51
|
Jiang P, Liu Y, Song J, Bo Z. Emergence of Low-Cost and High-Performance Nonfused Ring Electron Acceptors. Acc Chem Res 2024. [PMID: 39567220 DOI: 10.1021/acs.accounts.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
ConspectusOrganic solar cells (OSCs) have garnered significant attention in academic and industrial circles due to their advantages such as lightweight, excellent bending performance, and the ability to be fabricated into semitransparent devices. Since the proposal of the bulk heterojunction concept by Heeger et al. in 1995, conjugated polymer/fullerene pairs have gradually emerged as the optimal choice for active layer materials in OSCs. Fullerene derivatives were preferred as electron acceptors in OSCs because of their high electron mobility. However, due to limitations such as insufficient light absorption, limited derivative potential, and poor energy level tunability, the power conversion efficiency (PCE) of OSCs based on fullerene derivatives has encountered a bottleneck of approximately 12%, despite the continuous updates in polymer donor materials over nearly two decades of development, leading to a gradual decline in their importance. By contrast, nonfullerene electron acceptors (NFAs) have gradually gained dominance in this field since first appearing in 2015, thanks to their advantages of tunable absorption spectrum, adjustable energy levels, and modifiable chemical structure. Among nonfullerene acceptors, fused-ring electron acceptors (FREAs) such as ITIC and Y6 have achieved significant progress, boosting the PCE of OSCs to 20%. This milestone achievement indicates the potential of their commercial applications. However, the synthesis process of FREA is complex and often constrained by low-yield ring-closure reactions, resulting in high costs.The molecular backbone of nonfused ring electron acceptors (NFREAs) is composed of single bonds, which enables the adoption of modular synthesis mainly via Stille (based on organotin reactant) and/or Suzuki (based on organoboron reactant) coupling or C-H activation (without prefunctionalization) and avoids low-yield ring-closing reactions, thus making them a potential alternative to fused-ring acceptors. To achieve a planar molecular backbone and minimize energy loss due to conformational rotation, our team innovatively used intramolecular noncovalent interactions as a replacement for traditional covalent bonds. Furthermore, to address the issues of poor solubility and excessive aggregation during film formation for NFREAs, we strategically introduced sterically hindered side groups, such as 2,6-bis(alkyloxy)phenyl and diphenylamino, into the molecular design, effectively mitigating these problems. These innovative design concepts have significantly advanced the development of high-performance NFREAs and have garnered increasing attention from the research community. The PCEs of OSCs based on NFREAs have significantly improved from less than 10% to close to 20% since their initial discovery. By optimizing the device fabrication process, we have achieved a PCE of over 19%, which is comparable to that of FREAs. This article will delve into the evolution and latest research progress of NFREAs, aiming to provide valuable insights and guidance for the design of cost-effective and high-performance NFREA materials.
Collapse
Affiliation(s)
- Pengcheng Jiang
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Chemistry Postdoctoral Research Station at Hebei Normal University, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yahui Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Jinsheng Song
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475001, China
| | - Zhishan Bo
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
52
|
Wang K, Jinnai S, Urakami T, Sato H, Higashi M, Tsujimura S, Kobori Y, Adachi R, Yamakata A, Ie Y. Nonfullerene Acceptors Bearing Spiro-Substituted Bithiophene Units in Organic Solar Cells: Tuning the Frontier Molecular Orbital Distribution to Reduce Exciton Binding Energy. Angew Chem Int Ed Engl 2024; 63:e202412691. [PMID: 39133206 DOI: 10.1002/anie.202412691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/13/2024]
Abstract
The development of nonfullerene acceptors (NFAs), represented by ITIC, has contributed to improving the power conversion efficiency (PCE) of organic solar cells (OSCs). Although tuning the electronic structures to reduce the exciton binding energy (Eb) is considered to promote photocharge generation, a rational molecular design for NFAs has not been established. In this study, we designed and developed two ITIC-based NFAs bearing spiro-substituted bithiophene or biphenyl units (named SpiroT-DCI and SpiroF-DCI) to tune the frontier molecular orbital (FMO) distribution of NFAs. While the highest occupied molecular orbitals (HOMOs) of SpiroF-DCI and ITIC are delocalized in the main π-conjugated framework, the HOMO of SpiroT-DCI is distributed on the bithiophene unit. Reflecting this difference, SpiroT-DCI exhibits a smaller Eb than either SpiroF-DCI or ITIC, and exhibits greater external quantum efficiency in single-component OSCs. Furthermore, SpiroT-DCI shows improved PCEs for bulk-heterojunction OSCs with a donor of PBDB-T, compared with that of either SpiroT-DCI or ITIC. Time-resolved spectroscopy measurements show that the photo-induced intermolecular charge separation is effective even in pristine SpiroT-DCI films. This study highlights the introduction of spiro-substituted bithiophene units that are effective in tuning the FMOs of ITIC, which is desirable for reducing the Eb and improving the PCE in OSCs.
Collapse
Affiliation(s)
- Kai Wang
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Seihou Jinnai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takumi Urakami
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku, Kyoto, 615-8510, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano Nishihirakicho 34-4, Sakyo-ku, Kyoto, 606-8103, Japan
| | - Masahiro Higashi
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University Furo-cho, Chikusa-ku, Nago-ya, 464-8601, Japan
| | - Sota Tsujimura
- Department of Chemistry, Graduate school of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Rintaro Adachi
- Graduate School of Natural Science & Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama, 700-8530, Japan
| | - Akira Yamakata
- Graduate School of Natural Science & Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama, 700-8530, Japan
| | - Yutaka Ie
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
53
|
Wang J, Huang Y, Wang Y, Durbeej B, Blancafort L. Investigating Excited States and Absorption Spectra of the Poly-cyclopenta-dithiophene-benzothiadiazole Oligomers (Poly-CPDTBT)-A Theoretical Study. Molecules 2024; 29:5348. [PMID: 39598738 PMCID: PMC11596913 DOI: 10.3390/molecules29225348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/10/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
Poly-CPDTBT, as typical low-band gap copolymers, have potential applications in organic bulk heterojunction solar cells. To have a clear picture of its excited-state processes, the first task is to understand their excited states, in particular, electronic character and relevant optical absorption. Herein, the low-lying singlet excited states of Poly-CPDTBT oligomers were investigated via Algebraic Diagrammatic Construction Second Order (ADC(2)) and time-dependent density functional theory (TDDFT) method with several functionals. Six CPDTBTN (N = 1-6) oligomers were taken as prototypes to study their excited states in detail. The results provide interesting clues to extrapolate the photophysical properties of such polymers with potential applications in photovoltaic materials. The result provided by ωB97XD functional gives good agreement with the experiment result. The vertical excitation energies of the four lowest excited states decrease almost linearly with increasing polymerization degree (N) for CPDTBTN (N = 1-6). The transition density analysis indicates that the local excitations (LE) and the short-distance charge transfer (CT) excitations between two adjacent CPDT and BT units are dominant for low-lying excited states for short oligomers. For the long-chain oligomers (trimer to hexamer), the transition density shows a ladder (or zigzag) pattern along the diagonal blocks at the planar geometry. For long oligomers, the whole chain is involved in the transitions, and the CT excitations only exist between two adjacent CPDT and BT units. The present work provides a valuable basis for understanding the excited-state processes of Poly-CPDTBT and other conjugated polymers that conduct solar energy conversions, which has great significance for the development of new solar cells.
Collapse
Affiliation(s)
- Jun Wang
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, No. 111 West Changjiang Road, Huaian 223300, China
| | - Yuting Huang
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, No. 111 West Changjiang Road, Huaian 223300, China
| | - Yajing Wang
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, No. 111 West Changjiang Road, Huaian 223300, China
| | - Bo Durbeej
- Division of Theoretical Chemistry, IFM, Linköping University, SE-581 83 Linköping, Sweden
| | - Lluís Blancafort
- The Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, C/M.A. Capmany 69, 17003 Girona, Spain;
| |
Collapse
|
54
|
Alessio P, da Silva MKC, Barossi V, Miyazaki CM. Nanostructured Thin Films Enhancing the Performance of New Organic Electronic Devices: Does It Make Sense? ACS MATERIALS AU 2024; 4:574-581. [PMID: 39554863 PMCID: PMC11565282 DOI: 10.1021/acsmaterialsau.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024]
Abstract
Electronics have evolved significantly with the development of semiconductor materials and devices, with emerging areas such as organic and flexible electronics showing great promise, particularly in applications such as wearable devices and environmental sensors. Since the discovery of conducting polymers in the late 1970s, organic electronics have paved the way for innovations such as organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs), and organic solar cells (OPVs). Recent advances have focused on nanostructuring techniques to enhance device properties, such as charge mobility and luminescence efficiency. The growing concern for sustainability has also led to the exploration of biodegradable organic electronics as a potential solution to electronic waste. This perspective briefly discusses the impact of nanostructuring on the performance of both conventional and biodegradable organic devices, exploring the challenges and opportunities associated with using alternative substrates like paper. This perspective emphasizes the importance of understanding molecular organization at the nanoscale to optimize device performance and ensure stability under practical conditions.
