51
|
Bui L, Glavinović MI. Is replenishment of the readily releasable pool associated with vesicular movement? Cogn Neurodyn 2013; 8:99-110. [PMID: 24624230 DOI: 10.1007/s11571-013-9264-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 06/19/2013] [Accepted: 07/23/2013] [Indexed: 12/30/2022] Open
Abstract
At the excitatory synapse of rat hippocampus the short-term synaptic depression observed during long high-frequency stimulation is associated with slower replenishment of the readily-releasable pool. Given that the replenishment rate is also not [Ca(++)]o sensitive this puts into question a widely held notion that the vesicles-constrained by the cytoskeleton and rendered free from such constraints by Ca(++) entry that renders them more mobile-are important in the replenishment of the readily-releasable pool. This raises a question-Is vesicular replenishment of the readily releasable pool associated with significant movement? To answer this question we evaluated how okadaic acid and staurosporine (compounds known to affect vesicular mobility) influence the replenishment rate. We used patterned stimulation on the Schaffer collateral fiber pathway and recorded the excitatory post-synaptic currents (EPSCs) from rat CA1 neurons, in the absence and presence of these drugs. The parameters of a circuit model with two vesicular pools were estimated by minimizing the squared difference between the ESPC amplitudes and simulated model output. [Ca(2+)]o did not influence the progressive decrease of the replenishment rate during long, high frequency stimulation. Okadaic acid did not significantly affect any parameters of the vesicular storage and release system, including the replenishment rate. Staurosporine reduced the replenishment coupling, but not the replenishment rate, and this is owing to the fact that it also reduces the ability of the readily releasable pool to contain quanta. Moreover, these compounds were ineffective in influencing how the replenishment rate decreases during long, high frequency stimulation. In conclusion at the excitatory synapses of rat hippocampus the replenishment of the readily releasable pool does not appear to be associated with a significant vesicular movement, and during long high frequency stimulation [Ca(++)]o does not influence the progressive decrease of vesicular replenishment.
Collapse
Affiliation(s)
- Loc Bui
- Department of Physiology, McGill University, 3655 Sir William Osler Promenade, Montreal, H3G 1Y6 Canada
| | - Mladen I Glavinović
- Department of Physiology, McGill University, 3655 Sir William Osler Promenade, Montreal, H3G 1Y6 Canada
| |
Collapse
|
52
|
Abstract
Early in evolution, Ca(2+) emerged as the most important second messenger for regulating widely different cellular functions. In eukaryotic cells Ca(2+) signals originate from several sources, i.e. influx from the outside medium, release from internal stores or from both. In mammalian cells, Ca(2+)-release channels represented by inositol 1,4,5-trisphosphate receptors and ryanodine receptors (InsP3R and RyR, respectively) are the most important. In unicellular organisms and plants, these channels are characterised with much less precision. In the ciliated protozoan, Paramecium tetraurelia, 34 molecularly distinct Ca(2+)-release channels that can be grouped in six subfamilies, based on criteria such as domain structure, pore, selectivity filter and activation mechanism have been identified. Some of these channels are genuine InsP3Rs and some are related to RyRs. Others show some--but not all--features that are characteristic for one or the other type of release channel. Localisation and gene silencing experiments revealed widely different--yet distinct--localisation, activation and functional engagement of the different Ca(2+)-release channels. Here, we shall discuss early evolutionary routes of Ca(2+)-release machinery in protozoa and demonstrate that detailed domain analyses and scrutinised functional analyses are instrumental for in-depth evolutionary mapping of Ca(2+)-release channels in unicellular organisms.
Collapse
Affiliation(s)
- Helmut Plattner
- Faculty of Biology, University of Konstanz, 78457 Konstanz, Germany.
| | | |
Collapse
|
53
|
Taiakina V, Boone AN, Fux J, Senatore A, Weber-Adrian D, Guillemette JG, Spafford JD. The calmodulin-binding, short linear motif, NSCaTE is conserved in L-type channel ancestors of vertebrate Cav1.2 and Cav1.3 channels. PLoS One 2013; 8:e61765. [PMID: 23626724 PMCID: PMC3634016 DOI: 10.1371/journal.pone.0061765] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/11/2013] [Indexed: 01/21/2023] Open
Abstract
NSCaTE is a short linear motif of (xWxxx(I or L)xxxx), composed of residues with a high helix-forming propensity within a mostly disordered N-terminus that is conserved in L-type calcium channels from protostome invertebrates to humans. NSCaTE is an optional, lower affinity and calcium-sensitive binding site for calmodulin (CaM) which competes for CaM binding with a more ancient, C-terminal IQ domain on L-type channels. CaM bound to N- and C- terminal tails serve as dual detectors to changing intracellular Ca2+ concentrations, promoting calcium-dependent inactivation of L-type calcium channels. NSCaTE is absent in some arthropod species, and is also lacking in vertebrate L-type isoforms, Cav1.1 and Cav1.4 channels. The pervasiveness of a methionine just downstream from NSCaTE suggests that L-type channels could generate alternative N-termini lacking NSCaTE through the choice of translational start sites. Long N-terminus with an NSCaTE motif in L-type calcium channel homolog LCav1 from pond snail Lymnaea stagnalis has a faster calcium-dependent inactivation than a shortened N-termini lacking NSCaTE. NSCaTE effects are present in low concentrations of internal buffer (0.5 mM EGTA), but disappears in high buffer conditions (10 mM EGTA). Snail and mammalian NSCaTE have an alpha-helical propensity upon binding Ca2+-CaM and can saturate both CaM N-terminal and C-terminal domains in the absence of a competing IQ motif. NSCaTE evolved in ancestors of the first animals with internal organs for promoting a more rapid, calcium-sensitive inactivation of L-type channels.
Collapse
Affiliation(s)
| | | | - Julia Fux
- Department of Biology, University of Waterloo, Waterloo, Canada
| | | | | | | | - J. David Spafford
- Department of Biology, University of Waterloo, Waterloo, Canada
- * E-mail:
| |
Collapse
|
54
|
Kovalevskaya NV, van de Waterbeemd M, Bokhovchuk FM, Bate N, Bindels RJM, Hoenderop JGJ, Vuister GW. Structural analysis of calmodulin binding to ion channels demonstrates the role of its plasticity in regulation. Pflugers Arch 2013; 465:1507-19. [PMID: 23609407 DOI: 10.1007/s00424-013-1278-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/18/2013] [Accepted: 04/02/2013] [Indexed: 12/17/2022]
Abstract
The Ca²⁺-binding protein calmodulin (CaM) is a well-known regulator of ion-channel activity. Consequently, the Protein Data Bank contains many structures of CaM in complex with different fragments of ion channels that together display a variety of binding modes. In addition to the canonical interaction, in which CaM engages its target with both its domains, many of the ion-channel-CaM complexes demonstrate alternative non-canonical binding modes that depend on the target and experimental conditions. Based on these findings, several mechanisms of ion-channel regulation by CaM have been proposed, all exploiting its plasticity and flexibility in interacting with its targets. In this review, we focus on complexes of CaM with either the voltage-gated calcium channels; the voltage-gated sodium channels or the small conductance calcium-activated potassium channels, for which both structural and functional data are available. For each channel, the functional relevance of these structural data and possible mechanism of calcium-dependent (in)activation and/or facilitation are discussed in detail.
Collapse
Affiliation(s)
- Nadezda V Kovalevskaya
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 26-28, Nijmegen, 6525, GA, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
55
|
Adams DJ, Berecki G. Mechanisms of conotoxin inhibition of N-type (Ca(v)2.2) calcium channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1619-28. [PMID: 23380425 DOI: 10.1016/j.bbamem.2013.01.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/16/2013] [Accepted: 01/19/2013] [Indexed: 12/27/2022]
Abstract
N-type (Ca(v)2.2) voltage-gated calcium channels (VGCC) transduce electrical activity into other cellular functions, regulate calcium homeostasis and play a major role in processing pain information. Although the distribution and function of these channels vary widely among different classes of neurons, they are predominantly expressed in nerve terminals, where they control neurotransmitter release. To date, genetic and pharmacological studies have identified that high-threshold, N-type VGCCs are important for pain sensation in disease models. This suggests that N-type VGCC inhibitors or modulators could be developed into useful drugs to treat neuropathic pain. This review discusses the role of N-type (Ca(v)2.2) VGCCs in nociception and pain transmission through primary sensory dorsal root ganglion (DRG) neurons (nociceptors). It also outlines the potent and selective inhibition of N-type VGCCs by conotoxins, small disulfide-rich peptides isolated from the venom of marine cone snails. Of these conotoxins, ω-conotoxins are selective N-type VGCC antagonists that preferentially block nociception in inflammatory pain models, and allodynia and/or hyperalgesia in neuropathic pain models. Another conotoxin family, α-conotoxins, were initially proposed as competitive antagonists of muscle and neuronal nicotinic acetylcholine receptors (nAChR). Surprisingly, however, α-conotoxins Vc1.1 and RgIA, also potently inhibit N-type VGCC currents in the sensory DRG neurons of rodents and α9 nAChR knockout mice, via intracellular signaling mediated by G protein-coupled GABAB receptors. Understanding how conotoxins inhibit VGCCs is critical for developing these peptides into analgesics and may result in better pain management. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- David J Adams
- Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
56
|
Localized calcineurin confers Ca2+-dependent inactivation on neuronal L-type Ca2+ channels. J Neurosci 2013; 32:15328-37. [PMID: 23115171 DOI: 10.1523/jneurosci.2302-12.2012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Excitation-driven entry of Ca(2+) through L-type voltage-gated Ca(2+) channels controls gene expression in neurons and a variety of fundamental activities in other kinds of excitable cells. The probability of opening of Ca(V)1.2 L-type channels is subject to pronounced enhancement by cAMP-dependent protein kinase (PKA), which is scaffolded to Ca(V)1.2 channels by A-kinase anchoring proteins (AKAPs). Ca(V)1.2 channels also undergo negative autoregulation via Ca(2+)-dependent inactivation (CDI), which strongly limits Ca(2+) entry. An abundance of evidence indicates that CDI relies upon binding of Ca(2+)/calmodulin (CaM) to an isoleucine-glutamine motif in the carboxy tail of Ca(V)1.2 L-type channels, a molecular mechanism seemingly unrelated to phosphorylation-mediated channel enhancement. But our work reveals, in cultured hippocampal neurons and a heterologous expression system, that the Ca(2+)/CaM-activated phosphatase calcineurin (CaN) is scaffolded to Ca(V)1.2 channels by the neuronal anchoring protein AKAP79/150, and that overexpression of an AKAP79/150 mutant incapable of binding CaN (ΔPIX; CaN-binding PXIXIT motif deleted) impedes CDI. Interventions that suppress CaN activity-mutation in its catalytic site, antagonism with cyclosporine A or FK506, or intracellular perfusion with a peptide mimicking the sequence of the phosphatase's autoinhibitory domain-interfere with normal CDI. In cultured hippocampal neurons from a ΔPIX knock-in mouse, CDI is absent. Results of experiments with the adenylyl cyclase stimulator forskolin and with the PKA inhibitor PKI suggest that Ca(2+)/CaM-activated CaN promotes CDI by reversing channel enhancement effectuated by kinases such as PKA. Hence, our investigation of AKAP79/150-anchored CaN reconciles the CaM-based model of CDI with an earlier, seemingly contradictory model based on dephosphorylation signaling.
