51
|
Zeitz JO, Weber A, Most E, Windisch W, Bolduan C, Geyer J, Romberg FJ, Koch C, Eder K. Effects of supplementing rumen-protected niacin on fiber composition and metabolism of skeletal muscle in dairy cows during early lactation. J Dairy Sci 2018; 101:8004-8020. [PMID: 29960772 DOI: 10.3168/jds.2018-14490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/13/2018] [Indexed: 01/01/2023]
Abstract
Nicotinic acid (NA) has been shown to induce muscle fiber switching toward oxidative type I fibers and a muscle metabolic phenotype that favors fatty acid (FA) utilization in growing rats, pigs, and lambs. The hypothesis of the present study was that supplementation of NA in cows during the periparturient phase also induces muscle fiber switching from type II to type I fibers in skeletal muscle and increases the capacity of the muscle to use free FA, which may help to reduce nonesterified fatty acid (NEFA) flow to the liver, liver triglyceride (TG) accumulation, and ketogenesis. Thirty multiparous Holstein dairy cows were allocated to 2 groups and fed a total mixed ration without (control group) or with ∼55 g of rumen-protected NA per cow per day (NA group) from 21 d before expected calving until 3 wk postpartum (p.p.). Blood samples were collected on d -21, -14, -7, 7, 14, 21, 35, and 63 relative to parturition for analysis of TG, NEFA, and β-hydroxybutyrate. Muscle and liver biopsies were collected on d 7 and 21 for gene expression analysis and to determine muscle fiber composition in the musculus semitendinosus, semimembranosus, and longissimus lumborum by immunohistochemistry, and liver TG concentrations. Supplementation of NA did not affect the proportions of type I (oxidative) or the type II:type I ratio in the 3 muscles considered. A slight shift from glycolytic IIx fibers toward oxidative-glycolytic fast-twitch IIa fibers was found in the semitendinosus, and a tendency in the longissimus lumborum, but not in the semimembranosus. The transcript levels of the genes encoding the muscle fiber type isoforms and involved in FA uptake and oxidation, carnitine transport, tricarboxylic acid cycle, oxidative phosphorylation, and glucose utilization were largely unaffected by NA supplementation in all 3 muscles. Supplementation of NA had no effect on plasma TG and NEFA concentrations, liver TG concentrations, and hepatic expression of genes involved in hepatic FA utilization and lipogenesis. However, it reduced plasma β-hydroxybutyrate concentrations in wk 2 and 3 p.p. by 18 and 26% and reduced hepatic gene expression of fibroblast growth factor 21, a stress hormone involved in the regulation of ketogenesis, by 74 and 56%. In conclusion, a high dosage of rumen-protected NA reduced plasma β-hydroxybutyrate concentrations in cows during early lactation, but failed to cause an alteration in muscle fiber composition and muscle metabolic phenotype.
Collapse
Affiliation(s)
- J O Zeitz
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany.
| | - A Weber
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
| | - E Most
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
| | - W Windisch
- Chair of Animal Nutrition, Technische Universität München, Liesel-Beckmann-Strasse 2, 85354 Freising, Germany
| | - C Bolduan
- Chair of Animal Nutrition, Technische Universität München, Liesel-Beckmann-Strasse 2, 85354 Freising, Germany
| | - J Geyer
- Institute of Pharmacology and Toxicology, University of Giessen, Schubertstraße 81 (BFS), 35392 Giessen, Germany
| | - F-J Romberg
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler an der Alsenz, Germany
| | - C Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler an der Alsenz, Germany
| | - K Eder
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
| |
Collapse
|
52
|
da Silva IV, Rodrigues JS, Rebelo I, Miranda JPG, Soveral G. Revisiting the metabolic syndrome: the emerging role of aquaglyceroporins. Cell Mol Life Sci 2018; 75:1973-1988. [PMID: 29464285 PMCID: PMC11105723 DOI: 10.1007/s00018-018-2781-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/05/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
The metabolic syndrome (MetS) includes a group of medical conditions such as insulin resistance (IR), dyslipidemia and hypertension, all associated with an increased risk for cardiovascular disease. Increased visceral and ectopic fat deposition are also key features in the development of IR and MetS, with pathophysiological sequels on adipose tissue, liver and muscle. The recent recognition of aquaporins (AQPs) involvement in adipose tissue homeostasis has opened new perspectives for research in this field. The members of the aquaglyceroporin subfamily are specific glycerol channels implicated in energy metabolism by facilitating glycerol outflow from adipose tissue and its systemic distribution and uptake by liver and muscle, unveiling these membrane channels as key players in lipid balance and energy homeostasis. Being involved in a variety of pathophysiological mechanisms including IR and obesity, AQPs are considered promising drug targets that may prompt novel therapeutic approaches for metabolic disorders such as MetS. This review addresses the interplay between adipose tissue, liver and muscle, which is the basis of the metabolic syndrome, and highlights the involvement of aquaglyceroporins in obesity and related pathologies and how their regulation in different organs contributes to the features of the metabolic syndrome.
Collapse
Affiliation(s)
- Inês Vieira da Silva
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Joana S Rodrigues
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Toxicological and Bromatological Sciences, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Irene Rebelo
- UCIBIO, REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, Universidade do Porto, Porto, Portugal
| | - Joana P G Miranda
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Toxicological and Bromatological Sciences, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Graça Soveral
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003, Lisbon, Portugal.
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal.
| |
Collapse
|
53
|
Reich D, Gallucci G, Tong M, de la Monte SM. Therapeutic Advantages of Dual Targeting of PPAR-δ and PPAR-γ in an Experimental Model of Sporadic Alzheimer's Disease. ACTA ACUST UNITED AC 2018; 5. [PMID: 30705969 PMCID: PMC6350901 DOI: 10.13188/2376-922x.1000025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background: Alzheimer’s disease (AD) is associated with progressive impairments in brain responsiveness to insulin and insulin-like growth factor (IGF). Although deficiencies in brain insulin and IGF could be ameliorated with trophic factors such as insulin, impairments in receptor expression, binding, and tyrosine kinase activation require alternative strategies. Peroxisome proliferator-activated receptor (PPAR) agonists target genes downstream of insulin/IGF stimulation. Furthermore, their anti-oxidant and anti-inflammatory effects address other pathologies contributing to neurodegeneration. Objectives: The goal of this research was to examine effects of dual delivery of L165, 041 (PPAR-δ) and F-L-Leu (PPAR-γ) agonists for remediating in the early stages of neurodegeneration. Model: Experiments were conducted using frontal lobe slice cultures from an intracerebral Streptozotocin (i.c. STZ) rat model of AD. Results: PPAR-δ+ PPAR-γ agonist treatments increased indices of neuronal and myelin maturation, and mitochondrial proliferation and function, and decreased neuroinflammation, AβPP-Aβ, neurotoxicity, ubiquitin, and nitrosative stress, but failed to restore choline acetyl transferase expression and adversely increased HNE(lipid peroxidation) and acetylcholinesterase, which would have further increased stress and reduced cholinergic function in the STZ brain cultures. Conclusion: PPAR-δ + PPAR-γ agonist treatments have substantial positive early therapeutic targeting effects on AD-associated molecular and biochemical brain pathologies. However, additional or alternative strategies may be needed to optimize disease remediation during the initial phases of treatment.
Collapse
Affiliation(s)
- D Reich
- Brandeis University, Waltham University, USA
| | - G Gallucci
- Department of Medicine, University of Brown University, USA
| | - M Tong
- Department of Medicine, University of Brown University, USA
| | - S M de la Monte
- Department of Medicine, University of Brown University, USA.,Departments of Neurology, University of Brown University, USA
| |
Collapse
|
54
|
An aPPARent Functional Consequence in Skeletal Muscle Physiology via Peroxisome Proliferator-Activated Receptors. Int J Mol Sci 2018; 19:ijms19051425. [PMID: 29747466 PMCID: PMC5983589 DOI: 10.3390/ijms19051425] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle comprises 30–40% of the total body mass and plays a central role in energy homeostasis in the body. The deregulation of energy homeostasis is a common underlying characteristic of metabolic syndrome. Over the past decades, peroxisome proliferator-activated receptors (PPARs) have been shown to play critical regulatory roles in skeletal muscle. The three family members of PPAR have overlapping roles that contribute to the myriad of processes in skeletal muscle. This review aims to provide an overview of the functions of different PPAR members in energy homeostasis as well as during skeletal muscle metabolic disorders, with a particular focus on human and relevant mouse model studies.
Collapse
|
55
|
Péladeau C, Adam NJ, Jasmin BJ. Celecoxib treatment improves muscle function in mdx mice and increases utrophin A expression. FASEB J 2018; 32:5090-5103. [PMID: 29723037 DOI: 10.1096/fj.201800081r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic and progressive neuromuscular disorder caused by mutations and deletions in the dystrophin gene. Although there is currently no cure, one promising treatment for DMD is aimed at increasing endogenous levels of utrophin A to compensate functionally for the lack of dystrophin. Recent studies from our laboratory revealed that heparin treatment of mdx mice activates p38 MAPK, leading to an upregulation of utrophin A expression and improvements in the dystrophic phenotype. Based on these findings, we sought to determine the effects of other potent p38 activators, including the cyclooxygenase (COX)-2 inhibitor celecoxib. In this study, we treated 6-wk-old mdx mice for 4 wk with celecoxib. Immunofluorescence analysis of celecoxib-treated mdx muscles revealed a fiber type switch from a fast to a slower phenotype along with beneficial effects on muscle fiber integrity. In agreement, celecoxib-treated mdx mice showed improved muscle strength. Celecoxib treatment also induced increases in utrophin A expression ranging from ∼1.5- to 2-fold in tibialis anterior diaphragm and heart muscles. Overall, these results highlight that activation of p38 in muscles can indeed lead to an attenuation of the dystrophic phenotype and reveal the potential role of celecoxib as a novel therapeutic agent for the treatment of DMD.-Péladeau, C., Adam, N. J., Jasmin, B. J. Celecoxib treatment improves muscle function in mdx mice and increases utrophin A expression.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Nadine J Adam
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
56
|
Manio MCC, Matsumura S, Masuda D, Inoue K. CD36 is essential for endurance improvement, changes in whole-body metabolism, and efficient PPAR-related transcriptional responses in the muscle with exercise training. Physiol Rep 2018; 5:e13282. [PMID: 28526781 PMCID: PMC5449563 DOI: 10.14814/phy2.13282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 11/24/2022] Open
Abstract
Although circulating fatty acids are utilized as energy substrates, they also function as ligands to the peroxisome‐proliferator activated receptors (PPARs), a family of fatty acid sensing transcription factors. Exercise training leads to various adaptations in the muscle such as elevation of glycogen content, mitochondrial number as well as upregulation of fatty acid uptake and utilization through downstream transcriptional adaptations. In line with this, CD36 has been shown to be critical in controlling fatty acid uptake and consequently, fatty acid oxidation. We show that exercise training could not ameliorate impaired endurance performance in CD36 KO mice despite intact adaptations in muscle glycogen storage and mitochondrial function. Changes in whole‐body metabolism at rest and during exercise were also suppressed in these animals. Furthermore, there was inefficient upregulation of PPAR and PPAR‐related exercise‐responsive genes with chronic training in CD36 KO mice despite normal upregulation of Pgc1a and mitochondrial genes. Our findings supplement previous observations and emphasize the importance of CD36 in endurance performance, energy production and efficient downstream transcriptional regulation by PPARs.
