Blackwell MH, Franceschini MA. Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200140RR. [PMID: 32996299 PMCID: PMC7522668 DOI: 10.1117/1.jbo.25.9.097003] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/11/2020] [Indexed: 05/18/2023]
Abstract
SIGNIFICANCE Diffuse correlation spectroscopy (DCS) is an established optical modality that enables noninvasive measurements of blood flow in deep tissue by quantifying the temporal light intensity fluctuations generated by dynamic scattering of moving red blood cells. Compared with near-infrared spectroscopy, DCS is hampered by a limited signal-to-noise ratio (SNR) due to the need to use small detection apertures to preserve speckle contrast. However, DCS is a dynamic light scattering technique and does not rely on hemoglobin contrast; thus, there are significant SNR advantages to using longer wavelengths (>1000 nm) for the DCS measurement due to a variety of biophysical and regulatory factors. AIM We offer a quantitative assessment of the benefits and challenges of operating DCS at 1064 nm versus the typical 765 to 850 nm wavelength through simulations and experimental demonstrations. APPROACH We evaluate the photon budget, depth sensitivity, and SNR for detecting blood flow changes using numerical simulations. We discuss continuous wave (CW) and time-domain (TD) DCS hardware considerations for 1064 nm operation. We report proof-of-concept measurements in tissue-like phantoms and healthy adult volunteers. RESULTS DCS at 1064 nm offers higher intrinsic sensitivity to deep tissue compared with DCS measurements at the typically used wavelength range (765 to 850 nm) due to increased photon counts and a slower autocorrelation decay. These advantages are explored using simulations and are demonstrated using phantom and in vivo measurements. We show the first high-speed (cardiac pulsation-resolved), high-SNR measurements at large source-detector separation (3 cm) for CW-DCS and late temporal gates (1 ns) for TD-DCS. CONCLUSIONS DCS at 1064 nm offers a leap forward in the ability to monitor deep tissue blood flow and could be especially useful in increasing the reliability of cerebral blood flow monitoring in adults.
Collapse
Affiliation(s)
- Stefan A. Carp
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Address all correspondence to Stefan A. Carp, E-mail:
| | - Davide Tamborini
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Dibbyan Mazumder
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Kuan-Cheng (Tony) Wu
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Mitchell R. Robinson
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- MIT, Health Sciences and Technology Program, Cambridge, Massachusetts, United States
| | - Kimberly A. Stephens
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Oleg Shatrovoy
- MIT Lincoln Laboratory, Lexington, Massachusetts, United States
| | - Niyom Lue
- MIT Lincoln Laboratory, Lexington, Massachusetts, United States
| | - Nisan Ozana
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | | | - Maria A. Franceschini
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| |
Collapse
|
67
|
Milej D, Shahid M, Abdalmalak A, Rajaram A, Diop M, St. Lawrence K. Characterizing dynamic cerebral vascular reactivity using a hybrid system combining time-resolved near-infrared and diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:4571-4585. [PMID: 32923065 PMCID: PMC7449704 DOI: 10.1364/boe.392113] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 05/09/2023]
Abstract
This study presents the characterization of dynamic cerebrovascular reactivity (CVR) in healthy adults by a hybrid optical system combining time-resolved (TR) near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS). Blood flow and oxygenation (oxy- and deoxy-hemoglobin) responses to a step hypercapnic challenge were recorded to characterize dynamic and static components of CVR. Data were acquired at short and long source-detector separations (r SD) to assess the impact of scalp hemodynamics, and moment analysis applied to the TR-NIRS to further enhance the sensitivity to the brain. Comparing blood flow and oxygenation responses acquired at short and long r SD demonstrated that scalp contamination distorted the CVR time courses, particularly for oxyhemoglobin. This effect was significantly diminished by the greater depth sensitivity of TR NIRS and less evident in the DCS data due to the higher blood flow in the brain compared to the scalp. The reactivity speed was similar for blood flow and oxygenation in the healthy brain. Given the ease-of-use, portability, and non-invasiveness of this hybrid approach, it is well suited to investigate if the temporal relationship between CBF and oxygenation is altered by factors such as age and cerebrovascular disease.
Collapse
Affiliation(s)
- Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Marwan Shahid
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Androu Abdalmalak
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Ajay Rajaram
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Keith St. Lawrence
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| |
Collapse
|
68
|
Fischer JB, Ghouse A, Tagliabue S, Maruccia F, Rey-Perez A, Báguena M, Cano P, Zucca R, Weigel UM, Sahuquillo J, Poca MA, Durduran T. Non-Invasive Estimation of Intracranial Pressure by Diffuse Optics: A Proof-of-Concept Study. J Neurotrauma 2020; 37:2569-2579. [PMID: 32460617 DOI: 10.1089/neu.2019.6965] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intracranial pressure (ICP) is an important parameter to monitor in several neuropathologies. However, because current clinically accepted methods are invasive, its monitoring is limited to patients in critical conditions. On the other hand, there are other less critical conditions for which ICP monitoring could still be useful; therefore, there is a need to develop non-invasive methods. We propose a new method to estimate ICP based on the analysis of the non-invasive measurement of pulsatile, microvascular cerebral blood flow with diffuse correlation spectroscopy. This is achieved by training a recurrent neural network using only the cerebral blood flow as the input. The method is validated using a 50% split sample method using the data from a proof-of-concept study. The study involved a population of infants (n = 6) with external hydrocephalus (initially diagnosed as benign enlargement of subarachnoid spaces) as well as a population of adults (n = 6) with traumatic brain injury. The algorithm was applied to each cohort individually to obtain a model and an ICP estimate. In both diverse cohorts, the non-invasive estimation of ICP was achieved with an accuracy of <4 mm Hg and a negligible small bias. Further, we have achieved a good correlation (Pearson's correlation coefficient >0.9) and good concordance (Lin's concordance correlation coefficient >0.9) in comparison with standard clinical, invasive ICP monitoring. This preliminary work paves the way for further investigations of this tool for the non-invasive, bedside assessment of ICP.
Collapse
Affiliation(s)
- Jonas B Fischer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain.,HemoPhotonics S.L., Castelldefels, Barcelona, Spain
| | - Ameer Ghouse
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Susanna Tagliabue
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Federica Maruccia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain.,Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Rey-Perez
- Neurotrauma Intensive Care Unit, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marcelino Báguena
- Neurotrauma Intensive Care Unit, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paola Cano
- Department of Neurosurgery, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Riccardo Zucca
- Synthetic Perceptive, Emotive and Cognitive Systems (SPECS), Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Udo M Weigel
- HemoPhotonics S.L., Castelldefels, Barcelona, Spain
| | - Juan Sahuquillo
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Neurosurgery, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria A Poca
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Neurosurgery, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
69
|
Sie EJ, Chen H, Saung EF, Catoen R, Tiecke T, Chevillet MA, Marsili F. High-sensitivity multispeckle diffuse correlation spectroscopy. NEUROPHOTONICS 2020; 7:035010. [PMID: 32995362 PMCID: PMC7519351 DOI: 10.1117/1.nph.7.3.035010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/04/2020] [Indexed: 05/04/2023]
Abstract
Significance: Cerebral blood flow is an important biomarker of brain health and function as it regulates the delivery of oxygen and substrates to tissue and the removal of metabolic waste products. Moreover, blood flow changes in specific areas of the brain are correlated with neuronal activity in those areas. Diffuse correlation spectroscopy (DCS) is a promising noninvasive optical technique for monitoring cerebral blood flow and for measuring cortex functional activation tasks. However, the current state-of-the-art DCS adoption is hindered by a trade-off between sensitivity to the cortex and signal-to-noise ratio (SNR). Aim: We aim to develop a scalable method that increases the sensitivity of DCS instruments. Approach: We report on a multispeckle DCS (mDCS) approach that is based on a 1024-pixel single-photon avalanche diode (SPAD) camera. Our approach is scalable to > 100,000 independent speckle measurements since large-pixel-count SPAD cameras are becoming available, owing to the investments in LiDAR technology for automotive and augmented reality applications. Results: We demonstrated a 32-fold increase in SNR with respect to traditional single-speckle DCS. Conclusion: A mDCS system that is based on a SPAD camera serves as a scalable method toward high-sensitivity DCS measurements, thus enabling both high sensitivity to the cortex and high SNR.
Collapse
Affiliation(s)
- Edbert J. Sie
- Facebook Reality Labs Research, Menlo Park, California, United States
- Address all correspondence to Edbert J. Sie, ; Francesco Marsili,
| | - Hui Chen
- Facebook Reality Labs Research, Menlo Park, California, United States
| | - E-Fann Saung
- Facebook Reality Labs Research, Menlo Park, California, United States
| | - Ryan Catoen
- Facebook Reality Labs Research, Menlo Park, California, United States
| | - Tobias Tiecke
- Facebook Reality Labs Research, Menlo Park, California, United States
| | - Mark A. Chevillet
- Facebook Reality Labs Research, Menlo Park, California, United States
| | - Francesco Marsili
- Facebook Reality Labs Research, Menlo Park, California, United States
- Address all correspondence to Edbert J. Sie, ; Francesco Marsili,
| |
Collapse
|
70
|
Robinson MB, Carp SA, Peruch A, Boas DA, Franceschini MA, Sakadžić S. Characterization of continuous wave ultrasound for acousto-optic modulated diffuse correlation spectroscopy (AOM-DCS). BIOMEDICAL OPTICS EXPRESS 2020; 11:3071-3090. [PMID: 32637242 PMCID: PMC7316011 DOI: 10.1364/boe.390322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/03/2020] [Accepted: 04/25/2020] [Indexed: 05/25/2023]
Abstract
Intra and post-operative blood flow monitoring of tissue has been shown to be effective in the improvement of patient outcomes. Diffuse correlation spectroscopy (DCS) has been shown to be effective in measuring blood flow at the bedside, and is a useful technique in measuring cerebral blood flow (CBF) in many clinical settings. However, DCS suffers from reduced sensitivity to blood flow changes at larger tissue depths, making measurements of CBF in adults difficult. This issue can be addressed with acousto-optic modulated diffuse correlation spectroscopy (AOM-DCS), which is a hybrid technique that combines the sensitivity of DCS to blood flow with ultrasound resolution to allow for improved spatial resolution of the optical signal based on knowledge of the area which is insonified by ultrasound. We present a quantitative model for perfusion estimation based on AOM-DCS in the presence of continuous wave ultrasound, supported by theoretical derivations, Monte Carlo simulations, and phantom and human subject experiments. Quantification of the influence of individual mechanisms that contribute to the temporal fluctuations of the optical intensity due to ultrasound is shown to agree with previously derived results. By using this model, the recovery of blood-flow induced scatterer dynamics based on ultrasound-modulated light is shown to deviate by less than one percent from the standard DCS measurement of scatterer dynamics over a range of optical scattering values and scatterer motion conditions. This work provides an important step towards future implementation of AOM-DCS setups with more complex spatio-temporal distributions of ultrasound pressure, which are needed to enhance the DCS spatial resolution.