Collapse
|
57
|
Grønlien HK, Bruskeland GE, Jansen AK, Sand O. Electrophysiological Properties of the Microstome and Macrostome Morph of the Polymorphic Ciliate Tetrahymena vorax. J Eukaryot Microbiol 2012. [DOI: 10.1111/jeu.12006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heidi K. Grønlien
- Department of Molecular Biosciences; University of Oslo; Blindern N-0316 Oslo Norway
- Faculty of Health and Social Studies; Østfold University College; N-1757 Halden Norway
| | - Guttorm E. Bruskeland
- Department of Molecular Biosciences; University of Oslo; Blindern N-0316 Oslo Norway
| | - Anne K. Jansen
- Department of Molecular Biosciences; University of Oslo; Blindern N-0316 Oslo Norway
| | - Olav Sand
- Department of Molecular Biosciences; University of Oslo; Blindern N-0316 Oslo Norway
| |
Collapse
|
58
|
Ryu JS, Kim WT, Lee JH, Kwon JH, Kim HA, Shim EB, Youm JB, Leem CH. Analysis of factors affecting Ca(2+)-dependent inactivation dynamics of L-type Ca(2+) current of cardiac myocytes in pulmonary vein of rabbit. J Physiol 2012; 590:4447-63. [PMID: 22674726 DOI: 10.1113/jphysiol.2012.229203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
L-type Ca(2+) channels (ICaLs) are inactivated by an increase in intracellular [Ca(2+)], known as Ca(2+)-dependent inactivation (CDI). CDI is also induced by Ca(2+) released from the sarcoplasmic reticulum (SR), known as release-dependent inhibition (RDI). As both CDI and RDI occur in the junctional subsarcolemmal nanospace (JSS), we investigated which factors are involved within the JSS using isolated cardiac myocytes from the main pulmonary vein of the rabbit. Using the whole-cell patch clamp technique, RDI was readily observed with the application of a pre-pulse followed by a test pulse, during which the ICaLs exhibited a decrease in peak current amplitude and a slower inactivation. A fast acting Ca(2+) chelator, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), abolished this effect. As the time interval between the pre-pulse and test pulse increased, the ICaLs exhibited greater recovery and the RDI was relieved. Inhibition of the ryanodine receptor (RyR) or the SR Ca(2+)-ATPase (SERCA) greatly attenuated RDI and facilitated ICaL recovery. Removal of extracellular Na(+),which inhibits the Na(+)-Ca(2+) exchange (Incx), greatly enhanced RDI and slowed ICaL recovery, suggesting that Incx critically controls the [Ca(2+)] in the JSS. We incorporated the Ca(2+)-binding kinetics of the ICaL into a previously published computational model. By assuming two Ca(2+)-binding sites in the ICaL, of which one is of low-affinity with fast kinetics and the other is of high-affinity with slower kinetics, the new model was able to successfully reproduce RDI and its regulation by Incx. The model suggests that Incx accelerates Ca(2+) removal from the JSS to downregulate CDI and attenuates SR Ca(2+) refilling. The model may be useful to elucidate complex mechanisms involved in excitation–contraction coupling in myocytes.
Collapse
Affiliation(s)
- Ju Seok Ryu
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Plattner H, Sehring IM, Mohamed IK, Miranda K, De Souza W, Billington R, Genazzani A, Ladenburger EM. Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma). Cell Calcium 2012; 51:351-82. [PMID: 22387010 DOI: 10.1016/j.ceca.2012.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 12/20/2022]
Abstract
The importance of Ca2+-signaling for many subcellular processes is well established in higher eukaryotes, whereas information about protozoa is restricted. Recent genome analyses have stimulated such work also with Alveolates, such as ciliates (Paramecium, Tetrahymena) and their pathogenic close relatives, the Apicomplexa (Plasmodium, Toxoplasma). Here we compare Ca2+ signaling in the two closely related groups. Acidic Ca2+ stores have been characterized in detail in Apicomplexa, but hardly in ciliates. Two-pore channels engaged in Ca2+-release from acidic stores in higher eukaryotes have not been stingently characterized in either group. Both groups are endowed with plasma membrane- and endoplasmic reticulum-type Ca2+-ATPases (PMCA, SERCA), respectively. Only recently was it possible to identify in Paramecium a number of homologs of ryanodine and inositol 1,3,4-trisphosphate receptors (RyR, IP3R) and to localize them to widely different organelles participating in vesicle trafficking. For Apicomplexa, physiological experiments suggest the presence of related channels although their identity remains elusive. In Paramecium, IP3Rs are constitutively active in the contractile vacuole complex; RyR-related channels in alveolar sacs are activated during exocytosis stimulation, whereas in the parasites the homologous structure (inner membrane complex) may no longer function as a Ca2+ store. Scrutinized comparison of the two closely related protozoan phyla may stimulate further work and elucidate adaptation to parasitic life. See also "Conclusions" section.
Collapse
Affiliation(s)
- H Plattner
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Glu¹⁰⁶ in the Orai1 pore contributes to fast Ca²⁺-dependent inactivation and pH dependence of Ca²⁺ release-activated Ca²⁺ (CRAC) current. Biochem J 2012; 441:743-53. [PMID: 21967483 DOI: 10.1042/bj20110558] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FCDI (fast Ca²⁺-dependent inactivation) is a mechanism that limits Ca²⁺ entry through Ca²⁺ channels, including CRAC (Ca²⁺ release-activated Ca²⁺) channels. This phenomenon occurs when the Ca²⁺ concentration rises beyond a certain level in the vicinity of the intracellular mouth of the channel pore. In CRAC channels, several regions of the pore-forming protein Orai1, and STIM1 (stromal interaction molecule 1), the sarcoplasmic/endoplasmic reticulum Ca²⁺ sensor that communicates the Ca²⁺ load of the intracellular stores to Orai1, have been shown to regulate fast Ca²⁺-dependent inactivation. Although significant advances in unravelling the mechanisms of CRAC channel gating have occurred, the mechanisms regulating fast Ca²⁺-dependent inactivation in this channel are not well understood. We have identified that a pore mutation, E106D Orai1, changes the kinetics and voltage dependence of the ICRAC (CRAC current), and the selectivity of the Ca²⁺-binding site that regulates fast Ca²⁺-dependent inactivation, whereas the V102I and E190Q mutants when expressed at appropriate ratios with STIM1 have fast Ca²⁺-dependent inactivation similar to that of WT (wild-type) Orai1. Unexpectedly, the E106D mutation also changes the pH dependence of ICRAC. Unlike WT ICRAC, E106D-mediated current is not inhibited at low pH, but instead the block of Na⁺ permeation through the E106D Orai1 pore by Ca²⁺ is diminished. These results suggest that Glu¹⁰⁶ inside the CRAC channel pore is involved in co-ordinating the Ca²⁺-binding site that mediates fast Ca²⁺-dependent inactivation.
Collapse
|
61
|
Abstract
All cells use changes in intracellular calcium concentration ([Ca(2+)](i)) to regulate cell signalling events. In neurons, with their elaborate dendritic and axonal arborizations, there are clear examples of both localized and widespread Ca(2+) signals. [Ca(2+)](i) changes that are generated by Ca(2+) entry through voltage- and ligand-gated channels are the best characterized. In addition, the release of Ca(2+) from intracellular stores can result in increased [Ca(2+)](i); the signals that trigger this release have been less well-studied, in part because they are not usually associated with specific changes in membrane potential. However, recent experiments have revealed dramatic widespread Ca(2+) waves and localized spark-like events, particularly in dendrites. Here we review emerging data on the nature of these signals and their functions.
