51
|
Yahsi B, Gunaydin G. Immunometabolism - The Role of Branched-Chain Amino Acids. Front Immunol 2022; 13:886822. [PMID: 35812393 PMCID: PMC9259854 DOI: 10.3389/fimmu.2022.886822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Immunometabolism has been the focus of extensive research over the last years, especially in terms of augmenting anti-tumor immune responses. Regulatory T cells (Tregs) are a subset of CD4+ T cells, which have been known for their immunosuppressive roles in various conditions including anti-tumor immune responses. Even though several studies aimed to target Tregs in the tumor microenvironment (TME), such approaches generally result in the inhibition of the Tregs non-specifically, which may cause immunopathologies such as autoimmunity. Therefore, specifically targeting the Tregs in the TME would be vital in terms of achieving a successful and specific treatment. Recently, an association between Tregs and isoleucine, which represents one type of branched-chain amino acids (BCAAs), has been demonstrated. The presence of isoleucine seems to affect majorly Tregs, rather than conventional T cells. Considering the fact that Tregs bear several distinct metabolic features in the TME, targeting their immunometabolic pathways may be a rational approach. In this Review, we provide a general overview on the potential distinct metabolic features of T cells, especially focusing on BCAAs in Tregs as well as in their subtypes.
Collapse
Affiliation(s)
- Berkay Yahsi
- School of Medicine, Hacettepe University, Ankara, Turkey
| | - Gurcan Gunaydin
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| |
Collapse
|
52
|
Liedmann S, Liu X, Guy CS, Crawford JC, Rodriguez DA, Kuzuoğlu-Öztürk D, Guo A, Verbist KC, Temirov J, Chen MJ, Ruggero D, Zhang H, Thomas PG, Green DR. Localization of a TORC1-eIF4F translation complex during CD8 + T cell activation drives divergent cell fate. Mol Cell 2022; 82:2401-2414.e9. [PMID: 35597236 DOI: 10.1016/j.molcel.2022.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/22/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
Activated CD8+ T lymphocytes differentiate into heterogeneous subsets. Using super-resolution imaging, we found that prior to the first division, dynein-dependent vesicular transport polarized active TORC1 toward the microtubule-organizing center (MTOC) at the proximal pole. This active TORC1 was physically associated with active eIF4F, required for the translation of c-myc mRNA. As a consequence, c-myc-translating polysomes polarized toward the cellular pole proximal to the immune synapse, resulting in localized c-myc translation. Upon division, the TORC1-eIF4A complex preferentially sorted to the proximal daughter cell, facilitating asymmetric c-Myc synthesis. Transient disruption of eIF4A activity at first division skewed long-term cell fate trajectories to memory-like function. Using a genetic barcoding approach, we found that first-division sister cells often displayed differences in transcriptional profiles that largely correlated with c-Myc and TORC1 target genes. Our findings provide mechanistic insights as to how distinct T cell fate trajectories can be established during the first division.
Collapse
Affiliation(s)
- Swantje Liedmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Xueyan Liu
- Department of Mathematics, University of New Orleans, New Orleans, LA 70148, USA
| | - Clifford S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Diego A Rodriguez
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Duygu Kuzuoğlu-Öztürk
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ao Guo
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Katherine C Verbist
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jamshid Temirov
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mark J Chen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Davide Ruggero
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hui Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
53
|
English ED, Guérin A, Tandel J, Striepen B. Live imaging of the Cryptosporidium parvum life cycle reveals direct development of male and female gametes from type I meronts. PLoS Biol 2022; 20:e3001604. [PMID: 35436284 PMCID: PMC9015140 DOI: 10.1371/journal.pbio.3001604] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 01/08/2023] Open
Abstract
Cryptosporidium is a leading infectious cause of diarrhea around the world associated with waterborne outbreaks, community spread, or zoonotic transmission. The parasite has significant impact on early childhood mortality, and infection is both a consequence and cause of malnutrition and stunting. There is currently no vaccine, and treatment options are very limited. Cryptosporidium is a member of the Apicomplexa, and, as typical for this, protist phylum relies on asexual and sexual reproduction. In contrast to other Apicomplexa, including the malaria parasite Plasmodium, the entire Cryptosporidium life cycle unfolds in a single host in less than 3 days. Here, we establish a model to image life cycle progression in living cells and observe, track, and compare nuclear division of asexual and sexual stage parasites. We establish the length and sequence of the cell cycles of all stages and map the developmental fate of parasites across multiple rounds of invasion and egress. We propose that the parasite executes an intrinsic program of 3 generations of asexual replication, followed by a single generation of sexual stages that is independent of environmental stimuli. We find no evidence for a morphologically distinct intermediate stage (the tetraploid type II meront) but demonstrate direct development of gametes from 8N type I meronts. The progeny of each meront is collectively committed to either asexual or sexual fate, but, importantly, meronts committed to sexual fate give rise to both males and females. We define a Cryptosporidium life cycle matching Tyzzer’s original description and inconsistent with the coccidian life cycle now shown in many textbooks.
Collapse
Affiliation(s)
- Elizabeth D. English
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amandine Guérin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jayesh Tandel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
54
|
Karasarides M, Cogdill AP, Robbins PB, Bowden M, Burton EM, Butterfield LH, Cesano A, Hammer C, Haymaker CL, Horak CE, McGee HM, Monette A, Rudqvist NP, Spencer CN, Sweis RF, Vincent BG, Wennerberg E, Yuan J, Zappasodi R, Lucey VMH, Wells DK, LaVallee T. Hallmarks of Resistance to Immune-Checkpoint Inhibitors. Cancer Immunol Res 2022; 10:372-383. [PMID: 35362046 PMCID: PMC9381103 DOI: 10.1158/2326-6066.cir-20-0586] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/15/2021] [Accepted: 01/24/2022] [Indexed: 01/29/2023]
Abstract
Immune-checkpoint inhibitors (ICI), although revolutionary in improving long-term survival outcomes, are mostly effective in patients with immune-responsive tumors. Most patients with cancer either do not respond to ICIs at all or experience disease progression after an initial period of response. Treatment resistance to ICIs remains a major challenge and defines the biggest unmet medical need in oncology worldwide. In a collaborative workshop, thought leaders from academic, biopharma, and nonprofit sectors convened to outline a resistance framework to support and guide future immune-resistance research. Here, we explore the initial part of our effort by collating seminal discoveries through the lens of known biological processes. We highlight eight biological processes and refer to them as immune resistance nodes. We examine the seminal discoveries that define each immune resistance node and pose critical questions, which, if answered, would greatly expand our notion of immune resistance. Ultimately, the expansion and application of this work calls for the integration of multiomic high-dimensional analyses from patient-level data to produce a map of resistance phenotypes that can be utilized to guide effective drug development and improved patient outcomes.
Collapse
Affiliation(s)
- Maria Karasarides
- Worldwide Medical Oncology, Bristol Myers Squibb, Princeton, New Jersey.,Corresponding Authors: Maria Karasarides, Worldwide Medical Oncology, Bristol-Myers Squibb, Boston, MA 021273401. E-mail: ; and Theresa LaVallee, 1 Letterman Drive, Suite D3500, San Francisco, CA 94129. Phone: 628-899-7593; E-mail:
| | - Alexandria P. Cogdill
- Immunai, New York, New York.,Department of Immunology, The University of Texas MD Anderson, Houston, Texas
| | | | - Michaela Bowden
- Translational Medicine, Bristol Myers Squibb, Cambridge, Massachusetts
| | - Elizabeth M. Burton
- Department of Surgical Oncology, The University of Texas MD Anderson, Houston, Texas
| | - Lisa H. Butterfield
- Parker Institute for Cancer Immunotherapy, San Francisco, California.,Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California
| | | | - Christian Hammer
- Department of Cancer Immunology, Genentech, South San Francisco, California.,Department of Human Genetics, Genentech, South San Francisco, California
| | - Cara L. Haymaker
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christine E. Horak
- Global Drug Development, Bristol Myers Squibb, Lawrenceville, New Jersey
| | - Heather M. McGee
- Department of Radiation Oncology, City of Hope National Medical Center and Department of Immuno-Oncology, Beckmann Research Institute, City of Hope, Duarte, California
| | - Anne Monette
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada
| | | | - Christine N. Spencer
- Department of Informatics, Parker Institute for Cancer Immunotherapy, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Randy F. Sweis
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois.,Committee on Immunology, University of Chicago, Chicago, Illinois.,Comprehensive Cancer Center, University of Chicago, Chicago, Illinois
| | - Benjamin G. Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | | | - Jianda Yuan
- Translational Oncology, Early Oncology Development Department, Merck Research Laboratories, Rahway, New Jersey
| | - Roberta Zappasodi
- Weill Cornell Medicine, New York, New York.,Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Daniel K. Wells
- Immunai, New York, New York.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Theresa LaVallee
- Parker Institute for Cancer Immunotherapy, San Francisco, California.,Corresponding Authors: Maria Karasarides, Worldwide Medical Oncology, Bristol-Myers Squibb, Boston, MA 021273401. E-mail: ; and Theresa LaVallee, 1 Letterman Drive, Suite D3500, San Francisco, CA 94129. Phone: 628-899-7593; E-mail:
| |
Collapse
|
55
|
Vardam-Kaur T, van Dijk S, Peng C, Wanhainen KM, Jameson SC, Borges da Silva H. The Extracellular ATP Receptor P2RX7 Imprints a Promemory Transcriptional Signature in Effector CD8 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1686-1699. [PMID: 35264459 PMCID: PMC8976739 DOI: 10.4049/jimmunol.2100555] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/25/2022] [Indexed: 12/31/2022]
Abstract
Development of CD8+ central memory T (Tcm) and resident memory T (Trm) cells, which promote immunity in the circulation and in barrier tissues, respectively, is not completely understood. Tcm and Trm cells may arise from common precursors; however, their fate-inducing signals are elusive. We found that virus-specific effector CD8+ T cells display heterogeneous expression of the extracellular ATP sensor P2RX7. P2RX7-high expression is confined, at peak effector phase, to CD62L+ memory precursors, which preferentially form Tcm cells. Among early effector CD8+ T cells, asymmetrical P2RX7 distribution correlated with distinct transcriptional signatures, with P2RX7-high cells enriched for memory and tissue residency sets. P2RX7-high early effectors preferentially form both Tcm and Trm cells. Defective Tcm and Trm cell formation in P2RX7 deficiency is significantly reverted when the transcriptional repressor Zeb2 is ablated. Mechanistically, P2RX7 negatively regulates Zeb2 expression, at least partially through TGF-β sensing in early effector CD8+ T cells. Our study indicates that unequal P2RX7 upregulation in effector CD8+ T cells is a foundational element of the early Tcm/Trm fate.
