51
|
Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022; 14:1283. [PMID: 35745855 PMCID: PMC9229021 DOI: 10.3390/pharmaceutics14061283] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
52
|
Marasco LE, Dujardin G, Sousa-Luís R, Liu YH, Stigliano JN, Nomakuchi T, Proudfoot NJ, Krainer AR, Kornblihtt AR. Counteracting chromatin effects of a splicing-correcting antisense oligonucleotide improves its therapeutic efficacy in spinal muscular atrophy. Cell 2022; 185:2057-2070.e15. [PMID: 35688133 DOI: 10.1016/j.cell.2022.04.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/17/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022]
Abstract
Spinal muscular atrophy (SMA) is a motor-neuron disease caused by mutations of the SMN1 gene. The human paralog SMN2, whose exon 7 (E7) is predominantly skipped, cannot compensate for the lack of SMN1. Nusinersen is an antisense oligonucleotide (ASO) that upregulates E7 inclusion and SMN protein levels by displacing the splicing repressors hnRNPA1/A2 from their target site in intron 7. We show that by promoting transcriptional elongation, the histone deacetylase inhibitor VPA cooperates with a nusinersen-like ASO to promote E7 inclusion. Surprisingly, the ASO promotes the deployment of the silencing histone mark H3K9me2 on the SMN2 gene, creating a roadblock to RNA polymerase II elongation that inhibits E7 inclusion. By removing the roadblock, VPA counteracts the chromatin effects of the ASO, resulting in higher E7 inclusion without large pleiotropic effects. Combined administration of the nusinersen-like ASO and VPA in SMA mice strongly synergizes SMN expression, growth, survival, and neuromuscular function.
Collapse
Affiliation(s)
- Luciano E Marasco
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), 1428 Buenos Aires, Argentina
| | - Gwendal Dujardin
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Rui Sousa-Luís
- Instituto de Medicina Molecular João Lobo Antunes, University of Lisbon, 1649-028 Lisboa, Portugal
| | - Ying Hsiu Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jose N Stigliano
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), 1428 Buenos Aires, Argentina
| | - Tomoki Nomakuchi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Alberto R Kornblihtt
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), 1428 Buenos Aires, Argentina.
| |
Collapse
|
53
|
Kaburagi H, Nagata T, Enomoto M, Hirai T, Ohyagi M, Ihara K, Yoshida-Tanaka K, Ebihara S, Asada K, Yokoyama H, Okawa A, Yokota T. Systemic DNA/RNA heteroduplex oligonucleotide administration for regulating the gene expression of dorsal root ganglion and sciatic nerve. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:910-919. [PMID: 35694210 PMCID: PMC9167871 DOI: 10.1016/j.omtn.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
Neuropathic pain, a heterogeneous condition, affects 7%–10% of the general population. To date, efficacious and safe therapeutic approaches remain limited. Antisense oligonucleotide (ASO) therapy has opened the door to treat spinal muscular atrophy, with many ongoing clinical studies determining its therapeutic utility. ASO therapy for neuropathic pain and peripheral nerve disease requires efficient gene delivery and knockdown in both the dorsal root ganglion (DRG) and sciatic nerve, key tissues for pain signaling. We previously developed a new DNA/RNA heteroduplex oligonucleotide (HDO) technology that achieves highly efficient gene knockdown in the liver. Here, we demonstrated that intravenous injection of HDO, comprising an ASO and its complementary RNA conjugated to α-tocopherol, silences endogenous gene expression more than 2-fold in the DRG, and sciatic nerve with higher potency, efficacy, and broader distribution than ASO alone. Of note, we observed drastic target suppression in all sizes of neuronal DRG populations by in situ hybridization. Our findings establish HDO delivery as an investigative and potentially therapeutic platform for neuropathic pain and peripheral nerve disease.
Collapse
|
54
|
Xu B, Wei C, Hu X, Li W, Huang Z, Que C, Qiu J, Li C, Xiong H. Scoliosis Orthopedic Surgery Combined With Nusinersen Intrathecal Injection Significantly Improved the Outcome of Spinal Muscular Atrophy Patient: A Case Report. Front Neurol 2022; 13:869230. [PMID: 35547367 PMCID: PMC9082934 DOI: 10.3389/fneur.2022.869230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by pathogenic variation of the survival motor neuron (SMN) 1 gene. Symptoms of SMA include progressive limb muscle weakness, atrophy, and severe scoliosis. Nusinersen is an antisense oligonucleotide that can enhance the production of the SMN protein. Here, we report a case with scoliosis who received orthopedic surgery combined with Nusinersen intrathecal injections. Case Presentation Scoliosis orthopedic surgery followed by Nusinersen intrathecal injections was given to a 16-year-old girl who had thoracic and lumbar scoliosis and type 3 SMA. Surgery was performed for T3-S2 posterolateral fusion (PLF), with a channel left on the vertebral laminae of L3-L4. The balance of the spine and pelvis was significantly improved and the height increased by 9 cm. Lumbar puncture was conducted with local anesthesia under ultrasound and CT guidance through the laminae channel and Nusinersen was successfully injected. Comparing the two approaches, real-time ultrasound guidance for intrathecal Nusinersen injections after spinal surgery is preferred, however, CT guidance is an alternative if the initial puncture procedure is difficult. After the aforementioned multidisciplinary treatment, a good outcome was achieved, as demonstrated by a 2-point increase in RULM and MFM32 scores 2 months later. Conclusion Scoliosis orthopedic surgery combined with Nusinersen intrathecal injection is an effective treatment for SMA patients with scoliosis.
Collapse
Affiliation(s)
- Beiyu Xu
- Department of Orthopedic/Spine Surgery, Peking University First Hospital, Beijing, China
| | - Cuijie Wei
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiao Hu
- Department of Anesthesiology, Peking University First Hospital, Beijing, China
| | - Wenzhu Li
- Department of Rehabilitation Medicine, Peking University First Hospital, Beijing, China
| | - Zhen Huang
- Department of Rehabilitation Medicine, Peking University First Hospital, Beijing, China
| | - Chengli Que
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Jianxing Qiu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Chunde Li
- Department of Orthopedic/Spine Surgery, Peking University First Hospital, Beijing, China
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
55
|
Pardridge WM. Blood-brain barrier delivery for lysosomal storage disorders with IgG-lysosomal enzyme fusion proteins. Adv Drug Deliv Rev 2022; 184:114234. [PMID: 35307484 DOI: 10.1016/j.addr.2022.114234] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
The majority of lysosomal storage diseases affect the brain. Treatment of the brain with intravenous enzyme replacement therapy is not successful, because the recombinant lysosomal enzymes do not cross the blood-brain barrier (BBB). Biologic drugs, including lysosomal enzymes, can be re-engineered for BBB delivery as IgG-enzyme fusion proteins. The IgG domain of the fusion protein is a monoclonal antibody directed against an endogenous receptor-mediated transporter at the BBB, such as the insulin receptor or the transferrin receptor. This receptor transports the IgG across the BBB, in parallel with the endogenous receptor ligand, and the IgG acts as a molecular Trojan horse to ferry into brain the lysosomal enzyme genetically fused to the IgG. The IgG-enzyme fusion protein is bi-functional and retains both high affinity binding for the BBB receptor, and high lysosomal enzyme activity. IgG-lysosomal enzymes are presently in clinical trials for treatment of the brain in Mucopolysaccharidosis.
Collapse
|
56
|
Carmack SA, Vendruscolo JCM, Adrienne McGinn M, Miranda-Barrientos J, Repunte-Canonigo V, Bosse GD, Mercatelli D, Giorgi FM, Fu Y, Hinrich AJ, Jodelka FM, Ling K, Messing RO, Peterson RT, Rigo F, Edwards S, Sanna PP, Morales M, Hastings ML, Koob GF, Vendruscolo LF. Corticosteroid sensitization drives opioid addiction. Mol Psychiatry 2022; 27:2492-2501. [PMID: 35296810 PMCID: PMC10406162 DOI: 10.1038/s41380-022-01501-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 11/09/2022]
Abstract
The global crisis of opioid overdose fatalities has led to an urgent search to discover the neurobiological mechanisms of opioid use disorder (OUD). A driving force for OUD is the dysphoric and emotionally painful state (hyperkatifeia) that is produced during acute and protracted opioid withdrawal. Here, we explored a mechanistic role for extrahypothalamic stress systems in driving opioid addiction. We found that glucocorticoid receptor (GR) antagonism with mifepristone reduced opioid addiction-like behaviors in rats and zebrafish of both sexes and decreased the firing of corticotropin-releasing factor neurons in the rat amygdala (i.e., a marker of brain stress system activation). In support of the hypothesized role of glucocorticoid transcriptional regulation of extrahypothalamic GRs in addiction-like behavior, an intra-amygdala infusion of an antisense oligonucleotide that blocked GR transcriptional activity reduced addiction-like behaviors. Finally, we identified transcriptional adaptations of GR signaling in the amygdala of humans with OUD. Thus, GRs, their coregulators, and downstream systems may represent viable therapeutic targets to treat the "stress side" of OUD.