Collapse
|
62
|
Tuckwell HC. Quantitative aspects of L-type Ca2+ currents. Prog Neurobiol 2012; 96:1-31. [DOI: 10.1016/j.pneurobio.2011.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 09/16/2011] [Accepted: 09/23/2011] [Indexed: 12/24/2022]
|
63
|
Christel C, Lee A. Ca2+-dependent modulation of voltage-gated Ca2+ channels. Biochim Biophys Acta Gen Subj 2011; 1820:1243-52. [PMID: 22223119 DOI: 10.1016/j.bbagen.2011.12.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND Voltage-gated (Cav) Ca2+ channels are multi-subunit complexes that play diverse roles in a wide variety of tissues. A fundamental mechanism controlling Cav channel function involves the Ca2+ ions that permeate the channel pore. Ca2+ influx through Cav channels mediates feedback regulation to the channel that is both negative (Ca2+-dependent inactivation, CDI) and positive (Ca2+-dependent facilitation, CDF). SCOPE OF REVIEW This review highlights general mechanisms of CDI and CDF with an emphasis on how these processes have been studied electrophysiologically in native and heterologous expression systems. MAJOR CONCLUSIONS Electrophysiological analyses have led to detailed insights into the mechanisms and prevalence of CDI and CDF as Cav channel regulatory mechanisms. All Cav channel family members undergo some form of Ca2+-dependent feedback that relies on CaM or a related Ca2+ binding protein. Tremendous progress has been made in characterizing the role of CaM in CDI and CDF. Yet, what contributes to the heterogeneity of CDI/CDF in various cell-types and how Ca2+-dependent regulation of Cav channels controls Ca2+ signaling remain largely unexplored. GENERAL SIGNIFICANCE Ca2+ influx through Cav channels regulates diverse physiological events including excitation-contraction coupling in muscle, neurotransmitter and hormone release, and Ca2+-dependent gene transcription. Therefore, the mechanisms that regulate channels, such as CDI and CDF, can have a large impact on the signaling potential of excitable cells in various physiological contexts. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signaling.
Collapse
Affiliation(s)
- Carl Christel
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
64
|
Imai Y, Itsuki K, Okamura Y, Inoue R, Mori MX. A self-limiting regulation of vasoconstrictor-activated TRPC3/C6/C7 channels coupled to PI(4,5)P₂-diacylglycerol signalling. J Physiol 2011; 590:1101-19. [PMID: 22183723 DOI: 10.1113/jphysiol.2011.221358] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of transient receptor potential (TRP) canonical TRPC3/C6/C7 channels by diacylglycerol (DAG) upon stimulation of phospholipase C (PLC)-coupled receptors results in the breakdown of phosphoinositides (PIPs). The critical importance of PIPs to various ion-transporting molecules is well documented, but their function in relation to TRPC3/C6/C7 channels remains controversial. By using an ectopic voltage-sensing PIP phosphatase (DrVSP), we found that dephosphorylation of PIPs robustly inhibits currents induced by carbachol (CCh), 1-oleolyl-2-acetyl-sn-glycerol (OAG) or RHC80267 in TRPC3, TRPC6 and TRPC7 channels, though the strength of the DrVSP-mediated inhibition (VMI) varied among the channels with a rank order of C7>C6>C3. Pharmacological and molecular interventions suggest that depletion of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P₂) is most likely the critical event for VMI in all three channels.When the PLC catalytic signal was vigorously activated through overexpression of the muscarinic type-I receptor (M1R), the inactivation of macroscopic TRPC currents was greatly accelerated in the same rank order as the VMI, and VMI of these currents was attenuated or lost. VMI was also rarely detected in vasopressin-induced TRPC6-like currents inA7r5 vascular smooth muscle cells, indicating that the inactivation by PI(4,5)P₂ depletion underlies the physiological condition. Simultaneous fluorescence resonance energy transfer (FRET)-based measurement of PI(4,5)P₂ levels and TRPC6 currents confirmed that VMI magnitude reflects the degree of PI(4,5)P₂ depletion. These results demonstrate that TRPC3/C6/C7 channels are differentially regulated by depletion of PI(4,5)P₂, and that the bimodal signal produced by PLC activation controls these channels in a self-limiting manner.
Collapse
Affiliation(s)
- Yuko Imai
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | | | | | | | | |
Collapse
|
65
|
Real MA, Simón MP, Heredia R, de Diego Y, Guirado S. Phenotypic changes in calbindin D28K immunoreactivity in the hippocampus of Fmr1 knockout mice. J Comp Neurol 2011; 519:2622-36. [PMID: 21491426 DOI: 10.1002/cne.22643] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fragile X syndrome (FXS), the most prevalent form of inherited mental retardation, is caused by the lack of FMRP (fragile mental retardation protein) as a result of the transcriptional silencing of the FMR1 gene. Here we analyze the immunohistochemical expression of the calbindin D28K protein in the hippocampus of Fmr1 knockout (KO) mice and compare it with that of their wildtype (WT) littermates. The spatial distribution pattern of calbindin-immunoreactive cells in the hippocampus was similar in WT and KO mice but for each age studied (ranging from 3.5-8 months) the dentate gyrus of Fmr1-KO mice showed a significant reduction in calbindin-immunoreactive granule cells. Also, the number of calbindin-immunoreactive cells was reduced in the CA1 pyramidal layer in KO mice compared to their WT littermates. In addition, Frm1-KO mice showed a group of calbindin-immunoreactive cells located only in the left CA3b subregion that was only sometimes observed in WT mice. Overall, the absence of FMRP results in a dysregulation of the calbindin protein expression in the hippocampus. This dysregulation is cell type- and time-dependent and as a consequence key elements of the hippocampal trisynaptic circuitry may lack calbindin in critical periods for normal memory/learning abilities to be achieved and may explain some of the FXS symptoms observed in the Fmr1-KO mouse model.
Collapse
Affiliation(s)
- M Angeles Real
- University of Málaga, Department of Cell Biology, Genetics, and Physiology, Málaga, Spain
| | | | | | | | | |
Collapse
|
66
|
Alkhalil A, Hong L, Nguitragool W, Desai SA. Voltage-dependent inactivation of the plasmodial surface anion channel via a cleavable cytoplasmic component. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:367-74. [PMID: 22115742 DOI: 10.1016/j.bbamem.2011.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/17/2011] [Accepted: 11/08/2011] [Indexed: 01/21/2023]
Abstract
Erythrocytes infected with malaria parasites have increased permeability to ions and various nutrient solutes, mediated by a parasite ion channel known as the plasmodial surface anion channel (PSAC). The parasite clag3 gene family encodes PSAC activity, but there may also be additional unidentified components of this channel. Consistent with a lack of clag3 homology to genes of other ion channels, PSAC has a number of unusual functional properties. Here, we report that PSAC exhibits an unusual form of voltage-dependent inactivation. Inactivation was readily detected in the whole-cell patch-clamp configuration after steps to negative membrane potentials. The fraction of current that inactivates, its kinetics, and the rate of recovery were all voltage-dependent, though with a modest effective valence (0.7±0.1 elementary charges). These properties were not affected by solution composition or charge carrier, suggesting inactivation intrinsic to the channel protein. Intriguingly, inactivation was absent in cell-attached recordings and took several minutes to appear after obtaining the whole-cell configuration, suggesting interactions with soluble cytosolic components. Inactivation could also be largely abolished by application of intracellular, but not extracellular protease. The findings implicate inactivation via a charged cytoplasmic channel domain. This domain may be tethered to one or more soluble intracellular components under physiological conditions.
Collapse
|
67
|
Manita S, Miyazaki K, Ross WN. Synaptically activated Ca2+ waves and NMDA spikes locally suppress voltage-dependent Ca2+ signalling in rat pyramidal cell dendrites. J Physiol 2011; 589:4903-20. [PMID: 21844002 DOI: 10.1113/jphysiol.2011.216564] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Postsynaptic [Ca(2+)](i) changes contribute to several kinds of plasticity in pyramidal neurons. We examined the effects of synaptically activated Ca(2+) waves and NMDA spikes on subsequent Ca(2+) signalling in CA1 pyramidal cell dendrites in hippocampal slices. Tetanic synaptic stimulation evoked a localized Ca(2+) wave in the primary apical dendrites. The [Ca(2+)](i) increase from a backpropagating action potential (bAP) or subthreshold depolarization was reduced if it was generated immediately after the wave. The suppression had a recovery time of 30-60 s. The suppression only occurred where the wave was generated and was not due to a change in bAP amplitude or shape. The suppression also could be generated by Ca(2+) waves evoked by uncaging IP(3), showing that other signalling pathways activated by the synaptic tetanus were not required. The suppression was proportional to the amplitude of the [Ca(2+)](i) change of the Ca(2+) wave and was not blocked by a spectrum of kinase or phosphatase inhibitors, consistent with suppression due to Ca(2+)-dependent inactivation of Ca(2+) channels. The waves also reduced the frequency and amplitude of spontaneous, localized Ca(2+) release events in the dendrites by a different mechanism, probably by depleting the stores at the site of wave generation. The same synaptic tetanus often evoked NMDA spike-mediated [Ca(2+)](i) increases in the oblique dendrites where Ca(2+) waves do not propagate. These NMDA spikes suppressed the [Ca(2+)](i) increase caused by bAPs in those regions. [Ca(2+)](i) increases by Ca(2+) entry through voltage-gated Ca(2+) channels also suppressed the [Ca(2+)](i) increases from subsequent bAPs in regions where the voltage-gated [Ca(2+)](i) increases were largest, showing that all ways of raising [Ca(2+)](i) could cause suppression.
Collapse
Affiliation(s)
- Satoshi Manita
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
68
|
Fernández-Velasco M, Ruiz-Hurtado G, Rueda A, Neco P, Mercado-Morales M, Delgado C, Napolitano C, Priori SG, Richard S, María Gómez A, Benitah JP. RyRCa2+ leak limits cardiac Ca2+ window current overcoming the tonic effect of calmodulinin mice. PLoS One 2011; 6:e20863. [PMID: 21673970 PMCID: PMC3108979 DOI: 10.1371/journal.pone.0020863] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 05/13/2011] [Indexed: 11/19/2022] Open
Abstract
Ca2+ mediates the functional coupling between L-type Ca2+ channel (LTCC) and sarcoplasmic reticulum (SR) Ca2+ release channel (ryanodine receptor, RyR), participating in key pathophysiological processes. This crosstalk manifests as the orthograde Ca2+-induced Ca2+-release (CICR) mechanism triggered by Ca2+ influx, but also as the retrograde Ca2+-dependent inactivation (CDI) of LTCC, which depends on both Ca2+ permeating through the LTCC itself and on SR Ca2+ release through the RyR. This latter effect has been suggested to rely on local rather than global Ca2+ signaling, which might parallel the nanodomain control of CDI carried out through calmodulin (CaM). Analyzing the CICR in catecholaminergic polymorphic ventricular tachycardia (CPVT) mice as a model of RyR-generated Ca2+ leak, we evidence here that increased occurrence of the discrete local SR Ca2+ releases through the RyRs (Ca2+ sparks) causea depolarizing shift in activation and a hyperpolarizing shift inisochronic inactivation of cardiac LTCC current resulting in the reduction of window current. Both increasing fast [Ca2+]i buffer capacity or depleting SR Ca2+ store blunted these changes, which could be reproduced in WT cells by RyRCa2+ leak induced with Ryanodol and CaM inhibition.Our results unveiled a new paradigm for CaM-dependent effect on LTCC gating and further the nanodomain Ca2+ control of LTCC, emphasizing the importance of spatio-temporal relationships between Ca2+ signals and CaM function.