Collapse
Affiliation(s)
- Mark Christian C Manio
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shigenobu Matsumura
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Daisaku Masuda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuo Inoue
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
57
|
Ahn MY, Ham SA, Yoo T, Lee WJ, Hwang JS, Paek KS, Lim DS, Han SG, Lee CH, Seo HG. Ligand-Activated Peroxisome Proliferator-Activated Receptor δ Attenuates Vascular Oxidative Stress by Inhibiting Thrombospondin-1 Expression. J Vasc Res 2018; 55:75-86. [PMID: 29408825 DOI: 10.1159/000486570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/29/2017] [Indexed: 11/19/2022] Open
Abstract
Thrombospondin-1 (TSP-1) is implicated in vascular diseases associated with oxidative stress, such as abdominal aortic aneurysms, ischemia-reperfusion injury, and atherosclerosis. However, the regulatory mechanisms underlying TSP-1 expression are not fully elucidated. In this study, we found that peroxisome proliferator-activated receptor δ (PPARδ) inhibited oxidative stress-induced TSP-1 expression and migration in vascular smooth muscle cells (VSMCs). Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly attenuated hydrogen peroxide (H2O2)-induced expression of TSP-1 in VSMCs. Small interfering RNA-mediated knockdown of PPARδ and treatment with GSK0660, a selective PPARδ antagonist, reversed the effect of GW501516 on H2O2-induced expression of TSP-1, suggesting that PPARδ is associated with GW501516 activity. Furthermore, JNK (c-Jun N-terminal kinase), but not p38 and ERK (extracellular signal-regulated kinase), mediated PPARδ-dependent inhibition of TSP-1 expression in VSMCs exposed to H2O2. GW501516- activated PPARδ also reduced the H2O2-induced generation of reactive oxygen species, concomitant with inhibition of VSMC migration. In particular, TSP-1 contributed to the action of PPARδ in the regulation of H2O2-induced interleukin-1β expression. These results suggest that PPARδ-modulated downregulation of TSP-1 is associated with reduced cellular oxidative stress, thereby inhibiting H2O2-induced pheno-typic changes in vascular cells.
Collapse
Affiliation(s)
- Min Young Ahn
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Sun Ah Ham
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Taesik Yoo
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Won Jin Lee
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jung Seok Hwang
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kyung Shin Paek
- Department of Nursing, Semyung University, Jechon, Republic of Korea
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| | - Sung Gu Han
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Chi-Ho Lee
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Han Geuk Seo
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
58
|
Kitase Y, Vallejo JA, Gutheil W, Vemula H, Jähn K, Yi J, Zhou J, Brotto M, Bonewald LF. β-aminoisobutyric Acid, l-BAIBA, Is a Muscle-Derived Osteocyte Survival Factor. Cell Rep 2018; 22:1531-1544. [PMID: 29425508 PMCID: PMC5832359 DOI: 10.1016/j.celrep.2018.01.041] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/03/2017] [Accepted: 01/12/2018] [Indexed: 01/04/2023] Open
Abstract
Exercise has beneficial effects on metabolism and on tissues. The exercise-induced muscle factor β-aminoisobutyric acid (BAIBA) plays a critical role in the browning of white fat and in insulin resistance. Here we show another function for BAIBA, that of a bone-protective factor that prevents osteocyte cell death induced by reactive oxygen species (ROS). l-BAIBA was as or more protective than estrogen or N-acetyl cysteine, signaling through the Mas-Related G Protein-Coupled Receptor Type D (MRGPRD) to prevent the breakdown of mitochondria due to ROS. BAIBA supplied in drinking water prevented bone loss and loss of muscle function in the murine hindlimb unloading model, a model of osteocyte apoptosis. The protective effect of BAIBA was lost with age, not due to loss of the muscle capacity to produce BAIBA but likely to reduced Mrgprd expression with aging. This has implications for understanding the attenuated effect of exercise on bone with aging.
Collapse
Affiliation(s)
- Yukiko Kitase
- Department of Anatomy and Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Julian A Vallejo
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Department of Oral & Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - William Gutheil
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Harika Vemula
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Katharina Jähn
- Department of Osteology and Biomechanics, University of Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jianxun Yi
- Kansas City University of Medicine and Bioscience, Kansas City, MO 64106, USA
| | - Jingsong Zhou
- Kansas City University of Medicine and Bioscience, Kansas City, MO 64106, USA
| | - Marco Brotto
- Bone-Muscle Collaborative Science, College of Nursing & Health Innovation, University of Texas-Arlington, Arlington, TX 76019, USA
| | - Lynda F Bonewald
- Department of Anatomy and Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of Orthopaedic Surgery, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
59
|
Pollak NM, Hoffman M, Goldberg IJ, Drosatos K. Krüppel-like factors: Crippling and un-crippling metabolic pathways. JACC Basic Transl Sci 2018; 3:132-156. [PMID: 29876529 PMCID: PMC5985828 DOI: 10.1016/j.jacbts.2017.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022]
Abstract
Krüppel-like factors (KLFs) are DNA-binding transcriptional factors that regulate various pathways that control metabolism and other cellular mechanisms. Various KLF isoforms have been associated with cellular, organ or systemic metabolism. Altered expression or activation of KLFs has been linked to metabolic abnormalities, such as obesity and diabetes, as well as with heart failure. In this review article we summarize the metabolic functions of KLFs, as well as the networks of different KLF isoforms that jointly regulate metabolism in health and disease.
Collapse
Affiliation(s)
- Nina M. Pollak
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew Hoffman
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
60
|
Zhou G, Wang L, Xu Y, Yang K, Luo L, Wang L, Li Y, Wang J, Shu G, Wang S, Gao P, Zhu X, Xi Q, Sun J, Zhang Y, Jiang Q. Diversity effect of capsaicin on different types of skeletal muscle. Mol Cell Biochem 2017; 443:11-23. [PMID: 29159769 DOI: 10.1007/s11010-017-3206-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/14/2017] [Indexed: 10/18/2022]
Abstract
Capsaicin is a major pungent content in green and red peppers which are widely used as spice, and capsaicin may activate different receptors. To determine whether capsaicin has different effects on different types of skeletal muscle, we applied different concentrations (0, 0.01, and 0.02%) of capsaicin in the normal diet and conducted a four-week experiment on Sprague-Dawley rats. The fiber type composition, glucose metabolism enzyme activity, and different signaling molecules' expressions of receptors were detected. Our results suggested that capsaicin reduced the body fat deposition, while promoting the slow muscle-related gene expression and increasing the enzyme activity in the gastrocnemius and soleus muscles. However, fatty acid metabolism was significantly increased only in the soleus muscle. The study of intracellular signaling suggested that the transient receptor potential vanilloid 1 (TRPV1) and cannabinoid receptors in the soleus muscle were more sensitive to capsaicin. In conclusion, the distribution of TRPV1 and cannabinoid receptors differs in different types of muscle, and the different roles of capsaicin in different types of muscle may be related to the different degrees of activation of receptors.
Collapse
Affiliation(s)
- Gan Zhou
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yaqiong Xu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Kelin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Lv Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Leshan Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yongxiang Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jiawen Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
61
|
Uchiwa T, Takai Y, Tashiro A, Furuse M, Yasuo S. Exposure of C57BL/6J mice to long photoperiod during early life stages increases body weight and alters plasma metabolomic profiles in adulthood. Physiol Rep 2017; 4:4/18/e12974. [PMID: 27650252 PMCID: PMC5037922 DOI: 10.14814/phy2.12974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/24/2016] [Indexed: 01/21/2023] Open
Abstract
Perinatal photoperiod is an important regulator of physiological phenotype in adulthood. In this study, we demonstrated that postnatal (0–4 weeks old) exposure of C57BL/6J mice to long photoperiod induced persistent increase in body weight until adulthood, compared with the mice maintained under short photoperiod. The expression of peroxisome proliferator‐activated receptor δ, a gene involved in fatty acid metabolism, was decreased in 10‐week‐old mice exposed to long photoperiod during 0–4 or 4–8 weeks of age. Plasma metabolomic profiles of adult mice exposed to a long photoperiod during the postnatal period (0–4 LD) were compared to those in the mice exposed to short photoperiod during the same period. Cluster analysis revealed that both carbon metabolic pathway and nucleic acid pathway were altered by the postnatal photoperiod. Levels of metabolites involved in glycolysis were significantly upregulated in 0–4 LD, suggesting that the mice in 0–4 LD use the glycolytic pathway for energy expenditure rather than the fatty acid oxidation pathway. In addition, the mice in 0–4 LD exhibited high levels of purine metabolites, which have a role in neuroprotection. In conclusion, postnatal exposure of C57BL/6J mice to long photoperiod induces increase in body weight and various changes in plasma metabolic profiles during adulthood.
Collapse
Affiliation(s)
- Tatsuhiro Uchiwa
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yusuke Takai
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ayako Tashiro
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shinobu Yasuo
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
62
|
de Oliveira MR, Nabavi SF, Nabavi SM, Jardim FR. Omega-3 polyunsaturated fatty acids and mitochondria, back to the future. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
63
|
Yang K, Wang L, Zhou G, Lin X, Peng J, Wang L, Luo L, Wang J, Shu G, Wang S, Gao P, Zhu X, Xi Q, Zhang Y, Jiang Q. Phytol Promotes the Formation of Slow-Twitch Muscle Fibers through PGC-1α/miRNA but Not Mitochondria Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5916-5925. [PMID: 28654264 DOI: 10.1021/acs.jafc.7b01048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phytol is a side chain of chlorophyll belonging to the side-chain double terpenoid. When animals consume food rich in chlorophyll, phytol can be broken down to phytanic acid after digestion. It was reported that feeding animals with different varieties and levels of forage could significant improve pH and marbling score of steer and lamb carcasses, but the internal mechanism for this is still not reported. The marbling score and pH of muscle was mainly determined by skeletal muscle fiber type, which is due to expression of different myosin heavy-chain (MHC) isoforms. Here, we provide evidence that phytol can indeed affect the diversity of muscle fiber types both in vitro and in vivo and demonstrate that phytol can increase the expression of MHC I (p < 0.05), likely by upgrading the expression of PPARδ, PGC-1α, and related miRNAs. This fiber-type transformation process may not be caused by activated mitochondrial metabolism but by the structural changes in muscle fiber types.
Collapse
Affiliation(s)
- Kelin Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Lina Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Gan Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Xiajing Lin
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Jianlong Peng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Leshan Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Lv Luo
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Jianbin Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Gang Shu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Songbo Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Ping Gao
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Xiaotong Zhu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Qianyun Xi
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Yongliang Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Qingyan Jiang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| |
Collapse
|
64
|
Jordan SD, Kriebs A, Vaughan M, Duglan D, Fan W, Henriksson E, Huber AL, Papp SJ, Nguyen M, Afetian M, Downes M, Yu RT, Kralli A, Evans RM, Lamia KA. CRY1/2 Selectively Repress PPARδ and Limit Exercise Capacity. Cell Metab 2017; 26:243-255.e6. [PMID: 28683290 PMCID: PMC5546250 DOI: 10.1016/j.cmet.2017.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/31/2017] [Accepted: 06/07/2017] [Indexed: 01/18/2023]
Abstract
Cellular metabolite balance and mitochondrial function are under circadian control, but the pathways connecting the molecular clock to these functions are unclear. Peroxisome proliferator-activated receptor delta (PPARδ) enables preferential utilization of lipids as fuel during exercise and is a major driver of exercise endurance. We show here that the circadian repressors CRY1 and CRY2 function as co-repressors for PPARδ. Cry1-/-;Cry2-/- myotubes and muscles exhibit elevated expression of PPARδ target genes, particularly in the context of exercise. Notably, CRY1/2 seem to repress a distinct subset of PPARδ target genes in muscle compared to the co-repressor NCOR1. In vivo, genetic disruption of Cry1 and Cry2 enhances sprint exercise performance in mice. Collectively, our data demonstrate that CRY1 and CRY2 modulate exercise physiology by altering the activity of several transcription factors, including CLOCK/BMAL1 and PPARδ, and thereby alter energy storage and substrate selection for energy production.