Collapse
Affiliation(s)
| | - Sarah van Dijk
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ; and
| | - Changwei Peng
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Kelsey M Wanhainen
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Stephen C Jameson
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | | |
Collapse
|
56
|
Heritable changes in division speed accompany the diversification of single T cell fate. Proc Natl Acad Sci U S A 2022; 119:2116260119. [PMID: 35217611 PMCID: PMC8892279 DOI: 10.1073/pnas.2116260119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/18/2022] Open
Abstract
Rapid clonal expansion of antigen-specific T cells is a fundamental feature of adaptive immune responses. Here, we utilize continuous live-cell imaging in vitro to track the division speed and genealogical connections of all descendants derived from a single naive CD8+ T cell throughout up to ten divisions of activation-induced proliferation. Bayesian inference of tree-structured data reveals that clonal expansion is divided into a homogenously fast burst phase encompassing two to three divisions and a subsequent diversification phase during which T cells segregate into quickly dividing effector T cells and more slowly cycling memory precursors. Our work highlights cell cycle speed as a major heritable property that is regulated in parallel to key lineage decisions of activated T cells. Rapid clonal expansion of antigen-specific T cells is a fundamental feature of adaptive immune responses. It enables the outgrowth of an individual T cell into thousands of clonal descendants that diversify into short-lived effectors and long-lived memory cells. Clonal expansion is thought to be programmed upon priming of a single naive T cell and then executed by homogenously fast divisions of all of its descendants. However, the actual speed of cell divisions in such an emerging “T cell family” has never been measured with single-cell resolution. Here, we utilize continuous live-cell imaging in vitro to track the division speed and genealogical connections of all descendants derived from a single naive CD8+ T cell throughout up to ten divisions of activation-induced proliferation. This comprehensive mapping of T cell family trees identifies a short burst phase, in which division speed is homogenously fast and maintained independent of external cytokine availability or continued T cell receptor stimulation. Thereafter, however, division speed diversifies, and model-based computational analysis using a Bayesian inference framework for tree-structured data reveals a segregation into heritably fast- and slow-dividing branches. This diversification of division speed is preceded already during the burst phase by variable expression of the interleukin-2 receptor alpha chain. Later it is accompanied by selective expression of memory marker CD62L in slower dividing branches. Taken together, these data demonstrate that T cell clonal expansion is structured into subsequent burst and diversification phases, the latter of which coincides with specification of memory versus effector fate.
Collapse
|
57
|
Guo X. Localized Proteasomal Degradation: From the Nucleus to Cell Periphery. Biomolecules 2022; 12:biom12020229. [PMID: 35204730 PMCID: PMC8961600 DOI: 10.3390/biom12020229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022] Open
Abstract
The proteasome is responsible for selective degradation of most cellular proteins. Abundantly present in the cell, proteasomes not only diffuse in the cytoplasm and the nucleus but also associate with the chromatin, cytoskeleton, various membranes and membraneless organelles/condensates. How and why the proteasome gets to these specific subcellular compartments remains poorly understood, although increasing evidence supports the hypothesis that intracellular localization may have profound impacts on the activity, substrate accessibility and stability/integrity of the proteasome. In this short review, I summarize recent advances on the functions, regulations and targeting mechanisms of proteasomes, especially those localized to the nuclear condensates and membrane structures of the cell, and I discuss the biological significance thereof in mediating compartmentalized protein degradation.
Collapse
Affiliation(s)
- Xing Guo
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Hangzhou 310058, China
| |
Collapse
|
58
|
Singh R, Anand A, Rawat AK, Saini S, Mahapatra B, Singh NK, Mishra AK, Singh S, Singh N, Kishore D, Kumar V, Das P, Singh RK. CD300a Receptor Blocking Enhances Early Clearance of Leishmania donovani From Its Mammalian Host Through Modulation of Effector Functions of Phagocytic and Antigen Experienced T Cells. Front Immunol 2022; 12:793611. [PMID: 35116028 PMCID: PMC8803664 DOI: 10.3389/fimmu.2021.793611] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
The parasites of the genus Leishmania survive and proliferate in the host phagocytic cells by taking control over their microbicidal functions. The parasite also promotes differentiation of antigen-specific anti-inflammatory cytokines producing effector T cells, which eventually results in disease pathogenesis. The mechanisms that parasites employ to dominate host adaptive immunity are largely unknown. For the first time, we report that L. donovani, which causes visceral leishmaniasis in the Indian subcontinent, upregulates the expression of an immune inhibitory receptor i.e., CD300a on antigen presenting and phagocytic cells to dampen their effector functions. The blocking of CD300a signals in leishmania antigens activated macrophages and dendritic cells enhanced the production of nitric oxide, pro-inflammatory cytokines along with MHCI/II genes expression, and reduced parasitic uptake. Further, the abrogation of CD300a signals in Leishmania infected mice benefited antigen-experienced, i.e., CD4+CD44+ and CD8+CD44+ T cells to acquire more pro-inflammatory cytokines producing phenotypes and helped in the early clearance of parasites from their visceral organs. The CD300a receptor blocking also enhanced the conversion of CD4+ T effectors cells to their memory phenotypes i.e., CCR7high CD62Lhigh up to 1.6 and 1.9 fold after 14 and 21 days post-infection, respectively. These findings implicate that CD300a is an important determinant of host phagocytic cells functions and T cells differentiation against Leishmania antigens.
Collapse
Affiliation(s)
- Rajan Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anshul Anand
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Arun K. Rawat
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shashi Saini
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Baishakhi Mahapatra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Naveen K. Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Alok K. Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Samer Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Nisha Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Dhiraj Kishore
- Department of Medicine, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Vinod Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute, Patna, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute, Patna, India
| | - Rakesh K. Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
- *Correspondence: Rakesh K. Singh,
| |
Collapse
|
59
|
Abstract
Vaccination affords protection from disease by activating pathogen-specific immune cells and facilitating the development of persistent immunologic memory toward the vaccine-specific pathogen. Current vaccine regimens are often based on the efficiency of the acute immune response, and not necessarily on the generation of memory cells, in part because the mechanisms underlying the development of efficient immune memory remain incompletely understood. This Review describes recent advances in defining memory T cell metabolism and how metabolism of these cells might be altered in patients affected by mitochondrial diseases or metabolic syndrome, who show higher susceptibility to recurrent infections and higher rates of vaccine failure. It discusses how this new understanding could add to the way we think about immunologic memory, vaccine development, and cancer immunotherapy.
Collapse
Affiliation(s)
- Mauro Corrado
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Erika L. Pearce
- Department of Oncology, The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
60
|
Bangs DJ, Tsitsiklis A, Steier Z, Chan SW, Kaminski J, Streets A, Yosef N, Robey EA. CXCR3 regulates stem and proliferative CD8+ T cells during chronic infection by promoting interactions with DCs in splenic bridging channels. Cell Rep 2022; 38:110266. [PMID: 35045305 PMCID: PMC8896093 DOI: 10.1016/j.celrep.2021.110266] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 12/22/2021] [Indexed: 12/01/2022] Open
Abstract
Production of effector CD8+ T cells during persistent infection requires a stable pool of stem-like cells that can give rise to effector cells via a proliferative intermediate population. In infection models marked by T cell exhaustion, this process can be transiently induced by checkpoint blockade but occurs spontaneously in mice chronically infected with the protozoan intracellular parasite Toxoplasma gondii. We observe distinct locations for parasite-specific T cell subsets, implying a link between differentiation and anatomical niches in the spleen. Loss of the chemokine receptor CXCR3 on T cells does not prevent white pulp-to-red pulp migration but reduces interactions with CXCR3 ligand-producing dendritic cells (DCs) and impairs memory-to-intermediate transition, leading to a buildup of memory T cells in the red pulp. Thus, CXCR3 increases T cell exposure to differentiation-inducing signals during red pulp migration, providing a dynamic mechanism for modulating effector differentiation in response to environmental signals. Bangs et al. report that distinct subsets of CD8+ T cells found during chronic infection occupy distinct regions of the spleen. CXCR3 regulates differentiation of T cells but not their migration. Instead, CXCR3 promotes the interaction of T cells with ligand-producing DCs in bridging channels, resulting in effector differentiation.
Collapse
Affiliation(s)
- Derek J Bangs
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Alexandra Tsitsiklis
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Zoë Steier
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Shiao Wei Chan
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - James Kaminski
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Aaron Streets
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Nir Yosef
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Ellen A Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
61
|
Argenty J, Rouquié N, Bories C, Mélique S, Duplan-Eche V, Saoudi A, Fazilleau N, Lesourne R. A selective LIS1 requirement for mitotic spindle assembly discriminates distinct T-cell division mechanisms within the T-cell lineage. eLife 2022; 11:80277. [PMID: 36519536 PMCID: PMC9797186 DOI: 10.7554/elife.80277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The ability to proliferate is a common feature of most T-cell populations. However, proliferation follows different cell-cycle dynamics and is coupled to different functional outcomes according to T-cell subsets. Whether the mitotic machineries supporting these qualitatively distinct proliferative responses are identical remains unknown. Here, we show that disruption of the microtubule-associated protein LIS1 in mouse models leads to proliferative defects associated with a blockade of T-cell development after β-selection and of peripheral CD4+ T-cell expansion after antigen priming. In contrast, cell divisions in CD8+ T cells occurred independently of LIS1 following T-cell antigen receptor stimulation, although LIS1 was required for proliferation elicited by pharmacological activation. In thymocytes and CD4+ T cells, LIS1 deficiency did not affect signaling events leading to activation but led to an interruption of proliferation after the initial round of division and to p53-induced cell death. Proliferative defects resulted from a mitotic failure, characterized by the presence of extra-centrosomes and the formation of multipolar spindles, causing abnormal chromosomes congression during metaphase and separation during telophase. LIS1 was required to stabilize dynein/dynactin complexes, which promote chromosome attachment to mitotic spindles and ensure centrosome integrity. Together, these results suggest that proliferative responses are supported by distinct mitotic machineries across T-cell subsets.