Collapse
Affiliation(s)
- María Fernández-Velasco
- Inserm, U637, Université Montpellier-1, Université Montpellier-2, Montpellier, France
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Inserm, U637, Université Montpellier-1, Université Montpellier-2, Montpellier, France
- Inserm, U769, IFR141, Faculté de Pharmacie, Université Paris-Sud 11, Chatenay-Malabry, France
| | - Angélica Rueda
- Inserm, U637, Université Montpellier-1, Université Montpellier-2, Montpellier, France
- Department of Biochemistry, CINVESTAV, Mexico City, Mexico
| | - Patricia Neco
- Inserm, U637, Université Montpellier-1, Université Montpellier-2, Montpellier, France
- Inserm, U769, IFR141, Faculté de Pharmacie, Université Paris-Sud 11, Chatenay-Malabry, France
| | | | - Carmen Delgado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, CyB, CSIC, Madrid, Spain
| | - Carlo Napolitano
- Molecular Cardiology, Fondazione Salvatore Maugeri, Pavia, Italy
- Cardiovascular Genetics, Leon Charney Division of Cardiology, Langone Medical Center, New York University School of Medicine, New York, United States of America
| | - Silvia G. Priori
- Molecular Cardiology, Fondazione Salvatore Maugeri, Pavia, Italy
- Cardiovascular Genetics, Leon Charney Division of Cardiology, Langone Medical Center, New York University School of Medicine, New York, United States of America
- Department of Cardiology, University of Pavia, Italy
| | - Sylvain Richard
- Inserm, U637, Université Montpellier-1, Université Montpellier-2, Montpellier, France
- Inserm, U1046, Université Montpellier-1, Université Montpellier-2, Montpellier, France
| | - Ana María Gómez
- Inserm, U637, Université Montpellier-1, Université Montpellier-2, Montpellier, France
- Inserm, U769, IFR141, Faculté de Pharmacie, Université Paris-Sud 11, Chatenay-Malabry, France
| | - Jean-Pierre Benitah
- Inserm, U637, Université Montpellier-1, Université Montpellier-2, Montpellier, France
- Inserm, U769, IFR141, Faculté de Pharmacie, Université Paris-Sud 11, Chatenay-Malabry, France
- * E-mail:
| |
Collapse
|
69
|
Wang JH, Cheng J, Li CR, Ye M, Ma Z, Cai F. Modulation of Ca²⁺ signals by epigallocatechin-3-gallate(EGCG) in cultured rat hippocampal neurons. Int J Mol Sci 2011; 12:742-54. [PMID: 21340011 PMCID: PMC3039977 DOI: 10.3390/ijms12010742] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 12/30/2010] [Accepted: 01/04/2011] [Indexed: 01/15/2023] Open
Abstract
Green tea has been receiving considerable attention as a possible neuroprotective agent against neurodegenerative disease. Epigallocatechin-3-gallate (EGCG) is the major compound of green tea. Calcium signaling has profound effects on almost all aspects of neuronal function. Using digital calcium imaging and patch-clamp technique, we determined the effects of EGCG on Ca2+ signals in hippocampal neurons. The results indicated that EGCG caused a dose-dependent increase in intracellular Ca2+ ([Ca2+]i). This [Ca2+]i increase was blocked by depleting intracellular Ca2+ stores with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin and cyclopiazonic acid. Furthermore, EGCG-stimulated increase in [Ca2+]i was abolished following treatment with a PLC inhibitor. However, EGCG inhibited high-voltage activated Ca2+ currents (IHVA) and NMDA-induced inward currents (INMDA). These data suggest that EGCG triggers a cascade of events: it activates phospholipase C (PLC), mobilizes intracellular Ca2+ stores, raises the cytosolic Ca2+ levels, and inhibits the VGCC and NMDA receptors-mediated Ca2+ influx through a process that remains to be determined.
Collapse
Affiliation(s)
- Jiang-Hua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China; E-Mail:
| | - Jin Cheng
- Department of Pharmacy, The Affiliated Xiangfan Hospital of TongJi Medical College of Huazhong University of Science & Technology, Xiangfan 441021, Hubei, China; E-Mail:
| | - Cai-Rong Li
- Department of Pharmacology, Medical College, Xianning University, Xianning 437100, Hubei, China; E-Mails: (C.-R.L.); (Z.M.)
| | - Mao Ye
- Department of Osteopaedics, Center Hospital of Xianning, Xianning 437100, Hubei, China; E-Mail:
| | - Zhe Ma
- Department of Pharmacology, Medical College, Xianning University, Xianning 437100, Hubei, China; E-Mails: (C.-R.L.); (Z.M.)
| | - Fei Cai
- Department of Pharmacology, Medical College, Xianning University, Xianning 437100, Hubei, China; E-Mails: (C.-R.L.); (Z.M.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-715-8103056; Fax: +86-715-8103056
| |
Collapse
|
70
|
Nagumo Y, Takeuchi Y, Imoto K, Miyata M. Synapse- and subtype-specific modulation of synaptic transmission by nicotinic acetylcholine receptors in the ventrobasal thalamus. Neurosci Res 2010; 69:203-13. [PMID: 21145925 DOI: 10.1016/j.neures.2010.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/29/2010] [Accepted: 12/02/2010] [Indexed: 11/25/2022]
Abstract
The rodent thalamic ventrobasal complex (VB) which is a subdivision of somatosensory thalamus receives two excitatory inputs through the medial lemniscal synapse, which is a sensory afferent synapse, and the corticothalamic synapse from layer VI of the somatosensory cortex. In addition, the VB also receives cholinergic inputs from the brain stem, and nicotinic acetylcholine receptors (nAChRs) are highly expressed in the VB. Little is known, however, how acetylcholine (ACh) modulates synaptic transmission at the medial lemniscal and corticothalamic synapses in the VB. Furthermore, it remains unclear which subtype of nAChRs contributes to VB synaptic transmission. We report here that the activation of nAChRs presynaptically depressed corticothalamic synaptic transmission, whereas it did not affect medial lemniscal synaptic transmission in juvenile mice. This presynaptic modulation was mediated by the activation of nAChRs that contained α4 and β2 subunit, but not by α7 nAChRs. Moreover, galanthamine, an allosteric modulator of α4β2α5 nAChR, enhanced the ACh-induced depression of corticothalamic excitatory postsynaptic currents (EPSCs), indicating that α4β2α5 nAChRs at corticothalamic axon terminals specifically contribute to the depression of corticothalamic synaptic transmission.
Collapse
Affiliation(s)
- Yasuyuki Nagumo
- Department of Physiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | | | | | | |
Collapse
|
71
|
Tekmen M, Gleason E. Multiple Ca2+-dependent mechanisms regulate L-type Ca2+ current in retinal amacrine cells. J Neurophysiol 2010; 104:1849-66. [PMID: 20685929 DOI: 10.1152/jn.00031.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding the regulation of L-type voltage-gated Ca(2+) current is an important component of elucidating the signaling capabilities of retinal amacrine cells. Here we ask how the cytosolic Ca(2+) environment and the balance of Ca(2+)-dependent effectors shape native L-type Ca(2+) channel function in these cells. To achieve this, whole cell voltage clamp recordings were made from cultured amacrine cells under conditions that address the contribution of mitochondrial Ca(2+) uptake (MCU), Ca(2+)/calmodulin (CaM)-dependent channel inactivation (CDI), protein kinase A (PKA), and Ca(2+)-induced Ca(2+) release (CICR). Under control conditions, repeated activation of the L-type channels produces a progressive enhancement of the current. Inhibition of MCU causes a reduction in the Ca(2+) current amplitude that is dependent on Ca(2+) influx as well as cytosolic Ca(2+) buffering, consistent with CDI. Including the Ca(2+) buffer bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA) internally can shift the balance between enhancement and inhibition such that inhibition of MCU can enhance the current. Inhibition of PKA can remove the enhancing effect of BAPTA suggesting that cyclic AMP-dependent phosphorylation is involved. Inhibition of CaM suppresses CDI but spares the enhancement, consistent with the substantially higher sensitivity of the Ca(2+)-sensitive adenylate cyclase 1 (AC1) to Ca(2+)/CaM. Inhibition of the ryanodine receptor reduces the current amplitude, suggesting that CICR might normally amplify the activation of AC1 and stimulation of PKA activity. These experiments reveal that the amplitude of L-type Ca(2+) currents in retinal amacrine cells are both positively and negatively regulated by Ca(2+)-dependent mechanisms.
Collapse
Affiliation(s)
- Merve Tekmen
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
72
|
Ashcroft FM, Stanfield PR. Calcium dependence of the inactivation of calcium currents in skeletal muscle fibers of an insect. Science 2010; 213:224-6. [PMID: 17782788 DOI: 10.1126/science.213.4504.224] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Calcium currents in skeletal muscle fibers of an insect, Carausius morosus, inactivate under depolarization. This inactivation depends on the current being carried across the membrane by calcium ions, rather than strontium or bariumions.
