51
|
Xu J, Cao S, Hübner H, Weikert D, Chen G, Lu Q, Yuan D, Gmeiner P, Liu Z, Du Y. Structural insights into ligand recognition, activation, and signaling of the α 2A adrenergic receptor. SCIENCE ADVANCES 2022; 8:eabj5347. [PMID: 35245122 PMCID: PMC8896805 DOI: 10.1126/sciadv.abj5347] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The α2A adrenergic receptor (α2AAR) is a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor that mediates important physiological functions in response to the endogenous neurotransmitters norepinephrine and epinephrine, as well as numerous chemically distinct drugs. However, the molecular mechanisms of drug actions remain poorly understood. Here, we report the cryo-electron microscopy structures of the human α2AAR-GoA complex bound to norepinephrine and three imidazoline derivatives (brimonidine, dexmedetomidine, and oxymetazoline). Together with mutagenesis and functional data, these structures provide important insights into the molecular basis of ligand recognition, activation, and signaling at the α2AAR. Further structural analyses uncover different molecular determinants between α2AAR and βARs for recognition of norepinephrine and key regions that determine the G protein coupling selectivity. Overall, our studies provide a framework for understanding the signal transduction of the adrenergic system at the atomic level, which will facilitate rational structure-based discovery of safer and more effective medications for α2AAR.
Collapse
Affiliation(s)
- Jun Xu
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Sheng Cao
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Dorothée Weikert
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Qiuyuan Lu
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Daopeng Yuan
- Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China
- Corresponding author. (D.Y.); (P.G.); (Z.L.); (Y.D.)
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
- Corresponding author. (D.Y.); (P.G.); (Z.L.); (Y.D.)
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China
- Corresponding author. (D.Y.); (P.G.); (Z.L.); (Y.D.)
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China
- Corresponding author. (D.Y.); (P.G.); (Z.L.); (Y.D.)
| |
Collapse
|
52
|
Annealing synchronizes the 70 S ribosome into a minimum-energy conformation. Proc Natl Acad Sci U S A 2022; 119:2111231119. [PMID: 35177473 PMCID: PMC8872765 DOI: 10.1073/pnas.2111231119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Researchers commonly anneal metals, alloys, and semiconductors to repair defects and improve microstructures via recrystallization. Theoretical studies indicate that simulated annealing on biological macromolecules helps predict the final structures with minimum free energy. Experimental validation of this homogenizing effect and further exploration of its applications are fascinating scientific questions that remain elusive. Here, we chose the apo-state 70S ribosome from Escherichia coli as a model, wherein the 30S subunit undergoes a thermally driven intersubunit rotation and exhibits substantial structural flexibility as well as distinct free energy. We experimentally demonstrate that annealing at a fast cooling rate enhances the 70S ribosome homogeneity and improves local resolution on the 30S subunit. After annealing, the 70S ribosome is in a nonrotated state with respect to corresponding intermediate structures in unannealed or heated ribosomes. Manifold-based analysis further indicates that the annealed 70S ribosome takes a narrow conformational distribution and exhibits a minimum-energy state in the free-energy landscape. Our experimental results offer a facile yet robust approach to enhance protein stability, which is ideal for high-resolution cryogenic electron microscopy. Beyond structure determination, annealing shows great potential for synchronizing proteins on a single-molecule level and can be extended to study protein folding and explore conformational and energy landscapes.
Collapse
|
53
|
Ehsan M, Wang H, Katsube S, Munk CF, Du Y, Youn T, Yoon S, Byrne B, Loland CJ, Guan L, Kobilka BK, Chae PS. Glyco-steroidal amphiphiles (GSAs) for membrane protein structural study. Chembiochem 2022; 23:e202200027. [PMID: 35129249 PMCID: PMC8986615 DOI: 10.1002/cbic.202200027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/05/2022] [Indexed: 11/08/2022]
Abstract
Integral membrane proteins pose considerable challenges to high resolution structural analysis. Maintaining membrane proteins in their native state during protein isolation is essential for structural study of these bio-macromolecules. Detergents are the most commonly used amphiphilic compounds for stabilizing membrane proteins in solution outside a lipid bilayer. We previously introduced a glyco-diosgenin (GDN) detergent that was shown to be highly effective at stabilizing a wide range of membrane proteins. This steroidal detergent has additionally gained attention due to its compatibility with membrane protein structure study via cryo-EM. However, synthetic inconvenience limits widespread use of GDN in membrane protein study. To improve its synthetic accessibility and to further enhance detergent efficacy for protein stabilization, we designed a new class of glyco-steroid-based detergents using three steroid units: cholestanol, cholesterol and diosgenin. These new detergents were efficiently prepared and showed marked efficacy for protein stabilization in evaluation with a few model membrane proteins including two G protein-coupled receptors. Some new agents were not only superior to a gold standard detergent, DDM, but were also more effective than the original GDN at preserving protein integrity long term. These agents represent valuable alternatives to GDN, and are likely to facilitate structural determination of challenging membrane proteins.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Hanyang University, Department of Bionano Engineering, KOREA, REPUBLIC OF
| | - Haoqing Wang
- Stanford University, Department of Molecular and Cellular Physiology, UNITED STATES
| | - Satoshi Katsube
- Texas Tech University, Department of Cell Physiology and Molecular Biophysics, UNITED STATES
| | - Chastine F Munk
- University of Copenhagen: Kobenhavns Universitet, Department of Neuroscience, DENMARK
| | - Yang Du
- Stanford University, Department of Molecular and Cellular Physiology, UNITED STATES
| | - Taeyeol Youn
- Hanyang University, Department of Bionano Engineering, KOREA, REPUBLIC OF
| | - Soyoung Yoon
- Hanyang University, Department of Bionano Engineering, KOREA, REPUBLIC OF
| | - Bernadette Byrne
- Imperial College London, Department of Life Sciences, UNITED KINGDOM
| | - Claus J Loland
- University of Copenhagen: Kobenhavns Universitet, Department of Neurosciences, DENMARK
| | - Lan Guan
- Texas Tech University, Department of Cell Physiology and Molecular Biophysics, UNITED STATES
| | - Brian K Kobilka
- Stanford University, Department of Molecular and Cellular Physiology, UNITED STATES
| | - Pil Seok Chae
- Hanyang University, Department of Bionano Engineering, 55 Hanyangdaehak-ro, 426-791, Ansan, KOREA, REPUBLIC OF
| |
Collapse
|
54
|
Chandler B, Todd L, Smith SO. Magic angle spinning NMR of G protein-coupled receptors. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 128:25-43. [PMID: 35282868 PMCID: PMC10718405 DOI: 10.1016/j.pnmrs.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
G protein-coupled receptors (GPCRs) have a simple seven transmembrane helix architecture which has evolved to recognize a diverse number of chemical signals. The more than 800 GPCRs encoded in the human genome function as receptors for vision, smell and taste, and mediate key physiological processes. Consequently, these receptors are a major target for pharmaceuticals. Protein crystallography and electron cryo-microscopy have provided high resolution structures of many GPCRs in both active and inactive conformations. However, these structures have not sparked a surge in rational drug design, in part because GPCRs are inherently dynamic and the structural changes induced by ligand or drug binding to stabilize inactive or active conformations are often subtle rearrangements in packing or hydrogen-bonding interactions. NMR spectroscopy provides a sensitive probe of local structure and dynamics at specific sites within these receptors as well as global changes in receptor structure and dynamics. These methods can also capture intermediate states and conformations with low populations that provide insights into the activation pathways. We review the use of solid-state magic angle spinning NMR to address the structure and activation mechanisms of GPCRs. The focus is on the large and diverse class A family of receptors. We highlight three specific class A GPCRs in order to illustrate how solid-state, as well as solution-state, NMR spectroscopy can answer questions in the field involving how different GPCR classes and subfamilies are activated by their associated ligands, and how small molecule drugs can modulate GPCR activation.
Collapse
Affiliation(s)
- Bianca Chandler
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States.
| | - Lauren Todd
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States.
| | - Steven O Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
55
|
Liu S, Li S, Krezel AM, Li W. Stabilization and structure determination of integral membrane proteins by termini restraining. Nat Protoc 2022; 17:540-565. [PMID: 35039670 DOI: 10.1038/s41596-021-00656-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/05/2021] [Indexed: 12/28/2022]
Abstract
Integral membrane proteins isolated from cellular environment often lose activity and native conformation required for functional analyses and structural studies. Even in their native state, they lack sufficient surfaces to form crystal contacts. Furthermore, most of them are too small for cryogenic electron microscopy detection and too big for solution NMR. To overcome these difficulties, we recently developed a strategy to stabilize the folded state of membrane proteins by restraining their two termini with a self-assembling protein coupler. The termini-restrained membrane proteins from distinct functional families retain their activities and show increased stability and yield. This strategy enables their structure determination at near-atomic resolution by facilitating the entire pipeline from crystallization, crystal identification, diffraction enhancement and phase determination, to electron density improvement. Furthermore, stabilization of membrane proteins enables their biochemical and biophysical characterization. Here we present the protocol of membrane protein engineering (2 weeks), quality assessment (1-2 weeks), protein production (1-6 weeks), crystallization (1-2 weeks), diffraction improvement (1-3 months) and crystallographic data analysis (1 week). This protocol is intended not only for structural biologists, but also for biochemists, biophysicists and pharmaceutical scientists whose research focuses on membrane proteins.
Collapse
Affiliation(s)
- Shixuan Liu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Shuang Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrzej M Krezel
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
56
|
Targeting GPCRs and Their Signaling as a Therapeutic Option in Melanoma. Cancers (Basel) 2022; 14:cancers14030706. [PMID: 35158973 PMCID: PMC8833576 DOI: 10.3390/cancers14030706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Sixteen G-protein-coupled receptors (GPCRs) have been involved in melanogenesis or melanomagenesis. Here, we review these GPCRs, their associated signaling, and therapies. Abstract G-protein-coupled receptors (GPCRs) serve prominent roles in melanocyte lineage physiology, with an impact at all stages of development, as well as on mature melanocyte functions. GPCR ligands are present in the skin and regulate melanocyte homeostasis, including pigmentation. The role of GPCRs in the regulation of pigmentation and, consequently, protection against external aggression, such as ultraviolet radiation, has long been established. However, evidence of new functions of GPCRs directly in melanomagenesis has been highlighted in recent years. GPCRs are coupled, through their intracellular domains, to heterotrimeric G-proteins, which induce cellular signaling through various pathways. Such signaling modulates numerous essential cellular processes that occur during melanomagenesis, including proliferation and migration. GPCR-associated signaling in melanoma can be activated by the binding of paracrine factors to their receptors or directly by activating mutations. In this review, we present melanoma-associated alterations of GPCRs and their downstream signaling and discuss the various preclinical models used to evaluate new therapeutic approaches against GPCR activity in melanoma. Recent striking advances in our understanding of the structure, function, and regulation of GPCRs will undoubtedly broaden melanoma treatment options in the future.
