51
|
Wang R, Zhao L, Wang S, Zhao X, Liang C, Wang P, Li D. Regulatory pattern of abnormal promoter CpG island methylation in the glioblastoma multiforme classification. Front Genet 2022; 13:989985. [PMID: 36199581 PMCID: PMC9527345 DOI: 10.3389/fgene.2022.989985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022] Open
Abstract
Glioblastoma (GBM) is characterized by extensive genetic and phenotypic heterogeneity. However, it remains unexplored primarily how CpG island methylation abnormalities in promoter mediate glioblastoma typing. First, we presented a multi-omics scale map between glioblastoma sample clusters constructed based on promoter CpG island (PCGI) methylation-driven genes, using datasets including methylation profiles, expression profiles, and single-cell sequencing data from multiple highly annotated public clinical cohorts. Second, we identified differences in the tumor microenvironment between the two glioblastoma sample clusters and resolved key signaling pathways between cell clusters at the single-cell level based on comprehensive comparative analyses to investigate the reasons for survival differences between two of these clusters. Finally, we developed a diagnostic map and a prediction model for glioblastoma, and compared theoretical differences of drug sensitivity between two glioblastoma sample clusters. In summary, this study established a classification system for dissecting promoter CpG island methylation heterogeneity in glioblastoma and provides a new perspective for the diagnosis and treatment of glioblastoma.
Collapse
Affiliation(s)
- Rendong Wang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing, China
| | - Lei Zhao
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shijia Wang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing, China
| | - Xiaoxiao Zhao
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing, China
| | - Chuanyu Liang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Pei Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dongguo Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing, China
- *Correspondence: Dongguo Li,
| |
Collapse
|
52
|
Menassa DA, Muntslag TAO, Martin-Estebané M, Barry-Carroll L, Chapman MA, Adorjan I, Tyler T, Turnbull B, Rose-Zerilli MJJ, Nicoll JAR, Krsnik Z, Kostovic I, Gomez-Nicola D. The spatiotemporal dynamics of microglia across the human lifespan. Dev Cell 2022; 57:2127-2139.e6. [PMID: 35977545 PMCID: PMC9616795 DOI: 10.1016/j.devcel.2022.07.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/22/2022] [Accepted: 07/26/2022] [Indexed: 11/07/2022]
Abstract
Microglia, the brain's resident macrophages, shape neural development and are key neuroimmune hubs in the pathological signatures of neurodevelopmental disorders. Despite the importance of microglia, their development has not been carefully examined in the human brain, and most of our knowledge derives from rodents. We aimed to address this gap in knowledge by establishing an extensive collection of 97 post-mortem tissues in order to enable quantitative, sex-matched, detailed analysis of microglia across the human lifespan. We identify the dynamics of these cells in the human telencephalon, describing waves in microglial density across gestation, infancy, and childhood, controlled by a balance of proliferation and apoptosis, which track key neurodevelopmental milestones. These profound changes in microglia are also observed in bulk RNA-seq and single-cell RNA-seq datasets. This study provides a detailed insight into the spatiotemporal dynamics of microglia across the human lifespan and serves as a foundation for elucidating how microglia contribute to shaping neurodevelopment in humans.
Collapse
Affiliation(s)
- David A Menassa
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom; Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Tim A O Muntslag
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Maria Martin-Estebané
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Liam Barry-Carroll
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Mark A Chapman
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Istvan Adorjan
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Teadora Tyler
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Bethany Turnbull
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | | | - James A R Nicoll
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Zeljka Krsnik
- Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Ivica Kostovic
- Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
53
|
Chen Z, Chen W, Li Y, Moos M, Xiao D, Wang C. Single-nucleus chromatin accessibility and RNA sequencing reveal impaired brain development in prenatally e-cigarette exposed neonatal rats. iScience 2022; 25:104686. [PMID: 35874099 PMCID: PMC9304611 DOI: 10.1016/j.isci.2022.104686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/13/2022] [Accepted: 06/24/2022] [Indexed: 11/03/2022] Open
Abstract
Although emerging evidence reveals that vaping alters the function of the central nervous system, the effects of maternal vaping on offspring brain development remain elusive. Using a well-established in utero exposure model, we performed single-nucleus ATAC-seq (snATAC-seq) and RNA sequencing (snRNA-seq) on prenatally e-cigarette-exposed rat brains. We found that maternal vaping distorted neuronal lineage differentiation in the neonatal brain by promoting excitatory neurons and inhibiting lateral ganglionic eminence-derived inhibitory neuronal differentiation. Moreover, maternal vaping disrupted calcium homeostasis, induced microglia cell death, and elevated susceptibility to cerebral ischemic injury in the developing brain of offspring. Our results suggest that the aberrant calcium signaling, diminished microglial population, and impaired microglia-neuron interaction may all contribute to the underlying mechanisms by which prenatal e-cigarette exposure impairs neonatal rat brain development. Our findings raise the concern that maternal vaping may cause adverse long-term brain damage to the offspring.
Collapse
Affiliation(s)
- Zhong Chen
- Center for Genomics, School of Medicine, Loma Linda University, 11021 Campus St., Loma Linda, CA 92350, USA
| | - Wanqiu Chen
- Center for Genomics, School of Medicine, Loma Linda University, 11021 Campus St., Loma Linda, CA 92350, USA
| | - Yong Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Malcolm Moos
- Center for Biologics Evaluation and Research & Division of Cellular and Gene Therapies, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Daliao Xiao
- Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Charles Wang
- Center for Genomics, School of Medicine, Loma Linda University, 11021 Campus St., Loma Linda, CA 92350, USA
- Division of Microbiology & Molecular Genetics, Department of Basic Science, School of Medicine, Loma Linda University, 11021 Campus St., Loma Linda, CA 92350, USA
| |
Collapse
|
54
|
Anijs M, Devanna P, Vernes SC. ARHGEF39, a Gene Implicated in Developmental Language Disorder, Activates RHOA and Is Involved in Cell De-Adhesion and Neural Progenitor Cell Proliferation. Front Mol Neurosci 2022; 15:941494. [PMID: 35959104 PMCID: PMC9359124 DOI: 10.3389/fnmol.2022.941494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
ARHGEF39 was previously implicated in developmental language disorder (DLD) via a functional polymorphism that can disrupt post-transcriptional regulation by microRNAs. ARHGEF39 is part of the family of Rho guanine nucleotide exchange factors (RhoGEFs) that activate small Rho GTPases to regulate a wide variety of cellular processes. However, little is known about the function of ARHGEF39, or how its function might contribute to neurodevelopment or related disorders. Here, we explore the molecular function of ARHGEF39 and show that it activates the Rho GTPase RHOA and that high ARHGEF39 expression in cell cultures leads to an increase of detached cells. To explore its role in neurodevelopment, we analyse published single cell RNA-sequencing data and demonstrate that ARHGEF39 is a marker gene for proliferating neural progenitor cells and that it is co-expressed with genes involved in cell division. This suggests a role for ARHGEF39 in neurogenesis in the developing brain. The co-expression of ARHGEF39 with other RHOA-regulating genes supports RHOA as substrate of ARHGEF39 in neural cells, and the involvement of RHOA in neuropsychiatric disorders highlights a potential link between ARHGEF39 and neurodevelopment and disorder. Understanding the GTPase substrate, co-expression network, and processes downstream of ARHGEF39 provide new avenues for exploring the mechanisms by which altered expression levels of ARHGEF39 may contribute to neurodevelopment and associated disorders.