Collapse
|
73
|
Ca2+-dependent facilitation of Cav1.3 Ca2+ channels by densin and Ca2+/calmodulin-dependent protein kinase II. J Neurosci 2010; 30:5125-35. [PMID: 20392935 DOI: 10.1523/jneurosci.4367-09.2010] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ca(v)1 (L-type) channels and calmodulin-dependent protein kinase II (CaMKII) are key regulators of Ca(2+) signaling in neurons. CaMKII directly potentiates the activity of Ca(v)1.2 and Ca(v)1.3 channels, but the underlying molecular mechanisms are incompletely understood. Here, we report that the CaMKII-associated protein densin is required for Ca(2+)-dependent facilitation of Ca(v)1.3 channels. While neither CaMKII nor densin independently affects Ca(v)1.3 properties in transfected HEK293T cells, the two together augment Ca(v)1.3 Ca(2+) currents during repetitive, but not sustained, depolarizing stimuli. Facilitation requires Ca(2+), CaMKII activation, and its association with densin, as well as densin binding to the Ca(v)1.3 alpha(1) subunit C-terminal domain. Ca(v)1.3 channels and densin are targeted to dendritic spines in neurons and form a complex with CaMKII in the brain. Our results demonstrate a novel mechanism for Ca(2+)-dependent facilitation that may intensify postsynaptic Ca(2+) signals during high-frequency stimulation.
Collapse
|
74
|
Interplay of voltage and Ca-dependent inactivation of L-type Ca current. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 103:44-50. [PMID: 20184915 DOI: 10.1016/j.pbiomolbio.2010.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Accepted: 02/16/2010] [Indexed: 11/22/2022]
Abstract
Inactivation of L-type Ca channels (LTCC) is regulated by both Ca and voltage-dependent processes (CDI and VDI). To differentiate VDI and CDI, several experimental and theoretical studies have considered the inactivation of Ba current through LTCC (I(Ba)) as a measure of VDI. However, there is evidence that Ba can weakly mimic Ca, such that I(Ba) inactivation is still a mixture of CDI and VDI. To avoid this complication, some have used the monovalent cation current through LTCC (I(NS)), which can be measured when divalent cation concentrations are very low. Notably, I(NS) inactivation rate does not depend on current amplitude, and hence may reflect purely VDI. However, based on analysis of existent and new data, and modeling, we find that I(NS) can inactivate more rapidly and completely than I(Ba), especially at physiological temperature. Thus VDI that occurs during I(Ba) (or I(Ca)) must differ intrinsically from VDI during I(NS). To account for this, we have extended a previously published LTCC mathematical model of VDI and CDI into an excitation-contraction coupling model, and assessed whether and how experimental I(Ba) inactivation results (traditionally used in VDI experiments and models) could be recapitulated by modifying CDI to account for Ba-dependent inactivation. Thus, the view of a slow and incomplete I(NS) inactivation should be revised, and I(NS) inactivation is a poor measure of VDI during I(Ca) or I(Ba). This complicates VDI analysis experimentally, but raises intriguing new questions about how the molecular mechanisms of VDI differ for divalent and monovalent currents through LTCCs.
Collapse
|
75
|
Tadross MR, Yue DT. Systematic mapping of the state dependence of voltage- and Ca2+-dependent inactivation using simple open-channel measurements. ACTA ACUST UNITED AC 2010; 135:217-27. [PMID: 20142518 PMCID: PMC2828911 DOI: 10.1085/jgp.200910309] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The state from which channel inactivation occurs is both biologically and mechanistically critical. For example, preferential closed-state inactivation is potentiated in certain Ca(2+) channel splice variants, yielding an enhancement of inactivation during action potential trains, which has important consequences for short-term synaptic plasticity. Mechanistically, the structural substrates of inactivation are now being resolved, yielding a growing library of molecular snapshots, ripe for functional interpretation. For these reasons, there is an increasing need for experimentally direct and systematic means of determining the states from which inactivation proceeds. Although many approaches have been devised, most rely upon numerical models that require detailed knowledge of channel-state topology and gating parameters. Moreover, prior strategies have only addressed voltage-dependent forms of inactivation (VDI), and have not been readily applicable to Ca(2+)-dependent inactivation (CDI), a vital form of regulation in numerous contexts. Here, we devise a simple yet systematic approach, applicable to both VDI and CDI, for semiquantitative mapping of the states from which inactivation occurs, based only on open-channel measurements. The method is relatively insensitive to the specifics of channel gating and does not require detailed knowledge of state topology or gating parameters. Rather than numerical models, we derive analytic equations that permit determination of the states from which inactivation occurs, based on direct manipulation of data. We apply this methodology to both VDI and CDI of Ca(V)1.3 Ca(2+) channels. VDI is found to proceed almost exclusively from the open state. CDI proceeds equally from the open and nearby closed states, but is disfavored from deep closed states distant from the open conformation. In all, these outcomes substantiate and enrich conclusions of our companion paper in this issue (Tadross et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.200910308) that deduces endpoint mechanisms of VDI and CDI in Ca(V)1.3. More broadly, the methods introduced herein can be readily generalized for the analysis of other channel types.
Collapse
Affiliation(s)
- Michael R Tadross
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
76
|
Josephson IR, Guia A, Lakatta EG, Lederer WJ, Stern MD. Ca(2+)-dependent components of inactivation of unitary cardiac L-type Ca(2+) channels. J Physiol 2009; 588:213-23. [PMID: 19917566 DOI: 10.1113/jphysiol.2009.178343] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A Ca(2+) ion-dependent inactivation (CDI) of L-type Ca(2+) channels (LCC) is vital in limiting and shaping local Ca(2+) ion signalling in a variety of excitable cell types. However, under physiological conditions the unitary LCC properties that underlie macroscopic inactivation are unclear. Towards this end, we have probed the gating kinetics of individual cardiac LCCs recorded with a physiological Ca(2+) ion concentration (2 mM) permeating the channel, and in the absence of channel agonists. Upon depolarization the ensemble-averaged LCC current decayed with a fast and a slow exponential component. We analysed the unitary behaviour responsible for this biphasic decay by means of a novel kinetic dissection of LCC gating parameters. We found that inactivation was caused by a rapid decrease in the frequency of LCC reopening, and a slower decline in mean open time of the LCC. In contrast, with barium ions permeating the channel ensemble-averaged currents displayed only a single, slow exponential decay and little time dependence of the LCC open time. Our results demonstrate that the fast and slow phases of macroscopic inactivation reflect the distinct time courses for the decline in the frequency of LCC reopening and the open dwell time, both of which are modulated by Ca(2+) influx. Analysis of the evolution of CDI in individual LCC episodes was employed to examine the stochastic nature of the underlying molecular switch, and revealed that influx on the order of a thousand Ca(2+) ions may be sufficient to trigger CDI. This is the first study to characterize both the unitary kinetics and the stoichiometry of CDI of LCCs with a physiological Ca(2+) concentration. These novel findings may provide a basis for understanding the mechanisms regulating unitary LCC gating, which is a pivotal element in the local control of Ca(2+)-dependent signalling processes.
Collapse
Affiliation(s)
- Ira R Josephson
- Department of Physiology and Pharmacology, CUNY Medical School, City College of New York, New York, NY 10031, USA.
| | | | | | | | | |
Collapse
|
77
|
Hernández-Ochoa EO, Prosser BL, Wright NT, Contreras M, Weber DJ, Schneider MF. Augmentation of Cav1 channel current and action potential duration after uptake of S100A1 in sympathetic ganglion neurons. Am J Physiol Cell Physiol 2009; 297:C955-70. [PMID: 19657060 DOI: 10.1152/ajpcell.00140.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
S100A1, a 21-kDa dimeric Ca2+-binding protein of the EF-hand type, is expressed in cardiomyocytes and is an important regulator of heart function. During ischemia, cardiomyocytes secrete S100A1 to the extracellular space. Although the effects of extracellular S100A1 have been documented in cardiomyocytes, it is unclear whether S100A1 exerts modulatory effects on other tissues in proximity with cardiac cells. Therefore, we sought to investigate the effects of exogenous S100A1 on Ca2+ signals and electrical properties of superior cervical ganglion (SCG) neurons. Immunostaining and Western blot assays indicated no endogenous S100A1 in SCG neurons. Cultured SCG neurons took up S100A1 when it was present in the extracellular medium. Inside the cell exogenous S100A1 localized in a punctate pattern throughout the cytoplasm but was excluded from the nuclei. S100A1 partially colocalized with markers for both receptor- and non-receptor-mediated endocytosis, indicating that in SCG neurons multiple endocytotic pathways are involved in S100A1 internalization. In compartmentalized SCG cultures, axonal projections were capable of uptake and transport of S100A1 toward the neuronal somas. Exogenous S100A1 applied either extra- or intracellularly enhanced Cav1 channel currents in a PKA-dependent manner, prolonged action potentials, and amplified action potential-induced Ca2+ transients. NMR chemical shift perturbation of Ca2+-S100A1 in the presence of a peptide from the regulatory subunit of PKA verifies that S100A1 directly interacts with PKA, and that this interaction likely occurs in the hydrophobic binding pocket of Ca2+-S100A1. Our results suggest the hypothesis that in sympathetic neurons exogenous S100A1 may lead to an increase of sympathetic output.