Collapse
Affiliation(s)
- Stephanie A Carmack
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
- Center for Adaptive Systems of Brain-Body Interactions, George Mason University, Fairfax, VA, USA
| | - Janaina C M Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
| | - M Adrienne McGinn
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
| | - Jorge Miranda-Barrientos
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabriel D Bosse
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Yu Fu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Anthony J Hinrich
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Francine M Jodelka
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Karen Ling
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, Department of Neuroscience and Neurology, University of Texas, Austin, TX, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Scott Edwards
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Pietro P Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marisela Morales
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
| | - Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA.
| |
Collapse
|
57
|
Kusaka S, Morizane Y, Tokumaru Y, Tamaki S, Maemunah IR, Akiyama Y, Sato F, Murata I. Boron Delivery to Brain Cells via Cerebrospinal Fluid (CSF) Circulation for BNCT in a Rat Melanoma Model. BIOLOGY 2022; 11:biology11030397. [PMID: 35336771 PMCID: PMC8945851 DOI: 10.3390/biology11030397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 02/02/2023]
Abstract
Simple Summary The blood–brain barrier (BBB) is formed by the brain capillary endothelium and prevents almost all therapeutic agents from reaching the brain. The importance of the BBB in brain tumor treatments has not been recognized until recently, including in the case of boron neutron capture therapy (BNCT), although it affects therapeutic efficacy when treating brain tumors. Recently, some drug delivery systems to bypass the BBB have been developed for brain tumor therapy, and our laboratory has been developing a system for boron delivery to brain cells using cerebrospinal fluid (CSF) circulation, which we call the “boron CSF administration method”. In this study, we carried out experiments with brain tumor model rats to demonstrate the usefulness of the CSF administration method for BNCT. As a result, we found that boron injected using the CSF administration method accumulates to high levels in tumor cells, with a high T/N ratio. In addition, the dose required for the boron drug was much lower than that used in the intravenous (IV) administration method for equivalent effects. This approach makes it possible for clinicians to inject a lower drug dose into patient, thus reducing the potential side effects of excessive amounts of the drug and decreasing its cost. We hope our findings will inspire additional studies on boron delivery to brain tumors for BNCT. Abstract Recently, exploitation of cerebrospinal fluid (CSF) circulation has become increasingly recognized as a feasible strategy to solve the challenges involved in drug delivery for treating brain tumors. Boron neutron capture therapy (BNCT) also faces challenges associated with the development of an efficient delivery system for boron, especially to brain tumors. Our laboratory has been developing a system for boron delivery to brain cells using CSF, which we call the “boron CSF administration method”. In our previous study, we found that boron was efficiently delivered to the brain cells of normal rats in the form of small amounts of L-p-boronophenylalanine (BPA) using the CSF administration method. In the study described here, we carried out experiments with brain tumor model rats to demonstrate the usefulness of the CSF administration method for BNCT. We first investigated the boron concentration of the brain cells every 60 min after BPA administration into the lateral ventricle of normal rats. Second, we measured and compared the boron concentration in the melanoma model rats after administering boron via either the CSF administration method or the intravenous (IV) administration method, with estimation of the T/N ratio. Our results revealed that boron injected by the CSF administration method was excreted quickly from normal cells, resulting in a high T/N ratio compared to that of IV administration. In addition, the CSF administration method resulted in high boron accumulation in tumor cells. In conclusion, we found that using our developed CSF administration method results in more selective delivery of boron to the brain tumor compared with the IV administration method.
Collapse
|
58
|
Andersson P. Preclinical Safety Assessment of Therapeutic Oligonucleotides. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2434:355-370. [PMID: 35213031 DOI: 10.1007/978-1-0716-2010-6_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During the last decade, therapeutic oligonucleotide drugs (OND) have witnessed a tremendous development in chemistry and mechanistic understanding that have translated into successful clinical applications. Depending on the specific OND mechanism, chemistry, and design, the DMPK and toxicity properties can vary significantly between different OND classes and delivery approaches, the latter including lipid formulations or conjugation approaches to enhance productive OND uptake. At the same time, with the only difference between compounds being the nucleobase sequence, ONDs with same mechanism of action, chemistry, and design show relatively consistent behavior, allowing certain extrapolations between compounds within an OND class. This chapter provides a summary of the most common toxicities, the improved mechanistic understanding and the safety assessment activities performed for therapeutic oligonucleotides during the drug discovery and development process. Several of the considerations described for therapeutic applications should also be of value for the scientists mainly using oligonucleotides as research tools to explore various biological processes.
Collapse
Affiliation(s)
- Patrik Andersson
- Safety Innovation, Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
59
|
Peng Q, Zhou Y, Oyang L, Wu N, Tang Y, Su M, Luo X, Wang Y, Sheng X, Ma J, Liao Q. Impacts and mechanisms of alternative mRNA splicing in cancer metabolism, immune response, and therapeutics. Mol Ther 2022; 30:1018-1035. [PMID: 34793975 PMCID: PMC8899522 DOI: 10.1016/j.ymthe.2021.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023] Open
Abstract
Alternative pre-mRNA splicing (AS) provides the potential to produce diversity at RNA and protein levels. Disruptions in the regulation of pre-mRNA splicing can lead to diseases. With the development of transcriptome and genome sequencing technology, increasing diseases have been identified to be associated with abnormal splicing of mRNAs. In tumors, abnormal alternative splicing frequently plays critical roles in cancer pathogenesis and may be considered as new biomarkers and therapeutic targets for cancer intervention. Metabolic abnormalities and immune disorders are important hallmarks of cancer. AS produces multiple different isoforms and diversifies protein expression, which is utilized by the immune and metabolic reprogramming systems to expand gene functions. The abnormal splicing events contributed to tumor progression, partially due to effects on immune response and metabolic reprogramming. Herein, we reviewed the vital role of alternative splicing in regulating cancer metabolism and immune response. We discussed how alternative splicing regulates metabolic reprogramming of cancer cells and antitumor immune response, and the possible strategies to targeting alternative splicing pathways or splicing-regulated metabolic pathway in the context of anticancer immunotherapy. Further, we highlighted the challenges and discuss the perspectives for RNA-based strategies for the treatment of cancer with abnormally alternative splicing isoforms.
Collapse
Affiliation(s)
- Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Ying Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Xiaowu Sheng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Jian Ma
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China; Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China.
| |
Collapse
|
60
|
Cornelissen L, Donado C, Yu TW, Berde CB. Modified Sensory Testing in Non-verbal Patients Receiving Novel Intrathecal Therapies for Neurological Disorders. Front Neurol 2022; 13:664710. [PMID: 35222234 PMCID: PMC8866183 DOI: 10.3389/fneur.2022.664710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Several neurological disorders may be amenable to treatment with gene-targeting therapies such as antisense oligonucleotides (ASOs) or viral vector-based gene therapy. The US FDA has approved several of these treatments; many others are in clinical trials. Preclinical toxicity studies of ASO candidates have identified dose-dependent neurotoxicity patterns. These include degeneration of dorsal root ganglia, the cell bodies of peripheral sensory neurons. Quantitative sensory testing (QST) refers to a series of standardized mechanical and/or thermal measures that complement clinical neurologic examination in detecting sensory dysfunction. QST primarily relies on patient self-report or task performance (i.e., button-pushing). This brief report illustrates individualized pragmatic approaches to QST in non-verbal subjects receiving early phase investigational intrathecal drug therapies as a component of clinical trial safety protocols. Three children with neurodevelopmental disorders that include Neuronal Ceroid Lipofuscinosis Type 7, Ataxia-Telangiectasia, and Epilepsy of Infancy with Migrating Focal Seizures are presented. These case studies discuss individualized testing protocols, accounting for disease presentation, cognitive and motor function. We outline specific considerations for developing assessments for detecting changes in sensory processing in diverse patient groups and safety monitoring trials of early phase investigational intrathecal drug therapies. QST may complement information obtained from the standard neurologic examination, electrophysiologic studies, skin biopsies, and imaging. QST has limitations and challenges, especially in non-verbal subjects, as shown in the three cases discussed in this report. Future directions call for collaborative efforts to generate sensory datasets and share data registries in the pediatric neurology field.
Collapse
Affiliation(s)
- Laura Cornelissen
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Carolina Donado
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Timothy W. Yu
- Divisions of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Department of Paediatrics, Harvard Medical School, Boston, MA, United States
| | - Charles B. Berde
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
61
|
Malard F, Mackereth CD, Campagne S. Principles and correction of 5'-splice site selection. RNA Biol 2022; 19:943-960. [PMID: 35866748 PMCID: PMC9311317 DOI: 10.1080/15476286.2022.2100971] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/06/2022] [Indexed: 11/04/2022] Open
Abstract
In Eukarya, immature mRNA transcripts (pre-mRNA) often contain coding sequences, or exons, interleaved by non-coding sequences, or introns. Introns are removed upon splicing, and further regulation of the retained exons leads to alternatively spliced mRNA. The splicing reaction requires the stepwise assembly of the spliceosome, a macromolecular machine composed of small nuclear ribonucleoproteins (snRNPs). This review focuses on the early stage of spliceosome assembly, when U1 snRNP defines each intron 5'-splice site (5'ss) in the pre-mRNA. We first introduce the splicing reaction and the impact of alternative splicing on gene expression regulation. Thereafter, we extensively discuss splicing descriptors that influence the 5'ss selection by U1 snRNP, such as sequence determinants, and interactions mediated by U1-specific proteins or U1 small nuclear RNA (U1 snRNA). We also include examples of diseases that affect the 5'ss selection by U1 snRNP, and discuss recent therapeutic advances that manipulate U1 snRNP 5'ss selectivity with antisense oligonucleotides and small-molecule splicing switches.
Collapse
Affiliation(s)
- Florian Malard
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| | - Cameron D Mackereth
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| | - Sébastien Campagne
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| |
Collapse
|
62
|
Tran H, Moazami MP, Yang H, McKenna-Yasek D, Douthwright CL, Pinto C, Metterville J, Shin M, Sanil N, Dooley C, Puri A, Weiss A, Wightman N, Gray-Edwards H, Marosfoi M, King RM, Kenderdine T, Fabris D, Bowser R, Watts JK, Brown RH. Suppression of mutant C9orf72 expression by a potent mixed backbone antisense oligonucleotide. Nat Med 2022; 28:117-124. [PMID: 34949835 PMCID: PMC8861976 DOI: 10.1038/s41591-021-01557-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022]
Abstract
Expansions of a G4C2 repeat in the C9ORF72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two devastating adult-onset neurodegenerative disorders. Using C9-ALS/FTD patient-derived cells and C9ORF72 BAC transgenic mice, we generated and optimized antisense oligonucleotides (ASOs) that selectively blunt expression of G4C2 repeat-containing transcripts and effectively suppress tissue levels of poly(GP) dipeptides. ASOs with reduced phosphorothioate content showed improved tolerability without sacrificing efficacy. In a single patient harboring mutant C9ORF72 with the G4C2 repeat expansion, repeated dosing by intrathecal delivery of the optimal ASO was well tolerated, leading to significant reductions in levels of cerebrospinal fluid poly(GP). This report provides insight into the effect of nucleic acid chemistry on toxicity and, to our knowledge, for the first time demonstrates the feasibility of clinical suppression of the C9ORF72 gene. Additional clinical trials will be required to demonstrate safety and efficacy of this therapy in patients with C9ORF72 gene mutations.