Collapse
|
55
|
Suzuki IK. Evolutionary innovations of human cerebral cortex viewed through the lens of high-throughput sequencing. Dev Neurobiol 2022; 82:476-494. [PMID: 35765158 DOI: 10.1002/dneu.22893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
Humans had acquired a tremendously enlarged cerebral cortex containing a huge quantity and variety of cells during evolution. Such evolutionary uniqueness offers a neural basis of our cognitive innovation and human-specific features of neurodevelopmental and psychiatric disorders. Since human brain is hardly examined in vivo with experimental approaches commonly applied on animal models, the recent advancement of sequencing technologies offers an indispensable viewpoint of human brain anatomy and development. This review introduces the recent findings on the unique features in the adult and the characteristic developmental processes of the human cerebral cortex, based on high throughput DNA sequencing technologies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ikuo K Suzuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
56
|
Metabolic lactate production coordinates vasculature development and progenitor behavior in the developing mouse neocortex. Nat Neurosci 2022; 25:865-875. [PMID: 35726058 DOI: 10.1038/s41593-022-01093-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/11/2022] [Indexed: 01/01/2023]
Abstract
Proper neural progenitor behavior in conjunction with orderly vasculature formation is fundamental to the development of the neocortex. However, the mechanisms coordinating neural progenitor behavior and vessel growth remain largely elusive. Here we show that robust metabolic production of lactate by radial glial progenitors (RGPs) co-regulates vascular development and RGP division behavior in the developing mouse neocortex. RGPs undergo a highly organized lineage progression program to produce diverse neural progeny. Systematic single-cell metabolic state analysis revealed that RGPs and their progeny exhibit distinct metabolic features associated with specific cell types and lineage progression statuses. Symmetrically dividing, proliferative RGPs preferentially express a cohort of genes that support glucose uptake and anaerobic glycolysis. Consequently, they consume glucose in anaerobic metabolism and produce a high level of lactate, which promotes vessel growth. Moreover, lactate production enhances RGP proliferation by maintaining mitochondrial length. Together, these results suggest that specific metabolic states and metabolites coordinately regulate vasculature formation and progenitor behavior in neocortical development.
Collapse
|
57
|
Hu Y, Jiang Y, Behnan J, Ribeiro MM, Kalantzi C, Zhang MD, Lou D, Häring M, Sharma N, Okawa S, Del Sol A, Adameyko I, Svensson M, Persson O, Ernfors P. Neural network learning defines glioblastoma features to be of neural crest perivascular or radial glia lineages. SCIENCE ADVANCES 2022; 8:eabm6340. [PMID: 35675414 PMCID: PMC9177076 DOI: 10.1126/sciadv.abm6340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glioblastoma is believed to originate from nervous system cells; however, a putative origin from vessel-associated progenitor cells has not been considered. We deeply single-cell RNA-sequenced glioblastoma progenitor cells of 18 patients and integrated 710 bulk tumors and 73,495 glioma single cells of 100 patients to determine the relation of glioblastoma cells to normal brain cell types. A novel neural network-based projection of the developmental trajectory of normal brain cells uncovered two principal cell-lineage features of glioblastoma, neural crest perivascular and radial glia, carrying defining methylation patterns and survival differences. Consistently, introducing tumorigenic alterations in naïve human brain perivascular cells resulted in brain tumors. Thus, our results suggest that glioblastoma can arise from the brains' vasculature, and patients with such glioblastoma have a significantly poorer outcome.
Collapse
Affiliation(s)
- Yizhou Hu
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yiwen Jiang
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jinan Behnan
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mariana Messias Ribeiro
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Chrysoula Kalantzi
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ming-Dong Zhang
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Daohua Lou
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Häring
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nilesh Sharma
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Satoshi Okawa
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Igor Adameyko
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Oscar Persson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Corresponding author.
| |
Collapse
|
58
|
Jabali A, Hoffrichter A, Uzquiano A, Marsoner F, Wilkens R, Siekmann M, Bohl B, Rossetti AC, Horschitz S, Koch P, Francis F, Ladewig J. Human cerebral organoids reveal progenitor pathology in EML1-linked cortical malformation. EMBO Rep 2022; 23:e54027. [PMID: 35289477 PMCID: PMC9066063 DOI: 10.15252/embr.202154027] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 12/26/2022] Open
Abstract
Malformations of human cortical development (MCD) can cause severe disabilities. The lack of human‐specific models hampers our understanding of the molecular underpinnings of the intricate processes leading to MCD. Here, we use cerebral organoids derived from patients and genome edited‐induced pluripotent stem cells to address pathophysiological changes associated with a complex MCD caused by mutations in the echinoderm microtubule‐associated protein‐like 1 (EML1) gene. EML1‐deficient organoids display ectopic neural rosettes at the basal side of the ventricular zone areas and clusters of heterotopic neurons. Single‐cell RNA sequencing shows an upregulation of basal radial glial (RG) markers and human‐specific extracellular matrix components in the ectopic cell population. Gene ontology and molecular analyses suggest that ectopic progenitor cells originate from perturbed apical RG cell behavior and yes‐associated protein 1 (YAP1)‐triggered expansion. Our data highlight a progenitor origin of EML1 mutation‐induced MCD and provide new mechanistic insight into the human disease pathology.
Collapse
Affiliation(s)
- Ammar Jabali
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany.,Institute of Reconstructive Neurobiology, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Anne Hoffrichter
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Ana Uzquiano
- INSERM U 1270, Paris, France.,Sorbonne Université, UMR-S 1270, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Fabio Marsoner
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Ruven Wilkens
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Marco Siekmann
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Bettina Bohl
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Andrea C Rossetti
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Sandra Horschitz
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Philipp Koch
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Fiona Francis
- INSERM U 1270, Paris, France.,Sorbonne Université, UMR-S 1270, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Julia Ladewig
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany.,Institute of Reconstructive Neurobiology, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
59
|
Romero-Morales AI, Gama V. Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids. Front Mol Neurosci 2022; 15:840265. [PMID: 35571368 PMCID: PMC9102998 DOI: 10.3389/fnmol.2022.840265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial homeostasis -including function, morphology, and inter-organelle communication- provides guidance to the intrinsic developmental programs of corticogenesis, while also being responsive to environmental and intercellular signals. Two- and three-dimensional platforms have become useful tools to interrogate the capacity of cells to generate neuronal and glia progeny in a background of metabolic dysregulation, but the mechanistic underpinnings underlying the role of mitochondria during human neurogenesis remain unexplored. Here we provide a concise overview of cortical development and the use of pluripotent stem cell models that have contributed to our understanding of mitochondrial and metabolic regulation of early human brain development. We finally discuss the effects of mitochondrial fitness dysregulation seen under stress conditions such as metabolic dysregulation, absence of developmental apoptosis, and hypoxia; and the avenues of research that can be explored with the use of brain organoids.
Collapse
Affiliation(s)
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
60
|
Irie K, Doi M, Usui N, Shimada S. Evolution of the Human Brain Can Help Determine Pathophysiology of Neurodevelopmental Disorders. Front Neurosci 2022; 16:871979. [PMID: 35431788 PMCID: PMC9010664 DOI: 10.3389/fnins.2022.871979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 02/03/2023] Open
Abstract
The evolution of humans brought about a co-occurring evolution of the human brain, which is far larger and more complex than that of many other organisms. The brain has evolved characteristically in humans in many respects, including macro-and micro-anatomical changes in the brain structure, changes in gene expression, and cell populations and ratios. These characteristics are essential for the execution of higher functions, such as sociality, language, and cognition, which express humanity, and are thought to have been acquired over evolutionary time. However, with the acquisition of higher functions also comes the risk of the disease in which they fail. This review focuses on human brain evolution and neurodevelopmental disorders (NDDs) and discusses brain development, molecular evolution, and human brain evolution. Discussing the potential for the development and pathophysiology of NDDs acquired by human brain evolution will provide insights into the acquisition and breakdown of higher functions from a new perspective.