Collapse
Affiliation(s)
- Mitchell B. Robinson
- Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stefan A. Carp
- Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Adriano Peruch
- Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - David A. Boas
- Boston University, Boston University Neurophotonics Center, Boston, MA 02215, USA
| | - Maria Angela Franceschini
- Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sava Sakadžić
- Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
71
|
Forti RM, Katsurayama M, Menko J, Valler L, Quiroga A, Falcão ALE, Li LM, Mesquita RC. Real-Time Non-invasive Assessment of Cerebral Hemodynamics With Diffuse Optical Spectroscopies in a Neuro Intensive Care Unit: An Observational Case Study. Front Med (Lausanne) 2020; 7:147. [PMID: 32411712 PMCID: PMC7198738 DOI: 10.3389/fmed.2020.00147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/06/2020] [Indexed: 12/30/2022] Open
Abstract
Prevention of secondary damage is an important goal in the treatment of severe neurological conditions, such as major head trauma or stroke. However, there is currently a lack of non-invasive methods for monitoring cerebral physiology. Diffuse optical methods have been proposed as an inexpensive, non-invasive bedside monitor capable of providing neurophysiology information in neurocritical patients. However, the reliability of the technique to provide accurate longitudinal measurement during the clinical evolution of a patient remains largely unaddressed. Here, we report on the translation of a hybrid diffuse optical system combining frequency domain diffuse optical spectroscopy (FD-DOS) and diffuse correlation spectroscopy (DCS) for real-time monitoring of cerebral physiology in a neuro intensive care unit (neuro-ICU). More specifically, we present a case study of a patient admitted with a high-grade aneurysmal subarachnoid hemorrhage, who was monitored throughout hospitalization. We show that the neurophysiological parameters measured by diffuse optics at the bedside are consistent with the clinical evolution of the patient at all the different stages following its brain lesion. These data provide support for clinical translation of DOS/DCS as a useful biomarker of neurophysiology in the neuro-ICU, particularly in locations where other clinical resources are limited.
Collapse
Affiliation(s)
- Rodrigo M Forti
- Institute of Physics, University of Campinas, Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Marilise Katsurayama
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil.,Clinical Hospital, University of Campinas, Campinas, Brazil
| | - Julien Menko
- Department of Emergency Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lenise Valler
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil.,Clinical Hospital, University of Campinas, Campinas, Brazil
| | - Andres Quiroga
- Institute of Physics, University of Campinas, Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | | | - Li M Li
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil.,School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Rickson C Mesquita
- Institute of Physics, University of Campinas, Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| |
Collapse
|
72
|
Du Le VN, Srinivasan VJ. Beyond diffuse correlations: deciphering random flow in time-of-flight resolved light dynamics. OPTICS EXPRESS 2020; 28:11191-11214. [PMID: 32403635 PMCID: PMC7340374 DOI: 10.1364/oe.385202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 05/11/2023]
Abstract
Diffusing wave spectroscopy (DWS) and diffuse correlation spectroscopy (DCS) can assess blood flow index (BFI) of biological tissue with multiply scattered light. Though the main biological function of red blood cells (RBCs) is advection, in DWS/DCS, RBCs are assumed to undergo Brownian motion. To explain this discrepancy, we critically examine the cumulant approximation, a major assumption in DWS/DCS. We present a precise criterion for validity of the cumulant approximation, and in realistic tissue models, identify conditions that invalidate it. We show that, in physiologically relevant scenarios, the first cumulant term for random flow and second cumulant term for Brownian motion alone can cancel each other. In such circumstances, assuming pure Brownian motion of RBCs and the first cumulant approximation, a routine practice in DWS/DCS of BFI, can yield good agreement with data, but only because errors due to two incorrect assumptions cancel out. We conclude that correctly assessing random flow from scattered light dynamics requires going beyond the cumulant approximation and propose a more accurate model to do so.
Collapse
Affiliation(s)
- V. N. Du Le
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Vivek J. Srinivasan
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
- Department of Ophthalmology and Vision Science, University of California Davis, Davis School of Medicine, Sacramento, CA 96817, USA
| |
Collapse
|
73
|
Time-Gated Single-Photon Detection in Time-Domain Diffuse Optics: A Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10031101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This work reviews physical concepts, technologies and applications of time-domain diffuse optics based on time-gated single-photon detection. This particular photon detection strategy is of the utmost importance in the diffuse optics field as it unleashes the full power of the time-domain approach by maximizing performances in terms of contrast produced by a localized perturbation inside the scattering medium, signal-to-noise ratio, measurement time and dynamic range, penetration depth and spatial resolution. The review covers 15 years of theoretical studies, technological progresses, proof of concepts and design of laboratory systems based on time-gated single-photon detection with also few hints on other fields where the time-gated detection strategy produced and will produce further impact.
Collapse
|
74
|
Kholiqov O, Zhou W, Zhang T, Du Le VN, Srinivasan VJ. Time-of-flight resolved light field fluctuations reveal deep human tissue physiology. Nat Commun 2020; 11:391. [PMID: 31959896 PMCID: PMC6971031 DOI: 10.1038/s41467-019-14228-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Red blood cells (RBCs) transport oxygen to tissues and remove carbon dioxide. Diffuse optical flowmetry (DOF) assesses deep tissue RBC dynamics by measuring coherent fluctuations of multiply scattered near-infrared light intensity. While classical DOF measurements empirically correlate with blood flow, they remain far-removed from light scattering physics and difficult to interpret in layered media. To advance DOF measurements closer to the physics, here we introduce an interferometric technique, surmounting challenges of bulk motion to apply it in awake humans. We reveal two measurement dimensions: optical phase, and time-of-flight (TOF), the latter with 22 picosecond resolution. With this multidimensional data, we directly confirm the unordered, or Brownian, nature of optically probed RBC dynamics typically assumed in classical DOF. We illustrate how incorrect absorption assumptions, anisotropic RBC scattering, and layered tissues may confound classical DOF. By comparison, our direct method enables accurate and comprehensive assessment of blood flow dynamics in humans.
Collapse
Affiliation(s)
- Oybek Kholiqov
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Wenjun Zhou
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Tingwei Zhang
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA
| | - V N Du Le
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Vivek J Srinivasan
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA.
- Department of Ophthalmology and Vision Science, University of California Davis, Davis School of Medicine, Sacramento, CA, 96817, USA.
| |
Collapse
|
75
|
Amyot F, Kenney K, Spessert E, Moore C, Haber M, Silverman E, Gandjbakhche A, Diaz-Arrastia R. Assessment of cerebrovascular dysfunction after traumatic brain injury with fMRI and fNIRS. Neuroimage Clin 2019; 25:102086. [PMID: 31790877 PMCID: PMC6909332 DOI: 10.1016/j.nicl.2019.102086] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 11/26/2022]
Abstract
Traumatic cerebral vascular injury (TCVI) is a frequent, but under-recognized, endophenotype of traumatic brain injury (TBI). It likely contributes to functional deficits after TBI and TBI-related chronic disability, and represents an attractive target for targeted therapeutic interventions. The aim of this prospective study is to assess microvascular injury/dysfunction in chronic TBI by measuring cerebral vascular reactivity (CVR) by 2 methods, functional magnetic resonance imaging (fMRI) and functional Near InfraRed Spectroscopy (fNIRS) imaging, as each has attractive features relevant to clinical utility. 42 subjects (27 chronic TBI, 15 age- and gender-matched non-TBI volunteers) were enrolled and underwent outpatient CVR testing by 2 methods, MRI-BOLD and fNIRS, each with hypercapnia challenge, a neuropsychological testing battery, and symptom survey questionnaires. Chronic TBI subjects showed a significant reduction in global CVR compared to HC (p < 0.0001). Mean CVR measures by fMRI were 0.225 ± 0.014 and 0.183 ± 0.026 %BOLD/mmHg for non-TBI and TBI subjects respectively and 12.3 ± 1.8 and 9.2 ± 1.7 mM/mmHg by fNIRS for non-TBI versus TBI subjects respectively. Global CVR measured by fNIRS imaging correlates with results by MRI-BOLD (R = 0.5). Focal CVR deficits seen on CVR maps by fMRI are also observed in the same areas by fNIRS in the frontal regions. Global CVR is significantly lower in chronic TBI patients and is reliably measured by both fMRI and fNIRS, the former with better spatial and the latter with better temporal resolution. Both methods show promise as non-invasive measures of CVR function and microvascular integrity after TBI.
Collapse
Affiliation(s)
- Franck Amyot
- Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Emily Spessert
- Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Carol Moore
- Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Margalit Haber
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Erika Silverman
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Amir Gandjbakhche
- Section on Analytical and Functional Biophotonics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ramon Diaz-Arrastia
- Center for Neuroscience and Regenerative Medicine, Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| |
Collapse
|
76
|
Favilla CG, Forti RM, Zamzam A, Detre JA, Mullen MT, Yodh AG, Kasner SE, Busch DR, Baker WB, Mesquita RC, Kung D, Messé SR. Perfusion Enhancement with Respiratory Impedance After Stroke (PERI-Stroke). Neurotherapeutics 2019; 16:1296-1303. [PMID: 31140115 PMCID: PMC6985403 DOI: 10.1007/s13311-019-00744-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Intrathoracic pressure influences cardiac output and may affect cerebral blood flow (CBF). We aimed to quantify the cerebral hemodynamic response to intrathoracic pressure reduction in patients with acute ischemic stroke using a noninvasive respiratory impedance (RI) device. We assessed low-level (6 cm H2O) and high-level (12 cm H2O) RI in 17 spontaneously breathing patients within 72 h of anterior circulation acute ischemic stroke. Average age was 65 years, and 35% were female. Frontal lobe tissue perfusion and middle cerebral artery velocity (MCAv) were continuously monitored with optical diffuse correlation spectroscopy (DCS) and transcranial Doppler ultrasound, respectively. High-level RI resulted in a 7% increase in MCAv (p = 0.004). MCAv varied across all studied levels (baseline vs low-level vs high-level, p = 0.006), with a significant test of trend (p = 0.002). Changes were not seen in DCS measured tissue perfusion by nonparametric pairwise comparison. Mixed effects regression analysis identified a small increase in both MCAv (low-level RI: β 2.1, p < 0.001; high-level RI: β 5.0, p < 0.001) and tissue-level flow (low-level RI: β 5.4, p < 0.001; high-level RI: β 5.9, p < 0.001). There was a small increase in mean arterial pressure during low-level and high-level RI, 4% (p = 0.013) and 4% (p = 0.017), respectively. End-tidal CO2 remained stable throughout the protocol. RI was well tolerated. Manipulating intrathoracic pressure via noninvasive RI was safe and produced a small but measurable increase in cerebral perfusion in acute ischemic stroke patients. Future studies are warranted to assess whether RI is feasible and tolerable for prolonged use in hyperacute stroke management.