Collapse
|
57
|
Joshi M, Nikte SV, Sengupta D. Molecular determinants of GPCR pharmacogenetics: Deconstructing the population variants in β 2-adrenergic receptor. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:361-396. [PMID: 35034724 DOI: 10.1016/bs.apcsb.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
G protein-coupled receptors (GPCRs) are membrane proteins that play a central role in cell signaling and constitute one of the largest classes of drug targets. The molecular mechanisms underlying GPCR function have been characterized by several experimental and computational methods and provide an understanding of their role in physiology and disease. Population variants arising from nsSNPs affect the native function of GPCRs and have been implicated in differential drug response. In this chapter, we provide an overview on GPCR structure and activation, with a special focus on the β2-adrenergic receptor (β2-AR). First, we discuss the current understanding of the structural and dynamic features of the wildtype receptor. Subsequently, the population variants identified in this receptor from clinical and large-scale genomic studies are described. We show how computational approaches such as bioinformatics tools and molecular dynamics simulations can be used to characterize the variant receptors in comparison to the wildtype receptor. In particular, we discuss three examples of clinically important variants and discuss how the structure and function of these variants differ from the wildtype receptor at a molecular level. Overall, the chapter provides an overview of structure and function of GPCR variants and is a step towards the study of inter-individual differences and personalized medicine.
Collapse
Affiliation(s)
- Manali Joshi
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India.
| | - Siddhanta V Nikte
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
58
|
Xu X, Wei Z, Wu G. Specific motifs mediate post-synaptic and surface transport of G protein-coupled receptors. iScience 2022; 25:103643. [PMID: 35024582 PMCID: PMC8728401 DOI: 10.1016/j.isci.2021.103643] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/19/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are key regulators of synaptic functions. However, their targeted trafficking to synapses after synthesis is poorly understood. Here, we demonstrate that multiple motifs mediate α2B-adrenergic receptor transport to the dendritic and post-synaptic compartments in primary hippocampal neurons, with a single leucine residue on the first intracellular loop being specifically involved in synaptic targeting. The N-terminally located tyrosine-serine motif operates differently in neuronal and non-neuronal cells. We further show that the highly conserved dileucine (LL) motif in the C-terminus is required for the dendritic and post-synaptic traffic of all GPCRs studied. The LL motif also directs the export from the endoplasmic reticulum of a chimeric GPCR and confers its transport ability to vesicular stomatitis virus glycoprotein in cell lines. Collectively, these data reveal the intrinsic structural determinants for the synaptic targeting of nascent GPCRs and their cell-type-specific trafficking along the biosynthetic pathways.
Collapse
Affiliation(s)
- Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zhe Wei
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
59
|
Sych T, Levental KR, Sezgin E. Lipid–Protein Interactions in Plasma Membrane Organization and Function. Annu Rev Biophys 2022; 51:135-156. [DOI: 10.1146/annurev-biophys-090721-072718] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipid–protein interactions in cells are involved in various biological processes, including metabolism, trafficking, signaling, host–pathogen interactions, and transmembrane transport. At the plasma membrane, lipid–protein interactions play major roles in membrane organization and function. Several membrane proteins have motifs for specific lipid binding, which modulate protein conformation and consequent function. In addition to such specific lipid–protein interactions, protein function can be regulated by the dynamic, collective behavior of lipids in membranes. Emerging analytical, biochemical, and computational technologies allow us to study the influence of specific lipid–protein interactions, as well as the collective behavior of membranes on protein function. In this article, we review the recent literature on lipid–protein interactions with a specific focus on the current state-of-the-art technologies that enable novel insights into these interactions. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden;,
| | - Kandice R. Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden;,
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
60
|
Biswas AD, Catte A, Mancini G, Barone V. Analysis of L-DOPA and droxidopa binding to human β 2-adrenergic receptor. Biophys J 2021; 120:5631-5643. [PMID: 34767786 PMCID: PMC8715240 DOI: 10.1016/j.bpj.2021.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022] Open
Abstract
Over the last two decades, an increasing number of studies has been devoted to a deeper understanding of the molecular process involved in the binding of various agonists and antagonists to active and inactive conformations of β2-adrenergic receptor (β2AR). The 3.2 Å x-ray crystal structure of human β2AR active state in combination with the endogenous low affinity agonist adrenaline offers an ideal starting structure for studying the binding of various catecholamines to adrenergic receptors. We show that molecular docking of levodopa (L-DOPA) and droxidopa into rigid and flexible β2AR models leads for both ligands to binding anchor sites comparable to those experimentally reported for adrenaline, namely D113/N312 and S203/S204/S207 side chains. Both ligands have a hydrogen bond network that is extremely similar to those of noradrenaline and dopamine. Interestingly, redocking neutral and protonated versions of adrenaline to rigid and flexible β2AR models results in binding poses that are more energetically stable and distinct from the x-ray crystal structure. Similarly, lowest energy conformations of noradrenaline and dopamine generated by docking into flexible β2AR models had binding free energies lower than those of best poses in rigid receptor models. Furthermore, our findings show that L-DOPA and droxidopa molecules have binding affinities comparable to those predicted for adrenaline, noradrenaline, and dopamine, which are consistent with previous experimental and computational findings and supported by the molecular dynamics simulations of β2AR-ligand complexes performed here.
Collapse
|
61
|
Cao C, Kang HJ, Singh I, Chen H, Zhang C, Ye W, Hayes BW, Liu J, Gumpper RH, Bender BJ, Slocum ST, Krumm BE, Lansu K, McCorvy JD, Kroeze WK, English JG, DiBerto JF, Olsen RHJ, Huang XP, Zhang S, Liu Y, Kim K, Karpiak J, Jan LY, Abraham SN, Jin J, Shoichet BK, Fay JF, Roth BL. Structure, function and pharmacology of human itch GPCRs. Nature 2021; 600:170-175. [PMID: 34789874 PMCID: PMC9150435 DOI: 10.1038/s41586-021-04126-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/08/2021] [Indexed: 11/09/2022]
Abstract
The MRGPRX family of receptors (MRGPRX1-4) is a family of mas-related G-protein-coupled receptors that have evolved relatively recently1. Of these, MRGPRX2 and MRGPRX4 are key physiological and pathological mediators of itch and related mast cell-mediated hypersensitivity reactions2-5. MRGPRX2 couples to both Gi and Gq in mast cells6. Here we describe agonist-stabilized structures of MRGPRX2 coupled to Gi1 and Gq in ternary complexes with the endogenous peptide cortistatin-14 and with a synthetic agonist probe, respectively, and the development of potent antagonist probes for MRGPRX2. We also describe a specific MRGPRX4 agonist and the structure of this agonist in a complex with MRGPRX4 and Gq. Together, these findings should accelerate the structure-guided discovery of therapeutic agents for pain, itch and mast cell-mediated hypersensitivity.
Collapse
MESH Headings
- Cryoelectron Microscopy
- Drug Inverse Agonism
- GTP-Binding Protein alpha Subunits, Gi-Go/chemistry
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/ultrastructure
- GTP-Binding Protein alpha Subunits, Gq-G11/chemistry
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/ultrastructure
- Humans
- Models, Molecular
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/ultrastructure
- Pruritus/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/ultrastructure
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Neuropeptide/chemistry
- Receptors, Neuropeptide/metabolism
- Receptors, Neuropeptide/ultrastructure
Collapse
Affiliation(s)
- Can Cao
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Hye Jin Kang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Isha Singh
- Department of Pharmaceutical Sciences, University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - He Chen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chengwei Zhang
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wenlei Ye
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Byron W Hayes
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan H Gumpper
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Brian J Bender
- Department of Pharmaceutical Sciences, University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Samuel T Slocum
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Brian E Krumm
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Katherine Lansu
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - John D McCorvy
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Wesley K Kroeze
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Justin G English
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Reid H J Olsen
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Shicheng Zhang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Yongfeng Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Kuglae Kim
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Joel Karpiak
- Department of Pharmaceutical Sciences, University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Lily Y Jan
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian K Shoichet
- Department of Pharmaceutical Sciences, University of California San Francisco, School of Medicine, San Francisco, CA, USA.
| | - Jonathan F Fay
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
62
|
Mitsumoto M, Sugaya K, Kazama K, Nakano R, Kosugi T, Murata T, Koga N. State-Targeting Stabilization of Adenosine A 2A Receptor by Fusing a Custom-Made De Novo Designed α-Helical Protein. Int J Mol Sci 2021; 22:12906. [PMID: 34884716 PMCID: PMC8657880 DOI: 10.3390/ijms222312906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023] Open
Abstract
G-protein coupled receptors (GPCRs) are known for their low stability and large conformational changes upon transitions between multiple states. A widely used method for stabilizing these receptors is to make chimeric receptors by fusing soluble proteins (i.e., fusion partner proteins) into the intracellular loop 3 (ICL3) connecting the transmembrane helices 5 and 6 (TM5 and TM6). However, this fusion approach requires experimental trial and error to identify appropriate soluble proteins, residue positions, and linker lengths for making the fusion. Moreover, this approach has not provided state-targeting stabilization of GPCRs. Here, to rationally stabilize a class A GPCR, adenosine A2A receptor (A2AR) in a target state, we carried out the custom-made de novo design of α-helical fusion partner proteins, which can fix the conformation of TM5 and TM6 to that in an inactive state of A2AR through straight helical connections without any kinks or intervening loops. The chimeric A2AR fused with one of the designs (FiX1) exhibited increased thermal stability. Moreover, compared with the wild type, the binding affinity of the chimera against the agonist NECA was significantly decreased, whereas that against the inverse agonist ZM241385 was similar, indicating that the inactive state was selectively stabilized. Our strategy contributes to the rational state-targeting stabilization of GPCRs.
Collapse
Affiliation(s)
- Masaya Mitsumoto
- Department of Structural Molecular Science, School of Physical Sciences, SOKENDAI, The Graduate University for Advanced Studies, Shonan Village, Hayama 240-0193, Kanagawa, Japan; (M.M.); (T.K.)
- Research Center of Integrative Molecular Systems, Institute for Molecular Science (IMS), National Institutes of Natural Sciences (NINS), Okazaki 444-8585, Aichi, Japan
| | - Kanna Sugaya
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (K.S.); (K.K.); (R.N.)
| | - Kazuki Kazama
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (K.S.); (K.K.); (R.N.)
| | - Ryosuke Nakano
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (K.S.); (K.K.); (R.N.)
| | - Takahiro Kosugi
- Department of Structural Molecular Science, School of Physical Sciences, SOKENDAI, The Graduate University for Advanced Studies, Shonan Village, Hayama 240-0193, Kanagawa, Japan; (M.M.); (T.K.)
- Research Center of Integrative Molecular Systems, Institute for Molecular Science (IMS), National Institutes of Natural Sciences (NINS), Okazaki 444-8585, Aichi, Japan
- Protein Design Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS), Okazaki 444-8585, Aichi, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (K.S.); (K.K.); (R.N.)
- Membrane Protein Research Center, Chiba University, Chiba 263-8522, Japan
| | - Nobuyasu Koga
- Department of Structural Molecular Science, School of Physical Sciences, SOKENDAI, The Graduate University for Advanced Studies, Shonan Village, Hayama 240-0193, Kanagawa, Japan; (M.M.); (T.K.)