Collapse
Affiliation(s)
- Koichiro Irie
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Center for Medical Research and Education, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Miyuki Doi
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- United Graduate School of Child Development, Osaka University, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
- *Correspondence: Noriyoshi Usui,
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- United Graduate School of Child Development, Osaka University, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| |
Collapse
|
61
|
FASN-dependent de novo lipogenesis is required for brain development. Proc Natl Acad Sci U S A 2022; 119:2112040119. [PMID: 34996870 PMCID: PMC8764667 DOI: 10.1073/pnas.2112040119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 01/24/2023] Open
Abstract
Fate and behavior of neural progenitor cells are tightly regulated during mammalian brain development. Metabolic pathways, such as glycolysis and oxidative phosphorylation, that are required for supplying energy and providing molecular building blocks to generate cells govern progenitor function. However, the role of de novo lipogenesis, which is the conversion of glucose into fatty acids through the multienzyme protein fatty acid synthase (FASN), for brain development remains unknown. Using Emx1Cre-mediated, tissue-specific deletion of Fasn in the mouse embryonic telencephalon, we show that loss of FASN causes severe microcephaly, largely due to altered polarity of apical, radial glia progenitors and reduced progenitor proliferation. Furthermore, genetic deletion and pharmacological inhibition of FASN in human embryonic stem cell-derived forebrain organoids identifies a conserved role of FASN-dependent lipogenesis for radial glia cell polarity in human brain organoids. Thus, our data establish a role of de novo lipogenesis for mouse and human brain development and identify a link between progenitor-cell polarity and lipid metabolism.
Collapse
|
62
|
Unraveling unique and common cell type-specific mechanisms in glioblastoma multiforme. Comput Struct Biotechnol J 2022; 20:90-106. [PMID: 34976314 PMCID: PMC8688884 DOI: 10.1016/j.csbj.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma multiforme persists to be an enigmatic distress in neuro-oncology. Its untethering capacity to thrive in a confined microenvironment, metastasize intracranially, and remain resistant to the systemic treatments, renders this tumour incurable. The glial cell type specificity in GBM remains exploratory. In our study, we aimed to address this problem by studying the GBM at the cell type level in the brain. The cellular makeup of this tumour is composed of genetically altered glial cells which include astrocyte, microglia, oligodendrocyte precursor cell, newly formed oligodendrocyte and myelinating oligodendrocyte. We extracted cell type-specific solid tumour as well as recurrent solid tumour glioma genes, and studied their functional networks and contribution towards gliomagenesis. We identified the principal transcription factors that are found to be regulating vital tumorigenic processes. We also assessed the protein-protein interaction networks at their domain level to get a more microscopic view of the structural and functional operations that transpire in these cells. This yielded the eminent protein regulators exhibiting their regulation in signaling pathways. Overall, our study unveiled regulatory mechanisms in glioma cell types that can be targeted for a more efficient glioma therapy.
Collapse
Key Words
- CAMs, Cell adhesion molecules
- CNS, Cental nervous system
- DEG, Differentially expressed genes
- EMT, Epithelial-mesenchymal transistion
- GBM, Glioblastoma multiforme
- GSC, Glioblastoma Stem Cell
- Glial cell types
- Glioblastoma multiforme
- INstruct, a database of structurally resolved protein interactome
- MO, Myelinating oligodendrocyte
- NCBI, National Centre for Biotechnology Information
- NFO, Newly formed oligodendrocyte
- NPC, Neural progenitor cell
- OPC, Oligodendrocyte precursor cell
- PDI, Protein domain interactions
- PDIN, Protein domain interaction network
- PPI, Protein-protein interactions
- Primary solid tumour
- Protein domains
- Protein interaction networks
- RSEM, RNA-seq by Expectation-Maximization
- Recurrent solid tumour transcription factors
- SIGNOR, Signaling Network Open Resource
- TCGA, The Cancer Genome Atlas
- TF, Transcription factor
- TP, Primary solid tumour
- TR, Recurrent solid tumour
- WHO, World health organization
- iDEP, Integrated Differential Expression and Pathway analysis
Collapse
|
63
|
Prodromidou K, Matsas R. Evolving features of human cortical development and the emerging roles of non-coding RNAs in neural progenitor cell diversity and function. Cell Mol Life Sci 2021; 79:56. [PMID: 34921638 PMCID: PMC11071749 DOI: 10.1007/s00018-021-04063-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
The human cerebral cortex is a uniquely complex structure encompassing an unparalleled diversity of neuronal types and subtypes. These arise during development through a series of evolutionary conserved processes, such as progenitor cell proliferation, migration and differentiation, incorporating human-associated adaptations including a protracted neurogenesis and the emergence of novel highly heterogeneous progenitor populations. Disentangling the unique features of human cortical development involves elucidation of the intricate developmental cell transitions orchestrated by progressive molecular events. Crucially, developmental timing controls the fine balance between cell cycle progression/exit and the neurogenic competence of precursor cells, which undergo morphological transitions coupled to transcriptome-defined temporal states. Recent advances in bulk and single-cell transcriptomic technologies suggest that alongside protein-coding genes, non-coding RNAs exert important regulatory roles in these processes. Interestingly, a considerable number of novel long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have appeared in human and non-human primates suggesting an evolutionary role in shaping cortical development. Here, we present an overview of human cortical development and highlight the marked diversification and complexity of human neuronal progenitors. We further discuss how lncRNAs and miRNAs constitute critical components of the extended epigenetic regulatory network defining intermediate states of progenitors and controlling cell cycle dynamics and fate choices with spatiotemporal precision, during human neurodevelopment.
Collapse
Affiliation(s)
- Kanella Prodromidou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521, Athens, Greece.
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521, Athens, Greece
| |
Collapse
|
64
|
Shi Y, Wang M, Mi D, Lu T, Wang B, Dong H, Zhong S, Chen Y, Sun L, Zhou X, Ma Q, Liu Z, Wang W, Zhang J, Wu Q, Marín O, Wang X. Mouse and human share conserved transcriptional programs for interneuron development. Science 2021; 374:eabj6641. [PMID: 34882453 DOI: 10.1126/science.abj6641] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yingchao Shi
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing 100101, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing 100101, China.,College of Life Science, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Da Mi
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK.,Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tian Lu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing 100101, China.,College of Life Science, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bosong Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Hao Dong
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing 100101, China.,College of Life Science, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Suijuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Chinese Institute for Brain Research, Beijing 102206, China
| | - Youqiao Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Le Sun
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Xin Zhou
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing 100101, China
| | - Qiang Ma
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing 100101, China.,College of Life Science, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zeyuan Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing 100101, China.,College of Life Science, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing 100101, China.,College of Life Science, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Junjing Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Chinese Institute for Brain Research, Beijing 102206, China
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing 100101, China.,College of Life Science, University of the Chinese Academy of Sciences, Beijing 100049, China.,Chinese Institute for Brain Research, Beijing 102206, China.,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China.,Guangdong Institute of Intelligence Science and Technology, Guangdong 519031, China
| |
Collapse
|
65
|
In Vitro Recapitulation of Neuropsychiatric Disorders with Pluripotent Stem Cells-Derived Brain Organoids. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312431. [PMID: 34886158 PMCID: PMC8657206 DOI: 10.3390/ijerph182312431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
Adolescent neuropsychiatric disorders have been recently increasing due to genetic and environmental influences. Abnormal brain development before and after birth contribute to the pathology of neuropsychiatric disorders. However, it is difficult to experimentally investigate because of the complexity of brain and ethical constraints. Recently generated human brain organoids from pluripotent stem cells are considered as a promising in vitro model to recapitulate brain development and diseases. To better understand how brain organoids could be applied to investigate neuropsychiatric disorders, we analyzed the key consideration points, including how to generate brain organoids from pluripotent stem cells, the current application of brain organoids in recapitulating neuropsychiatric disorders and the future perspectives. This review covered what have been achieved on modeling the cellular and neural circuit deficits of neuropsychiatric disorders and those challenges yet to be solved. Together, this review aims to provide a fundamental understanding of how to generate brain organoids to model neuropsychiatric disorders, which will be helpful in improving the mental health of adolescents.