Collapse
Affiliation(s)
- Christopher G Favilla
- Department of Neurology, University of Pennsylvania, Philadelphia, USA.
- Department of Neurology, Hospital of the University of Pennsylvania, 3400 Spruce St, 3 West Gates, Philadelphia, PA, 19104-4283, USA.
| | - Rodrigo M Forti
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, USA
- Institute of Physics, University of Campinas, Campinas, 13083-859, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, 13083-888, Brazil
| | - Ahmad Zamzam
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Michael T Mullen
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Arjun G Yodh
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, USA
| | - Scott E Kasner
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - David R Busch
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, USA
- Department of Anesthesiology & Pain Management, University of Texas Southwestern, Dallas, USA
- Department Neurology & Neurotherapeutics, University of Texas Southwestern, Dallas, USA
| | - Wesley B Baker
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, USA
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Rickson C Mesquita
- Institute of Physics, University of Campinas, Campinas, 13083-859, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, 13083-888, Brazil
| | - David Kung
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Steven R Messé
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
77
|
Wang D, Baker WB, He H, Gao P, Zhu L, Peng Q, Li Z, Li F, Chen T, Feng H. Influence of probe pressure on the pulsatile diffuse correlation spectroscopy blood flow signal on the forearm and forehead regions. NEUROPHOTONICS 2019; 6:035013. [PMID: 31548976 PMCID: PMC6755374 DOI: 10.1117/1.nph.6.3.035013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/04/2019] [Indexed: 05/24/2023]
Abstract
In a pilot study of 11 healthy adults (24 to 39 years, all male), we characterize the influence of external probe pressure on optical diffuse correlation spectroscopy (DCS) measurements of pulsatile blood flow obtained on the forearm and forehead. For external probe pressure control, a hand inflatable air balloon is inserted between the tissue and an elastic strap. The air balloon is sequentially inflated to achieve a wide range of external probe pressures between 20 and 250 mmHg on the forearm and forehead, which are measured with a flexible pressure sensor underneath the probe. At each probe pressure, the pulsatility index (PI) of arteriole blood flow on the forehead and forearm is measured with DCS (2.1-cm source-detector separation). We observe a strong correlation between probe pressure and PI on the forearm ( R = 0.66 , p < 0.001 ), but not on the forehead ( R = - 0.11 , p = 0.4 ). The forearm measurements demonstrate the sensitivity of the DCS PI to skeletal muscle tissue pressure, whereas the forehead measurements indicate that DCS PI measurements are not sensitive to scalp tissue pressure. Note, in contrast to pulsatility, the time-averaged DCS blood flow index on the forehead was significantly correlated with probe pressure ( R = - 0.55 , p < 0.001 ). This pilot data appears to support the initiation of more comprehensive clinical studies on DCS to detect trends in internal pressure in brain and skeletal muscle.
Collapse
Affiliation(s)
- Detian Wang
- Army Medical University, Southwest Hospital, Department of Neurosurgery, Chong Qing, China
- China Academy of Engineering Physics, Institute of Fluid Physics, Mianyang, China
| | - Wesley B. Baker
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Philadelphia, United States
| | - Hui He
- China Academy of Engineering Physics, Institute of Fluid Physics, Mianyang, China
| | - Peng Gao
- China Academy of Engineering Physics, Institute of Fluid Physics, Mianyang, China
| | - Liguo Zhu
- China Academy of Engineering Physics, Institute of Fluid Physics, Mianyang, China
| | - Qixian Peng
- China Academy of Engineering Physics, Institute of Fluid Physics, Mianyang, China
| | - Zeren Li
- China Academy of Engineering Physics, Institute of Fluid Physics, Mianyang, China
| | - Fei Li
- Army Medical University, Southwest Hospital, Department of Neurosurgery, Chong Qing, China
| | - Tunan Chen
- Army Medical University, Southwest Hospital, Department of Neurosurgery, Chong Qing, China
| | - Hua Feng
- Army Medical University, Southwest Hospital, Department of Neurosurgery, Chong Qing, China
| |
Collapse
|
78
|
Lee SY, Cowdrick KR, Sanders B, Sathialingam E, McCracken CE, Lam WA, Joiner CH, Buckley EM. Noninvasive optical assessment of resting-state cerebral blood flow in children with sickle cell disease. NEUROPHOTONICS 2019; 6:035006. [PMID: 31482101 PMCID: PMC6699550 DOI: 10.1117/1.nph.6.3.035006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/24/2019] [Indexed: 05/08/2023]
Abstract
Sickle cell disease (SCD) is a genetic blood disorder that has profound effects on the brain. Chronic anemia combined with both macro- and microvascular perfusion abnormalities that arise from stenosis or occlusion of blood vessels increased blood viscosity, adherence of red blood cells to the vascular endothelium, and impaired autoregulatory mechanisms in SCD patients all culminate in susceptibility to cerebral infarction. Indeed, the risk of stroke is 250 times higher in children with SCD than in the general population. Unfortunately, while transcranial Doppler ultrasound (TCD) has been widely clinically adopted to longitudinally monitor macrovascular perfusion in these patients, routine clinical screening of microvascular perfusion abnormalities is challenging with current modalities (e.g., positron emission tomography and magnetic resonance imaging) given their high-cost, requirement for sedation in children < 6 year, and need for trained personnel. We assess the feasibility of a low-cost, noninvasive optical technique known as diffuse correlation spectroscopy (DCS) to quantify an index of resting-state cortical cerebral blood flow (BFI) in 11 children with SCD along with 11 sex- and age-matched healthy controls. As expected, BFI was significantly higher in SCD subjects compared to healthy controls ( p < 0.001 ). Within SCD subjects, BFI was inversely proportional to resting-state arterial hemoglobin levels ( p = 0.012 ), consistent with expected anemia-induced compensatory vasodilation that aims to maintain adequate oxygen delivery to the tissue. Further, in a subset of patients measured with TCD ( n = 7 ), DCS-measured blood flow was correlated with TCD-measured blood flow velocity in middle cerebral artery ( R s = 0.68 ), although the trend was not statistically significant ( p = 0.11 ). These results are consistent with those of several previous studies using traditional neuroimaging techniques, suggesting that DCS may be a promising low-cost tool for assessment of tissue-level CBF in pediatric SCD.
Collapse
Affiliation(s)
- Seung Yup Lee
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Kyle R. Cowdrick
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Bharat Sanders
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Eashani Sathialingam
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Courtney E. McCracken
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
| | - Wilbur A. Lam
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
| | - Clinton H. Joiner
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
- Children’s Healthcare of Atlanta, Aflac Cancer and Blood Disorders Center, Atlanta, Georgia, United States
| | - Erin M. Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
- Children’s Healthcare of Atlanta, Children’s Research Scholar, Atlanta, Georgia, United States
- Address all correspondence to Erin M. Buckley, E-mail:
| |
Collapse
|
79
|
Forti RM, Favilla CG, Cochran JM, Baker WB, Detre JA, Kasner SE, Mullen MT, Messé SR, Kofke WA, Balu R, Kung D, Pukenas BA, Sedora-Roman NI, Hurst RW, Choudhri OA, Mesquita RC, Yodh AG. Transcranial Optical Monitoring of Cerebral Hemodynamics in Acute Stroke Patients during Mechanical Thrombectomy. J Stroke Cerebrovasc Dis 2019; 28:1483-1494. [PMID: 30975462 PMCID: PMC6686873 DOI: 10.1016/j.jstrokecerebrovasdis.2019.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Mechanical thrombectomy is revolutionizing treatment of acute stroke due to large vessel occlusion (LVO). Unfortunately, use of the modified Thrombolysis in Cerebral Infarction score (mTICI) to characterize recanalization of the cerebral vasculature does not address microvascular perfusion of the distal parenchyma, nor provide more than a vascular "snapshot." Thus, little is known about tissue-level hemodynamic consequences of LVO recanalization. Diffuse correlation spectroscopy (DCS) and diffuse optical spectroscopy (DOS) are promising methods for continuous, noninvasive, contrast-free transcranial monitoring of cerebral microvasculature. METHODS Here, we use a combined DCS/DOS system to monitor frontal lobe hemodynamic changes during endovascular treatment of 2 patients with ischemic stroke due to internal carotid artery (ICA) occlusions. RESULTS AND DISCUSSION The monitoring instrument identified a recanalization-induced increase in ipsilateral cerebral blood flow (CBF) with little or no concurrent change in contralateral CBF and extracerebral blood flow. The results suggest that diffuse optical monitoring is sensitive to intracerebral hemodynamics in patients with ICA occlusion and can measure microvascular responses to mechanical thrombectomy.
Collapse
Affiliation(s)
- Rodrigo M Forti
- Institute of Physics, University of Campinas, Campinas, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology, Campinas, SP, Brazil; Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania.
| | | | - Jeffrey M Cochran
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wesley B Baker
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott E Kasner
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael T Mullen
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven R Messé
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - W Andrew Kofke
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ramani Balu
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Kung
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bryan A Pukenas
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Neda I Sedora-Roman
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert W Hurst
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Omar A Choudhri
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rickson C Mesquita
- Institute of Physics, University of Campinas, Campinas, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology, Campinas, SP, Brazil
| | - Arjun G Yodh
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
80
|
Gregori-Pla C, Delgado-Mederos R, Cotta G, Giacalone G, Maruccia F, Avtzi S, Prats-Sánchez L, Martínez-Domeño A, Camps-Renom P, Martí-Fàbregas J, Durduran T, Mayos M. Microvascular cerebral blood flow fluctuations in association with apneas and hypopneas in acute ischemic stroke. NEUROPHOTONICS 2019; 6:025004. [PMID: 31037244 PMCID: PMC6477863 DOI: 10.1117/1.nph.6.2.025004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
In a pilot study on acute ischemic stroke (AIS) patients, unexpected periodic fluctuations in microvascular cerebral blood flow (CBF) had been observed. Motivated by the relative lack of information about the impact of the emergence of breathing disorders in association with stroke on cerebral hemodynamics, we hypothesized that these fluctuations are due to apneic and hypopneic events. A total of 28 patients were screened within the first week after stroke with a pulse oximeter. Five (18%) showed fluctuations of arterial blood oxygen saturation ( ≥ 3 % ) and were included in the study. Near-infrared diffuse correlation spectroscopy (DCS) was utilized bilaterally to measure the frontal lobe CBF alongside respiratory polygraphy. Biphasic CBF fluctuations were observed with a bilateral increase of 27.1 % ± 17.7 % and 29.0 % ± 17.4 % for the ipsilesional and contralesional hemispheres, respectively, and a decrease of - 19.3 % ± 9.1 % and - 21.0 % ± 8.9 % for the ipsilesional and contralesional hemispheres, respectively. The polygraph revealed that, in general, the fluctuations were associated with apneic and hypopneic events. This study motivates us to investigate whether the impact of altered respiratory patterns on cerebral hemodynamics can be detrimental in AIS patients.