Collapse
Affiliation(s)
- Sabine D Jordan
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Anna Kriebs
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Megan Vaughan
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Drew Duglan
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Weiwei Fan
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Emma Henriksson
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Clinical Sciences, CRC, Lund University, Malmö 20502, Sweden
| | - Anne-Laure Huber
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stephanie J Papp
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Madelena Nguyen
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Megan Afetian
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michael Downes
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ruth T Yu
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anastasia Kralli
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ronald M Evans
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Katja A Lamia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
65
|
Tatsumi R, Suzuki T, Do MKQ, Ohya Y, Anderson JE, Shibata A, Kawaguchi M, Ohya S, Ohtsubo H, Mizunoya W, Sawano S, Komiya Y, Ichitsubo R, Ojima K, Nishimatsu SI, Nohno T, Ohsawa Y, Sunada Y, Nakamura M, Furuse M, Ikeuchi Y, Nishimura T, Yagi T, Allen RE. Slow-Myofiber Commitment by Semaphorin 3A Secreted from Myogenic Stem Cells. Stem Cells 2017; 35:1815-1834. [PMID: 28480592 DOI: 10.1002/stem.2639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/03/2017] [Accepted: 04/25/2017] [Indexed: 01/01/2023]
Abstract
Recently, we found that resident myogenic stem satellite cells upregulate a multi-functional secreted protein, semaphorin 3A (Sema3A), exclusively at the early-differentiation phase in response to muscle injury; however, its physiological significance is still unknown. Here we show that Sema3A impacts slow-twitch fiber generation through a signaling pathway, cell-membrane receptor (neuropilin2-plexinA3) → myogenin-myocyte enhancer factor 2D → slow myosin heavy chain. This novel axis was found by small interfering RNA-transfection experiments in myoblast cultures, which also revealed an additional element that Sema3A-neuropilin1/plexinA1, A2 may enhance slow-fiber formation by activating signals that inhibit fast-myosin expression. Importantly, satellite cell-specific Sema3A conditional-knockout adult mice (Pax7CreERT2 -Sema3Afl °x activated by tamoxifen-i.p. injection) provided direct in vivo evidence for the Sema3A-driven program, by showing that slow-fiber generation and muscle endurance were diminished after repair from cardiotoxin-injury of gastrocnemius muscle. Overall, the findings highlight an active role for satellite cell-secreted Sema3A ligand as a key "commitment factor" for the slow-fiber population during muscle regeneration. Results extend our understanding of the myogenic stem-cell strategy that regulates fiber-type differentiation and is responsible for skeletal muscle contractility, energy metabolism, fatigue resistance, and its susceptibility to aging and disease. Stem Cells 2017;35:1815-1834.
Collapse
Affiliation(s)
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences.,Department of Molecular and Developmental Biology.,Cell and Tissue Biology Laboratory, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences
| | - Yuki Ohya
- Department of Animal and Marine Bioresource Sciences
| | - Judy E Anderson
- Faculty of Science, Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ayumi Shibata
- Department of Animal and Marine Bioresource Sciences
| | - Mai Kawaguchi
- Department of Animal and Marine Bioresource Sciences
| | - Shunpei Ohya
- Department of Animal and Marine Bioresource Sciences
| | | | | | - Shoko Sawano
- Department of Animal and Marine Bioresource Sciences
| | - Yusuke Komiya
- Department of Animal and Marine Bioresource Sciences
| | | | - Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| | | | | | - Yutaka Ohsawa
- Department of Neurology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yoshihide Sunada
- Department of Neurology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Mako Nakamura
- Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | - Takanori Nishimura
- Cell and Tissue Biology Laboratory, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Ronald E Allen
- The School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
66
|
Acevedo LM, Raya AI, Ríos R, Aguilera-Tejero E, Rivero JLL. Obesity-induced discrepancy between contractile and metabolic phenotypes in slow- and fast-twitch skeletal muscles of female obese Zucker rats. J Appl Physiol (1985) 2017; 123:249-259. [PMID: 28522764 DOI: 10.1152/japplphysiol.00282.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 01/02/2023] Open
Abstract
A clear picture of skeletal muscle adaptations to obesity and related comorbidities remains elusive. This study describes fiber-type characteristics (size, proportions, and oxidative enzyme activity) in two typical hindlimb muscles with opposite structure and function in an animal model of genetic obesity. Lesser fiber diameter, fiber-type composition, and histochemical succinic dehydrogenase activity (an oxidative marker) of muscle fiber types were assessed in slow (soleus)- and fast (tibialis cranialis)-twitch muscles of obese Zucker rats and compared with age (16 wk)- and sex (females)-matched lean Zucker rats (n = 16/group). Muscle mass and lesser fiber diameter were lower in both muscle types of obese compared with lean animals even though body weights were increased in the obese cohort. A faster fiber-type phenotype also occurred in slow- and fast-twitch muscles of obese rats compared with lean rats. These adaptations were accompanied by a significant increment in histochemical succinic dehydrogenase activity of slow-twitch fibers in the soleus muscle and fast-twitch fiber types in the tibialis cranialis muscle. Obesity significantly increased plasma levels of proinflammatory cytokines but did not significantly affect protein levels of peroxisome proliferator-activated receptors PPARγ or PGC1α in either muscle. These data demonstrate that, in female Zucker rats, obesity induces a reduction of muscle mass in which skeletal muscles show a diminished fiber size and a faster and more oxidative phenotype. It was noteworthy that this discrepancy in muscle's contractile and metabolic features was of comparable nature and extent in muscles with different fiber-type composition and antagonist functions.NEW & NOTEWORTHY This study demonstrates a discrepancy between morphological (reduced muscle mass), contractile (shift toward a faster phenotype), and metabolic (increased mitochondrial oxidative enzyme activity) characteristics in skeletal muscles of female Zucker fatty rats. It is noteworthy that this inconsistency was comparable (in nature and extent) in muscles with different structure and function.
Collapse
Affiliation(s)
- Luz M Acevedo
- Laboratorio de Biopatología Muscular, Departamento de Anatomía y Anatomía Patológica Comparadas, Universidad de Córdoba, Córdoba, Spain.,Departamento de Ciencias Biomédicas, Universidad Central de Venezuela, Maracay, Venezuela
| | - Ana I Raya
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, Universidad de Córdoba, Córdoba, Spain; and
| | - Rafael Ríos
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, Universidad de Córdoba, Córdoba, Spain; and
| | - Escolástico Aguilera-Tejero
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, Universidad de Córdoba, Córdoba, Spain; and
| | - José-Luis L Rivero
- Laboratorio de Biopatología Muscular, Departamento de Anatomía y Anatomía Patológica Comparadas, Universidad de Córdoba, Córdoba, Spain;
| |
Collapse
|
67
|
Koh JH, Hancock CR, Terada S, Higashida K, Holloszy JO, Han DH. PPARβ Is Essential for Maintaining Normal Levels of PGC-1α and Mitochondria and for the Increase in Muscle Mitochondria Induced by Exercise. Cell Metab 2017; 25:1176-1185.e5. [PMID: 28467933 PMCID: PMC5894349 DOI: 10.1016/j.cmet.2017.04.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/24/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
Abstract
The objective of this study was to evaluate the specific mechanism(s) by which PPARβ regulates mitochondrial content in skeletal muscle. We discovered that PPARβ increases PGC-1α by protecting it from degradation by binding to PGC-1α and limiting ubiquitination. PPARβ also induces an increase in nuclear respiratory factor 1 (NRF-1) expression, resulting in increases in mitochondrial respiratory chain proteins and MEF2A, for which NRF-1 is a transcription factor. There was also an increase in AMP kinase phosphorylation mediated by an NRF-1-induced increase in CAM kinase kinase-β (CaMKKβ). Knockdown of PPARβ resulted in large decreases in the levels of PGC-1α and mitochondrial proteins and a marked attenuation of the exercise-induced increase in mitochondrial biogenesis. In conclusion, PPARβ induces an increase in PGC-1α protein, and PPARβ is a transcription factor for NRF-1. Thus, PPARβ plays essential roles in the maintenance and adaptive increase in mitochondrial enzymes in skeletal muscle by exercise.
Collapse
Affiliation(s)
- Jin-Ho Koh
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chad R Hancock
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shin Terada
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kazuhiko Higashida
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John O Holloszy
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Dong-Ho Han
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
68
|
Han L, Shen WJ, Bittner S, Kraemer FB, Azhar S. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-β/δ and PPAR-γ. Future Cardiol 2017; 13:279-296. [PMID: 28581362 PMCID: PMC5941699 DOI: 10.2217/fca-2017-0019] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/21/2017] [Indexed: 02/06/2023] Open
Abstract
The PPARs are a subfamily of three ligand-inducible transcription factors, which belong to the superfamily of nuclear hormone receptors. In mammals, the PPAR subfamily consists of three members: PPAR-α, PPAR-β/δ and PPAR-γ. PPARs control the expression of a large number of genes involved in metabolic homeostasis, lipid, glucose and energy metabolism, adipogenesis and inflammation. PPARs regulate a large number of metabolic pathways that are implicated in the pathogenesis of metabolic diseases such as metabolic syndrome, Type 2 diabetes mellitus, nonalcoholic fatty liver disease and cardiovascular disease. The aim of this review is to provide up-to-date information about the biochemical and metabolic actions of PPAR-β/δ and PPAR-γ, the therapeutic potential of their agonists currently under clinical development and the cardiovascular disease outcome of clinical trials of PPAR-γ agonists, pioglitazone and rosiglitazone.
Collapse
Affiliation(s)
- Lu Han
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Wen-Jun Shen
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Stefanie Bittner
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Fredric B Kraemer
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Salman Azhar
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
69
|
Han L, Shen WJ, Bittner S, Kraemer FB, Azhar S. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part I: PPAR-α. Future Cardiol 2017; 13:259-278. [PMID: 28581332 PMCID: PMC5941715 DOI: 10.2217/fca-2016-0059] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
Abstract
This article provides a comprehensive review about the molecular and metabolic actions of PPAR-α. It describes its structural features, ligand specificity, gene transcription mechanisms, functional characteristics and target genes. In addition, recent progress with the use of loss of function and gain of function mouse models in the discovery of diverse biological functions of PPAR-α, particularly in the vascular system and the status of the development of new single, dual, pan and partial PPAR agonists (PPAR modulators) in the clinical management of metabolic diseases are presented. This review also summarizes the clinical outcomes from a large number of clinical trials aimed at evaluating the atheroprotective actions of current clinically used PPAR-α agonists, fibrates and statin-fibrate combination therapy.