Collapse
|
66
|
Reichard J, Zimmer-Bensch G. The Epigenome in Neurodevelopmental Disorders. Front Neurosci 2021; 15:776809. [PMID: 34803599 PMCID: PMC8595945 DOI: 10.3389/fnins.2021.776809] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
Neurodevelopmental diseases (NDDs), such as autism spectrum disorders, epilepsy, and schizophrenia, are characterized by diverse facets of neurological and psychiatric symptoms, differing in etiology, onset and severity. Such symptoms include mental delay, cognitive and language impairments, or restrictions to adaptive and social behavior. Nevertheless, all have in common that critical milestones of brain development are disrupted, leading to functional deficits of the central nervous system and clinical manifestation in child- or adulthood. To approach how the different development-associated neuropathologies can occur and which risk factors or critical processes are involved in provoking higher susceptibility for such diseases, a detailed understanding of the mechanisms underlying proper brain formation is required. NDDs rely on deficits in neuronal identity, proportion or function, whereby a defective development of the cerebral cortex, the seat of higher cognitive functions, is implicated in numerous disorders. Such deficits can be provoked by genetic and environmental factors during corticogenesis. Thereby, epigenetic mechanisms can act as an interface between external stimuli and the genome, since they are known to be responsive to external stimuli also in cortical neurons. In line with that, DNA methylation, histone modifications/variants, ATP-dependent chromatin remodeling, as well as regulatory non-coding RNAs regulate diverse aspects of neuronal development, and alterations in epigenomic marks have been associated with NDDs of varying phenotypes. Here, we provide an overview of essential steps of mammalian corticogenesis, and discuss the role of epigenetic mechanisms assumed to contribute to pathophysiological aspects of NDDs, when being disrupted.
Collapse
Affiliation(s)
- Julia Reichard
- Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Geraldine Zimmer-Bensch
- Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
67
|
Ma L, Du Y, Hui Y, Li N, Fan B, Zhang X, Li X, Hong W, Wu Z, Zhang S, Zhou S, Xu X, Zhou Z, Jiang C, Liu L, Zhang X. Developmental programming and lineage branching of early human telencephalon. EMBO J 2021; 40:e107277. [PMID: 34558085 DOI: 10.15252/embj.2020107277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023] Open
Abstract
The dorsal and ventral human telencephalons contain different neuronal subtypes, including glutamatergic, GABAergic, and cholinergic neurons, and how these neurons are generated during early development is not well understood. Using scRNA-seq and stringent validations, we reveal here a developmental roadmap for human telencephalic neurons. Both dorsal and ventral telencephalic radial glial cells (RGs) differentiate into neurons via dividing intermediate progenitor cells (IPCs_div) and early postmitotic neuroblasts (eNBs). The transcription factor ASCL1 plays a key role in promoting fate transition from RGs to IPCs_div in both regions. RGs from the regionalized neuroectoderm show heterogeneity, with restricted glutamatergic, GABAergic, and cholinergic differentiation potencies. During neurogenesis, IPCs_div gradually exit the cell cycle and branch into sister eNBs to generate distinct neuronal subtypes. Our findings highlight a general RGs-IPCs_div-eNBs developmental scheme for human telencephalic progenitors and support that the major neuronal fates of human telencephalon are predetermined during dorsoventral regionalization with neuronal diversity being further shaped during neurogenesis and neural circuit integration.
Collapse
Affiliation(s)
- Lin Ma
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.,Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, China
| | - Yanhua Du
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Hui
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Nan Li
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Beibei Fan
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Xiaojie Zhang
- Department of Obstetrics and Gynecology, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Xiaocui Li
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Hong
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiping Wu
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuwei Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Shanshan Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Xiangjie Xu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Zhongshu Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China
| | - Ling Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.,Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoqing Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China.,Brain and Spinal Cord Innovative Research Center, School of Medicine, Tongji University, Shanghai, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, China
| |
Collapse
|
68
|
Islam KUS, Meli N, Blaess S. The Development of the Mesoprefrontal Dopaminergic System in Health and Disease. Front Neural Circuits 2021; 15:746582. [PMID: 34712123 PMCID: PMC8546303 DOI: 10.3389/fncir.2021.746582] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
Midbrain dopaminergic neurons located in the substantia nigra and the ventral tegmental area are the main source of dopamine in the brain. They send out projections to a variety of forebrain structures, including dorsal striatum, nucleus accumbens, and prefrontal cortex (PFC), establishing the nigrostriatal, mesolimbic, and mesoprefrontal pathways, respectively. The dopaminergic input to the PFC is essential for the performance of higher cognitive functions such as working memory, attention, planning, and decision making. The gradual maturation of these cognitive skills during postnatal development correlates with the maturation of PFC local circuits, which undergo a lengthy functional remodeling process during the neonatal and adolescence stage. During this period, the mesoprefrontal dopaminergic innervation also matures: the fibers are rather sparse at prenatal stages and slowly increase in density during postnatal development to finally reach a stable pattern in early adulthood. Despite the prominent role of dopamine in the regulation of PFC function, relatively little is known about how the dopaminergic innervation is established in the PFC, whether and how it influences the maturation of local circuits and how exactly it facilitates cognitive functions in the PFC. In this review, we provide an overview of the development of the mesoprefrontal dopaminergic system in rodents and primates and discuss the role of altered dopaminergic signaling in neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- K Ushna S Islam
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Norisa Meli
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, Bonn, Germany.,Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sandra Blaess
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
69
|
Marangon D, Caporale N, Boccazzi M, Abbracchio MP, Testa G, Lecca D. Novel in vitro Experimental Approaches to Study Myelination and Remyelination in the Central Nervous System. Front Cell Neurosci 2021; 15:748849. [PMID: 34720882 PMCID: PMC8551863 DOI: 10.3389/fncel.2021.748849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Myelin is the lipidic insulating structure enwrapping axons and allowing fast saltatory nerve conduction. In the central nervous system, myelin sheath is the result of the complex packaging of multilamellar extensions of oligodendrocyte (OL) membranes. Before reaching myelinating capabilities, OLs undergo a very precise program of differentiation and maturation that starts from OL precursor cells (OPCs). In the last 20 years, the biology of OPCs and their behavior under pathological conditions have been studied through several experimental models. When co-cultured with neurons, OPCs undergo terminal maturation and produce myelin tracts around axons, allowing to investigate myelination in response to exogenous stimuli in a very simple in vitro system. On the other hand, in vivo models more closely reproducing some of the features of human pathophysiology enabled to assess the consequences of demyelination and the molecular mechanisms of remyelination, and they are often used to validate the effect of pharmacological agents. However, they are very complex, and not suitable for large scale drug discovery screening. Recent advances in cell reprogramming, biophysics and bioengineering have allowed impressive improvements in the methodological approaches to study brain physiology and myelination. Rat and mouse OPCs can be replaced by human OPCs obtained by induced pluripotent stem cells (iPSCs) derived from healthy or diseased individuals, thus offering unprecedented possibilities for personalized disease modeling and treatment. OPCs and neural cells can be also artificially assembled, using 3D-printed culture chambers and biomaterial scaffolds, which allow modeling cell-to-cell interactions in a highly controlled manner. Interestingly, scaffold stiffness can be adopted to reproduce the mechanosensory properties assumed by tissues in physiological or pathological conditions. Moreover, the recent development of iPSC-derived 3D brain cultures, called organoids, has made it possible to study key aspects of embryonic brain development, such as neuronal differentiation, maturation and network formation in temporal dynamics that are inaccessible to traditional in vitro cultures. Despite the huge potential of organoids, their application to myelination studies is still in its infancy. In this review, we shall summarize the novel most relevant experimental approaches and their implications for the identification of remyelinating agents for human diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Davide Marangon
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nicolò Caporale
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | - Marta Boccazzi
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maria P. Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Testa
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
70
|
Fernandes S, Klein D, Marchetto MC. Unraveling Human Brain Development and Evolution Using Organoid Models. Front Cell Dev Biol 2021; 9:737429. [PMID: 34692694 PMCID: PMC8529117 DOI: 10.3389/fcell.2021.737429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
Brain organoids are proving to be physiologically relevant models for studying human brain development in terms of temporal transcriptional signature recapitulation, dynamic cytoarchitectural development, and functional electrophysiological maturation. Several studies have employed brain organoid technologies to elucidate human-specific processes of brain development, gene expression, and cellular maturation by comparing human-derived brain organoids to those of non-human primates (NHPs). Brain organoids have been established from a variety of NHP pluripotent stem cell (PSC) lines and many protocols are now available for generating brain organoids capable of reproducibly representing specific brain region identities. Innumerous combinations of brain region specific organoids derived from different human and NHP PSCs, with CRISPR-Cas9 gene editing techniques and strategies to promote advanced stages of maturation, will successfully establish complex brain model systems for the accurate representation and elucidation of human brain development. Identified human-specific processes of brain development are likely vulnerable to dysregulation and could result in the identification of therapeutic targets or disease prevention strategies. Here, we discuss the potential of brain organoids to successfully model human-specific processes of brain development and explore current strategies for pinpointing these differences.