Collapse
Affiliation(s)
- Clara Gregori-Pla
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Raquel Delgado-Mederos
- Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Neurology (Stroke Unit), Barcelona, Spain
| | - Gianluca Cotta
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Giacomo Giacalone
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- San Raffaele Scientific Institute, Milan, Italy
| | - Federica Maruccia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Universitat Autònoma de Barcelona, Neurotraumatology and Neurosurgery Research Unit, Vall d’Hebron University Research Institute, Barcelona, Spain
| | - Stella Avtzi
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Luís Prats-Sánchez
- Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Neurology (Stroke Unit), Barcelona, Spain
| | - Alejandro Martínez-Domeño
- Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Neurology (Stroke Unit), Barcelona, Spain
| | - Pol Camps-Renom
- Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Neurology (Stroke Unit), Barcelona, Spain
| | - Joan Martí-Fàbregas
- Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Neurology (Stroke Unit), Barcelona, Spain
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Mercedes Mayos
- Hospital de la Santa Creu i Sant Pau, Sleep Unit, Department of Respiratory Medicine, Barcelona, Spain
- CIBER Enfermedades Respiratorias (CB06/06), Madrid, Spain
| |
Collapse
|
81
|
Pham T, Tgavalekos K, Sassaroli A, Blaney G, Fantini S. Quantitative measurements of cerebral blood flow with near-infrared spectroscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:2117-2134. [PMID: 31061774 PMCID: PMC6484993 DOI: 10.1364/boe.10.002117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/07/2019] [Accepted: 03/20/2019] [Indexed: 05/29/2023]
Abstract
We propose a new near-infrared spectroscopy (NIRS) method for quantitative measurements of cerebral blood flow (CBF). Because this method uses concepts of coherent hemodynamics spectroscopy (CHS), we identify this new method with the acronym NIRS-CHS. We tested this method on the prefrontal cortex of six healthy human subjects during mean arterial pressure (MAP) transients induced by the rapid deflation of pneumatic thigh cuffs. A comparison of CBF dynamics measured with NIRS-CHS and with diffuse correlation spectroscopy (DCS) showed a good agreement for characteristic times of the CBF transient. We also report absolute measurements of baseline CBF with NIRS-CHS (69 ± 6 ml/100g/min over the six subjects). NIRS-CHS can provide more accurate measurements of CBF with respect to previously reported NIRS surrogates of CBF.
Collapse
Affiliation(s)
- Thao Pham
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Kristen Tgavalekos
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Angelo Sassaroli
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Giles Blaney
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Sergio Fantini
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
82
|
Giovannella M, Contini D, Pagliazzi M, Pifferi A, Spinelli L, Erdmann R, Donat R, Rocchetti I, Rehberger M, König N, Schmitt R, Torricelli A, Durduran T, Weigel UM. BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy for the neuromonitoring of the premature newborn brain. NEUROPHOTONICS 2019; 6:025007. [PMID: 31093515 PMCID: PMC6509945 DOI: 10.1117/1.nph.6.2.025007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/12/2019] [Indexed: 05/06/2023]
Abstract
The BabyLux device is a hybrid diffuse optical neuromonitor that has been developed and built to be employed in neonatal intensive care unit for the noninvasive, cot-side monitoring of microvascular cerebral blood flow and blood oxygenation. It integrates time-resolved near-infrared and diffuse correlation spectroscopies in a user-friendly device as a prototype for a future medical grade device. We present a thorough characterization of the device performance using test measurements in laboratory settings. Tests on solid phantoms report an accuracy of optical property estimation of about 10%, which is expected when using the photon diffusion equation as the model. The measurement of the optical and dynamic properties is stable during several hours of measurements within 3% of the average value. In addition, these measurements are repeatable between different days of measurement, showing a maximal variation of 5% in the optical properties and 8% for the particle diffusion coefficient on a liquid phantom. The variability over test/retest evaluation is < 3 % . The integration of the two modalities is robust and without any cross talk between the two. We also perform in vivo measurements on the adult forearm during arterial cuff occlusion to show that the device can measure a wide range of tissue hemodynamic parameters. We suggest that this platform can form the basis of the next-generation neonatal neuromonitors to be developed for extensive, multicenter clinical testing.
Collapse
Affiliation(s)
- Martina Giovannella
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Barcelona, Spain
| | - Davide Contini
- Politecnio di Milano-Dipartimento di Fisica, Milan, Italy
| | - Marco Pagliazzi
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Barcelona, Spain
| | - Antonio Pifferi
- Politecnio di Milano-Dipartimento di Fisica, Milan, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan, Italy
| | | | - Roger Donat
- Loop-Competitive Design Network, Sant Cugat del Vallès (Barcelona), Barcelona, Spain
| | - Ignacio Rocchetti
- Loop-Competitive Design Network, Sant Cugat del Vallès (Barcelona), Barcelona, Spain
| | | | - Niels König
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany
| | - Robert Schmitt
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany
- RWTH Aachen University, Laboratory for Machine Tools and Production Engineering (WZL), Aachen, Germany
| | - Alessandro Torricelli
- Politecnio di Milano-Dipartimento di Fisica, Milan, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- Address all correspondence to Turgut Durduran, E-mail:
| | - Udo M. Weigel
- HemoPhotonics S.L., Castelldefels (Barcelona), Barcelona, Spain
| |
Collapse
|
83
|
Vasung L, Abaci Turk E, Ferradal SL, Sutin J, Stout JN, Ahtam B, Lin PY, Grant PE. Exploring early human brain development with structural and physiological neuroimaging. Neuroimage 2019; 187:226-254. [PMID: 30041061 PMCID: PMC6537870 DOI: 10.1016/j.neuroimage.2018.07.041] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
Early brain development, from the embryonic period to infancy, is characterized by rapid structural and functional changes. These changes can be studied using structural and physiological neuroimaging methods. In order to optimally acquire and accurately interpret this data, concepts from adult neuroimaging cannot be directly transferred. Instead, one must have a basic understanding of fetal and neonatal structural and physiological brain development, and the important modulators of this process. Here, we first review the major developmental milestones of transient cerebral structures and structural connectivity (axonal connectivity) followed by a summary of the contributions from ex vivo and in vivo MRI. Next, we discuss the basic biology of neuronal circuitry development (synaptic connectivity, i.e. ensemble of direct chemical and electrical connections between neurons), physiology of neurovascular coupling, baseline metabolic needs of the fetus and the infant, and functional connectivity (defined as statistical dependence of low-frequency spontaneous fluctuations seen with functional magnetic resonance imaging (fMRI)). The complementary roles of magnetic resonance imaging (MRI), electroencephalography (EEG), magnetoencephalography (MEG), and near-infrared spectroscopy (NIRS) are discussed. We include a section on modulators of brain development where we focus on the placenta and emerging placental MRI approaches. In each section we discuss key technical limitations of the imaging modalities and some of the limitations arising due to the biology of the system. Although neuroimaging approaches have contributed significantly to our understanding of early brain development, there is much yet to be done and a dire need for technical innovations and scientific discoveries to realize the future potential of early fetal and infant interventions to avert long term disease.
Collapse
Affiliation(s)
- Lana Vasung
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Esra Abaci Turk
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Silvina L Ferradal
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Jason Sutin
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Jeffrey N Stout
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Banu Ahtam
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Pei-Yi Lin
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
84
|
Busch DR, Balu R, Baker WB, Guo W, He L, Diop M, Milej D, Kavuri V, Amendolia O, St Lawrence K, Yodh AG, Kofke WA. Detection of Brain Hypoxia Based on Noninvasive Optical Monitoring of Cerebral Blood Flow with Diffuse Correlation Spectroscopy. Neurocrit Care 2019; 30:72-80. [PMID: 30030667 PMCID: PMC6528475 DOI: 10.1007/s12028-018-0573-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Diffuse correlation spectroscopy (DCS) noninvasively permits continuous, quantitative, bedside measurements of cerebral blood flow (CBF). To test whether optical monitoring (OM) can detect decrements in CBF producing cerebral hypoxia, we applied the OM technique continuously to probe brain-injured patients who also had invasive brain tissue oxygen (PbO2) monitors. METHODS Comatose patients with a Glasgow Coma Score (GCS) < 8) were enrolled in an IRB-approved protocol after obtaining informed consent from the legally authorized representative. Patients underwent 6-8 h of daily monitoring. Brain PbO2 was measured with a Clark electrode. Absolute CBF was monitored with DCS, calibrated by perfusion measurements based on intravenous indocyanine green bolus administration. Variation of optical CBF and mean arterial pressure (MAP) from baseline was measured during periods of brain hypoxia (defined as a drop in PbO2 below 19 mmHg for more than 6 min from baseline (PbO2 > 21 mmHg). In a secondary analysis, we compared optical CBF and MAP during randomly selected 12-min periods of "normal" (> 21 mmHg) and "low" (< 19 mmHg) PbO2. Receiver operator characteristic (ROC) and logistic regression analysis were employed to assess the utility of optical CBF, MAP, and the two-variable combination, for discrimination of brain hypoxia from normal brain oxygen tension. RESULTS Seven patients were enrolled and monitored for a total of 17 days. Baseline-normalized MAP and CBF significantly decreased during brain hypoxia events (p < 0.05). Through use of randomly selected, temporally sparse windows of low and high PbO2, we observed that both MAP and optical CBF discriminated between periods of brain hypoxia and normal brain oxygen tension (ROC AUC 0.761, 0.762, respectively). Further, combining these variables using logistic regression analysis markedly improved the ability to distinguish low- and high-PbO2 epochs (AUC 0.876). CONCLUSIONS The data suggest optical techniques may be able to provide continuous individualized CBF measurement to indicate occurrence of brain hypoxia and guide brain-directed therapy.
Collapse
Affiliation(s)
- David R Busch
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Anesthesiology and Pain Management & Neurology and Neurotherapeutics, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Ramani Balu
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Wesley B Baker
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Wensheng Guo
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lian He
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Mamadou Diop
- Department of Medical Biophysics, Lawson Health Research Institute, University of Western Ontario, London, Canada
| | - Daniel Milej
- Department of Medical Biophysics, Lawson Health Research Institute, University of Western Ontario, London, Canada
| | - Venkaiah Kavuri
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Olivia Amendolia
- Neurosurgery Clinical Research Division, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Keith St Lawrence
- Department of Medical Biophysics, Lawson Health Research Institute, University of Western Ontario, London, Canada
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - W Andrew Kofke
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, 19104, PA, USA.
| |
Collapse
|
85
|
Sathialingam E, Lee SY, Sanders B, Park J, McCracken CE, Bryan L, Buckley EM. Small separation diffuse correlation spectroscopy for measurement of cerebral blood flow in rodents. BIOMEDICAL OPTICS EXPRESS 2018; 9:5719-5734. [PMID: 30460158 PMCID: PMC6238900 DOI: 10.1364/boe.9.005719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 05/11/2023]
Abstract
Diffuse correlation spectroscopy (DCS) has shown promise as a means to non-invasively measure cerebral blood flow in small animal models. Here, we characterize the validity of DCS at small source-detector reflectance separations needed for small animal measurements. Through Monte Carlo simulations and liquid phantom experiments, we show that DCS error increases as separation decreases, although error remains below 12% for separations > 0.2 cm. In mice, DCS measures of cerebral blood flow have excellent intra-user repeatability and strongly correlate with MRI measures of blood flow (R = 0.74, p<0.01). These results are generalizable to other DCS applications wherein short-separation reflectance geometries are desired.