Collapse
Affiliation(s)
- Jérémy Argenty
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse IIIToulouseFrance
| | - Nelly Rouquié
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse IIIToulouseFrance
| | - Cyrielle Bories
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse IIIToulouseFrance
| | - Suzanne Mélique
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse IIIToulouseFrance
| | - Valérie Duplan-Eche
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse IIIToulouseFrance
| | - Abdelhadi Saoudi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse IIIToulouseFrance
| | - Nicolas Fazilleau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse IIIToulouseFrance
| | - Renaud Lesourne
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse IIIToulouseFrance
| |
Collapse
|
62
|
Hayashi K, Anzai N. L-type amino acid transporter 1 as a target for inflammatory disease and cancer immunotherapy. J Pharmacol Sci 2021; 148:31-40. [PMID: 34924127 DOI: 10.1016/j.jphs.2021.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/11/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022] Open
Abstract
Ingestion of amino acids is fundamental for cellular activity. Amino acids are important components for protein synthesis but are also crucial for intracellular metabolic reactions and signal transduction. Following activation, immune cells induce metabolic reprogramming to generate adequate energy and constitutive substances. Hence, the delivery of amino acids by transporters is necessary for the progression of metabolic rewiring. In this review, we discuss how amino acids and their transporters regulate immune cell functions, with emphasis on LAT1, a transporter of large neutral amino acids. Furthermore, we explore the possibility of targeting amino acid transporters to improve immune disorders and cancer immune therapies.
Collapse
Affiliation(s)
- Keitaro Hayashi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Shimotsuga, Japan.
| | - Naohiko Anzai
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Shimotsuga, Japan; Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
63
|
Montacchiesi G, Pace L. Epigenetics and CD8 + T cell memory. Immunol Rev 2021; 305:77-89. [PMID: 34923638 DOI: 10.1111/imr.13057] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Abstract
Following antigen recognition, CD8+ T lymphocytes can follow different patterns of differentiation, with the generation of different subsets characterized by distinct phenotypes, functions, and migration properties. The changes of transcription factors activity and chromatin structure dynamics drive the functional differentiation and phenotypic heterogeneity of these T cell subsets, which include short-lived effectors, long-term survival of memory, and also dysfunctional exhausted T cells. Recent progress in the field has shed light on the key contribution of chromatin organization to control the T cell fate specification. In fact, the understanding of these processes has important implications for the development of new immunotherapy protocols and to design new vaccination strategies. Here, we review the current understanding of the contribution of chromatin architecture and transcription factor activity orchestrating the gene expression programs guiding the CD8+ T cell subset commitment. We will focus on epigenetic changes, acting sequentially or in combination, which control the transcriptional programs governing T cell plasticity, stability, and memory. New molecular insights into the mechanisms of maintenance of cellular memory and identity, favoring or impeding the reprogramming, will be discussed in the context of T cell memory differentiation in infection and cancer.
Collapse
Affiliation(s)
- Gaia Montacchiesi
- Armenise-Harvard Immune Regulation Unit, Italian Institute for Genomic Medicine, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS Candiolo (Turin), Turin, Italy.,University of Turin, Turin, Italy
| | - Luigia Pace
- Armenise-Harvard Immune Regulation Unit, Italian Institute for Genomic Medicine, Turin, Italy.,University of Turin, Turin, Italy
| |
Collapse
|
64
|
Pace L. Temporal and Epigenetic Control of Plasticity and Fate Decision during CD8 + T-Cell Memory Differentiation. Cold Spring Harb Perspect Biol 2021; 13:a037754. [PMID: 33972365 PMCID: PMC8635004 DOI: 10.1101/cshperspect.a037754] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Immunological memory is a fundamental hallmark of the adaptive immune responses and one of the most relevant aspects of protective immunity. Our understanding of the processes of memory T-cell differentiation and maintenance of long-term immunity is continuously evolving, and recent advances highlight new regulatory networks and chromatin dynamic changes contributing to maintain T-cell identity and impeding the reprogramming of specific T-cell states. Here, the current understanding of the mechanisms that generate the diversity and the heterogeneity of CD8+ T-cell subsets will be discussed, focusing on the temporal and epigenetic mechanisms orchestrating the establishment and maintenance of distinct states of T-cell fate determination and functional commitment.
Collapse
Affiliation(s)
- Luigia Pace
- Armenise-Harvard Immune Regulation Unit, IIGM
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO) 10060, Italy
| |
Collapse
|
65
|
Zhang H, Weyand CM, Goronzy JJ. Hallmarks of the aging T-cell system. FEBS J 2021; 288:7123-7142. [PMID: 33590946 PMCID: PMC8364928 DOI: 10.1111/febs.15770] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/24/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022]
Abstract
The adaptive immune system has the enormous challenge to protect the host through the generation and differentiation of pathogen-specific short-lived effector T cells while in parallel developing long-lived memory cells to control future encounters with the same pathogen. A complex regulatory network is needed to preserve a population of naïve cells over lifetime that exhibit sufficient diversity of antigen receptors to respond to new antigens, while also sustaining immune memory. In parallel, cells need to maintain their proliferative potential and the plasticity to differentiate into different functional lineages. Initial signs of waning immune competence emerge after 50 years of age, with increasing clinical relevance in the 7th-10th decade of life. Morbidity and mortality from infections increase, as drastically exemplified by the current COVID-19 pandemic. Many vaccines, such as for the influenza virus, are poorly effective to generate protective immunity in older individuals. Age-associated changes occur at the level of the T-cell population as well as the functionality of its cellular constituents. The system highly relies on the self-renewal of naïve and memory T cells, which is robust but eventually fails. Genetic and epigenetic modifications contribute to functional differences in responsiveness and differentiation potential. To some extent, these changes arise from defective maintenance; to some, they represent successful, but not universally beneficial adaptations to the aging host. Interventions that can compensate for the age-related defects and improve immune responses in older adults are increasingly within reach.
Collapse
Affiliation(s)
- Huimin Zhang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Cornelia M. Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Jörg J. Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| |
Collapse
|
66
|
Nguyen LN, Nguyen LNT, Zhao J, Schank M, Dang X, Cao D, Khanal S, Thakuri BKC, Zhang J, Lu Z, Wu XY, El Gazzar M, Ning S, Wang L, Moorman JP, Yao ZQ. Immune Activation Induces Telomeric DNA Damage and Promotes Short-Lived Effector T Cell Differentiation in Chronic HCV Infection. Hepatology 2021; 74:2380-2394. [PMID: 34110660 PMCID: PMC8542603 DOI: 10.1002/hep.32008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/10/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Hepatitis C virus (HCV) leads to a high rate of chronic infection and T cell dysfunction. Although it is well known that chronic antigenic stimulation is a driving force for impaired T cell functions, the precise mechanisms underlying immune activation-induced T cell dysfunctions during HCV infection remain elusive. APPROACH AND RESULTS Here, we demonstrated that circulating CD4+ T cells from patients who are chronically HCV-infected exhibit an immune activation status, as evidenced by the overexpression of cell activation markers human leukocyte antigen-antigen D-related, glucose transporter 1, granzyme B, and the short-lived effector marker CD127- killer cell lectin-like receptor G1+ . In contrast, the expression of stem cell-like transcription factor T cell factor 1 and telomeric repeat-binding factor 2 (TRF2) are significantly reduced in CD4+ T cells from patients who are chronically HCV-infected compared with healthy participants (HP). Mechanistic studies revealed that CD4+ T cells from participants with HCV exhibit phosphoinositide 3-kinase/Akt/mammalian target of rapamycin signaling hyperactivation on T cell receptor stimulation, promoting proinflammatory effector cell differentiation, telomeric DNA damage, and cellular apoptosis. Inhibition of Akt signaling during T cell activation preserved the precursor memory cell population and prevented inflammatory effector cell expansion, DNA damage, and apoptotic death. Moreover, knockdown of TRF2 reduced HP T cell stemness and triggered telomeric DNA damage and cellular apoptosis, whereas overexpression of TRF2 in CD4 T cells prevented telomeric DNA damage. CONCLUSIONS These results suggest that modulation of immune activation through inhibiting Akt signaling and protecting telomeres through enhancing TRF2 expression may open therapeutic strategies to fine tune the adaptive immune responses in the setting of persistent immune activation and inflammation during chronic HCV infection.
Collapse
Affiliation(s)
- Lam Nhat Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Xindi Dang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Dechao Cao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Sushant Khanal
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Bal Krishna Chand Thakuri
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Jinyu Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Zeyuan Lu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Xiao Y Wu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Jonathan P Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN.,Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN
| | - Zhi Q Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN.,Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN
| |
Collapse
|
67
|
van Aalderen MC, van Lier RAW, Hombrink P. How to Reliably Define Human CD8 + T-Cell Subsets: Markers Playing Tricks. Cold Spring Harb Perspect Biol 2021; 13:a037747. [PMID: 33782028 PMCID: PMC8559543 DOI: 10.1101/cshperspect.a037747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In recent years, our understanding about the functional complexity of CD8+ T-cell populations has increased tremendously. The immunology field is now facing challenges to translate these insights into phenotypic definitions that correlate reliably with distinct functional traits. This is key to adequately monitor and understand compound immune responses including vaccination and immunotherapy regimens. Here we will summarize our understanding of the current state in the human CD8+ T-cell subset characterization field. We will address how reliably the currently used cell surface markers are connected to differentiation status and function of particular subsets. By restricting ourselves to CD8+ αβ T cells, we will focus mostly on major histocompatibility complex (MHC) class I-restricted virus- and tumor-specific T cells. This comes with a major advantage as fluorescently labeled peptide-loaded MHC class I multimers have been widely used to identify and characterize these cells.