Collapse
Affiliation(s)
- Priscila Alessio
- Department
of Physics, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP 19060-080, Brazil
| | - Milene K. C. da Silva
- Department
of Physics, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP 19060-080, Brazil
| | - Vitoria Barossi
- Department
of Physics, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP 19060-080, Brazil
| | - Celina M. Miyazaki
- Department
of Physics, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP 19060-080, Brazil
| |
Collapse
|
55
|
Wang K, Gao J, Wang H, Guo Q, Zhang J, Guo X, Zhang M. Enhanced Fill Factor and Efficiency of Ternary Organic Solar Cells by a New Asymmetric Non-Fullerene Small Molecule Acceptor. CHEMSUSCHEM 2024; 17:e202400691. [PMID: 38805339 DOI: 10.1002/cssc.202400691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
Asymmetric non-fullerene small molecules acceptor (as-NF-SMAs) exhibit greater vitality in photovoltaic materials compared to their symmetric counterparts due to their larger dipole moments and stronger intermolecular interactions, which facilitate exciton dissociation and charge transmission in organic solar cells (OSCs). Here, we introduced a new as-NF-SMAs, named IDT-TNIC, as the third component in ternary organic solar cells (TOSCs). The asymmetric IDT-TNIC used indacenodithiophene (IDT) as the central core, alkylthio-thiophene as a unilateral π-bridge and extended end groups as electron-withdrawing. Due to the non-covalent conformational lock (NCL) established between O⋅⋅⋅S and S⋅⋅⋅S, the IDT-TNIC molecule preserves its coplanar structure effectively. Furthermore, IDT-TNIC exhibits complementary absorption and excellent compatibility with donor and acceptor materials, as well as optimized ladder energy level arrangement, resulting in a higher and more balanced μh/μe value, more homogeneous and suitable phase separation morphology in TOSCs. Thus, the PCE of the TOSCs reached 17 % when the weight ratio of PM6 : Y6 : IDT-TNIC was 1 : 1.1 : 0.1, and it is noteworthy that when the device area was increased to 1 cm2, the PCE could still be maintained at over 14 %. Detailed studies and analysis indicate that IDT-TNIC has great potential as a third component in OSCs and for large-scale printing in the future.
Collapse
Affiliation(s)
- Kun Wang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 451191, China
| | - Jingshun Gao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 451191, China
| | - Huiyan Wang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 451191, China
| | - Qing Guo
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xia Guo
- National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Maojie Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan, 250100, China
| |
Collapse
|
56
|
Jia X, Li Y, Cao X, Bi X, Zhao W, Yao Z, Long G, Kan B, Guo Y, Li C, Wan X, Chen Y. Delicate Regulation of Central Substituents Boosts Organic Photovoltaic Performance of Dimeric Acceptors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405925. [PMID: 39225373 DOI: 10.1002/smll.202405925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Dimeric acceptors are expected to satisfy both excellent power conversion efficiency (PCE) and operational stability of organic solar cells (OSCs). However, comparing to highly planar and symmetrical monomer-like acceptors, the quite different steric/spatial configurations of dimeric acceptors affect device outcomes greatly. Herein, on basis of the same dimeric molecular platform that constructed by bridging central units of two monomer-like acceptor, diverse substituents (─OCH3 for D1, ─CH3 for D2, and ─CF3 for D3) are grafted on central units to regulate the three dimensions (3D) geometries of dimeric acceptors delicately. A systematic investigation reveals the substituent-dependent variation of energy level, absorption, and molecular packing behavior. Consequently, D2 acceptor, characteristic of more favorable configuration, affords a superior film morphology and charge transfer/transport dynamics in resulting OSCs, thus yielding an excellent PCE of 17.50% along with a good long-term stability. This work manifests the crucially important role of central substituents in constructing high-performance dimeric acceptors.
Collapse
Affiliation(s)
- Xinyuan Jia
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiangjian Cao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xingqi Bi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenkai Zhao
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Zhaoyang Yao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Yaxiao Guo
- State Key Laboratory of Separation Membranes and Membrane Processes and Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE), School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Chenxi Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiangjian Wan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongsheng Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
57
|
Li J, Wang H, Tong Y, Li Z, Wei Z, Cheng Y, An C, Xu B. Achieving High Doping Density in pH-neutral Conjugated Polyelectrolyte Toward Effective Hole-Transporting Materials for Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409885. [PMID: 39400945 DOI: 10.1002/adma.202409885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Indexed: 10/15/2024]
Abstract
The lack of effective and non-corrosive hole-transporting layer (HTL) materials has remained a long-standing issue that severely restricts the performance of organic solar cells (OSCs). Most pH-neutral conjugated polyelectrolytes (CPEs) exhibit inferior performance to the acid-doped HTL materials due to their low doping density. In this study, a series of pH-neutral CPEs is designed and synthesized with high doping density as HTL materials. Through an elaborate synthetic route, two sulfonate-terminating alkoxyl side chains can be introduced into thiophene, by which the electron-rich, highly soluble, and chemically stable thiophene monomer is synthesized to enable the subsequent polymerization. The CPE PTT-F exhibit a remarkable self-doping property with an enhanced doping density from 2.01 × 1017 to 7.02 × 1018 cm-3. The high work function and the increased doping density of PTT-F-based HTL decrease the depletion region width from 38.4 to 8.1 nm at the anode interface, which minimized the energy loss in hole transport. Consequently, a binary OSC modified by PTT-F-based HTL achieve a high PCE of 18.8%. To the best of the knowledge, this is the highest PCE for OSC employing CPE-based HTL. The results from this work demonstrate an encouraging achievement of realizing exceptional hole collection ability in pH-neutral CPEs.
Collapse
Affiliation(s)
- Jiayu Li
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - He Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yao Tong
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhe Li
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhengrong Wei
- School of Physics, Hubei University, Wuhan, 430072, P. R. China
| | - Yuan Cheng
- School of Physics, Hubei University, Wuhan, 430072, P. R. China
| | - Cunbin An
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Bowei Xu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
58
|
Takagi H, Çelik Ç, Fukuda R, Guo Q, Higashino T, Imahori H, Yamakoshi Y, Murakami T. Interaction of a pyrene derivative with cationic [60]fullerene in phospholipid membranes and its effects on photodynamic actions. Beilstein J Org Chem 2024; 20:2732-2738. [PMID: 39498446 PMCID: PMC11533121 DOI: 10.3762/bjoc.20.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/01/2024] [Indexed: 11/07/2024] Open
Abstract
We have reported that upon visible light irradiation, ferrocene-porphyrin-[60]fullerene triad molecules yield long-lived charge-separated states, enabling the control of the plasma membrane potential (V m) in living cells. These previous studies indicated that the localization of the triad molecules in a specific intra-membrane orientation and the suppression of the photodynamic actions of the [60]fullerene (C60) moiety are likely important to achieve fast and safe control of V m, respectively. In this study, by mimicking our previous system of triad molecules and living cells, we report a simplified model system with a cationic C60 derivative (catC60) and a liposome with embedded 1-pyrenebutyric acid (PyBA) to demonstrate that the addition of PyBA was important to achieve fast and safer control of V m.
Collapse
Affiliation(s)
- Hayato Takagi
- Department of Biotechnology and Pharmaceutical Engineering, Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu City, Toyama 939-0398, Japan
| | - Çetin Çelik
- Laboratorium für Anorganische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Ryosuke Fukuda
- Department of Biotechnology and Pharmaceutical Engineering, Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu City, Toyama 939-0398, Japan
| | - Qi Guo
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomohiro Higashino
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroshi Imahori
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- Instutite for Integrated Cell–Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Instutite for Liberal Arts and Sciences (ILAS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoko Yamakoshi
- Laboratorium für Anorganische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Tatsuya Murakami
- Department of Biotechnology and Pharmaceutical Engineering, Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu City, Toyama 939-0398, Japan
- Instutite for Integrated Cell–Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
59
|
Breazu C, Girtan M, Stanculescu A, Preda N, Rasoga O, Costas A, Catargiu AM, Socol G, Stochioiu A, Popescu-Pelin G, Iftimie S, Petre G, Socol M. MAPLE-Deposited Perylene Diimide Derivative Based Layers for Optoelectronic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1733. [PMID: 39513813 PMCID: PMC11548029 DOI: 10.3390/nano14211733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Nowadays, the development of devices based on organic materials is an interesting research challenge. The performance of such devices is strongly influenced by material selection, material properties, design, and the manufacturing process. Usually, buckminsterfullerene (C60) is employed as electron transport material in organic photovoltaic (OPV) devices due to its high mobility. However, considering its low solubility, there have been many attempts to replace it with more soluble non-fullerene compounds. In this study, bulk heterojunction thin films with various compositions of zinc phthalocyanine (ZnPc), a perylene diimide derivative, or C60 were prepared by matrix-assisted pulsed laser evaporation (MAPLE) technique to assess the influence of C60 replacement on fabricated heterostructure properties. The investigations revealed that the optical features and the electrical parameters of the organic heterostructures based on this perylene diimide derivative used as an organic acceptor were improved. An increase in the JSC value (4.3 × 10-4 A/cm2) was obtained for the structures where the perylene diimide derivative acceptor entirely replaced C60 compared to the JSC value (7.5 × 10-8 A/cm2) for the heterostructure fabricated only with fullerene. These results are encouraging, demonstrating the potential of non-fullerene compounds as electron transport material in OPV devices.
Collapse
Affiliation(s)
- Carmen Breazu
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Mihaela Girtan
- Laboratoire LPHIA, Université d’Angers, LUNAM, 2 Bd. Lavoisier, 49045 Angers, France
| | - Anca Stanculescu
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Nicoleta Preda
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Oana Rasoga
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Andreea Costas
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Ana Maria Catargiu
- P. Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Gabriel Socol
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Andrei Stochioiu
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
- Faculty of Physics, University of Bucharest, 405 Atomistilor Street, 077125 Magurele, Romania
| | - Gianina Popescu-Pelin
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Sorina Iftimie
- Faculty of Physics, University of Bucharest, 405 Atomistilor Street, 077125 Magurele, Romania
| | - Gabriela Petre
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
- Faculty of Physics, University of Bucharest, 405 Atomistilor Street, 077125 Magurele, Romania
| | - Marcela Socol
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| |
Collapse
|
60
|
Qiu D, Pu M, He F. Chlorine-mediated strategy for organic photovoltaics. Chem Commun (Camb) 2024; 60:12502-12512. [PMID: 39352139 DOI: 10.1039/d4cc04053h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Organic solar cells (OSCs), a nascent technology in the photovoltaic field, have attracted considerable research interest. Recently, the power conversion efficiency (PCE) of OSCs has significantly improved, thereby demonstrating substantial potential for commercialization. To achieve this, it is crucial to enhance the performance and stability of OSCs, necessitating the development of novel materials and devices. This feature article presents a review of chlorine-mediated photovoltaic materials in our group. By carefully controlling energy levels, molecular stacking and aggregation behavior, significantly improved performance was achieved. Furthermore, single-crystal analysis facilitated a profound comprehension of the influence of chlorine-mediated interactions on molecular stacking. This has enabled the design and synthesis of a series of high-performance non-fullerene acceptors (NFAs) with three-dimensional network stacking structures. Building upon these materials, we developed quasi-planar heterojunction (Q-PHJ) devices with a significant stability advantage. To sum up, the chlorine-mediated materials and the Q-PHJ devices provide valuable guidance and reference for the development of efficient and stable organic solar cells.