Collapse
Affiliation(s)
- Eashani Sathialingam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr. NE, Atlanta, GA 30322, USA
- co-first authorship
| | - Seung Yup Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr. NE, Atlanta, GA 30322, USA
- co-first authorship
| | - Bharat Sanders
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr. NE, Atlanta, GA 30322, USA
| | - Jaekeun Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr. NE, Atlanta, GA 30322, USA
| | - Courtney E. McCracken
- Department of Pediatrics, School of Medicine, Emory University, 2015 Uppergate Dr., Atlanta, GA 30322, USA
| | - Leah Bryan
- Department of Pediatrics, School of Medicine, Emory University, 2015 Uppergate Dr., Atlanta, GA 30322, USA
| | - Erin M. Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr. NE, Atlanta, GA 30322, USA
- Department of Pediatrics, School of Medicine, Emory University, 2015 Uppergate Dr., Atlanta, GA 30322, USA
- Children’s Research Scholar, Children’s Healthcare of Atlanta, 2015 Uppergate Dr., Atlanta, GA 30322, USA
| |
Collapse
|
86
|
Selb J, Wu KC, Sutin J, Lin PY(I, Farzam P, Bechek S, Shenoy A, Patel AB, Boas DA, Franceschini MA, Rosenthal ES. Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients. NEUROPHOTONICS 2018; 5:045005. [PMID: 30450363 PMCID: PMC6233866 DOI: 10.1117/1.nph.5.4.045005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 09/24/2018] [Indexed: 05/13/2023]
Abstract
Monitoring of cerebral blood flow (CBF) and autoregulation are essential components of neurocritical care, but continuous noninvasive methods for CBF monitoring are lacking. Diffuse correlation spectroscopy (DCS) is a noninvasive diffuse optical modality that measures a CBF index ( CBF i ) in the cortex microvasculature by monitoring the rapid fluctuations of near-infrared light diffusing through moving red blood cells. We tested the feasibility of monitoring CBF i with DCS in at-risk patients in the Neurosciences Intensive Care Unit. DCS data were acquired continuously for up to 20 h in six patients with aneurysmal subarachnoid hemorrhage, as permitted by clinical care. Mean arterial blood pressure was recorded synchronously, allowing us to derive autoregulation curves and to compute an autoregulation index. The autoregulation curves suggest disrupted cerebral autoregulation in most patients, with the severity of disruption and the limits of preserved autoregulation varying between subjects. Our findings suggest the potential of the DCS modality for noninvasive, long-term monitoring of cerebral perfusion, and autoregulation.
Collapse
Affiliation(s)
- Juliette Selb
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Kuan-Cheng Wu
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Jason Sutin
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Pei-Yi (Ivy) Lin
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Parisa Farzam
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Sophia Bechek
- Massachusetts General Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - Apeksha Shenoy
- Massachusetts General Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - Aman B. Patel
- Massachusetts General Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - David A. Boas
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Maria Angela Franceschini
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Address all correspondence to: Maria Angela Franceschini, E-mail:
| | - Eric S. Rosenthal
- Massachusetts General Hospital, Department of Neurology, Boston, Massachusetts, United States
| |
Collapse
|
87
|
Zirak P, Gregori-Pla C, Blanco I, Fortuna A, Cotta G, Bramon P, Serra I, Mola A, Solà-Soler J, Giraldo-Giraldo BF, Durduran T, Mayos M. Characterization of the microvascular cerebral blood flow response to obstructive apneic events during night sleep. NEUROPHOTONICS 2018; 5:045003. [PMID: 30681667 PMCID: PMC6215085 DOI: 10.1117/1.nph.5.4.045003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/10/2018] [Indexed: 05/09/2023]
Abstract
Obstructive apnea causes periodic changes in cerebral and systemic hemodynamics, which may contribute to the increased risk of cerebrovascular disease of patients with obstructive sleep apnea (OSA) syndrome. The improved understanding of the consequences of an apneic event on the brain perfusion may improve our knowledge of these consequences and then allow for the development of preventive strategies. Our aim was to characterize the typical microvascular, cortical cerebral blood flow (CBF) changes in an OSA population during an apneic event. Sixteen patients (age 58 ± 8 years , 75% male) with a high risk of severe OSA were measured with a polysomnography device and with diffuse correlation spectroscopy (DCS) during one night of sleep with 1365 obstructive apneic events detected. All patients were later confirmed to suffer from severe OSA syndrome with a mean of 83 ± 15 apneas and hypopneas per hour. DCS has been shown to be able to characterize the microvascular CBF response to each event with a sufficient contrast-to-noise ratio to reveal its dynamics. It has also revealed that an apnea causes a peak increase of microvascular CBF ( 30 ± 17 % ) at the end of the event followed by a drop ( - 20 ± 12 % ) similar to what was observed in macrovascular CBF velocity of the middle cerebral artery. This study paves the way for the utilization of DCS for further studies on these populations.
Collapse
Affiliation(s)
- Peyman Zirak
- ICFO-Institut de Ciències Fotòniques, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Clara Gregori-Pla
- ICFO-Institut de Ciències Fotòniques, Barcelona Institute of Science and Technology, Barcelona, Spain
- Address all correspondence to: Clara Gregori-Pla, E-mail:
| | - Igor Blanco
- ICFO-Institut de Ciències Fotòniques, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ana Fortuna
- Hospital de la Santa Creu i Sant Pau, Department of Respiratory Medicine, Sleep Unit, Barcelona, Spain
| | - Gianluca Cotta
- ICFO-Institut de Ciències Fotòniques, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pau Bramon
- ICFO-Institut de Ciències Fotòniques, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Isabel Serra
- Centre de Recerca Matemàtica (CRM), Bellaterra, Spain
| | - Anna Mola
- Hospital de la Santa Creu i Sant Pau, Department of Respiratory Medicine, Sleep Unit, Barcelona, Spain
| | - Jordi Solà-Soler
- Universitat Politècnica de Catalunya (UPC)-Barcelona Tech, Department of Automatic Control (ESAII), Barcelona, Spain
- The Barcelona Institute of Science and Technology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Beatriz F. Giraldo-Giraldo
- Universitat Politècnica de Catalunya (UPC)-Barcelona Tech, Department of Automatic Control (ESAII), Barcelona, Spain
- The Barcelona Institute of Science and Technology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Mercedes Mayos
- Hospital de la Santa Creu i Sant Pau, Department of Respiratory Medicine, Sleep Unit, Barcelona, Spain
- CIBER Enfermedades Respiratorias (CibeRes) (CB06/06), Madrid, Spain
| |
Collapse
|
88
|
He L, Baker WB, Milej D, Kavuri VC, Mesquita RC, Busch DR, Abramson K, Jiang JY, Diop M, St. Lawrence K, Amendolia O, Quattrone F, Balu R, Kofke WA, Yodh AG. Noninvasive continuous optical monitoring of absolute cerebral blood flow in critically ill adults. NEUROPHOTONICS 2018; 5:045006. [PMID: 30480039 PMCID: PMC6251207 DOI: 10.1117/1.nph.5.4.045006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/29/2018] [Indexed: 05/18/2023]
Abstract
We investigate a scheme for noninvasive continuous monitoring of absolute cerebral blood flow (CBF) in adult human patients based on a combination of time-resolved dynamic contrast-enhanced near-infrared spectroscopy (DCE-NIRS) and diffuse correlation spectroscopy (DCS) with semi-infinite head model of photon propogation. Continuous CBF is obtained via calibration of the DCS blood flow index (BFI) with absolute CBF obtained by intermittent intravenous injections of the optical contrast agent indocyanine green. A calibration coefficient ( γ ) for the CBF is thus determined, permitting conversion of DCS BFI to absolute blood flow units at all other times. A study of patients with acute brain injury ( N = 7 ) is carried out to ascertain the stability of γ . The patient-averaged DCS calibration coefficient across multiple monitoring days and multiple patients was determined, and good agreement between the two calibration coefficients measured at different times during single monitoring days was found. The patient-averaged calibration coefficient of 1.24 × 10 9 ( mL / 100 g / min ) / ( cm 2 / s ) was applied to previously measured DCS BFI from similar brain-injured patients; in this case, absolute CBF was underestimated compared with XeCT, an effect we show is primarily due to use of semi-infinite homogeneous models of the head.
Collapse
Affiliation(s)
- Lian He
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- Address all correspondence to: Lian He, E-mail:
| | - Wesley B. Baker
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Department of Anesthesiology and Critical Care, Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Daniel Milej
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, Imaging Division, London, Ontario, Canada
| | - Venkaiah C. Kavuri
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | | | - David R. Busch
- University of Texas Southwestern, Department of Neurology and Neurotherapeutics, Dallas, Texas, United States
- University of Texas Southwestern, Department of Anesthesiology and Pain Management, Dallas, Texas, United States
| | - Kenneth Abramson
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Jane Y. Jiang
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Mamadou Diop
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, Imaging Division, London, Ontario, Canada
| | - Keith St. Lawrence
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, Imaging Division, London, Ontario, Canada
| | - Olivia Amendolia
- University of Pennsylvania, Department of Neurosurgery, Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Francis Quattrone
- University of Pennsylvania, Department of Neurosurgery, Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Ramani Balu
- University of Pennsylvania, Department of Neurosurgery, Perelman School of Medicine, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - W. Andrew Kofke
- University of Pennsylvania, Department of Anesthesiology and Critical Care, Perelman School of Medicine, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Department of Neurosurgery, Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Department of Anesthesiology and Critical Care, Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| |
Collapse
|
89
|
Busch DR, Davis J, Kogler A, Galler RM, Parthasarathy AB, Yodh AG, Floyd TF. Laser safety in fiber-optic monitoring of spinal cord hemodynamics: a preclinical evaluation. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-9. [PMID: 29923371 PMCID: PMC8357330 DOI: 10.1117/1.jbo.23.6.065003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/30/2018] [Indexed: 05/02/2023]
Abstract
The prevention and treatment of spinal cord injury are focused upon the maintenance of spinal cord blood flow, yet no technology exists to monitor spinal cord ischemia. We recently demonstrated continuous monitoring of spinal cord ischemia with diffuse correlation and optical spectroscopies using an optical probe. Prior to clinical translation of this technology, it is critically important to demonstrate the safety profile of spinal cord exposure to the required light. To our knowledge, this is the first report of in situ safety testing of such a monitor. We expose the spinal cord to laser light utilizing a custom fiber-optic epidural probe in a survival surgery model (11 adult Dorset sheep). We compare the tissue illumination from our instrument with the American National Standards Institute maximum permissible exposures. We experimentally evaluate neurological and pathological outcomes of the irradiated sheep associated with prolonged exposure to the laser source and evaluate heating in ex vivo spinal cord samples. Spinal cord tissue was exposed to light levels at ∼18 × the maximum permissible exposure for the eye and ∼ ( 1 / 3 ) × for the skin. Multidisciplinary testing revealed no functional neurological sequelae, histopathologic evidence of laser-related injury to the spinal cord, or significant temperature changes in ex vivo samples. Low tissue irradiance and the lack of neurological, pathological, and temperature changes upon prolonged exposure to the laser source offer evidence that spinal cord tissues can be monitored safely with near-infrared optical probes placed within the epidural space.
