51
|
Wallner ES, Tonn N, Shi D, Luzzietti L, Wanke F, Hunziker P, Xu Y, Jung I, Lopéz-Salmerón V, Gebert M, Wenzl C, Lohmann JU, Harter K, Greb T. OBERON3 and SUPPRESSOR OF MAX2 1-LIKE proteins form a regulatory module driving phloem development. Nat Commun 2023; 14:2128. [PMID: 37059727 PMCID: PMC10104830 DOI: 10.1038/s41467-023-37790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
Spatial specificity of cell fate decisions is central for organismal development. The phloem tissue mediates long-distance transport of energy metabolites along plant bodies and is characterized by an exceptional degree of cellular specialization. How a phloem-specific developmental program is implemented is, however, unknown. Here we reveal that the ubiquitously expressed PHD-finger protein OBE3 forms a central module with the phloem-specific SMXL5 protein for establishing the phloem developmental program in Arabidopsis thaliana. By protein interaction studies and phloem-specific ATAC-seq analyses, we show that OBE3 and SMXL5 proteins form a complex in nuclei of phloem stem cells where they promote a phloem-specific chromatin profile. This profile allows expression of OPS, BRX, BAM3, and CVP2 genes acting as mediators of phloem differentiation. Our findings demonstrate that OBE3/SMXL5 protein complexes establish nuclear features essential for determining phloem cell fate and highlight how a combination of ubiquitous and local regulators generate specificity of developmental decisions in plants.
Collapse
Affiliation(s)
- Eva-Sophie Wallner
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
- Gilbert Biological Sciences, Stanford University, Stanford, CA, 94305-5020, USA
| | - Nina Tonn
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Dongbo Shi
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
- Japan RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Institute for Biochemistry and Biology (IBB), University of Potsdam, Potsdam, 14476, Germany
- Japan Science and Technology Agency (JST), Saitama, Kawaguchi, Japan
| | - Laura Luzzietti
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Friederike Wanke
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Pascal Hunziker
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Yingqiang Xu
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Ilona Jung
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Vadir Lopéz-Salmerón
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
- BD Bioscience, 69126, Heidelberg, Germany
| | - Michael Gebert
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Christian Wenzl
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Jan U Lohmann
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Klaus Harter
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
52
|
Broussard L, Abadie C, Lalande J, Limami AM, Lothier J, Tcherkez G. Phloem Sap Composition: What Have We Learnt from Metabolomics? Int J Mol Sci 2023; 24:ijms24086917. [PMID: 37108078 PMCID: PMC10139104 DOI: 10.3390/ijms24086917] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Phloem sap transport is essential for plant nutrition and development since it mediates redistribution of nutrients, metabolites and signaling molecules. However, its biochemical composition is not so well-known because phloem sap sampling is difficult and does not always allow extensive chemical analysis. In the past years, efforts have been devoted to metabolomics analyses of phloem sap using either liquid chromatography or gas chromatography coupled with mass spectrometry. Phloem sap metabolomics is of importance to understand how metabolites can be exchanged between plant organs and how metabolite allocation may impact plant growth and development. Here, we provide an overview of our current knowledge of phloem sap metabolome and physiological information obtained therefrom. Although metabolomics analyses of phloem sap are still not numerous, they show that metabolites present in sap are not just sugars and amino acids but that many more metabolic pathways are represented. They further suggest that metabolite exchange between source and sink organs is a general phenomenon, offering opportunities for metabolic cycles at the whole-plant scale. Such cycles reflect metabolic interdependence of plant organs and shoot-root coordination of plant growth and development.
Collapse
Affiliation(s)
- Louis Broussard
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Cyril Abadie
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Julie Lalande
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Anis M Limami
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Jérémy Lothier
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Guillaume Tcherkez
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
53
|
Nolan TM, Vukašinović N, Hsu CW, Zhang J, Vanhoutte I, Shahan R, Taylor IW, Greenstreet L, Heitz M, Afanassiev A, Wang P, Szekely P, Brosnan A, Yin Y, Schiebinger G, Ohler U, Russinova E, Benfey PN. Brassinosteroid gene regulatory networks at cellular resolution in the Arabidopsis root. Science 2023; 379:eadf4721. [PMID: 36996230 PMCID: PMC10119888 DOI: 10.1126/science.adf4721] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/09/2023] [Indexed: 04/01/2023]
Abstract
Brassinosteroids are plant steroid hormones that regulate diverse processes, such as cell division and cell elongation, through gene regulatory networks that vary in space and time. By using time series single-cell RNA sequencing to profile brassinosteroid-responsive gene expression specific to different cell types and developmental stages of the Arabidopsis root, we identified the elongating cortex as a site where brassinosteroids trigger a shift from proliferation to elongation associated with increased expression of cell wall-related genes. Our analysis revealed HOMEOBOX FROM ARABIDOPSIS THALIANA 7 (HAT7) and GT-2-LIKE 1 (GTL1) as brassinosteroid-responsive transcription factors that regulate cortex cell elongation. These results establish the cortex as a site of brassinosteroid-mediated growth and unveil a brassinosteroid signaling network regulating the transition from proliferation to elongation, which illuminates aspects of spatiotemporal hormone responses.
Collapse
Affiliation(s)
| | - Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Che-Wei Hsu
- Department of Biology, Duke University, Durham, NC, USA
- Department of Biology, Humboldt Universitat zu Berlin, Berlin, Germany
- The Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | | | - Isabelle Vanhoutte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Rachel Shahan
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | | | - Laura Greenstreet
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Matthieu Heitz
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Anton Afanassiev
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Ping Wang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Pablo Szekely
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Aiden Brosnan
- Department of Biology, Duke University, Durham, NC, USA
| | - Yanhai Yin
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Uwe Ohler
- Department of Biology, Humboldt Universitat zu Berlin, Berlin, Germany
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
- Department of Computer Science, Humboldt Universitat zu Berlin, Berlin, Germany
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| |
Collapse
|
54
|
Wang L, Hou J, Xu H, Zhang Y, Huang R, Wang D, He XQ. The PtoTCP20-miR396d-PtoGRF15 module regulates secondary vascular development in Populus. PLANT COMMUNICATIONS 2023; 4:100494. [PMID: 36419363 PMCID: PMC10030372 DOI: 10.1016/j.xplc.2022.100494] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/07/2022] [Accepted: 11/18/2022] [Indexed: 05/04/2023]
Abstract
Secondary vascular development is a key biological characteristic of woody plants and the basis of wood formation. Our understanding of gene expression regulation and dynamic changes in microRNAs (miRNAs) during secondary vascular development is still limited. Here we present an integrated analysis of the miRNA and mRNA transcriptome of six phase-specific tissues-the shoot apex, procambium, primary vascular tissue, cambium, secondary phloem, and secondary xylem-in Populus tomentosa. Several novel regulatory modules, including the PtoTCP20-miR396d-PtoGRF15 module, were identified during secondary vascular development in Populus. A series of biochemical and molecular experiments confirmed that PtoTCP20 activated transcription of the miR396d precursor gene and that miR396d targeted PtoGRF15 to downregulate its expression. Plants overexpressing miR396d (35S:miR396d) showed enhanced secondary growth and increased xylem production. Conversely, during the transition from primary to secondary vascular development, plants with downregulated PtoTCP20expression (PtoTCP20-SRDX), downregulated miR396 expression (35S:STTM396), and PtoGRF15 overexpression (35S:PtoGRF15) showed delayed secondary growth. Novel regulatory modules were identified by integrated analysis of the miRNA and mRNA transcriptome, and the regulatory role of the PtoTCP20-miR396d-PtoGRF15 signaling cascade in secondary vascular development was validated in Populus, providing information to support improvements in forest cultivation and wood properties.
Collapse
Affiliation(s)
- Lingyan Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jie Hou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Huimin Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yufei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Runzhou Huang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Donghui Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xin-Qiang He
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
55
|
Zhang Y, Xu T, Dong J. Asymmetric cell division in plant development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:343-370. [PMID: 36610013 PMCID: PMC9975081 DOI: 10.1111/jipb.13446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 05/03/2023]
Abstract
Asymmetric cell division (ACD) is a fundamental process that generates new cell types during development in eukaryotic species. In plant development, post-embryonic organogenesis driven by ACD is universal and more important than in animals, in which organ pattern is preset during embryogenesis. Thus, plant development provides a powerful system to study molecular mechanisms underlying ACD. During the past decade, tremendous progress has been made in our understanding of the key components and mechanisms involved in this important process in plants. Here, we present an overview of how ACD is determined and regulated in multiple biological processes in plant development and compare their conservation and specificity among different model cell systems. We also summarize the molecular roles and mechanisms of the phytohormones in the regulation of plant ACD. Finally, we conclude with the overarching paradigms and principles that govern plant ACD and consider how new technologies can be exploited to fill the knowledge gaps and make new advances in the field.
Collapse
Affiliation(s)
- Yi Zhang
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Tongda Xu
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Plant Biology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08891, USA
| |
Collapse
|
56
|
Gui S, Martinez-Rivas FJ, Wen W, Meng M, Yan J, Usadel B, Fernie AR. Going broad and deep: sequencing-driven insights into plant physiology, evolution, and crop domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:446-459. [PMID: 36534120 DOI: 10.1111/tpj.16070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Deep sequencing is a term that has become embedded in the plant genomic literature in recent years and with good reason. A torrent of (largely) high-quality genomic and transcriptomic data has been collected and most of this has been publicly released. Indeed, almost 1000 plant genomes have been reported (www.plabipd.de) and the 2000 Plant Transcriptomes Project has long been completed. The EarthBioGenome project will dwarf even these milestones. That said, massive progress in understanding plant physiology, evolution, and crop domestication has been made by sequencing broadly (across a species) as well as deeply (within a single individual). We will outline the current state of the art in genome and transcriptome sequencing before we briefly review the most visible of these broad approaches, namely genome-wide association and transcriptome-wide association studies, as well as the compilation of pangenomes. This will include both (i) the most commonly used methods reliant on single nucleotide polymorphisms and short InDels and (ii) more recent examples which consider structural variants. We will subsequently present case studies exemplifying how their application has brought insight into either plant physiology or evolution and crop domestication. Finally, we will provide conclusions and an outlook as to the perspective for the extension of such approaches to different species, tissues, and biological processes.