Collapse
Affiliation(s)
- Dongsheng Qiu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Mingrui Pu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
61
|
Li Z, Tolba SA, Wang Y, Alesadi A, Xia W. Modeling-driven materials by design for conjugated polymers: insights into optoelectronic, conformational, and thermomechanical properties. Chem Commun (Camb) 2024; 60:11625-11641. [PMID: 39157936 DOI: 10.1039/d4cc03217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Conjugated polymers (CPs) have emerged as pivotal functional materials in the realm of flexible electronics and optoelectronic devices due to their unique blend of mechanical flexibility, solution processability, and tunable optoelectronic properties. This review synthesizes the latest molecular simulation-driven insights obtained from various multiscale modeling techniques, including quantum mechanics (QM), all-atomistic (AA) molecular dynamics (MD), coarse-grained (CG) modeling, and machine learning (ML), to elucidate the optoelectronic, structural, and thermomechanical properties of CPs. By integrating findings from our recent computational work with key experimental studies, we highlight the molecular mechanisms influencing the multifunctional performance of CPs. This comprehensive understanding aims to guide future research directions and applications in the modeling assisted design of high-performance CP-based materials and devices.
Collapse
Affiliation(s)
- Zhaofan Li
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, USA.
| | - Sara A Tolba
- Materials and Nanotechnology Program, North Dakota State University, Fargo, ND 58108, USA
| | - Yang Wang
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Amirhadi Alesadi
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58108, USA
| | - Wenjie Xia
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
62
|
Hou Y, Ma P, Long F, Liu M, Zheng Y, Sun L, Shi J, Niu K, Su J, Ma Y, Gao Y. Hierarchical Porous Bi 2Te 3@C for Wide-Temperature-Range Aqueous Zn-Based Batteries with Air-Recharging Capability. ACS NANO 2024; 18:27358-27371. [PMID: 39313911 DOI: 10.1021/acsnano.4c06446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Air-rechargeable batteries integrating energy harvesting, conversion, and storage provide the most portable and popular approach to self-charging power systems. However, air-rechargeable batteries are currently mostly aqueous Zn-based battery systems in which it has remained a significant challenge to solve the low discharge capacities and poor cycling stability of chemical self-charging due to continuous insertion/extraction of large-size hydrated Zn2+. Herein, efficient Bi2Te3@C cathodes with an active carbon paper substrate are developed. Further ex situ characterization analysis confirms the energy storage mechanism regarding the coexistence of H+/Zn2+ coinsertion and conversion reaction in the aqueous Zn||Bi2Te3@C battery. Benefiting from the fast dynamics process attributed to the unique mechanism, a reliable energy supply is provided even in an extended temperature range from -10 to 45 °C. More importantly, Bi2Te3@C cathodes boost the superior and repeatable air-rechargeability. A discharge capacity of up to 264.20 mA h g-1 at 0.30 A g-1 is manifested after self-charging for 11.00 h. In addition, two quasi-solid-state battery devices are connected in series to continuously power a timer. After the device is discharged and then air self-charged for just a few seconds, an LED is lit.
Collapse
Affiliation(s)
- Yixin Hou
- Center for Nanoscale Characterization & Devices (CNCD), Wuhan National Laboratory for Optoelectronics (WNLO) & School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Pengfei Ma
- Center for Nanoscale Characterization & Devices (CNCD), Wuhan National Laboratory for Optoelectronics (WNLO) & School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Fei Long
- Center for Nanoscale Characterization & Devices (CNCD), Wuhan National Laboratory for Optoelectronics (WNLO) & School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Mingyang Liu
- Center for Nanoscale Characterization & Devices (CNCD), Wuhan National Laboratory for Optoelectronics (WNLO) & School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yifan Zheng
- Center for Nanoscale Characterization & Devices (CNCD), Wuhan National Laboratory for Optoelectronics (WNLO) & School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Li Sun
- Center for Nanoscale Characterization & Devices (CNCD), Wuhan National Laboratory for Optoelectronics (WNLO) & School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Junjie Shi
- Center for Nanoscale Characterization & Devices (CNCD), Wuhan National Laboratory for Optoelectronics (WNLO) & School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ke Niu
- School of Materials Science and Engineering, Guangxi Key Laboratory of Optical and Electronic Materials and Devices & Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology (GUT), Guilin 541004, China
| | - Jun Su
- Center for Nanoscale Characterization & Devices (CNCD), Wuhan National Laboratory for Optoelectronics (WNLO) & School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yanan Ma
- Hubei Key Laboratory of Critical Materials of New Energy Vehicles & School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology (HUAT), Shiyan 442002, China
| | - Yihua Gao
- Center for Nanoscale Characterization & Devices (CNCD), Wuhan National Laboratory for Optoelectronics (WNLO) & School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
- Hubei Key Laboratory of Critical Materials of New Energy Vehicles & School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology (HUAT), Shiyan 442002, China
| |
Collapse
|
63
|
Ahmed R, Manna AK. Tailoring Light-Harvesting in Zn-Porphyrin and Carbon Fullerene based Donor-Acceptor Complex through Ethynyl-Extended Donor π-Conjugation. Chemphyschem 2024; 25:e202400434. [PMID: 38847266 DOI: 10.1002/cphc.202400434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/21/2024] [Indexed: 07/25/2024]
Abstract
Organic photovoltaic efficiency though currently limited for practical applications, can be improved by means of various molecular-level modifications. Herein the role of extended donor π ${\pi }$ -conjugation through ethynyl-bridged meso-phenyl/pyridyl on the photoinduced charge-transfer kinetics is studied in noncovalently bound Zn-Porphyrin and carbon-fullerene based donor-acceptor complex using time-dependent optimally tuned range-separated hybrid combined with the kinetic rate theory in polar solvent. Noncovalent dispersive interaction is identified to primarily govern the complex stability. Ethynyl-extended π ${\pi }$ -conjugation results in red-shifted donor-localized Q-band with substantially increased dipole oscillator strength and smaller exciton binding energy, suggesting greater light-harvesting efficiency. However, the low-lying charge-transfer state below to the Q-band is relatively less affected by the ethynyl-extended π ${\pi }$ -conjugation, yielding reduced driving forces for the charge-transfer. Detailed kinetics analysis reveals similar order of charge-transfer rate constants (~1012 s-1) for all donor-acceptor composites studied. Importantly, enhanced light-absorption, smaller exciton binding energy and similar charge-transfer rates together with reduced charge-recombination make these complexes suitable for efficient photoinduced charge-separation. These findings will be helpful to molecularly design the advanced organic donor-acceptor blends for energy efficient photovoltaic applications.
Collapse
Affiliation(s)
- Raka Ahmed
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, A.P-517619, India
| | - Arun K Manna
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, A.P-517619, India
| |
Collapse
|
64
|
Baharfar M, Hillier AC, Mao G. Charge-Transfer Complexes: Fundamentals and Advances in Catalysis, Sensing, and Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406083. [PMID: 39046077 DOI: 10.1002/adma.202406083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Supramolecular assemblies, formed through electronic charge transfer between two or more entities, represent a rich class of compounds dubbed as charge-transfer complexes (CTCs). Their distinctive formation pathway, rooted in charge-transfer processes at the interface of CTC-forming components, results in the delocalization of electronic charge along molecular stacks, rendering CTCs intrinsic molecular conductors. Since the discovery of CTCs, intensive research has explored their unique properties including magnetism, conductivity, and superconductivity. Their more recently recognized semiconducting functionality has inspired recent developments in applications requiring organic semiconductors. In this context, CTCs offer a tuneable energy gap, unique charge-transport properties, tailorable physicochemical interactions, photoresponsiveness, and the potential for scalable manufacturing. Here, an updated viewpoint on CTCs is provided, presenting them as emerging organic semiconductors. To this end, their electronic and chemical properties alongside their synthesis methods are reviewed. The unique properties of CTCs that benefit various related applications in the realms of organic optoelectronics, catalysts, and gas sensors are discussed. Insights for future developments and existing limitations are described.
Collapse
Affiliation(s)
- Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia
| | - Andrew C Hillier
- Division of Materials Sciences and Engineering, Ames Laboratory, U.S. DOE and Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia
| |
Collapse
|
65
|
Xiang TF, Liu Z, Zheng T, Yang L, Tamiaki H, Sasaki SI, Li A, Wang XF. Coherent Charge Transfer Reveals a Different Theoretical Limit of Power Conversion Efficiency in Organic Solar Cells. J Phys Chem Lett 2024; 15:9335-9341. [PMID: 39236264 DOI: 10.1021/acs.jpclett.4c01631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The hopping charge transfer (CT) theory is used to explain the dynamics of traditional donor-acceptor (D-A) devices in organic solar cells (OSCs). But it is not applicable to the unconventional OSCs inspired by photosynthesis, referred to as Z-devices. In this study, we establish a universal heterojunction CT model in OSCs, based on the reported coherent CT in photosynthesis. Compared to the trade-off between energy loss and charge generation efficiency in the D-A device, we analyze its change in the Z-device. We introduce the "avalanche-like" CT of the Z-device induced by many-body Coulomb interaction and relevant experimental support. Combining with the Shockley-Queisser theory, we evaluate the theory limit power conversion efficiency of a D-A device and a Z-device. The Z-device has the potential to surpass the Shockley-Queisser limit of 33%.