Collapse
Affiliation(s)
- Lu Han
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Wen-Jun Shen
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Stefanie Bittner
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Fredric B Kraemer
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Salman Azhar
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
70
|
Shi Y, Jiang H, Yang X. PPARδ activation protects H9c2 cardiomyoblasts from LPS‑induced apoptosis through the heme oxygenase‑1‑mediated suppression of NF‑κB activation. Mol Med Rep 2017; 15:3775-3780. [PMID: 28440451 DOI: 10.3892/mmr.2017.6483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 02/23/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the protective effect of the selective peroxisome proliferator-activated receptor δ (PPARδ) agonist GW501516 (GW) on lipopolysaccharide (LPS)‑induced apoptosis in the rat cardiomyoblast cell line H9c2, and to investigate the possible underlying mechanisms. Cell viability was estimated using the MTT assay. Apoptosis was estimated by flow cytometry using Annexin V‑fluorescein isothiocyanate/propidium iodide staining and caspase‑3 activity assay. The protein level of heme oxygenase‑1 (HO‑1), cleaved caspase‑3 (CC3), apoptosis regulator Bcl‑2 (bcl‑2), apoptosis regulator BAX (bax) and nuclear factor‑κB (NF‑κB) p65 was measured by western blot analysis. The results demonstrated that pretreatment with GW inhibited the LPS‑induced increase in the rate of apoptosis. Pretreatment with GW also increased the bcl‑2/bax ratio, and decreased CC3 protein expression as well as caspase‑3 activity, in LPS‑stimulated H9c2 cells. Further studies demonstrated that GW inhibited LPS‑induced NF‑κB nuclear translocation in a dose‑dependent manner. In addition, GW induced HO‑1 protein expression in a dose‑dependent manner. ZnPP‑IX, an inhibitor of HO‑1, reversed the inhibitory effect of GW on LPS‑induced NF‑κB activation, leading to the attenuation of PPARδ‑mediated apoptosis resistance. In conclusion, these results suggest that PPARδ activation exerts an anti‑apoptotic effect in LPS‑stimulated H9c2 cardiomyoblasts, potentially through heme oxygenase‑1‑mediated suppression of NF‑κB activation. PPARδ appears to be a promising therapeutic target for the treatment of sepsis‑associated cardiac dysfunction.
Collapse
Affiliation(s)
- Yao Shi
- Department of Neonatology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Hong Jiang
- Department of Neonatology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Xiaobo Yang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
71
|
Lund J, Rustan AC, Løvsletten NG, Mudry JM, Langleite TM, Feng YZ, Stensrud C, Brubak MG, Drevon CA, Birkeland KI, Kolnes KJ, Johansen EI, Tangen DS, Stadheim HK, Gulseth HL, Krook A, Kase ET, Jensen J, Thoresen GH. Exercise in vivo marks human myotubes in vitro: Training-induced increase in lipid metabolism. PLoS One 2017; 12:e0175441. [PMID: 28403174 PMCID: PMC5389842 DOI: 10.1371/journal.pone.0175441] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIMS Physical activity has preventive as well as therapeutic benefits for overweight subjects. In this study we aimed to examine effects of in vivo exercise on in vitro metabolic adaptations by studying energy metabolism in cultured myotubes isolated from biopsies taken before and after 12 weeks of extensive endurance and strength training, from healthy sedentary normal weight and overweight men. METHODS Healthy sedentary men, aged 40-62 years, with normal weight (body mass index (BMI) < 25 kg/m2) or overweight (BMI ≥ 25 kg/m2) were included. Fatty acid and glucose metabolism were studied in myotubes using [14C]oleic acid and [14C]glucose, respectively. Gene and protein expressions, as well as DNA methylation were measured for selected genes. RESULTS The 12-week training intervention improved endurance, strength and insulin sensitivity in vivo, and reduced the participants' body weight. Biopsy-derived cultured human myotubes after exercise showed increased total cellular oleic acid uptake (30%), oxidation (46%) and lipid accumulation (34%), as well as increased fractional glucose oxidation (14%) compared to cultures established prior to exercise. Most of these exercise-induced increases were significant in the overweight group, whereas the normal weight group showed no change in oleic acid or glucose metabolism. CONCLUSIONS 12 weeks of combined endurance and strength training promoted increased lipid and glucose metabolism in biopsy-derived cultured human myotubes, showing that training in vivo are able to induce changes in human myotubes that are discernible in vitro.
Collapse
Affiliation(s)
- Jenny Lund
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- * E-mail:
| | - Arild C. Rustan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Nils G. Løvsletten
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Jonathan M. Mudry
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Torgrim M. Langleite
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Yuan Z. Feng
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Camilla Stensrud
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Mari G. Brubak
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Christian A. Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kåre I. Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo, University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kristoffer J. Kolnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Egil I. Johansen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Daniel S. Tangen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Hans K. Stadheim
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Hanne L. Gulseth
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo, University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anna Krook
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eili T. Kase
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - G. Hege Thoresen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
72
|
Ho GTT, Kase ET, Wangensteen H, Barsett H. Phenolic Elderberry Extracts, Anthocyanins, Procyanidins, and Metabolites Influence Glucose and Fatty Acid Uptake in Human Skeletal Muscle Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2677-2685. [PMID: 28303711 DOI: 10.1021/acs.jafc.6b05582] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Uptake of glucose and fatty acids in skeletal muscle is of interest for type 2 diabetes treatment. The aim was to study glucose and fatty acid uptake in skeletal muscle cells, antioxidant effects, and inhibition of carbohydrate-hydrolyzing enzymes by elderberries. Enhanced glucose and oleic acid uptake in human skeletal muscle cells were observed after treatment with phenolic elderberry extracts, anthocyanins, procyanidins, and their metabolites. The 96% EtOH and the acidified MeOH extracts were highly active. Of the isolated substances, cyanidin-3-glucoside and cyanidin-3-sambubioside showed highest stimulation of uptake. Phloroglucinol aldehyde was most active among the metabolites. Isolated anthocyanins and procyanidins are strong radical scavengers and are good inhibitors of 15-lipoxygenase and moderate inhibitors of xanthine oxidase. As α-amylase and α-glucosidase inhibitors, they are considerably better than the positive control acarbose. The antidiabetic property of elderberry phenolics increases the nutritional value of this plant and indicates potential as functional food against diabetes.
Collapse
Affiliation(s)
- Giang Thanh Thi Ho
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo , P.O. Box 1068, Blindern, 0316 Oslo, Norway
| | - Eili Tranheim Kase
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo , P.O. Box 1068, Blindern, 0316 Oslo, Norway
| | - Helle Wangensteen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo , P.O. Box 1068, Blindern, 0316 Oslo, Norway
| | - Hilde Barsett
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo , P.O. Box 1068, Blindern, 0316 Oslo, Norway
| |
Collapse
|
73
|
PPARβ/δ, a Novel Regulator for Vascular Smooth Muscle Cells Phenotypic Modulation and Vascular Remodeling after Subarachnoid Hemorrhage in Rats. Sci Rep 2017; 7:45234. [PMID: 28327554 PMCID: PMC5361085 DOI: 10.1038/srep45234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/20/2017] [Indexed: 12/20/2022] Open
Abstract
Cerebral vascular smooth muscle cell (VSMC) phenotypic switch is involved in the pathophysiology of vascular injury after aneurysmal subarachnoid hemorrhage (aSAH), whereas the molecular mechanism underlying it remains largely speculative. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) has been implicated to modulate the vascular cells proliferation and vascular homeostasis. In the present study, we investigated the potential role of PPARβ/δ in VSMC phenotypic switch following SAH. Activation of PPARβ/δ by GW0742 and adenoviruses PPARβ/δ (Ad-PPARβ/δ) significantly inhibited hemoglobin-induced VSMC phenotypic switch. However, the effects of PPARβ/δ on VSMC phenotypic switch were partly obstacled in the presence of LY294002, a potent inhibitor of Phosphatidyl-Inositol-3 Kinase-AKT (PI3K/AKT). Furthermore, following study demonstrated that PPARβ/δ-induced PI3K/AKT activation can also contribute to Serum Response Factor (SRF) nucleus localization and Myocardin expression, which was highly associated with VSMC phenotypic switch. Finally, we found that Ad-PPARβ/δ positively modulated vascular remodeling in SAH rats, i.e. the diameter of basilar artery and the thickness of vessel wall. In addition, overexpression of PPARβ/δ by adenoviruses significantly improved neurological outcome. Taken together, this study identified PPARβ/δ as a useful regulator for VSMC phenotypic switch and vascular remodeling following SAH, providing novel insights into the therapeutic strategies of delayed cerebral ischemia.
Collapse
|
74
|
Matsukawa T, Motojima H, Sato Y, Takahashi S, Villareal MO, Isoda H. Upregulation of skeletal muscle PGC-1α through the elevation of cyclic AMP levels by Cyanidin-3-glucoside enhances exercise performance. Sci Rep 2017; 7:44799. [PMID: 28317895 PMCID: PMC5357948 DOI: 10.1038/srep44799] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/14/2017] [Indexed: 02/06/2023] Open
Abstract
Regular exercise and physical training enhance physiological capacity and improve metabolic diseases. Skeletal muscles require peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) in the process of their adaptation to exercise owing to PGC-1α's ability to regulate mitochondrial biogenesis, angiogenesis, and oxidative metabolism. Cyanidin-3-glucoside (Cy3G) is a natural polyphenol and a nutraceutical factor, which has several beneficial effects on human health. Here, the effect of Cy3G on exercise performance and the underlying mechanisms involved were investigated. ICR mice were given Cy3G (1 mg/kg, orally) everyday and made to perform weight-loaded swimming exercise for 15 days. The endurance of mice orally administered with Cy3G was improved, enabling them to swim longer (time) and while the levels of exercise-induced lactate and fatigue markers (urea nitrogen, creatinine and total ketone bodies) were reduced. Additionally, the expression of lactate metabolism-related genes (lactate dehydrogenase B and monocarboxylate transporter 1) in gastrocnemius and biceps femoris muscles was increased in response to Cy3G-induced PGC-1α upregulation. In vitro, using C2C12 myotubes, Cy3G-induced elevation of intracellular cyclic AMP levels increased PGC-1α expression via the Ca2+/calmodulin-dependent protein kinase kinase pathway. This study demonstrates that Cy3G enhances exercise performance by activating lactate metabolism through skeletal muscle PGC-1α upregulation.
Collapse
Affiliation(s)
- Toshiya Matsukawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Ibaraki 305-8572, Japan
| | - Hideko Motojima
- Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba City, Ibaraki 305-8572, Japan
| | - Yuki Sato
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Ibaraki 305-8572, Japan
| | - Shinya Takahashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Ibaraki 305-8572, Japan
| | - Myra O Villareal
- Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba City, Ibaraki 305-8572, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Ibaraki 305-8572, Japan
| | - Hiroko Isoda
- Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba City, Ibaraki 305-8572, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Ibaraki 305-8572, Japan
| |
Collapse
|
75
|
Mielcarek M, Smolenski RT, Isalan M. Transcriptional Signature of an Altered Purine Metabolism in the Skeletal Muscle of a Huntington's Disease Mouse Model. Front Physiol 2017; 8:127. [PMID: 28303108 PMCID: PMC5332388 DOI: 10.3389/fphys.2017.00127] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/17/2017] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder, caused by a polyglutamine expansion in the huntingtin protein (HTT). HD has a peripheral component to its pathology: skeletal muscles are severely affected, leading to atrophy, and malfunction in both pre-clinical and clinical settings. We previously used two symptomatic HD mouse models to demonstrate the impairment of the contractile characteristics of the hind limb muscles, which was accompanied by a significant loss of function of motor units. The mice displayed a significant reduction in muscle force, likely because of deteriorations in energy metabolism, decreased oxidation, and altered purine metabolism. There is growing evidence suggesting that HD-related skeletal muscle malfunction might be partially or completely independent of CNS degeneration. The pathology might arise from mutant HTT within muscle (loss or gain of function). Hence, it is vital to identify novel peripheral biomarkers that will reflect HD skeletal muscle atrophy. These will be important for upcoming clinical trials that may target HD peripherally. In order to identify potential biomarkers that might reflect muscle metabolic changes, we used qPCR to validate key gene transcripts in different skeletal muscle types. Consequently, we report a number of transcript alterations that are linked to HD muscle pathology.