Collapse
Affiliation(s)
- Songtao Gui
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Weiwei Wen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Minghui Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Björn Usadel
- IBG-4 Bioinformatics, Forschungszentrum Jülich, Wilhelm Johnen Str, BioSc, 52428, Jülich, Germany
- Institute for Biological Data Science, CEPLAS, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
57
|
Xu X, Jackson D. Single-cell analysis opens a goldmine for plant functional studies. Curr Opin Biotechnol 2023; 79:102858. [PMID: 36493588 DOI: 10.1016/j.copbio.2022.102858] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Functional studies in biology require the identification of genes, regulatory elements, and networks, followed by a deep understanding of how they orchestrate to specify cell types, mediate signaling, and respond to internal and external cues over evolutionary timescales. Advances in single-cell analysis have enabled biologists to tackle these questions at the resolution of the individual cell. Here, we highlight recent studies in plants that have embraced single-cell analyses to facilitate functional studies. This review will provide guidance and perspectives for incorporating these advanced approaches in plant research for the coming decades.
Collapse
Affiliation(s)
- Xiaosa Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
58
|
Zhang K, Liu S, Fu Y, Wang Z, Yang X, Li W, Zhang C, Zhang D, Li J. Establishment of an efficient cotton root protoplast isolation protocol suitable for single-cell RNA sequencing and transient gene expression analysis. PLANT METHODS 2023; 19:5. [PMID: 36653863 PMCID: PMC9850602 DOI: 10.1186/s13007-023-00983-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Cotton has tremendous economic value worldwide; however, its allopolyploid nature and time-consuming transformation methods have hampered the development of cotton functional genomics. The protoplast system has proven to be an important and versatile tool for functional genomics, tissue-specific marker gene identification, tracking developmental trajectories, and genome editing in plants. Nevertheless, the isolation of abundant viable protoplasts suitable for single-cell RNA sequencing (scRNA-seq) and genome editing remains a challenge in cotton. RESULTS We established an efficient transient gene expression system using protoplasts isolated from cotton taproots. The system enables the isolation of large numbers of viable protoplasts and uses an optimized PEG-mediated transfection protocol. The highest yield (3.55 × 105/g) and viability (93.3%) of protoplasts were obtained from cotton roots grown in hydroponics for 72 h. The protoplasts isolated were suitable for scRNA-seq. The highest transfection efficiency (80%) was achieved when protoplasts were isolated as described above and transfected with 20 μg of plasmid for 20 min in a solution containing 200 mM Ca2+. Our protoplast-based transient expression system is suitable for various applications, including validation the efficiency of CRISPR vectors, protein subcellular localization analysis, and protein-protein interaction studies. CONCLUSIONS The protoplast isolation and transfection protocol developed in this study is stable, versatile, and time-saving. It will accelerate functional genomics and molecular breeding in cotton.
Collapse
Affiliation(s)
- Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, 071001, China
| | - Shanhe Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Yunze Fu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, 071001, China
| | - Zixuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
- Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, 071001, China
| | - Xiubo Yang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, 071001, China
| | - Wenjing Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Caihua Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Dongmei Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
- Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, 071001, China.
| | - Jun Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
59
|
Ren S, Wang Y. Protoplast Isolation for Plant Single-Cell RNA-seq. Methods Mol Biol 2023; 2686:301-305. [PMID: 37540365 DOI: 10.1007/978-1-0716-3299-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The growth and development of plants depends on diversified gene expression in different cell types. Compared to traditional bulk RNA sequencing, droplet-based single-cell RNA sequencing (scRNA-seq) allows for transcriptome profiling of individual cells within heterogeneous tissues. scRNA-seq provides a high-resolution atlas of cellular characterization and vastly improves our understandings of the interactions between individual cells and the microenvironment. However, the difficulty in protoplast isolation has limited the application of single-cell sequencing technology in plant research. Here we describe a high-efficiency protoplast isolation protocol for scRNA-seq.
Collapse
Affiliation(s)
- Shulin Ren
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
60
|
Abstract
Droplet-based single-cell RNA-sequencing (scRNA-seq) empowers transcriptomic profiling with an unprecedented resolution, facilitating insights into the cellular heterogeneity of tissues, developmental progressions, stress-response dynamics, and more at single-cell level. In this chapter, we describe the experimental workflow of processing Arabidopsis root tissue into protoplasts and generating single-cell transcriptomes. We also describe the general computational workflow of visualizing and utilizing scRNA-seq data. This protocol can be used as a starting point for establishing a scRNA-seq workflow.
Collapse
Affiliation(s)
- Yuji Ke
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Max Minne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Thomas Eekhout
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- VIB Single Cell Core, VIB, Ghent/Leuven, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
61
|
Venugopala Reddy G. Protoplasting and Fluorescence-Activated Cell Sorting of the Shoot Apical Meristem Cell Types. Methods Mol Biol 2023; 2686:293-300. [PMID: 37540364 DOI: 10.1007/978-1-0716-3299-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The shoot apical meristems (SAMs) are located at the tip of the shoot apex. The SAM harbors stem cells that divide continually to provide cells for developing above-ground organs. Several important developmental events occur in SAMs, such as stem cell maintenance, organ differentiation, and flowering commitment which are under genetic control. The SAM is a collection of specialized cells organized in specific spatial domains. Deciphering the gene regulatory networks, guided by the developmental and environmental signals, in these discrete cell types is essential to decoding the SAM function. Here, I provide updates to the previously published protocols for the protoplasting and subsequent purification through fluorescence-activated cell sorting (FACS) of SAM cell types (Reddy, Fluorescence activated cell sorting of shoot apical meristem cell types. In: Riechmann JL, Wellmer F (eds) Flower development. Methods in molecular biology, vol 1110. Humana, New York, pp 315-321, 2014), which has provided genome-wide gene expression patterns at a single cell-type resolution.
Collapse
Affiliation(s)
- G Venugopala Reddy
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, CA, USA.
| |
Collapse
|
62
|
Berendzen KW, Grefen C, Sakamoto T, Slane D. Analysis of Chromatin Accessibility, Histone Modifications, and Transcriptional States in Specific Cell Types Using Flow Cytometry. Methods Mol Biol 2023; 2698:57-73. [PMID: 37682469 DOI: 10.1007/978-1-0716-3354-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The past two decades in biomedical research have experienced an explosion of cell type-specific and single-cell studies, especially concerning the concomitant dissection of regulatory and transcriptional landscapes of those under investigation. Additionally, leveraging next-generation sequencing (NGS) platforms efforts have been undertaken to evaluate the effects of chromatin accessibility, histone modifications, or even transcription factor binding sites. We have shown that Fluorescence-Activated Nuclear Sorting (FANS) is an effective means to characterize the transcriptomes of nuclei from different tissues. In light of our own technical and experimental developments, we extend this effort to combine FACS/FANS with Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq), Chromatin Immunoprecipitation sequencing (ChIP-seq), and RNA sequencing (RNA-seq) for profiling individual cell types according to their chromatin and transcriptional states.
Collapse
Affiliation(s)
- Kenneth W Berendzen
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Christopher Grefen
- Faculty of Biology and Biotechnology, Molecular and Cellular Botany, University of Bochum, Bochum, Germany
| | - Takuya Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Daniel Slane
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan.
- The University of Tokyo, Graduate School of Frontier Sciences, Department of Integrated Biosciences, Laboratory of Integrated Biology, Chiba, Japan.
| |
Collapse
|
63
|
Thibivilliers S, Farmer A, Schroeder S, Libault M. Plant Single-Cell/Nucleus RNA-seq Workflow. Methods Mol Biol 2022; 2584:165-181. [PMID: 36495448 DOI: 10.1007/978-1-0716-2756-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single-cell transcriptomics technologies allow researchers to investigate how individual cells, in complex multicellular organisms, differentially use their common genomic DNA. In plant biology, these technologies were recently applied to reveal the transcriptomes of various plant cells isolated from different organs and different species and in response to environmental stresses. These first studies support the potential of single-cell transcriptomics technology to decipher the biological function of plant cells, their developmental programs, cell-type-specific gene networks, programs controlling plant cell response to environmental stresses, etc. In this chapter, we provide information regarding the critical steps and important information to consider when developing an experimental design in plant single-cell biology. We also describe the current status of bioinformatics tools used to analyze single-cell RNA-seq datasets and how additional emerging technologies such as spatial transcriptomics and long-read sequencing technologies will provide additional information on the differential use of the genome by plant cells.
Collapse
Affiliation(s)
- Sandra Thibivilliers
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE, USA
| | - Andrew Farmer
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Susan Schroeder
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK, USA
- Department of Microbiology & Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Marc Libault
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE, USA.
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE, USA.
| |
Collapse
|
64
|
Üstüner S, Schäfer P, Eichmann R. Development specifies, diversifies and empowers root immunity. EMBO Rep 2022; 23:e55631. [PMID: 36330761 PMCID: PMC9724680 DOI: 10.15252/embr.202255631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 08/04/2023] Open
Abstract
Roots are a highly organised plant tissue consisting of different cell types with distinct developmental functions defined by cell identity networks. Roots are the target of some of the most devastating diseases and possess a highly effective immune system. The recognition of microbe- or plant-derived molecules released in response to microbial attack is highly important in the activation of complex immunity gene networks. Development and immunity are intertwined, and immunity activation can result in growth inhibition. In turn, by connecting immunity and cell identity regulators, cell types are able to launch a cell type-specific immunity based on the developmental function of each cell type. By this strategy, fundamental developmental processes of each cell type contribute their most basic functions to drive cost-effective but highly diverse and, thus, efficient immune responses. This review highlights the interdependence of root development and immunity and how the developmental age of root cells contributes to positive and negative outcomes of development-immunity cross-talk.