Collapse
Affiliation(s)
- David R. Busch
- University of Texas Southwestern, Department of Anesthesiology and Pain Management, Dallas Texas, United States
- University of Texas Southwestern, Department of Neurology and Neurotherapeutics, Dallas, Texas, United States
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- Address all correspondence to: David R. Busch, E-mail: ; Thomas F. Floyd, E-mail:
| | - James Davis
- Stony Brook University Medical Center, Department of Pathology, Stony Brook, New York, United States
| | - Angela Kogler
- Stony Brook University Medical Center, Department of Anesthesiology, Stony Brook, New York, United States
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York, United States
| | - Robert M. Galler
- Stony Brook University Medical Center, Department of Neurosurgery, Stony Brook, New York, United States
| | - Ashwin B. Parthasarathy
- University of South Florida, Department of Electrical Engineering, Tampa, Florida, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Thomas F. Floyd
- University of Texas Southwestern, Department of Anesthesiology and Pain Management, Dallas Texas, United States
- Address all correspondence to: David R. Busch, E-mail: ; Thomas F. Floyd, E-mail:
| |
Collapse
|
90
|
Lückl J, Lemale CL, Kola V, Horst V, Khojasteh U, Oliveira-Ferreira AI, Major S, Winkler MKL, Kang EJ, Schoknecht K, Martus P, Hartings JA, Woitzik J, Dreier JP. The negative ultraslow potential, electrophysiological correlate of infarction in the human cortex. Brain 2018; 141:1734-1752. [PMID: 29668855 PMCID: PMC5972557 DOI: 10.1093/brain/awy102] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/20/2018] [Accepted: 02/17/2018] [Indexed: 12/19/2022] Open
Abstract
Spreading depolarizations are characterized by abrupt, near-complete breakdown of the transmembrane ion gradients, neuronal oedema, mitochondrial depolarization, glutamate excitotoxicity and activity loss (depression). Spreading depolarization induces either transient hyperperfusion in normal tissue; or hypoperfusion (inverse coupling = spreading ischaemia) in tissue at risk for progressive injury. The concept of the spreading depolarization continuum is critical since many spreading depolarizations have intermediate characteristics, as opposed to the two extremes of spreading depolarization in either severely ischaemic or normal tissue. In animals, the spreading depolarization extreme in ischaemic tissue is characterized by prolonged depolarization durations, in addition to a slow baseline variation termed the negative ultraslow potential. The negative ultraslow potential is initiated by spreading depolarization and similar to the negative direct current (DC) shift of prolonged spreading depolarization, but specifically refers to a negative potential component during progressive recruitment of neurons into cell death in the wake of spreading depolarization. We here first quantified the spreading depolarization-initiated negative ultraslow potential in the electrocorticographic DC range and the activity depression in the alternate current range after middle cerebral artery occlusion in rats. Relevance of these variables to the injury was supported by significant correlations with the cortical infarct volume and neurological outcome after 72 h of survival. We then identified negative ultraslow potential-containing clusters of spreading depolarizations in 11 patients with aneurysmal subarachnoid haemorrhage. The human platinum/iridium-recorded negative ultraslow potential showed a tent-like shape. Its amplitude of 45.0 (39.0, 69.4) mV [median (first, third quartile)] was 6.6 times larger and its duration of 3.7 (3.3, 5.3) h was 34.9 times longer than the negative DC shift of spreading depolarizations in less compromised tissue. Using Generalized Estimating Equations applied to a logistic regression model, we found that negative ultraslow potential displaying electrodes were significantly more likely to overlie a developing ischaemic lesion (90.0%, 27/30) than those not displaying a negative ultraslow potential (0.0%, 0/20) (P = 0.004). Based on serial neuroimages, the lesions under the electrodes developed within a time window of 72 (56, 134) h. The negative ultraslow potential occurred in this time window in 9/10 patients. It was often preceded by a spreading depolarization cluster with increasingly persistent spreading depressions and progressively prolonged DC shifts and spreading ischaemias. During the negative ultraslow potential, spreading ischaemia lasted for 40.0 (28.0, 76.5) min, cerebral blood flow fell from 57 (53, 65) % to 26 (16, 42) % (n = 4) and tissue partial pressure of oxygen from 12.5 (9.2, 15.2) to 3.3 (2.4, 7.4) mmHg (n = 5). Our data suggest that the negative ultraslow potential is the electrophysiological correlate of infarction in human cerebral cortex and a neuromonitoring-detected medical emergency.awy102media15775596049001.
Collapse
Affiliation(s)
- Janos Lückl
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Viktor Horst
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Uldus Khojasteh
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ana I Oliveira-Ferreira
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Maren K L Winkler
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eun-Jeung Kang
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Karl Schoknecht
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biostatistics, University of Tübingen, Tübingen, Germany
| | - Jed A Hartings
- UC Gardner Neuroscience Institute, University of Cincinnati (UC) College of Medicine, Cincinnati, OH, USA
- Department of Neurosurgery, University of Cincinnati (UC) College of Medicine, Cincinnati, OH, USA
| | - Johannes Woitzik
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
91
|
Qiu L, Cheng H, Torricelli A, Li J. Using a simulation approach to optimize time-domain diffuse correlation spectroscopy measurement on human head. NEUROPHOTONICS 2018; 5:025007. [PMID: 29795775 PMCID: PMC5949562 DOI: 10.1117/1.nph.5.2.025007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/16/2018] [Indexed: 05/18/2023]
Abstract
Time-domain diffuse correlation spectroscopy (TD-DCS) has been recently proposed to improve detection of deep blood flow dynamics in a biological tissue, such as human brain. To obtain a high sensitive measurement, several experimental parameters such as the source-detector (SD) distance, gate opening time, and width need to be considered and optimized. We use a simulation approach to optimize these parameters based on Monte Carlo computations using a realistic human head model. Two cortical regions are investigated including the frontal and temporal lobes. SD distance ranging from 0 to 45 mm, gate opening time from 400 to 1000 ps, and gate width from 50 to 3000 ps are considered. The goal is to find out the optimal combinations of these parameters by which the higher contrast measurement on the cortical dynamics can be achieved. The simulations show that with an acceptable input power of light, the combinations of SD distance ranging from 0 to 15 mm, gate opening time at 700 to 800 ps, and gate width of 800 ps are optimal for achieving higher contrast measurement on the cortical dynamics. The simulation approach and results are helpful for the optimization of TD-DCS experimental design focused on brain functional detection.
Collapse
Affiliation(s)
- Lina Qiu
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| | - Huiyi Cheng
- South China Normal University, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, National Center for International Research on Green Optoelectronics, MOE International Laboratory for Optical Information Technologies, South China Academy of Advanced Optoelectronics, Guangzhou, China
| | - Alessandro Torricelli
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Milan, Italy
| | - Jun Li
- South China Normal University, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, National Center for International Research on Green Optoelectronics, MOE International Laboratory for Optical Information Technologies, South China Academy of Advanced Optoelectronics, Guangzhou, China
- Address all correspondence to: Jun Li, E-mail:
| |
Collapse
|
92
|
Gregori-Pla C, Cotta G, Blanco I, Zirak P, Giovannella M, Mola A, Fortuna A, Durduran T, Mayos M. Cerebral vasoreactivity in response to a head-of-bed position change is altered in patients with moderate and severe obstructive sleep apnea. PLoS One 2018. [PMID: 29538409 PMCID: PMC5851619 DOI: 10.1371/journal.pone.0194204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Motivation Obstructive sleep apnea (OSA) can impair cerebral vasoreactivity and is associated with an increased risk of cerebrovascular disease. Unfortunately, an easy-to-use, non-invasive, portable monitor of cerebral vasoreactivity does not exist. Therefore, we have evaluated the use of near-infrared diffuse correlation spectroscopy to measure the microvascular cerebral blood flow (CBF) response to a mild head-of-bed position change as a biomarker for the evaluation of cerebral vasoreactivity alteration due to chronic OSA. Furthermore, we have monitored the effect of two years of continuous positive airway pressure (CPAP) treatment on the cerebral vasoreactivity. Methodology CBF was measured at different head-of-bed position changes (supine to 30° to supine) in sixty-eight patients with OSA grouped according to severity (forty moderate to severe, twenty-eight mild) and in fourteen control subjects without OSA. A subgroup (n = 13) with severe OSA was measured again after two years of CPAP treatment. Results All patients and controls showed a similar CBF response after changing position from supine to 30° (p = 0.819), with a median (confidence interval) change of -17.5 (-10.3, -22.9)%. However, when being tilted back to the supine position, while the control group (p = 0.091) and the mild patients with OSA (p = 0.227) recovered to the initial baseline, patients with moderate and severe OSA did not recover to the baseline (9.8 (0.8, 12.9)%, p < 0.001) suggesting altered cerebral vasoreactivity. This alteration was correlated with OSA severity defined by the apnea-hypopnea index, and with mean nocturnal arterial oxygen saturation. The CBF response was normalized after two years of CPAP treatment upon follow-up measurements. Conclusion In conclusion, microvascular CBF response to a head-of-bed challenge measured by diffuse correlation spectroscopy suggests that moderate and severe patients with OSA have altered cerebral vasoreactivity related to OSA severity. This may normalize after two years of CPAP treatment.