Collapse
Affiliation(s)
- Sarah Fernandes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| | - Davis Klein
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, United States
| | - Maria C. Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Anthropology, Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
71
|
Gui S, Liu Y, Pu J, Song X, Chen X, Chen W, Zhong X, Wang H, Liu L, Xie P. Comparative analysis of hippocampal transcriptional features between major depressive disorder patients and animal models. J Affect Disord 2021; 293:19-28. [PMID: 34161882 DOI: 10.1016/j.jad.2021.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a psychiatric disorder caused by various etiologies. Chronic stress models are used to simulate the heterogeneous pathogenic processes of depression. However, few studies have compared transcriptional features between stress models and MDD patients. METHODS We generated hippocampal transcriptional profiles of the chronic social defeat model by RNA sequencing and downloaded raw data of the same brain region from public databases of the chronic unpredictable mild stress model, the learned helplessness model, and MDD patients. Differential expression and gene co-expression analyses were integrated to compare transcriptional features between stress models and MDD patients. RESULTS Each stress model shared 11.4% to 16.3% of differentially expressed genes with MDD patients. Functional analysis at the gene expression level identified altered ensheathment of neurons in both stress models and MDD patients. At the gene network level, each stress model shared 20.9% to 41.6% of co-expressed genes with MDD patients. Functional analysis based on these genes found that axon guidance signaling is the most significantly enriched pathway that was shared by all stress models and MDD patients. LIMITATIONS This study was limited by considering only a single brain region and a single sex of stress model animals. CONCLUSIONS Our results show that hippocampal transcriptional features of stress models partially overlap with those of MDD patients. The canonical pathways of MDD patients, including ensheathment of neurons, PTEN signaling, and axonal guidance signaling, were shared with all stress models. Our findings provide further clues to understand the molecular mechanisms of depression.
Collapse
Affiliation(s)
- Siwen Gui
- College of Biomedical Engineering, Chongqing Medical University, Chongqing 40016, China; State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing 40016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xuemian Song
- College of Biomedical Engineering, Chongqing Medical University, Chongqing 40016, China; State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing 40016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaopeng Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Weiyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaogang Zhong
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Haiyang Wang
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Lanxiang Liu
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
72
|
Libé-Philippot B, Vanderhaeghen P. Cellular and Molecular Mechanisms Linking Human Cortical Development and Evolution. Annu Rev Genet 2021; 55:555-581. [PMID: 34535062 DOI: 10.1146/annurev-genet-071719-020705] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cerebral cortex is at the core of brain functions that are thought to be particularly developed in the human species. Human cortex specificities stem from divergent features of corticogenesis, leading to increased cortical size and complexity. Underlying cellular mechanisms include prolonged patterns of neuronal generation and maturation, as well as the amplification of specific types of stem/progenitor cells. While the gene regulatory networks of corticogenesis appear to be largely conserved among all mammals including humans, they have evolved in primates, particularly in the human species, through the emergence of rapidly divergent transcriptional regulatory elements, as well as recently duplicated novel genes. These human-specific molecular features together control key cellular milestones of human corticogenesis and are often affected in neurodevelopmental disorders, thus linking human neural development, evolution, and diseases. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; .,Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM) and ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; .,Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM) and ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
73
|
Ding SL, Royall JJ, Lesnar P, Facer BAC, Smith KA, Wei Y, Brouner K, Dalley RA, Dee N, Dolbeare TA, Ebbert A, Glass IA, Keller NH, Lee F, Lemon TA, Nyhus J, Pendergraft J, Reid R, Sarreal M, Shapovalova NV, Szafer A, Phillips JW, Sunkin SM, Hohmann JG, Jones AR, Hawrylycz MJ, Hof PR, Ng L, Bernard A, Lein ES. Cellular resolution anatomical and molecular atlases for prenatal human brains. J Comp Neurol 2021; 530:6-503. [PMID: 34525221 PMCID: PMC8716522 DOI: 10.1002/cne.25243] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/12/2022]
Abstract
Increasing interest in studies of prenatal human brain development, particularly using new single‐cell genomics and anatomical technologies to create cell atlases, creates a strong need for accurate and detailed anatomical reference atlases. In this study, we present two cellular‐resolution digital anatomical atlases for prenatal human brain at postconceptional weeks (PCW) 15 and 21. Both atlases were annotated on sequential Nissl‐stained sections covering brain‐wide structures on the basis of combined analysis of cytoarchitecture, acetylcholinesterase staining, and an extensive marker gene expression dataset. This high information content dataset allowed reliable and accurate demarcation of developing cortical and subcortical structures and their subdivisions. Furthermore, using the anatomical atlases as a guide, spatial expression of 37 and 5 genes from the brains, respectively, at PCW 15 and 21 was annotated, illustrating reliable marker genes for many developing brain structures. Finally, the present study uncovered several novel developmental features, such as the lack of an outer subventricular zone in the hippocampal formation and entorhinal cortex, and the apparent extension of both cortical (excitatory) and subcortical (inhibitory) progenitors into the prenatal olfactory bulb. These comprehensive atlases provide useful tools for visualization, segmentation, targeting, imaging, and interpretation of brain structures of prenatal human brain, and for guiding and interpreting the next generation of cell census and connectome studies.