Collapse
Affiliation(s)
- Sim Üstüner
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Patrick Schäfer
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Ruth Eichmann
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| |
Collapse
|
65
|
Biomolecular Strategies for Vascular Bundle Development to Improve Crop Yield. Biomolecules 2022; 12:biom12121772. [PMID: 36551200 PMCID: PMC9775962 DOI: 10.3390/biom12121772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The need to produce crops with higher yields is critical due to a growing global population, depletion of agricultural land, and severe climate change. Compared with the "source" and "sink" transport systems that have been studied a lot, the development and utilization of vascular bundles (conducting vessels in plants) are increasingly important. Due to the complexity of the vascular system, its structure, and its delicate and deep position in the plant body, the current research on model plants remains basic knowledge and has not been repeated for crops and applied to field production. In this review, we aim to summarize the current knowledge regarding biomolecular strategies of vascular bundles in transport systems (source-flow-sink), allocation, helping crop architecture establishment, and influence of the external environment. It is expected to help understand how to use sophisticated and advancing genetic engineering technology to improve the vascular system of crops to increase yield.
Collapse
|
66
|
García-Gómez ML, Reyes-Hernández BJ, Sahoo DP, Napsucialy-Mendivil S, Quintana-Armas AX, Pedroza-García JA, Shishkova S, Torres-Martínez HH, Pacheco-Escobedo MA, Dubrovsky JG. A mutation in THREONINE SYNTHASE 1 uncouples proliferation and transition domains of the root apical meristem: experimental evidence and in silico proposed mechanism. Development 2022; 149:278438. [PMID: 36278862 PMCID: PMC9796171 DOI: 10.1242/dev.200899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
A continuum from stem to transit-amplifying to a differentiated cell state is a common theme in multicellular organisms. In the plant root apical meristem (RAM), transit-amplifying cells are organized into two domains: cells from the proliferation domain (PD) are displaced to the transition domain (TD), suggesting that both domains are necessarily coupled. Here, we show that in the Arabidopsis thaliana mto2-2 mutant, in which threonine (Thr) synthesis is affected, the RAM lacks the PD. Through a combination of cell length profile analysis, mathematical modeling and molecular markers, we establish that the PD and TD can be uncoupled. Remarkably, although the RAM of mto2-2 is represented solely by the TD, the known factors of RAM maintenance and auxin signaling are expressed in the mutant. Mathematical modeling predicts that the stem cell niche depends on Thr metabolism and that, when disturbed, the normal continuum of cell states becomes aborted.
Collapse
Affiliation(s)
- Monica L. García-Gómez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Blanca J. Reyes-Hernández
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Debee P. Sahoo
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Selene Napsucialy-Mendivil
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Aranza X. Quintana-Armas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - José A. Pedroza-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Svetlana Shishkova
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Héctor H. Torres-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Mario A. Pacheco-Escobedo
- Facultad de Ciencias de la Salud, Universidad Tecnológica de México – UNITEC MÉXICO – Campus Atizapán, Av. Calacoaya 7, Atizapán de Zaragoza, Estado de México, 52970, Mexico
| | - Joseph G. Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico,Author for correspondence ()
| |
Collapse
|
67
|
Mora CC, Perotti MF, González-Grandío E, Ribone PA, Cubas P, Chan RL. AtHB40 modulates primary root length and gravitropism involving CYCLINB and auxin transporters. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111421. [PMID: 35995111 DOI: 10.1016/j.plantsci.2022.111421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Gravitropism is a finely regulated tropistic response based on the plant perception of directional cues. Such perception allows them to direct shoot growth upwards, above ground, and root growth downwards, into the soil, anchoring the plant to acquire water and nutrients. Gravity sensing occurs in specialized cells and depends on auxin distribution, regulated by influx/efflux carriers. Here we report that AtHB40, encoding a transcription factor of the homeodomain-leucine zipper I family, was expressed in the columella and the root tip. Athb40 mutants exhibited longer primary roots. Enhanced primary root elongation was in agreement with a higher number of cells in the transition zone and the induction of CYCLINB transcript levels. Moreover, athb40 mutants and AtHB40 overexpressors displayed enhanced and delayed gravitropistic responses, respectively. These phenotypes were associated with altered auxin distribution and deregulated expression of the auxin transporters LAX2, LAX3, and PIN2. Accordingly, lax2 and lax3 mutants also showed an altered gravitropistic response, and LAX3 was identified as a direct target of AtHB40. Furthermore, AtHB40 is induced by AtHB53 when the latter is upregulated by auxin. Altogether, these results indicate that AtHB40 modulates cell division and auxin distribution in the root tip thus altering primary root length and gravitropism.
Collapse
Affiliation(s)
- Catia Celeste Mora
- Instituto de Agrobiotecnología del Litoral (CONICET, Universidad Nacional del Litoral, FBCB), Colectora Ruta Nacional 168, km 0, 3000 Santa Fe, Argentina
| | - María Florencia Perotti
- Instituto de Agrobiotecnología del Litoral (CONICET, Universidad Nacional del Litoral, FBCB), Colectora Ruta Nacional 168, km 0, 3000 Santa Fe, Argentina
| | | | - Pamela Anahí Ribone
- Instituto de Agrobiotecnología del Litoral (CONICET, Universidad Nacional del Litoral, FBCB), Colectora Ruta Nacional 168, km 0, 3000 Santa Fe, Argentina
| | - Pilar Cubas
- Centro Nacional de Biotecnología (CNB) - CSIC, Madrid, Spain
| | - Raquel Lía Chan
- Instituto de Agrobiotecnología del Litoral (CONICET, Universidad Nacional del Litoral, FBCB), Colectora Ruta Nacional 168, km 0, 3000 Santa Fe, Argentina.
| |
Collapse
|
68
|
Liu Z, Yu X, Qin A, Zhao Z, Liu Y, Sun S, Liu H, Guo C, Wu R, Yang J, Hu M, Bawa G, Sun X. Research strategies for single-cell transcriptome analysis in plant leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:27-37. [PMID: 35904970 DOI: 10.1111/tpj.15927] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The recent and continuous improvement in single-cell RNA sequencing (scRNA-seq) technology has led to its emergence as an efficient experimental approach in plant research. However, compared with single-cell research in animals and humans, the application of scRNA-seq in plant research is limited by several challenges, including cell separation, cell type annotation, cellular function analysis, and cell-cell communication networks. In addition, the unavailability of corresponding reliable and stable analysis methods and standards has resulted in the relative decentralization of plant single-cell research. Considering these shortcomings, this review summarizes the research progress in plant leaf using scRNA-seq. In addition, it describes the corresponding feasible analytical methods and associated difficulties and problems encountered in the current research. In the end, we provide a speculative overview of the development of plant single-cell transcriptome research in the future.
Collapse
Affiliation(s)
- Zhixin Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Xiaole Yu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Aizhi Qin
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Zihao Zhao
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yumeng Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Susu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Hao Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Chenxi Guo
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Rui Wu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Jincheng Yang
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Mengke Hu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - George Bawa
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| |
Collapse
|
69
|
Protocol for fast scRNA-seq raw data processing using scKB and non-arbitrary quality control with COPILOT. STAR Protoc 2022; 3:101729. [PMID: 36181683 PMCID: PMC9530667 DOI: 10.1016/j.xpro.2022.101729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/14/2022] [Accepted: 09/02/2022] [Indexed: 02/08/2023] Open
Abstract
We describe a protocol to perform fast and non-arbitrary quality control of single-cell RNA sequencing (scRNA-seq) raw data using scKB and COPILOT. scKB is a wrapper script of kallisto and bustools for accelerated alignment and transcript count matrix generation, which runs significantly faster than the popular tool Cell Ranger. COPILOT then offers non-arbitrary background noise removal by comparing distributions of low-quality and high-quality cells. Together, this protocol streamlines the processing workflow and provides an easy entry for new scRNA-seq users. For complete details on the use and execution of this protocol, please refer to Shahan et al. (2022).
Collapse
|
70
|
Li M, Li P, Wang C, Xu H, Wang M, Wang Y, Niu X, Xu M, Wang H, Qin Y, Tang W, Bai M, Wang W, Wu S. Brassinosteroid signaling restricts root lignification by antagonizing SHORT-ROOT function in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:1182-1198. [PMID: 35809074 PMCID: PMC9516771 DOI: 10.1093/plphys/kiac327] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/25/2022] [Indexed: 05/20/2023]
Abstract
Cell wall lignification is a key step in forming functional endodermis and protoxylem (PX) in plant roots. Lignified casparian strips (CS) in endodermis and tracheary elements of PX are essential for selective absorption and transport of water and nutrients. Although multiple key regulators of CS and PX have been identified, the spatial information that drives the developmental shift to root lignification remains unknown. Here, we found that brassinosteroid (BR) signaling plays a key role in inhibiting root lignification in the root elongation zone. The inhibitory activity of BR signaling occurs partially through the direct binding of BRASSINAZOLE-RESISTANT 1 (BZR1) to SHORT-ROOT (SHR), repressing the SHR-mediated activation of downstream genes that are involved in root lignification. Upon entering the mature root zone, BR signaling declines rapidly, which releases SHR activity and initiates root lignification. Our results provide a mechanistic view of the developmental transition to cell wall lignification in Arabidopsis thaliana roots.
Collapse
Affiliation(s)
| | | | | | - Huimin Xu
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengxue Wang
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanli Wang
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xufang Niu
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyuan Xu
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Wang
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaxin Qin
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenqiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Mingyi Bai
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Wenfei Wang
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | |
Collapse
|
71
|
Xu H, Liu P, Wang C, Wu S, Dong C, Lin Q, Sun W, Huang B, Xu M, Tauqeer A, Wu S. Transcriptional networks regulating suberin and lignin in endodermis link development and ABA response. PLANT PHYSIOLOGY 2022; 190:1165-1181. [PMID: 35781829 PMCID: PMC9516719 DOI: 10.1093/plphys/kiac298] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/14/2022] [Indexed: 05/05/2023]
Abstract
Vascular tissues are surrounded by an apoplastic barrier formed by endodermis that is vital for selective absorption of water and nutrients. Lignification and suberization of endodermal cell walls are fundamental processes in establishing the apoplastic barrier. Endodermal suberization in Arabidopsis (Arabidopsis thaliana) roots is presumed to be the integration of developmental regulation and stress responses. In root endodermis, the suberization level is enhanced when the Casparian strip, the lignified structure, is defective. However, it is not entirely clear how lignification and suberization interplay and how they interact with stress signaling. Here, in Arabidopsis, we constructed a hierarchical network mediated by SHORT-ROOT (SHR), a master regulator of endodermal development, and identified 13 key MYB transcription factors (TFs) that form multiple sub-networks. Combined with functional analyses, we further uncovered MYB TFs that mediate feedback or feed-forward loops, thus balancing lignification and suberization in Arabidopsis roots. In addition, sub-networks comprising nine MYB TFs were identified that interact with abscisic acid signaling to integrate stress response and root development. Our data provide insights into the mechanisms that enhance plant adaptation to changing environments.