Collapse
Affiliation(s)
- Michiel C van Aalderen
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centre (AUMC), Amsterdam 1105 AZ, The Netherlands
| | - Rene A W van Lier
- Adaptive Immunity Laboratory and Landsteiner Laboratory of the AUMC at Sanquin Blood Supply Foundation, Amsterdam 1066 CX, The Netherlands
| | - Pleun Hombrink
- Adaptive Immunity Laboratory and Landsteiner Laboratory of the AUMC at Sanquin Blood Supply Foundation, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
68
|
Ma C, Martinez-Rodriguez V, Hoffmann PR. Roles for Selenoprotein I and Ethanolamine Phospholipid Synthesis in T Cell Activation. Int J Mol Sci 2021; 22:ijms222011174. [PMID: 34681834 PMCID: PMC8540796 DOI: 10.3390/ijms222011174] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
The selenoprotein family includes 25 members, many of which are antioxidant or redox regulating enzymes. A unique member of this family is Selenoprotein I (SELENOI), which does not catalyze redox reactions, but instead is an ethanolamine phosphotransferase (Ept). In fact, the characteristic selenocysteine residue that defines selenoproteins lies far outside of the catalytic domain of SELENOI. Furthermore, data using recombinant SELENOI lacking the selenocysteine residue have suggested that the selenocysteine amino acid is not directly involved in the Ept reaction. SELENOI is involved in two different pathways for the synthesis of phosphatidylethanolamine (PE) and plasmenyl PE, which are constituents of cellular membranes. Ethanolamine phospholipid synthesis has emerged as an important process for metabolic reprogramming that occurs in pluripotent stem cells and proliferating tumor cells, and this review discusses roles for upregulation of SELENOI during T cell activation, proliferation, and differentiation. SELENOI deficiency lowers but does not completely diminish de novo synthesis of PE and plasmenyl PE during T cell activation. Interestingly, metabolic reprogramming in activated SELENOI deficient T cells is impaired and this reduces proliferative capacity while favoring tolerogenic to pathogenic phenotypes that arise from differentiation. The implications of these findings are discussed related to vaccine responses, autoimmunity, and cell-based therapeutic approaches.
Collapse
|
69
|
Kalia V, Yuzefpolskiy Y, Vegaraju A, Xiao H, Baumann F, Jatav S, Church C, Prlic M, Jha A, Nghiem P, Riddell S, Sarkar S. Metabolic regulation by PD-1 signaling promotes long-lived quiescent CD8 T cell memory in mice. Sci Transl Med 2021; 13:eaba6006. [PMID: 34644150 DOI: 10.1126/scitranslmed.aba6006] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Vandana Kalia
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA.,Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Yevgeniy Yuzefpolskiy
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Adithya Vegaraju
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Hanxi Xiao
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Florian Baumann
- QIAGEN Sciences LLC, 19300 Germantown Rd, Germantown, MD 20874, USA
| | | | - Candice Church
- Dermatology Division, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA.,Department of Global Health, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Paul Nghiem
- Dermatology Division, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Stanley Riddell
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Surojit Sarkar
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA.,Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
70
|
Novak N, Tordesillas L, Cabanillas B. Diversity of T cells in the skin: Novel insights. Int Rev Immunol 2021; 42:185-198. [PMID: 34607528 DOI: 10.1080/08830185.2021.1985116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
T cells populate the skin to provide an effective immunosurveillance against external insults and to maintain tissue homeostasis. Most cutaneous T cells are αβ T cells, however, γδ T cells also exist although in much lower frequency. Different subsets of αβ T cells can be found in the skin, such as short-lived effector T cells, central memory T cells, effector memory T cells, and tissue-resident memory T cells. Their differential biology, function, and location provide an ample spectrum of immune responses in the skin. Foxp3+ memory regulatory T cells have a pivotal role in maintaining homeostasis in the skin and their dysregulation has been linked with different skin pathologies. The skin also contains populations of non-classical T cells, such as γδ T cells, NK T cells, and MR1-restricted T cells. Their role in skin homeostasis and response to pathogens has been well established in the past years, however, there is also growing evidence of their role in mediating allergic skin inflammation and promoting sensitization to allergens. In this review, we provide an updated overview on the different subsets of T cells that populate the skin with a specific focus on their role in allergic skin inflammation.
Collapse
Affiliation(s)
- Natalija Novak
- Department of Dermatology and Allergy, University Hospital, Bonn, Germany
| | - Leticia Tordesillas
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Beatriz Cabanillas
- Department of Allergy, Research Institute Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
71
|
Lechler T, Mapelli M. Spindle positioning and its impact on vertebrate tissue architecture and cell fate. Nat Rev Mol Cell Biol 2021; 22:691-708. [PMID: 34158639 PMCID: PMC10544824 DOI: 10.1038/s41580-021-00384-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 12/18/2022]
Abstract
In multicellular systems, oriented cell divisions are essential for morphogenesis and homeostasis as they determine the position of daughter cells within the tissue and also, in many cases, their fate. Early studies in invertebrates led to the identification of conserved core mechanisms of mitotic spindle positioning centred on the Gαi-LGN-NuMA-dynein complex. In recent years, much has been learnt about the way this complex functions in vertebrate cells. In particular, studies addressed how the Gαi-LGN-NuMA-dynein complex dynamically crosstalks with astral microtubules and the actin cytoskeleton, and how it is regulated to orient the spindle according to cellular and tissue-wide cues. We have also begun to understand how dynein motors and actin regulators interact with mechanosensitive adhesion molecules sensing extracellular mechanical stimuli, such as cadherins and integrins, and with signalling pathways so as to respond to extracellular cues instructing the orientation of the division axis in vivo. In this Review, with the focus on epithelial tissues, we discuss the molecular mechanisms of mitotic spindle orientation in vertebrate cells, and how this machinery is regulated by epithelial cues and extracellular signals to maintain tissue cohesiveness during mitosis. We also outline recent knowledge of how spindle orientation impacts tissue architecture in epithelia and its emerging links to the regulation of cell fate decisions. Finally, we describe how defective spindle orientation can be corrected or its effects eliminated in tissues under physiological conditions, and the pathological implications associated with spindle misorientation.
Collapse
Affiliation(s)
- Terry Lechler
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| | - Marina Mapelli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
72
|
Heckler M, Ali LR, Clancy-Thompson E, Qiang L, Ventre KS, Lenehan P, Roehle K, Luoma A, Boelaars K, Peters V, McCreary J, Boschert T, Wang ES, Suo S, Marangoni F, Mempel TR, Long HW, Wucherpfennig KW, Dougan M, Gray NS, Yuan GC, Goel S, Tolaney SM, Dougan SK. Inhibition of CDK4/6 Promotes CD8 T-cell Memory Formation. Cancer Discov 2021; 11:2564-2581. [PMID: 33941591 PMCID: PMC8487897 DOI: 10.1158/2159-8290.cd-20-1540] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/25/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
CDK4/6 inhibitors are approved to treat breast cancer and are in trials for other malignancies. We examined CDK4/6 inhibition in mouse and human CD8+ T cells during early stages of activation. Mice receiving tumor-specific CD8+ T cells treated with CDK4/6 inhibitors displayed increased T-cell persistence and immunologic memory. CDK4/6 inhibition upregulated MXD4, a negative regulator of MYC, in both mouse and human CD8+ T cells. Silencing of Mxd4 or Myc in mouse CD8+ T cells demonstrated the importance of this axis for memory formation. We used single-cell transcriptional profiling and T-cell receptor clonotype tracking to evaluate recently activated human CD8+ T cells in patients with breast cancer before and during treatment with either palbociclib or abemaciclib. CDK4/6 inhibitor therapy in humans increases the frequency of CD8+ memory precursors and downregulates their expression of MYC target genes, suggesting that CDK4/6 inhibitors in patients with cancer may augment long-term protective immunity. SIGNIFICANCE: CDK4/6 inhibition skews newly activated CD8+ T cells toward a memory phenotype in mice and humans with breast cancer. CDK4/6 inhibitors may have broad utility outside breast cancer, particularly in the neoadjuvant setting to augment CD8+ T-cell priming to tumor antigens prior to dosing with checkpoint blockade.This article is highlighted in the In This Issue feature, p. 2355.
Collapse
Affiliation(s)
- Max Heckler
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Lestat R Ali
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Eleanor Clancy-Thompson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Li Qiang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Katherine S Ventre
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Patrick Lenehan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Kevin Roehle
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Adrienne Luoma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Kelly Boelaars
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Vera Peters
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Julia McCreary
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Program in Chemical Biology, Harvard Medical School, Boston, Massachusetts
| | - Tamara Boschert
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Eric S Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shengbao Suo
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Francesco Marangoni
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts
| | - Thorsten R Mempel
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Guo-Cheng Yuan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Genetics and Genomic Sciences, The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Shom Goel
- Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Sara M Tolaney
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
73
|
Abstract
Immunological memory and exhaustion are fundamental features of adaptive immunity. Recent advances reveal increasing heterogeneity and diversity among CD8 T-cell subsets, resulting in new subsets to annotate and understand. Here, we review our current knowledge of differentiation and maintenance of memory and exhausted CD8 T cells, including phenotypic classification, developmental paths, transcriptional and epigenetic features, and cell intrinsic and extrinsic factors. Additionally, we use this outline to discuss the nomenclature of effector, memory, and exhausted CD8 T cells. Finally, we discuss how new findings about these cell types may impact the therapeutic efficacy and development of immunotherapies targeting effector, memory, and/or exhausted CD8 T cells in chronic infections and cancer.
Collapse
Affiliation(s)
- Yuki Muroyama
- Institute for Immunology
- Department of Systems Pharmacology and Translational Therapeutics
| | - E John Wherry
- Institute for Immunology
- Department of Systems Pharmacology and Translational Therapeutics
- Abramson Cancer Center
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
74
|
Xu T, Pereira RM, Martinez GJ. An Updated Model for the Epigenetic Regulation of Effector and Memory CD8 + T Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2021; 207:1497-1505. [PMID: 34493604 DOI: 10.4049/jimmunol.2100633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/22/2021] [Indexed: 11/19/2022]
Abstract
Naive CD8+ T cells, upon encountering their cognate Ag in vivo, clonally expand and differentiate into distinct cell fates, regulated by transcription factors and epigenetic modulators. Several models have been proposed to explain the differentiation of CTLs, although none fully recapitulate the experimental evidence. In this review article, we will summarize the latest research on the epigenetic regulation of CTL differentiation as well as provide a combined model that contemplates them.