Collapse
Affiliation(s)
- Tian-Fu Xiang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Ziyan Liu
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Tianfang Zheng
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Lin Yang
- Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Shin-Ichi Sasaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
- Department of Medical Bioscience, Faculty of Bioscience, Nagahama institute of Bio-Science and Technology, Nagahama, Shiga 5260829, Japan
| | - Aijun Li
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Xiao-Feng Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
66
|
Yuan Y, Flynn S, Li X, Liu H, Wang J, Li Y. Wide Bandgap Polymer Donors Based on Succinimide-Substituted Thiophene for Nonfullerene Organic Solar Cells. Macromol Rapid Commun 2024; 45:e2400275. [PMID: 38830087 DOI: 10.1002/marc.202400275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/24/2024] [Indexed: 06/05/2024]
Abstract
The advent of nonfullerene acceptors (NFAs) has greatly improved the photovoltaic performance of organic solar cells (OSCs). However, to compete with other solar cell technologies, there is a pressing need for accelerated research and development of improved NFAs as well as their compatible wide bandgap polymer donors. In this study, a novel electron-withdrawing building block, succinimide-substituted thiophene (TS), is utilized for the first time to synthesize three wide bandgap polymer donors: PBDT-TS-C5, PBDT-TSBT-C12, and PBDTF-TSBT-C16. These polymers exhibit complementary bandgaps for efficient sunlight harvesting and suitable frontier energy levels for exciton dissociation when paired with the extensively studied NFA, Y6. Among these donors, PBDTF-TSBT-C16 demonstrates the highest hole mobility and a relatively low highest occupied molecular orbital (HOMO) energy level, attributed to the incorporation of thiophene spacers and electron-withdrawing fluorine substituents. OSC devices based on the blend of PBDTF-TSBT-C16:Y6 achieve the highest power conversion efficiency of 13.21%, with a short circuit current density (Jsc) of 26.83 mA cm-2, an open circuit voltage (Voc) of 0.80 V, and a fill factor of 0.62. Notably, the Voc × Jsc product reaches 21.46 mW cm-2, demonstrating the potential of TS as an electron acceptor building block for the development of high-performance wide bandgap polymer donors in OSCs.
Collapse
Affiliation(s)
- Yi Yuan
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, N2L 3G1, Canada
| | - Scott Flynn
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, N2L 3G1, Canada
| | - Xu Li
- Institute of Chemistry, Henan Academy of Sciences, Jinshui District, 56 Hongzhuan Road, Zhengzhou, Henan, 450002, China
| | - Haitao Liu
- Institute of Chemistry, Henan Academy of Sciences, Jinshui District, 56 Hongzhuan Road, Zhengzhou, Henan, 450002, China
| | - Jinliang Wang
- Institute of Chemistry, Henan Academy of Sciences, Jinshui District, 56 Hongzhuan Road, Zhengzhou, Henan, 450002, China
| | - Yuning Li
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, N2L 3G1, Canada
| |
Collapse
|
67
|
Su Z, Liu W, Lin Y, Ma Z, Zhang A, Lu H, Xu X, Li C, Liu Y, Bo Z. A 3,3'-Difluoro-2,2'-Bithiophene Based Donor Polymer Realizing High Efficiency (>17%) Single Junction Binary Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310028. [PMID: 38651514 DOI: 10.1002/smll.202310028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/25/2024] [Indexed: 04/25/2024]
Abstract
In this study, two novel donor-acceptor (D-A) copolymers are designed and synthesized, DTBT-2T and DTBT-2T2F with 2,2'-bithiophene or 3,3'-difluoro-2,2'-bithiophene as the donor unit and dithienobenzothiadiazole as the acceptor unit, and used them as donor materials in non-fullerene organic solar cells (OSCs). Due to enhanced planarity of polymer chains resulted by the intramolecular F···S noncovalent interactions, the incorporation of 3,3'-difluoro-2,2'-bithiophene unit instead of 2,2'-bithiophene into the polymers can enhance their molecular packing, crystallinity and hole mobility. The DTBT-2T:L8-BO based binary OSCs deliver a power conversion efficiency (PCE) of only 9.71% with a Voc of 0.78 V, a Jsc of 20.69 mA cm-2 , and an FF of 59.67%. Moreover, the introduction of fluoro atoms can lower the highest occupied molecular orbital levels. As a result, DTBT-2T2F:L8-BO based single-junction binary OSCs exhibited less recombination loss, more balanced charge mobility, and more favorable morphology, resulting in an impressive PCE of 17.03% with a higher Voc of 0.89 V, a Jsc of 25.40 mA cm-2, and an FF of 75.74%. These results indicate that 3,3'-difluoro-2,2'-bithiophene unit can be used as an effective building block to synthesize high performance polymer donor materials. This work greatly expands the selection range of donor units for constructing high-performance polymers.
Collapse
Affiliation(s)
- Zhiyi Su
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wenlong Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yi Lin
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zaifei Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Andong Zhang
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
| | - Hao Lu
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Xinjun Xu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Cuihong Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yahui Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
68
|
Shao Y, Gao Y, Sun R, Yang X, Zhang M, Liu S, Min J. A High-Performance Organic Photovoltaic System with Versatile Solution Processability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406329. [PMID: 39003623 DOI: 10.1002/adma.202406329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Indexed: 07/15/2024]
Abstract
Recently developed organic photovoltaic (OPV) materials have simultaneously closed the gaps in efficiency, stability, and cost for single-junction devices. Nonetheless, the developed OPV materials still pose big challenges in meeting the requirements for practical applications, especially regarding the prevalent issues of solution processability. Herein, a highly efficient polymer donor, named DP3, incorporating an electron-rich benzo[1,2-b:4,5-b']dithiophene unit as well as two similar and simple acceptor units is presented. Its primary objective is to enhance the interchain and/or intrachain interactions and ultimately fine-tune bulk-heterojunction microstructure. The DP3:L8-BO system demonstrates the highest power conversion efficiency (PCE) of 19.12%. This system also exhibits high-performance devices with over 18% efficiencies for five batches with various molecular weights (23.6-80.8 KDa), six different blend thicknesses (95-308 nm), differenced coating speeds (3.0-29.1 m min-1), with promising PCEs of 18.65% and 15.53% for toluene-processed small-area (0.029 cm2) cells and large-area (15.40 cm2) modules, thereby demonstrating versatile solution processability of the designed DP3:L8-BO system that is a strong candidate for commercial applications.
Collapse
Affiliation(s)
- Yiming Shao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yuan Gao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Rui Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Xinrong Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Meimei Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Shanshan Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
69
|
Bi X, Cao X, He T, Liang H, Yao Z, Yang J, Guo Y, Long G, Kan B, Li C, Wan X, Chen Y. What is the Limit Size of 2D Conjugated Extension on Central Units of Small Molecular Acceptors in Organic Solar Cells? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401054. [PMID: 38488748 DOI: 10.1002/smll.202401054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/06/2024] [Indexed: 08/09/2024]
Abstract
2D conjugated extension on central units of small molecular acceptors (SMAs) has gained great successes in reaching the state-of-the-art organic photovoltaics. Whereas the limit size of 2D central planes and their dominant role in constructing 3D intermolecular packing networks are still elusive. Thus, by exploring a series of SMAs with gradually enlarged central planes, it is demonstrated that, at both single molecular and aggerated levels, there is an unexpected blue-shift for their film absorption but preferable reorganization energies, exciton lifetimes and binding energies with central planes enlarging, especially when comparing to their Y6 counterpart. More importantly, the significance of well-balanced molecular packing modes involving both central and end units is first disclosed through a systematic single crystal analysis, indicating that when the ratio of central planes area/end terminals area is no more than 3 likely provides a preferred 3D intermolecular packing network of SMAs. By exploring the limit size of 2D central planes, This work indicates that the structural profiles of ideal SMAs may require suitable central unit size together with proper heteroatom replacement instead of directly overextending 2D central planes to the maximum. These results will likely provide some guidelines for future better molecular design.
Collapse
Affiliation(s)
- Xingqi Bi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiangjian Cao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tengfei He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Huazhe Liang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhaoyang Yao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jinyi Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yaxiao Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
| | - Chenxi Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiangjian Wan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongsheng Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
70
|
Lin C, Peng R, Shi J, Ge Z. Research progress and application of high efficiency organic solar cells based on benzodithiophene donor materials. EXPLORATION (BEIJING, CHINA) 2024; 4:20230122. [PMID: 39175891 PMCID: PMC11335474 DOI: 10.1002/exp.20230122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/07/2024] [Indexed: 08/24/2024]
Abstract
In recent decades, the demand for clean and renewable energy has grown increasingly urgent due to the irreversible alteration of the global climate change. As a result, organic solar cells (OSCs) have emerged as a promising alternative to address this issue. In this review, we summarize the recent progress in the molecular design strategies of benzodithiophene (BDT)-based polymer and small molecule donor materials since their birth, focusing on the development of main-chain engineering, side-chain engineering and other unique molecular design paths. Up to now, the state-of-the-art power conversion efficiency (PCE) of binary OSCs prepared by BDT-based donor materials has approached 20%. This work discusses the potential relationship between the molecular changes of donor materials and photoelectric performance in corresponding OSC devices in detail, thereby presenting a rational molecular design guidance for stable and efficient donor materials in future.
Collapse
Affiliation(s)
- Congqi Lin
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
- Faculty of Materials and Chemical EngineeringNingbo UniversityNingboPeople's Republic of China
| | - Ruixiang Peng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| | - Jingyu Shi
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| |
Collapse
|
71
|
Crociani L. The Double-Cross of Benzotriazole-Based Polymers as Donors and Acceptors in Non-Fullerene Organic Solar Cells. Molecules 2024; 29:3625. [PMID: 39125030 PMCID: PMC11313701 DOI: 10.3390/molecules29153625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Organic solar cells (OSCs) are considered a very promising technology to convert solar energy to electricity and a feasible option for the energy market because of the advantages of light weight, flexibility, and roll-to-roll manufacturing. They are mainly characterized by a bulk heterojunction structure where a polymer donor is blended with an electron acceptor. Their performance is highly affected by the design of donor-acceptor conjugated polymers and the choice of suitable acceptor. In particular, benzotriazole, a typical electron-deficient penta-heterocycle, has been combined with various donors to provide wide bandgap donor polymers, which have received a great deal of attention with the development of non-fullerene acceptors (NFAs) because of their suitable matching to provide devices with relevant power conversion efficiency (PCE). Moreover, different benzotriazole-based polymers are gaining more and more interest because they are considered promising acceptors in OSCs. Since the development of a suitable method to choose generally a donor/acceptor material is a challenging issue, this review is meant to be useful especially for organic chemical scientists to understand all the progress achieved with benzotriazole-based polymers used as donors with NFAs and as acceptors with different donors in OSCs, in particular referring to the PCE.