- Research Center of Integrative Molecular Systems, Institute for Molecular Science (IMS), National Institutes of Natural Sciences (NINS), Okazaki 444-8585, Aichi, Japan
- Protein Design Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS), Okazaki 444-8585, Aichi, Japan
| |
Collapse
|
63
|
Brown AJH, Bradley SJ, Marshall FH, Brown GA, Bennett KA, Brown J, Cansfield JE, Cross DM, de Graaf C, Hudson BD, Dwomoh L, Dias JM, Errey JC, Hurrell E, Liptrot J, Mattedi G, Molloy C, Nathan PJ, Okrasa K, Osborne G, Patel JC, Pickworth M, Robertson N, Shahabi S, Bundgaard C, Phillips K, Broad LM, Goonawardena AV, Morairty SR, Browning M, Perini F, Dawson GR, Deakin JFW, Smith RT, Sexton PM, Warneck J, Vinson M, Tasker T, Tehan BG, Teobald B, Christopoulos A, Langmead CJ, Jazayeri A, Cooke RM, Rucktooa P, Congreve MS, Weir M, Tobin AB. From structure to clinic: Design of a muscarinic M1 receptor agonist with potential to treatment of Alzheimer's disease. Cell 2021; 184:5886-5901.e22. [PMID: 34822784 PMCID: PMC7616177 DOI: 10.1016/j.cell.2021.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 04/29/2021] [Accepted: 11/01/2021] [Indexed: 12/31/2022]
Abstract
Current therapies for Alzheimer's disease seek to correct for defective cholinergic transmission by preventing the breakdown of acetylcholine through inhibition of acetylcholinesterase, these however have limited clinical efficacy. An alternative approach is to directly activate cholinergic receptors responsible for learning and memory. The M1-muscarinic acetylcholine (M1) receptor is the target of choice but has been hampered by adverse effects. Here we aimed to design the drug properties needed for a well-tolerated M1-agonist with the potential to alleviate cognitive loss by taking a stepwise translational approach from atomic structure, cell/tissue-based assays, evaluation in preclinical species, clinical safety testing, and finally establishing activity in memory centers in humans. Through this approach, we rationally designed the optimal properties, including selectivity and partial agonism, into HTL9936-a potential candidate for the treatment of memory loss in Alzheimer's disease. More broadly, this demonstrates a strategy for targeting difficult GPCR targets from structure to clinic.
Collapse
Affiliation(s)
- Alastair J H Brown
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Sophie J Bradley
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK; The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Fiona H Marshall
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Giles A Brown
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Kirstie A Bennett
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Jason Brown
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Julie E Cansfield
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - David M Cross
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK; Cross Pharma Consulting Ltd, 20-22 Wenlock Road, London, N17GU, UK
| | - Chris de Graaf
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Brian D Hudson
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Louis Dwomoh
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - João M Dias
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - James C Errey
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Edward Hurrell
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Jan Liptrot
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Giulio Mattedi
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Colin Molloy
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Pradeep J Nathan
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK; Brain Mapping Unit, University of Cambridge, Department of Psychiatry, Herchel Smith Building, Cambridge, CB20SZ, UK
| | - Krzysztof Okrasa
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Greg Osborne
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Jayesh C Patel
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Mark Pickworth
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Nathan Robertson
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Shahram Shahabi
- Eli Lilly & Co, Neuroscience Discovery, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - Christoffer Bundgaard
- Eli Lilly & Co, Neuroscience Discovery, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK; H. Lundbeck A/S, Neuroscience Research, Ottiliavej 9, 2500 Valby, Copenhagen, Denmark
| | - Keith Phillips
- Eli Lilly & Co, Neuroscience Discovery, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - Lisa M Broad
- Eli Lilly & Co, Neuroscience Discovery, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - Anushka V Goonawardena
- Center for Neuroscience, Biosciences Division, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Stephen R Morairty
- Center for Neuroscience, Biosciences Division, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Michael Browning
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX12JD, UK; P1vital, Manor house, Howbery Buisness Park, Wallingford, OX108BA, UK
| | - Francesca Perini
- Centre for Cognitive Neuroscience - Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Gerard R Dawson
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX12JD, UK
| | - John F W Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, M139PT UK
| | - Robert T Smith
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Victoria, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Julie Warneck
- Protogenia Consulting Ltd, PO-Box 289, Ely, CB79DR, UK
| | - Mary Vinson
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Tim Tasker
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Benjamin G Tehan
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Barry Teobald
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Victoria, Australia
| | - Christopher J Langmead
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Victoria, Australia
| | - Ali Jazayeri
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Robert M Cooke
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Prakash Rucktooa
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Miles S Congreve
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Malcolm Weir
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK.
| | - Andrew B Tobin
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
64
|
Zhang F, Chen X, Chen J, Xu Y, Li S, Guo Y, Pu X. Probing Allosteric Regulation Mechanism of W7.35 on Agonist-Induced Activity for μOR by Mutation Simulation. J Chem Inf Model 2021; 62:5120-5135. [PMID: 34779608 DOI: 10.1021/acs.jcim.1c00650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The residue located at 15 positions before the most conserved residue in TM7 (7.35 of Ballesteros-Weinstein number) plays important roles in ligand binding and the receptor activity for class A GPCRs. Nevertheless, its regulation mechanism has not been clearly clarified in experiments, and some controversies also exist for its impact on μ-opioid receptors (μOR) bound by agonists. Thus, we chose the μ-opioid receptor (μOR) of class A GPCRs as a representative and utilized a microsecond accelerated molecular dynamics simulation (aMD) coupled with a protein structure network (PSN) to explore the effect of W3187.35 on its functional activity induced by the agonist endomorphin2 mainly by a comparison of the wild system and its W7.35A mutant. When endomorphin2 binds to the wild-type μOR, TM6 in μOR moves outward to form an open intracellular conformation that is beneficial to accommodating the β-arrestin transducer, rather than the G-protein transducer due to the clash with the α5 helix of G-protein, thus acting as a β-arrestin biased agonist. However, the W318A mutation induces the intracellular part of μOR to form a closed state, which disfavors coupling with either G-protein or β-arrestin. The allosteric pathway analysis further reveals that the binding of endomorphin2 to the wild-type μOR transmits more activation signals to the β-arrestin binding site while the W318A mutation induces more structural signals to transmit to common binding residues of the G protein and β-arrestin. More interestingly, the residue at the 7.35 position regulates the shortest allosteric pathway in indirect ways by influencing the interactions between other ligand-binding residues and endomorphin2. W2936.48 and F2896.44 are important for regulating the different activities of μOR induced either by the agonist or by the mutation. Y3367.53, F3438.50, and D3408.47 play crucial roles in activating the β-arrestin biased signal induced by the agonist endomorphin2, while L1583.43 and V2866.41 devote important contributions to the change in the activity of endomorphin2 from the β-arrestin biased agonist to the antagonist upon the W318A mutation.
Collapse
Affiliation(s)
- Fuhui Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xin Chen
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jianfang Chen
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yanjiani Xu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shiqi Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
65
|
Jia L, Li S, Dai W, Guo L, Xu Z, Scott AM, Zhang Z, Ren J, Zhang Q, Dexheimer TS, Chung-Davidson YW, Neubig RR, Li Q, Li W. Convergent olfactory trace amine-associated receptors detect biogenic polyamines with distinct motifs via a conserved binding site. J Biol Chem 2021; 297:101268. [PMID: 34600890 PMCID: PMC8546428 DOI: 10.1016/j.jbc.2021.101268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
Biogenic amines activate G-protein-coupled receptors (GPCRs) in the central nervous system in vertebrate animals. Several biogenic amines, when excreted, stimulate trace amine-associated receptors (TAARs), a group of GPCRs in the main olfactory epithelium, and elicit innate behaviors. How TAARs recognize amines with varying numbers of amino groups is largely unknown. We reasoned that a comparison between lamprey and mammalian olfactory TAARs, which are thought to have evolved independently but show convergent responses to polyamines, may reveal structural determinants of amine recognition. Here, we demonstrate that sea lamprey TAAR365 (sTAAR365) responds strongly to biogenic polyamines cadaverine, putrescine, and spermine, and shares a similar response profile as a mammalian TAAR (mTAAR9). Docking and site-directed mutagenesis analyses show that both sTAAR365 and mTAAR9 recognize the two amino groups of cadaverine with the conserved Asp3.32 and Tyr6.51 residues. sTAAR365, which has remarkable sensitivity for cadaverine (EC50 = 4 nM), uses an extra residue, Thr7.42, to stabilize ligand binding. These cadaverine recognition sites also interact with amines with four and three amino groups (spermine and spermidine, respectively). Glu7.36 of sTAAR365 cooperates with Asp3.32 and Thr7.42 to recognize spermine, whereas mTAAR9 recognizes spermidine through an additional aromatic residue, Tyr7.43. These results suggest a conserved mechanism whereby independently evolved TAAR receptors recognize amines with two, three, or four amino groups using the same recognition sites, at which sTAAR365 and mTAAR9 evolved distinct motifs. These motifs interact directly with the amino groups of the polyamines, a class of potent and ecologically important odorants, mediating olfactory signaling.
Collapse
Affiliation(s)
- Liang Jia
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA; College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Shengju Li
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenxuan Dai
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingna Guo
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengrong Xu
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Anne M Scott
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
| | - Zhe Zhang
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
| | - Jianfeng Ren
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Qinghua Zhang
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Thomas S Dexheimer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA.
| | - Qian Li
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China.
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
66
|
A human antibody against human endothelin receptor type A that exhibits antitumor potency. Exp Mol Med 2021; 53:1437-1448. [PMID: 34588605 PMCID: PMC8492878 DOI: 10.1038/s12276-021-00678-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Endothelin receptor A (ETA), a class A G-protein-coupled receptor (GPCR), is involved in the progression and metastasis of colorectal, breast, lung, ovarian, and prostate cancer. We overexpressed and purified human endothelin receptor type A in Escherichia coli and reconstituted it with lipid and membrane scaffold proteins to prepare an ETA nanodisc as a functional antigen with a structure similar to that of native GPCR. By screening a human naive immune single-chain variable fragment phage library constructed in-house, we successfully isolated a human anti-ETA antibody (AG8) exhibiting high specificity for ETA in the β-arrestin Tango assay and effective inhibitory activity against the ET-1-induced signaling cascade via ETA using either a CHO-K1 cell line stably expressing human ETA or HT-29 colorectal cancer cells, in which AG8 exhibited IC50 values of 56 and 51 nM, respectively. In addition, AG8 treatment repressed the transcription of inhibin βA and reduced the ETA-induced phosphorylation of protein kinase B and extracellular regulated kinase. Furthermore, tumor growth was effectively inhibited by AG8 in a colorectal cancer mouse xenograft model. The human anti-ETA antibody isolated in this study could be used as a potential therapeutic for cancers, including colorectal cancer. A therapeutic antibody that targets a receptor involved in cancer progression shows significant anti-cancer effects in trials in mice. Endothelin receptor A (ETA) promotes the progression and metastasis of several cancers, and patients with high ETA expression often have poor survival rates. Several small molecule drugs that target ETA are currently undergoing trials. Now, Sang Taek Jung at the Korea University in Seoul, together with scientists across South Korea, have identified and isolated a human antibody that specifically binds to ETA. The team developed an antigen that mimics ETA, and identified and isolated the antibody it bound to. The antibody exhibited potent anti-tumor effects in cell cultures and trials in mice. Such therapeutic antibodies show higher affinity for their targets than other drugs, resulting in fewer side effects and higher efficacy.