Collapse
Affiliation(s)
- Song-Lin Ding
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | - Phil Lesnar
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | | | - Yina Wei
- Zhejiang Lab, Hangzhou, Zhejiang, China
| | | | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | - Amanda Ebbert
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Ian A Glass
- Department of Pediatrics and Medicine, University of Washington School of Medicine, Seattle, WA, 98105
| | - Nika H Keller
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Felix Lee
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Tracy A Lemon
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Julie Nyhus
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | - Robert Reid
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | | | - Aaron Szafer
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | | | | | - Allan R Jones
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 11029
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Amy Bernard
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, 98109
| |
Collapse
|
74
|
Clifton NE, Collado-Torres L, Burke EE, Pardiñas AF, Harwood JC, Di Florio A, Walters JTR, Owen MJ, O'Donovan MC, Weinberger DR, Holmans PA, Jaffe AE, Hall J. Developmental Profile of Psychiatric Risk Associated With Voltage-Gated Cation Channel Activity. Biol Psychiatry 2021; 90:399-408. [PMID: 33965196 PMCID: PMC8375582 DOI: 10.1016/j.biopsych.2021.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Recent breakthroughs in psychiatric genetics have implicated biological pathways onto which genetic risk for psychiatric disorders converges. However, these studies do not reveal the developmental time point(s) at which these pathways are relevant. METHODS We aimed to determine the relationship between psychiatric risk and developmental gene expression relating to discrete biological pathways. We used postmortem RNA sequencing data (BrainSeq and BrainSpan) from brain tissue at multiple prenatal and postnatal time points, with summary statistics from recent genome-wide association studies of schizophrenia, bipolar disorder, and major depressive disorder. We prioritized gene sets for overall enrichment of association with each disorder and then tested the relationship between the association of their constituent genes with their relative expression at each developmental stage. RESULTS We observed relationships between the expression of genes involved in voltage-gated cation channel activity during early midfetal, adolescence, and early adulthood time points and association with schizophrenia and bipolar disorder, such that genes more strongly associated with these disorders had relatively low expression during early midfetal development and higher expression during adolescence and early adulthood. The relationship with schizophrenia was strongest for the subset of genes related to calcium channel activity, while for bipolar disorder, the relationship was distributed between calcium and potassium channel activity genes. CONCLUSIONS Our results indicate periods during development when biological pathways related to the activity of calcium and potassium channels may be most vulnerable to the effects of genetic variants conferring risk for psychiatric disorders. Furthermore, they indicate key time points and potential targets for disorder-specific therapeutic interventions.
Collapse
Affiliation(s)
- Nicholas E Clifton
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom; MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom.
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland; Centre for Computational Biology, Johns Hopkins University Medical Campus, Baltimore, Maryland
| | - Emily E Burke
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Janet C Harwood
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Arianna Di Florio
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Michael J Owen
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom; MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland; Departments of Psychiatry, Neurology, Neuroscience and Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Peter A Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland; Centre for Computational Biology, Johns Hopkins University Medical Campus, Baltimore, Maryland; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom; MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
75
|
Rybak-Wolf A, Plass M. RNA Dynamics in Alzheimer's Disease. Molecules 2021; 26:5113. [PMID: 34500547 PMCID: PMC8433936 DOI: 10.3390/molecules26175113] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder that heavily burdens healthcare systems worldwide. There is a significant requirement to understand the still unknown molecular mechanisms underlying AD. Current evidence shows that two of the major features of AD are transcriptome dysregulation and altered function of RNA binding proteins (RBPs), both of which lead to changes in the expression of different RNA species, including microRNAs (miRNAs), circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and messenger RNAs (mRNAs). In this review, we will conduct a comprehensive overview of how RNA dynamics are altered in AD and how this leads to the differential expression of both short and long RNA species. We will describe how RBP expression and function are altered in AD and how this impacts the expression of different RNA species. Furthermore, we will also show how changes in the abundance of specific RNA species are linked to the pathology of AD.
Collapse
Affiliation(s)
- Agnieszka Rybak-Wolf
- Max Delbrück Center for Molecular Medicine (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
| | - Mireya Plass
- Gene Regulation of Cell Identity, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908 Barcelona, Spain
- Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet del Llobregat, 08908 Barcelona, Spain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
76
|
Policarpo R, Sierksma A, De Strooper B, d'Ydewalle C. From Junk to Function: LncRNAs in CNS Health and Disease. Front Mol Neurosci 2021; 14:714768. [PMID: 34349622 PMCID: PMC8327212 DOI: 10.3389/fnmol.2021.714768] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022] Open
Abstract
Recent advances in RNA sequencing technologies helped to uncover the existence of tens of thousands of long non-coding RNAs (lncRNAs) that arise from the dark matter of the genome. These lncRNAs were originally thought to be transcriptional noise but an increasing number of studies demonstrate that these transcripts can modulate protein-coding gene expression by a wide variety of transcriptional and post-transcriptional mechanisms. The spatiotemporal regulation of lncRNA expression is particularly evident in the central nervous system, suggesting that they may directly contribute to specific brain processes, including neurogenesis and cellular homeostasis. Not surprisingly, lncRNAs are therefore gaining attention as putative novel therapeutic targets for disorders of the brain. In this review, we summarize the recent insights into the functions of lncRNAs in the brain, their role in neuronal maintenance, and their potential contribution to disease. We conclude this review by postulating how these RNA molecules can be targeted for the treatment of yet incurable neurological disorders.
Collapse
Affiliation(s)
- Rafaela Policarpo
- VIB-KU Leuven Center For Brain & Disease Research, Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Annerieke Sierksma
- VIB-KU Leuven Center For Brain & Disease Research, Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- VIB-KU Leuven Center For Brain & Disease Research, Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,UK Dementia Research Institute, University College London, London, United Kingdom
| | - Constantin d'Ydewalle
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| |
Collapse
|
77
|
Chen A, Yan M, Feng J, Bi L, Chen L, Hu S, Hong H, Shi L, Li G, Jin B, Zhang X, Wen L. Single Cell Mass Spectrometry with a Robotic Micromanipulation System for Cell Metabolite Analysis. IEEE Trans Biomed Eng 2021; 69:325-333. [PMID: 34185636 DOI: 10.1109/tbme.2021.3093097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
ObjectiveThe increasing demand for unraveling cellular heterogeneity has boosted single cell metabolomics studies. However, current analytical methods are usually labor-intensive and hampered by lack of accuracy and efficiency. METHODS we developed a first-ever automated single cell mass spectrometry system (named SCMS) that facilitated the metabolic profiling of single cells. In particular, extremely small droplets of sub nano-liter were generated to extract the single cells, and the underlying mechanism was verified theoretically and experimentally. This was crucial to minimize the dilution of the trace cellular contents and enhance the analytical sensitivity. Based on the precise 3D positioning of the pipette tip, we established a visual servoing robotic micromanipulation platform on which single cells were sequentially extracted, aspirated, and ionized, followed by the mass spectrometry analyses. RESULTS With the SCMS system, inter-operator variability was eliminated and working efficiency was improved. The performance of the SCMS system was validated by the experiments on bladder cancer cells. MS and MS2 analyses of single cells enable us to identify several cellular metabolites and the underlying inter-cell heterogeneity. CONCLUSION In contrast to traditional methods, the SCMS system functions without human intervention and realizes a robust single cell metabolic analysis. SIGNIFICANCE the SCMS system upgrades the way how single cell metabolites were analyzed, and has the potential to be a powerful tool for single cell metabolomics studies.
Collapse
|
78
|
Abstract
Studies of the spatiotemporal, transcriptomic, and morphological diversity of radial glia (RG) have spurred our current models of human corticogenesis. In the developing cortex, neural intermediate progenitor cells (nIPCs) are a neuron-producing transit-amplifying cell type born in the germinal zones of the cortex from RG. The potential diversity of the nIPC population, that produces a significant portion of excitatory cortical neurons, is understudied, particularly in the developing human brain. Here we explore the spatiotemporal, transcriptomic, and morphological variation that exists within the human nIPC population and provide a resource for future studies. We observe that the spatial distribution of nIPCs in the cortex changes abruptly around gestational week (GW) 19/20, marking a distinct shift in cellular distribution and organization during late neurogenesis. We also identify five transcriptomic subtypes, one of which appears at this spatiotemporal transition. Finally, we observe a diversity of nIPC morphologies that do not correlate with specific transcriptomic subtypes. These results provide an analysis of the spatiotemporal, transcriptional, and morphological diversity of nIPCs in developing brain tissue and provide an atlas of nIPC subtypes in the developing human cortex that can benchmark in vitro models of human development such as cerebral organoids and help inform future studies of how nIPCs contribute to cortical neurogenesis.