Collapse
Affiliation(s)
- Laura Crociani
- Institute of Condensed Matter Chemistry and Energy Technologies, ICMATE, National Research Council of Italy, CNR, Corso Stati Uniti 4, 35127 Padua, Italy
| |
Collapse
|
72
|
Ding Y, Xiong S, Sun L, Wang Y, Zhou Y, Li Y, Peng J, Fukuda K, Someya T, Liu R, Zhang X. Metal nanowire-based transparent electrode for flexible and stretchable optoelectronic devices. Chem Soc Rev 2024; 53:7784-7827. [PMID: 38953906 DOI: 10.1039/d4cs00080c] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
High-quality transparent electrodes are indispensable components of flexible optoelectronic devices as they guarantee sufficient light transparency and electrical conductivity. Compared to commercial indium tin oxide, metal nanowires are considered ideal candidates as flexible transparent electrodes (FTEs) owing to their superior optoelectronic properties, excellent mechanical flexibility, solution treatability, and higher compatibility with semiconductors. However, certain key challenges associated with material preparation and device fabrication remain for the practical application of metal nanowire-based electrodes. In this review, we discuss state-of-the-art solution-processed metal nanowire-based FTEs and their applications in flexible and stretchable optoelectronic devices. Specifically, the important properties of FTEs and a cost-benefit analysis of existing technologies are introduced, followed by a summary of the synthesis strategy, key properties, and fabrication technologies of the nanowires. Subsequently, we explore the applications of metal-nanowire-based FTEs in different optoelectronic devices including solar cells, photodetectors, and light-emitting diodes. Finally, the current status, future challenges, and emerging strategies in this field are presented.
Collapse
Affiliation(s)
- Yu Ding
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
| | - Sixing Xiong
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Lulu Sun
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yiying Wang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yaowen Li
- College of Chemistry, Soochow University, Suzhou 215123, P. R. China
| | - Jun Peng
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Kenjiro Fukuda
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ruiyuan Liu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Xiaohong Zhang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
73
|
Li J, Ji Q, Wang R, Zhang ZG, Wang X, Xiao M, Lu YQ, Zhang C. Charge Generation Dynamics in Organic Photovoltaic Blends under One-Sun-Equivalent Illumination Detected by Highly Sensitive Terahertz Spectroscopy. J Am Chem Soc 2024; 146:20312-20322. [PMID: 38980945 DOI: 10.1021/jacs.4c05786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Organic photovoltaic (OPV) devices attain high performance with nonfullerene acceptors by utilizing the synergistic dual channels of charge generation that originate from excitations in both the donor and acceptor materials. However, the specific intermediate states that facilitate both channels are subject to debate. To address this issue, we employ time-resolved terahertz spectroscopy with improved sensitivity (ΔE/E < 10-6), enabling direct probing of charge generation dynamics in a prototypical PM6:Y6 bulk heterojunction system under one-sun-equivalent excitation density. Charge generation arising from donor excitations is characterized with a rise time of ∼9 ps, while that from acceptor excitations shows a rise time of ∼18 ps. Temperature-dependent measurements further reveal notably distinct activation energies for these two charge generation pathways. Additionally, the two channels of charge generation can be substantially manipulated by altering the ratio of bulk to interfaces. These findings strongly suggest the presence of two distinct intermediate states: interfacial and intramoiety excitations. These states are crucial in mediating the transfer of electrons and holes, driving charge generation within OPV devices.
Collapse
Affiliation(s)
- Jiacong Li
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Qing Ji
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Rui Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
- College of Physics, Nanjing University of Aeronautics and Astronautics, and Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
- Institute of Materials Engineering, Nanjing University, Nantong, Jiangsu 226019, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Yan-Qing Lu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Institute of Materials Engineering, Nanjing University, Nantong, Jiangsu 226019, China
| |
Collapse
|
74
|
Ren J, Zhang S, Chen Z, Zhang T, Qiao J, Wang J, Ma L, Xiao Y, Li Z, Wang J, Hao X, Hou J. Optimizing Molecular Packing via Steric Hindrance for Reducing Non-Radiative Recombination in Organic Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202406153. [PMID: 38730419 DOI: 10.1002/anie.202406153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
Innovative molecule design strategy holds promise for the development of next-generation acceptor materials for efficient organic solar cells with low non-radiative energy loss (ΔEnr). In this study, we designed and prepared three novel acceptors, namely BTP-Biso, BTP-Bme and BTP-B, with sterically structured triisopropylbenzene, trimethylbenzene and benzene as side chains inserted into the shoulder of the central core. The progressively enlarged steric hindrance from BTP-B to BTP-Bme and BTP-Biso induces suppressed intramolecular rotation and altered the molecule packing mode in their aggregation states, leading to significant changes in absorption spectra and energy levels. By regulating the intermolecular π-π interactions, BTP-Bme possesses relatively reduced non-radiative recombination rate and extended exciton diffusion lengths. The binary device based on PB2 : BTP-Bme exhibits an impressive power conversion efficiency (PCE) of 18.5 % with a low ΔEnr of 0.19 eV. Furthermore, the ternary device comprising PB2 : PBDB-TF : BTP-Bme achieves an outstanding PCE of 19.3 %. The molecule design strategy in this study proposed new perspectives for developing high-performance acceptors with low ΔEnr in OSCs.
Collapse
Affiliation(s)
- Junzhen Ren
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shaoqing Zhang
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, 100083, Beijing, China
| | - Zhihao Chen
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiawei Qiao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, 250100, Shandong, China
| | - Jingwen Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Lijiao Ma
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Yang Xiao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zi Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Jianqiu Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, 250100, Shandong, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, 100083, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
75
|
Han J, Xu H, Paleti SHK, Sharma A, Baran D. Understanding photochemical degradation mechanisms in photoactive layer materials for organic solar cells. Chem Soc Rev 2024; 53:7426-7454. [PMID: 38869459 DOI: 10.1039/d4cs00132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Over the past decades, the field of organic solar cells (OSCs) has witnessed a significant evolution in materials chemistry, which has resulted in a remarkable enhancement of device performance, achieving efficiencies of over 19%. The photoactive layer materials in OSCs play a crucial role in light absorption, charge generation, transport and stability. To facilitate the scale-up of OSCs, it is imperative to address the photostability of these electron acceptor and donor materials, as their photochemical degradation process remains a challenge during the photo-to-electric conversion. In this review, we present an overview of the development of electron acceptor and donor materials, emphasizing the crucial aspects of their chemical stability behavior that are linked to the photostability of OSCs. Throughout each section, we highlight the photochemical degradation pathways for electron acceptor and donor materials, and their link to device degradation. We also discuss the existing interdisciplinary challenges and obstacles that impede the development of photostable materials. Finally, we offer insights into strategies aimed at enhancing photochemical stability and discuss future directions for developing photostable photo-active layers, facilitating the commercialization of OSCs.
Collapse
Affiliation(s)
- Jianhua Han
- Materials Science and Engineering Program (MSE), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Han Xu
- Materials Science and Engineering Program (MSE), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Sri Harish Kumar Paleti
- Materials Science and Engineering Program (MSE), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Anirudh Sharma
- Materials Science and Engineering Program (MSE), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Derya Baran
- Materials Science and Engineering Program (MSE), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
76
|
Capobianco A, Wiktor J, Landi A, Ambrosio F, Peluso A. Electron Localization and Mobility in Monolayer Fullerene Networks. NANO LETTERS 2024; 24:8335-8342. [PMID: 38767281 DOI: 10.1021/acs.nanolett.4c01695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The novel 2D quasi-hexagonal phase of covalently bonded fullerene molecules (qHP C60), the so-called graphullerene, has displayed far superior electron mobilities, if compared to the parent van der Waals three-dimensional crystal (vdW C60). Herein, we present a comparative study of the electronic properties of vdW and qHP C60 using state-of-the-art electronic-structure calculations and a full quantum-mechanical treatment of electron transfer. We show that both materials entail polaronic localization of electrons with similar binding energies (≈0.1 eV) and, therefore, they share the same charge transport via polaron hopping. In fact, we quantitatively reproduce the sizable increment of the electron mobility measured for qHP C60 and identify its origin in the increased electronic coupling between C60 units.
Collapse
Affiliation(s)
- Amedeo Capobianco
- Dipartimento di Chimica e Biologia Adolfo Zambelli, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (SA), Italy
| | - Julia Wiktor
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Alessandro Landi
- Dipartimento di Chimica e Biologia Adolfo Zambelli, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (SA), Italy
| | - Francesco Ambrosio
- Dipartimento di Chimica e Biologia Adolfo Zambelli, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (SA), Italy
- Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell'Ateneo Lucano, 10-85100 Potenza, Italy
| | - Andrea Peluso
- Dipartimento di Chimica e Biologia Adolfo Zambelli, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (SA), Italy
| |
Collapse
|
77
|
Qi F, Li Y, Lin FR, Jen AKY. Recent Progress of Oligomeric Non-Fullerene Acceptors for Efficient and Stable Organic Solar Cells. CHEMSUSCHEM 2024; 17:e202301559. [PMID: 38372481 DOI: 10.1002/cssc.202301559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Organic solar cells (OSCs) have achieved remarkable power conversion efficiencies (PCEs) of over 19 % in the past few years due to the rapid development of non-fullerene acceptors (NFAs). However, the operational stability remains a great challenge that inhibits their commercialization. Recently, oligomeric NFAs (ONFAs) have attracted great attention, which not only can deliver excellent device performance, but also improve the thermal-/photo- stability of OSCs. This is attributed to the suppressed molecular diffusion of ONFAs associated with their high glass-transition temperature (Tg) and improved thermodynamic properties of ONFAs. Herein, we focus on investigating the correction between the ONFA chemical structure, material properties, device performance, and stability. In addition, we also try to point out the challenges in synthesizing ONFAs and provide potential directions for future ONFA designs.