Collapse
Affiliation(s)
| | | | | | - Shasha Wu
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chaoqun Dong
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qingyun Lin
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenru Sun
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Benben Huang
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meizhi Xu
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Arfa Tauqeer
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | | |
Collapse
|
72
|
Großeholz R, Wanke F, Rohr L, Glöckner N, Rausch L, Scholl S, Scacchi E, Spazierer AJ, Shabala L, Shabala S, Schumacher K, Kummer U, Harter K. Computational modeling and quantitative physiology reveal central parameters for brassinosteroid-regulated early cell physiological processes linked to elongation growth of the Arabidopsis root. eLife 2022; 11:e73031. [PMID: 36069528 PMCID: PMC9525061 DOI: 10.7554/elife.73031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/03/2022] [Indexed: 11/13/2022] Open
Abstract
Brassinosteroids (BR) are key hormonal regulators of plant development. However, whereas the individual components of BR perception and signaling are well characterized experimentally, the question of how they can act and whether they are sufficient to carry out the critical function of cellular elongation remains open. Here, we combined computational modeling with quantitative cell physiology to understand the dynamics of the plasma membrane (PM)-localized BR response pathway during the initiation of cellular responses in the epidermis of the Arabidopsis root tip that are be linked to cell elongation. The model, consisting of ordinary differential equations, comprises the BR-induced hyperpolarization of the PM, the acidification of the apoplast and subsequent cell wall swelling. We demonstrate that the competence of the root epidermal cells for the BR response predominantly depends on the amount and activity of H+-ATPases in the PM. The model further predicts that an influx of cations is required to compensate for the shift of positive charges caused by the apoplastic acidification. A potassium channel was subsequently identified and experimentally characterized, fulfilling this function. Thus, we established the landscape of components and parameters for physiological processes potentially linked to cell elongation, a central process in plant development.
Collapse
Affiliation(s)
- Ruth Großeholz
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- BioQuant, Heidelberg UniversityHeidelbergGermany
| | - Friederike Wanke
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| | - Leander Rohr
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| | - Nina Glöckner
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| | - Luiselotte Rausch
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| | - Stefan Scholl
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Emanuele Scacchi
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
- Department of Ecological and biological Science, Tuscia UniversityViterboItaly
| | | | - Lana Shabala
- Tasmanian Institute for Agriculture, University of TasmaniaHobartAustralia
| | - Sergey Shabala
- Tasmanian Institute for Agriculture, University of TasmaniaHobartAustralia
- International Research Centre for Environmental Membrane Biology, Foshan UniversityFoshanChina
| | - Karin Schumacher
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Ursula Kummer
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- BioQuant, Heidelberg UniversityHeidelbergGermany
| | - Klaus Harter
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| |
Collapse
|
73
|
Ma Y, Stafford L, Ratcliffe J, Bacic A, Johnson KL. WAKL8 Regulates Arabidopsis Stem Secondary Wall Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:2297. [PMID: 36079678 PMCID: PMC9460275 DOI: 10.3390/plants11172297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Wall-associated kinases/kinase-likes (WAKs/WAKLs) are plant cell surface sensors. A variety of studies have revealed the important functions of WAKs/WAKLs in regulating cell expansion and defense in cells with primary cell walls. Less is known about their roles during the development of the secondary cell walls (SCWs) that are present in xylem vessel (XV) and interfascicular fiber (IF) cells. In this study, we used RNA-seq data to screen Arabidopsis thaliana WAKs/WAKLs members that may be involved in SCW development and identified WAKL8 as a candidate. We obtained T-DNA insertion mutants wakl8-1 (inserted at the promoter region) and wakl8-2 (inserted at the first exon) and compared the phenotypes to wild-type (WT) plants. Decreased WAKL8 transcript levels in stems were found in the wakl8-2 mutant plants, and the phenotypes observed included reduced stem length and thinner walls in XV and IFs compared with those in the WT plants. Cell wall analysis showed no significant changes in the crystalline cellulose or lignin content in mutant stems compared with those in the WT. We found that WAKL8 had alternative spliced versions predicted to have only extracellular regions, which may interfere with the function of the full-length version of WAKL8. Our results suggest WAKL8 can regulate SCW thickening in Arabidopsis stems.
Collapse
Affiliation(s)
- Yingxuan Ma
- School of BioSciences, University of Melbourne, Parkville, VIC 3052, Australia
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Luke Stafford
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Julian Ratcliffe
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou 311300, China
| | - Kim L. Johnson
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou 311300, China
| |
Collapse
|
74
|
Aragón-Raygoza A, Herrera-Estrella L, Cruz-Ramírez A. Transcriptional analysis of Ceratopteris richardii young sporophyte reveals conservation of stem cell factors in the root apical meristem. FRONTIERS IN PLANT SCIENCE 2022; 13:924660. [PMID: 36035690 PMCID: PMC9413220 DOI: 10.3389/fpls.2022.924660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Gene expression in roots has been assessed in different plant species in studies ranging from complete organs to specific cell layers, and more recently at the single cell level. While certain genes or functional categories are expressed in the root of all or most plant species, lineage-specific genes have also been discovered. An increasing amount of transcriptomic data is available for angiosperms, while a limited amount of data is available for ferns, and few studies have focused on fern roots. Here, we present a de novo transcriptome assembly from three different parts of the Ceratopteris richardii young sporophyte. Differential gene expression analysis of the root tip transcriptional program showed an enrichment of functional categories related to histogenesis and cell division, indicating an active apical meristem. Analysis of a diverse set of orthologous genes revealed conserved expression in the root meristem, suggesting a preserved role for different developmental roles in this tissue, including stem cell maintenance. The reconstruction of evolutionary trajectories for ground tissue specification genes suggests a high degree of conservation in vascular plants, but not for genes involved in root cap development, showing that certain genes are absent in Ceratopteris or have intricate evolutionary paths difficult to track. Overall, our results suggest different processes of conservation and divergence of genes involved in root development.
Collapse
Affiliation(s)
- Alejandro Aragón-Raygoza
- Molecular and Developmental Complexity Group, Unidad De Genómica Avanzada, Laboratorio Nacional De Genómica Para la Biodiversidad, Cinvestav Unidad Irapuato, Irapuato, Guanajuato, Mexico
- Metabolic Engineering Group, Unidad De Genómica Avanzada, Laboratorio Nacional De Genómica Para la Biodiversidad, Cinvestav Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | - Luis Herrera-Estrella
- Metabolic Engineering Group, Unidad De Genómica Avanzada, Laboratorio Nacional De Genómica Para la Biodiversidad, Cinvestav Unidad Irapuato, Irapuato, Guanajuato, Mexico
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, United States
| | - Alfredo Cruz-Ramírez
- Molecular and Developmental Complexity Group, Unidad De Genómica Avanzada, Laboratorio Nacional De Genómica Para la Biodiversidad, Cinvestav Unidad Irapuato, Irapuato, Guanajuato, Mexico
| |
Collapse
|
75
|
van Bel AJE, Schulz A, Patrick JW. New mosaic fragments toward reconstructing the elusive phloem system. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153754. [PMID: 35753158 DOI: 10.1016/j.jplph.2022.153754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Aart J E van Bel
- Institut of Phytopathology, Centre for Biosystems, Land Use and Nutrition, Justus-Liebig University, Heinrich-Buff-Ring 26-32, D-35392 Gieβen, Germany.
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg, Copenhagen, Denmark
| | - John W Patrick
- Centre for Plant Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan NSW 2308, Australia
| |
Collapse
|
76
|
Otero S, Gildea I, Roszak P, Lu Y, Di Vittori V, Bourdon M, Kalmbach L, Blob B, Heo JO, Peruzzo F, Laux T, Fernie AR, Tavares H, Helariutta Y. A root phloem pole cell atlas reveals common transcriptional states in protophloem-adjacent cells. NATURE PLANTS 2022; 8:954-970. [PMID: 35927456 DOI: 10.1038/s41477-022-01178-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Single-cell sequencing has recently allowed the generation of exhaustive root cell atlases. However, some cell types are elusive and remain underrepresented. Here we use a second-generation single-cell approach, where we zoom in on the root transcriptome sorting with specific markers to profile the phloem poles at an unprecedented resolution. Our data highlight the similarities among the developmental trajectories and gene regulatory networks common to protophloem sieve element (PSE)-adjacent lineages in relation to PSE enucleation, a key event in phloem biology. As a signature for early PSE-adjacent lineages, we have identified a set of DNA-binding with one finger (DOF) transcription factors, the PINEAPPLEs (PAPL), that act downstream of PHLOEM EARLY DOF (PEAR) genes and are important to guarantee a proper root nutrition in the transition to autotrophy. Our data provide a holistic view of the phloem poles that act as a functional unit in root development.
Collapse
Affiliation(s)
- Sofia Otero
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Iris Gildea
- Institute of Biotechnology, HiLIFE/Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| | - Pawel Roszak
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Yipeng Lu
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Valerio Di Vittori
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Matthieu Bourdon
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Lothar Kalmbach
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Bernhard Blob
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Jung-Ok Heo
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | | | - Thomas Laux
- Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Hugo Tavares
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
| | - Yka Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- Institute of Biotechnology, HiLIFE/Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
77
|
Pischke E, Barozzi F, Colina Blanco AE, Kerl CF, Planer-Friedrich B, Clemens S. Dimethylmonothioarsenate Is Highly Toxic for Plants and Readily Translocated to Shoots. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10072-10083. [PMID: 35759640 DOI: 10.1021/acs.est.2c01206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Arsenic is one of the most relevant environmental pollutants and human health threats. Several arsenic species occur in soil pore waters. Recently, it was discovered that these include inorganic and organic thioarsenates. Among the latter, dimethylmonothioarsenate (DMMTA) is of particular concern because in mammalian cells, its toxicity was found to exceed even that of arsenite. We investigated DMMTA toxicity for plants in experiments with Arabidopsis thaliana and indeed observed stronger growth inhibition than with arsenite. DMMTA caused a specific, localized deformation of root epidermal cells. Toxicity mechanisms apparently differ from those of arsenite since no accumulation of reactive oxygen species was observed in DMMTA-exposed root tips. Also, there was no contribution of the phytochelatin pathway to the DMMTA detoxification as indicated by exposure experiments with respective mutants and thiol profiling. RNA-seq analysis found strong transcriptome changes dominated by stress-responsive genes. DMMTA was taken up more efficiently than the methylated oxyarsenate dimethylarsenate and highly mobile within plants as revealed by speciation analysis. Shoots showed clear indications of DMMTA toxicity such as anthocyanin accumulation and a decrease in chlorophyll and carotenoid levels. The toxicity and efficient translocation of DMMTA within plants raise important food safety issues.