Collapse
Affiliation(s)
- Hélène Tran
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael P Moazami
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Huiya Yang
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Diane McKenna-Yasek
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Courtney Pinto
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jake Metterville
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Minwook Shin
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nitasha Sanil
- Research Pharmacy, University of Massachusetts Medical School, Worcester, MA, USA
| | - Craig Dooley
- Research Pharmacy, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ajit Puri
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alexandra Weiss
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nicholas Wightman
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Heather Gray-Edwards
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Miklos Marosfoi
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Robert M King
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | | | - Daniele Fabris
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Robert Bowser
- Departments of Neurology and Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
63
|
Ferguson CM, Godinho BM, Alterman JF, Coles AH, Hassler M, Echeverria D, Gilbert JW, Knox EG, Caiazzi J, Haraszti RA, King RM, Taghian T, Puri A, Moser RP, Gounis MJ, Aronin N, Gray-Edwards H, Khvorova A. Comparative route of administration studies using therapeutic siRNAs show widespread gene modulation in Dorset sheep. JCI Insight 2021; 6:152203. [PMID: 34935646 PMCID: PMC8783676 DOI: 10.1172/jci.insight.152203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
siRNAs comprise a class of drugs that can be programmed to silence any target gene. Chemical engineering efforts resulted in development of divalent siRNAs (di-siRNAs), which support robust and long-term efficacy in rodent and nonhuman primate brains upon direct cerebrospinal fluid (CSF) administration. Oligonucleotide distribution in the CNS is nonuniform, limiting clinical applications. The contribution of CSF infusion placement and dosing regimen on relative accumulation, specifically in the context of large animals, is not well characterized. To our knowledge, we report the first systemic, comparative study investigating the effects of 3 routes of administration — intrastriatal (i.s.), i.c.v., and intrathecal catheter to the cisterna magna (ITC) — and 2 dosing regimens — single and repetitive via an implanted reservoir device — on di-siRNA distribution and accumulation in the CNS of Dorset sheep. CSF injections (i.c.v. and ITC) resulted in similar distribution and accumulation across brain regions. Repeated dosing increased homogeneity, with greater relative deep brain accumulation. Conversely, i.s. administration supported region-specific delivery. These results suggest that dosing regimen, not CSF infusion placement, may equalize siRNA accumulation and efficacy throughout the brain. These findings inform the planning and execution of preclinical and clinical studies using siRNA therapeutics in the CNS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Robert M King
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Toloo Taghian
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | - Matthew J Gounis
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Neil Aronin
- RNA Therapeutics Institute and.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Heather Gray-Edwards
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute and.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
64
|
Chen Z, Ling L, Shi X, Li W, Zhai H, Kang Z, Zheng B, Zhu J, Ye S, Wang H, Tong L, Ni J, Huang C, Li Y, Zheng K. Microinjection of antisense oligonucleotides into living mouse testis enables lncRNA function study. Cell Biosci 2021; 11:213. [PMID: 34920761 PMCID: PMC8684201 DOI: 10.1186/s13578-021-00717-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been the focus of ongoing research in a diversity of cellular processes. LncRNAs are abundant in mammalian testis, but their biological function remains poorly known. Results Here, we established an antisense oligonucleotides (ASOs)-based targeting approach that can efficiently knock down lncRNA in living mouse testis. We cloned the full-length transcript of lncRNA Tsx (testis-specific X-linked) and defined its testicular localization pattern. Microinjection of ASOs through seminiferous tubules in vivo significantly lowered the Tsx levels in both nucleus and cytoplasm. This effect lasted no less than 10 days, conducive to the generation and maintenance of phenotype. Importantly, ASOs performed better in depleting the nuclear Tsx and sustained longer effect than small interfering RNAs (siRNAs). In addition to the observation of an elevated number of apoptotic germ cells upon ASOs injection, which recapitulates the documented description of Tsx knockout, we also found a specific loss of meiotic spermatocytes despite overall no impact on meiosis and male fertility. Conclusions Our study detailed the characterization of Tsx and illustrates ASOs as an advantageous tool to functionally interrogate lncRNAs in spermatogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00717-y.
Collapse
Affiliation(s)
- Zhaohui Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Li Ling
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Xiaolian Shi
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Wu Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Huicong Zhai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Zhenlong Kang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Bangjin Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Jiaqi Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Suni Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Hao Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Lingxiu Tong
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Juan Ni
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Hangzhou Normal University, 310015, Zhejiang, China
| | - Chaoyang Huang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, 310014, Zhejiang, China.
| | - Yang Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China.
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
65
|
Nagata T, Dwyer CA, Yoshida-Tanaka K, Ihara K, Ohyagi M, Kaburagi H, Miyata H, Ebihara S, Yoshioka K, Ishii T, Miyata K, Miyata K, Powers B, Igari T, Yamamoto S, Arimura N, Hirabayashi H, Uchihara T, Hara RI, Wada T, Bennett CF, Seth PP, Rigo F, Yokota T. Cholesterol-functionalized DNA/RNA heteroduplexes cross the blood-brain barrier and knock down genes in the rodent CNS. Nat Biotechnol 2021; 39:1529-1536. [PMID: 34385691 DOI: 10.1038/s41587-021-00972-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
Achieving regulation of endogenous gene expression in the central nervous system (CNS) with antisense oligonucleotides (ASOs) administered systemically would facilitate the development of ASO-based therapies for neurological diseases. We demonstrate that DNA/RNA heteroduplex oligonucleotides (HDOs) conjugated to cholesterol or α-tocopherol at the 5' end of the RNA strand reach the CNS after subcutaneous or intravenous administration in mice and rats. The HDOs distribute throughout the brain, spinal cord and peripheral tissues and suppress the expression of four target genes by up to 90% in the CNS, whereas single-stranded ASOs conjugated to cholesterol have limited activity. Gene knockdown was observed in major CNS cell types and was greatest in neurons and microglial cells. Side effects, such as thrombocytopenia and focal brain necrosis, were limited by using subcutaneous delivery or by dividing intravenous injections. By crossing the blood-brain barrier more effectively, cholesterol-conjugated HDOs may overcome the limited efficacy of ASOs targeting the CNS without requiring intrathecal administration.
Collapse
Affiliation(s)
- Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Kie Yoshida-Tanaka
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kensuke Ihara
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Ohyagi
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidetoshi Kaburagi
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Haruka Miyata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoe Ebihara
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kotaro Yoshioka
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Ishii
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Kenichi Miyata
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | | | - Tomoko Igari
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | | | - Naoto Arimura
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | | | - Toshiki Uchihara
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rintaro Iwata Hara
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Takeshi Wada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | | | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. .,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
66
|
Li M, Jancovski N, Jafar-Nejad P, Burbano LE, Rollo B, Richards K, Drew L, Sedo A, Heighway J, Pachernegg S, Soriano A, Jia L, Blackburn T, Roberts B, Nemiroff A, Dalby K, Maljevic S, Reid CA, Rigo F, Petrou S. Antisense oligonucleotide therapy reduces seizures and extends life span in an SCN2A gain-of-function epilepsy model. J Clin Invest 2021; 131:152079. [PMID: 34850743 DOI: 10.1172/jci152079] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/01/2021] [Indexed: 01/21/2023] Open
Abstract
De novo variation in SCN2A can give rise to severe childhood disorders. Biophysical gain of function in SCN2A is seen in some patients with early seizure onset developmental and epileptic encephalopathy (DEE). In these cases, targeted reduction in SCN2A expression could substantially improve clinical outcomes. We tested this theory by central administration of a gapmer antisense oligonucleotide (ASO) targeting Scn2a mRNA in a mouse model of Scn2a early seizure onset DEE (Q/+ mice). Untreated Q/+ mice presented with spontaneous seizures at P1 and did not survive beyond P30. Administration of the ASO to Q/+ mice reduced spontaneous seizures and significantly extended life span. Across a range of behavioral tests, Scn2a ASO-treated Q/+ mice were largely indistinguishable from WT mice, suggesting treatment is well tolerated. A human SCN2A gapmer ASO could likewise impact the lives of patients with SCN2A gain-of-function DEE.
Collapse
Affiliation(s)
- Melody Li
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Nikola Jancovski
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | | | - Lisseth E Burbano
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Ben Rollo
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Kay Richards
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Lisa Drew
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Alicia Sedo
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Jacqueline Heighway
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Svenja Pachernegg
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | | | - Linghan Jia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Todd Blackburn
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,RogCon Biosciences, Miami Beach, Florida, USA
| | - Blaine Roberts
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Alex Nemiroff
- RogCon Biosciences, Miami Beach, Florida, USA.,Praxis Precision Medicines, Boston, Massachusetts, USA
| | - Kelley Dalby
- RogCon Biosciences, Miami Beach, Florida, USA.,Praxis Precision Medicines, Boston, Massachusetts, USA
| | - Snezana Maljevic
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,RogCon Biosciences, Miami Beach, Florida, USA.,Praxis Precision Medicines, Boston, Massachusetts, USA
| |
Collapse
|
67
|
Zhang J, Sharma R, Ryu K, Shen P, Salaita K, Jo H. Conditional Antisense Oligonucleotides Triggered by miRNA. ACS Chem Biol 2021; 16:2255-2267. [PMID: 34664929 PMCID: PMC10982875 DOI: 10.1021/acschembio.1c00387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antisense oligonucleotides (ASOs) are single-stranded short nucleic acids that silence the expression of target mRNAs and show increasing therapeutic potential. Since ASOs are internalized by many cell types, both normal and diseased cells, gene silencing in unwanted cells is a significant challenge for their therapeutic use. To address this challenge, we created conditional ASOs that become active only upon detecting transcripts unique to the target cell. As a proof-of-concept, we modified an HIF1α ASO (EZN2968) to generate miRNA-specific conditional ASOs, which can inhibit HIF1α in the presence of a hepatocyte-specific miRNA, miR-122, via a toehold exchange reaction. We characterized a library of nucleic acids, testing how the conformation, thermostability, and chemical composition of the conditional ASO impact the specificity and efficacy in response to miR-122 as a trigger signal. Optimally designed conditional ASOs demonstrated knockdown of HIF1α in cells transfected with exogenous miR-122 and in hepatocytes expressing endogenous miR-122. We confirmed that conditional ASO activity was mediated by toehold exchange between miR-122 and the conditional ASO duplex, and the magnitude of the knockdown depended on the toehold length and miR-122 levels. Using the same concept, we further generated another conditional ASO that can be triggered by miR-21. Our results suggest that conditional ASOs can be custom-designed with any miRNA to control ASO activation in targeted cells while reducing unwanted effects in nontargeted cells.