Collapse
Affiliation(s)
- Feng Qi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Yanxun Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Francis R Lin
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
78
|
Hussain M, Adnan M, Irshad Z, Hussain R, Darwish HW. Systematic Engineering of Near-Infrared Small Molecules Based on 4H-Cyclopenta[1,2-b:5,4-b']dithiophene Acceptors for Organic Solar Cells. ACS OMEGA 2024; 9:28791-28805. [PMID: 38973890 PMCID: PMC11223142 DOI: 10.1021/acsomega.4c03181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
Nonfullerene acceptors (NFAs) have emerged as tremendous materials, efficiently advancing bulk-heterojunction organic solar cells (OSCs) technology. Unlike their fullerene counterparts, NFAs offer the unique advantage of finely tunable electronic energy levels and optical characteristics, which correspond to substantial enhancement in power conversion efficiency of OSCs. Herein, we have introduced a new series of near-infrared NFAs (AY1-AY8) to advance this technology further. Our research deeply investigates the structure-property relationship and thoroughly explores the optical, optoelectronics, photophysical, and photovoltaic characteristics of a synthetic reference molecule (R) and the modeled AY1-AY8 NFAs series. We performed advanced quantum chemical simulations using density functional theory (DFT) and time-dependent DFT methods. Additionally, we also estimated key geometric characteristics such as frontier molecular orbitals, hole-electron overlap, density of states, molecular electrostatic potential, molecular excitation and binding energies, transition density matrix, and reorganizational energy of electrons and holes and compared them with those of a synthetic reference molecule (R). Our findings show that all designed materials (AY1-AY8) exhibit red-shift absorption, improved electronic charge mobility, and low binding and excitation energies compared to R. Notably, these designed materials (AY1-AY8) display significantly narrower electronic energy gaps (E g 1.89-1.71 eV), indicating enhanced charge shifting from the highest occupied molecular orbital to lowest unoccupied molecular orbital and broadening of the absorption spectrum. Moreover, we also revealed a comprehensive study of the donor/acceptor complex of PTB7-Th/AY8 to understand charge shifting between donor and acceptor molecules. Therefore, we strongly recommend this designed (AY1-AY8) series to the experimentalists for the future development of highly efficient OSC devices.
Collapse
Affiliation(s)
- Muzammil Hussain
- Department
of Chemistry, University of Okara, Okara 56300, Pakistan
| | - Muhammad Adnan
- Graduate
School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Zobia Irshad
- Graduate
School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Riaz Hussain
- Department
of Chemistry, University of Okara, Okara 56300, Pakistan
| | - Hany W. Darwish
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
79
|
Hu T, Han G, Guo Y, Yu K, Yi Y. Efficient and Accurate Estimation of Electronic Polarization Energies for Organic Semiconductors: An Embedding Charge Quantum Mechanics/Continuum Dielectric Model. J Chem Theory Comput 2024; 20:5115-5121. [PMID: 38870475 DOI: 10.1021/acs.jctc.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Electronic polarization plays a pivotal role in determining the molecular energy levels of organic semiconductors (OSCs) in the condensed phase. However, accurate estimation of the electronic polarization energy is a challenging task due to the intricate imbalance between the precision and efficiency. In this work, we have developed an embedding charge quantum mechanics/continuum dielectric (EC-QM/CD) model, which enables quantitative evaluation of the ionization potential (IP), electron affinity (EA), and polarization energy in both crystalline and amorphous solids for OSCs. The benchmark calculations on both p-type OSCs of oligoacenes and n-type OSCs of A-D-A small-molecule acceptors show that the values of IP, EA, and polarization energy obtained by EC-QM/CD are in good accordance with the experimental measurements or the results by high-precision methods, while the computational costs are substantially reduced. Given its balance between the accuracy and efficiency, the EC-QM/CD model exhibits considerable potential to broaden the applications in the field of OSCs, for instance, high-throughput screening by using solid-state energy levels or polarization energies as critical descriptors.
Collapse
Affiliation(s)
- Taiping Hu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangchao Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Guo
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Kuang Yu
- Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research (iMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
80
|
Wu Y, Li P, Yu S, Min Y, Xiao L. Layer-by-Layer-Processed All-Polymer Solar Cells with Enhanced Performance Enabled by Regulating the Microstructure of Upper Layer. Molecules 2024; 29:2879. [PMID: 38930944 PMCID: PMC11206570 DOI: 10.3390/molecules29122879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The layer-by-layer (LBL) fabrication method allows for controlled microstructure morphology and vertical component distribution, and also offers a reproducible and efficient technique for fabricating large-scale organic solar cells (OSCs). In this study, the polymers D18 and PYIT-OD are employed to fabricate all-polymer solar cells (all-PSCs) using the LBL method. Morphological studies reveal that the use of additives optimizes the microstructure of the active layer, enhancing the cells' crystallinity and charge transport capability. The optimized device with 2% CN additive significantly reduces bimolecular recombination and trap-assisted recombination. All-PSCs fabricated by the LBL method based on D18/PYIT-OD deliver a power conversion efficiency (PCE) of 15.07%. Our study demonstrates the great potential of additive engineering via the LBL fabrication method in regulating the microstructure of active layers, suppressing charge recombination, and enhancing the photovoltaic performance of devices.
Collapse
Affiliation(s)
| | | | | | | | - Liangang Xiao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
81
|
Xu R, Jiang Y, Liu F, Ran G, Liu K, Zhang W, Zhu X. High Open-Circuit Voltage Organic Solar Cells with 19.2% Efficiency Enabled by Synergistic Side-Chain Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312101. [PMID: 38544433 DOI: 10.1002/adma.202312101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Restricted by the energy-gap law, state-of-the-art organic solar cells (OSCs) exhibit relatively low open-circuit voltage (VOC) because of large nonradiative energy losses (ΔEnonrad). Moreover, the trade-off between VOC and external quantum efficiency (EQE) of OSCs is more distinctive; the power conversion efficiencies (PCEs) of OSCs are still <15% with VOCs of >1.0 V. Herein, the electronic properties and aggregation behaviors of non-fullerene acceptors (NFAs) are carefully considered and then a new NFA (Z19) is delicately designed by simultaneously introducing alkoxy and phenyl-substituted alkyl chains to the conjugated backbone. Z19 exhibits a hypochromatic-shifted absorption spectrum, high-lying lowest unoccupied molecular orbital energy level and ordered 2D packing mode. The D18:Z19-based blend film exhibits favorable phase separation with face-on dominated molecular orientation, facilitating charge transport properties. Consequently, D18:Z19 binary devices afford an exciting PCE of 19.2% with a high VOC of 1.002 V, surpassing Y6-2O-based devices. The former is the highest PCE reported to date for OSCs with VOCs of >1.0 V. Moreover, the ΔEnonrad of Z19- (0.200 eV) and Y6-2O-based (0.155 eV) devices are lower than that of Y6-based (0.239 eV) devices. Indications are that the design of such NFA, considering the energy-gap law, could promote a new breakthrough in OSCs.
Collapse
Affiliation(s)
- Renjie Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuanyuan Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, P. R. China
| | - Kerui Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
82
|
Khirbat A, Nahor O, Marina Barbier S, Levitsky A, Martín J, Frey G, Stingelin N. Understanding Organic Photovoltaic Materials Using Simple Thermal Analysis Methodologies. Annu Rev Phys Chem 2024; 75:421-435. [PMID: 38424492 DOI: 10.1146/annurev-physchem-070723-035427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Large strides have been made in designing an ever-increasing set of modern organic materials of high functionality and thus, often, of high complexity, including semiconducting polymers, organic ferroelectrics, light-emitting small molecules, and beyond. Here, we review how broadly applied thermal analysis methodologies, especially differential scanning calorimetry, can be utilized to provide unique information on the assembly and solid-state structure of this extensive class of materials, as well as the phase behavior of intrinsically intricate multicomponent systems. Indeed, highly relevant insights can be gained that are useful, e.g., for further materials-discovery activities and the establishment of reliable processing protocols, in particular if combined with X-ray diffraction techniques, spectroscopic tools, and scanning electron microscopy enabled by vapor-phase infiltration staining. We, hence, illustrate that insights far richer than simple melting point- and glass-transition identification can be obtained with differential scanning calorimetry, rendering it a critical methodology to understand complex matter, including functional macromolecules and blends.
Collapse
Affiliation(s)
- Aditi Khirbat
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA;
| | - Oded Nahor
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | | | - Artem Levitsky
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jaime Martín
- POLYMAT, University of the Basque Country (UPV/EHU), San Sebastián, Spain
- Investigación Aplicada a Las Tecnologías Navales e Industriales, Campus Industrial de Ferrol, Universidade da Coruña, Ferrol, Spain
| | - Gitti Frey
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Natalie Stingelin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA;
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
83
|
Zhai YC, Oiwa S, Aoyagi S, Ohno S, Mikie T, Wang JZ, Amada H, Yamanaka K, Miwa K, Imai N, Igarashi T, Osaka I, Matsuo Y. Synthesis of indano[60]fullerene thioketone and its application in organic solar cells. Beilstein J Org Chem 2024; 20:1270-1277. [PMID: 38887582 PMCID: PMC11181261 DOI: 10.3762/bjoc.20.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024] Open
Abstract
Evaporable indano[60]fullerene ketone (FIDO) was converted to indano[60]fullerene thioketone (FIDS) in high yield by using Lawesson's reagent. Three compounds with different substituents in para position were successfully converted to the corresponding thioketones, showing that the reaction tolerates compounds with electron-donating and electron-withdrawing substituents. Computational studies with density functional theory revealed the unique vibrations of the thioketone group in FIDS. The molecular structure of FIDS was confirmed by single-crystal X-ray analysis. Bulk heterojunction organic solar cells using three evaporable fullerene derivatives (FIDO, FIDS, C60) as electron-acceptors were compared, and the open-circuit voltage with FIDS was 0.16 V higher than that with C60.