Collapse
Affiliation(s)
- Erik Pischke
- Plant Physiology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Fabrizio Barozzi
- Plant Physiology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Andrea E Colina Blanco
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Carolin F Kerl
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Stephan Clemens
- Plant Physiology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
78
|
Tu X, Marand AP, Schmitz RJ, Zhong S. A combinatorial indexing strategy for low-cost epigenomic profiling of plant single cells. PLANT COMMUNICATIONS 2022; 3:100308. [PMID: 35605196 PMCID: PMC9284282 DOI: 10.1016/j.xplc.2022.100308] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 06/15/2023]
Abstract
Understanding how cis-regulatory elements facilitate gene expression is a key question in biology. Recent advances in single-cell genomics have led to the discovery of cell-specific chromatin landscapes that underlie transcription programs in animal models. However, the high equipment and reagent costs of commercial systems limit their applications for many laboratories. In this study, we developed a combinatorial index and dual PCR barcode strategy to profile the Arabidopsis thaliana root single-cell epigenome without any specialized equipment. We generated chromatin accessibility profiles for 13 576 root nuclei with an average of 12 784 unique Tn5 integrations per cell. Integration of the single-cell assay for transposase-accessible chromatin sequencing and RNA sequencing data sets enabled the identification of 24 cell clusters with unique transcription, chromatin, and cis-regulatory signatures. Comparison with single-cell data generated using the commercial microfluidic platform from 10X Genomics revealed that this low-cost combinatorial index method is capable of unbiased identification of cell-type-specific chromatin accessibility. We anticipate that, by removing cost, instrumentation, and other technical obstacles, this method will be a valuable tool for routine investigation of single-cell epigenomes and provide new insights into plant growth and development and plant interactions with the environment.
Collapse
Affiliation(s)
- Xiaoyu Tu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
79
|
Bae SH, Noh YS, Seo PJ. REGENOMICS: A web-based application for plant REGENeration-associated transcriptOMICS analyses. Comput Struct Biotechnol J 2022; 20:3234-3247. [PMID: 35832616 PMCID: PMC9249971 DOI: 10.1016/j.csbj.2022.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 01/09/2023] Open
Abstract
In plants, differentiated somatic cells exhibit an exceptional ability to regenerate new tissues, organs, or whole plants. Recent studies have unveiled core genetic components and pathways underlying cellular reprogramming and de novo tissue regeneration in plants. Although high-throughput analyses have led to key discoveries in plant regeneration, a comprehensive organization of large-scale data is needed to further enhance our understanding of plant regeneration. Here, we collected all currently available transcriptome datasets related to wounding responses, callus formation, de novo organogenesis, somatic embryogenesis, and protoplast regeneration to construct REGENOMICS, a web-based application for plant REGENeration-associated transcriptOMICS analyses. REGENOMICS supports single- and multi-query analyses of plant regeneration-related gene-expression dynamics, co-expression networks, gene-regulatory networks, and single-cell expression profiles. Furthermore, it enables user-friendly transcriptome-level analysis of REGENOMICS-deposited and user-submitted RNA-seq datasets. Overall, we demonstrate that REGENOMICS can serve as a key hub of plant regeneration transcriptome analysis and greatly enhance our understanding on gene-expression networks, new molecular interactions, and the crosstalk between genetic pathways underlying each mode of plant regeneration. The REGENOMICS web-based application is available at http://plantregeneration.snu.ac.kr.
Collapse
Affiliation(s)
- Soon Hyung Bae
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Yoo-Sun Noh
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, South Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, South Korea
- Corresponding author at: Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
80
|
Skirycz A, Fernie AR. Past accomplishments and future challenges of the multi-omics characterization of leaf growth. PLANT PHYSIOLOGY 2022; 189:473-489. [PMID: 35325227 PMCID: PMC9157134 DOI: 10.1093/plphys/kiac136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The advent of omics technologies has revolutionized biology and advanced our understanding of all biological processes, including major developmental transitions in plants and animals. Here, we review the vast knowledge accumulated concerning leaf growth in terms of transcriptional regulation before turning our attention to the historically less well-characterized alterations at the protein and metabolite level. We will then discuss how the advent of biochemical methods coupled with metabolomics and proteomics can provide insight into the protein-protein and protein-metabolite interactome of the growing leaves. We finally highlight the substantial challenges in detection, spatial resolution, integration, and functional validation of the omics results, focusing on metabolomics as a prerequisite for a comprehensive understanding of small-molecule regulation of plant growth.
Collapse
Affiliation(s)
- Aleksandra Skirycz
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
- Boyce Thompson Institute, Ithaca, New York 14853, USA
- Cornell University, Ithaca, New York 14853, USA
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| |
Collapse
|
81
|
ADA2b and GCN5 Affect Cytokinin Signaling by Modulating Histone Acetylation and Gene Expression during Root Growth of Arabidopsis thaliana. PLANTS 2022; 11:plants11101335. [PMID: 35631760 PMCID: PMC9148027 DOI: 10.3390/plants11101335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022]
Abstract
In Arabidopsis thaliana, the histone acetyltransferase GCN5 and the associated coactivator ADA2b regulate root growth and affect gene expression. The cytokinin signaling reporter TCS::GFP was introduced into gcn5-1, ada2b-1, and ada2a-2, as well as the ada2a-2ada2b-1 mutants. The early root growth (4 to 7 days post-germination) was analyzed using cellular and molecular approaches. TCS signal accumulated from the fourth to seventh days of root growth in the wild-type columella cells. In contrast, ada2b-1 and gcn5-1 and ada2a-2ada2b-1 double mutants displayed reduced TCS expression relative to wild type. Gene expression analysis showed that genes associated with cytokinin homeostasis were downregulated in the roots of gcn5-1 and ada2b-1 mutants compared to wild-type plants. H3K14 acetylation was affected in the promoters of cytokinin synthesis and catabolism genes during root growth of Arabidopsis. Therefore, GCN5 and ADA2b are positive regulators of cytokinin signaling during root growth by modulating histone acetylation and the expression of genes involved in cytokinin synthesis and catabolism. Auxin application in the roots of wild-type seedlings increased TCS::GFP expression. In contrast, ada2b and ada2ada2b mutant plants do not show the auxin-induced TCS signal, suggesting that GCN5 and ADA2b are required for the auxin-induced cytokinin signaling in early root growth.
Collapse
|
82
|
Siqueira JA, Silva MF, Wakin T, Nunes-Nesi A, Araújo WL. Metabolic and DNA checkpoints for the enhancement of Al tolerance. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128366. [PMID: 35168102 DOI: 10.1016/j.jhazmat.2022.128366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Acidic soils are a major limiting factor for food production in many developing countries. High concentrations of soluble Al cations, particularly Al3+, inhibit cell division and root elongation in plants. Al3+ damages several biomolecules, including DNA, impairing gene expression and cell cycle progression. Notably, the loss-of-function mutants of DNA checkpoints may mediate Al tolerance. Furthermore, mitochondrial organic acids play key roles in neutralizing Al3+ within the cell and around the rhizosphere. Here, we provide knowledge synthesis on interactions between checkpoints related to mitochondrial organic acid homeostasis and DNA integrity mediating Al tolerance in land plants. These interactions, coupled with remarkable advances in tools related to metabolism and cell cycle, may facilitate the development of next-generation productive crops under Al toxicity.
Collapse
Affiliation(s)
- João Antonio Siqueira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Marcelle Ferreira Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Thiago Wakin
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
83
|
Yan H, Lee J, Song Q, Li Q, Schiefelbein J, Zhao B, Li S. Identification of new marker genes from plant single-cell RNA-seq data using interpretable machine learning methods. THE NEW PHYTOLOGIST 2022; 234:1507-1520. [PMID: 35211979 PMCID: PMC9314150 DOI: 10.1111/nph.18053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/06/2022] [Indexed: 05/16/2023]
Abstract
An essential step in the analysis of single-cell RNA sequencing data is to classify cells into specific cell types using marker genes. In this study, we have developed a machine learning pipeline called single-cell predictive marker (SPmarker) to identify novel cell-type marker genes in the Arabidopsis root. Unlike traditional approaches, our method uses interpretable machine learning models to select marker genes. We have demonstrated that our method can: assign cell types based on cells that were labelled using published methods; project cell types identified by trajectory analysis from one data set to other data sets; and assign cell types based on internal GFP markers. Using SPmarker, we have identified hundreds of new marker genes that were not identified before. As compared to known marker genes, the new marker genes have more orthologous genes identifiable in the corresponding rice single-cell clusters. The new root hair marker genes also include 172 genes with orthologs expressed in root hair cells in five non-Arabidopsis species, which expands the number of marker genes for this cell type by 35-154%. Our results represent a new approach to identifying cell-type marker genes from scRNA-seq data and pave the way for cross-species mapping of scRNA-seq data in plants.