Collapse
Affiliation(s)
- Jiahui Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Radhika Sharma
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Kitae Ryu
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Patrick Shen
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30332, United States; Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30332, United States; Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
68
|
Grabowska-Pyrzewicz W, Want A, Leszek J, Wojda U. Antisense oligonucleotides for Alzheimer's disease therapy: from the mRNA to miRNA paradigm. EBioMedicine 2021; 74:103691. [PMID: 34773891 PMCID: PMC8602003 DOI: 10.1016/j.ebiom.2021.103691] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) represents a particular therapeutic challenge because its aetiology is very complex, with dynamic progression from preclinical to clinical stages. Several potential therapeutic targets and strategies were tested for AD, in over 2000 clinical trials, but no disease-modifying therapy exists. This failure indicates that AD, as a multifactorial disease, may require multi-targeted approaches and the delivery of therapeutic molecules to the right place and at the right disease stage. Opportunities to meet the challenges of AD therapy appear to come from recent progress in knowledge and methodological advances in the design, synthesis, and targeting of brain mRNA and microRNA with synthetic antisense oligonucleotides (ASOs). Several types of ASOs allow the utilisation of different mechanisms of posttranscriptional regulation and offer enhanced effects over alternative therapeutics. This article reviews ASO-based approaches and targets in preclinical and clinical trials for AD, and presents the future perspective on ASO therapies for AD.
Collapse
Affiliation(s)
- Wioleta Grabowska-Pyrzewicz
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093, Warsaw, Poland
| | - Andrew Want
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093, Warsaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wybrzeże Pasteura 10, 50-367 Wroclaw, Poland
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093, Warsaw, Poland.
| |
Collapse
|
69
|
Shadid M, Badawi M, Abulrob A. Antisense oligonucleotides: absorption, distribution, metabolism, and excretion. Expert Opin Drug Metab Toxicol 2021; 17:1281-1292. [PMID: 34643122 DOI: 10.1080/17425255.2021.1992382] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Antisense oligonucleotides (ASOs) have emerged as a promising novel drug modality that aims to address unmet medical needs. A record of six ASO drugs have been approved since 2016, and more candidates are in clinical development. ASOs are the most advanced class within the RNA-based therapeutics field. AREAS COVERED This review highlights the two major backbones that are currently used to build the most advanced ASO platforms - the phosphorodiamidate morpholino oligomers (PMOs) and the phosphorothioates (PSs). The absorption, distribution, metabolism, and excretion (ADME) properties of the PMO and PS platforms are discussed in detail. EXPERT OPINION Understanding the ADME properties of existing ASOs can foster further improvement of this cutting-edge therapy, thereby enabling researchers to safely develop ASO drugs and enhancing their ability to innovate. ABBREVIATIONS 2'-MOE, 2'-O-methoxyethyl; 2'PS, 2 modified PS; ADME, absorption, distribution, metabolism, and excretion; ASO, antisense oligonucleotide; AUC, area under the curve; BNA, bridged nucleic acid; CPP, cell-penetrating peptide; CMV, cytomegalovirus; CNS, central nervous system; CYP, cytochrome P; DDI, drug-drug interaction; DMD, Duchenne muscular dystrophy; FDA, Food and Drug Administration; GalNAc3, triantennary N-acetyl galactosamine; IT, intrathecal; IV, intravenous; LNA, locked nucleic acid; mRNA, messenger RNA; NA, not applicable; PBPK, physiologically based pharmacokinetics; PD, pharmacodynamic; PK, pharmacokinetic; PMO, phosphorodiamidate morpholino oligomer; PMOplus, PMOs with positionally specific positive molecular charges; PPMO, peptide-conjugated PMO; PS, phosphorothioate; SC, subcutaneous; siRNA, small-interfering RNA; SMA, spinal muscular atrophy.
Collapse
Affiliation(s)
- Mohammad Shadid
- Nonclinical Development, Sarepta Therapeutics, Inc, Cambridge, MA, USA
| | - Mohamed Badawi
- Clinical Pharmacology Fellow, Ohio State University, Columbus, OH, USA
| | - Abedelnasser Abulrob
- Senior Research Officer, Human Health Therapeutics Centre, Translational Bioscience, National Research Council Canada, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
70
|
Hiraoka H, Shu Z, Tri Le B, Masuda K, Nakamoto K, Fangjie L, Abe N, Hashiya F, Kimura Y, Shimizu Y, Veedu RN, Abe H. Antisense Oligonucleotide Modified with Disulfide Units Induces Efficient Exon Skipping in mdx Myotubes through Enhanced Membrane Permeability and Nucleus Internalization. Chembiochem 2021; 22:3437-3442. [PMID: 34636471 DOI: 10.1002/cbic.202100413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/09/2021] [Indexed: 11/07/2022]
Abstract
We have found that antisense oligonucleotides and siRNA molecules modified with repeat structures of disulfide units can be directly introduced into the cytoplasm and exhibit a suppressive effect on gene expression. In this study, we analyzed the mechanism of cellular uptake of these membrane-permeable oligonucleotides (MPONs). Time-course analysis by confocal microscopy showed that the uptake of MPONs from the plasma membrane to the cytoplasm reached 50 % of the total uptake in about 5 min. In addition, analysis of the plasma membrane proteins to which MPONs bind, identified several proteins, including voltage-dependent anion channel. Next, we analyzed the behavior of MPONs in the cell and found them to be abundant in the nucleus as early as 24 h after addition with the amount increasing further after 48 and 72 h. The amount of MPONs was 2.5-fold higher than that of unmodified oligonucleotides in the nucleus after 72 h. We also designed antisense oligonucleotides and evaluated the effect of MPONs on mRNA exon skipping using DMD model cells; MPONs caused exon skipping with 69 % efficiency after 72 h, which was three times higher than the rate of the control. In summary, the high capacity for intracytoplasmic and nuclear translocation of MPONs is expected to be useful for therapeutic strategies targeting exon skipping.
Collapse
Affiliation(s)
- Haruka Hiraoka
- Chemistry Department, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Zhaoma Shu
- Chemistry Department, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Bao Tri Le
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, 90 South Street Murdoch, Perth, Western Australia, 6150, Australia.,Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, Perth, Western Australia, 6009, Australia
| | - Keiko Masuda
- RIKEN Center for Biosystems Dynamics Research, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan
| | - Kosuke Nakamoto
- Chemistry Department, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Lyu Fangjie
- Chemistry Department, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Naoko Abe
- Chemistry Department, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.,Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Yasuaki Kimura
- Chemistry Department, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Yoshihiro Shimizu
- RIKEN Center for Biosystems Dynamics Research, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, 90 South Street Murdoch, Perth, Western Australia, 6150, Australia.,Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, Perth, Western Australia, 6009, Australia
| | - Hiroshi Abe
- Chemistry Department, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.,Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.,CREST (Japan) Science and Technology Agency, 7, Goban-cho, Chiyoda-ku, Tokyo, 102-0076, Japan.,Institute for Glyco-core Research (iGCORE), Tokai National Higher Education and Research System Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
71
|
Kizina K, Akkaya Y, Jokisch D, Stolte B, Totzeck A, Munoz-Rosales J, Thimm A, Bolz S, Brakemeier S, Pul R, Aslan D, Hackert J, Kleinschnitz C, Hagenacker T. Cognitive Impairment in Adult Patients with 5q-Associated Spinal Muscular Atrophy. Brain Sci 2021; 11:brainsci11091184. [PMID: 34573206 PMCID: PMC8471736 DOI: 10.3390/brainsci11091184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022] Open
Abstract
In previous studies, a below-average, average, or above-average intelligence quotient (IQ) in children with SMA was detected but, aside from a severe physical disability, the cognitive performance of adult SMA patients has not yet been evaluated. The intelligence test used in this study, the Wechsler Adult Intelligence Scale, fourth edition (WAIS-IV), was used to measure major intelligence components of adult SMA patients. The WAIS-IV determines four index scores representing verbal comprehension, perceptual reasoning, working memory, and processing speed. Due to time-dependent demands on motor function, the processing speed index score was excluded. IQ index scores of 33 adult SMA patients did not differ from IQ index scores of the normal population. In SMA type-3 patients, the index scores for verbal comprehension, perceptual reasoning, and working memory did not differ from the normal population but showed a trend of IQ scores towards lower points. Patients with SMA type 2 had lower IQ index scores for working memory (90.33 ± 12.95; p = 0.012) and perceptual reasoning (90.73 ± 12.58; p = 0.013) than the normal population. This study provided further evidence that SMA is a multi-systemic disease and may refute the widespread hypothesis that SMA patients might improve their cognitive skills to compensate for their physical impairment.
Collapse
|
72
|
Hill SF, Meisler MH. Antisense Oligonucleotide Therapy for Neurodevelopmental Disorders. Dev Neurosci 2021; 43:247-252. [PMID: 34412058 PMCID: PMC8440367 DOI: 10.1159/000517686] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are short oligonucleotides that can modify gene expression and mRNA splicing in the nervous system. The FDA has approved ASOs for treatment of ten genetic disorders, with many applications currently in the pipeline. We describe the molecular mechanisms of ASO treatment for four neurodevelopmental and neuromuscular disorders. The ASO nusinersen is a general treatment for mutations of SMN1 in spinal muscular atrophy that corrects the splicing defect in the SMN2 gene. Milasen is a patient-specific ASO that rescues splicing of CNL7 in Batten's disease. STK-001 is an ASO that increases expression of the sodium channel gene SCN1A by exclusion of a poison exon. An ASO that reduces the abundance of the SCN8A mRNA is therapeutic in mouse models of developmental and epileptic encephalopathy. These examples demonstrate the variety of mechanisms and range of applications of ASOs for treatment of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sophie F Hill
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Miriam H Meisler
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
73
|
Wojewska DN, Kortholt A. LRRK2 Targeting Strategies as Potential Treatment of Parkinson's Disease. Biomolecules 2021; 11:1101. [PMID: 34439767 PMCID: PMC8392603 DOI: 10.3390/biom11081101] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson's Disease (PD) affects millions of people worldwide with no cure to halt the progress of the disease. Leucine-rich repeat kinase 2 (LRRK2) is the most common genetic cause of PD and, as such, LRRK2 inhibitors are promising therapeutic agents. In the last decade, great progress in the LRRK2 field has been made. This review provides a comprehensive overview of the current state of the art, presenting recent developments and challenges in developing LRRK2 inhibitors, and discussing extensively the potential targeting strategies from the protein perspective. As currently there are three LRRK2-targeting agents in clinical trials, more developments are predicted in the upcoming years.