Collapse
Affiliation(s)
- Yong-Chang Zhai
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shimon Oiwa
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shinobu Aoyagi
- Department of Information and Basic Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Shohei Ohno
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Tsubasa Mikie
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Jun-Zhuo Wang
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hirofumi Amada
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Koki Yamanaka
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kazuhira Miwa
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Naoyuki Imai
- Institute for Advanced Fusion, Resonac Corporation, 5-1 Okawa-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0858, Japan
| | - Takeshi Igarashi
- Institute for Advanced Fusion, Resonac Corporation, 5-1 Okawa-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0858, Japan
| | - Itaru Osaka
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Yutaka Matsuo
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Materials Innovation, Institutes for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
84
|
Yang N, Cui Y, Xiao Y, Chen Z, Zhang T, Yu Y, Ren J, Wang W, Ma L, Hou J. Completely Non-Fused Low-Cost Acceptor Enables Organic Photovoltaic Cells with 17 % Efficiency. Angew Chem Int Ed Engl 2024; 63:e202403753. [PMID: 38523070 DOI: 10.1002/anie.202403753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
To meet the industrial requirements of organic photovoltaic (OPV) cells, it is imperative to accelerate the development of cost-effective materials. Thiophene-benzene-thiophene central unit-based acceptors possess the advantage of low synthetic cost, while their power conversion efficiency (PCE) is relatively low. Here, by incorporating a para-substituted benzene unit and 1st-position branched alkoxy chains with large steric hindrance, a completely non-fused non-fullerene acceptor, TBT-26, was designed and synthesized. The narrow band gap of 1.38 eV ensures the effective utilization of sunlight. The favorable phase separation morphology of TBT-26-based blend film facilitates the efficient exciton dissociation and charge transport in corresponding OPV cell. Therefore, the TBT-26-based small-area cell achieves an impressive PCE of 17.0 %, which is the highest value of completely non-fused OPV cells. Additionally, we successfully demonstrated the scalability of this design by fabricating a 28.8 cm2 module with a high PCE of 14.3 %. Overall, our work provides a practical molecular design strategy for developing high-performance and low-cost acceptors, paving the way for industrial applications of OPV technology.
Collapse
Affiliation(s)
- Ni Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Cui
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yang Xiao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihao Chen
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Yu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junzhen Ren
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenxuan Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lijiao Ma
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
85
|
Kirk BP, Bjuggren JM, Andersson GG, Dastoor P, Andersson MR. Printing and Coating Techniques for Scalable Organic Photovoltaic Fabrication. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2511. [PMID: 38893776 PMCID: PMC11173114 DOI: 10.3390/ma17112511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Within recent years, there has been an increased interest towards organic photovoltaics (OPVs), especially with their significant device performance reaching beyond 19% since 2022. With these advances in the device performance of laboratory-scaled OPVs, there has also been more attention directed towards using printing and coating methods that are compatible with large-scale fabrication. Though large-area (>100 cm2) OPVs have reached an efficiency of 15%, this is still behind that of laboratory-scale OPVs. There also needs to be more focus on determining strategies for improving the lifetime of OPVs that are suitable for scalable manufacturing, as well as methods for reducing material and manufacturing costs. In this paper, we compare several printing and coating methods that are employed to fabricate OPVs, with the main focus towards the deposition of the active layer. This includes a comparison of performances at laboratory (<1 cm2), small (1-10 cm2), medium (10-100 cm2), and large (>100 cm2) active area fabrications, encompassing devices that use scalable printing and coating methods for only the active layer, as well as "fully printed/coated" devices. The article also compares the research focus of each of the printing and coating techniques and predicts the general direction that scalable and large-scale OPVs will head towards.
Collapse
Affiliation(s)
- Bradley P. Kirk
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia
| | - Jonas M. Bjuggren
- Centre for Organic Electronics, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Gunther G. Andersson
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia
| | - Paul Dastoor
- Centre for Organic Electronics, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Mats R. Andersson
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia
| |
Collapse
|
86
|
Yang LJ, Wu Y, Murugan P, Liu P, Qiu ZY, Peng YL, Li ZF, Liu SY. Advancing Integration of Direct C-H Arylation-Derived Star-Shaped Oligomers as Second Acceptors for Ternary Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26348-26359. [PMID: 38728664 DOI: 10.1021/acsami.4c05564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Organic solar cells (OSCs) could benefit from the ternary bulk heterojunction (BHJ), a method that allows for fine-tuning of light capture, cascade energy levels, and film shape, in order to increase their power conversion efficiency (PCE). In this work, the third components of PM6:Y6 and PM6:BTP-eC9 BHJs are a set of four star-shaped unfused ring electron acceptors (SSUFREAs), i.e., BD-IC, BFD-IC, BD-2FIC, and BFD-2FIC, that are facilely synthesized by direct C-H arylation. The four SSUFREAs all show complete complementary absorption with PM6, Y6, and BTP-eC9, which facilitates light harvesting and exciton collection. When BFD-2FIC is added as a third component, the PCEs of PM6:Y6 and PM6:BTP-eC9 binary BHJs are able to be improved from 15.31% to 16.85%, and from 16.23% to 17.23%, respectively, showing that BFD-2FIC is useful for most effective ternary OSCs in general, and increasing short circuit current (JSC) and better film morphology are two additional benefits. The ternary PM6:Y6:BFD-2FIC exhibits a 9.7% percentage of increase in PCE compared to the PM6:Y6 binary BHJ, which is one of the highest percentage increases among the reported ternary BHJs, showing the huge potential of BFD-2FIC for ternary BHJ OSCs.
Collapse
Affiliation(s)
- Ling-Jun Yang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yu Wu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
- China-Australia Institute for Advanced Materials and Manufacturing (IAMM), Jiaxing University, Jiaxing 314001, China
| | - Pachaiyappan Murugan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Peng Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zhi-Yong Qiu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yu-Long Peng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zai-Fang Li
- China-Australia Institute for Advanced Materials and Manufacturing (IAMM), Jiaxing University, Jiaxing 314001, China
| | - Shi-Yong Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
87
|
Fu H, Wang Q, Chen Q, Zhang Y, Meng S, Xue L, Zhang C, Yi Y, Zhang ZG. Dimeric Giant Molecule Acceptors Featuring N-type Linker: Enhancing Intramolecular Coupling for High-Performance Polymer Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202403005. [PMID: 38382043 DOI: 10.1002/anie.202403005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Giant molecular acceptors (GMAs) are typically designed through the conjugated linking of individual small molecule acceptors (SMAs). This design imparts an extended molecular size, elevating the glass transition temperature (Tg) relative to their SMA counterparts. Consequently, it effectively suppresses the thermodynamic relaxation of the acceptor component when blended with polymer donors to construct stable polymer solar cells (PSCs). Despite their merits, the optimization of their chemical structure for further enhancing of device performance remains challenge. Different from previous reports utilizing p-type linkers, here, we explore an n-type linker, specifically the benzothiadiazole unit, to dimerize the SMA units via a click-like Knoevenagel condensation, affording BT-DL. In comparison with B-DL with a benzene linkage, BT-DL exhibits significantly stronger intramolecular super-exchange coupling, a desirable property for the acceptor component. Furthermore, BT-DL demonstrates a higher film absorption coefficient, redshifted absorption, larger crystalline coherence, and higher electron mobility. These inherent advantages of BT-DL translate into a higher power conversion efficiency of 18.49 % in PSCs, a substantial improvement over the 9.17 % efficiency observed in corresponding devices with B-DL as the acceptor. Notably, the BT-DL based device exhibits exceptional stability, retaining over 90 % of its initial efficiency even after enduring 1000 hours of thermal stress at 90 °C. This work provides a cost-effective approach to the synthesis of n-type linker-dimerized GMAs, and highlight their potential advantage in enhancing intramolecular coupling for more efficient and durable photovoltaic technologies.
Collapse
Affiliation(s)
- Hongyuan Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingyuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qi Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yaogang Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shixin Meng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lingwei Xue
- Yaoshan Laboratory, Pingdingshan University, Pingdingshan, Henan, 467000, P. R. China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
88
|
Pang S, Liu X, Pan L, Oh J, Yang C, Duan C. Chalcogen Atoms Regulate the Organic Solar Cell Performance of B-N-Based Polymer Donors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22265-22273. [PMID: 38637913 DOI: 10.1021/acsami.4c01987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Donor polymers play a key role in the development of organic solar cells (OSCs). B-N-based polymer donors, as new types of materials, have attracted a lot of attention due to their special characteristics, such as high E(T1), small ΔEST, and easy synthesis, and they can be processed with real green solvents. However, the relationship between the chemical structure and device performance has not been systematically studied. Herein, chalcogen atoms that regulate the OSCs performance of B-N-based polymer donors were systematically studied. Fortunately, the substitution of a halogen atom did not affect the high E(T1) and small ΔEST character of the B-N-based polymer. The absorption and energy levels of the polymer were systematically regulated by O, S, and Se atom substitution. The PBNT-TAZ:Y6-BO-based OSCs device demonstrated a high power conversion efficiency of 15.36%. Moreover, the layer-by-layer method was applied to further optimize the device performance, and the PBNT-TAZ/Y6-BO-based OSCs device yielded a PCE of 16.34%. Consequently, we have systematically demonstrated how chalcogen atoms modulated the electronic properties of B-N-based polymers. Detailed and systematic structure-performance relationships are important for the development of next-generation B-N-based materials.
Collapse
Affiliation(s)
- Shuting Pang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xinyuan Liu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Langheng Pan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jiyeon Oh
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Chunhui Duan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
89
|
Li R, Hu Y, Xu Y, Wang C, Li X, Liang S, Liu B, Li W. Dimerized Nonfused Electron Acceptor Based on a Thieno[3,4- c]pyrrole-4,6-dione Core for Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22256-22264. [PMID: 38651607 DOI: 10.1021/acsami.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In this work, the first dimerized nonfused electron acceptor (NFEA), based on thieno[3,4-c]pyrrole-4,6-dione as the core, has been designed and synthesized. The dimerized acceptor and its single counterpart exhibit similar energy levels but different absorption spectra due to their distinct aggregation behavior. The dimerized acceptor-based organic solar cells (OSCs) demonstrate a higher power conversion efficiency of 11.05%, accompanied by enhanced thermal stability. This improvement is attributed to the enhancement of the short-circuit current density and fill factor, along with an increase in the glass transition temperature. Characterizations of exciton dynamics and film morphology reveal that a dimerized acceptor-based device possesses an enhanced exciton dissociation efficiency and a well-established charge transport pathway, explaining its improved photovoltaic performance. All these results indicate that the dimerized NFEA as a promising candidate can achieve efficiency-stability-cost balance in OSCs.