Collapse
Affiliation(s)
- Haidong Yan
- School of Plant and Environmental Sciences (SPES)Virginia TechBlacksburgVA24060USA
| | - Jiyoung Lee
- School of Plant and Environmental Sciences (SPES)Virginia TechBlacksburgVA24060USA
- Graduate Program in Genetics, Bioinformatics and Computational Biology (GBCB)Virginia TechBlacksburgVA24060USA
| | - Qi Song
- School of Plant and Environmental Sciences (SPES)Virginia TechBlacksburgVA24060USA
- Graduate Program in Genetics, Bioinformatics and Computational Biology (GBCB)Virginia TechBlacksburgVA24060USA
| | - Qi Li
- School of Plant and Environmental Sciences (SPES)Virginia TechBlacksburgVA24060USA
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMI48109USA
| | - Bingyu Zhao
- School of Plant and Environmental Sciences (SPES)Virginia TechBlacksburgVA24060USA
| | - Song Li
- School of Plant and Environmental Sciences (SPES)Virginia TechBlacksburgVA24060USA
- Graduate Program in Genetics, Bioinformatics and Computational Biology (GBCB)Virginia TechBlacksburgVA24060USA
| |
Collapse
|
84
|
Jiang Y, Lu Q, Huang S. Functional non-equivalence of pollen ADF isovariants in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1068-1081. [PMID: 35233873 DOI: 10.1111/tpj.15723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
ADF/cofilin is a central regulator of actin dynamics. We previously demonstrated that two closely related Arabidopsis class IIa ADF isovariants, ADF7 and ADF10, are involved in the enhancement of actin turnover in pollen, but whether they have distinct functions remains unknown. Here, we further demonstrate that they exhibit distinct functions in regulating actin turnover both in vitro and in vivo. We found that ADF7 binds to ADP-G-actin with lower affinity, and severs and depolymerizes actin filaments less efficiently in vitro than ADF10. Accordingly, in pollen grains, ADF7 more extensively decorates actin filaments and is less freely distributed in the cytoplasm compared to ADF10. We further demonstrate that ADF7 and ADF10 show distinct intracellular localizations during pollen germination, and they have non-equivalent functions in promoting actin turnover in pollen. We thus propose that cooperation and labor division of ADF7 and ADF10 enable pollen cells to achieve exquisite control of the turnover of different actin structures to meet different cellular needs.
Collapse
Affiliation(s)
- Yuxiang Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiaonan Lu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
85
|
Identification, Phylogenetic and Expression Analyses of the AAAP Gene Family in Liriodendron chinense Reveal Their Putative Functions in Response to Organ and Multiple Abiotic Stresses. Int J Mol Sci 2022; 23:ijms23094765. [PMID: 35563155 PMCID: PMC9100865 DOI: 10.3390/ijms23094765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, 52 AAAP genes were identified in the L. chinense genome and divided into eight subgroups based on phylogenetic relationships, gene structure, and conserved motif. A total of 48 LcAAAP genes were located on the 14 chromosomes, and the remaining four genes were mapped in the contigs. Multispecies phylogenetic tree and codon usage bias analysis show that the LcAAAP gene family is closer to the AAAP of Amborella trichopoda, indicating that the LcAAAP gene family is relatively primitive in angiosperms. Gene duplication events revealed six pairs of segmental duplications and one pair of tandem duplications, in which many paralogous genes diverged in function before monocotyledonous and dicotyledonous plants differentiation and were strongly purification selected. Gene expression pattern analysis showed that the LcAAAP gene plays a certain role in the development of Liriodendron nectary and somatic embryogenesis. Low temperature, drought, and heat stresses may activate some WRKY/MYB transcription factors to positively regulate the expression of LcAAAP genes to achieve long-distance transport of amino acids in plants to resist the unfavorable external environment. In addition, the GAT and PorT subgroups could involve gamma-aminobutyric acid (GABA) transport under aluminum poisoning. These findings could lay a solid foundation for further study of the biological role of LcAAAP and improvement of the stress resistance of Liriodendron.
Collapse
|
86
|
Bush M, Sethi V, Sablowski R. A Phloem-Expressed PECTATE LYASE-LIKE Gene Promotes Cambium and Xylem Development. FRONTIERS IN PLANT SCIENCE 2022; 13:888201. [PMID: 35557737 PMCID: PMC9087803 DOI: 10.3389/fpls.2022.888201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 06/12/2023]
Abstract
The plant vasculature plays essential roles in the transport of water and nutrients and is composed of xylem and phloem, both of which originate from undifferentiated cells found in the cambium. Development of the different vascular tissues is coordinated by hormonal and peptide signals and culminates in extensive cell wall modifications. Pectins are key cell wall components that are modified during cell growth and differentiation, and pectin fragments function as signals in defence and cell wall integrity pathways, although their role as developmental signals remains tentative. Here, we show that the pectin lyase-like gene PLL12 is required for growth of the vascular bundles in the Arabidopsis inflorescence stem. Although PLL12 was expressed primarily in the phloem, it also affected cambium and xylem growth. Surprisingly, PLL12 overexpression induced ectopic cambium and xylem differentiation in the inflorescence apex and inhibited development of the leaf vasculature. Our results raise the possibility that a cell wall-derived signal produced by PLL12 in the phloem regulates cambium and xylem development.
Collapse
Affiliation(s)
| | | | - Robert Sablowski
- Cell and Developmental Biology Department, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
87
|
Bawa G, Liu Z, Yu X, Qin A, Sun X. Single-Cell RNA Sequencing for Plant Research: Insights and Possible Benefits. Int J Mol Sci 2022; 23:4497. [PMID: 35562888 PMCID: PMC9100049 DOI: 10.3390/ijms23094497] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/09/2022] [Accepted: 04/18/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, advances in single-cell RNA sequencing (scRNA-seq) technologies have continued to change our views on biological systems by increasing the spatiotemporal resolution of our analysis to single-cell resolution. Application of scRNA-seq to plants enables the comprehensive characterization of both common and rare cell types and cell states, uncovering new cell types and revealing how cell types relate to each other spatially and developmentally. This review provides an overview of scRNA-seq methodologies, highlights the application of scRNA-seq in plant science, justifies why scRNA-seq is a master player of sequencing, and explains the role of single-cell transcriptomics technologies in environmental stress adaptation, alongside the challenges and prospects of single-cell transcriptomics. Collectively, we put forward a central role of single-cell sequencing in plant research.
Collapse
Affiliation(s)
- George Bawa
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (G.B.); (Z.L.); (X.Y.); (A.Q.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Zhixin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (G.B.); (Z.L.); (X.Y.); (A.Q.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Xiaole Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (G.B.); (Z.L.); (X.Y.); (A.Q.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Aizhi Qin
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (G.B.); (Z.L.); (X.Y.); (A.Q.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Xuwu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (G.B.); (Z.L.); (X.Y.); (A.Q.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| |
Collapse
|
88
|
Ranjan A, Sinha R, Singla-Pareek SL, Pareek A, Singh AK. Shaping the root system architecture in plants for adaptation to drought stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13651. [PMID: 35174506 DOI: 10.1111/ppl.13651] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Root system architecture plays an important role in plant adaptation to drought stress. The root system architecture (RSA) consists of several structural features, which includes number and length of main and lateral roots along with the density and length of root hairs. These features exhibit plasticity under water-limited environments and could be critical to developing crops with efficient root systems for adaptation under drought. Recent advances in the omics approaches have significantly improved our understanding of the regulatory mechanisms of RSA remodeling under drought and the identification of genes and other regulatory elements. Plant response to drought stress at physiological, morphological, biochemical, and molecular levels in root cells is regulated by various phytohormones and their crosstalk. Stress-induced reactive oxygen species play a significant role in regulating root growth and development under drought stress. Several transcription factors responsible for the regulation of RSA under drought have proven to be beneficial for developing drought tolerant crops. Molecular breeding programs for developing drought-tolerant crops have been greatly benefitted by the availability of quantitative trait loci (QTLs) associated with the RSA regulation. In the present review, we have discussed the role of various QTLs, signaling components, transcription factors, microRNAs and crosstalk among various phytohormones in shaping RSA and present future research directions to better understand various factors involved in RSA remodeling for adaptation to drought stress. We believe that the information provided herein may be helpful in devising strategies to develop crops with better RSA for efficient uptake and utilization of water and nutrients under drought conditions.
Collapse
Affiliation(s)
- Alok Ranjan
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Ragini Sinha
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Anil Kumar Singh
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, India
| |
Collapse
|
89
|
Ortigosa F, Lobato-Fernández C, Shikano H, Ávila C, Taira S, Cánovas FM, Cañas RA. Ammonium regulates the development of pine roots through hormonal crosstalk and differential expression of transcription factors in the apex. PLANT, CELL & ENVIRONMENT 2022; 45:915-935. [PMID: 34724238 DOI: 10.1111/pce.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Ammonium is a prominent source of inorganic nitrogen for plant nutrition, but excessive amounts can be toxic for many species. However, most conifers are tolerant to ammonium, a relevant physiological feature of this ancient evolutionary lineage. For a better understanding of the molecular basis of this trait, ammonium-induced changes in the transcriptome of maritime pine (Pinus pinaster Ait.) root apex have been determined by laser capture microdissection and RNA sequencing. Ammonium promoted changes in the transcriptional profiles of multiple transcription factors, such as SHORT-ROOT, and phytohormone-related transcripts, such as ACO, involved in the development of the root meristem. Nano-PALDI-MSI and transcriptomic analyses showed that the distributions of IAA and CKs were altered in the root apex in response to ammonium nutrition. Taken together, the data suggest that this early response is involved in the increased lateral root branching and principal root growth, which characterize the long-term response to ammonium supply in pine. All these results suggest that ammonium induces changes in the root system architecture through the IAA-CK-ET phytohormone crosstalk and transcriptional regulation.
Collapse
Affiliation(s)
- Francisco Ortigosa
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - César Lobato-Fernández
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Hitomi Shikano
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, Japan
| | - Concepción Ávila
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Shu Taira
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, Japan
| | - Francisco M Cánovas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Rafael A Cañas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
- Integrative Molecular Biology Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| |
Collapse
|
90
|
Shahan R, Hsu CW, Nolan TM, Cole BJ, Taylor IW, Greenstreet L, Zhang S, Afanassiev A, Vlot AHC, Schiebinger G, Benfey PN, Ohler U. A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants. Dev Cell 2022; 57:543-560.e9. [PMID: 35134336 DOI: 10.1101/2020.06.29.178863] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/27/2021] [Accepted: 01/13/2022] [Indexed: 05/22/2023]
Abstract
In all multicellular organisms, transcriptional networks orchestrate organ development. The Arabidopsis root, with its simple structure and indeterminate growth, is an ideal model for investigating the spatiotemporal transcriptional signatures underlying developmental trajectories. To map gene expression dynamics across root cell types and developmental time, we built a comprehensive, organ-scale atlas at single-cell resolution. In addition to estimating developmental progressions in pseudotime, we employed the mathematical concept of optimal transport to infer developmental trajectories and identify their underlying regulators. To demonstrate the utility of the atlas to interpret new datasets, we profiled mutants for two key transcriptional regulators at single-cell resolution, shortroot and scarecrow. We report transcriptomic and in vivo evidence for tissue trans-differentiation underlying a mixed cell identity phenotype in scarecrow. Our results support the atlas as a rich community resource for unraveling the transcriptional programs that specify and maintain cell identity to regulate spatiotemporal organ development.