Collapse
Affiliation(s)
- Tianhao Xu
- Discipline of Microbiology and Immunology, Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL; and
| | - Renata M Pereira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gustavo J Martinez
- Discipline of Microbiology and Immunology, Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL; and
| |
Collapse
|
75
|
Kretschmer L, Busch DH, Buchholz VR. A Single-Cell Perspective on Memory T-Cell Differentiation. Cold Spring Harb Perspect Biol 2021; 13:a038067. [PMID: 33903160 PMCID: PMC8411955 DOI: 10.1101/cshperspect.a038067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Memory differentiation of CD4 and CD8 T-cell populations has been extensively studied and many key molecular players and transcriptional networks have been identified. But how regulatory principles, identified on this population level, translate to immune responses that originate from single antigen-specific T cells is only now being elucidated. Here, we provide a short summary of the approaches used for mapping the fate of individual T cells and their progeny in vivo. We then highlight which major questions, with respect to memory T-cell differentiation, have been addressed by studying the development of single-cell-derived T-cell families during infection or vaccination. We discuss how fate decisions of single T cells are modulated by the affinity of their TCR and further shaped through a coregulation of T-cell differentiation and T-cell proliferation. These current findings indicate the early segregation into slowly dividing T central memory precursors (CMPs) and rapidly dividing non-CMPs, as a key event that separates the developmental paths of long- and short-lived T cells.
Collapse
Affiliation(s)
- Lorenz Kretschmer
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich 81675 , Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich 81675 , Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich 81675, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich 81675 , Germany
| |
Collapse
|
76
|
Gérard A, Cope AP, Kemper C, Alon R, Köchl R. LFA-1 in T cell priming, differentiation, and effector functions. Trends Immunol 2021; 42:706-722. [PMID: 34266767 PMCID: PMC10734378 DOI: 10.1016/j.it.2021.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/19/2022]
Abstract
The integrin LFA-1 is crucial for T cell entry into mammalian lymph nodes and tissues, and for promoting interactions with antigen-presenting cells (APCs). However, it is increasingly evident that LFA-1 has additional key roles beyond the mere support of adhesion between T cells, the endothelium, and/or APCs. These include roles in homotypic T cell-T cell (T-T) communication, the induction of intracellular complement activity underlying Th1 effector cell polarization, and the support of long-lasting T cell memory. Here, we briefly summarize current knowledge of LFA-1 biology, discuss novel cytoskeletal regulators of LFA-1 functions, and review new aspects of LFA-1 mechanobiology that are relevant to its function in immunological synapses and in specific pathologies arising from LFA-1 dysregulation.
Collapse
Affiliation(s)
- Audrey Gérard
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Andrew P Cope
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK
| | - Claudia Kemper
- National Heart, Lung and Blood Institute (NHLBI), National Institute of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA; Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Ronen Alon
- The Weizmann Institute of Science, Rehovot, Israel
| | - Robert Köchl
- Peter Gorer Department of Immunobiology, King's College London, London, UK.
| |
Collapse
|
77
|
Dolina JS, Van Braeckel-Budimir N, Thomas GD, Salek-Ardakani S. CD8 + T Cell Exhaustion in Cancer. Front Immunol 2021; 12:715234. [PMID: 34354714 PMCID: PMC8330547 DOI: 10.3389/fimmu.2021.715234] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
A paradigm shift in the understanding of the exhausted CD8+ T cell (Tex) lineage is underway. Originally thought to be a uniform population that progressively loses effector function in response to persistent antigen, single-cell analysis has now revealed that CD8+ Tex is composed of multiple interconnected subpopulations. The heterogeneity within the CD8+ Tex lineage is comprised of immune checkpoint blockade (ICB) permissive and refractory subsets termed stem-like and terminally differentiated cells, respectively. These populations occupy distinct peripheral and intratumoral niches and are characterized by transcriptional processes that govern transitions between cell states. This review presents key findings in the field to construct an updated view of the spatial, transcriptional, and functional heterogeneity of anti-tumoral CD8+ Tex. These emerging insights broadly call for (re-)focusing cancer immunotherapies to center on the driver mechanism(s) underlying the CD8+ Tex developmental continuum aimed at stabilizing functional subsets.
Collapse
Affiliation(s)
- Joseph S Dolina
- Cancer Immunology Discovery, Pfizer, San Diego, CA, United States
| | | | - Graham D Thomas
- Cancer Immunology Discovery, Pfizer, San Diego, CA, United States
| | | |
Collapse
|
78
|
Lim YW, Wen FL, Shankar P, Shibata T, Motegi F. A balance between antagonizing PAR proteins specifies the pattern of asymmetric and symmetric divisions in C. elegans embryogenesis. Cell Rep 2021; 36:109326. [PMID: 34233197 DOI: 10.1016/j.celrep.2021.109326] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/05/2021] [Accepted: 06/08/2021] [Indexed: 10/20/2022] Open
Abstract
Coordination between cell differentiation and proliferation during development requires the balance between asymmetric and symmetric modes of cell division. However, the cellular intrinsic cue underlying the choice between these two division modes remains elusive. Here, we show evidence in Caenorhabditis elegans that the invariable lineage of the division modes is specified by the balance between antagonizing complexes of partitioning-defective (PAR) proteins. By uncoupling unequal inheritance of PAR proteins from that of fate determinants during cell division, we demonstrate that changes in the balance between PAR-2 and PAR-6 can be sufficient to re-program the division modes from symmetric to asymmetric and vice versa in two daughter cells. The division mode adopted occurs independently of asymmetry in cytoplasmic fate determinants, cell-size asymmetry, and cell-cycle asynchrony between sister cells. We propose that the balance between PAR proteins represents an intrinsic self-organizing cue for the specification of the two division modes during development.
Collapse
Affiliation(s)
- Yen Wei Lim
- Temasek Life-sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117583, Singapore
| | - Fu-Lai Wen
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Prabhat Shankar
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Tatsuo Shibata
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.
| | - Fumio Motegi
- Temasek Life-sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117583, Singapore; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| |
Collapse
|
79
|
Reed J, Reichelt M, Wetzel SA. Lymphocytes and Trogocytosis-Mediated Signaling. Cells 2021; 10:1478. [PMID: 34204661 PMCID: PMC8231098 DOI: 10.3390/cells10061478] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
Trogocytosis is the intercellular transfer of membrane and membrane-associated molecules. This underappreciated process has been described in a variety of biological settings including neuronal remodeling, fertilization, viral and bacterial spread, and cancer, but has been most widely studied in cells of the immune system. Trogocytosis is performed by multiple immune cell types, including basophils, macrophages, dendritic cells, neutrophils, natural killer cells, B cells, γδ T cells, and CD4+ and CD8+ αβ T cells. Although not expressed endogenously, the presence of trogocytosed molecules on cells has the potential to significantly impact an immune response and the biology of the individual trogocytosis-positive cell. Many studies have focused on the ability of the trogocytosis-positive cells to interact with other immune cells and modulate the function of responders. Less understood and arguably equally important is the impact of these molecules on the individual trogocytosis-positive cell. Molecules that have been reported to be trogocytosed by cells include cognate ligands for receptors on the individual cell, such as activating NK cell ligands and MHC:peptide. These trogocytosed molecules have been shown to interact with receptors on the trogocytosis-positive cell and mediate intracellular signaling. In this review, we discuss the impact of this trogocytosis-mediated signaling on the biology of the individual trogocytosis-positive cell by focusing on natural killer cells and CD4+ T lymphocytes.
Collapse
Affiliation(s)
- Jim Reed
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (J.R.); (M.R.)
| | - Madison Reichelt
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (J.R.); (M.R.)
| | - Scott A. Wetzel
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (J.R.); (M.R.)
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
80
|
Welsh RA, Song N, Sadegh-Nasseri S. How Does B Cell Antigen Presentation Affect Memory CD4 T Cell Differentiation and Longevity? Front Immunol 2021; 12:677036. [PMID: 34177919 PMCID: PMC8224923 DOI: 10.3389/fimmu.2021.677036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells are the antigen presenting cells that process antigens effectively and prime the immune system, a characteristic that have gained them the spotlights in recent years. B cell antigen presentation, although less prominent, deserves equal attention. B cells select antigen experienced CD4 T cells to become memory and initiate an orchestrated genetic program that maintains memory CD4 T cells for life of the individual. Over years of research, we have demonstrated that low levels of antigens captured by B cells during the resolution of an infection render antigen experienced CD4 T cells into a quiescent/resting state. Our studies suggest that in the absence of antigen, the resting state associated with low-energy utilization and proliferation can help memory CD4 T cells to survive nearly throughout the lifetime of mice. In this review we would discuss the primary findings from our lab as well as others that highlight our understanding of B cell antigen presentation and the contributions of the MHC Class II accessory molecules to this outcome. We propose that the quiescence induced by the low levels of antigen presentation might be a mechanism necessary to regulate long-term survival of CD4 memory T cells and to prevent cross-reactivity to autoantigens, hence autoimmunity.
Collapse
Affiliation(s)
- Robin A Welsh
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Nianbin Song
- Department of Biology, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Scheherazade Sadegh-Nasseri
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
81
|
Mueller-Schoell A, Puebla-Osorio N, Michelet R, Green MR, Künkele A, Huisinga W, Strati P, Chasen B, Neelapu SS, Yee C, Kloft C. Early Survival Prediction Framework in CD19-Specific CAR-T Cell Immunotherapy Using a Quantitative Systems Pharmacology Model. Cancers (Basel) 2021; 13:2782. [PMID: 34205020 PMCID: PMC8199881 DOI: 10.3390/cancers13112782] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/22/2021] [Accepted: 05/28/2021] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has revolutionized treatment of relapsed/refractory non-Hodgkin lymphoma (NHL). However, since 36-60% of patients relapse, early response prediction is crucial. We present a novel population quantitative systems pharmacology model, integrating literature knowledge on physiology, immunology, and adoptive cell therapy together with 133 CAR-T cell phenotype, 1943 cytokine, and 48 metabolic tumor measurements. The model well described post-infusion concentrations of four CAR-T cell phenotypes and CD19+ metabolic tumor volume over 3 months after CAR-T cell infusion. Leveraging the model, we identified a low expansion subpopulation with significantly lower CAR-T cell expansion capacities amongst 19 NHL patients. Together with two patient-/therapy-related factors (autologous stem cell transplantation, CD4+/CD8+ T cells), the low expansion subpopulation explained 2/3 of the interindividual variability in the CAR-T cell expansion capacities. Moreover, the low expansion subpopulation had poor prognosis as only 1/4 of the low expansion subpopulation compared to 2/3 of the reference population were still alive after 24 months. We translated the expansion capacities into a clinical composite score (CCS) of 'Maximum naïve CAR-T cell concentrations/Baseline tumor burden' ratio and propose a CCSTN-value > 0.00136 (cells·µL-1·mL-1 as predictor for survival. Once validated in a larger cohort, the model will foster refining survival prediction and solutions to enhance NHL CAR-T cell therapy response.