Collapse
Affiliation(s)
- Michal Mielcarek
- Department of Life Sciences, Imperial College LondonLondon, UK; Department of Epidemiology of Rare Diseases and Neuroepidemiology, Poznan University of Medical SciencesPoznan, Poland
| | | | - Mark Isalan
- Department of Life Sciences, Imperial College London London, UK
| |
Collapse
|
76
|
|
77
|
MicroRNAs-Dependent Regulation of PPARs in Metabolic Diseases and Cancers. PPAR Res 2017; 2017:7058424. [PMID: 28167956 PMCID: PMC5266863 DOI: 10.1155/2017/7058424] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/05/2016] [Indexed: 12/23/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of ligand-dependent nuclear receptors, which control the transcription of genes involved in energy homeostasis and inflammation and cell proliferation/differentiation. Alterations of PPARs' expression and/or activity are commonly associated with metabolic disorders occurring with obesity, type 2 diabetes, and fatty liver disease, as well as with inflammation and cancer. Emerging evidence now indicates that microRNAs (miRNAs), a family of small noncoding RNAs, which fine-tune gene expression, play a significant role in the pathophysiological mechanisms regulating the expression and activity of PPARs. Herein, the regulation of PPARs by miRNAs is reviewed in the context of metabolic disorders, inflammation, and cancer. The reciprocal control of miRNAs expression by PPARs, as well as the therapeutic potential of modulating PPAR expression/activity by pharmacological compounds targeting miRNA, is also discussed.
Collapse
|
78
|
Roles of Peroxisome Proliferator-Activated Receptor β/δ in skeletal muscle physiology. Biochimie 2016; 136:42-48. [PMID: 27916646 DOI: 10.1016/j.biochi.2016.11.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023]
Abstract
More than two decades of studying Peroxisome Proliferator-Activated Receptors (PPARs) has led to an understanding of their implications in various physiological processes that are key for health and disease. All three PPAR isotypes, PPARα, PPARβ/δ, and PPARγ, are activated by a variety of molecules, including fatty acids, eicosanoids and phospholipids, and regulate a spectrum of genes involved in development, lipid and carbohydrate metabolism, inflammation, and proliferation and differentiation of many cell types in different tissues. The hypolipidemic and antidiabetic functions of PPARα and PPARγ in response to fibrate and thiazolidinedione treatment, respectively, are well documented. However, until more recently the functions of PPARβ/δ were less well defined, but are now becoming more recognized in fatty acid metabolism, energy expenditure, and tissue repair. Skeletal muscle is an active metabolic organ with high plasticity for adaptive responses to varying conditions such as fasting or physical exercise. It is the major site of energy expenditure resulting from lipid and glucose catabolism. Here, we review the multifaceted roles of PPARβ/δ in skeletal muscle physiology.
Collapse
|
79
|
Berton MP, Fonseca LFS, Gimenez DFJ, Utembergue BL, Cesar ASM, Coutinho LL, de Lemos MVA, Aboujaoude C, Pereira ASC, Silva RMDO, Stafuzza NB, Feitosa FLB, Chiaia HLJ, Olivieri BF, Peripolli E, Tonussi RL, Gordo DM, Espigolan R, Ferrinho AM, Mueller LF, de Albuquerque LG, de Oliveira HN, Duckett S, Baldi F. Gene expression profile of intramuscular muscle in Nellore cattle with extreme values of fatty acid. BMC Genomics 2016; 17:972. [PMID: 27884102 PMCID: PMC5123393 DOI: 10.1186/s12864-016-3232-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/01/2016] [Indexed: 11/10/2022] Open
Abstract
Background Fatty acid type in beef can be detrimental to human health and has received considerable attention in recent years. The aim of this study was to identify differentially expressed genes in longissimus thoracis muscle of 48 Nellore young bulls with extreme phenotypes for fatty acid composition of intramuscular fat by RNA-seq technique. Results Differential expression analyses between animals with extreme phenotype for fatty acid composition showed a total of 13 differentially expressed genes for myristic (C14:0), 35 for palmitic (C16:0), 187 for stearic (C18:0), 371 for oleic (C18:1, cis-9), 24 for conjugated linoleic (C18:2 cis-9, trans11, CLA), 89 for linoleic (C18:2 cis-9,12 n6), and 110 genes for α-linolenic (C18:3 n3) fatty acids. For the respective sums of the individual fatty acids, 51 differentially expressed genes for saturated fatty acids (SFA), 336 for monounsaturated (MUFA), 131 for polyunsaturated (PUFA), 92 for PUFA/SFA ratio, 55 for ω3, 627 for ω6, and 22 for ω6/ω3 ratio were identified. Functional annotation analyses identified several genes associated with fatty acid metabolism, such as those involved in intra and extra-cellular transport of fatty acid synthesis precursors in intramuscular fat of longissimus thoracis muscle. Some of them must be highlighted, such as: ACSM3 and ACSS1 genes, which work as a precursor in fatty acid synthesis; DGAT2 gene that acts in the deposition of saturated fat in the adipose tissue; GPP and LPL genes that support the synthesis of insulin, stimulating both the glucose synthesis and the amino acids entry into the cells; and the BDH1 gene, which is responsible for the synthesis and degradation of ketone bodies used in the synthesis of ATP. Conclusion Several genes related to lipid metabolism and fatty acid composition were identified. These findings must contribute to the elucidation of the genetic basis to improve Nellore meat quality traits, with emphasis on human health. Additionally, it can also contribute to improve the knowledge of fatty acid biosynthesis and the selection of animals with better nutritional quality. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3232-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mariana P Berton
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Larissa F S Fonseca
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Daniela F J Gimenez
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Bruno L Utembergue
- Departamento de Nutrição e Produção Animal, Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Pirassununga, 13635-900, SP, Brazil
| | - Aline S M Cesar
- Departamento de Zootecnia, Universidade de São Paulo, Piracicaba, 13418-900, SP, Brazil
| | - Luiz L Coutinho
- Departamento de Zootecnia, Universidade de São Paulo, Piracicaba, 13418-900, SP, Brazil.,Conselho Nacional de Desenvolvimento Científico e Tecnológico, Lago Sul, 71605-001, DF, Brazil
| | - Marcos Vinicius A de Lemos
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Carolyn Aboujaoude
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Angélica S C Pereira
- Departamento de Nutrição e Produção Animal, Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Pirassununga, 13635-900, SP, Brazil
| | - Rafael M de O Silva
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Nedenia B Stafuzza
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Fabieli L B Feitosa
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Hermenegildo L J Chiaia
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Bianca F Olivieri
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Elisa Peripolli
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Rafael L Tonussi
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Daniel M Gordo
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Rafael Espigolan
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Adrielle M Ferrinho
- Departamento de Nutrição e Produção Animal, Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Pirassununga, 13635-900, SP, Brazil
| | - Lenise F Mueller
- Departamento de Zootecnia, Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, 13635-900, SP, Brazil
| | - Lucia G de Albuquerque
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil.,Conselho Nacional de Desenvolvimento Científico e Tecnológico, Lago Sul, 71605-001, DF, Brazil
| | - Henrique N de Oliveira
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil.,Conselho Nacional de Desenvolvimento Científico e Tecnológico, Lago Sul, 71605-001, DF, Brazil
| | - Susan Duckett
- Animal and Veterinary Science Department of Clemson University, Clemson, 29634, SC, USA
| | - Fernando Baldi
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil. .,Conselho Nacional de Desenvolvimento Científico e Tecnológico, Lago Sul, 71605-001, DF, Brazil.
| |
Collapse
|
80
|
Klingler C, Zhao X, Adhikary T, Li J, Xu G, Häring HU, Schleicher E, Lehmann R, Weigert C. Lysophosphatidylcholines activate PPARδ and protect human skeletal muscle cells from lipotoxicity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1980-1992. [PMID: 27697477 DOI: 10.1016/j.bbalip.2016.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/19/2016] [Accepted: 09/29/2016] [Indexed: 12/30/2022]
Abstract
Metabolomics studies of human plasma demonstrate a correlation of lower plasma lysophosphatidylcholines (LPC) concentrations with insulin resistance, obesity, and inflammation. This relationship is not unraveled on a molecular level. Here we investigated the effects of the abundant LPC(16:0) and LPC(18:1) on human skeletal muscle cells differentiated to myotubes. Transcriptome analysis of human myotubes treated with 10μM LPC for 24h revealed enrichment of up-regulated peroxisome proliferator-activated receptor (PPAR) target transcripts, including ANGPTL4, PDK4, PLIN2, and CPT1A. The increase in both PDK4 and ANGPTL4 RNA expression was abolished in the presence of either PPARδ antagonist GSK0660 or GSK3787. The induction of PDK4 by LPCs was blocked with siRNA against PPARD. The activation of PPARδ transcriptional activity by LPC was shown as PPARδ-dependent luciferase reporter gene expression and enhanced DNA binding of the PPARδ/RXR dimer. On a functional level, further results show that the LPC-mediated activation of PPARδ can reduce fatty acid-induced inflammation and ER stress in human skeletal muscle cells. The protective effect of LPC was prevented in the presence of the PPARδ antagonist GSK0660. Taking together, LPCs can activate PPARδ, which is consistent with the association of high plasma LPC levels and PPARδ-dependent anti-diabetic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Christian Klingler
- Division of Pathobiochemistry and Clinical Chemistry, University Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Till Adhikary
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Hans-Meerwein-Strasse 3, Philipps University, 35043 Marburg, Germany
| | - Jia Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Hans-Ulrich Häring
- Division of Pathobiochemistry and Clinical Chemistry, University Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany
| | - Erwin Schleicher
- Division of Pathobiochemistry and Clinical Chemistry, University Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Rainer Lehmann
- Division of Pathobiochemistry and Clinical Chemistry, University Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany
| | - Cora Weigert
- Division of Pathobiochemistry and Clinical Chemistry, University Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany.
| |
Collapse
|
81
|
Zhang H, Shen WJ, Li Y, Bittner A, Bittner S, Tabassum J, Cortez YF, Kraemer FB, Azhar S. Microarray analysis of gene expression in liver, adipose tissue and skeletal muscle in response to chronic dietary administration of NDGA to high-fructose fed dyslipidemic rats. Nutr Metab (Lond) 2016; 13:63. [PMID: 27708683 PMCID: PMC5041401 DOI: 10.1186/s12986-016-0121-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
Nordihydroguaiaretic acid (NDGA), the main metabolite of Creosote Bush, has been shown to have profound effects on the core components of metabolic syndrome, including lowering of blood glucose, free fatty acids and triglyceride levels, attenuating elevated blood pressure in several rodent models of dyslipidemia, and improving body weight, insulin resistance, diabetes and hypertension. In the present study, a high-fructose diet fed rat model of hypertriglyceridemia, dyslipidemia, insulin resistance and hepatic steatosis was employed to investigate the global transcriptional changes in the lipid metabolizing pathways in three insulin sensitive tissues: liver, skeletal muscle and adipose tissue in response to chronic dietary administration of NDGA. Sprague-Dawley male rats (SD) were fed a chow (control) diet, high-fructose diet (HFrD) or HFrD supplemented with NDGA (2.5 g/kg diet) for eight weeks. Dietary administration of NDGA decreased plasma levels of TG, glucose, and insulin, and attenuated hepatic TG accumulation. DNA microarray expression profiling indicated that dietary administration of NDGA upregulated the expression of certain genes involved in fatty acid oxidation and their transcription regulator, PPARα, decreased the expression of a number of lipogenic genes and relevant transcription factors, and differentially impacted the genes of fatty acid transporters, acetyl CoA synthetases, elongases, fatty acid desaturases and lipid clearance proteins in liver, skeletal muscle and adipose tissues. These findings suggest that NDGA ameliorates hypertriglyceridemia and steatosis primarily by inhibiting lipogenesis and enhancing fatty acid catabolism in three major insulin responsive tissues by altering the expression of key enzyme genes and transcription factors involved in de novo lipogenesis and fatty acid oxidation.