Collapse
Affiliation(s)
- Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
78
|
Jian K, Barhoumi R, Ko ML, Ko GYP. Inhibitory effect of somatostatin-14 on L-type voltage-gated calcium channels in cultured cone photoreceptors requires intracellular calcium. J Neurophysiol 2009; 102:1801-10. [PMID: 19605612 DOI: 10.1152/jn.00354.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The inhibitory effects of somatostatin have been well documented for many physiological processes. The action of somatostatin is through G-protein-coupled receptor-mediated second-messenger signaling, which in turn affects other downstream targets including ion channels. In the retina, somatostatin is released from a specific class of amacrine cells. Here we report that there was a circadian phase-dependent effect of somatostatin-14 (SS14) on the L-type voltage-gated calcium channels (L-VGCCs) in cultured chicken cone photoreceptors, and our study reveals that this process is dependent on intracellular calcium stores. Application of 500 nM SS14 for 2 h caused a decrease in L-VGCC currents only during the subjective night but not the subjective day. We then explored the cellular mechanisms underlying the circadian phase-dependent effect of SS14. The inhibitory effect of SS14 on L-VGCCs was mediated through the pertussis-toxin-sensitive G-protein-dependent somatostatin receptor 2 (sst2). Activation of sst2 by SS14 further activated downstream signaling involving phospholipase C and intracellular calcium stores. Mobilization of intracellular Ca2+ was required for somatostatin induced inhibition of photoreceptor L-VGCCs, suggesting that somatostatin plays an important role in the modulation of photoreceptor physiology.
Collapse
Affiliation(s)
- Kuihuan Jian
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | | | | | | |
Collapse
|
79
|
Brunet S, Scheuer T, Catterall WA. Cooperative regulation of Ca(v)1.2 channels by intracellular Mg(2+), the proximal C-terminal EF-hand, and the distal C-terminal domain. ACTA ACUST UNITED AC 2009; 134:81-94. [PMID: 19596806 PMCID: PMC2717695 DOI: 10.1085/jgp.200910209] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
L-type Ca(2+) currents conducted by Ca(v)1.2 channels initiate excitation-contraction coupling in cardiac myocytes. Intracellular Mg(2+) (Mg(i)) inhibits the ionic current of Ca(v)1.2 channels. Because Mg(i) is altered in ischemia and heart failure, its regulation of Ca(v)1.2 channels is important in understanding cardiac pathophysiology. Here, we studied the effects of Mg(i) on voltage-dependent inactivation (VDI) of Ca(v)1.2 channels using Na(+) as permeant ion to eliminate the effects of permeant divalent cations that engage the Ca(2+)-dependent inactivation process. We confirmed that increased Mg(i) reduces peak ionic currents and increases VDI of Ca(v)1.2 channels in ventricular myocytes and in transfected cells when measured with Na(+) as permeant ion. The increased rate and extent of VDI caused by increased Mg(i) were substantially reduced by mutations of a cation-binding residue in the proximal C-terminal EF-hand, consistent with the conclusion that both reduction of peak currents and enhancement of VDI result from the binding of Mg(i) to the EF-hand (K(D) approximately 0.9 mM) near the resting level of Mg(i) in ventricular myocytes. VDI was more rapid for L-type Ca(2+) currents in ventricular myocytes than for Ca(v)1.2 channels in transfected cells. Coexpression of Ca(v)beta(2b) subunits and formation of an autoinhibitory complex of truncated Ca(v)1.2 channels with noncovalently bound distal C-terminal domain (DCT) both increased VDI in transfected cells, indicating that the subunit structure of the Ca(v)1.2 channel greatly influences its VDI. The effects of noncovalently bound DCT on peak current amplitude and VDI required Mg(i) binding to the proximal C-terminal EF-hand and were prevented by mutations of a key divalent cation-binding amino acid residue. Our results demonstrate cooperative regulation of peak current amplitude and VDI of Ca(v)1.2 channels by Mg(i), the proximal C-terminal EF-hand, and the DCT, and suggest that conformational changes that regulate VDI are propagated from the DCT through the proximal C-terminal EF-hand to the channel-gating mechanism.
Collapse
Affiliation(s)
- Sylvain Brunet
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
80
|
Rosa JM, Gandía L, García AG. Inhibition of N and PQ calcium channels by calcium entry through L channels in chromaffin cells. Pflugers Arch 2009; 458:795-807. [PMID: 19347353 DOI: 10.1007/s00424-009-0662-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 02/09/2009] [Accepted: 03/01/2009] [Indexed: 11/24/2022]
Abstract
Why adrenal chromaffin cells express various subtypes of voltage-dependent Ca(2+) channels and whether a given channel is specialized to perform a specific function are puzzling and unanswered questions. In this study, we have used the L Ca(2+) channel activator FPL64176 (FPL) to test the hypothesis that enhanced Ca(2+) entry through this channel favors the inhibition of N and PQ channels in voltage-clamped bovine adrenal chromaffin cells. Using 2 mM Ca(2+) as charge carrier and under the perforated-patch configuration (PPC) of the patch-clamp technique, FPL caused a paradoxical inhibition of the whole-cell inward Ca(2+) current (I (Ca)). Such inhibition turned on into an augmentation upon cell loading with EGTA-AM. Also, under the whole-cell configuration (WCC) of the patch-clamp technique, FPL decreased I (Ca) in the absence of EGTA from the pipette solution and increased the current in its presence. Using 2 mM Ba(2+) as charge carrier, FPL augmented the Ba(2+) current under both recording conditions, WCC and PPC. FPL augmented the residual current remaining after blockade of N and PQ channels with omega-conotoxin MVIIC or by holding the membrane potential at -50 mV. The data support the view that Ca(2+) entering the cell through the lesser inactivating L channels serves to modulate the more inactivating N and PQ channels. They also suggest a close colocalization of L and N/PQ Ca(2+) channels. This kind of L channel specialization may be relevant to cell excitability, exocytosis, and cell survival mechanisms.
Collapse
Affiliation(s)
- Juliana M Rosa
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo, 4. 28029, Madrid, Spain
| | | | | |
Collapse
|
81
|
Nakaoka Y, Imaji T, Hara M, Hashimoto N. Spontaneous fluctuation of the resting membrane potential in Paramecium: amplification caused by intracellular Ca2+. ACTA ACUST UNITED AC 2009; 212:270-6. [PMID: 19112146 DOI: 10.1242/jeb.023283] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ciliated protozoan Paramecium spontaneously changes its swimming direction in the absence of external stimuli. Such behavior is based on resting potential fluctuations, the amplitudes of which reach a few mV. When the resting potential fluctuation is positive and large, a spike-like depolarization is frequently elicited that reverses the beating of the cilia associated with directional changes during swimming. We aimed to study how the resting potential fluctuation is amplified. Simultaneous measurements of the resting potential and intracellular Ca(2+) ([Ca(2+)](i)) from a deciliated cell showed that positive potential fluctuations were frequently accompanied by a small increase in [Ca(2+)](i). This result suggests that Ca(2+) influx through the somatic membrane occurs during the resting state. The mean amplitude of the resting potential fluctuation was largely decreased by either an intracellular injection of a calcium chelater (BAPTA) or by an extracellular addition of Ba(2+). Hence, a small increase in [Ca(2+)](i) amplifies the resting potential fluctuation. Simulation analysis of the potential fluctuation was made by assuming that Ca(2+) and K(+) channels of surface membrane are fluctuating between open and closed states. The simulated fluctuation increased to exhibit almost the same amplitude as the measured fluctuation using the assumption that a small Ca(2+) influx activates Ca(2+) channels in a positive feedback manner.
Collapse
Affiliation(s)
- Yasuo Nakaoka
- Biophysical Dynamics Laboratories, Graduate School of Frontier Bioscience, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | | | | | | |
Collapse
|
82
|
Ma LQ, Liu C, Wang F, Xie N, Gu J, Fu H, Wang JH, Cai F, Liu J, Chen JG. Activation of phosphatidylinositol-linked novel D1 dopamine receptors inhibits high-voltage-activated Ca2+ currents in primary cultured striatal neurons. J Neurophysiol 2009; 101:2230-8. [PMID: 19225177 DOI: 10.1152/jn.90345.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Recent evidences indicate the existence of a putative novel phosphatidylinositol (PI)-linked D(1) dopamine receptor that mediates excellent anti-Parkinsonian but less severe dyskinesia action. To further understand the basic physiological function of this receptor in brain, the effects of a PI-linked D(1) dopamine receptor-selective agonist 6-chloro-7,8-dihydroxy-3-methyl-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959) on high-voltage activated (HVA) Ca(2+) currents in primary cultured striatal neurons were investigated by whole cell patch-clamp technique. The results indicated that stimulation by SKF83959 induced an inhibition of HVA Ca(2+) currents in a dose-dependent manner in substance-P (SP)-immunoreactive striatal neurons. Application of D(1) receptor, but not D(2), alpha(1) adrenergic, 5-HT receptor, or cholinoceptor antagonist prevented SKF83959-induced reduction, indicating that a D(1) receptor-mediated event assumed via PI-linked D(1) receptor. SKF83959-induced inhibitory modulation was mediated by activation of phospholipase C (PLC), mobilization of intracellular Ca(2+) stores and activation of calcineurin. Furthermore, the inhibitory effects were attenuated significantly by the L-type calcium channel antagonist nifedipine, suggesting that L-type calcium channels involved in the regulation induced by SKF83959. These findings may help to further understand the functional role of the PI-linked dopamine receptor in brain.
Collapse
Affiliation(s)
- Li-Qun Ma
- Dept. of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, Hubei 430030, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Fitzpatrick JS, Hagenston AM, Hertle DN, Gipson KE, Bertetto-D'Angelo L, Yeckel MF. Inositol-1,4,5-trisphosphate receptor-mediated Ca2+ waves in pyramidal neuron dendrites propagate through hot spots and cold spots. J Physiol 2009; 587:1439-59. [PMID: 19204047 DOI: 10.1113/jphysiol.2009.168930] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We studied inositol-1,4,5-trisphosphate (IP(3)) receptor-dependent intracellular Ca(2+) waves in CA1 hippocampal and layer V medial prefrontal cortical pyramidal neurons using whole-cell patch-clamp recordings and Ca(2+) fluorescence imaging. We observed that Ca(2+) waves propagate in a saltatory manner through dendritic regions where increases in the intracellular concentration of Ca(2+) ([Ca(2+)](i)) were large and fast ('hot spots') separated by regions where increases in [Ca(2+)](i) were comparatively small and slow ('cold spots'). We also observed that Ca(2+) waves typically initiate in hot spots and terminate in cold spots, and that most hot spots, but few cold spots, are located at dendritic branch points. Using immunohistochemistry, we found that IP(3) receptors (IP(3)Rs) are distributed in clusters along pyramidal neuron dendrites and that the distribution of inter-cluster distances is nearly identical to the distribution of inter-hot spot distances. These findings support the hypothesis that the dendritic locations of Ca(2+) wave hot spots in general, and branch points in particular, are specially equipped for regenerative IP(3)R-dependent internal Ca(2+) release. Functionally, the observation that IP(3)R-dependent [Ca(2+)](i) rises are greater at branch points raises the possibility that this novel Ca(2+) signal may be important for the regulation of Ca(2+)-dependent processes in these locations. Futhermore, the observation that Ca(2+) waves tend to fail between hot spots raises the possibility that influences on Ca(2+) wave propagation may determine the degree of functional association between distinct Ca(2+)-sensitive dendritic domains.