Collapse
Affiliation(s)
- Clara Gregori-Pla
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- * E-mail:
| | - Gianluca Cotta
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Igor Blanco
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Peyman Zirak
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Martina Giovannella
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Anna Mola
- Department of Respiratory Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ana Fortuna
- Department of Respiratory Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Mercedes Mayos
- Department of Respiratory Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- CIBER Enfermedades Respiratorias (CibeRes) (CB06/06), Madrid, Spain
| |
Collapse
|
93
|
Delgado-Mederos R, Gregori-Pla C, Zirak P, Blanco I, Dinia L, Marín R, Durduran T, Martí-Fàbregas J. Transcranial diffuse optical assessment of the microvascular reperfusion after thrombolysis for acute ischemic stroke. BIOMEDICAL OPTICS EXPRESS 2018; 9:1262-1271. [PMID: 29541519 PMCID: PMC5846529 DOI: 10.1364/boe.9.001262] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 05/27/2023]
Abstract
In this pilot study, we have evaluated bedside diffuse optical monitoring combining diffuse correlation spectroscopy and near-infrared diffuse optical spectroscopy to assess the effect of thrombolysis with an intravenous recombinant tissue plasminogen activator (rtPA) on cerebral hemodynamics in an acute ischemic stroke. Frontal lobes of five patients with an acute middle cerebral artery occlusion were measured bilaterally during rtPA treatment. Both ipsilesional and contralesional hemispheres showed significant increases in cerebral blood flow, total hemoglobin concentration and oxy-hemoglobin concentration during the first 2.5 hours after rtPA bolus. The increases were faster and higher in the ipsilesional hemisphere. The results show that bedside optical monitoring can detect the effect of reperfusion therapy for ischemic stroke in real-time.
Collapse
Affiliation(s)
- Raquel Delgado-Mederos
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, C. Sant Antoni M Claret 167, 08025, Barcelona, Spain
| | - Clara Gregori-Pla
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, Castelldefels (Barcelona), 08860, Spain
| | - Peyman Zirak
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, Castelldefels (Barcelona), 08860, Spain
| | - Igor Blanco
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, Castelldefels (Barcelona), 08860, Spain
| | - Lavinia Dinia
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, C. Sant Antoni M Claret 167, 08025, Barcelona, Spain
| | - Rebeca Marín
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, C. Sant Antoni M Claret 167, 08025, Barcelona, Spain
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, Castelldefels (Barcelona), 08860, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010, Barcelona, Spain
| | - Joan Martí-Fàbregas
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, C. Sant Antoni M Claret 167, 08025, Barcelona, Spain
| |
Collapse
|
94
|
Li J, Poon CS, Kress J, Rohrbach DJ, Sunar U. Resting-state functional connectivity measured by diffuse correlation spectroscopy. JOURNAL OF BIOPHOTONICS 2018; 11. [PMID: 28708329 DOI: 10.1002/jbio.201700165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 05/17/2023]
Abstract
Near-infrared diffuse correlation spectroscopy (DCS) is used to record spontaneous cerebral blood flow fluctuations in the frontal cortex. Nine adult subjects participated in the experiments, in which 8-minute spontaneous fluctuations were simultaneously recorded from the left and right dorsolateral and inferior frontal regions. Resting-state functional connectivity (RSFC) was measured by the temporal correlation of the low frequency fluctuations. Our data shows the RSFC within the dorsolateral region is significantly stronger than that between the inferior and dorsolateral regions, in line with previous observations with functional near-infrared spectroscopy. This indicates that DCS is capable of investigating brain functional connectivity in terms of cerebral blood flow.
Collapse
Affiliation(s)
- Jun Li
- Department of Biomedical, Industrial and Human Factors, Wright State University, Dayton, Ohio
| | - Chien-Sing Poon
- Department of Biomedical, Industrial and Human Factors, Wright State University, Dayton, Ohio
| | - Jeremy Kress
- Department of Biomedical, Industrial and Human Factors, Wright State University, Dayton, Ohio
| | - Daniel J Rohrbach
- Department of Biomedical, Industrial and Human Factors, Wright State University, Dayton, Ohio
| | - Ulas Sunar
- Department of Biomedical, Industrial and Human Factors, Wright State University, Dayton, Ohio
| |
Collapse
|
95
|
Tamborini D, Farzam P, Zimmermann B, Wu KC, Boas DA, Franceschini MA. Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system. NEUROPHOTONICS 2018; 5:011015. [PMID: 28948194 PMCID: PMC5607257 DOI: 10.1117/1.nph.5.1.011015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/01/2017] [Indexed: 05/03/2023]
Abstract
This paper presents a multidistance and multiwavelength diffuse correlation spectroscopy (DCS) approach and its implementation to simultaneously measure the optical proprieties of deep tissue as well as the blood flow. The system consists of three long coherence length lasers at different wavelengths in the near-infrared, eight single-photon detectors, and a correlator board. With this approach, we collect both light intensity and DCS data at multiple distances and multiple wavelengths, which provide unique information to fit for all the parameters of interest: scattering, blood flow, and hemoglobin concentration. We present the characterization of the system and its validation with phantom measurements.
Collapse
Affiliation(s)
- Davide Tamborini
- Harvard Medical School, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Address all correspondence to: Davide Tamborini, E-mail:
| | - Parisa Farzam
- Harvard Medical School, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| | - Bernhard Zimmermann
- Harvard Medical School, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| | - Kuan-Cheng Wu
- Harvard Medical School, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| | - David A. Boas
- Boston University, Boston University Neurophotonics Center, Boston, Massachusetts, United States
| | - Maria Angela Franceschini
- Harvard Medical School, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| |
Collapse
|
96
|
Giovannella M, Ibañez D, Gregori-Pla C, Kacprzak M, Mitjà G, Ruffini G, Durduran T. Concurrent measurement of cerebral hemodynamics and electroencephalography during transcranial direct current stimulation. NEUROPHOTONICS 2018; 5:015001. [PMID: 29392156 PMCID: PMC5784784 DOI: 10.1117/1.nph.5.1.015001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/20/2017] [Indexed: 05/05/2023]
Abstract
Transcranial direct current stimulation (tDCS) is currently being used for research and treatment of some neurological and neuropsychiatric disorders, as well as for improvement of cognitive functions. In order to better understand cerebral response to the stimulation and to redefine protocols and dosage, its effects must be monitored. To this end, we have used functional diffuse correlation spectroscopy (fDCS) and time-resolved functional near-infrared spectroscopy (TR-fNIRS) together with electroencephalography (EEG) during and after stimulation of the frontal cortex. Twenty subjects participated in two sessions of stimulation with two different polarity montages and twelve also underwent a sham session. Cerebral blood flow and oxyhemoglobin concentration increased during and after active stimulation in the region under the stimulation electrode while deoxyhemoglobin concentration decreased. The EEG spectrum displayed statistically significant power changes across different stimulation sessions in delta (2 to 4 Hz), theta (4 to 8 Hz), and beta (12 to 18 Hz) bands. Results suggest that fDCS and TR-fNIRS can be employed as neuromonitors of the effects of transcranial electrical stimulation and can be used together with EEG.
Collapse
Affiliation(s)
- Martina Giovannella
- ICFO-Institut de Ciències Fotòniques, Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Address all correspondence to: Martina Giovannella, E-mail:
| | | | - Clara Gregori-Pla
- ICFO-Institut de Ciències Fotòniques, Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Michal Kacprzak
- ICFO-Institut de Ciències Fotòniques, Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | | | - Giulio Ruffini
- Starlab, Barcelona, Spain
- Neuroelectrics Barcelona, Barcelona, Spain
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
97
|
Li J, Qiu L, Poon CS, Sunar U. Analytical models for time-domain diffuse correlation spectroscopy for multi-layer and heterogeneous turbid media. BIOMEDICAL OPTICS EXPRESS 2017; 8:5518-5532. [PMID: 29296485 PMCID: PMC5745100 DOI: 10.1364/boe.8.005518] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 05/18/2023]
Abstract
A novel approach for time-domain diffuse correlation spectroscopy (TD-DCS) has been recently proposed, which has the unique advantage by simultaneous measurements of optical and dynamical properties in a scattering medium. In this study, analytical models for calculating the time-resolved electric-field autocorrelation function is presented for a multi-layer turbid sample, as well as a semi-infinite medium embedded with a small dynamic heterogeneity. To verify the analytical models, we used Monte Carlo simulations, which demonstrated that the theoretical prediction for the time-resolved autocorrelation function was highly consistent with the Monte Carlo simulation, validating the proposed analytical models. Using these analytical models, we also showed that TD-DCS has a higher sensitivity compared to conventional continuous-wave (CW) DCS for detecting the deeper dynamics. The presented analytical models and simulations can be utilized for quantification of optical and dynamical properties from future TD-DCS experimental data as well as for optimization of the experimental design to achieve maximum contrast for deep tissue dynamics.
Collapse
Affiliation(s)
- Jun Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, National Center for International Research on Green Optoelectronics, MOE International Laboratory for Optical Information Technologies, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA
- These authors contributed equally
| | - Lina Qiu
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
- These authors contributed equally
| | - Chien-Sing Poon
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA
| | - Ulas Sunar
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
98
|
Roberts SB, Franceschini MA, Krauss A, Lin PY, Braima de Sa A, Có R, Taylor S, Brown C, Chen O, Johnson EJ, Pruzensky W, Schlossman N, Balé C, Wu KC(T, Hagan K, Saltzman E, Muentener P. A Pilot Randomized Controlled Trial of a New Supplementary Food Designed to Enhance Cognitive Performance during Prevention and Treatment of Malnutrition in Childhood. Curr Dev Nutr 2017; 1:e000885. [PMID: 29658962 PMCID: PMC5898396 DOI: 10.3945/cdn.117.000885] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/11/2017] [Accepted: 10/12/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cognitive impairment associated with childhood malnutrition and stunting is generally considered irreversible. OBJECTIVE The aim was to test a new nutritional supplement for the prevention and treatment of moderate-acute malnutrition (MAM) focused on enhancing cognitive performance. METHODS An 11-wk, village-randomized, controlled pilot trial was conducted in 78 children aged 1-3 or 5-7 y living in villages in Guinea-Bissau. The supplement contained 291 kcal/d for young children and 350 kcal/d for older children and included 5 nutrients and 2 flavan-3-ol-rich ingredients not present in current food-based recommendations for MAM. Local bakers prepared the supplement from a combination of locally sourced items and an imported mix of ingredients, and it was administered by community health workers 5 d/wk. The primary outcome was executive function abilities at 11 wk. Secondary outcomes included additional cognitive measures and changes in z scores for weight (weight-for-age) and height (height-for-age) and hemoglobin concentrations at 11 wk. An index of cerebral blood flow (CBF) was also measured at 11 wk to explore the use of this measurement as a biological index of cognitive impairment. RESULTS There were no significant differences in any outcome between groups at baseline. There was a beneficial effect of random assignment to the supplement group on working memory at 11 wk in children aged 1-3 y (P < 0.05). This difference contrasted with no effect in older children and was not associated with faster growth rate. In addition, CBF correlated with task-switching performance (P < 0.05). CONCLUSIONS These preliminary data suggest that cognitive impairment can be monitored with measurement of CBF. In addition, the findings provide preliminary data that suggest that it may be possible to improve poor cognitive performance in young children through changes in the nutritional formulation of supplementary foods used to prevent and treat MAM. Powered studies of the new supplement formulation are needed. This trial was registered at clinicaltrials.gov as NCT03017209.