Collapse
Affiliation(s)
- Anna Mueller-Schoell
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (A.M.-S.); (R.M.)
- Graduate Research Training Program PharMetrX, 12169 Berlin, Germany
| | - Nahum Puebla-Osorio
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.P.-O.); (M.R.G.); (P.S.)
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (A.M.-S.); (R.M.)
| | - Michael R. Green
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.P.-O.); (M.R.G.); (P.S.)
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, Augustenburger Platz 1, 1335 Berlin, Germany;
- German Cancer Consortium (DKTK), Partner Site Berlin, CCC (Campus Mitte), 10178 Berlin, Germany
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, 14476 Potsdam, Germany;
| | - Paolo Strati
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.P.-O.); (M.R.G.); (P.S.)
| | - Beth Chasen
- Department of Nuclear Medicine, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Sattva S. Neelapu
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.P.-O.); (M.R.G.); (P.S.)
| | - Cassian Yee
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Immunology, UT MD Anderson Cancer Center, Houston, TX 70030, USA
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (A.M.-S.); (R.M.)
| |
Collapse
|
82
|
Bahadoran A, Bezavada L, Smallwood HS. Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunol Rev 2021; 295:140-166. [PMID: 32320072 DOI: 10.1111/imr.12851] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Recent studies support the notion that glycolysis and oxidative phosphorylation are rheostats in immune cells whose bioenergetics have functional outputs in terms of their biology. Specific intrinsic and extrinsic molecular factors function as molecular potentiometers to adjust and control glycolytic to respiratory power output. In many cases, these potentiometers are used by influenza viruses and immune cells to support pathogenesis and the host immune response, respectively. Influenza virus infects the respiratory tract, providing a specific environmental niche, while immune cells encounter variable nutrient concentrations as they migrate in response to infection. Immune cell subsets have distinct metabolic programs that adjust to meet energetic and biosynthetic requirements to support effector functions, differentiation, and longevity in their ever-changing microenvironments. This review details how influenza coopts the host cell for metabolic reprogramming and describes the overlap of these regulatory controls in immune cells whose function and fate are dictated by metabolism. These details are contextualized with emerging evidence of the consequences of influenza-induced changes in metabolic homeostasis on disease progression.
Collapse
Affiliation(s)
- Azadeh Bahadoran
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lavanya Bezavada
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Heather S Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
83
|
Raynor JL, Chapman NM, Chi H. Metabolic Control of Memory T-Cell Generation and Stemness. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a037770. [PMID: 33820774 DOI: 10.1101/cshperspect.a037770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The formation of long-lived memory T cells is a critical feature of the adaptive immune response. T cells undergo metabolic reprogramming to establish a functional memory population. While initial studies characterized key metabolic pathways necessary for memory T-cell development, recent findings highlight that metabolic regulation of memory T-cell subsets is diverse. Here we describe the different requirements for metabolic programs and metabolism-related signaling pathways in memory T-cell development. We further discuss the contribution of cellular metabolism to memory T-cell functional reprogramming and stemness within acute and chronic inflammatory environments. Last, we highlight knowledge gaps and propose approaches to determine the roles of metabolites and metabolic enzymes in memory T-cell fate. Understanding how cellular metabolism regulates a functionally diverse memory population will undoubtedly provide new therapeutic insights to modulate protective T-cell immunity in human disease.
Collapse
Affiliation(s)
- Jana L Raynor
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
84
|
Asymmetric cell division shapes naive and virtual memory T-cell immunity during ageing. Nat Commun 2021; 12:2715. [PMID: 33976157 PMCID: PMC8113513 DOI: 10.1038/s41467-021-22954-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/09/2021] [Indexed: 12/25/2022] Open
Abstract
Efficient immune responses rely on heterogeneity, which in CD8+ T cells, amongst other mechanisms, is achieved by asymmetric cell division (ACD). Here we find that ageing, known to negatively impact immune responses, impairs ACD in murine CD8+ T cells, and that this phenotype can be rescued by transient mTOR inhibition. Increased ACD rates in mitotic cells from aged mice restore the expansion and memory potential of their cellular progenies. Further characterization of the composition of CD8+ T cells reveals that virtual memory cells (TVM cells), which accumulate during ageing, have a unique proliferation and metabolic profile, and retain their ability to divide asymmetrically, which correlates with increased memory potential. The opposite is observed for naive CD8+ T cells from aged mice. Our data provide evidence on how ACD modulation contributes to long-term survival and function of T cells during ageing, offering new insights into how the immune system adapts to ageing. Asymmetrical cell division helps to maintain cellular heterogeneity in the T cell compartment. Here the authors examine the differential immune responses built by naive and virtual memory T cells from young and aged individuals, and explore the effect of mTOR inhibition on asymmetrical cell division and memory formation.
Collapse
|
85
|
Mold JE, Modolo L, Hård J, Zamboni M, Larsson AJM, Stenudd M, Eriksson CJ, Durif G, Ståhl PL, Borgström E, Picelli S, Reinius B, Sandberg R, Réu P, Talavera-Lopez C, Andersson B, Blom K, Sandberg JK, Picard F, Michaëlsson J, Frisén J. Divergent clonal differentiation trajectories establish CD8 + memory T cell heterogeneity during acute viral infections in humans. Cell Rep 2021; 35:109174. [PMID: 34038736 DOI: 10.1016/j.celrep.2021.109174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 02/15/2021] [Accepted: 05/04/2021] [Indexed: 02/08/2023] Open
Abstract
The CD8+ T cell response to an antigen is composed of many T cell clones with unique T cell receptors, together forming a heterogeneous repertoire of effector and memory cells. How individual T cell clones contribute to this heterogeneity throughout immune responses remains largely unknown. In this study, we longitudinally track human CD8+ T cell clones expanding in response to yellow fever virus (YFV) vaccination at the single-cell level. We observed a drop in clonal diversity in blood from the acute to memory phase, suggesting that clonal selection shapes the circulating memory repertoire. Clones in the memory phase display biased differentiation trajectories along a gradient from stem cell to terminally differentiated effector memory fates. In secondary responses, YFV- and influenza-specific CD8+ T cell clones are poised to recapitulate skewed differentiation trajectories. Collectively, we show that the sum of distinct clonal phenotypes results in the multifaceted human T cell response to acute viral infections.
Collapse
Affiliation(s)
- Jeff E Mold
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Laurent Modolo
- LBBE, UMR CNRS 5558, Université Lyon 1, Villeurbanne, France LBMC UMR 5239 CNRS/ENS Lyon, Lyon, France
| | - Joanna Hård
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Margherita Zamboni
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Anton J M Larsson
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Moa Stenudd
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Carl-Johan Eriksson
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ghislain Durif
- LBBE, UMR CNRS 5558, Université Lyon 1, Villeurbanne, France LBMC UMR 5239 CNRS/ENS Lyon, Lyon, France
| | - Patrik L Ståhl
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Erik Borgström
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Simone Picelli
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Björn Reinius
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Pedro Réu
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Carlos Talavera-Lopez
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kim Blom
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Franck Picard
- LBBE, UMR CNRS 5558, Université Lyon 1, Villeurbanne, France LBMC UMR 5239 CNRS/ENS Lyon, Lyon, France
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden.
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
86
|
Chung HK, McDonald B, Kaech SM. The architectural design of CD8+ T cell responses in acute and chronic infection: Parallel structures with divergent fates. J Exp Med 2021; 218:e20201730. [PMID: 33755719 PMCID: PMC7992501 DOI: 10.1084/jem.20201730] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
In response to infection, T cells adopt a range of differentiation states, creating numerous heterogeneous subsets that exhibit different phenotypes, functions, and migration patterns. This T cell heterogeneity is a universal feature of T cell immunity, needed to effectively control pathogens in a context-dependent manner and generate long-lived immunity to those pathogens. Here, we review new insights into differentiation state dynamics and population heterogeneity of CD8+ T cells in acute and chronic viral infections and cancer and highlight the parallels and distinctions between acute and chronic antigen stimulation settings. We focus on transcriptional and epigenetic networks that modulate the plasticity and terminal differentiation of antigen-specific CD8+ T cells and generate functionally diverse T cell subsets with different roles to combat infection and cancer.
Collapse
Affiliation(s)
- H. Kay Chung
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA
| | - Bryan McDonald
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA
| | - Susan M. Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA
| |
Collapse
|
87
|
Song Y, Soto J, Wang P, An Q, Zhang X, Hong S, Lee LP, Fan G, Yang L, Li S. Asymmetric Cell Division of Fibroblasts is An Early Deterministic Step to Generate Elite Cells during Cell Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003516. [PMID: 33854891 PMCID: PMC8025021 DOI: 10.1002/advs.202003516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/28/2020] [Indexed: 05/30/2023]
Abstract
Cell reprogramming is considered a stochastic process, and it is not clear which cells are prone to be reprogrammed and whether a deterministic step exists. Here, asymmetric cell division (ACD) at the early stage of induced neuronal (iN) reprogramming is shown to play a deterministic role in generating elite cells for reprogramming. Within one day, fibroblasts underwent ACD, with one daughter cell being converted into an iN precursor and the other one remaining as a fibroblast. Inhibition of ACD significantly inhibited iN conversion. Moreover, the daughter cells showed asymmetric DNA segregation and histone marks during cytokinesis, and the cells inheriting newly replicated DNA strands during ACD became iN precursors. These results unravel a deterministic step at the early phase of cell reprogramming and demonstrate a novel role of ACD in cell phenotype change. This work also supports a novel hypothesis that daughter cells with newly replicated DNA strands are elite cells for reprogramming, which remains to be tested in various reprogramming processes.