Collapse
Affiliation(s)
- Haiyan Zhang
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA USA ; Division of Endocrinology, Stanford University, Stanford, CA USA ; Present Address: Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA USA ; Division of Endocrinology, Stanford University, Stanford, CA USA
| | - Yihang Li
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA USA ; Division of Endocrinology, Stanford University, Stanford, CA USA ; Present Address: Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO USA
| | - Alex Bittner
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA USA
| | - Stefanie Bittner
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA USA
| | - Juveria Tabassum
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA USA
| | - Yuan F Cortez
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA USA
| | - Fredric B Kraemer
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA USA ; Division of Endocrinology, Stanford University, Stanford, CA USA
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA USA ; Division of Endocrinology, Stanford University, Stanford, CA USA
| |
Collapse
|
82
|
Tan NS, Vázquez-Carrera M, Montagner A, Sng MK, Guillou H, Wahli W. Transcriptional control of physiological and pathological processes by the nuclear receptor PPARβ/δ. Prog Lipid Res 2016; 64:98-122. [PMID: 27665713 DOI: 10.1016/j.plipres.2016.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/31/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Academia, 20 College Road, 169856, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Agency for Science Technology & Research, 138673, Singapore; KK Research Centre, KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore.
| | - Manuel Vázquez-Carrera
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Pediatric Research Institute-Hospital Sant Joan de Déu, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
| | | | - Ming Keat Sng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Academia, 20 College Road, 169856, Singapore
| | - Hervé Guillou
- INRA ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex 3, France
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University, Academia, 20 College Road, 169856, Singapore; INRA ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex 3, France; Center for Integrative Genomics, University of Lausanne, Le Génopode, CH 1015 Lausanne, Switzerland.
| |
Collapse
|
83
|
The application of transcriptomic data in the authentication of beef derived from contrasting production systems. BMC Genomics 2016; 17:746. [PMID: 27654331 PMCID: PMC5031250 DOI: 10.1186/s12864-016-2851-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Differences between cattle production systems can influence the nutritional and sensory characteristics of beef, in particular its fatty acid (FA) composition. As beef products derived from pasture-based systems can demand a higher premium from consumers, there is a need to understand the biological characteristics of pasture produced meat and subsequently to develop methods of authentication for these products. Here, we describe an approach to authentication that focuses on differences in the transcriptomic profile of muscle from animals finished in different systems of production of practical relevance to the Irish beef industry. The objectives of this study were to identify a panel of differentially expressed (DE) genes/networks in the muscle of cattle raised outdoors on pasture compared to animals raised indoors on a concentrate based diet and to subsequently identify an optimum panel which can classify the meat based on a production system. RESULTS A comparison of the muscle transcriptome of outdoor/pasture-fed and Indoor/concentrate-fed cattle resulted in the identification of 26 DE genes. Functional analysis of these genes identified two significant networks (1: Energy Production, Lipid Metabolism, Small Molecule Biochemistry; and 2: Lipid Metabolism, Molecular Transport, Small Molecule Biochemistry), both of which are involved in FA metabolism. The expression of selected up-regulated genes in the outdoor/pasture-fed animals correlated positively with the total n-3 FA content of the muscle. The pathway and network analysis of the DE genes indicate that peroxisome proliferator-activated receptor (PPAR) and FYN/AMPK could be implicit in the regulation of these alterations to the lipid profile. In terms of authentication, the expression profile of three DE genes (ALAD, EIF4EBP1 and NPNT) could almost completely separate the samples based on production system (95 % authentication for animals on pasture-based and 100 % for animals on concentrate- based diet) in this context. CONCLUSIONS The majority of DE genes between muscle of the outdoor/pasture-fed and concentrate-fed cattle were related to lipid metabolism and in particular β-oxidation. In this experiment the combined expression profiles of ALAD, EIF4EBP1 and NPNT were optimal in classifying the muscle transcriptome based on production system. Given the overall lack of comparable studies and variable concordance with those that do exist, the use of transcriptomic data in authenticating production systems requires more exploration across a range of contexts and breeds.
Collapse
|
84
|
Mizunoya W, Okamoto S, Miyahara H, Akahoshi M, Suzuki T, Do MKQ, Ohtsubo H, Komiya Y, Qahar M, Waga T, Nakazato K, Ikeuchi Y, Anderson JE, Tatsumi R. Fast-to-slow shift of muscle fiber-type composition by dietary apple polyphenols in rats: Impact of the low-dose supplementation. Anim Sci J 2016; 88:489-499. [PMID: 27417667 DOI: 10.1111/asj.12655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 03/27/2016] [Accepted: 04/07/2016] [Indexed: 11/30/2022]
Abstract
Our previous studies demonstrated that an 8-week intake of 5% (w/w) apple polyphenol (APP) in the diet improves muscle endurance of young-adult rats. In order to identify a lower limit of the dietary contribution of APP to the effect, the experiments were designed for lower-dose supplementation (8-week feeding of 0.5% APP in AIN-93G diet) to 12-week-old male Sprague-Dawley rats. Results clearly showed that the 0.5% APP diet significantly up-regulates slower myosin-heavy-chain (MyHC) isoform ratios (IIx and IIa relative to total MyHC) and myoglobin expression in lower hind-limb muscles examined (P < 0.05). There was a trend to increased fatigue resistance detected from measurements of relative isometric plantar-flexion force torque generated by a stimulus train delivered to the tibial nerve (F(98, 1372) = 1.246, P = 0.0574). Importantly, there was no significant difference in the animal body-phenotypes or locomotor activity shown as total moving distance in light and dark periods. Therefore, the present study encourages the notion that even low APP-intake may increase the proportions of fatigue-resistant myofibers, and has promise as a strategy for modifying performance in human sports and improving function in age-related muscle atrophy.
Collapse
Affiliation(s)
- Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shinpei Okamoto
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hideo Miyahara
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Mariko Akahoshi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan.,Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hideaki Ohtsubo
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yusuke Komiya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Mulan Qahar
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Toshiaki Waga
- Fundamental Research Laboratory, Asahi Breweries, Ltd., Moriya, Ibaraki, Japan.,Wakodo, Ltd., Chofu, Tokyo, Japan
| | - Koichi Nakazato
- Department of Exercise Physiology, Graduate School of Health and Sport Sciences, Nippon Sport Science University, Tokyo, Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
85
|
Laurens C, Badin PM, Louche K, Mairal A, Tavernier G, Marette A, Tremblay A, Weisnagel SJ, Joanisse DR, Langin D, Bourlier V, Moro C. G0/G1 Switch Gene 2 controls adipose triglyceride lipase activity and lipid metabolism in skeletal muscle. Mol Metab 2016; 5:527-537. [PMID: 27408777 PMCID: PMC4921782 DOI: 10.1016/j.molmet.2016.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Recent data suggest that adipose triglyceride lipase (ATGL) plays a key role in providing energy substrate from triglyceride pools and that alterations of its expression/activity relate to metabolic disturbances in skeletal muscle. Yet little is known about its regulation. We here investigated the role of the protein G0/G1 Switch Gene 2 (G0S2), recently described as an inhibitor of ATGL in white adipose tissue, in the regulation of lipolysis and oxidative metabolism in skeletal muscle. METHODS We first examined G0S2 protein expression in relation to metabolic status and muscle characteristics in humans. We next overexpressed and knocked down G0S2 in human primary myotubes to assess its impact on ATGL activity, lipid turnover and oxidative metabolism, and further knocked down G0S2 in vivo in mouse skeletal muscle. RESULTS G0S2 protein is increased in skeletal muscle of endurance-trained individuals and correlates with markers of oxidative capacity and lipid content. Recombinant G0S2 protein inhibits ATGL activity by about 40% in lysates of mouse and human skeletal muscle. G0S2 overexpression augments (+49%, p < 0.05) while G0S2 knockdown strongly reduces (-68%, p < 0.001) triglyceride content in human primary myotubes and mouse skeletal muscle. We further show that G0S2 controls lipolysis and fatty acid oxidation in a strictly ATGL-dependent manner. These metabolic adaptations mediated by G0S2 are paralleled by concomitant changes in glucose metabolism through the modulation of Pyruvate Dehydrogenase Kinase 4 (PDK4) expression (5.4 fold, p < 0.001). Importantly, downregulation of G0S2 in vivo in mouse skeletal muscle recapitulates changes in lipid metabolism observed in vitro. CONCLUSION Collectively, these data indicate that G0S2 plays a key role in the regulation of skeletal muscle ATGL activity, lipid content and oxidative metabolism.
Collapse
Affiliation(s)
- Claire Laurens
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - Pierre-Marie Badin
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - Katie Louche
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - Aline Mairal
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - Geneviève Tavernier
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - André Marette
- Department of Medicine, Canada; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Canada
| | - Angelo Tremblay
- Department of Kinesiology, Canada; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Canada
| | | | - Denis R Joanisse
- Department of Kinesiology, Canada; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Canada
| | - Dominique Langin
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France; Toulouse University Hospitals, Department of Clinical Biochemistry, Toulouse, France
| | - Virginie Bourlier
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - Cedric Moro
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France.
| |
Collapse
|
86
|
Le Guen M, Chaté V, Hininger-Favier I, Laillet B, Morio B, Pieroni G, Schlattner U, Pison C, Dubouchaud H. A 9-wk docosahexaenoic acid-enriched supplementation improves endurance exercise capacity and skeletal muscle mitochondrial function in adult rats. Am J Physiol Endocrinol Metab 2016; 310:E213-24. [PMID: 26646102 DOI: 10.1152/ajpendo.00468.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/04/2015] [Indexed: 01/07/2023]
Abstract
Decline in skeletal muscle mass and function starts during adulthood. Among the causes, modifications of the mitochondrial function could be of major importance. Polyunsaturated fatty (ω-3) acids have been shown to play a role in intracellular functions. We hypothesize that docosahexaenoic acid (DHA) supplementation could improve muscle mitochondrial function that could contribute to limit the early consequences of aging on adult muscle. Twelve-month-old male Wistar rats were fed a low-polyunsaturated fat diet and were given DHA (DHA group) or placebo (control group) for 9 wk. Rats from the DHA group showed a higher endurance capacity (+56%, P < 0.05) compared with control animals. Permeabilized myofibers from soleus muscle showed higher O2 consumptions (P < 0.05) in the DHA group compared with the control group, with glutamate-malate as substrates, both in basal conditions (i.e., state 2) and under maximal conditions (i.e., state 3, using ADP), along with a higher apparent Km for ADP (P < 0.05). Calcium retention capacity of isolated mitochondria was lower in DHA group compared with the control group (P < 0.05). Phospho-AMPK/AMPK ratio and PPARδ mRNA content were higher in the DHA group compared with the control group (P < 0.05). Results showed that DHA enhanced endurance capacity in adult animals, a beneficial effect potentially resulting from improvement in mitochondrial function, as suggested by our results on permeabilized fibers. DHA supplementation could be of potential interest for the muscle function in adults and for fighting the decline in exercise tolerance with age that could imply energy-sensing pathway, as suggested by changes in phospho-AMPK/AMPK ratio.