Collapse
Affiliation(s)
- Dominika Natalia Wojewska
- Faculty of Science and Engineering, University of Groningen, Nijenborg 7, 9747AG Groningen, The Netherlands;
| | - Arjan Kortholt
- Faculty of Science and Engineering, University of Groningen, Nijenborg 7, 9747AG Groningen, The Netherlands;
- YETEM-Innovative Technologies Application and Research Center, Suleyman Demirel University, 32260 Isparta, Turkey
| |
Collapse
|
74
|
Chaytow H, Faller KM, Huang YT, Gillingwater TH. Spinal muscular atrophy: From approved therapies to future therapeutic targets for personalized medicine. Cell Rep Med 2021; 2:100346. [PMID: 34337562 PMCID: PMC8324491 DOI: 10.1016/j.xcrm.2021.100346] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal muscular atrophy (SMA) is a devastating childhood motor neuron disease that, in the most severe cases and when left untreated, leads to death within the first two years of life. Recent therapeutic advances have given hope to families and patients by compensating for the deficiency in survival motor neuron (SMN) protein via gene therapy or other genetic manipulation. However, it is now apparent that none of these therapies will cure SMA alone. In this review, we discuss the three currently licensed therapies for SMA, briefly highlighting their respective advantages and disadvantages, before considering alternative approaches to increasing SMN protein levels. We then explore recent preclinical research that is identifying and targeting dysregulated pathways secondary to, or independent of, SMN deficiency that may provide adjunctive opportunities for SMA. These additional therapies are likely to be key for the development of treatments that are effective across the lifespan of SMA patients.
Collapse
Affiliation(s)
- Helena Chaytow
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Kiterie M.E. Faller
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK
| | - Yu-Ting Huang
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas H. Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
75
|
Ayala YM, Nguyen AD. RNA-Based Therapies for Neurodegenerative Diseases. MISSOURI MEDICINE 2021; 118:340-345. [PMID: 34373669 PMCID: PMC8343627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Most neurodegenerative disorders afflict the ageing population and are often incurable. Therefore, therapeutic development is a major focus in biomedical research. We highlight a new class of drugs, RNA molecules, to control gene expression and decrease neurotoxicity. Their efficacy is shown in pre-clinical studies, clinical trials and in cases of approved patient treatment. As the number of RNA-based strategies increases, so does the promise of targeting more disease-associated genes through a variety of different mechanisms.
Collapse
Affiliation(s)
- Yuna M Ayala
- Edward Doisy Department of Biochemistry and Molecular Biology
| | - Andrew D Nguyen
- Departments of Internal Medicine and Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
76
|
Valencia A, Bieber VLR, Bajrami B, Marsh G, Hamann S, Wei R, Ling K, Rigo F, Arnold HM, Golonzhka O, Hering H. Antisense Oligonucleotide-Mediated Reduction of HDAC6 Does Not Reduce Tau Pathology in P301S Tau Transgenic Mice. Front Neurol 2021; 12:624051. [PMID: 34262517 PMCID: PMC8273312 DOI: 10.3389/fneur.2021.624051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/24/2021] [Indexed: 12/30/2022] Open
Abstract
Acetylation of tau protein is dysregulated in Alzheimer's Disease (AD). It has been proposed that acetylation of specific sites in the KXGS motif of tau can regulate phosphorylation of nearby residues and reduce the propensity of tau to aggregate. Histone deacetylase 6 (HDAC6) is a cytoplasmic enzyme involved in deacetylation of multiple targets, including tau, and it has been suggested that inhibition of HDAC6 would increase tau acetylation at the KXGS motifs and thus may present a viable therapeutic approach to treat AD. To directly test the contribution of HDAC6 to tau pathology, we intracerebroventricularly injected an antisense oligonucleotide (ASO) directed against HDAC6 mRNA into brains of P301S tau mice (PS19 model), which resulted in a 70% knockdown of HDAC6 protein in the brain. Despite a robust decrease in levels of HDAC6, no increase in tau acetylation was observed. Additionally, no change of tau phosphorylation or tau aggregation was detected upon the knockdown of HDAC6. We conclude that HDAC6 does not impact tau pathology in PS19 mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Ru Wei
- Biogen, Cambridge, MA, United States
| | - Karen Ling
- Ionis Pharmaceuticals, Carlsbad, CA, United States
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, United States
| | | | | | | |
Collapse
|
77
|
Naseri Kouzehgarani G, Feldsien T, Engelhard HH, Mirakhur KK, Phipps C, Nimmrich V, Clausznitzer D, Lefebvre DR. Harnessing cerebrospinal fluid circulation for drug delivery to brain tissues. Adv Drug Deliv Rev 2021; 173:20-59. [PMID: 33705875 DOI: 10.1016/j.addr.2021.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
Initially thought to be useful only to reach tissues in the immediate vicinity of the CSF circulatory system, CSF circulation is now increasingly viewed as a viable pathway to deliver certain therapeutics deeper into brain tissues. There is emerging evidence that this goal is achievable in the case of large therapeutic proteins, provided conditions are met that are described herein. We show how fluid dynamic modeling helps predict infusion rate and duration to overcome high CSF turnover. We posit that despite model limitations and controversies, fluid dynamic models, pharmacokinetic models, preclinical testing, and a qualitative understanding of the glymphatic system circulation can be used to estimate drug penetration in brain tissues. Lastly, in addition to highlighting landmark scientific and medical literature, we provide practical advice on formulation development, device selection, and pharmacokinetic modeling. Our review of clinical studies suggests a growing interest for intra-CSF delivery, particularly for targeted proteins.
Collapse
|
78
|
A physiologically-based pharmacokinetic model to describe antisense oligonucleotide distribution after intrathecal administration. J Pharmacokinet Pharmacodyn 2021; 48:639-654. [PMID: 33991294 DOI: 10.1007/s10928-021-09761-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Antisense oligonucleotides (ASOs) are promising therapeutic agents for a variety of neurodegenerative and neuromuscular disorders, e.g., Alzheimer's, Parkinson's and Huntington's diseases, spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), caused by genetic abnormalities or increased protein accumulation. The blood-brain barrier (BBB) represents a challenge to the delivery of systemically administered ASOs to the relevant sites of action within the central nervous system (CNS). Intrathecal (IT) delivery, in which drugs are administered directly into the cerebrospinal fluid (CSF) space, enables to bypass the BBB. Several IT-administered ASO therapeutics have already demonstrated clinical effect, e.g., nusinersen (SMA) and tofersen (ALS). Due to novelty of IT dosing for ASOs, very limited pharmacokinetic (PK) data is available and only a few modeling reports have been generated. The objective of this work is to advance fundamental understanding of whole-body distribution of IT-administered ASOs. We propose a physiologically-based pharmacokinetic modeling approach to describe the distribution along the neuroaxis based on PK data from non-human primate (NHP) studies. We aim to understand the key processes that drive and limit ASO access to the CNS target tissues. To elucidate the trade-off between parameter identifiability and physiological plausibility of the model, several alternative model structures were chosen and fitted to the NHP data. The model analysis of the NHP data led to important qualitative conclusions that can inform projection to human. In particular, the model predicts that the maximum total exposure in the CNS tissues, including the spinal cord and brain, is achieved within two days after the IT injection, and the maximum amount absorbed by the CNS tissues is about 4% of the administered IT dose. This amount greatly exceeds the CNS exposures delivered by systemic administration of ASOs. Clearance from the CNS is controlled by the rate of transfer from the CNS tissues back to CSF, whereas ASO degradation in tissues is very slow and can be neglected. The model also describes local differences in ASO concentration emerging along the spinal CSF canal. These local concentrations need to be taken into account when scaling the NHP model to human: due to the lengthier human spinal column, inhomogeneity along the spinal CSF may cause even higher gradients and delays potentially limiting ASO access to target CNS tissues.
Collapse
|
79
|
Opportunities and challenges for microRNA-targeting therapeutics for epilepsy. Trends Pharmacol Sci 2021; 42:605-616. [PMID: 33992468 DOI: 10.1016/j.tips.2021.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
Epilepsy is a common and serious neurological disorder characterised by recurrent spontaneous seizures. Frontline pharmacotherapy includes small-molecule antiseizure drugs that typically target ion channels and neurotransmitter systems, but these fail in 30% of patients and do not prevent either the development or progression of epilepsy. An emerging therapeutic target is microRNA (miRNA), small noncoding RNAs that negatively regulate sets of proteins. Their multitargeting action offers unique advantages for certain forms of epilepsy with complex underlying pathophysiology, such as temporal lobe epilepsy (TLE). miRNA can be inhibited by designed antisense oligonucleotides (ASOs; e.g., antimiRs). Here, we outline the prospects for miRNA-based therapies. We review design considerations for nucleic acid-based approaches and the challenges and next steps in developing therapeutic miRNA-targeting molecules for epilepsy.
Collapse
|
80
|
Cale JM, Greer K, Fletcher S, Wilton SD. Proof-of-Concept: Antisense Oligonucleotide Mediated Skipping of Fibrillin-1 Exon 52. Int J Mol Sci 2021; 22:ijms22073479. [PMID: 33801742 PMCID: PMC8037683 DOI: 10.3390/ijms22073479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Marfan syndrome is one of the most common dominantly inherited connective tissue disorders, affecting 2–3 in 10,000 individuals, and is caused by one of over 2800 unique FBN1 mutations. Mutations in FBN1 result in reduced fibrillin-1 expression, or the production of two different fibrillin-1 monomers unable to interact to form functional microfibrils. Here, we describe in vitro evaluation of antisense oligonucleotides designed to mediate exclusion of FBN1 exon 52 during pre-mRNA splicing to restore monomer homology. Antisense oligonucleotide sequences were screened in healthy control fibroblasts. The most effective sequence was synthesised as a phosphorodiamidate morpholino oligomer, a chemistry shown to be safe and effective clinically. We show that exon 52 can be excluded in up to 100% of FBN1 transcripts in healthy control fibroblasts transfected with PMO52. Immunofluorescent staining revealed the loss of fibrillin 1 fibres with ~50% skipping and the subsequent re-appearance of fibres with >80% skipping. However, the effect of exon skipping on the function of the induced fibrillin-1 isoform remains to be explored. Therefore, these findings demonstrate proof-of-concept that exclusion of an exon from FBN1 pre-mRNA can result in internally truncated but identical monomers capable of forming fibres and lay a foundation for further investigation to determine the effect of exon skipping on fibrillin-1 function.
Collapse
Affiliation(s)
- Jessica M. Cale
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
| | - Kane Greer
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA 6009, Australia
- PYC Therapeutics, Nedlands, WA 6009, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-9360-2305
| |
Collapse
|
81
|
Mendonça MCP, Kont A, Aburto MR, Cryan JF, O'Driscoll CM. Advances in the Design of (Nano)Formulations for Delivery of Antisense Oligonucleotides and Small Interfering RNA: Focus on the Central Nervous System. Mol Pharm 2021; 18:1491-1506. [PMID: 33734715 PMCID: PMC8824433 DOI: 10.1021/acs.molpharmaceut.0c01238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
RNA-based therapeutics have emerged
as one of the most powerful
therapeutic options used for the modulation of gene/protein expression
and gene editing with the potential to treat neurodegenerative diseases.