Collapse
Affiliation(s)
- Yang Song
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Jennifer Soto
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Pingping Wang
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Qin An
- Department of Human GeneticsUniversity of California Los AngelesLos AngelesCA90095USA
| | - Xuexiang Zhang
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - SoonGweon Hong
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Luke P. Lee
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
- Department of BioengineeringDepartment of Electrical Engineering and Computer ScienceUniversity of California at BerkeleyBerkeleyCAUSA
- Institute of Quantum BiophysicsDepartment of BiophysicsSungkyunkwan UniversitySuwon16419Korea
| | - Guoping Fan
- Department of Human GeneticsUniversity of California Los AngelesLos AngelesCA90095USA
| | - Li Yang
- College of BioengineeringChongqing UniversityChongqing400044China
| | - Song Li
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
- Department of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
| |
Collapse
|
88
|
Pipkin ME. Runx proteins and transcriptional mechanisms that govern memory CD8 T cell development. Immunol Rev 2021; 300:100-124. [PMID: 33682165 DOI: 10.1111/imr.12954] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
Adaptive immunity to intracellular pathogens and tumors is mediated by antigen-experienced CD8 T cells. Individual naive CD8 T cells have the potential to differentiate into a diverse array of antigen-experienced subsets that exhibit distinct effector functions, life spans, anatomic positioning, and potential for regenerating an entirely new immune response during iterative pathogenic exposures. The developmental process by which activated naive cells undergo diversification involves regulation of chromatin structure and transcription but is not entirely understood. This review examines how alterations in chromatin structure, transcription factor binding, extracellular signals, and single-cell gene expression explain the differential development of distinct effector (TEFF ) and memory (TMEM ) CD8 T cell subsets. Special emphasis is placed on how Runx proteins function with additional transcription factors to pioneer changes in chromatin accessibility and drive transcriptional programs that establish the core attributes of cytotoxic T lymphocytes, subdivide circulating and non-circulating TMEM cell subsets, and govern terminal differentiation. The discussion integrates the roles of specific cytokine signals, transcriptional circuits and how regulation of individual nucleosomes and RNA polymerase II activity can contribute to the process of differentiation. A model that integrates many of these features is discussed to conceptualize how activated CD8 T cells arrive at their fates.
Collapse
Affiliation(s)
- Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute - FL, Jupiter, FL, USA
| |
Collapse
|
89
|
Wei S, Zhao E, Kryczek I, Zou W. Th17 cells have stem cell-like features and promote long-term immunity. Oncoimmunology 2021; 1:516-519. [PMID: 22754771 PMCID: PMC3382892 DOI: 10.4161/onci.19440] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Memory T cells are one of the most effective components of anti-tumor immunity. However, limited studies on cancer patients have not addressed the phenotypic, genetic and functional heterogeneity of memory T-cell subsets in the human cancer environments. Human IL-17+CD4+ (Th17) cells are confined to memory T-cell compartment with CD45RO+CD62L-CCR7- phenotype and are enriched in CD49+CCR6+ population. Th17 cells do not express PD-1, FoxP3, KLRG-1, CD57 and IL-10, making them unlikely candidates for being functionally exhausted PD-1+ T cells or suppressive Foxp3+ or IL-10+ T cells or senescent CD28-CD57+KLRG-1+ T cells. However, Th17 cells express high levels of CD95 and moderate levels of CD27. Th17 cells phenotypically resemble terminally differentiated memory T cells. Interestingly, Th17 cells possess polyfunctional cytokine profile, and have stem cell-like features. Th17 stemness may be partially controlled by signaling pathways of hypoxia inducible factor HIF1α, Notch and Bcl. The stem cell-like character of Th17 cells is an important decisive factor for Th17 cell biology.
Collapse
Affiliation(s)
- Shuang Wei
- Department of Surgery; University of Michigan; Ann Arbor, MI USA
| | | | | | | |
Collapse
|
90
|
Beaulieu AM. Transcriptional and epigenetic regulation of memory NK cell responses. Immunol Rev 2021; 300:125-133. [PMID: 33491231 DOI: 10.1111/imr.12947] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells are cytotoxic innate lymphocytes with key roles in host protection against viruses and malignancy. Notwithstanding their historical classification as innate immune cells, NK cells are now understood to have some capacity to mount memory or memory-like immune responses in which effector cells undergo antigen-driven expansion and give rise to long-lived memory cells with enhanced functionality. Understanding how antigen-specific effector and memory NK responses are regulated is an important and active area of research in the field. Here, we discuss key transcription factors and epigenetic processes involved in antigen-specific effector and memory NK cell differentiation.
Collapse
Affiliation(s)
- Aimee M Beaulieu
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers - The State University of New Jersey, Newark, NJ, USA.,Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers - The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
91
|
Johnnidis JB, Muroyama Y, Ngiow SF, Chen Z, Manne S, Cai Z, Song S, Platt JM, Schenkel JM, Abdel-Hakeem M, Beltra JC, Greenplate AR, Ali MAA, Nzingha K, Giles JR, Harly C, Attanasio J, Pauken KE, Bengsch B, Paley MA, Tomov VT, Kurachi M, Vignali DAA, Sharpe AH, Reiner SL, Bhandoola A, Johnson FB, Wherry EJ. Inhibitory signaling sustains a distinct early memory CD8 + T cell precursor that is resistant to DNA damage. Sci Immunol 2021; 6:6/55/eabe3702. [PMID: 33452106 DOI: 10.1126/sciimmunol.abe3702] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
The developmental origins of memory T cells remain incompletely understood. During the expansion phase of acute viral infection, we identified a distinct subset of virus-specific CD8+ T cells that possessed distinct characteristics including expression of CD62L, T cell factor 1 (TCF-1), and Eomesodermin; relative quiescence; expression of activation markers; and features of limited effector differentiation. These cells were a quantitatively minor subpopulation of the TCF-1+ pool and exhibited self-renewal, heightened DNA damage surveillance activity, and preferential long-term recall capacity. Despite features of memory and somewhat restrained proliferation during the expansion phase, this subset displayed evidence of stronger TCR signaling than other responding CD8+ T cells, coupled with elevated expression of multiple inhibitory receptors including programmed cell death 1 (PD-1), lymphocyte activating gene 3 (LAG-3), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), CD5, and CD160. Genetic ablation of PD-1 and LAG-3 compromised the formation of this CD62Lhi TCF-1+ subset and subsequent CD8+ T cell memory. Although central memory phenotype CD8+ T cells were formed in the absence of these cells, subsequent memory CD8+ T cell recall responses were compromised. Together, these results identify an important link between genome integrity maintenance and CD8+ T cell memory. Moreover, the data indicate a role for inhibitory receptors in preserving key memory CD8+ T cell precursors during initial activation and differentiation. Identification of this rare subpopulation within the memory CD8+ T cell precursor pool may help reconcile models of the developmental origin of long-term CD8+ T cell memory.
Collapse
Affiliation(s)
- Jonathan B Johnnidis
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuki Muroyama
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhangying Cai
- Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Shufei Song
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse M Platt
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jason M Schenkel
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mohamed Abdel-Hakeem
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean-Christophe Beltra
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Allison R Greenplate
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohammed-Alkhatim A Ali
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kito Nzingha
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christelle Harly
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.,Université de Nantes, INSERM, CNRS, CRCINA, Nantes, France.,LabEx IGO 'Immunotherapy, Graft, Oncology', Nantes, France
| | - John Attanasio
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen E Pauken
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bertram Bengsch
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Germany.,Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Michael A Paley
- Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Vesselin T Tomov
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Makoto Kurachi
- Department of Molecular Genetics, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh PA 15232, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Steven L Reiner
- Department of Microbiology and Immunology and Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Avinash Bhandoola
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - F Bradley Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA. .,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
92
|
Lafouresse F, Jugele R, Müller S, Doineau M, Duplan-Eche V, Espinosa E, Puisségur MP, Gadat S, Valitutti S. Stochastic asymmetric repartition of lytic machinery in dividing CD8 + T cells generates heterogeneous killing behavior. eLife 2021; 10:62691. [PMID: 33427199 PMCID: PMC7867409 DOI: 10.7554/elife.62691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022] Open
Abstract
Cytotoxic immune cells are endowed with a high degree of heterogeneity in their lytic function, but how this heterogeneity is generated is still an open question. We therefore investigated if human CD8+ T cells could segregate their lytic components during telophase, using imaging flow cytometry, confocal microscopy, and live-cell imaging. We show that CD107a+-intracellular vesicles, perforin, and granzyme B unevenly segregate in a constant fraction of telophasic cells during each division round. Mathematical modeling posits that unequal lytic molecule inheritance by daughter cells results from the random distribution of lytic granules on the two sides of the cleavage furrow. Finally, we establish that the level of lytic compartment in individual cytotoxic T lymphocyte (CTL) dictates CTL killing capacity.
Collapse
Affiliation(s)
- Fanny Lafouresse
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Romain Jugele
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Sabina Müller
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Marine Doineau
- Toulouse School of Economics, CNRS UMR 5314, Université Toulouse 1 Capitole, France and Institut Universitaire de France, Toulouse, France
| | - Valérie Duplan-Eche
- INSERM, UMR1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
| | - Eric Espinosa
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Marie-Pierre Puisségur
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Sébastien Gadat
- Toulouse School of Economics, CNRS UMR 5314, Université Toulouse 1 Capitole, France and Institut Universitaire de France, Toulouse, France
| | - Salvatore Valitutti
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France.,Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| |
Collapse
|
93
|
Stem cell-like memory T cells: A perspective from the dark side. Cell Immunol 2021; 361:104273. [PMID: 33422699 DOI: 10.1016/j.cellimm.2020.104273] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Much attention has been paid to a newly discovered subset of memory T (TM) cells-stem cell-like memory T (TSCM) cells for their high self-renewal ability, multi-differentiation potential and long-term effector function in adoptive therapy against tumors. Despite their application in cancer therapy, an excess of TSCM cells also contributes to the persistence of autoimmune diseases for their immune memory and HIV infection as a long-lived HIV reservoir. Signaling pathways Wnt, AMPK/mTOR and NF-κB are key determinants for TM cell generation, maintenance and proinflammatory effect. In this review, we focus on the phenotypic and functional characteristics of TSCM cells and discuss their role in autoimmune diseases and HIV-1 chronic infection. Also, we explore the potential mechanism and signaling pathways involved in immune memory and look into the future therapy strategies of targeting long-lived TM cells to suppress pathogenic immune memory.