Collapse
|
67
|
Collu G, Bierig T, Krebs AS, Engilberge S, Varma N, Guixà-González R, Sharpe T, Deupi X, Olieric V, Poghosyan E, Benoit RM. Chimeric single α-helical domains as rigid fusion protein connections for protein nanotechnology and structural biology. Structure 2021; 30:95-106.e7. [PMID: 34587504 DOI: 10.1016/j.str.2021.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/17/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022]
Abstract
Chimeric fusion proteins are essential tools for protein nanotechnology. Non-optimized protein-protein connections are usually flexible and therefore unsuitable as structural building blocks. Here we show that the ER/K motif, a single α-helical domain (SAH), can be seamlessly fused to terminal helices of proteins, forming an extended, partially free-standing rigid helix. This enables the connection of two domains at a defined distance and orientation. We designed three constructs termed YFPnano, T4Lnano, and MoStoNano. Analysis of experimentally determined structures and molecular dynamics simulations reveals a certain degree of plasticity in the connections that allows the adaptation to crystal contact opportunities. Our data show that SAHs can be stably integrated into designed structural elements, enabling new possibilities for protein nanotechnology, for example, to improve the exposure of epitopes on nanoparticles (structural vaccinology), to engineer crystal contacts with minimal impact on construct flexibility (for the study of protein dynamics), and to design novel biomaterials.
Collapse
Affiliation(s)
- Gabriella Collu
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Tobias Bierig
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Anna-Sophia Krebs
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Sylvain Engilberge
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Niveditha Varma
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Ramon Guixà-González
- Condensed Matter Theory Group, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Timothy Sharpe
- Biophysics Core Facility, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Xavier Deupi
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland; Condensed Matter Theory Group, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Emiliya Poghosyan
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Roger M Benoit
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland.
| |
Collapse
|
68
|
Wiseman DN, Samra N, Román Lara MM, Penrice SC, Goddard AD. The Novel Application of Geometric Morphometrics with Principal Component Analysis to Existing G Protein-Coupled Receptor (GPCR) Structures. Pharmaceuticals (Basel) 2021; 14:953. [PMID: 34681177 PMCID: PMC8541025 DOI: 10.3390/ph14100953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/24/2022] Open
Abstract
The G protein-coupled receptor (GPCR) superfamily is a large group of membrane proteins which, because of their vast involvement in cell signalling pathways, are implicated in a plethora of disease states and are therefore considered to be key drug targets. Despite advances in techniques to study these receptors, current prophylaxis is often limited due to the challenging nature of their dynamic, complex structures. Greater knowledge and understanding of their intricate structural rearrangements will therefore undoubtedly aid structure-based drug design against GPCRs. Disciplines such as anthropology and palaeontology often use geometric morphometrics to measure variation between shapes and we have therefore applied this technique to analyse GPCR structures in a three-dimensional manner, using principal component analysis. Our aim was to create a novel system able to discriminate between GPCR structures and discover variation between them, correlated with a variety of receptor characteristics. This was conducted by assessing shape changes at the extra- and intracellular faces of the transmembrane helix bundle, analysing the XYZ coordinates of the amino acids at those positions. We have demonstrated that GPCR structures can be classified based on characteristics such as activation state, bound ligands and fusion proteins, with the most significant results focussed at the intracellular face. Conversely, our analyses provide evidence that thermostabilising mutations do not cause significant differences when compared to non-mutated GPCRs. We believe that this is the first time geometric morphometrics has been applied to membrane proteins on this scale, and believe it can be used as a future tool in sense-checking newly resolved structures and planning experimental design.
Collapse
Affiliation(s)
- Daniel N. Wiseman
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (D.N.W.); (N.S.); (M.M.R.L.)
| | - Nikita Samra
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (D.N.W.); (N.S.); (M.M.R.L.)
| | - María Monserrat Román Lara
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (D.N.W.); (N.S.); (M.M.R.L.)
| | - Samantha C. Penrice
- School of Technology, BPP University, BPP House, Aldine Place, 142-144 Uxbridge Road, London W12 8AA, UK;
| | - Alan D. Goddard
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (D.N.W.); (N.S.); (M.M.R.L.)
| |
Collapse
|
69
|
Aparicio-Prat E, Yan D, Mariotti M, Bassik M, Hess G, Fortin JP, Weston A, Xi HS, Stanton R. Roadmap for the use of base editors to decipher drug mechanism of action. PLoS One 2021; 16:e0257537. [PMID: 34547052 PMCID: PMC8454938 DOI: 10.1371/journal.pone.0257537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 09/05/2021] [Indexed: 11/19/2022] Open
Abstract
CRISPR base editors are powerful tools for large-scale mutagenesis studies. This kind of approach can elucidate the mechanism of action of compounds, a key process in drug discovery. Here, we explore the utility of base editors in an early drug discovery context focusing on G-protein coupled receptors. A pooled mutagenesis screening framework was set up based on a modified version of the CRISPR-X base editor system. We determine optimized experimental conditions for mutagenesis where sgRNAs are delivered by cell transfection or viral infection over extended time periods (>14 days), resulting in high mutagenesis produced in a short region located at -4/+8 nucleotides with respect to the sgRNA match. The β2 Adrenergic Receptor (B2AR) was targeted in this way employing a 6xCRE-mCherry reporter system to monitor its response to isoproterenol. The results of our screening indicate that residue 184 of B2AR is crucial for its activation. Based on our experience, we outline the crucial points to consider when designing and performing CRISPR-based pooled mutagenesis screening, including the typical technical hurdles encountered when studying compound pharmacology.
Collapse
MESH Headings
- CRISPR-Cas Systems/genetics
- Gene Editing/methods
- Genes, Reporter
- HEK293 Cells
- Humans
- Isoproterenol/chemistry
- Isoproterenol/metabolism
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Mutagenesis, Site-Directed
- RNA Interference
- RNA, Guide, CRISPR-Cas Systems/metabolism
- RNA, Small Interfering/metabolism
- Receptors, Adrenergic, beta-2/chemistry
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
Collapse
Affiliation(s)
- Estel Aparicio-Prat
- Simulation and Modelling Sciences, Pfizer, Cambridge, Massachusetts, United States of America
| | - Dong Yan
- Internal Medicine Research Unit, Pfizer, Cambridge, Massachusetts, United States of America
| | - Marco Mariotti
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Michael Bassik
- Department of Genetics, Stanford University, Palo Alto, California, United States of America
| | - Gaelen Hess
- Department of Genetics, Stanford University, Palo Alto, California, United States of America
| | - Jean-Philippe Fortin
- Internal Medicine Research Unit, Pfizer, Cambridge, Massachusetts, United States of America
| | - Andrea Weston
- Discovery Sciences, Pfizer, Groton, Connecticut, United States of America
| | - Hualin S. Xi
- Simulation and Modelling Sciences, Pfizer, Cambridge, Massachusetts, United States of America
| | - Robert Stanton
- Simulation and Modelling Sciences, Pfizer, Cambridge, Massachusetts, United States of America
| |
Collapse
|
70
|
Ehsan M, Wang H, Cecchetti C, Mortensen JS, Du Y, Hariharan P, Nygaard A, Lee HJ, Ghani L, Guan L, Loland CJ, Byrne B, Kobilka BK, Chae PS. Maltose-bis(hydroxymethyl)phenol (MBPs) and Maltose-tris(hydroxymethyl)phenol (MTPs) Amphiphiles for Membrane Protein Stability. ACS Chem Biol 2021; 16:1779-1790. [PMID: 34445864 DOI: 10.1021/acschembio.1c00578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Membrane protein structures provide a fundamental understanding of their molecular actions and are of importance for drug development. Detergents are widely used to solubilize, stabilize, and crystallize membrane proteins, but membrane proteins solubilized in conventional detergents are prone to denaturation and aggregation. Thus, developing novel detergents with enhanced efficacy for protein stabilization remains important. We report herein the design and synthesis of a class of phenol-derived maltoside detergents. Using two different linkers, we prepared two sets of new detergents, designated maltose-bis(hydroxymethyl)phenol (MBPs) and maltose-tris(hydroxymethyl)phenol (MTPs). The evaluation of these detergents with three transporters and two G-protein coupled receptors allowed us to identify a couple of new detergents (MBP-C9 and MTP-C12) that consistently conferred enhanced stability to all tested proteins compared to a gold standard detergent (DDM). Furthermore, the data analysis based on the detergent structures provides key detergent features responsible for membrane protein stabilization that together will facilitate the future design of novel detergents.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University, California 94305, United States
| | - Cristina Cecchetti
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Jonas S. Mortensen
- Department of Neuroscience, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Yang Du
- Department of Molecular and Cellular Physiology, Stanford University, California 94305, United States
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Andreas Nygaard
- Department of Neuroscience, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Ho Jin Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea
| | - Lubna Ghani
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Claus J. Loland
- Department of Neuroscience, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Brian K. Kobilka
- Department of Molecular and Cellular Physiology, Stanford University, California 94305, United States
| | - Pil Seok Chae
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea
| |
Collapse
|
71
|
Majeed S, Ahmad AB, Sehar U, Georgieva ER. Lipid Membrane Mimetics in Functional and Structural Studies of Integral Membrane Proteins. MEMBRANES 2021; 11:685. [PMID: 34564502 PMCID: PMC8470526 DOI: 10.3390/membranes11090685] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Integral membrane proteins (IMPs) fulfill important physiological functions by providing cell-environment, cell-cell and virus-host communication; nutrients intake; export of toxic compounds out of cells; and more. However, some IMPs have obliterated functions due to polypeptide mutations, modifications in membrane properties and/or other environmental factors-resulting in damaged binding to ligands and the adoption of non-physiological conformations that prevent the protein from returning to its physiological state. Thus, elucidating IMPs' mechanisms of function and malfunction at the molecular level is important for enhancing our understanding of cell and organism physiology. This understanding also helps pharmaceutical developments for restoring or inhibiting protein activity. To this end, in vitro studies provide invaluable information about IMPs' structure and the relation between structural dynamics and function. Typically, these studies are conducted on transferred from native membranes to membrane-mimicking nano-platforms (membrane mimetics) purified IMPs. Here, we review the most widely used membrane mimetics in structural and functional studies of IMPs. These membrane mimetics are detergents, liposomes, bicelles, nanodiscs/Lipodisqs, amphipols, and lipidic cubic phases. We also discuss the protocols for IMPs reconstitution in membrane mimetics as well as the applicability of these membrane mimetic-IMP complexes in studies via a variety of biochemical, biophysical, and structural biology techniques.
Collapse
Affiliation(s)
- Saman Majeed
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Akram Bani Ahmad
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Ujala Sehar
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Science Center, Lubbock, TX 79409, USA
| |
Collapse
|
72
|
Bradford SYC, El Khoury L, Ge Y, Osato M, Mobley DL, Fischer M. Temperature artifacts in protein structures bias ligand-binding predictions. Chem Sci 2021; 12:11275-11293. [PMID: 34667539 PMCID: PMC8447925 DOI: 10.1039/d1sc02751d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
X-ray crystallography is the gold standard to resolve conformational ensembles that are significant for protein function, ligand discovery, and computational methods development. However, relevant conformational states may be missed at common cryogenic (cryo) data-collection temperatures but can be populated at room temperature. To assess the impact of temperature on making structural and computational discoveries, we systematically investigated protein conformational changes in response to temperature and ligand binding in a structural and computational workhorse, the T4 lysozyme L99A cavity. Despite decades of work on this protein, shifting to RT reveals new global and local structural changes. These include uncovering an apo helix conformation that is hidden at cryo but relevant for ligand binding, and altered side chain and ligand conformations. To evaluate the impact of temperature-induced protein and ligand changes on the utility of structural information in computation, we evaluated how temperature can mislead computational methods that employ cryo structures for validation. We find that when comparing simulated structures just to experimental cryo structures, hidden successes and failures often go unnoticed. When using structural information in ligand binding predictions, both coarse docking and rigorous binding free energy calculations are influenced by temperature effects. The trend that cryo artifacts limit the utility of structures for computation holds across five distinct protein classes. Our results suggest caution when consulting cryogenic structural data alone, as temperature artifacts can conceal errors and prevent successful computational predictions, which can mislead the development and application of computational methods in discovering bioactive molecules.