Collapse
Affiliation(s)
- John S Fitzpatrick
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
84
|
Plattner H, Sehring IM, Schilde C, Ladenburger E. Chapter 5 Pharmacology of Ciliated Protozoa—Drug (In)Sensitivity and Experimental Drug (Ab)Use. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:163-218. [DOI: 10.1016/s1937-6448(08)01805-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
85
|
Casini S, Verkerk AO, van Borren MMGJ, van Ginneken ACG, Veldkamp MW, de Bakker JMT, Tan HL. Intracellular calcium modulation of voltage-gated sodium channels in ventricular myocytes. Cardiovasc Res 2008; 81:72-81. [PMID: 18829699 DOI: 10.1093/cvr/cvn274] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Cardiac voltage-gated sodium channels control action potential (AP) upstroke and cell excitability. Intracellular calcium (Ca(i)(2+)) regulates AP properties by modulating various ion channels. Whether Ca(i)(2+) modulates sodium channels in ventricular myocytes is unresolved. We studied whether Ca(i)(2+) modulates sodium channels in ventricular myocytes at Ca(i)(2+) concentrations ([Ca(i)(2+)]) present during the cardiac AP (0-500 nM), and how this modulation affects sodium channel properties in heart failure (HF), a condition in which Ca(i)(2+) homeostasis is disturbed. METHODS AND RESULTS Sodium current (I(Na)) and maximal AP upstroke velocity (dV/dt(max)), a measure of I(Na), were studied at 20 and 37 degrees C, respectively, in freshly isolated left ventricular myocytes of control and HF rabbits, using whole-cell patch-clamp methodology. [Ca(i)(2+)] was varied using different pipette solutions, the Ca(i)(2+) buffer BAPTA, and caffeine administration. Elevated [Ca(i)(2+)] reduced I(Na) density and dV/dt(max), but caused no I(Na) gating changes. Reductions in I(Na) density occurred simultaneously with increase in [Ca(i)(2+)], suggesting that these effects were due to permeation block. Accordingly, unitary sodium current amplitudes were reduced at higher [Ca(i)(2+)]. While I(Na) density and gating at fixed [Ca(i)(2+)] were not different between HF and control, reductions in dV/dt(max) upon increases in stimulation rate were larger in HF than in control; these differences were abolished by BAPTA. CONCLUSION Ca(i)(2+) exerts acute modulation of I(Na) density in ventricular myocytes, but does not modify I(Na) gating. These effects, occurring rapidly and in the [Ca(i)(2+)] range observed physiologically, may contribute to beat-to-beat regulation of cardiac excitability in health and disease.
Collapse
Affiliation(s)
- Simona Casini
- Department of Clinical and Experimental Cardiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Meibergdreef 9, AZ 1105 Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
Studies of ion channels have for long been dominated by the animalcentric, if not anthropocentric, view of physiology. The structures and activities of ion channels had, however, evolved long before the appearance of complex multicellular organisms on earth. The diversity of ion channels existing in cellular membranes of prokaryotes is a good example. Although at first it may appear as a paradox that most of what we know about the structure of eukaryotic ion channels is based on the structure of bacterial channels, this should not be surprising given the evolutionary relatedness of all living organisms and suitability of microbial cells for structural studies of biological macromolecules in a laboratory environment. Genome sequences of the human as well as various microbial, plant, and animal organisms unambiguously established the evolutionary links, whereas crystallographic studies of the structures of major types of ion channels published over the last decade clearly demonstrated the advantage of using microbes as experimental organisms. The purpose of this review is not only to provide an account of acquired knowledge on microbial ion channels but also to show that the study of microbes and their ion channels may also hold a key to solving unresolved molecular mysteries in the future.
Collapse
Affiliation(s)
- Boris Martinac
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
87
|
Ohrtman J, Ritter B, Polster A, Beam KG, Papadopoulos S. Sequence differences in the IQ motifs of CaV1.1 and CaV1.2 strongly impact calmodulin binding and calcium-dependent inactivation. J Biol Chem 2008; 283:29301-11. [PMID: 18718913 DOI: 10.1074/jbc.m805152200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proximal C terminus of the cardiac L-type calcium channel (Ca(V)1.2) contains structural elements important for the binding of calmodulin (CaM) and calcium-dependent inactivation, and exhibits extensive sequence conservation with the corresponding region of the skeletal L-type channel (Ca(V)1.1). However, there are several Ca(V)1.1 residues that are both identical in six species and are non-conservatively changed from the corresponding Ca(V)1.2 residues, including three of the "IQ motif." To investigate the functional significance of these residue differences, we used native gel electrophoresis and expression in intact myotubes to compare the binding of CaM to extended regions (up to 300 residues) of the C termini of Ca(V)1.1 and Ca(V)1.2. We found that in the presence of Ca(2+) (either millimolar or that in resting myotubes), CaM bound strongly to C termini of Ca(V)1.2 but not of Ca(V)1.1. Furthermore, replacement of two residues (Tyr(1657) and Lys(1662)) within the IQ motif of a C-terminal Ca(V)1.2 construct with the divergent residues of Ca(V)1.1 (His(1532) and Met(1537)) led to a weakening of CaM binding (native gels), whereas the reciprocal substitution in Ca(V)1.1 caused a gain of CaM binding. In full-length Ca(V)1.2, substitution of these same two divergent residues with those of Ca(V)1.1 (Y1657H, K1662M) eliminated calcium-dependent inactivation of the heterologously expressed channel. Thus, our results reveal that a conserved difference between the IQ motifs of Ca(V)1.2 and Ca(V)1.1 has a profound effect on both CaM binding and calcium-dependent inactivation.
Collapse
Affiliation(s)
- Joshua Ohrtman
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, Aurora, Colorado 80045, USA
| | | | | | | | | |
Collapse
|
88
|
Calcium regulates independently ciliary beat and cell contraction in Paramecium cells. Cell Calcium 2008; 44:169-79. [DOI: 10.1016/j.ceca.2007.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Revised: 11/15/2007] [Accepted: 11/15/2007] [Indexed: 11/16/2022]
|
89
|
Sehring IM, Klotz C, Beisson J, Plattner H. Rapid downregulation of the Ca2+-signal after exocytosis stimulation in Paramecium cells: essential role of a centrin-rich filamentous cortical network, the infraciliary lattice. Cell Calcium 2008; 45:89-97. [PMID: 18653233 DOI: 10.1016/j.ceca.2008.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 04/15/2008] [Accepted: 06/17/2008] [Indexed: 01/18/2023]
Abstract
We analysed in Paramecium tetraurelia cells the role of the infraciliary lattice, a cytoskeletal network containing numerous centrin isoforms tightly bound to large binding proteins, in the re-establishment of Ca2+ homeostasis following exocytosis stimulation. The wild type strain d4-2 has been compared with the mutant cell line Delta-PtCenBP1 which is devoid of the infraciliary lattice ("Delta-PtCenBP1" cells). Exocytosis is known to involve the mobilization of cortical Ca2+-stores and a superimposed Ca2+-influx and was analysed using Fura Red ratio imaging. No difference in the initial signal generation was found between wild type and Delta-PtCenBP1 cells. In contrast, decay time was greatly increased in Delta-PtCenBP1 cells particularly when stimulated, e.g., in presence of 1mM extracellular Ca2+, [Ca2+]o. Apparent halftimes of f/f0 decrease were 8.5 s in wild type and approximately 125 s in Delta-PtCenBP1 cells, requiring approximately 30 s and approximately 180 s, respectively, to re-establish intracellular [Ca2+] homeostasis. Lowering [Ca2+]o to 0.1 and 0.01 mM caused an acceleration of intracellular [Ca2+] decay to t(1/2)=33 s and 28 s, respectively, in Delta-PtCenBP1 cells as compared to 8.1 and 5.6, respectively, for wild type cells. We conclude that, in Paramecium cells, the infraciliary lattice is the most efficient endogenous Ca2+ buffering system allowing the rapid downregulation of Ca2+ signals after exocytosis stimulation.
Collapse
Affiliation(s)
- Ivonne M Sehring
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
90
|
Crystal structure of the CaV2 IQ domain in complex with Ca2+/calmodulin: high-resolution mechanistic implications for channel regulation by Ca2+. Structure 2008; 16:607-20. [PMID: 18400181 DOI: 10.1016/j.str.2008.01.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/12/2008] [Accepted: 01/22/2008] [Indexed: 11/21/2022]
Abstract
Calmodulin (CaM) regulation of Ca(2+) channels is central to Ca(2+) signaling. Ca(V)1 versus Ca(V)2 classes of these channels exhibit divergent forms of regulation, potentially relating to customized CaM/IQ interactions among different channels. Here we report the crystal structures for the Ca(2+)/CaM IQ domains of both Ca(V)2.1 and Ca(V)2.3 channels. These highly similar structures emphasize that major CaM contacts with the IQ domain extend well upstream of traditional consensus residues. Surprisingly, upstream mutations strongly diminished Ca(V)2.1 regulation, whereas downstream perturbations had limited effects. Furthermore, our Ca(V)2 structures closely resemble published Ca(2+)/CaM-Ca(V)1.2 IQ structures, arguing against Ca(V)1/2 regulatory differences based solely on contrasting CaM/IQ conformations. Instead, alanine scanning of the Ca(V)2.1 IQ domain, combined with structure-based molecular simulation of corresponding CaM/IQ binding energy perturbations, suggests that the C lobe of CaM partially dislodges from the IQ element during channel regulation, allowing exposed IQ residues to trigger regulation via isoform-specific interactions with alternative channel regions.