Collapse
Affiliation(s)
- Susan B Roberts
- USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
| | | | - Amy Krauss
- USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Pei-Yi Lin
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Augusto Braima de Sa
- International Partnership for Human Development, Leesburg, VA
- International Partnership for Human Development, Bissau, Guinea-Bissau
| | - Raimundo Có
- International Partnership for Human Development, Leesburg, VA
- International Partnership for Human Development, Bissau, Guinea-Bissau
| | - Salima Taylor
- USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Carrie Brown
- USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Oliver Chen
- USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
| | - Elizabeth J Johnson
- USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
| | - William Pruzensky
- International Partnership for Human Development, Leesburg, VA
- International Partnership for Human Development, Bissau, Guinea-Bissau
| | | | - Carlito Balé
- International Partnership for Human Development, Leesburg, VA
- International Partnership for Human Development, Bissau, Guinea-Bissau
| | - Kuan-Cheng (Tony) Wu
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Katherine Hagan
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Edward Saltzman
- USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
| | | |
Collapse
|
99
|
Dreier JP, Fabricius M, Ayata C, Sakowitz OW, William Shuttleworth C, Dohmen C, Graf R, Vajkoczy P, Helbok R, Suzuki M, Schiefecker AJ, Major S, Winkler MKL, Kang EJ, Milakara D, Oliveira-Ferreira AI, Reiffurth C, Revankar GS, Sugimoto K, Dengler NF, Hecht N, Foreman B, Feyen B, Kondziella D, Friberg CK, Piilgaard H, Rosenthal ES, Westover MB, Maslarova A, Santos E, Hertle D, Sánchez-Porras R, Jewell SL, Balança B, Platz J, Hinzman JM, Lückl J, Schoknecht K, Schöll M, Drenckhahn C, Feuerstein D, Eriksen N, Horst V, Bretz JS, Jahnke P, Scheel M, Bohner G, Rostrup E, Pakkenberg B, Heinemann U, Claassen J, Carlson AP, Kowoll CM, Lublinsky S, Chassidim Y, Shelef I, Friedman A, Brinker G, Reiner M, Kirov SA, Andrew RD, Farkas E, Güresir E, Vatter H, Chung LS, Brennan KC, Lieutaud T, Marinesco S, Maas AIR, Sahuquillo J, Dahlem MA, Richter F, Herreras O, Boutelle MG, Okonkwo DO, Bullock MR, Witte OW, Martus P, van den Maagdenberg AMJM, Ferrari MD, Dijkhuizen RM, Shutter LA, Andaluz N, Schulte AP, MacVicar B, Watanabe T, Woitzik J, Lauritzen M, Strong AJ, Hartings JA. Recording, analysis, and interpretation of spreading depolarizations in neurointensive care: Review and recommendations of the COSBID research group. J Cereb Blood Flow Metab 2017; 37:1595-1625. [PMID: 27317657 PMCID: PMC5435289 DOI: 10.1177/0271678x16654496] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 01/18/2023]
Abstract
Spreading depolarizations (SD) are waves of abrupt, near-complete breakdown of neuronal transmembrane ion gradients, are the largest possible pathophysiologic disruption of viable cerebral gray matter, and are a crucial mechanism of lesion development. Spreading depolarizations are increasingly recorded during multimodal neuromonitoring in neurocritical care as a causal biomarker providing a diagnostic summary measure of metabolic failure and excitotoxic injury. Focal ischemia causes spreading depolarization within minutes. Further spreading depolarizations arise for hours to days due to energy supply-demand mismatch in viable tissue. Spreading depolarizations exacerbate neuronal injury through prolonged ionic breakdown and spreading depolarization-related hypoperfusion (spreading ischemia). Local duration of the depolarization indicates local tissue energy status and risk of injury. Regional electrocorticographic monitoring affords even remote detection of injury because spreading depolarizations propagate widely from ischemic or metabolically stressed zones; characteristic patterns, including temporal clusters of spreading depolarizations and persistent depression of spontaneous cortical activity, can be recognized and quantified. Here, we describe the experimental basis for interpreting these patterns and illustrate their translation to human disease. We further provide consensus recommendations for electrocorticographic methods to record, classify, and score spreading depolarizations and associated spreading depressions. These methods offer distinct advantages over other neuromonitoring modalities and allow for future refinement through less invasive and more automated approaches.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Martin Fabricius
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Oliver W Sakowitz
- Department of Neurosurgery, Klinikum Ludwigsburg, Ludwigsburg, Germany
- Department of Neurosurgery, University Hospital, Heidelberg, Germany
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Christian Dohmen
- Department of Neurology, University of Cologne, Cologne, Germany
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Rudolf Graf
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Peter Vajkoczy
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Raimund Helbok
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Innsbruck, Austria
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Alois J Schiefecker
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Innsbruck, Austria
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Maren KL Winkler
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Eun-Jeung Kang
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Denny Milakara
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Ana I Oliveira-Ferreira
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Clemens Reiffurth
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Gajanan S Revankar
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Kazutaka Sugimoto
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Nora F Dengler
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Nils Hecht
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, Neurocritical Care Division, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bart Feyen
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | | | | | - Henning Piilgaard
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna Maslarova
- Department of Neurosurgery, University Hospital and University of Bonn, Bonn, Germany
| | - Edgar Santos
- Department of Neurosurgery, University Hospital, Heidelberg, Germany
| | - Daniel Hertle
- Department of Neurosurgery, University Hospital, Heidelberg, Germany
| | | | - Sharon L Jewell
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Baptiste Balança
- Inserm U10128, CNRS UMR5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
- Université Claude Bernard, Lyon, France
| | - Johannes Platz
- Department of Neurosurgery, Goethe-University, Frankfurt, Germany
| | - Jason M Hinzman
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Janos Lückl
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Karl Schoknecht
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
- Neuroscience Research Center, Charité University Medicine Berlin, Berlin, Germany
| | - Michael Schöll
- Department of Neurosurgery, University Hospital, Heidelberg, Germany
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Christoph Drenckhahn
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Neurological Center, Segeberger Kliniken, Bad Segeberg, Germany
| | - Delphine Feuerstein
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Nina Eriksen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Viktor Horst
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Julia S Bretz
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Paul Jahnke
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Michael Scheel
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Georg Bohner
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Egill Rostrup
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Uwe Heinemann
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Neuroscience Research Center, Charité University Medicine Berlin, Berlin, Germany
| | - Jan Claassen
- Neurocritical Care, Columbia University College of Physicians & Surgeons, New York, NY, USA
| | - Andrew P Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Christina M Kowoll
- Department of Neurology, University of Cologne, Cologne, Germany
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Svetlana Lublinsky
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Beer-Sheva, Israel
- Department of Neuroradiology, Soroka University Medical Center and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yoash Chassidim
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Beer-Sheva, Israel
- Department of Neuroradiology, Soroka University Medical Center and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ilan Shelef
- Department of Neuroradiology, Soroka University Medical Center and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Friedman
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Beer-Sheva, Israel
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Gerrit Brinker
- Department of Neurosurgery, University of Cologne, Cologne, Germany
| | - Michael Reiner
- Department of Neurosurgery, University of Cologne, Cologne, Germany
| | - Sergei A Kirov
- Department of Neurosurgery and Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA
| | - R David Andrew
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, Canada
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine, and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital and University of Bonn, Bonn, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital and University of Bonn, Bonn, Germany
| | - Lee S Chung
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - KC Brennan
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Thomas Lieutaud
- Inserm U10128, CNRS UMR5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
- Université Claude Bernard, Lyon, France
| | - Stephane Marinesco
- Inserm U10128, CNRS UMR5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
- AniRA-Neurochem Technological Platform, Lyon, France
| | - Andrew IR Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Juan Sahuquillo
- Department of Neurosurgery, Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Frank Richter
- Institute of Physiology I/Neurophysiology, Friedrich Schiller University Jena, Jena, Germany
| | - Oscar Herreras
- Department of Systems Neuroscience, Cajal Institute-CSIC, Madrid, Spain
| | | | - David O Okonkwo
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - M Ross Bullock
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Arn MJM van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rick M Dijkhuizen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lori A Shutter
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Critical Care Medicine and Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Norberto Andaluz
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Mayfield Clinic, Cincinnati, OH, USA
| | - André P Schulte
- Department of Spinal Surgery, St. Franziskus Hospital Cologne, Cologne, Germany
| | - Brian MacVicar
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | | | - Johannes Woitzik
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Martin Lauritzen
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
- Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Anthony J Strong
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Mayfield Clinic, Cincinnati, OH, USA
| |
Collapse
|
100
|
Yazdi HS, O’Sullivan TD, Leproux A, Hill B, Durkin A, Telep S, Lam J, Yazdi SS, Police AM, Carroll RM, Combs FJ, Strömberg T, Yodh AG, Tromberg BJ. Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:45003. [PMID: 28384703 PMCID: PMC5381696 DOI: 10.1117/1.jbo.22.4.045003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/13/2017] [Indexed: 05/18/2023]
Abstract
Diffuse optical spectroscopic imaging (DOSI) and diffuse correlation spectroscopy (DCS) are model-based near-infrared (NIR) methods that measure tissue optical properties (broadband absorption, ? a , and reduced scattering, ? s ? ) and blood flow (blood flow index, BFI), respectively. DOSI-derived ? a values are used to determine composition by calculating the tissue concentration of oxy- and deoxyhemoglobin ( HbO 2 , HbR), water, and lipid. We developed and evaluated a combined, coregistered DOSI/DCS handheld probe for mapping and imaging these parameters. We show that uncertainties of 0.3 ?? mm ? 1 (37%) in ? s ? and 0.003 ?? mm ? 1 (33%) in ? a lead to ? 53 % and 9% errors in BFI, respectively. DOSI/DCS imaging of a solid tissue-simulating flow phantom and
Collapse
MESH Headings
- Adult
- Carcinoma, Ductal, Breast/blood supply
- Carcinoma, Ductal, Breast/diagnostic imaging
- Carcinoma, Ductal, Breast/drug therapy
- Diffusion
- Female
- Hemoglobins/analysis
- Humans
- Lipids/blood
- Models, Theoretical
- Neoadjuvant Therapy
- Oxyhemoglobins/analysis
- Phantoms, Imaging
- Spectrophotometry/methods
- Spectroscopy, Near-Infrared/methods
- Tomography, Optical/methods
Collapse
Affiliation(s)
- Hossein S. Yazdi
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Thomas D. O’Sullivan
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Anais Leproux
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Brian Hill
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Amanda Durkin
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Seraphim Telep
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Jesse Lam
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Siavash S. Yazdi
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Alice M. Police
- University of California, Chao Family Comprehensive Cancer Center, Orange, California, United States
| | - Robert M. Carroll
- University of California, Chao Family Comprehensive Cancer Center, Orange, California, United States
| | - Freddie J. Combs
- University of California, Chao Family Comprehensive Cancer Center, Orange, California, United States
| | - Tomas Strömberg
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Bruce J. Tromberg
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- Address all correspondence to: Bruce J. Tromberg, E-mail:
| |
Collapse
|