Collapse
MESH Headings
- 3-Hydroxyacyl CoA Dehydrogenases/drug effects
- 3-Hydroxyacyl CoA Dehydrogenases/metabolism
- Animals
- Blotting, Western
- Calcium/metabolism
- Calorimetry, Indirect
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cholesterol/metabolism
- Citrate (si)-Synthase/drug effects
- Citrate (si)-Synthase/metabolism
- Dietary Supplements
- Docosahexaenoic Acids/pharmacology
- Electron Transport/drug effects
- Exercise Tolerance/drug effects
- Hydrogen Peroxide/metabolism
- Male
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Oxygen Consumption/drug effects
- Phospholipids/metabolism
- Physical Conditioning, Animal
- Physical Endurance/drug effects
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Real-Time Polymerase Chain Reaction
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Marie Le Guen
- Université Grenoble Alpes, Laboratoire de Bioénergétique Fondamentale et Appliquée, U1055, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1055, Grenoble, France
| | - Valérie Chaté
- Université Grenoble Alpes, Laboratoire de Bioénergétique Fondamentale et Appliquée, U1055, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1055, Grenoble, France
| | - Isabelle Hininger-Favier
- Université Grenoble Alpes, Laboratoire de Bioénergétique Fondamentale et Appliquée, U1055, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1055, Grenoble, France
| | - Brigitte Laillet
- Institut National de la Recherche Agronomique, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France; and Université d'Auvergne, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France
| | - Béatrice Morio
- Institut National de la Recherche Agronomique, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France; and Université d'Auvergne, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France
| | | | - Uwe Schlattner
- Université Grenoble Alpes, Laboratoire de Bioénergétique Fondamentale et Appliquée, U1055, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1055, Grenoble, France
| | - Christophe Pison
- Université Grenoble Alpes, Laboratoire de Bioénergétique Fondamentale et Appliquée, U1055, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1055, Grenoble, France
| | - Hervé Dubouchaud
- Université Grenoble Alpes, Laboratoire de Bioénergétique Fondamentale et Appliquée, U1055, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1055, Grenoble, France;
| |
Collapse
|
87
|
Kong XY, Feng YZ, Eftestøl E, Kase ET, Haugum H, Eskild W, Rustan AC, Thoresen GH. Increased glucose utilization and decreased fatty acid metabolism in myotubes from Glmp(gt/gt) mice. Arch Physiol Biochem 2016; 122:36-45. [PMID: 26707125 DOI: 10.3109/13813455.2015.1120752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glycosylated lysosomal membrane protein (GLMP) has been reported to enhance the expression from a peroxisome proliferator-activated receptor alpha (PPARα) responsive promoter, but also to be an integral lysosomal membrane protein. Using myotubes established from wild-type and Glmp(gt/gt) mice, the importance of GLMP in skeletal muscle was examined. Glmp(gt/gt) myotubes expressed a more glycolytic phenotype than wild-type myotubes. Myotubes from Glmp(gt/gt) mice metabolized glucose faster and had a larger pool of intracellular glycogen, while oleic acid uptake, storage and oxidation were significantly reduced. Gene expression analyses indicated lower expression of three PPAR-isoforms, a co-regulator of PPAR (PGC1α) and several genes important for lipid metabolism in Glmp(gt/gt) myotubes. However, ablation of GLMP did not seem to substantially impair the response to PPAR agonists. In conclusion, myotubes established from Glmp(gt/gt) mice were more glycolytic than myotubes from wild-type animals, in spite of no differences in muscle fiber types in vivo.
Collapse
Affiliation(s)
| | - Yuan Zeng Feng
- b Department of Pharmaceutical Biosciences , School of Pharmacy, University of Oslo , Oslo , Norway , and
| | | | - Eili T Kase
- b Department of Pharmaceutical Biosciences , School of Pharmacy, University of Oslo , Oslo , Norway , and
| | - Hanne Haugum
- b Department of Pharmaceutical Biosciences , School of Pharmacy, University of Oslo , Oslo , Norway , and
| | | | - Arild C Rustan
- b Department of Pharmaceutical Biosciences , School of Pharmacy, University of Oslo , Oslo , Norway , and
| | - G Hege Thoresen
- b Department of Pharmaceutical Biosciences , School of Pharmacy, University of Oslo , Oslo , Norway , and
- c Department of Pharmacology , Institute of Clinical Medicine, University of Oslo and Oslo University Hospital , Oslo , Norway
| |
Collapse
|
88
|
Kim Y, Kim D, Good DJ, Park Y. Conjugated linoleic acid (CLA) influences muscle metabolism via stimulating mitochondrial biogenesis signaling in adult‐onset inactivity induced obese mice. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yoo Kim
- Department of Food ScienceUniversity of MassachusettsAmherstMAUSA
| | - Daeyoung Kim
- Department of Mathematics and StatisticsUniversity of MassachusettsAmherstMAUSA
| | - Deborah J. Good
- Department of Human Nutrition, Foods and ExerciseVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - Yeonhwa Park
- Department of Food ScienceUniversity of MassachusettsAmherstMAUSA
| |
Collapse
|
89
|
Youssef J, Badr M. Peroxisome Proliferator-Activated Receptors Features, Functions, and Future. NUCLEAR RECEPTOR RESEARCH 2015. [DOI: 10.11131/2015/101188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
90
|
Jung S, Bae YS, Yong HI, Lee HJ, Seo DW, Park HB, Lee JH, Jo C. Proximate Composition, and l-Carnitine and Betaine Contents in Meat from Korean Indigenous Chicken. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1760-6. [PMID: 26580444 PMCID: PMC4647085 DOI: 10.5713/ajas.15.0250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/08/2015] [Accepted: 05/22/2015] [Indexed: 01/28/2023]
Abstract
This study investigated the proximate composition and l-carnitine and betaine content of meats from 5 lines of Korean indigenous chicken (KIC) for developing highly nutritious meat breeds with health benefits from the bioactive compounds such as l-carnitine and betaine in meat. In addition, the relevance of gender (male and female) and meat type (breast and thigh meat) was examined. A total of 595 F1 progeny (black [B], grey-brown [G], red-brown [R], white [W], and yellow-brown [Y]) from 70 full-sib families were used. The moisture, protein, fat, and ash contents of the meats were significantly affected by line, gender, and meat type (p<0.05). The males in line G and females in line B showed the highest protein and the lowest fat content of the meats. l-carnitine and betaine content showed effects of meat type, line, and gender (p<0.05). The highest l-carnitine content was found in breast and thigh meats from line Y in both genders. The breast meat from line G and the thigh meat from line R had the highest betaine content in males. The female breast and thigh meats showed the highest betaine content in line R. These data could be valuable for establishing selection strategies for developing highly nutritious chicken meat breeds in Korea.
Collapse
Affiliation(s)
- Samooel Jung
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea
| | - Young Sik Bae
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea
| | - Hae In Yong
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea
| | - Hyun Jung Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea
| | - Dong Won Seo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea
| | - Hee Bok Park
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea
| | - Jun Heon Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|
91
|
Ramírez-Espinosa JJ, González-Dávalos L, Shimada A, Piña E, Varela-Echavarria A, Mora O. Bovine (Bos taurus) Bone Marrow Mesenchymal Cell Differentiation to Adipogenic and Myogenic Lineages. Cells Tissues Organs 2015; 201:51-64. [PMID: 26565958 DOI: 10.1159/000440878] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2015] [Indexed: 11/19/2022] Open
Abstract
PURPOSE We evaluated the effect of peroxisome proliferator-activated receptor (PPAR) agonists on the differentiation and metabolic features of bovine bone marrow-derived mesenchymal cells induced to adipogenic or myogenic lineages. METHODS Cells isolated from 7-day-old calves were cultured in basal medium (BM). For adipogenic differentiation, cells were cultured for one passage in BM and then transferred to a medium supplemented with either rosiglitazone, telmisartan, sirtinol or conjugated c-9, t-11 linoleic acid; for myogenic differentiation, third-passage cells were added with either bezafibrate, telmisartan or sirtinol. The expression of PPARx03B3; (an adipogenic differentiation marker), myosin heavy chain (MyHC; a myogenic differentiation marker) and genes related to energy metabolism were measured by quantitative real-time PCR in a completely randomized design. RESULTS For adipogenic differentiation, 20 µM telmisartan showed the highest PPARx03B3; expression (15.58 ± 0.62-fold, p < 0.0001), and differences in the expression of energy metabolism-related genes were found for hexokinase II, phosphofructokinase, adipose triglyceride lipase, acetyl-CoA carboxylase α(ACACα) and fatty acid synthase (p < 0.001), but not for ACACβ (p = 0.4275). For myogenic differentiation, 200 µM bezafibrate showed the highest MyHC expression (73.98 ± 11.79-fold), and differences in the expression of all energy metabolism-related genes were found (p < 0.05). CONCLUSIONS Adipocyte and myocyte differentiation are enhanced with telmisartan and bezafibrate, respectively, and energy uptake, storage and mobilization are improved with both.