Collapse
Affiliation(s)
- Shanshan Y C Bradford
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital Memphis TN 38105 USA
| | - Léa El Khoury
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| | - Yunhui Ge
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| | - Meghan Osato
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| | - David L Mobley
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
- Department of Chemistry, University of California Irvine CA 92697 USA
| | - Marcus Fischer
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital Memphis TN 38105 USA
- Department of Structural Biology, St. Jude Children's Research Hospital Memphis TN 38105 USA
| |
Collapse
|
73
|
Cholesterol in GPCR Structures: Prevalence and Relevance. J Membr Biol 2021; 255:99-106. [PMID: 34365520 DOI: 10.1007/s00232-021-00197-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022]
Abstract
Bound cholesterol molecules are emerging as important hallmarks of GPCR structures. In this commentary, we analyze their statistical prevalence and biological relevance.
Collapse
|
74
|
Sarkar P, Chattopadhyay A. Cholesterol footprint in high-resolution structures of serotonin receptors: Where are we now and what does it mean? Chem Phys Lipids 2021; 239:105120. [PMID: 34332970 DOI: 10.1016/j.chemphyslip.2021.105120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
An emerging feature of several high-resolution GPCR structures is the presence of closely bound cholesterol molecules. In this Perspective, we share the excitement of the recent advancements in GPCR structural biology. We further highlight our laboratory's journey in comprehensively elucidating functional sensitivity of GPCRs (using the serotonin1A receptor as a representative neurotransmitter GPCR) to membrane cholesterol and validation using a variety of assays and molecular dynamics simulations. Although high-resolution structures of many GPCRs have been reported in the last few years, the structure of the serotoin1A receptor proved to be elusive for a long time. Very recently the cryo-EM structure of the serotoin1A receptor displaying 10 bound cholesterol molecules has been reported. We conclude by providing a critical analysis of caveats involved in GPCR structure determination.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | |
Collapse
|
75
|
Nagiri C, Kobayashi K, Tomita A, Kato M, Kobayashi K, Yamashita K, Nishizawa T, Inoue A, Shihoya W, Nureki O. Cryo-EM structure of the β3-adrenergic receptor reveals the molecular basis of subtype selectivity. Mol Cell 2021; 81:3205-3215.e5. [PMID: 34314699 DOI: 10.1016/j.molcel.2021.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/17/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022]
Abstract
The β3-adrenergic receptor (β3AR) is predominantly expressed in adipose tissue and urinary bladder and has emerged as an attractive drug target for the treatment of type 2 diabetes, obesity, and overactive bladder (OAB). Here, we report the cryogenic electron microscopy structure of the β3AR-Gs signaling complex with the selective agonist mirabegron, a first-in-class drug for OAB. Comparison of this structure with the previously reported β1AR and β2AR structures reveals a receptor activation mechanism upon mirabegron binding to the orthosteric site. Notably, the narrower exosite in β3AR creates a perpendicular pocket for mirabegron. Mutational analyses suggest that a combination of both the exosite shape and the amino-acid-residue substitutions defines the drug selectivity of the βAR agonists. Our findings provide a molecular basis for βAR subtype selectivity, allowing the design of more-selective agents with fewer adverse effects.
Collapse
Affiliation(s)
- Chisae Nagiri
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuhiro Kobayashi
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Atsuhiro Tomita
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masahiko Kato
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kan Kobayashi
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keitaro Yamashita
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
76
|
Sadaf A, Kim S, Bae HE, Wang H, Nygaard A, Uegaki Y, Du Y, Munk CF, Katsube S, Sung Lee H, Bae J, Choi CW, Choi HJ, Byrne B, Gellman SH, Guan L, Loland CJ, Kobilka BK, Im W, Chae PS. Conformationally flexible core-bearing detergents with a hydrophobic or hydrophilic pendant: Effect of pendant polarity on detergent conformation and membrane protein stability. Acta Biomater 2021; 128:393-407. [PMID: 33933694 PMCID: PMC8222176 DOI: 10.1016/j.actbio.2021.04.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/31/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Membrane protein structures provide atomic level insight into essential biochemical processes and facilitate protein structure-based drug design. However, the inherent instability of these bio-macromolecules outside lipid bilayers hampers their structural and functional study. Detergent micelles can be used to solubilize and stabilize these membrane-inserted proteins in aqueous solution, thereby enabling their downstream characterizations. Membrane proteins encapsulated in detergent micelles tend to denature and aggregate over time, highlighting the need for development of new amphiphiles effective for protein solubility and stability. In this work, we present newly-designed maltoside detergents containing a pendant chain attached to a glycerol-decorated tris(hydroxymethyl)methane (THM) core, designated GTMs. One set of the GTMs has a hydrophobic pendant (ethyl chain; E-GTMs), and the other set has a hydrophilic pendant (methoxyethoxylmethyl chain; M-GTMs) placed in the hydrophobic-hydrophilic interfaces. The two sets of GTMs displayed profoundly different behaviors in terms of detergent self-assembly and protein stabilization efficacy. These behaviors mainly arise from the polarity difference between two pendants (ethyl and methoxyethoxylmethyl chains) that results in a large variation in detergent conformation between these sets of GTMs in aqueous media. The resulting high hydrophobic density in the detergent micelle interior is likely responsible for enhanced efficacy of the M-GTMs for protein stabilization compared to the E-GTMs and a gold standard detergent DDM. A representative GTM, M-GTM-O12, was more effective for protein stability than some recently developed detergents including LMNG. This is the first case study investigating the effect of pendant polarity on detergent geometry correlated with detergent efficacy for protein stabilization. STATEMENT OF SIGNIFICANCE: This study introduces new amphiphiles for use as biochemical tools in membrane protein studies. We identified a few hydrophilic pendant-bearing amphiphiles such as M-GTM-O11 and M-GTM-O12 that show remarkable efficacy for membrane protein solubilization and stabilization compared to a gold standard DDM, the hydrophobic counterparts (E-GTMs) and a significantly optimized detergent LMNG. In addition, detergent results obtained in the current study reveals the effect of detergent pendant polarity on protein solubility and stability. Thus, the current study represents both significant chemical and conceptual advance. The detergent tools and design principle introduced here advance protein science and facilitate structure-based drug design and development.
Collapse
Affiliation(s)
- Aiman Sadaf
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea
| | - Seonghoon Kim
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, South Korea
| | - Hyoung Eun Bae
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University, California 94305, USA
| | - Andreas Nygaard
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Yuki Uegaki
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Yang Du
- Department of Molecular and Cellular Physiology, Stanford University, California 94305, USA
| | - Chastine F Munk
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Satoshi Katsube
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Hyun Sung Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea
| | - Jungnam Bae
- Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Chul Won Choi
- Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hee-Jung Choi
- Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University, California 94305, USA
| | - Wonpil Im
- Department of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Pil Seok Chae
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea.
| |
Collapse
|
77
|
Mezei M, Latif R, Das B, Davies TF. Implications of an Improved Model of the TSH Receptor Transmembrane Domain (TSHR-TMD-TRIO). Endocrinology 2021; 162:6161546. [PMID: 33693584 PMCID: PMC8183494 DOI: 10.1210/endocr/bqab051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Indexed: 11/19/2022]
Abstract
The thyroid-stimulating hormone receptor (TSHR) is a G-protein-coupled receptor group A family member with 7 transmembrane helices. We generated 3 new models of its entire transmembrane region using a 600 ns molecular simulation. The simulation started from our previously published model, which we have now revised by also modeling the intracellular loops and the C-terminal tail, adding internal waters and embedding it into a lipid bilayer with a water layer and with ions added to complete the system. We have named this model TSHR-TMD-TRIO since 3 representative dominant structures were then extracted from the simulation trajectory and compared with the original model. These structures each showed small but significant changes in the relative positions of the helices. The 3 models were also used as targets to dock a set of small molecules that are known active compounds including a new TSHR antagonist (BT362), which confirmed the appropriateness of the model with some small molecules showing significant preference for one or other of the structures.
Collapse
Affiliation(s)
- Mihaly Mezei
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Correspondence: Mihaly Mezei, PhD, Icahn School of Medicine at Mount Sinai, New York, NY, USA. E-mail:
| | - Rauf Latif
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, New York, NY, USA
| | - Bhaskar Das
- Arnold & Marie Schwartz College of Pharmacy & Health Sciences, Long Island University, New York, NY, USA
| | - Terry F Davies
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, New York, NY, USA
| |
Collapse
|
78
|
Elgeti M, Hubbell WL. DEER Analysis of GPCR Conformational Heterogeneity. Biomolecules 2021; 11:778. [PMID: 34067265 PMCID: PMC8224605 DOI: 10.3390/biom11060778] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) represent a large class of transmembrane helical proteins which are involved in numerous physiological signaling pathways and therefore represent crucial pharmacological targets. GPCR function and the action of therapeutic molecules are defined by only a few parameters, including receptor basal activity, ligand affinity, intrinsic efficacy and signal bias. These parameters are encoded in characteristic receptor conformations existing in equilibrium and their populations, which are thus of paramount interest for the understanding of receptor (mal-)functions and rational design of improved therapeutics. To this end, the combination of site-directed spin labeling and EPR spectroscopy, in particular double electron-electron resonance (DEER), is exceedingly valuable as it has access to sub-Angstrom spatial resolution and provides a detailed picture of the number and populations of conformations in equilibrium. This review gives an overview of existing DEER studies on GPCRs with a focus on the delineation of structure/function frameworks, highlighting recent developments in data analysis and visualization. We introduce "conformational efficacy" as a parameter to describe ligand-specific shifts in the conformational equilibrium, taking into account the loose coupling between receptor segments observed for different GPCRs using DEER.