Collapse
|
79
|
Shulman ED, Elkon R. Genetic mapping of developmental trajectories for complex traits and diseases. Comput Struct Biotechnol J 2021; 19:3458-3469. [PMID: 34194671 PMCID: PMC8220172 DOI: 10.1016/j.csbj.2021.05.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 11/04/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified numerous common genetic variants associated with complex human traits and diseases. However, the translation of GWAS discoveries into biological and clinical insights is highly challenging. In this study, we present a novel bioinformatics approach for enhancing the functional interpretation of GWAS signals, based on their integration with single-cell (sc)RNA-seq datasets that examine developmental processes. Our approach performs three tasks: (1) Identification of links between cell differentiation trajectories and traits; (2) Elucidation of biological processes and molecular pathways that underlie such trajectory-trait links; and (3) Prioritization of target genes that carry the links between trajectories, pathways and traits. We applied our method to a set of 11 traits of various pathologies, and 12 scRNA-seq datasets of diverse developmental processes, and it readily detected well-established biological connections, including those between the maturation of cortical inhibitory interneurons and schizophrenia, hepatocytes and cholesterol levels, and pancreatic beta-islet cells and type-2 diabetes. For each of these associations, our method pinpointed top candidate genes that are strongly associated with both the kinetics of the differentiation trajectory and the disease's genetic risk. By the identification of trajectory-disease links, molecular pathways that underlie them and prioritizing candidate risk genes, our method improves the understanding of the etiology of complex diseases, and thus holds promise for enhancing rational drug development that is aimed at targeting specific biological processes that mediate the genetic predisposition to diseases.
Collapse
Affiliation(s)
- Eldad David Shulman
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
80
|
Bocchi VD, Conforti P, Vezzoli E, Besusso D, Cappadona C, Lischetti T, Galimberti M, Ranzani V, Bonnal RJP, De Simone M, Rossetti G, He X, Kamimoto K, Espuny-Camacho I, Faedo A, Gervasoni F, Vuono R, Morris SA, Chen J, Felsenfeld D, Pavesi G, Barker RA, Pagani M, Cattaneo E. The coding and long noncoding single-cell atlas of the developing human fetal striatum. Science 2021; 372:372/6542/eabf5759. [PMID: 33958447 DOI: 10.1126/science.abf5759] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Deciphering how the human striatum develops is necessary for understanding the diseases that affect this region. To decode the transcriptional modules that regulate this structure during development, we compiled a catalog of 1116 long intergenic noncoding RNAs (lincRNAs) identified de novo and then profiled 96,789 single cells from the early human fetal striatum. We found that D1 and D2 medium spiny neurons (D1- and D2-MSNs) arise from a common progenitor and that lineage commitment is established during the postmitotic transition, across a pre-MSN phase that exhibits a continuous spectrum of fate determinants. We then uncovered cell type-specific gene regulatory networks that we validated through in silico perturbation. Finally, we identified human-specific lincRNAs that contribute to the phylogenetic divergence of this structure in humans. This work delineates the cellular hierarchies governing MSN lineage commitment.
Collapse
Affiliation(s)
- Vittoria Dickinson Bocchi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare, Milan, Italy
| | - Paola Conforti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare, Milan, Italy
| | - Elena Vezzoli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare, Milan, Italy
| | - Dario Besusso
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare, Milan, Italy
| | - Claudio Cappadona
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare, Milan, Italy
| | - Tiziana Lischetti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare, Milan, Italy
| | - Maura Galimberti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare, Milan, Italy
| | | | | | | | | | - Xiaoling He
- WT-MRC Cambridge Stem Cell Institute and Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Kenji Kamimoto
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ira Espuny-Camacho
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare, Milan, Italy
| | - Andrea Faedo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare, Milan, Italy
| | - Federica Gervasoni
- INGM, Istituto Nazionale Genetica Molecolare, Milan, Italy.,Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Romina Vuono
- WT-MRC Cambridge Stem Cell Institute and Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Samantha A Morris
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jian Chen
- CHDI Management/CHDI Foundation, New York, NY, USA
| | | | - Giulio Pavesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Roger A Barker
- WT-MRC Cambridge Stem Cell Institute and Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Massimiliano Pagani
- INGM, Istituto Nazionale Genetica Molecolare, Milan, Italy. .,Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Elena Cattaneo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy. .,INGM, Istituto Nazionale Genetica Molecolare, Milan, Italy
| |
Collapse
|
81
|
Liu Y, Bergmann T, Mori Y, Peralvo Vidal JM, Pihl M, Vasistha NA, Thomsen PD, Seemann SE, Gorodkin J, Hyttel P, Khodosevich K, Witter MP, Hall VJ. Development of the Entorhinal Cortex Occurs via Parallel Lamination During Neurogenesis. Front Neuroanat 2021; 15:663667. [PMID: 34025365 PMCID: PMC8139189 DOI: 10.3389/fnana.2021.663667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
The entorhinal cortex (EC) is the spatial processing center of the brain and structurally is an interface between the three layered paleocortex and six layered neocortex, known as the periarchicortex. Limited studies indicate peculiarities in the formation of the EC such as early emergence of cells in layers (L) II and late deposition of LIII, as well as divergence in the timing of maturation of cell types in the superficial layers. In this study, we examine developmental events in the entorhinal cortex using an understudied model in neuroanatomy and development, the pig and supplement the research with BrdU labeling in the developing mouse EC. We determine the pig serves as an excellent anatomical model for studying human neurogenesis, given its long gestational length, presence of a moderate sized outer subventricular zone and early cessation of neurogenesis during gestation. Immunohistochemistry identified prominent clusters of OLIG2+ oligoprogenitor-like cells in the superficial layers of the lateral EC (LEC) that are sparser in the medial EC (MEC). These are first detected in the subplate during the early second trimester. MRI analyses reveal an acceleration of EC growth at the end of the second trimester. BrdU labeling of the developing MEC, shows the deeper layers form first and prior to the superficial layers, but the LV/VI emerges in parallel and the LII/III emerges later, but also in parallel. We coin this lamination pattern parallel lamination. The early born Reln+ stellate cells in the superficial layers express the classic LV marker, Bcl11b (Ctip2) and arise from a common progenitor that forms the late deep layer LV neurons. In summary, we characterize the developing EC in a novel animal model and outline in detail the formation of the EC. We further provide insight into how the periarchicortex forms in the brain, which differs remarkably to the inside-out lamination of the neocortex.
Collapse
Affiliation(s)
- Yong Liu
- Group of Brain Development and Disease, Section Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Bergmann
- Group of Brain Development and Disease, Section Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juan Miguel Peralvo Vidal
- Group of Brain Development and Disease, Section Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Pihl
- Disease Stem Cell Models and Embryology, Section Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Navneet A. Vasistha
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Preben Dybdahl Thomsen
- Disease Stem Cell Models and Embryology, Section Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefan E. Seemann
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Poul Hyttel
- Disease Stem Cell Models and Embryology, Section Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Menno P. Witter
- Kavli Institute for Systems Neuroscience, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Vanessa Jane Hall
- Group of Brain Development and Disease, Section Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
82
|
Goto-Silva L, Martins M, Murillo JR, Souza LRQ, Vitória G, Oliveira JT, Nascimento JM, Loiola EC, Nogueira FCS, Domont GB, Guimarães MZP, Tovar-Moll F, Rehen SK, Junqueira M. Quantitative profiling of axonal guidance proteins during the differentiation of human neurospheres. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140656. [PMID: 33857633 DOI: 10.1016/j.bbapap.2021.140656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022]
Abstract
Axon guidance is required for the establishment of brain circuits. Whether much of the molecular basis of axon guidance is known from animal models, the molecular machinery coordinating axon growth and pathfinding in humans remains to be elucidated. The use of induced pluripotent stem cells (iPSC) from human donors has revolutionized in vitro studies of the human brain. iPSC can be differentiated into neuronal stem cells which can be used to generate neural tissue-like cultures, known as neurospheres, that reproduce, in many aspects, the cell types and molecules present in the brain. Here, we analyzed quantitative changes in the proteome of neurospheres during differentiation. Relative quantification was performed at early time points during differentiation using iTRAQ-based labeling and LC-MS/MS analysis. We identified 6438 proteins, from which 433 were downregulated and 479 were upregulated during differentiation. We show that human neurospheres have a molecular profile that correlates to the fetal brain. During differentiation, upregulated pathways are related to neuronal development and differentiation, cell adhesion, and axonal guidance whereas cell proliferation pathways were downregulated. We developed a functional assay to check for neurite outgrowth in neurospheres and confirmed that neurite outgrowth potential is increased after 10 days of differentiation and is enhanced by increasing cyclic AMP levels. The proteins identified here represent a resource to monitor neurosphere differentiation and coupled to the neurite outgrowth assay can be used to functionally explore neurological disorders using human neurospheres as a model.