However, the delivery of nucleic acids to the central nervous system
(CNS), in particular by the systemic route, remains a major hurdle.
This review will focus on the strategies for systemic delivery of
therapeutic nucleic acids designed to overcome these barriers. Pathways
and mechanisms of transport across the blood–brain barrier
which could be exploited for delivery are described, focusing in particular
on smaller nucleic acids including antisense oligonucleotides (ASOs)
and small interfering RNA (siRNA). Approaches used to enhance delivery
including chemical modifications, nanocarrier systems, and target
selection (cell-specific delivery) are critically analyzed. Learnings
achieved from a comparison of the successes and failures reported
for CNS delivery of ASOs versus siRNA will help identify opportunities
for a wider range of nucleic acids and accelerate the clinical translation
of these innovative therapies.
Collapse
Affiliation(s)
- Monique C P Mendonça
- Pharmacodelivery Group, School of Pharmacy, University College Cork, T12 YT20 Cork, Ireland
| | - Ayse Kont
- Pharmacodelivery Group, School of Pharmacy, University College Cork, T12 YT20 Cork, Ireland
| | - Maria Rodriguez Aburto
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, T12 XF62 Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, T12 XF62 Cork, Ireland
| | - Caitriona M O'Driscoll
- Pharmacodelivery Group, School of Pharmacy, University College Cork, T12 YT20 Cork, Ireland
| |
Collapse
|
82
|
In Search of a Cure: The Development of Therapeutics to Alter the Progression of Spinal Muscular Atrophy. Brain Sci 2021; 11:brainsci11020194. [PMID: 33562482 PMCID: PMC7915832 DOI: 10.3390/brainsci11020194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Until the recent development of disease-modifying therapeutics, spinal muscular atrophy (SMA) was considered a devastating neuromuscular disease with a poor prognosis for most affected individuals. Symptoms generally present during early childhood and manifest as muscle weakness and progressive paralysis, severely compromising the affected individual’s quality of life, independence, and lifespan. SMA is most commonly caused by the inheritance of homozygously deleted SMN1 alleles with retention of one or more copies of a paralog gene, SMN2, which inversely correlates with disease severity. The recent advent and use of genetically targeted therapies have transformed SMA into a prototype for monogenic disease treatment in the era of genetic medicine. Many SMA-affected individuals receiving these therapies achieve traditionally unobtainable motor milestones and survival rates as medicines drastically alter the natural progression of this disease. This review discusses historical SMA progression and underlying disease mechanisms, highlights advances made in therapeutic research, clinical trials, and FDA-approved medicines, and discusses possible second-generation and complementary medicines as well as optimal temporal intervention windows in order to optimize motor function and improve quality of life for all SMA-affected individuals.
Collapse
|
83
|
Jafar-nejad P, Powers B, Soriano A, Zhao H, Norris DA, Matson J, DeBrosse-Serra B, Watson J, Narayanan P, Chun S, Mazur C, Kordasiewicz H, Swayze EE, Rigo F. The atlas of RNase H antisense oligonucleotide distribution and activity in the CNS of rodents and non-human primates following central administration. Nucleic Acids Res 2021; 49:657-673. [PMID: 33367834 PMCID: PMC7826274 DOI: 10.1093/nar/gkaa1235] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Antisense oligonucleotides (ASOs) have emerged as a new class of drugs to treat a wide range of diseases, including neurological indications. Spinraza, an ASO that modulates splicing of SMN2 RNA, has shown profound disease modifying effects in Spinal Muscular Atrophy (SMA) patients, energizing efforts to develop ASOs for other neurological diseases. While SMA specifically affects spinal motor neurons, other neurological diseases affect different central nervous system (CNS) regions, neuronal and non-neuronal cells. Therefore, it is important to characterize ASO distribution and activity in all major CNS structures and cell types to have a better understanding of which neurological diseases are amenable to ASO therapy. Here we present for the first time the atlas of ASO distribution and activity in the CNS of mice, rats, and non-human primates (NHP), species commonly used in preclinical therapeutic development. Following central administration of an ASO to rodents, we observe widespread distribution and target RNA reduction throughout the CNS in neurons, oligodendrocytes, astrocytes and microglia. This is also the case in NHP, despite a larger CNS volume and more complex neuroarchitecture. Our results demonstrate that ASO drugs are well suited for treating a wide range of neurological diseases for which no effective treatments are available.
Collapse
Affiliation(s)
| | - Berit Powers
- Ionis Pharmaceuticals Inc. Carlsbad, CA 92010, USA
| | | | - Hien Zhao
- Ionis Pharmaceuticals Inc. Carlsbad, CA 92010, USA
| | | | - John Matson
- Ionis Pharmaceuticals Inc. Carlsbad, CA 92010, USA
| | | | - Jamie Watson
- Ionis Pharmaceuticals Inc. Carlsbad, CA 92010, USA
| | | | - Seung J Chun
- Ionis Pharmaceuticals Inc. Carlsbad, CA 92010, USA
| | - Curt Mazur
- Ionis Pharmaceuticals Inc. Carlsbad, CA 92010, USA
| | | | | | - Frank Rigo
- Ionis Pharmaceuticals Inc. Carlsbad, CA 92010, USA
| |
Collapse
|
84
|
|
85
|
Abstract
The genetic basis for most inherited neurodegenerative diseases has been identified, yet there are limited disease-modifying therapies for these patients. A new class of drugs-antisense oligonucleotides (ASOs)-show promise as a therapeutic platform for treating neurological diseases. ASOs are designed to bind to the RNAs either by promoting degradation of the targeted RNA or by elevating expression by RNA splicing. Intrathecal injection into the cerebral spinal fluid results in broad distribution of antisense drugs and long-term effects. Approval of nusinersen in 2016 demonstrated that effective treatments for neurodegenerative diseases can be identified and that treatments not only slow disease progression but also improve some symptoms. Antisense drugs are currently in development for amyotrophic lateral sclerosis, Huntington's disease, Alzheimer's disease, Parkinson's disease, and Angelman syndrome, and several drugs are in late-stage research for additional neurological diseases. This review highlights the advances in antisense technology as potential treatments for neurological diseases.
Collapse
Affiliation(s)
- C Frank Bennett
- Ionis Pharmaceuticals Inc., Carlsbad, California 92010, USA;
| | | | - Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
86
|
Kuijper EC, Bergsma AJ, Pijnappel WP, Aartsma‐Rus A. Opportunities and challenges for antisense oligonucleotide therapies. J Inherit Metab Dis 2021; 44:72-87. [PMID: 32391605 PMCID: PMC7891411 DOI: 10.1002/jimd.12251] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/23/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022]
Abstract
Antisense oligonucleotide (AON) therapies involve short strands of modified nucleotides that target RNA in a sequence-specific manner, inducing targeted protein knockdown or restoration. Currently, 10 AON therapies have been approved in the United States and Europe. Nucleotides are chemically modified to protect AONs from degradation, enhance bioavailability and increase RNA affinity. Whereas single stranded AONs can efficiently be delivered systemically, delivery of double stranded AONs requires capsulation in lipid nanoparticles or binding to a conjugate as the uptake enhancing backbone is hidden in this conformation. With improved chemistry, delivery vehicles and conjugates, doses can be lowered, thereby reducing the risk and occurrence of side effects. AONs can be used to knockdown or restore levels of protein. Knockdown can be achieved by single stranded or double stranded AONs binding the RNA transcript and activating RNaseH-mediated and RISC-mediated degradation respectively. Transcript binding by AONs can also prevent translation, hence reducing protein levels. For protein restoration, single stranded AONs are used to modulate pre-mRNA splicing and either include or skip an exon to restore protein production. Intervening at a genetic level, AONs provide therapeutic options for inherited metabolic diseases as well. This review provides an overview of the different AON approaches, with a focus on AONs developed for inborn errors of metabolism.
Collapse
Affiliation(s)
- Elsa C. Kuijper
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Atze J. Bergsma
- Department of PediatricsCenter for Lysosomal and Metabolic Diseases, Erasmus Medical CenterRotterdamThe Netherlands
- Department of Clinical GeneticsCenter for Lysosomal and Metabolic Diseases, Erasmus Medical CenterRotterdamThe Netherlands
| | - W.W.M. Pim Pijnappel
- Department of PediatricsCenter for Lysosomal and Metabolic Diseases, Erasmus Medical CenterRotterdamThe Netherlands
- Department of Clinical GeneticsCenter for Lysosomal and Metabolic Diseases, Erasmus Medical CenterRotterdamThe Netherlands
| | | |
Collapse
|
87
|
Batra K, Maan S, Sehrawat A. An Insight on RNA Based Therapeutics and Vaccines: Challenges and Opportunities. Curr Top Med Chem 2021; 21:2851-2855. [PMID: 34792013 DOI: 10.2174/1568026621666211118095451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 11/22/2022]
Abstract
In this era, RNA molecules have provided a unique opportunity to researchers all over the world for expanding their range of targets in the development of drugs. Due to the unique pharmacological as well as physicochemical characteristics of different RNA molecules such as aptamers, small interfering RNAs (siRNA), antisense oligonucleotides (ASO) and guide RNAs (gRNA), they have emerged recently as a new class of drugs. They are used for selective action on proteins and genes that were not possible to target by conventional drug molecules. These RNA molecules like guide RNAs are also components of novel gene editing mechanisms which can modify the genome nearly in all cells. Vaccines based on RNA molecules have also provided a promising alternative to conventional live attenuated vaccines. RNA based vaccines have high potency, can be rapidly developed, and have potential for manufacturing at a cheaper rate and safe administration. However, the application of these RNAs has been restricted by the high instability and inefficient in vivo delivery. Technological advancement needs to overcome these issues so that RNA based drugs targeting several diseases can be developed. This article emphasizes the potential of RNA based drugs and the major barriers associated with the development of RNA therapeutics. Additionally, the role of RNA based vaccines and their challenges in advancing this promising vaccine platform for the prevention of infectious diseases have been discussed.