Collapse
Affiliation(s)
- Rachel Shahan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Che-Wei Hsu
- Department of Biology, Humboldt Universität zu Berlin, 10117 Berlin, Germany; The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Trevor M Nolan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Benjamin J Cole
- Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Isaiah W Taylor
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Laura Greenstreet
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Stephen Zhang
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Anton Afanassiev
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Anna Hendrika Cornelia Vlot
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany; Department of Computer Science, Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA.
| | - Uwe Ohler
- Department of Biology, Humboldt Universität zu Berlin, 10117 Berlin, Germany; The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany; Department of Computer Science, Humboldt Universität zu Berlin, 10117 Berlin, Germany.
| |
Collapse
|
91
|
Shahan R, Hsu CW, Nolan TM, Cole BJ, Taylor IW, Greenstreet L, Zhang S, Afanassiev A, Vlot AHC, Schiebinger G, Benfey PN, Ohler U. A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants. Dev Cell 2022; 57:543-560.e9. [PMID: 35134336 PMCID: PMC9014886 DOI: 10.1016/j.devcel.2022.01.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/27/2021] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
Abstract
In all multicellular organisms, transcriptional networks orchestrate organ development. The Arabidopsis root, with its simple structure and indeterminate growth, is an ideal model for investigating the spatiotemporal transcriptional signatures underlying developmental trajectories. To map gene expression dynamics across root cell types and developmental time, we built a comprehensive, organ-scale atlas at single-cell resolution. In addition to estimating developmental progressions in pseudotime, we employed the mathematical concept of optimal transport to infer developmental trajectories and identify their underlying regulators. To demonstrate the utility of the atlas to interpret new datasets, we profiled mutants for two key transcriptional regulators at single-cell resolution, shortroot and scarecrow. We report transcriptomic and in vivo evidence for tissue trans-differentiation underlying a mixed cell identity phenotype in scarecrow. Our results support the atlas as a rich community resource for unraveling the transcriptional programs that specify and maintain cell identity to regulate spatiotemporal organ development.
Collapse
Affiliation(s)
- Rachel Shahan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Che-Wei Hsu
- Department of Biology, Humboldt Universität zu Berlin, 10117 Berlin, Germany; The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Trevor M Nolan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Benjamin J Cole
- Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Isaiah W Taylor
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Laura Greenstreet
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Stephen Zhang
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Anton Afanassiev
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Anna Hendrika Cornelia Vlot
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany; Department of Computer Science, Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA.
| | - Uwe Ohler
- Department of Biology, Humboldt Universität zu Berlin, 10117 Berlin, Germany; The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany; Department of Computer Science, Humboldt Universität zu Berlin, 10117 Berlin, Germany.
| |
Collapse
|
92
|
Hernández-Coronado M, Dias Araujo PC, Ip PL, Nunes CO, Rahni R, Wudick MM, Lizzio MA, Feijó JA, Birnbaum KD. Plant glutamate receptors mediate a bet-hedging strategy between regeneration and defense. Dev Cell 2022; 57:451-465.e6. [PMID: 35148835 PMCID: PMC8891089 DOI: 10.1016/j.devcel.2022.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/10/2021] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
Wounding is a trigger for both regeneration and defense in plants, but it is not clear whether the two responses are linked by common activation or regulated as trade-offs. Although plant glutamate-receptor-like proteins (GLRs) are known to mediate defense responses, here, we implicate GLRs in regeneration through dynamic changes in chromatin and transcription in reprogramming cells near wound sites. We show that genetic and pharmacological inhibition of GLR activity increases regeneration efficiency in multiple organ repair systems in Arabidopsis and maize. We show that the GLRs work through salicylic acid (SA) signaling in their effects on regeneration, and mutants in the SA receptor NPR1 are hyper-regenerative and partially resistant to GLR perturbation. These findings reveal a conserved mechanism that regulates a trade-off between defense and regeneration, and they also offer a strategy to improve regeneration in agriculture and conservation.
Collapse
Affiliation(s)
- Marcela Hernández-Coronado
- New York University, Department of Biology, Center for Genomics and Systems Biology, 12 Waverly Place, New York, NY 10003, USA
| | - Poliana Coqueiro Dias Araujo
- New York University, Department of Biology, Center for Genomics and Systems Biology, 12 Waverly Place, New York, NY 10003, USA
| | - Pui-Leng Ip
- New York University, Department of Biology, Center for Genomics and Systems Biology, 12 Waverly Place, New York, NY 10003, USA
| | - Custódio O Nunes
- University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, MD 20742, USA
| | - Ramin Rahni
- New York University, Department of Biology, Center for Genomics and Systems Biology, 12 Waverly Place, New York, NY 10003, USA
| | - Michael M Wudick
- University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, MD 20742, USA
| | - Michael A Lizzio
- University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, MD 20742, USA
| | - José A Feijó
- University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, MD 20742, USA
| | - Kenneth D Birnbaum
- New York University, Department of Biology, Center for Genomics and Systems Biology, 12 Waverly Place, New York, NY 10003, USA.
| |
Collapse
|
93
|
Park J, Demirer GS, Cheung LS. Toolboxes for plant systems biology research. Curr Opin Biotechnol 2022; 75:102692. [PMID: 35144172 DOI: 10.1016/j.copbio.2022.102692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
The terms 'systems' and 'synthetic biology' are often used together, with most scientists striding between the two fields rather than adhering to a single side. Often too, scientists want to understand a system to inform the design of gene circuits that could endow it with new functions. However, this does not need to be the progression of research, as synthetic constructs can help improve our understanding of a system. Here, we review synthetic biology tool kits with the potential to overcome pleiotropic effects, compensatory mechanisms, and redundancy in plants. Combined with -omics techniques, these tools could reveal novel insights on plant growth and development, an aim that has gained renewed urgency given the impact of climate change on crop productivity.
Collapse
Affiliation(s)
- Jihyun Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gozde S Demirer
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA; Department of Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lily S Cheung
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
94
|
Cuperus JT. Single-cell genomics in plants: current state, future directions, and hurdles to overcome. PLANT PHYSIOLOGY 2022; 188:749-755. [PMID: 34662424 PMCID: PMC8825463 DOI: 10.1093/plphys/kiab478] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/21/2021] [Indexed: 05/26/2023]
Abstract
Single-cell genomics has the potential to revolutionize the study of plant development and tissue-specific responses to environmental stimuli by revealing heretofore unknown players and gene regulatory processes. Here, I focus on the current state of single-cell genomics in plants, emerging technologies and applications, in addition to outlining possible future directions for experiments. I describe approaches to enable cheaper and larger experiments and technologies to measure multiple types of molecules to better model and understand cell types and their different states and trajectories throughout development. Lastly, I discuss the inherent limitations of single-cell studies and the technological hurdles that need to be overcome to widely apply single-cell genomics in crops to generate the greatest possible knowledge gain.
Collapse
Affiliation(s)
- Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
95
|
Tenorio Berrío R, Verstaen K, Vandamme N, Pevernagie J, Achon I, Van Duyse J, Van Isterdael G, Saeys Y, De Veylder L, Inzé D, Dubois M. Single-cell transcriptomics sheds light on the identity and metabolism of developing leaf cells. PLANT PHYSIOLOGY 2022; 188:898-918. [PMID: 34687312 PMCID: PMC8825278 DOI: 10.1093/plphys/kiab489] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/05/2021] [Indexed: 05/08/2023]
Abstract
As the main photosynthetic instruments of vascular plants, leaves are crucial and complex plant organs. A strict organization of leaf mesophyll and epidermal cell layers orchestrates photosynthesis and gas exchange. In addition, water and nutrients for leaf growth are transported through the vascular tissue. To establish the single-cell transcriptomic landscape of these different leaf tissues, we performed high-throughput transcriptome sequencing of individual cells isolated from young leaves of Arabidopsis (Arabidopsis thaliana) seedlings grown in two different environmental conditions. The detection of approximately 19,000 different transcripts in over 1,800 high-quality leaf cells revealed 14 cell populations composing the young, differentiating leaf. Besides the cell populations comprising the core leaf tissues, we identified subpopulations with a distinct identity or metabolic activity. In addition, we proposed cell-type-specific markers for each of these populations. Finally, an intuitive web tool allows for browsing the presented dataset. Our data present insights on how the different cell populations constituting a developing leaf are connected via developmental, metabolic, or stress-related trajectories.
Collapse
Affiliation(s)
- Rubén Tenorio Berrío
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Kevin Verstaen
- Department of Applied Mathematics, Ghent University, Computer Science and Statistics, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Niels Vandamme
- Department of Applied Mathematics, Ghent University, Computer Science and Statistics, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Julie Pevernagie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ignacio Achon
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Julie Van Duyse
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Gert Van Isterdael
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yvan Saeys
- Department of Applied Mathematics, Ghent University, Computer Science and Statistics, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Author for communication:
| | - Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
96
|
Apelt F, Mavrothalassiti E, Gupta S, Machin F, Olas JJ, Annunziata MG, Schindelasch D, Kragler F. Shoot and root single cell sequencing reveals tissue- and daytime-specific transcriptome profiles. PLANT PHYSIOLOGY 2022; 188:861-878. [PMID: 34850215 PMCID: PMC8825464 DOI: 10.1093/plphys/kiab537] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/28/2021] [Indexed: 05/13/2023]
Abstract
Although several large-scale single-cell RNA sequencing (scRNAseq) studies addressing the root of Arabidopsis (Arabidopsis thaliana) have been published, there is still need for a de novo reference map for both root and especially above-ground cell types. As the plants' transcriptome substantially changes throughout the day, shaped by the circadian clock, we performed scRNAseq on both Arabidopsis root and above-ground tissues at defined times of the day. For the root scRNAseq analysis, we used tissue-specific reporter lines grown on plates and harvested at the end of the day (ED). In addition, we submitted above-ground tissues from plants grown on soil at ED and end of the night to scRNAseq, which allowed us to identify common cell types/markers between root and shoot and uncover transcriptome changes to above-ground tissues depending on the time of the day. The dataset was also exploited beyond the traditional scRNAseq analysis to investigate non-annotated and di-cistronic transcripts. We experimentally confirmed the predicted presence of some of these transcripts and also addressed the potential function of a previously unidentified marker gene for dividing cells. In summary, this work provides insights into the spatial control of gene expression from nearly 70,000 cells of Arabidopsis for below- and whole above-ground tissue at single-cell resolution at defined time points.