Collapse
|
94
|
Zhou X, Zhang J, Li Y, Cui L, Wu K, Luo H. Astaxanthin inhibits microglia M1 activation against inflammatory injury triggered by lipopolysaccharide through down-regulating miR-31-5p. Life Sci 2021; 267:118943. [PMID: 33359248 DOI: 10.1016/j.lfs.2020.118943] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 12/06/2020] [Accepted: 12/15/2020] [Indexed: 01/31/2023]
Abstract
AIMS Astaxanthin is a natural carotenoid, can readily cross the blood-brain barrier and exerts a powerful neuroprotective effect. In this study, experiments were performed to explore the underlying molecular mechanisms of which Astaxanthin inhibiting the microglia M1 activation. MAIN METHODS BV2 cells and mice were pre-treated with Astaxanthin and treated by Lipopolysaccharide (LPS). The expressions of M1-related factors (pro-inflammatory cytokines and M1 markers) were measured by RT-qPCR and western blot. The target association between miR-31-5p and Numb was explored via luciferase activity assay. MiR-31-5p mimic was transfected into BV2 cells, then the cells were treated with Astaxanthin in combination with LPS. The expression of M1-related factors and Notch pathway-related molecules were measured via RT-qPCR, western blot and immunofluorescence assay. KEY FINDINGS Precondition of BV2 cells with Astaxanthin inhibited the expression of M1-related factors triggered by LPS. In addition, Astaxanthin decreased the number of Iba1-positive microglia and downregulated the levels of M1-related factors in hippocampus in LPS-treated mice. Further investigation revealed that Astaxanthin-mediated suppression of M1-related factors levels was reversed by miR-31-5p mimic in BV2 cells stimulated by LPS. Subsequently, we verified that miR-31-5p repressed Numb expression by binding to the 3'-UTR of Numb mRNA. Also, Astaxanthin suppressed the expression of Notch1, Hes1 and Hes5 and improved the expression of Numb in BV2 cells challenged by LPS, but this alteration can be reversed by miR-31-5p mimic. SIGNIFICANCE Our study demonstrated that down-regulating miR-31-5p by Astaxanthin could be a potential therapeutic approach to suppress neuroinflammation via regulating microglia M1 activation.
Collapse
Affiliation(s)
- Xin Zhou
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Junyu Zhang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yuxin Li
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Liao Cui
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, China
| | - Kefeng Wu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, China.
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China.
| |
Collapse
|
95
|
Lee YY, Yang WK, Han JE, Kwak D, Kim TH, Saba E, Kim SD, Lee YC, Kim JS, Kim SH, Rhee MH. Hypericum ascyron L. extract reduces particulate matter-induced airway inflammation in mice. Phytother Res 2020; 35:1621-1633. [PMID: 33150724 DOI: 10.1002/ptr.6929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022]
Abstract
The consequences of increased industrialization increased the risk of asthma and breathing difficulties due to increased particulate matter in the air. We aim to investigate the therapeutic properties of Hypericum ascyron L. extract (HAE) in airway inflammation and unravel its mechanism of action. We conducted nitric oxide and cell viability assay, real-time PCR and western blot analyses along with in vitro studies. in vivo studies include a model of coal fly ash and diesel exhaust particle (CFD)-induced airway inflammation in mice. HAE reduced coal fly ash (CFA)-induced nitric oxide secretion without exhibiting cytotoxicity in MH-S cells. HAE also reduced the mRNA expression of pro-inflammatory cytokines and reduced the expression of proteins in the NFκB and MAPK pathways. In a mice model of CFD-induced airway inflammation, HAE effectively reduced neutrophil infiltration in bronchoalveolar lavage fluid (BALF) and increased the amount of T cells in the BALF, lungs, and blood while reducing all other immune cell subtypes to reduce airway inflammatory response. CXCL-1, IL-17, MIP-2, and TNF-α expression in the BALF were also reduced. HAE effectively reduced MIP-2 and TNF-α mRNA expression in the lung tissue of mice. In a nutshell, HAE is effective in preventing airway inflammation induced by CFA in MH-S cells, as well as inflammation induced by CFD in mice.
Collapse
Affiliation(s)
- Yuan Yee Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Won-Kyung Yang
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, South Korea
| | - Jee Eun Han
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Dongmi Kwak
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Tae-Hwan Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Evelyn Saba
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Sung-Dae Kim
- Research Department of Oncology, Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, South Korea
| | - Young-Cheol Lee
- Department of Herbology, College of Korean Medicine, Sangji University, Wonju, South Korea
| | - Jong Sung Kim
- Department of Community Health and Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, South Korea
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
96
|
Parga-Vidal L, van Gisbergen KPJM. Area under Immunosurveillance: Dedicated Roles of Memory CD8 T-Cell Subsets. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037796. [PMID: 32839203 DOI: 10.1101/cshperspect.a037796] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Immunological memory, defined as the ability to respond in an enhanced manner upon secondary encounter with the same pathogen, can provide substantial protection against infectious disease. The improved protection is mediated in part by different populations of memory CD8 T cells that are retained after primary infection. Memory cells persist in the absence of pathogen-derived antigens and enable secondary CD8 T-cell responses with accelerated kinetics and of larger magnitude after reencounter with the same pathogen. At least three subsets of memory T cells have been defined that are referred to as central memory CD8 T cells (Tcm), effector memory CD8 T cells (Tem), and tissue-resident memory CD8 T cells (Trm). Tcm and Tem are circulating memory T cells that mediate bodywide immune surveillance in search of invading pathogens. In contrast, Trm permanently reside in peripheral barrier tissues, where they form a stationary defensive line of sentinels that alert the immune system upon pathogen reencounter. The characterization of these different subsets has been instrumental in our understanding of the strategies that memory T cells employ to counter invading pathogens. It is clear that memory T cells not only have a numerical advantage over naive T cells resulting in improved protection in secondary responses, but also acquire distinct sets of competencies that assist in pathogen clearance. Nevertheless, inherent challenges are associated with the allocation of memory T cells to a limited number of subsets. The classification of memory T cells into Tcm, Tem, and Trm may not take into account the full extent of the heterogeneity that is observed in the memory population. Therefore, in this review, we will revisit the current classification of memory subsets, elaborate on functional and migratory properties attributed to Tcm, Tem, and Trm, and discuss how potential heterogeneity within these populations arises and persists.
Collapse
Affiliation(s)
- Loreto Parga-Vidal
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066CX Amsterdam, The Netherlands
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
97
|
Pais Ferreira D, Silva JG, Wyss T, Fuertes Marraco SA, Scarpellino L, Charmoy M, Maas R, Siddiqui I, Tang L, Joyce JA, Delorenzi M, Luther SA, Speiser DE, Held W. Central memory CD8+ T cells derive from stem-like Tcf7hi effector cells in the absence of cytotoxic differentiation. Immunity 2020; 53:985-1000.e11. [DOI: 10.1016/j.immuni.2020.09.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/16/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
|
98
|
Al Khabouri S, Gerlach C. T cell fate mapping and lineage tracing technologies probing clonal aspects underlying the generation of CD8 T cell subsets. Scand J Immunol 2020; 92:e12983. [PMID: 33037653 PMCID: PMC7757170 DOI: 10.1111/sji.12983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022]
Abstract
T cells responding to acute infections generally provide two key functions to protect the host: (1) active contribution to pathogen elimination and (2) providing long‐lived cells that are poised to rapidly respond to renewed infection, thus ensuring long‐lasting protection against the particular pathogen. Extensive work has established an astonishing amount of additional diversity among T cells actively contributing to pathogen elimination, as well as among resting, long‐lived antigen‐experienced T cells. This led to the description of a variety of functionally distinct T cell ‘subsets’. Understanding how this heterogeneity develops among T cells responding to the same antigen is currently an active area of research, since knowledge of such mechanisms may have implications for the development of vaccines and immunotherapy. The number of naïve T cells specific to a given antigen span a great range. Considering this, one mechanistic angle focusses on how individual naïve T cells contribute to the development of the distinct T cell subsets. In this review, we highlight the current technologies that enable one to address the contributions of individual naïve T cells to different T cell subsets, with a focus on CD8 T cell subsets generated in the context of acute infections. Moreover, we discuss the requirements of new technologies to further our understanding of the mechanisms that help generate long‐lasting immunity.
Collapse
Affiliation(s)
- Shaima Al Khabouri
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Carmen Gerlach
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
99
|
Zhang X, Mariano CF, Ando Y, Shen K. Bioengineering tools for probing intracellular events in T lymphocytes. WIREs Mech Dis 2020; 13:e1510. [PMID: 33073545 DOI: 10.1002/wsbm.1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/11/2022]
Abstract
T lymphocytes are the central coordinator and executor of many immune functions. The activation and function of T lymphocytes are mediated through the engagement of cell surface receptors and regulated by a myriad of intracellular signaling network. Bioengineering tools, including imaging modalities and fluorescent probes, have been developed and employed to elucidate the cellular events throughout the functional lifespan of T cells. A better understanding of these events can broaden our knowledge in the immune systems biology, as well as accelerate the development of effective diagnostics and immunotherapies. Here we review the commonly used and recently developed techniques and probes for monitoring T lymphocyte intracellular events, following the order of intracellular events in T cells from activation, signaling, metabolism to apoptosis. The techniques introduced here can be broadly applied to other immune cells and cell systems. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Immune System Diseases > Biomedical Engineering Infectious Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Chelsea F Mariano
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Yuta Ando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Keyue Shen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.,USC Stem Cell, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
100
|
Early programming of CD8 + T cell response by the orphan nuclear receptor NR4A3. Proc Natl Acad Sci U S A 2020; 117:24392-24402. [PMID: 32913051 DOI: 10.1073/pnas.2007224117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Enhancing long-term persistence while simultaneously potentiating the effector response of CD8+ T cells has been a long-standing goal in immunology to produce better vaccines and adoptive cell therapy products. NR4A3 is a transcription factor of the orphan nuclear receptor family. While it is rapidly and transiently expressed following T cell activation, its role in the early stages of T cell response is unknown. We show that NR4A3-deficient murine CD8+ T cells differentiate preferentially into memory precursor and central memory cells, but also produce more cytokines. This is explained by an early influence of NR4A3 deficiency on the memory transcriptional program and on accessibility of chromatin regions with motifs for bZIP transcription factors, which impacts the transcription of Fos/Jun target genes. Our results reveal a unique and early role for NR4A3 in programming CD8+ T cell differentiation and function. Manipulating NR4A3 activity may represent a promising strategy to improve vaccination and T cell therapy.
Collapse
|