Collapse
Affiliation(s)
- Livia Goto-Silva
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30 - Botafogo, Rio de Janeiro, RJ 22281-100, Brazil
| | - Michele Martins
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149 - bloco A 5° andar - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| | - Jimmy Rodriguez Murillo
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149 - bloco A 5° andar - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| | - Leticia R Q Souza
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30 - Botafogo, Rio de Janeiro, RJ 22281-100, Brazil
| | - Gabriela Vitória
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30 - Botafogo, Rio de Janeiro, RJ 22281-100, Brazil
| | - Júlia T Oliveira
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30 - Botafogo, Rio de Janeiro, RJ 22281-100, Brazil
| | - Juliana M Nascimento
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30 - Botafogo, Rio de Janeiro, RJ 22281-100, Brazil; Department of Biosciences, Institute Science and Society, Federal University of São Paulo (Unifesp), Rua Silva Jardim, 136, Santos, SP 11015-020, Brazil
| | - Erick Correia Loiola
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30 - Botafogo, Rio de Janeiro, RJ 22281-100, Brazil
| | - Fabio C S Nogueira
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149 - bloco A 5° andar - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| | - Gilberto B Domont
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149 - bloco A 5° andar - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| | - Marília Zaluar P Guimarães
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30 - Botafogo, Rio de Janeiro, RJ 22281-100, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rua Manoel Frota Moreira - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Fernanda Tovar-Moll
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30 - Botafogo, Rio de Janeiro, RJ 22281-100, Brazil
| | - Stevens Kastrup Rehen
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30 - Botafogo, Rio de Janeiro, RJ 22281-100, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rua Manoel Frota Moreira - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil.
| | - Magno Junqueira
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149 - bloco A 5° andar - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil.
| |
Collapse
|
83
|
Lanjewar SN, Sloan SA. Growing Glia: Cultivating Human Stem Cell Models of Gliogenesis in Health and Disease. Front Cell Dev Biol 2021; 9:649538. [PMID: 33842475 PMCID: PMC8027322 DOI: 10.3389/fcell.2021.649538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Glia are present in all organisms with a central nervous system but considerably differ in their diversity, functions, and numbers. Coordinated efforts across many model systems have contributed to our understanding of glial-glial and neuron-glial interactions during nervous system development and disease, but human glia exhibit prominent species-specific attributes. Limited access to primary samples at critical developmental timepoints constrains our ability to assess glial contributions in human tissues. This challenge has been addressed throughout the past decade via advancements in human stem cell differentiation protocols that now offer the ability to model human astrocytes, oligodendrocytes, and microglia. Here, we review the use of novel 2D cell culture protocols, 3D organoid models, and bioengineered systems derived from human stem cells to study human glial development and the role of glia in neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Steven A. Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
84
|
Fontana C, Marasca F, Provitera L, Mancinelli S, Pesenti N, Sinha S, Passera S, Abrignani S, Mosca F, Lodato S, Bodega B, Fumagalli M. Early maternal care restores LINE-1 methylation and enhances neurodevelopment in preterm infants. BMC Med 2021; 19:42. [PMID: 33541338 PMCID: PMC7863536 DOI: 10.1186/s12916-020-01896-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Preterm birth affects almost 9-11% of newborns and is one of the leading causes of childhood neurodevelopmental disabilities; the underlying molecular networks are poorly defined. In neurons, retrotransposons LINE-1 (L1) are an active source of genomic mosaicism that is deregulated in several neurological disorders; early life experience has been shown to regulate L1 activity in mice. METHODS Very preterm infants were randomized to receive standard care or early intervention. L1 methylation was measured at birth and at hospital discharge. At 12 and 36 months, infants' neurodevelopment was evaluated with the Griffiths Scales. L1 methylation and CNVs were measured in mouse brain areas at embryonic and postnatal stages. RESULTS Here we report that L1 promoter is hypomethylated in preterm infants at birth and that an early intervention program, based on enhanced maternal care and positive multisensory stimulation, restores L1 methylation levels comparable to healthy newborns and ameliorates neurodevelopment in childhood. We further show that L1 activity is fine-tuned in the perinatal mouse brain, suggesting a sensitive and vulnerable window for the L1 epigenetic setting. CONCLUSIONS Our results open the field on the inspection of L1 activity as a novel molecular and predictive approach to infants' prematurity-related neurodevelopmental outcomes. TRIAL REGISTRATION ClinicalTrial.gov ( NCT02983513 ). Registered on 6 December 2016, retrospectively registered.
Collapse
Affiliation(s)
- Camilla Fontana
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Marasca
- Istituto Nazionale di Genetica Molecolare "Enrica e Romeo Invernizzi" (INGM), Milan, Italy
| | - Livia Provitera
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy
| | - Sara Mancinelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Nicola Pesenti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy.,Department of Statistics and Quantitative Methods, Division of Biostatistics, Epidemiology and Public Health, University of Milano-Bicocca, Milan, Italy
| | - Shruti Sinha
- Istituto Nazionale di Genetica Molecolare "Enrica e Romeo Invernizzi" (INGM), Milan, Italy
| | - Sofia Passera
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy
| | - Sergio Abrignani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Istituto Nazionale di Genetica Molecolare "Enrica e Romeo Invernizzi" (INGM), Milan, Italy
| | - Fabio Mosca
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy
| | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Beatrice Bodega
- Istituto Nazionale di Genetica Molecolare "Enrica e Romeo Invernizzi" (INGM), Milan, Italy.
| | - Monica Fumagalli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy. .,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy.
| |
Collapse
|
85
|
Perez-Catalan NA, Doe CQ, Ackerman SD. The role of astrocyte-mediated plasticity in neural circuit development and function. Neural Dev 2021; 16:1. [PMID: 33413602 PMCID: PMC7789420 DOI: 10.1186/s13064-020-00151-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/26/2020] [Indexed: 02/03/2023] Open
Abstract
Neuronal networks are capable of undergoing rapid structural and functional changes called plasticity, which are essential for shaping circuit function during nervous system development. These changes range from short-term modifications on the order of milliseconds, to long-term rearrangement of neural architecture that could last for the lifetime of the organism. Neural plasticity is most prominent during development, yet also plays a critical role during memory formation, behavior, and disease. Therefore, it is essential to define and characterize the mechanisms underlying the onset, duration, and form of plasticity. Astrocytes, the most numerous glial cell type in the human nervous system, are integral elements of synapses and are components of a glial network that can coordinate neural activity at a circuit-wide level. Moreover, their arrival to the CNS during late embryogenesis correlates to the onset of sensory-evoked activity, making them an interesting target for circuit plasticity studies. Technological advancements in the last decade have uncovered astrocytes as prominent regulators of circuit assembly and function. Here, we provide a brief historical perspective on our understanding of astrocytes in the nervous system, and review the latest advances on the role of astroglia in regulating circuit plasticity and function during nervous system development and homeostasis.
Collapse
Affiliation(s)
- Nelson A Perez-Catalan
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, USA
- Kennedy Center, Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, USA
| | - Sarah D Ackerman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, USA.
| |
Collapse
|