Collapse
Affiliation(s)
- Matthias Elgeti
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Wayne L. Hubbell
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
79
|
Scott MJ, Jowett A, Orecchia M, Ertl P, Ouro-Gnao L, Ticehurst J, Gower D, Yates J, Poulton K, Harris C, Mullin MJ, Smith KJ, Lewis AP, Barton N, Washburn ML, de Wildt R. Rapid identification of highly potent human anti-GPCR antagonist monoclonal antibodies. MAbs 2021; 12:1755069. [PMID: 32343620 PMCID: PMC7188403 DOI: 10.1080/19420862.2020.1755069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Complex cellular targets such as G protein-coupled receptors (GPCRs), ion channels, and other multi-transmembrane proteins represent a significant challenge for therapeutic antibody discovery, primarily because of poor stability of the target protein upon extraction from cell membranes. To assess whether a limited set of membrane-bound antigen formats could be exploited to identify functional antibodies directed against such targets, we selected a GPCR of therapeutic relevance (CCR1) and identified target binders using an in vitro yeast-based antibody discovery platform (AdimabTM) to expedite hit identification. Initially, we compared two different biotinylated antigen formats overexpressing human CCR1 in a ‘scouting’ approach using a subset of the antibody library. Binders were isolated using streptavidin-coated beads, expressed as yeast supernatants, and screened using a high-throughput binding assay and flow cytometry on appropriate cell lines. The most suitable antigen was then selected to isolate target binders using the full library diversity. This approach identified a combined total of 183 mAbs with diverse heavy chain sequences. A subset of clones exhibited high potencies in primary cell chemotaxis assays, with IC50 values in the low nM/high pM range. To assess the feasibility of any further affinity enhancement, full-length hCCR1 protein was purified, complementary-determining region diversified libraries were constructed from a high and lower affinity mAb, and improved binders were isolated by fluorescence-activated cell sorting selections. A significant affinity enhancement was observed for the lower affinity parental mAb, but not the high affinity mAb. These data exemplify a methodology to generate potent human mAbs for challenging targets rapidly using whole cells as antigen and define a route to the identification of affinity-matured variants if required.
Collapse
Affiliation(s)
- Martin J Scott
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Amanda Jowett
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Martin Orecchia
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Peter Ertl
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Larissa Ouro-Gnao
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Julia Ticehurst
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - David Gower
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - John Yates
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Katie Poulton
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Carol Harris
- Department of Protein & Cellular Sciences, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Michael J Mullin
- Department of Protein & Cellular Sciences, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Kathrine J Smith
- Department of Protein & Cellular Sciences, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Alan P Lewis
- Department of Data & Computational Sciences, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Nick Barton
- Department of Data & Computational Sciences, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Michael L Washburn
- Experimental Medicine Unit, Glaxo Smith Kline Research & Development, Collegeville, PA, USA
| | - Ruud de Wildt
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| |
Collapse
|
80
|
Zaidi SA, Katritch V. Structural Characterization of KOR Inactive and Active States for 3D Pharmacology and Drug Discovery. Handb Exp Pharmacol 2021; 271:41-64. [PMID: 33945028 DOI: 10.1007/164_2021_461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The structure of the human kappa opioid receptor (KOR) in complex with the long-acting antagonist JDTic was solved crystallographically in 2012 and, along with structures of other opioid receptors, revolutionized our understanding of opioid system function and pharmacology. More recently, active state KOR structure was also determined, giving important insights into activation mechanisms of the receptor. In this review, we will discuss how the understanding of atomistic structures of KOR established a key platform for deciphering details of subtype and functional selectivity of KOR-targeting ligands and for discovery of new chemical probes with potentially beneficial pharmacological profiles.
Collapse
Affiliation(s)
- Saheem A Zaidi
- Department of Quantitative and Computational Biology, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA. .,Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
81
|
Xu X, Kaindl J, Clark MJ, Hübner H, Hirata K, Sunahara RK, Gmeiner P, Kobilka BK, Liu X. Binding pathway determines norepinephrine selectivity for the human β 1AR over β 2AR. Cell Res 2021; 31:569-579. [PMID: 33093660 PMCID: PMC8089101 DOI: 10.1038/s41422-020-00424-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/28/2020] [Indexed: 01/29/2023] Open
Abstract
Beta adrenergic receptors (βARs) mediate physiologic responses to the catecholamines epinephrine and norepinephrine released by the sympathetic nervous system. While the hormone epinephrine binds β1AR and β2AR with similar affinity, the smaller neurotransmitter norepinephrine is approximately tenfold selective for the β1AR. To understand the structural basis for this physiologically important selectivity, we solved the crystal structures of the human β1AR bound to an antagonist carazolol and different agonists including norepinephrine, epinephrine and BI-167107. Structural comparison revealed that the catecholamine-binding pockets are identical between β1AR and β2AR, but the extracellular vestibules have different shapes and electrostatic properties. Metadynamics simulations and mutagenesis studies revealed that these differences influence the path norepinephrine takes to the orthosteric pocket and contribute to the different association rates and thus different affinities.
Collapse
Affiliation(s)
- Xinyu Xu
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084 China ,School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Jonas Kaindl
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich–Alexander University Erlangen–Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen, 91058 Germany
| | - Mary J. Clark
- Department of Pharmacology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich–Alexander University Erlangen–Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen, 91058 Germany
| | - Kunio Hirata
- Advanced Photon Technology Division, Research Infrastructure Group, SR Life Science Instrumentation Unit, RIKEN/SPring-8 Center, 1-1-1 Kouto Sayo-cho Sayo-gun, Hyogo, 679-5148 Japan ,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 Japan
| | - Roger K. Sunahara
- Department of Pharmacology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich–Alexander University Erlangen–Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen, 91058 Germany
| | - Brian K. Kobilka
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084 China ,School of Medicine, Tsinghua University, Beijing, 100084 China ,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Xiangyu Liu
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084 China ,School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
82
|
Hilger D. The role of structural dynamics in GPCR‐mediated signaling. FEBS J 2021; 288:2461-2489. [DOI: 10.1111/febs.15841] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel Hilger
- Department of Pharmaceutical Chemistry Philipps‐University Marburg Germany
| |
Collapse
|
83
|
Nagarajan SK, Babu S, Kulkarni SA, Vadivelu A, Devaraju P, Sohn H, Madhavan T. Understanding the influence of lipid bilayers and ligand molecules in determining the conformational dynamics of somatostatin receptor 2. Sci Rep 2021. [PMID: 33828200 DOI: 10.1038/s41598‐021‐87422‐5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Somatostatin receptor 2 (SSTR2) is a G-protein coupled receptor (GPCR) that controls numerous cellular processes including cell-to-cell signaling. In this study, we report how the lipid and ligand molecules influence the conformational dynamics of the membrane-bound SSTR2. Molecular simulations of different holo and apoenzyme complexes of SSTR2 in the presence and absence of a lipid bilayer were performed, observed, and correlated with previously reported studies. We identified the important SSTR2 residues that take part in the formation of the SSTR2-ligand complex. On analyzing the molecular simulation trajectories, we identified that the residue D3.32 is crucial in determining the bioactive conformation of SSTR2 ligands in the binding site. Based on the results, we suggest that designing a novel SSTR2 ligand with an H-bond donor group at the R1 position, and hydrophobic groups at R2 and R3 might have higher activity and SSTR2-selectivity. We analyzed the simulated systems to identify other important structural features involved in SSTR2-ligand binding and to observe the different conformational changes that occur in the protein after the ligand binding. Additionally, we studied the conformational dynamics of N- and C-terminal regions of SSTR2 in the presence and absence of the lipid bilayer. Both the systems were compared to understand the influence of lipid molecules in the formation of secondary structural domains by these extracellular regions. The comparative study revealed that the secondary structural elements formed by C-terminal residues in presence of lipid molecules is crucial for the functioning of SSTR2. Our study results highlight the structural complexities involved in the functioning of SSTR upon binding with the ligands in the presence and absence of lipid bilayer, which is essential for designing novel drug targets.
Collapse
Affiliation(s)
- Santhosh Kumar Nagarajan
- Computational Biology Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, 603203, India
| | - Sathya Babu
- Computational Biology Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, 603203, India
| | - Seema A Kulkarni
- Department of Food and Process Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, 603203, India
| | - Aanand Vadivelu
- Computational Biology Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, 603203, India
| | - Panneer Devaraju
- Unit of Vector Biology and Control, ICMR-Vector Control Research Centre, Indian Council of Medical Research (ICMR), Puducherry, India
| | - Honglae Sohn
- Department of Chemistry and Department of Carbon Materials, Chosun University, Gwangju, South Korea.
| | - Thirumurthy Madhavan
- Computational Biology Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, 603203, India.
| |
Collapse
|
84
|
Understanding the influence of lipid bilayers and ligand molecules in determining the conformational dynamics of somatostatin receptor 2. Sci Rep 2021; 11:7677. [PMID: 33828200 PMCID: PMC8027056 DOI: 10.1038/s41598-021-87422-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/26/2021] [Indexed: 11/11/2022] Open
Abstract
Somatostatin receptor 2 (SSTR2) is a G-protein coupled receptor (GPCR) that controls numerous cellular processes including cell-to-cell signaling. In this study, we report how the lipid and ligand molecules influence the conformational dynamics of the membrane-bound SSTR2. Molecular simulations of different holo and apoenzyme complexes of SSTR2 in the presence and absence of a lipid bilayer were performed, observed, and correlated with previously reported studies. We identified the important SSTR2 residues that take part in the formation of the SSTR2-ligand complex. On analyzing the molecular simulation trajectories, we identified that the residue D3.32 is crucial in determining the bioactive conformation of SSTR2 ligands in the binding site. Based on the results, we suggest that designing a novel SSTR2 ligand with an H-bond donor group at the R1 position, and hydrophobic groups at R2 and R3 might have higher activity and SSTR2-selectivity. We analyzed the simulated systems to identify other important structural features involved in SSTR2-ligand binding and to observe the different conformational changes that occur in the protein after the ligand binding. Additionally, we studied the conformational dynamics of N- and C-terminal regions of SSTR2 in the presence and absence of the lipid bilayer. Both the systems were compared to understand the influence of lipid molecules in the formation of secondary structural domains by these extracellular regions. The comparative study revealed that the secondary structural elements formed by C-terminal residues in presence of lipid molecules is crucial for the functioning of SSTR2. Our study results highlight the structural complexities involved in the functioning of SSTR upon binding with the ligands in the presence and absence of lipid bilayer, which is essential for designing novel drug targets.
Collapse
|
85
|
Bock A, Bermudez M. Allosteric coupling and biased agonism in G protein‐coupled receptors. FEBS J 2021; 288:2513-2528. [DOI: 10.1111/febs.15783] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Andreas Bock
- Receptor Signaling Lab Max‐Delbrueck‐Center for Molecular Medicine Berlin Germany
| | | |
Collapse
|
86
|
Sando R, Südhof TC. Latrophilin GPCR signaling mediates synapse formation. eLife 2021; 10:e65717. [PMID: 33646123 PMCID: PMC7954527 DOI: 10.7554/elife.65717] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/26/2021] [Indexed: 12/17/2022] Open
Abstract
Neural circuit assembly in the brain requires precise establishment of synaptic connections, but the mechanisms of synapse assembly remain incompletely understood. Latrophilins are postsynaptic adhesion-GPCRs that engage in trans-synaptic complexes with presynaptic teneurins and FLRTs. In mouse CA1-region neurons, Latrophilin-2 and Latrophilin-3 are essential for formation of entorhinal-cortex-derived and Schaffer-collateral-derived synapses, respectively. However, it is unknown whether latrophilins function as GPCRs in synapse formation. Here, we show that Latrophilin-2 and Latrophilin-3 exhibit constitutive GPCR activity that increases cAMP levels, which was blocked by a mutation interfering with G-protein and arrestin interactions of GPCRs. The same mutation impaired the ability of Latrophilin-2 and Latrophilin-3 to rescue the synapse-loss phenotype in Latrophilin-2 and Latrophilin-3 knockout neurons in vivo. Our results suggest that Latrophilin-2 and Latrophilin-3 require GPCR signaling in synapse formation, indicating that latrophilins promote synapse formation in the hippocampus by activating a classical GPCR-signaling pathway.