Collapse
|
91
|
Johnson SL, Marcotti W. Biophysical properties of CaV1.3 calcium channels in gerbil inner hair cells. J Physiol 2008; 586:1029-42. [PMID: 18174213 PMCID: PMC2268984 DOI: 10.1113/jphysiol.2007.145219] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 12/11/2007] [Indexed: 12/20/2022] Open
Abstract
The Ca(2+) current (I(Ca)) in prehearing and adult inner hair cells (IHCs), the primary sensory receptors of the mammalian cochlea, is mainly carried by L-type (Ca(V)1.3) Ca(2+) channels. I(Ca) in immature and adult IHCs triggers the release of neurotransmitter onto auditory afferent fibres in response to spontaneous action potentials (APs) or graded receptor potentials, respectively. We have investigated whether the biophysical properties of I(Ca) vary between low- and high-frequency IHCs during cochlear development and whether its inactivation influences cellular responses. I(Ca) was recorded from gerbil IHCs maintained near physiological recording conditions. The size of I(Ca) in adult IHCs was about a third of that in immature cells with no apparent difference along the cochlea at both stages. The activation kinetics of I(Ca) were significantly faster in high-frequency IHCs, with that of adult cells being more rapid than immature cells. The degree of I(Ca) inactivation was similar along the immature cochlea but larger in high- than low-frequency adult IHCs. This inactivation was greatly reduced with barium but not affected by changing the intracellular buffer (BAPTA instead of EGTA). Immature basal IHCs showed faster recovery of I(Ca) from inactivation than apical cells allowing them to support a higher AP frequency. I(Ca) in adult IHCs was more resistant to progressive inactivation following repeated voltage stimulation than that of immature cells. This suggests that adult IHCs are likely to be suited for sustaining rapid and repeated release of synaptic vesicles, which is essential for sound encoding.
Collapse
Affiliation(s)
- Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | | |
Collapse
|
92
|
Gonda K, Oami K, Takahashi M. Centrin controls the activity of the ciliary reversal-coupled voltage-gated Ca2+ channels Ca2+-dependently. Biochem Biophys Res Commun 2007; 362:170-176. [PMID: 17698037 DOI: 10.1016/j.bbrc.2007.07.173] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 07/31/2007] [Indexed: 11/21/2022]
Abstract
In Paramecium, ciliary reversal is coupled with voltage-gated Ca(2+) channels on the ciliary membrane. We previously isolated a P. caudatum mutant, cnrC, with a malfunction of the Ca(2+) channels and discovered that the channel activity of cnrC was restored by transfection of the P. caudatum centrin (Pccentrin1p) gene, which encodes a member of the Ca(2+)-binding EF-hand protein family. In this study, we injected various mutated Pccentrin1p genes into cnrC and investigated whether these genes restore the Ca(2+) channel activity of cnrC. A Pccentrin1p mutant gene lacking Ca(2+) sensitivity of the third and fourth EF-hands lost the ability to restore the channel function of cnrC, and mutation of the fourth EF-hand caused more serious impairment than mutation of the third EF-hand. Moreover, a Pccentrin1p gene lacking the N-terminal 34-amino acid sequence also lost the ability to restore the channel activity. Native-PAGE analysis demonstrated that the N-terminal sequence is important for the Ca(2+)-dependent structural change of Pccentrin1p. These results demonstrate that Pccentrin1p Ca(2+)-dependently regulates the Ca(2+) channel activity in vivo.
Collapse
Affiliation(s)
- Kohsuke Gonda
- Biomedical and Engineering Research Organization, Tohoku University, Sendai, Miyagi 980-8579, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| | - Kazunori Oami
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Mihoko Takahashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
93
|
Stroffekova K. Ca2+/CaM-dependent inactivation of the skeletal muscle L-type Ca2+ channel (Cav1.1). Pflugers Arch 2007; 455:873-84. [PMID: 17899167 DOI: 10.1007/s00424-007-0344-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
Abstract
Ca2+-dependent modulation via calmodulin (CaM) has been documented for most high-voltage-activated Ca2+ channels, but whether the skeletal muscle L-type channel (Cav1.1) exhibits this property has been unknown. In this paper, whole-cell current and fluorescent resonance energy transfer (FRET) recordings were obtained from cultured mouse myotubes to test for potential involvement of CaM in function of Cav1.1. When prolonged depolarization (800 ms) was used to evoke Cav1.1 currents in normal myotubes, the fraction of current remaining at the end of the pulse displayed classic signs of Ca2+-dependent inactivation (CDI), including U-shaped voltage dependence, maximal inactivation (approximately 30%) at potentials eliciting maximal inward current, and virtual elimination of inactivation when Ba2+ replaced external Ca2+ or when 10 mM BAPTA was included in the pipette solution. Furthermore, CDI was virtually eliminated (from 30 to 8%) in normal myotubes overexpressing mutant CaM (CaM1234) that does not bind Ca2+, whereas CDI was unaltered in myotubes overexpressing wild-type CaM (CaMwt). In addition, a significant FRET signal (E=4.06%) was detected between fluorescently tagged Cav1.1 and CaMwt coexpressed in dysgenic myotubes, demonstrating for the first time that these two proteins associate in vivo. These findings show that CaM associates with and modulates Cav1.1.
Collapse
Affiliation(s)
- Katarina Stroffekova
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA.
| |
Collapse
|
94
|
Affiliation(s)
- Riccardo Olcese
- Division of Molecular Medicine, Department of Anesthesiology, Brain Research Institute and Cardiovascular Research Laboratories, D. Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
95
|
Babich O, Matveev V, Harris AL, Shirokov R. Ca2+-dependent inactivation of CaV1.2 channels prevents Gd3+ block: does Ca2+ block the pore of inactivated channels? ACTA ACUST UNITED AC 2007; 129:477-83. [PMID: 17535960 PMCID: PMC2151623 DOI: 10.1085/jgp.200709734] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lanthanide gadolinium (Gd(3+)) blocks Ca(V)1.2 channels at the selectivity filter. Here we investigated whether Gd(3+) block interferes with Ca(2+)-dependent inactivation, which requires Ca(2+) entry through the same site. Using brief pulses to 200 mV that relieve Gd(3+) block but not inactivation, we monitored how the proportions of open and open-blocked channels change during inactivation. We found that blocked channels inactivate much less. This is expected for Gd(3+) block of the Ca(2+) influx that enhances inactivation. However, we also found that the extent of Gd(3+) block did not change when inactivation was reduced by abolition of Ca(2+)/calmodulin interaction, showing that Gd(3+) does not block the inactivated channel. Thus, Gd(3+) block and inactivation are mutually exclusive, suggesting action at a common site. These observations suggest that inactivation causes a change at the selectivity filter that either hides the Gd(3+) site or reduces its affinity, or that Ca(2+) occupies the binding site at the selectivity filter in inactivated channels. The latter possibility is supported by previous findings that the EEQE mutation of the selectivity EEEE locus is void of Ca(2+)-dependent inactivation (Zong Z.Q., J.Y. Zhou, and T. Tanabe. 1994. Biochem. Biophys. Res. Commun. 201:1117-11123), and that Ca(2+)-inactivated channels conduct Na(+) when Ca(2+) is removed from the extracellular medium (Babich O., D. Isaev, and R. Shirokov. 2005. J. Physiol. 565:709-717). Based on these results, we propose that inactivation increases affinity of the selectivity filter for Ca(2+) so that Ca(2+) ion blocks the pore. A minimal model, in which the inactivation "gate" is an increase in affinity of the selectivity filter for permeating ions, successfully simulates the characteristic U-shaped voltage dependence of inactivation in Ca(2+).
Collapse
Affiliation(s)
- Olga Babich
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
96
|
|
97
|
|
98
|
Affiliation(s)
- Kathleen Dunlap
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
99
|
Pitt GS. Calmodulin and CaMKII as molecular switches for cardiac ion channels: Fig. 1. Cardiovasc Res 2007; 73:641-7. [PMID: 17137569 DOI: 10.1016/j.cardiores.2006.10.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 10/20/2006] [Accepted: 10/25/2006] [Indexed: 10/23/2022] Open
Abstract
Because changes in intracellular Ca(2+) concentration are the final signals of electrical activity in excitable cells, many mechanisms have evolved to regulate Ca(2+) influx. Among the most important are those pathways that directly regulate the ion channels responsible for regulating and generating the Ca(2+) influx signal. Recent work has demonstrated that the Ca(2+) binding protein calmodulin (CaM) and the Ca(2+)/CaM-sensitive kinase CaMKII are important modulators of cardiac ion channels. Thus, Ca(2+) participates in feedback modulation to control electrical activity. This review highlights various mechanisms by which CaM and CaMKII regulate cardiovascular ion channel activity and presents a novel model for CaMKII regulation of Ca(V)1.2 Ca(2+) channel function.
Collapse
Affiliation(s)
- Geoffrey S Pitt
- Department of Medicine, Division of Cardiology, College of Physicians and Surgeons of Columbia University, 630 W 168th St, PH 7W 318, New York, NY 10032, USA.
| |
Collapse
|
100
|
Voltage-gated calcium channels, calcium signaling, and channelopathies. CALCIUM - A MATTER OF LIFE OR DEATH 2007. [DOI: 10.1016/s0167-7306(06)41005-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|