Collapse
Affiliation(s)
- Jesus J Ramírez-Espinosa
- Programa de Posgrado en Ciencias de la Produccix00F3;n y de la Salud Animal, Universidad Nacional Autx00F3;noma de Mx00E9;xico (UNAM), Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
92
|
Péladeau C, Ahmed A, Amirouche A, Crawford Parks TE, Bronicki LM, Ljubicic V, Renaud JM, Jasmin BJ. Combinatorial therapeutic activation with heparin and AICAR stimulates additive effects on utrophin A expression in dystrophic muscles. Hum Mol Genet 2015; 25:24-43. [PMID: 26494902 DOI: 10.1093/hmg/ddv444] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/19/2015] [Indexed: 01/13/2023] Open
Abstract
Upregulation of utrophin A is an attractive therapeutic strategy for treating Duchenne muscular dystrophy (DMD). Over the years, several studies revealed that utrophin A is regulated by multiple transcriptional and post-transcriptional mechanisms, and that pharmacological modulation of these pathways stimulates utrophin A expression in dystrophic muscle. In particular, we recently showed that activation of p38 signaling causes an increase in the levels of utrophin A mRNAs and protein by decreasing the functional availability of the destabilizing RNA-binding protein called K-homology splicing regulatory protein, thereby resulting in increases in the stability of existing mRNAs. Here, we treated 6-week-old mdx mice for 4 weeks with the clinically used anticoagulant drug heparin known to activate p38 mitogen-activated protein kinase, and determined the impact of this pharmacological intervention on the dystrophic phenotype. Our results show that heparin treatment of mdx mice caused a significant ∼1.5- to 3-fold increase in utrophin A expression in diaphragm, extensor digitorum longus and tibialis anterior (TA) muscles. In agreement with these findings, heparin-treated diaphragm and TA muscle fibers showed an accumulation of utrophin A and β-dystroglycan along their sarcolemma and displayed improved morphology and structural integrity. Moreover, combinatorial drug treatment using both heparin and 5-amino-4-imidazolecarboxamide riboside (AICAR), the latter targeting 5' adenosine monophosphate-activated protein kinase and the transcriptional activation of utrophin A, caused an additive effect on utrophin A expression in dystrophic muscle. These findings establish that heparin is a relevant therapeutic agent for treating DMD, and illustrate that combinatorial treatment of heparin with AICAR may serve as an effective strategy to further increase utrophin A expression in dystrophic muscle via activation of distinct signaling pathways.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Aatika Ahmed
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Adel Amirouche
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Tara E Crawford Parks
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Lucas M Bronicki
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
93
|
Tumova J, Malisova L, Andel M, Trnka J. Protective Effect of Unsaturated Fatty Acids on Palmitic Acid-Induced Toxicity in Skeletal Muscle Cells is not Mediated by PPARδ Activation. Lipids 2015; 50:955-64. [DOI: 10.1007/s11745-015-4058-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/22/2015] [Indexed: 11/28/2022]
|
94
|
Noland RC. Exercise and Regulation of Lipid Metabolism. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:39-74. [PMID: 26477910 DOI: 10.1016/bs.pmbts.2015.06.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The increased prevalence of hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, and fatty liver disease has provided increasingly negative connotations toward lipids. However, it is important to remember that lipids are essential components supporting life. Lipids are a class of molecules defined by their inherent insolubility in water. In biological systems, lipids are either hydrophobic (containing only polar groups) or amphipathic (possess polar and nonpolar groups). These characteristics lend lipids to be highly diverse with a multitude of functions including hormone and membrane synthesis, involvement in numerous signaling cascades, as well as serving as a source of metabolic fuel supporting energy production. Exercise can induce changes in the lipid composition of membranes that effect fluidity and cellular function, as well as modify the cellular and circulating environment of lipids that regulate signaling cascades. The purpose of this chapter is to focus on lipid utilization as metabolic fuel in response to acute and chronic exercise training. Lipids utilized as an energy source during exercise include circulating fatty acids bound to albumin, triglycerides stored in very-low-density lipoprotein, and intramuscular triglyceride stores. Dynamic changes in these lipid pools during and after exercise are discussed, as well as key factors that may be responsible for regulating changes in fat oxidation in response to varying exercise conditions.
Collapse
Affiliation(s)
- Robert C Noland
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA.
| |
Collapse
|
95
|
Mizunoya W, Miyahara H, Okamoto S, Akahoshi M, Suzuki T, Do MKQ, Ohtsubo H, Komiya Y, Lan M, Waga T, Iwata A, Nakazato K, Ikeuchi Y, Anderson JE, Tatsumi R. Improvement of Endurance Based on Muscle Fiber-Type Composition by Treatment with Dietary Apple Polyphenols in Rats. PLoS One 2015. [PMID: 26222548 PMCID: PMC4519157 DOI: 10.1371/journal.pone.0134303] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A recent study demonstrated a positive effect of apple polyphenol (APP) intake on muscle endurance of young-adult animals. While an enhancement of lipid metabolism may be responsible, in part, for the improvement, the contributing mechanisms still need clarification. Here we show that an 8-week intake of 5% (w/w) APP in the diet, up-regulates two features related to fiber type: the ratio of myosin heavy chain (MyHC) type IIx/IIb and myoglobin protein expression in plantaris muscle of 9-week-old male Fischer F344 rats compared to pair-fed controls (P < 0.05). Results were demonstrated by our SDS-PAGE system specialized for MyHC isoform separation and western blotting of whole muscles. Animal-growth profiles (food intake, body-weight gain, and internal-organ weights) did not differ between the control and 5% APP-fed animals (n = 9/group). Findings may account for the increase in fatigue resistance of lower hind limb muscles, as evidenced by a slower decline in the maximum isometric planter-flexion torque generated by a 100-s train of electrical stimulation of the tibial nerve. Additionally, the fatigue resistance was lower after 8 weeks of a 0.5% APP diet than after 5% APP, supporting an APP-dose dependency of the shift in fiber-type composition. Therefore, the present study highlights a promising contribution of dietary APP intake to increasing endurance based on fiber-type composition in rat muscle. Results may help in developing a novel strategy for application in animal sciences, and human sports and age-related health sciences.
Collapse
Affiliation(s)
- Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Hideo Miyahara
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Shinpei Okamoto
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Mariko Akahoshi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Mai-Khoi Q. Do
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Hideaki Ohtsubo
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Yusuke Komiya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Mu Lan
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Toshiaki Waga
- Fundamental Research Laboratory, Asahi Breweries, Ltd., Moriya, Ibaraki, Japan
| | - Akira Iwata
- Department of Physical Therapy, Faculty of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Koichi Nakazato
- Department of Exercise Physiology, Graduate School of Health and Sport Sciences, Nippon Sport Science University, Fukasawa, Tokyo, Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Judy E. Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
96
|
A metabolomic study of the PPARδ agonist GW501516 for enhancing running endurance in Kunming mice. Sci Rep 2015; 5:9884. [PMID: 25943561 PMCID: PMC4421799 DOI: 10.1038/srep09884] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/24/2015] [Indexed: 11/12/2022] Open
Abstract
Exercise can increase peroxisome proliferator-activated receptor-δ (PPARδ) expression in skeletal muscle. PPARδ regulates muscle metabolism and reprograms muscle fibre types to enhance running endurance. This study utilized metabolomic profiling to examine the effects of GW501516, a PPARδ agonist, on running endurance in mice. While training alone increased the exhaustive running performance, GW501516 treatment enhanced running endurance and the proportion of succinate dehydrogenase (SDH)-positive muscle fibres in both trained and untrained mice. Furthermore, increased levels of intermediate metabolites and key enzymes in fatty acid oxidation pathways were observed following training and/or treatment. Training alone increased serum inositol, glucogenic amino acids, and branch chain amino acids. However, GW501516 increased serum galactose and β-hydroxybutyrate, independent of training. Additionally, GW501516 alone raised serum unsaturated fatty acid levels, especially polyunsaturated fatty acids, but levels increased even more when combined with training. These findings suggest that mechanisms behind enhanced running capacity are not identical for GW501516 and training. Training increases energy availability by promoting catabolism of proteins, and gluconeogenesis, whereas GW501516 enhances specific consumption of fatty acids and reducing glucose utilization.
Collapse
|
97
|
Mille-Hamard L, Breuneval C, Rousseau AS, Grimaldi P, Billat VL. Transcriptional modulation of mitochondria biogenesis pathway at and above critical speed in mice. Mol Cell Biochem 2015; 405:223-32. [DOI: 10.1007/s11010-015-2413-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/18/2015] [Indexed: 01/08/2023]
|
98
|
Gim HJ, Li H, Jeong JH, Lee SJ, Sung MK, Song MY, Park BH, Oh SJ, Ryu JH, Jeon R. Design, synthesis, and biological evaluation of a series of alkoxy-3-indolylacetic acids as peroxisome proliferator-activated receptor γ/δ agonists. Bioorg Med Chem 2015; 23:3322-36. [PMID: 25982078 DOI: 10.1016/j.bmc.2015.04.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 01/08/2023]
Abstract
A series of alkoxy-3-indolylacetic acid analogs has been discovered as peroxisome proliferator-activated receptor (PPAR) agonists. Structure-activity relationship study indicated that PPARα/γ/δ activities were dependent on the nature of the hydrophobic group, the attachment position of the alkoxy linker to the indole ring, and N-alkylation of indole nitrogen. Some compounds presented significant PPARγ/δ activity and molecular modeling suggested their putative binding modes in the ligand binding domain of PPARγ. Of these, compound 51 was selected for in vivo study via an evaluation of microsomal stability in mouse and human liver. Compound 51 lowered the levels of fasting blood glucose, insulin, and HbA1c without gain in body weight in db/db mice. When compound 51 was treated, hepatic triglycerides level and the size of adipocytes in white adipose tissue of db/db mice were also reduced as opposed to treatment with rosiglitazone. Taken together, compound 51 shows high potential warranting further studies in models for diabetes and related metabolic disorders and may be in use as a chemical tool for the understanding of PPAR biology.
Collapse
Affiliation(s)
- Hyo Jin Gim
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Chengpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea
| | - Hua Li
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Chengpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea
| | - Ji Hye Jeong
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Chengpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea
| | - Su Jeong Lee
- Department of Food and Nutrition, Sookmyung Women's University, Chengpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea
| | - Mi-Kyung Sung
- Department of Food and Nutrition, Sookmyung Women's University, Chengpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea
| | - Mi-Young Song
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Soo Jin Oh
- Bio-Evaluation Center, Korea Research Institute Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk 363-833, Republic of Korea
| | - Jae-Ha Ryu
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Chengpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea
| | - Raok Jeon
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Chengpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea.
| |
Collapse
|
99
|
Feng YZ, Nikolić N, Bakke SS, Kase ET, Guderud K, Hjelmesæth J, Aas V, Rustan AC, Thoresen GH. Myotubes from lean and severely obese subjects with and without type 2 diabetes respond differently to an in vitro model of exercise. Am J Physiol Cell Physiol 2015; 308:C548-56. [DOI: 10.1152/ajpcell.00314.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/20/2015] [Indexed: 12/29/2022]
Abstract
Exercise improves insulin sensitivity and oxidative capacity in skeletal muscles. However, the effect of exercise on substrate oxidation is less clear in obese and type 2 diabetic subjects than in lean subjects. We investigated glucose and lipid metabolism and gene expression after 48 h with low-frequency electrical pulse stimulation (EPS), as an in vitro model of exercise, in cultured myotubes established from lean nondiabetic subjects and severely obese subjects (BMI ≥ 40 kg/m2) with and without type 2 diabetes. EPS induced an increase in insulin sensitivity but did not improve lipid oxidation in myotubes from severely obese subjects. Thus, EPS-induced increases in insulin sensitivity and lipid oxidation were positively and negatively correlated to BMI of the subjects, respectively. EPS enhanced oxidative capacity of glucose in myotubes from all subjects. Furthermore, EPS reduced mRNA expression of slow fiber-type marker (MYH7) in myotubes from diabetic subjects; however, the protein expression of this marker was not significantly affected by EPS in either of the donor groups. On the contrary, mRNA levels of interleukin-6 (IL-6) and IL-8 were unaffected by EPS in myotubes from diabetic subjects, while IL-6 mRNA expression was increased in myotubes from nondiabetic subjects. EPS-stimulated mRNA expression levels of MYH7, IL-6, and IL-8 correlated negatively with subjects' HbA1c and/or fasting plasma glucose, suggesting an effect linked to the diabetic phenotype. Taken together, these data show that myotubes from different donor groups respond differently to EPS, suggesting that this effect may reflect the in vivo characteristics of the donor groups.
Collapse
Affiliation(s)
- Yuan Z. Feng
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Nataša Nikolić
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Siril S. Bakke
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Eili T. Kase
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Kari Guderud
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Jøran Hjelmesæth
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vigdis Aas
- Faculty of Health, Oslo and Akershus University College of Applied Sciences, Oslo, Norway; and
| | - Arild C. Rustan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - G. Hege Thoresen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
100
|
Myers RB, Yoshioka J. Regulating PPARδ signaling as a potential therapeutic strategy for skeletal muscle disorders in heart failure. Am J Physiol Heart Circ Physiol 2015; 308:H967-9. [PMID: 25770240 DOI: 10.1152/ajpheart.00169.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ronald B Myers
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, Massachusetts
| | - Jun Yoshioka
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, Massachusetts
| |
Collapse
|