Collapse
Affiliation(s)
- Richard Sando
- Department of Molecular & Cellular Physiology and Howard Hughes Medical Institute, Stanford University School of MedicineStanfordUnited States
| | - Thomas C Südhof
- Department of Molecular & Cellular Physiology and Howard Hughes Medical Institute, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
87
|
Heim B, Handrick R, Hartmann MD, Kiefer H. Refolding and characterization of two G protein-coupled receptors purified from E. coli inclusion bodies. PLoS One 2021; 16:e0247689. [PMID: 33626080 PMCID: PMC7904181 DOI: 10.1371/journal.pone.0247689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/10/2021] [Indexed: 11/18/2022] Open
Abstract
Aiming at streamlining GPCR production from E. coli inclusion bodies for structural analysis, we present a generic approach to assess and optimize refolding yield through thermostability analysis. Since commonly used hydrophobic dyes cannot be applied as probes for membrane protein unfolding, we adapted a technique based on reacting cysteins exposed upon thermal denaturation with fluorescent 7-Diethylamino-3-(4-maleimidophenyl)-4-methylcoumarin (CPM). Successful expression, purification and refolding is shown for two G protein-coupled receptors (GPCR), the sphingosine-1-phosphate receptor S1P1, and the orphan receptor GPR3. Refolded receptors were subjected to lipidic cubic phase crystallization screening.
Collapse
Affiliation(s)
- Bastian Heim
- Institute of Applied Biotechnology, University of Applied Sciences, Biberach, Germany
- * E-mail:
| | - René Handrick
- Institute of Applied Biotechnology, University of Applied Sciences, Biberach, Germany
| | | | - Hans Kiefer
- Institute of Applied Biotechnology, University of Applied Sciences, Biberach, Germany
| |
Collapse
|
88
|
Wang J, Zhao X, Yuan X, Hao J, Chang Z, Li Q, Zhao X. Rapid screening of bioactive compound in Sanzi Yangqin Decoction and investigating of binding mechanism by immobilized β 2-adrenogic receptor chromatography coupled with molecular docking. J Pharm Biomed Anal 2021; 197:113957. [PMID: 33601158 DOI: 10.1016/j.jpba.2021.113957] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/09/2021] [Accepted: 02/04/2021] [Indexed: 11/25/2022]
Abstract
Screening bioactive compounds from traditional Chinese medicines plays pivotal role in preventing and curing diseases. Sanzi Yangqin Decoction (SYD) is a commonly used prescription for the treatment of cough, asthma and some other respiratory diseases for hundreds of years in practice. This reminds us that there may exist some bioactive compounds strongly binding with the recognized receptors mediating these diseases like β2-adrenegic receptor (β2-AR). Therefore, this work intends to screen bioactive compounds from SYD and revealed the binding mechanism by immobilized β2-AR chromatography and molecular docking. Taking advantages of a 3-high based enzymatic trans-methylation reaction (high speed, high specificity and high activity), the immobilization of β2-AR was successfully achieved. Representative chromatographic peaks of SYD on the immobilized β2-AR column was collected and recognized as rosmarinic acid and sinapine thiocyanate. Tension changes of the trachea ring showed that the two compounds were in a concentration-dependent manner when exerting their effects and the concentration ranges were 10-9-10-4 mol/L and 10-12-10-7 mol/L, respectively. Molecular docking revealed Ser203, Ser204, Ser207, Tyr316 and Asn312 were the main residues for the two compounds to bind with β2-AR. We concluded that the proposed method is becoming an alternative in rapid recognizing bioactive compounds from complex matrix.
Collapse
Affiliation(s)
- Jing Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xue Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xinyi Yuan
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jiaxue Hao
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhongman Chang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qian Li
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xinfeng Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
89
|
Yang D, Zhou Q, Labroska V, Qin S, Darbalaei S, Wu Y, Yuliantie E, Xie L, Tao H, Cheng J, Liu Q, Zhao S, Shui W, Jiang Y, Wang MW. G protein-coupled receptors: structure- and function-based drug discovery. Signal Transduct Target Ther 2021; 6:7. [PMID: 33414387 PMCID: PMC7790836 DOI: 10.1038/s41392-020-00435-w] [Citation(s) in RCA: 261] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 02/08/2023] Open
Abstract
As one of the most successful therapeutic target families, G protein-coupled receptors (GPCRs) have experienced a transformation from random ligand screening to knowledge-driven drug design. We are eye-witnessing tremendous progresses made recently in the understanding of their structure-function relationships that facilitated drug development at an unprecedented pace. This article intends to provide a comprehensive overview of this important field to a broader readership that shares some common interests in drug discovery.
Collapse
Affiliation(s)
- Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Qingtong Zhou
- School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Viktorija Labroska
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shanshan Qin
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Sanaz Darbalaei
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Elita Yuliantie
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Linshan Xie
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Houchao Tao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Qing Liu
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
| | - Ming-Wei Wang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China. .,School of Pharmacy, Fudan University, 201203, Shanghai, China.
| |
Collapse
|
90
|
Krohn KA, Vera DR. Concepts for design and analysis of receptor radiopharmaceuticals: The Receptor-Binding Radiotracers series of meetings provided the foundation. Nucl Med Biol 2021; 92:5-23. [PMID: 32331709 PMCID: PMC8049838 DOI: 10.1016/j.nucmedbio.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022]
Abstract
A symposium at George Washington University on Receptor-Binding Radiotracers in 1980 and three follow-up meetings held at University of California, San Diego provided a forum for debating the critical concepts involved in the new field of designing and evaluating radiotracers for imaging receptors and transporters. This review is intended to educate young investigators who may be relatively new to receptor radiopharmaceutical development. Our anticipated audience includes researchers in basic pharmacology, radiochemistry, imaging technology and kinetic data analysis and how these disciplines have worked together to build our understanding of the human biology of transporters and receptor signaling in health and disease. We have chosen to focus on radiochemical design of a useful imaging agent and how design is coupled to analysis of data collected from dynamic imaging with that agent. Some pharmacology may be required for designing the imaging agent and some imaging physics may be important in optimizing the quality of data that is collected. However, the key to a successful imaging agent is matching the radiotracer to the target receptor and to analysis of the time-course data that is used to parse delivery from specific binding and subsequent metabolism or degradation. Properly designed imaging agents are providing critical information about human biology in health and disease as well as pharmacodynamic response to drug interventions. The review emphasizes some of the ideas that were controversial at the 1980 conference and chronicles with literature examples how they have resolved over the four decades of using radiotracers to study transporters and receptors in human subjects. These examples show that there are situations where a very small KD, i.e. high affinity, has the potential to yield an image that reflects blood flow more than receptor density. The examples also show that by combining two studies, one with high specific activity and a second with low specific activity injections one can unravel the pseudo-first order rate B'max into the true second-order rate constant, k3, and the unoccupied receptor density. The final section describes how mathematical methods first presented to the receptor-imaging community in 1980 are now being used to provide confidence in the analysis of kinetic biodistribution studies. Our hope is that by bringing these concepts together in a single review, the next generation of scientists developing receptor imaging agents can be much more efficient than their pioneers in developing useful imaging methods.
Collapse
Affiliation(s)
- Kenneth A Krohn
- Center for Radiochemistry Research, Department of Diagnostic Radiology, Mail Code L104, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States of America.
| | - David R Vera
- UCSD Moores Cancer Center, Department of Radiology, Mail Code 0819, University of California, San Diego, CA 92037, United States of America
| |
Collapse
|
91
|
Abiko LA, Rogowski M, Gautier A, Schertler G, Grzesiek S. Efficient production of a functional G protein-coupled receptor in E. coli for structural studies. JOURNAL OF BIOMOLECULAR NMR 2021; 75:25-38. [PMID: 33501610 PMCID: PMC7897205 DOI: 10.1007/s10858-020-00354-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/08/2020] [Indexed: 05/22/2023]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane signal transducers which regulate many key physiological process. Since their discovery, their analysis has been limited by difficulties in obtaining sufficient amounts of the receptors in high-quality, functional form from heterologous expression hosts. Albeit highly attractive because of its simplicity and the ease of isotope labeling for NMR studies, heterologous expression of functional GPCRs in E. coli has proven particularly challenging due to the absence of the more evolved protein expression and folding machinery of higher eukaryotic hosts. Here we first give an overview on the previous strategies for GPCR E. coli expression and then describe the development of an optimized robust protocol for the E. coli expression and purification of two mutants of the turkey β1-adrenergic receptor (β1AR) uniformly or selectively labeled in 15N or 2H,15N. These mutants had been previously optimized for thermal stability using insect cell expression and used successfully in crystallographic and NMR studies. The same sequences were then used for E. coli expression. Optimization of E. coli expression was achieved by a quantitative analysis of losses of receptor material at each step of the solubilization and purification procedure. Final yields are 0.2-0.3 mg receptor per liter culture. Whereas both expressed mutants are well folded and competent for orthosteric ligand binding, the less stable YY-β1AR mutant also comprises the two native tyrosines Y5.58 and Y7.53, which enable G protein binding. High-quality 1H-15N TROSY spectra were obtained for E. coli-expressed YY-β1AR in three different functional states (antagonist, agonist, and agonist + G protein-mimicking nanobody-bound), which are identical to spectra obtained of the same forms of the receptor expressed in insect cells. NdeI and AgeI restriction sites introduced into the expression plasmid allow for the easy replacement of the receptor gene by other GPCR genes of interest, and the provided quantitative workflow analysis may guide the respective adaptation of the purification protocol.
Collapse
Affiliation(s)
- Layara Akemi Abiko
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland.
| | - Marco Rogowski
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Antoine Gautier
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | | | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
92
|
Kermani AA. A guide to membrane protein X‐ray crystallography. FEBS J 2020; 288:5788-5804. [DOI: 10.1111/febs.15676] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Ali A. Kermani
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI USA
| |
Collapse
|
93
|
Fake It 'Till You Make It-The Pursuit of Suitable Membrane Mimetics for Membrane Protein Biophysics. Int J Mol Sci 2020; 22:ijms22010050. [PMID: 33374526 PMCID: PMC7793082 DOI: 10.3390/ijms22010050] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane proteins evolved to reside in the hydrophobic lipid bilayers of cellular membranes. Therefore, membrane proteins bridge the different aqueous compartments separated by the membrane, and furthermore, dynamically interact with their surrounding lipid environment. The latter not only stabilizes membrane proteins, but directly impacts their folding, structure and function. In order to be characterized with biophysical and structural biological methods, membrane proteins are typically extracted and subsequently purified from their native lipid environment. This approach requires that lipid membranes are replaced by suitable surrogates, which ideally closely mimic the native bilayer, in order to maintain the membrane proteins structural and functional integrity. In this review, we survey the currently available membrane mimetic environments ranging from detergent micelles to bicelles, nanodiscs, lipidic-cubic phase (LCP), liposomes, and polymersomes. We discuss their respective advantages and disadvantages as well as their suitability for downstream biophysical and structural characterization. Finally, we take a look at ongoing methodological developments, which aim for direct in-situ characterization of membrane proteins within native membranes instead of relying on membrane mimetics.