Collapse
Affiliation(s)
- Kanisht Batra
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, Haryana,India
| | - Sushila Maan
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, Haryana,India
| | - Anju Sehrawat
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, Haryana,India
| |
Collapse
|
88
|
Scharner J, Aznarez I. Clinical Applications of Single-Stranded Oligonucleotides: Current Landscape of Approved and In-Development Therapeutics. Mol Ther 2020; 29:540-554. [PMID: 33359792 PMCID: PMC7854307 DOI: 10.1016/j.ymthe.2020.12.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/19/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Single-stranded oligonucleotides have been explored as a therapeutic modality for more than 20 years. Only during the last 5 years have single-stranded oligonucleotides become a modality of choice in the fields of precision medicine and targeted therapeutics. Recently, there have been a number of development efforts involving this modality that have led to treatments for genetic diseases that were once untreatable. This review highlights key applications of single-stranded oligonucleotides that function in a sequence-dependent manner when applied to modulate precursor (pre-)mRNA splicing, gene expression, and immune pathways. These applications have been used to address diseases that range from neurological to muscular to metabolic, as well as to develop vaccines. The wide range of applications denotes the versatility of single-stranded oligonucleotides as a robust therapeutic platform. The focus of this review is centered on approved single-stranded oligonucleotide therapies and the evolution of oligonucleotide therapeutics into novel applications currently in clinical development.
Collapse
|
89
|
Minikel EV, Zhao HT, Le J, O'Moore J, Pitstick R, Graffam S, Carlson GA, Kavanaugh MP, Kriz J, Kim JB, Ma J, Wille H, Aiken J, McKenzie D, Doh-Ura K, Beck M, O'Keefe R, Stathopoulos J, Caron T, Schreiber SL, Carroll JB, Kordasiewicz HB, Cabin DE, Vallabh SM. Prion protein lowering is a disease-modifying therapy across prion disease stages, strains and endpoints. Nucleic Acids Res 2020; 48:10615-10631. [PMID: 32776089 PMCID: PMC7641729 DOI: 10.1093/nar/gkaa616] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Lowering of prion protein (PrP) expression in the brain is a genetically validated therapeutic hypothesis in prion disease. We recently showed that antisense oligonucleotide (ASO)-mediated PrP suppression extends survival and delays disease onset in intracerebrally prion-infected mice in both prophylactic and delayed dosing paradigms. Here, we examine the efficacy of this therapeutic approach across diverse paradigms, varying the dose and dosing regimen, prion strain, treatment timepoint, and examining symptomatic, survival, and biomarker readouts. We recapitulate our previous findings with additional PrP-targeting ASOs, and demonstrate therapeutic benefit against four additional prion strains. We demonstrate that <25% PrP suppression is sufficient to extend survival and delay symptoms in a prophylactic paradigm. Rise in both neuroinflammation and neuronal injury markers can be reversed by a single dose of PrP-lowering ASO administered after the detection of pathological change. Chronic ASO-mediated suppression of PrP beginning at any time up to early signs of neuropathology confers benefit similar to constitutive heterozygous PrP knockout. Remarkably, even after emergence of frank symptoms including weight loss, a single treatment prolongs survival by months in a subset of animals. These results support ASO-mediated PrP lowering, and PrP-lowering therapeutics in general, as a promising path forward against prion disease.
Collapse
Affiliation(s)
- Eric Vallabh Minikel
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Prion Alliance, Cambridge, MA, 02139, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Hien T Zhao
- Ionis Pharmaceuticals Inc, Carlsbad, CA 92010, USA
| | - Jason Le
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jill O'Moore
- McLaughlin Research Institute, Great Falls, MT 59405, USA
| | - Rose Pitstick
- McLaughlin Research Institute, Great Falls, MT 59405, USA
| | | | | | | | - Jasna Kriz
- Cervo Brain Research Center, Université Laval, Québec, QC G1J 2G3, Canada
| | | | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Holger Wille
- University of Alberta, Edmonton, AB T6G 2M8, Canada
| | - Judd Aiken
- University of Alberta, Edmonton, AB T6G 2M8, Canada
| | | | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Matthew Beck
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rhonda O'Keefe
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Tyler Caron
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Stuart L Schreiber
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | - Sonia M Vallabh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Prion Alliance, Cambridge, MA, 02139, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
90
|
Yu AM, Choi YH, Tu MJ. RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges. Pharmacol Rev 2020; 72:862-898. [PMID: 32929000 PMCID: PMC7495341 DOI: 10.1124/pr.120.019554] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RNA-based therapies, including RNA molecules as drugs and RNA-targeted small molecules, offer unique opportunities to expand the range of therapeutic targets. Various forms of RNAs may be used to selectively act on proteins, transcripts, and genes that cannot be targeted by conventional small molecules or proteins. Although development of RNA drugs faces unparalleled challenges, many strategies have been developed to improve RNA metabolic stability and intracellular delivery. A number of RNA drugs have been approved for medical use, including aptamers (e.g., pegaptanib) that mechanistically act on protein target and small interfering RNAs (e.g., patisiran and givosiran) and antisense oligonucleotides (e.g., inotersen and golodirsen) that directly interfere with RNA targets. Furthermore, guide RNAs are essential components of novel gene editing modalities, and mRNA therapeutics are under development for protein replacement therapy or vaccination, including those against unprecedented severe acute respiratory syndrome coronavirus pandemic. Moreover, functional RNAs or RNA motifs are highly structured to form binding pockets or clefts that are accessible by small molecules. Many natural, semisynthetic, or synthetic antibiotics (e.g., aminoglycosides, tetracyclines, macrolides, oxazolidinones, and phenicols) can directly bind to ribosomal RNAs to achieve the inhibition of bacterial infections. Therefore, there is growing interest in developing RNA-targeted small-molecule drugs amenable to oral administration, and some (e.g., risdiplam and branaplam) have entered clinical trials. Here, we review the pharmacology of novel RNA drugs and RNA-targeted small-molecule medications, with a focus on recent progresses and strategies. Challenges in the development of novel druggable RNA entities and identification of viable RNA targets and selective small-molecule binders are discussed. SIGNIFICANCE STATEMENT: With the understanding of RNA functions and critical roles in diseases, as well as the development of RNA-related technologies, there is growing interest in developing novel RNA-based therapeutics. This comprehensive review presents pharmacology of both RNA drugs and RNA-targeted small-molecule medications, focusing on novel mechanisms of action, the most recent progress, and existing challenges.
Collapse
MESH Headings
- Aptamers, Nucleotide/pharmacology
- Aptamers, Nucleotide/therapeutic use
- Betacoronavirus
- COVID-19
- Chemistry Techniques, Analytical/methods
- Chemistry Techniques, Analytical/standards
- Clustered Regularly Interspaced Short Palindromic Repeats
- Coronavirus Infections/drug therapy
- Drug Delivery Systems/methods
- Drug Development/organization & administration
- Drug Discovery
- Humans
- MicroRNAs/pharmacology
- MicroRNAs/therapeutic use
- Oligonucleotides, Antisense/pharmacology
- Oligonucleotides, Antisense/therapeutic use
- Pandemics
- Pneumonia, Viral/drug therapy
- RNA/adverse effects
- RNA/drug effects
- RNA/pharmacology
- RNA, Antisense/pharmacology
- RNA, Antisense/therapeutic use
- RNA, Messenger/drug effects
- RNA, Messenger/pharmacology
- RNA, Ribosomal/drug effects
- RNA, Ribosomal/pharmacology
- RNA, Small Interfering/pharmacology
- RNA, Small Interfering/therapeutic use
- RNA, Viral/drug effects
- Ribonucleases/metabolism
- Riboswitch/drug effects
- SARS-CoV-2
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California (A.-M.Y., Y.H.C., M.-J.T.) and College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.)
| | - Young Hee Choi
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California (A.-M.Y., Y.H.C., M.-J.T.) and College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.)
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California (A.-M.Y., Y.H.C., M.-J.T.) and College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.)
| |
Collapse
|
91
|
Kilanowska A, Studzińska S. In vivo and in vitro studies of antisense oligonucleotides - a review. RSC Adv 2020; 10:34501-34516. [PMID: 35514414 PMCID: PMC9056844 DOI: 10.1039/d0ra04978f] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/06/2020] [Indexed: 01/22/2023] Open
Abstract
The potential of antisense oligonucleotides in gene silencing was discovered over 40 years ago, which resulted in the growing interest in their chemistry, mechanism of action, and metabolic pathways. This review summarizes the selected mechanisms of antisense drug action, as well as therapeutics which are to date approved by the Food and Drug Administration and European Medicines Agency. Moreover, bioanalytical methods used for ASO pharmacokinetics and metabolism studies are briefly summarized. Special attention is paid to the primary pharmacokinetic properties of the different chemistry classes of antisense oligonucleotides. Moreover, in vivo and in vitro metabolic pathways of these compounds are widely described with the emphasis on the different animal models as well as in vitro models, including tissues homogenates, enzyme solutions, and human liver microsomes.
Collapse
Affiliation(s)
- Anna Kilanowska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń 7 Gagarin Str. PL-87-100 Toruń Poland +48 56 6114837 +48 56 6114308
| | - Sylwia Studzińska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń 7 Gagarin Str. PL-87-100 Toruń Poland +48 56 6114837 +48 56 6114308
| |
Collapse
|
92
|
Bennett CF, Krainer AR, Cleveland DW. Antisense Oligonucleotide Therapies for Neurodegenerative Diseases. Annu Rev Neurosci 2020; 42:385-406. [PMID: 31283897 DOI: 10.1146/annurev-neuro-070918-050501] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antisense oligonucleotides represent a novel therapeutic platform for the discovery of medicines that have the potential to treat most neurodegenerative diseases. Antisense drugs are currently in development for the treatment of amyotrophic lateral sclerosis, Huntington's disease, and Alzheimer's disease, and multiple research programs are underway for additional neurodegenerative diseases. One antisense drug, nusinersen, has been approved for the treatment of spinal muscular atrophy. Importantly, nusinersen improves disease symptoms when administered to symptomatic patients rather than just slowing the progression of the disease. In addition to the benefit to spinal muscular atrophy patients, there are discoveries from nusinersen that can be applied to other neurological diseases, including method of delivery, doses, tolerability of intrathecally delivered antisense drugs, and the biodistribution of intrathecal dosed antisense drugs. Based in part on the early success of nusinersen, antisense drugs hold great promise as a therapeutic platform for the treatment of neurological diseases.
Collapse
Affiliation(s)
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
93
|
Pifer R, Greenberg DE. Antisense antibacterial compounds. Transl Res 2020; 223:89-106. [PMID: 32522669 DOI: 10.1016/j.trsl.2020.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023]
Abstract
Extensive antibiotic use combined with poor historical drug stewardship practices have created a medical crisis in which once treatable bacterial infections are now increasingly unmanageable. To combat this, new antibiotics will need to be developed and safeguarded. An emerging class of antibiotics based upon nuclease-stable antisense technologies has proven valuable in preclinical testing against a variety of bacterial pathogens. This review describes the current state of development of antisense-based antibiotics, the mechanisms thus far employed by these compounds, and possible future avenues of research.