Collapse
Affiliation(s)
- Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Eleni Mavrothalassiti
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Saurabh Gupta
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Frank Machin
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Justyna Jadwiga Olas
- University of Potsdam, Institute of Biochemistry and Biology, Department of Molecular Biology, Karl-Liebknecht-Strasse 24-25, Haus 20, 14476 Potsdam, Germany
| | - Maria Grazia Annunziata
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Dana Schindelasch
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Friedrich Kragler
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
- Author for communication:
| |
Collapse
|
97
|
Templalexis D, Tsitsekian D, Liu C, Daras G, Šimura J, Moschou P, Ljung K, Hatzopoulos P, Rigas S. Potassium transporter TRH1/KUP4 contributes to distinct auxin-mediated root system architecture responses. PLANT PHYSIOLOGY 2022; 188:1043-1060. [PMID: 34633458 PMCID: PMC8825323 DOI: 10.1093/plphys/kiab472] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/07/2021] [Indexed: 05/09/2023]
Abstract
In plants, auxin transport and development are tightly coupled, just as hormone and growth responses are intimately linked in multicellular systems. Here we provide insights into uncoupling this tight control by specifically targeting the expression of TINY ROOT HAIR 1 (TRH1), a member of plant high-affinity potassium (K+)/K+ uptake/K+ transporter (HAK/KUP/KT) transporters that facilitate K+ uptake by co-transporting protons, in Arabidopsis root cell files. Use of this system pinpointed specific root developmental responses to acropetal versus basipetal auxin transport. Loss of TRH1 function shows TRHs and defective root gravitropism, associated with auxin imbalance in the root apex. Cell file-specific expression of TRH1 in the central cylinder rescued trh1 root agravitropism, whereas positional TRH1 expression in peripheral cell layers, including epidermis and cortex, restored trh1 defects. Applying a system-level approach, the role of RAP2.11 and ROOT HAIR DEFECTIVE-LIKE 5 transcription factors (TFs) in root hair development was verified. Furthermore, ERF53 and WRKY51 TFs were overrepresented upon restoration of root gravitropism supporting involvement in gravitropic control. Auxin has a central role in shaping root system architecture by regulating multiple developmental processes. We reveal that TRH1 jointly modulates intracellular ionic gradients and cell-to-cell polar auxin transport to drive root epidermal cell differentiation and gravitropic response. Our results indicate the developmental importance of HAK/KUP/KT proton-coupled K+ transporters.
Collapse
Affiliation(s)
- Dimitris Templalexis
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
| | - Dikran Tsitsekian
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
| | - Chen Liu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-756 61, Sweden
| | - Gerasimos Daras
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden
| | - Panagiotis Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-756 61, Sweden
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion GR 70 013, Greece
- Department of Biology, University of Crete, Heraklion GR 71 500, Greece
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden
| | | | - Stamatis Rigas
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
- Author for communication:
| |
Collapse
|
98
|
Cao H, Duncan O, Millar AH. Protein turnover in the developing Triticum aestivum grain. THE NEW PHYTOLOGIST 2022; 233:1188-1201. [PMID: 34846755 PMCID: PMC9299694 DOI: 10.1111/nph.17756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Protein abundance in cereal grains is determined by the relative rates of protein synthesis and protein degradation during grain development but quantitation of these rates is lacking. Through combining in vivo stable isotope labelling and in-depth quantitative proteomics, we have measured the turnover of 1400 different types of proteins during wheat grain development. We demonstrate that there is a spatiotemporal pattern to protein turnover rates which explain part of the variation in protein abundances that is not attributable to differences in wheat gene expression. We show that c. 20% of total grain adenosine triphosphate (ATP) production is used for grain proteome biogenesis and maintenance, and nearly half of this budget is invested exclusively in storage protein synthesis. We calculate that 25% of newly synthesized storage proteins are turned over during grain development rather than stored. This approach to measure protein turnover rates at proteome scale reveals how different functional categories of grain proteins accumulate, calculates the costs of protein turnover during wheat grain development and identifies the most and the least stable proteins in the developing wheat grain.
Collapse
Affiliation(s)
- Hui Cao
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular ScienceThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
| | - Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular ScienceThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
- Western Australia Proteomics FacilityThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular ScienceThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
- Western Australia Proteomics FacilityThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
| |
Collapse
|
99
|
Quintana J, Bernal M, Scholle M, Holländer-Czytko H, Nguyen NT, Piotrowski M, Mendoza-Cózatl DG, Haydon MJ, Krämer U. Root-to-shoot iron partitioning in Arabidopsis requires IRON-REGULATED TRANSPORTER1 (IRT1) protein but not its iron(II) transport function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:992-1013. [PMID: 34839543 DOI: 10.1111/tpj.15611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 05/26/2023]
Abstract
IRON-REGULATED TRANSPORTER1 (IRT1) is the root high-affinity ferrous iron (Fe) uptake system and indispensable for the completion of the life cycle of Arabidopsis thaliana without vigorous Fe supplementation. Here we provide evidence supporting a second role of IRT1 in root-to-shoot partitioning of Fe. We show that irt1 mutants overaccumulate Fe in roots, most prominently in the cortex of the differentiation zone in irt1-2, compared to the wild type. Shoots of irt1-2 are severely Fe-deficient according to Fe content and marker transcripts, as expected. We generated irt1-2 lines producing IRT1 mutant variants carrying single amino-acid substitutions of key residues in transmembrane helices IV and V, Ser206 and His232, which are required for transport activity in yeast. Root short-term 55 Fe uptake rates were uninformative concerning IRT1-mediated transport. Overall irt1-like concentrations of the secondary substrate Mn suggested that the transgenic Arabidopsis lines also remain incapable of IRT1-mediated root Fe uptake. Yet, IRT1S206A partially complements rosette dwarfing and leaf chlorosis of irt1-2, as well as root-to-shoot Fe partitioning and gene expression defects of irt1-2, all of which are fully complemented by wild-type IRT1. Taken together, these results suggest a regulatory function for IRT1 in root-to-shoot Fe partitioning that does not require Fe transport activity of IRT1. Among the genes of which transcript levels are partially dependent on IRT1, we identify MYB DOMAIN PROTEIN10, MYB DOMAIN PROTEIN72 and NICOTIANAMINE SYNTHASE4 as candidates for effecting IRT1-dependent Fe mobilization in roots. Understanding the biological functions of IRT1 will help to improve Fe nutrition and the nutritional quality of agricultural crops.
Collapse
Affiliation(s)
- Julia Quintana
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | - María Bernal
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
- Department of Plant Nutrition, Estación Experimental de Aula Dei-CSIC, 50059, Zaragoza, Spain
| | - Marleen Scholle
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | | | - Nga T Nguyen
- Division of Plant Sciences, MU-Columbia, Columbia, MO, 65211-7310, USA
| | - Markus Piotrowski
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | | | - Michael J Haydon
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Ute Krämer
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| |
Collapse
|
100
|
Quintana J, Bernal M, Scholle M, Holländer-Czytko H, Nguyen NT, Piotrowski M, Mendoza-Cózatl DG, Haydon MJ, Krämer U. Root-to-shoot iron partitioning in Arabidopsis requires IRON-REGULATED TRANSPORTER1 (IRT1) protein but not its iron(II) transport function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:992-1013. [PMID: 34839543 DOI: 10.1101/2021.02.08.430285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 05/29/2023]
Abstract
IRON-REGULATED TRANSPORTER1 (IRT1) is the root high-affinity ferrous iron (Fe) uptake system and indispensable for the completion of the life cycle of Arabidopsis thaliana without vigorous Fe supplementation. Here we provide evidence supporting a second role of IRT1 in root-to-shoot partitioning of Fe. We show that irt1 mutants overaccumulate Fe in roots, most prominently in the cortex of the differentiation zone in irt1-2, compared to the wild type. Shoots of irt1-2 are severely Fe-deficient according to Fe content and marker transcripts, as expected. We generated irt1-2 lines producing IRT1 mutant variants carrying single amino-acid substitutions of key residues in transmembrane helices IV and V, Ser206 and His232, which are required for transport activity in yeast. Root short-term 55 Fe uptake rates were uninformative concerning IRT1-mediated transport. Overall irt1-like concentrations of the secondary substrate Mn suggested that the transgenic Arabidopsis lines also remain incapable of IRT1-mediated root Fe uptake. Yet, IRT1S206A partially complements rosette dwarfing and leaf chlorosis of irt1-2, as well as root-to-shoot Fe partitioning and gene expression defects of irt1-2, all of which are fully complemented by wild-type IRT1. Taken together, these results suggest a regulatory function for IRT1 in root-to-shoot Fe partitioning that does not require Fe transport activity of IRT1. Among the genes of which transcript levels are partially dependent on IRT1, we identify MYB DOMAIN PROTEIN10, MYB DOMAIN PROTEIN72 and NICOTIANAMINE SYNTHASE4 as candidates for effecting IRT1-dependent Fe mobilization in roots. Understanding the biological functions of IRT1 will help to improve Fe nutrition and the nutritional quality of agricultural crops.
Collapse
Affiliation(s)
- Julia Quintana
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | - María Bernal
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
- Department of Plant Nutrition, Estación Experimental de Aula Dei-CSIC, 50059, Zaragoza, Spain
| | - Marleen Scholle
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | | | - Nga T Nguyen
- Division of Plant Sciences, MU-Columbia, Columbia, MO, 65211-7310, USA
| | - Markus Piotrowski
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | | | - Michael J Haydon
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Ute Krämer
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| |
Collapse
|