Collapse
|
94
|
Das M, Mahler F, Hariharan P, Wang H, Du Y, Mortensen JS, Patallo EP, Ghani L, Glück D, Lee HJ, Byrne B, Loland CJ, Guan L, Kobilka BK, Keller S, Chae PS. Diastereomeric Cyclopentane-Based Maltosides (CPMs) as Tools for Membrane Protein Study. J Am Chem Soc 2020; 142:21382-21392. [PMID: 33315387 PMCID: PMC8015409 DOI: 10.1021/jacs.0c09629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Amphiphilic agents, called detergents, are invaluable tools for studying membrane proteins. However, membrane proteins encapsulated by conventional head-to-tail detergents tend to denature or aggregate, necessitating the development of structurally distinct molecules with improved efficacy. Here, a novel class of diastereomeric detergents with a cyclopentane core unit, designated cyclopentane-based maltosides (CPMs), were prepared and evaluated for their ability to solubilize and stabilize several model membrane proteins. A couple of CPMs displayed enhanced behavior compared with the benchmark conventional detergent, n-dodecyl-β-d-maltoside (DDM), for all the tested membrane proteins including two G-protein-coupled receptors (GPCRs). Furthermore, CPM-C12 was notable for its ability to confer enhanced membrane protein stability compared with the previously developed conformationally rigid NBMs [J. Am. Chem. Soc. 2017, 139, 3072] and LMNG. The effect of the individual CPMs on protein stability varied depending on both the detergent configuration (cis/trans) and alkyl chain length, allowing us draw conclusions on the detergent structure-property-efficacy relationship. Thus, this study not only provides novel detergent tools useful for membrane protein research but also reports on structural features of the detergents critical for detergent efficacy in stabilizing membrane proteins.
Collapse
Affiliation(s)
- Manabendra Das
- Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, Korea
- Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Florian Mahler
- Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Yang Du
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Eugenio Pérez Patallo
- Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Lubna Ghani
- Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, Korea
| | - David Glück
- Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Ho Jin Lee
- Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, Korea
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Sandro Keller
- Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
- Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Pil Seok Chae
- Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, Korea
| |
Collapse
|
95
|
Chowdhury R, Abboud MI, McAllister TE, Banerji B, Bhushan B, Sorensen JL, Kawamura A, Schofield CJ. Use of cyclic peptides to induce crystallization: case study with prolyl hydroxylase domain 2. Sci Rep 2020; 10:21964. [PMID: 33319810 PMCID: PMC7738489 DOI: 10.1038/s41598-020-76307-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022] Open
Abstract
Crystallization is the bottleneck in macromolecular crystallography; even when a protein crystallises, crystal packing often influences ligand-binding and protein-protein interaction interfaces, which are the key points of interest for functional and drug discovery studies. The human hypoxia-inducible factor prolyl hydroxylase 2 (PHD2) readily crystallises as a homotrimer, but with a sterically blocked active site. We explored strategies aimed at altering PHD2 crystal packing by protein modification and molecules that bind at its active site and elsewhere. Following the observation that, despite weak inhibition/binding in solution, succinamic acid derivatives readily enable PHD2 crystallization, we explored methods to induce crystallization without active site binding. Cyclic peptides obtained via mRNA display bind PHD2 tightly away from the active site. They efficiently enable PHD2 crystallization in different forms, both with/without substrates, apparently by promoting oligomerization involving binding to the C-terminal region. Although our work involves a specific case study, together with those of others, the results suggest that mRNA display-derived cyclic peptides may be useful in challenging protein crystallization cases.
Collapse
Affiliation(s)
- Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Martine I Abboud
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Tom E McAllister
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Biswadip Banerji
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Bhaskar Bhushan
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - John L Sorensen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Akane Kawamura
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| |
Collapse
|
96
|
Liu S, Li S, Yang Y, Li W. Termini restraining of small membrane proteins enables structure determination at near-atomic resolution. SCIENCE ADVANCES 2020; 6:eabe3717. [PMID: 33355146 PMCID: PMC11205269 DOI: 10.1126/sciadv.abe3717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Small membrane proteins are difficult targets for structural characterization. Here, we stabilize their folding by restraining their amino and carboxyl termini with associable protein entities, exemplified by the two halves of a superfolder GFP. The termini-restrained proteins are functional and show improved stability during overexpression and purification. The reassembled GFP provides a versatile scaffold for membrane protein crystallization, enables diffraction to atomic resolution, and facilitates crystal identification, phase determination, and density modification. This strategy gives rise to 14 new structures of five vertebrate proteins from distinct functional families, bringing a substantial expansion to the structural database of small membrane proteins. Moreover, a high-resolution structure of bacterial DsbB reveals that this thiol oxidoreductase is activated through a catalytic triad, similar to cysteine proteases. Overall, termini restraining proves exceptionally effective for stabilization and structure determination of small membrane proteins.
Collapse
Affiliation(s)
- Shixuan Liu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shuang Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yihu Yang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
97
|
Chorev DS, Robinson CV. The importance of the membrane for biophysical measurements. Nat Chem Biol 2020; 16:1285-1292. [PMID: 33199903 PMCID: PMC7116504 DOI: 10.1038/s41589-020-0574-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/22/2020] [Indexed: 11/09/2022]
Abstract
Within cell membranes numerous protein assemblies reside. Among their many functions, these assemblies regulate the movement of molecules between membranes, facilitate signaling into and out of cells, allow movement of cells by cell-matrix attachment, and regulate the electric potential of the membrane. With such critical roles, membrane protein complexes are of considerable interest for human health, yet they pose an enduring challenge for structural biologists because it is difficult to study these protein structures at atomic resolution in in situ environments. To advance structural and functional insights for these protein assemblies, membrane mimetics are typically employed to recapitulate some of the physical and chemical properties of the lipid bilayer membrane. However, extraction from native membranes can sometimes change the structure and lipid-binding properties of these complexes, leading to conflicting results and fueling a drive to study complexes directly from native membranes. Here we consider the co-development of membrane mimetics with technological breakthroughs in both cryo-electron microscopy (cryo-EM) and native mass spectrometry (nMS). Together, these developments are leading to a plethora of high-resolution protein structures, as well as new knowledge of their lipid interactions, from different membrane-like environments.
Collapse
Affiliation(s)
- Dror S Chorev
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.
| |
Collapse
|
98
|
Sepuru KM, Nair V, Prakash P, Gorfe AA, Rajarathnam K. Long-Range Coupled Motions Underlie Ligand Recognition by a Chemokine Receptor. iScience 2020; 23:101858. [PMID: 33344917 PMCID: PMC7736917 DOI: 10.1016/j.isci.2020.101858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 12/28/2022] Open
Abstract
Chemokines are unusual class-A G protein-coupled receptor agonists because of their large size (∼10 kDa) and binding at two distinct receptor sites: N-terminal domain (Site-I, unique to chemokines) and a groove defined by extracellular loop/transmembrane helices (Site-II, shared with all small molecule class-A ligands). Structures and sequence analysis reveal that the receptor N-terminal domains (N-domains) are flexible and contain intrinsic disorder. Using a hybrid NMR-MD approach, we characterized the role of Site-I interactions for the CXCL8-CXCR1 pair. NMR data indicate that the CXCR1 N-domain becomes structured on binding and that the binding interface is extensive with 30% CXCL8 residues participating in this initial interaction. MD simulations indicate that CXCL8 bound at Site-I undergoes extensive reorganization on engaging Site-II with several residues initially engaged at Site-I also engaging at Site-II. We conclude that structural plasticity of Site-I interactions plays an active role in driving ligand recognition by a chemokine receptor. Structural plasticity governs chemokine-receptor interactions Receptor N-terminal domain captures the chemokine by a fly-casting mechanism Crosstalk between two distinct binding sites determines recognition and function A hybrid NMR-MD approach provides crucial insights into receptor binding mechanism
Collapse
Affiliation(s)
- Krishna Mohan Sepuru
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Vinay Nair
- Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Priyanka Prakash
- Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Alemayehu A Gorfe
- Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
99
|
The Potential of 19F NMR Application in GPCR Biased Drug Discovery. Trends Pharmacol Sci 2020; 42:19-30. [PMID: 33250272 DOI: 10.1016/j.tips.2020.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 01/14/2023]
Abstract
Although structure-based virtual drug discovery is revolutionizing the conventional high-throughput cell-based screening system, its limitation is obvious, together with other critical challenges. In particular, the resolved static snapshots fail to represent a full free-energy landscape due to homogenization in structural determination processing. The loss of conformational heterogeneity and related functional diversity emphasize the necessity of developing an approach that can fill this space. In this regard, NMR holds undeniable potential. However, outstanding questions regarding the NMR application remain. This review summarizes the limitations of current drug discovery and explores the potential of 19F NMR in establishing a conformation-guided drug screening system, advancing the cell- and structure-based discovery strategy for G protein-coupled receptor (GPCR) biased drug screening.
Collapse
|
100
|
Vogel A, Bosse M, Gauglitz M, Wistuba S, Schmidt P, Kaiser A, Gurevich VV, Beck-Sickinger AG, Hildebrand PW, Huster D. The Dynamics of the Neuropeptide Y Receptor Type 1 Investigated by Solid-State NMR and Molecular Dynamics Simulation. Molecules 2020; 25:E5489. [PMID: 33255213 PMCID: PMC7727705 DOI: 10.3390/molecules25235489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 01/08/2023] Open
Abstract
We report data on the structural dynamics of the neuropeptide Y (NPY) G-protein-coupled receptor (GPCR) type 1 (Y1R), a typical representative of class A peptide ligand GPCRs, using a combination of solid-state NMR and molecular dynamics (MD) simulation. First, the equilibrium dynamics of Y1R were studied using 15N-NMR and quantitative determination of 1H-13C order parameters through the measurement of dipolar couplings in separated-local-field NMR experiments. Order parameters reporting the amplitudes of the molecular motions of the C-H bond vectors of Y1R in DMPC membranes are 0.57 for the Cα sites and lower in the side chains (0.37 for the CH2 and 0.18 for the CH3 groups). Different NMR excitation schemes identify relatively rigid and also dynamic segments of the molecule. In monounsaturated membranes composed of longer lipid chains, Y1R is more rigid, attributed to a higher hydrophobic thickness of the lipid membrane. The presence of an antagonist or NPY has little influence on the amplitude of motions, whereas the addition of agonist and arrestin led to a pronounced rigidization. To investigate Y1R dynamics with site resolution, we conducted extensive all-atom MD simulations of the apo and antagonist-bound state. In each state, three replicas with a length of 20 μs (with one exception, where the trajectory length was 10 μs) were conducted. In these simulations, order parameters of each residue were determined and showed high values in the transmembrane helices, whereas the loops and termini exhibit much lower order. The extracellular helix segments undergo larger amplitude motions than their intracellular counterparts, whereas the opposite is observed for the loops, Helix 8, and termini. Only minor differences in order were observed between the apo and antagonist-bound state, whereas the time scale of the motions is shorter for the apo state. Although these relatively fast motions occurring with correlation times of ns up to a few µs have no direct relevance for receptor activation, it is believed that they represent the prerequisite for larger conformational transitions in proteins.
Collapse
Affiliation(s)
- Alexander Vogel
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Mathias Bosse
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Marcel Gauglitz
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Sarah Wistuba
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Peter Schmidt
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Anette Kaiser
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany; (A.K.); (A.G.B.-S.)
| | - Vsevolod V. Gurevich
- Vanderbilt University Medical Center, 2200 Pierce Avenue, Nashville, TN 37232, USA;
| | - Annette G. Beck-Sickinger
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany; (A.K.); (A.G.B.-S.)
| | - Peter W. Hildebrand
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| |
Collapse
|