Collapse
Affiliation(s)
- Reed Pifer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - David E Greenberg
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
94
|
Aartsma-Rus A, Watts JK. The Munich Meeting: Medical Maturation, More Mechanisms, and Milasen. Nucleic Acid Ther 2020; 29:302-304. [PMID: 31804155 DOI: 10.1089/nat.2019.29003.aar] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jonathan K Watts
- RNA Therapeutics Institute, UMass Medical School, Worcester, Massachusetts
| |
Collapse
|
95
|
Kelly K, West AB. Pharmacodynamic Biomarkers for Emerging LRRK2 Therapeutics. Front Neurosci 2020; 14:807. [PMID: 32903744 PMCID: PMC7438883 DOI: 10.3389/fnins.2020.00807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022] Open
Abstract
Genetic studies have identified variants in the LRRK2 gene as important components of Parkinson's disease (PD) pathobiology. Biochemical and emergent biomarker studies have coalesced around LRRK2 hyperactivation in disease. Therapeutics that diminish LRRK2 activity, either with small molecule kinase inhibitors or anti-sense oligonucleotides, have recently advanced to the clinic. Historically, there have been few successes in the development of therapies that might slow or halt the progression of neurodegenerative diseases. Over the past few decades of biomedical research, retrospective analyses suggest the broad integration of informative biomarkers early in development tends to distinguish successful pipelines from those that fail early. Herein, we discuss the biomarker regulatory process, emerging LRRK2 biomarker candidates, assays, underlying biomarker biology, and clinical integration.
Collapse
Affiliation(s)
- Kaela Kelly
- Duke Center for Neurodegeneration Research, Departments of Pharmacology and Cancer Biology, Neurology, and Neurobiology, Duke University, Durham, NC, United States
| | - Andrew B West
- Duke Center for Neurodegeneration Research, Departments of Pharmacology and Cancer Biology, Neurology, and Neurobiology, Duke University, Durham, NC, United States
| |
Collapse
|
96
|
Nikan M, Tanowitz M, Dwyer CA, Jackson M, Gaus HJ, Swayze EE, Rigo F, Seth PP, Prakash TP. Targeted Delivery of Antisense Oligonucleotides Using Neurotensin Peptides. J Med Chem 2020; 63:8471-8484. [PMID: 32677436 DOI: 10.1021/acs.jmedchem.0c00840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite recent advances, targeted delivery of therapeutic oligonucleotide to extra-hepatic tissues continues to be a challenging endeavor and efficient ligand-receptor systems need to be identified. To determine the feasibility of using neurotensin to improve the productive uptake of antisense oligonucleotides (ASO), we synthesized neurotensin-ASO conjugates and evaluated their cellular uptake and activity in cells and in mice. We performed a comprehensive structure-activity relationship study of the conjugates and determined the influence of ASO charge, ASO length, peptide charge, linker chemistry and ligand identity on receptor binding and internalization. We identified a modified neurotensin peptide capable of improving the cellular uptake and activity of gapmer ASOs in sortilin expressing cells (sixfold) and in spinal cord in mice (twofold). Neurotensin conjugation also improved the potency of morpholino ASO designed to correct splicing of survival motor neuron pre-mRNA in the cortex and striatum after intracerebroventricular injection. Neurotensin-mediated targeted delivery represents a possible approach for enhancing the potency of ASOs with diverse nucleic acid modifications.
Collapse
Affiliation(s)
- Mehran Nikan
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Michael Tanowitz
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Chrissa A Dwyer
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Michaela Jackson
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Hans J Gaus
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Eric E Swayze
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Frank Rigo
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Punit P Seth
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Thazha P Prakash
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| |
Collapse
|
97
|
Therapeutic efficacy of antisense oligonucleotides in mouse models of CLN3 Batten disease. Nat Med 2020; 26:1444-1451. [PMID: 32719489 DOI: 10.1038/s41591-020-0986-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
CLN3 Batten disease is an autosomal recessive, neurodegenerative, lysosomal storage disease caused by mutations in CLN3, which encodes a lysosomal membrane protein1-3. There are no disease-modifying treatments for this disease that affects up to 1 in 25,000 births, has an onset of symptoms in early childhood and typically is fatal by 20-30 years of life4-7. Most patients with CLN3 Batten have a deletion encompassing exons 7 and 8 (CLN3∆ex7/8), creating a reading frameshift7,8. Here we demonstrate that mice with this deletion can be effectively treated using an antisense oligonucleotide (ASO) that induces exon skipping to restore the open reading frame. A single treatment of neonatal mice with an exon 5-targeted ASO-induced robust exon skipping for more than a year, improved motor coordination, reduced histopathology in Cln3∆ex7/8 mice and increased survival in a new mouse model of the disease. ASOs also induced exon skipping in cell lines derived from patients with CLN3 Batten disease. Our findings demonstrate the utility of ASO-based reading-frame correction as an approach to treat CLN3 Batten disease and broaden the therapeutic landscape for ASOs in the treatment of other diseases using a similar strategy.
Collapse
|
98
|
Doxakis E. Therapeutic antisense oligonucleotides for movement disorders. Med Res Rev 2020; 41:2656-2688. [PMID: 32656818 DOI: 10.1002/med.21706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/11/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Movement disorders are a group of neurological conditions characterized by abnormalities of movement and posture. They are broadly divided into akinetic and hyperkinetic syndromes. Until now, no effective symptomatic or disease-modifying therapies have been available. However, since many of these disorders are monogenic or have some well-defined genetic component, they represent strong candidates for antisense oligonucleotide (ASO) therapies. ASO therapies are based on the use of short synthetic single-stranded ASOs that bind to disease-related target RNAs via Watson-Crick base-pairing and pleiotropically modulate their function. With information arising from the RNA sequence alone, it is possible to design ASOs that not only alter the expression levels but also the splicing defects of any protein, far exceeding the intervention repertoire of traditional small molecule approaches. Following the regulatory approval of ASO therapies for spinal muscular atrophy and Duchenne muscular dystrophy in 2016, there has been tremendous momentum in testing such therapies for other neurological disorders. This review article initially focuses on the chemical modifications aimed at improving ASO effectiveness, the mechanisms by which ASOs can interfere with RNA function, delivery systems and pharmacokinetics, and the common set of toxicities associated with their application. It, then, describes the pathophysiology and the latest information on preclinical and clinical trials utilizing ASOs for the treatment of Parkinson's disease, Huntington's disease, and ataxias 1, 2, 3, and 7. It concludes with issues that require special attention to realize the full potential of ASO-based therapies.
Collapse
Affiliation(s)
- Epaminondas Doxakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
99
|
Colini Baldeschi A, Vanni S, Zattoni M, Legname G. Novel regulators of PrP C expression as potential therapeutic targets in prion diseases. Expert Opin Ther Targets 2020; 24:759-776. [PMID: 32631090 DOI: 10.1080/14728222.2020.1782384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Prion diseases are rare and fatal neurodegenerative disorders. The key molecular event in these disorders is the misfolding of the physiological form of the cellular prion protein, PrPC, leading to the accumulation of a pathological isoform, PrPSc, with unique features. Both isoforms share the same primary sequence, lacking detectable differences in posttranslational modification, a major hurdle for their biochemical or biophysical independent characterization. The mechanism underlying the conversion of PrPC to PrPSc is not completely understood, so finding an effective therapy to cure prion disorders is extremely challenging. AREAS COVERED This review discusses the strategies for decreasing prion replication and throws a spotlight on the relevance of PrPC in the prion accumulation process. EXPERT OPINION PrPC is the key substrate for prion pathology; hence, the most promising therapeutic approach appears to be the targeting of PrPC to block the production of the infectious isoform. The use of RNA interference and antisense oligonucleotide technologies may offer opportunities for treatment because of their success in clinical trials for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Arianna Colini Baldeschi
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| | - Silvia Vanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per Lo Studio E La Cura Dei Tumori (IRST) IRCCS , Meldola, Italy
| | - Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| |
Collapse
|
100
|
Silva AC, Lobo DD, Martins IM, Lopes SM, Henriques C, Duarte SP, Dodart JC, Nobre RJ, Pereira de Almeida L. Antisense oligonucleotide therapeutics in neurodegenerative diseases: the case of polyglutamine disorders. Brain 2020; 143:407-429. [PMID: 31738395 DOI: 10.1093/brain/awz328] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022] Open
Abstract
Polyglutamine (polyQ) disorders are a group of nine neurodegenerative diseases that share a common genetic cause, which is an expansion of CAG repeats in the coding region of the causative genes that are otherwise unrelated. The trinucleotide expansion encodes for an expanded polyQ tract in the respective proteins, resulting in toxic gain-of-function and eventually in neurodegeneration. Currently, no disease-modifying therapies are available for this group of disorders. Nevertheless, given their monogenic nature, polyQ disorders are ideal candidates for therapies that target specifically the gene transcripts. Antisense oligonucleotides (ASOs) have been under intense investigation over recent years as gene silencing tools. ASOs are small synthetic single-stranded chains of nucleic acids that target specific RNA transcripts through several mechanisms. ASOs can reduce the levels of mutant proteins by breaking down the targeted transcript, inhibit mRNA translation or alter the maturation of the pre-mRNA via splicing correction. Over the years, chemical optimization of ASO molecules has allowed significant improvement of their pharmacological properties, which has in turn made this class of therapeutics a very promising strategy to treat a variety of neurodegenerative diseases. Indeed, preclinical and clinical strategies have been developed in recent years for some polyQ disorders using ASO therapeutics. The success of ASOs in several animal models, as well as encouraging results in the clinic for Huntington's disease, points towards a promising future regarding the application of ASO-based therapies for polyQ disorders in humans, offering new opportunities to address unmet medical needs for this class of disorders. This review aims to present a brief overview of key chemical modifications, mechanisms of action and routes of administration that have been described for ASO-based therapies. Moreover, it presents a review of the most recent and relevant preclinical and clinical trials that have tested ASO therapeutics in polyQ disorders.
Collapse
Affiliation(s)
- Ana C Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Diana D Lobo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Inês M Martins
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sara M Lopes
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carina Henriques
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal
| | - Sónia P Duarte
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | | | - Rui Jorge Nobre
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal
| | - Luis Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|