Collapse
Affiliation(s)
- Ruonan Li
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Yuandu Hu
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Yunhua Xu
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Chao Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xin Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Baiqiao Liu
- Research Center for Frontier Fundamental Studies, Zhejiang Lab, Hangzhou 311121, China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
90
|
Wang H, Liu S, Li H, Li M, Wu X, Zhang S, Ye L, Hu X, Chen Y. Green Printing for Scalable Organic Photovoltaic Modules by Controlling the Gradient Marangoni Flow. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313098. [PMID: 38340310 DOI: 10.1002/adma.202313098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Despite the rapid development in the performances of organic solar cells (OSCs), high-performance OSC modules based on green printing are still limited. The severe Coffee-ring effect (CRE) is considered to be the primary reason for the nonuniform distribution of active layer films. To solve this key printing problem, the cosolvent strategy is presented to deposit the active layer films. The guest solvent Mesitylene with a higher boiling point and a lower surface tension is incorporated into the host solvent o-XY to optimize the rheological properties, such as surface tension and viscosity of the active layer solutions. And the synergistic effect of inward Marangoni flow generation and solution thickening caused by the cosolvent strategy can effectively restrain CRE, resulting in highly homogeneous large-area active layer films. In addition, the optimized crystallization and phase separation of active layer films effectively accelerate the charge transport and exciton dissociation of devices. Consequently, based on PM6:BTP-eC9 system, the device prepared with the co-solvent strategy shows the a power conversion efficiency of 17.80%. Moreover, as the effective area scales to 1 and 16.94 cm2, the recorded performances are altered to 16.71% and 14.58%. This study provides a universal pathway for the development of green-printed high-efficiency organic photovoltaics.
Collapse
Affiliation(s)
- Hanlin Wang
- School of Physics and Materials Science/Institute of Polymers and Energy Chemistry (IPEC)/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Siqi Liu
- College of Chemistry and Chemical Engineering/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Haojie Li
- School of Physics and Materials Science/Institute of Polymers and Energy Chemistry (IPEC)/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Mingfei Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Xueting Wu
- School of Physics and Materials Science/Institute of Polymers and Energy Chemistry (IPEC)/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Shaohua Zhang
- School of Physics and Materials Science/Institute of Polymers and Energy Chemistry (IPEC)/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Xiaotian Hu
- School of Physics and Materials Science/Institute of Polymers and Energy Chemistry (IPEC)/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| | - Yiwang Chen
- School of Physics and Materials Science/Institute of Polymers and Energy Chemistry (IPEC)/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- College of Chemistry and Chemical Engineering/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| |
Collapse
|
91
|
Shoaee S, Luong HM, Song J, Zou Y, Nguyen TQ, Neher D. What We have Learnt from PM6:Y6. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302005. [PMID: 37623325 DOI: 10.1002/adma.202302005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/10/2023] [Indexed: 08/26/2023]
Abstract
Over the past three years, remarkable advancements in organic solar cells (OSCs) have emerged, propelled by the introduction of Y6-an innovative A-DA'D-A type small molecule non-fullerene acceptor (NFA). This review provides a critical discussion of the current knowledge about the structural and physical properties of the PM6:Y6 material combination in relation to its photovoltaic performance. The design principles of PM6 and Y6 are discussed, covering charge transfer, transport, and recombination mechanisms. Then, the authors delve into blend morphology and degradation mechanisms before considering commercialization. The current state of the art is presented, while also discussing unresolved contentious issues, such as the blend energetics, the pathways of free charge generation, and the role of triplet states in recombination. As such, this review aims to provide a comprehensive understanding of the PM6:Y6 material combination and its potential for further development in the field of organic solar cells. By addressing both the successes and challenges associated with this system, this review contributes to the ongoing research efforts toward achieving more efficient and stable organic solar cells.
Collapse
Affiliation(s)
- Safa Shoaee
- Optoelectronics of Disordered Semiconductors, Institute of Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., 10117, Berlin, Germany
| | - Hoang M Luong
- Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA, 93106, USA
| | - Jiage Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Thuc-Quyen Nguyen
- Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA, 93106, USA
| | - Dieter Neher
- Soft Matter Physics and Optoelectronics, Institute of Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
92
|
Lai S, Cui Y, Chen Z, Xia X, Zhu P, Shan S, Hu L, Lu X, Zhu H, Liao X, Chen Y. Impact of Electrostatic Interaction on Vertical Morphology and Energy Loss in Efficient Pseudo-Planar Heterojunction Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313105. [PMID: 38279607 DOI: 10.1002/adma.202313105] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/13/2024] [Indexed: 01/28/2024]
Abstract
Although a suitable vertical phase separation (VPS) morphology is essential for improving charge transport efficiency, reducing charge recombination, and ultimately boosting the efficiency of organic solar cells (OSCs), there is a lack of theoretical guidance on how to achieve the ideal morphology. Herein, a relationship between the molecular structure and the VPS morphology of pseudo-planar heterojunction (PPHJ) OSCs is established by using molecular surface electrostatic potential (ESP) as a bridge. The morphological evolution mechanism is revealed by studying four binary systems with vary electrostatic potential difference (∆ESP) between donors (Ds) and acceptors (As). The findings manifest that as ∆ESP increases, the active layer is more likely to form a well-mixed phase, while a smaller ∆ESP favors VPS morphology. Interestingly, it is also observed that a larger ∆ESP leads to enhanced miscibility between Ds and As, resulting in higher non-radiative energy losses (ΔE3). Based on these discoveries, a ternary PPHJ device is meticulously designed with an appropriate ∆ESP to obtain better VPS morphology and lower ΔE3, and an impressive efficiency of 19.09% is achieved. This work demonstrates that by optimizing the ΔESP, not only the formation of VPS morphology can be controlled, but also energy losses can be reduced, paving the way to further boost OSC performance.
Collapse
Affiliation(s)
- Shiting Lai
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Yongjie Cui
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Zeng Chen
- State Key Laboratory of Modern Optical Instrumentation Key Laboratory of Excited State Materials of Zhejiang Province Department of Chemistry, Zhejiang University Hangzhou, Zhejiang, 310027, China
| | - Xinxin Xia
- Department of Physics Chinese University of Hong Kong New Territories, Hong Kong, 999077, China
| | - Peipei Zhu
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Shiyu Shan
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Lin Hu
- China-Australia Institute for Advanced Materials and Manufacturing (IAMM), Jiaxing University, Jiaxing, 314001, China
| | - Xinhui Lu
- Department of Physics Chinese University of Hong Kong New Territories, Hong Kong, 999077, China
| | - Haiming Zhu
- State Key Laboratory of Modern Optical Instrumentation Key Laboratory of Excited State Materials of Zhejiang Province Department of Chemistry, Zhejiang University Hangzhou, Zhejiang, 310027, China
| | - Xunfan Liao
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Yiwang Chen
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
93
|
Zhang X, Sheng Y, Liu X, Yang J, Goddard Iii WA, Ye C, Zhang W. Polymer-Unit Graph: Advancing Interpretability in Graph Neural Network Machine Learning for Organic Polymer Semiconductor Materials. J Chem Theory Comput 2024; 20:2908-2920. [PMID: 38551455 DOI: 10.1021/acs.jctc.3c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The graph representation of complex materials plays a crucial role in the field of inorganic and organic materials investigations for developing data-centric materials science, such as those using graph neural networks (GNNs). However, the currently prevalent GNN models are primarily employed for investigating periodic crystals and organic small molecule data, yet they still encounter challenges in terms of interpretability and computational efficiency when applied to polymer monomers and organic macromolecules data. There is still a lack of graph representation of organic polymers and macromolecules specifically tailored for GNN models to explore the structural characteristics. The Polymer-unit Graph, a novel coarse-grained graph representation method introduced in study, is dedicated to expressing and analyzing polymers and macromolecules. By incorporating the Polymer-unit Graph into the GNN models and analyzing the organic semiconductor (OSC) materials database, it becomes possible to uncover intricate structure-property relationships involving branched-chain engineering, fluoridation substitution, and donor-acceptor combination effects on the elementary structure of OSC polymers. Furthermore, the Polymer-unit Graph enables visualizing the relationship between target properties and polymer units while reducing training time by an impressive 98% and minimizing molecular graph representation models. In conclusion, the Polymer-unit Graph successfully integrates the concept of Polymer-unit into the field of GNNs, enabling more accurate analysis and understanding of organic polymers and macromolecules.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Materials Science and Engineering & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Ye Sheng
- Department of Materials Science and Engineering & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xiumin Liu
- Department of Materials Science and Engineering & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, PR China
- Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jiong Yang
- Materials Genome Institute, Shanghai University, Shanghai 200444, PR China
| | - William A Goddard Iii
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, California 91125, United States
| | - Caichao Ye
- Department of Materials Science and Engineering & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, PR China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Wenqing Zhang
- Department of Materials Science and Engineering & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, PR China
| |
Collapse
|
94
|
Guo Y, Sun J, Guo T, Liu Y, Yao Z. Emerging Light-Harvesting Materials Based on Organic Photovoltaic D/A Heterojunctions for Efficient Photocatalytic Water Splitting. Angew Chem Int Ed Engl 2024; 63:e202319664. [PMID: 38240469 DOI: 10.1002/anie.202319664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Photocatalytic water splitting to hydrogen is a highly promising method to meet the surging energy consumption globally through the environmentally friendly means. As the initial step before photocatalysis, harvesting photons from sunlight is crucially important, thus making the design of photosensitizers with visible even near-infrared (NIR) absorptions get more and more attentions. In the past three years, organic donor/acceptor (D/A) heterojunctions with absorptions extending to 950 nm, have emerged as the new star light-harvesting materials for photocatalytic water splitting, demonstrating exciting advantages over inorganic materials in solar light utilization, hydrogen yielding rate, etc. This Minireview firstly gives a brief discussion about the principle processes and determining factors for photocatalytic water splitting with organic photovoltaic D/A heterojunction as photosensitizers. Thereafter, the current progress is summarized in details by introducing typical and excellent D/A heterojunction-based photocatalytic systems. Finally, not only the great prospects but also the most challenging issues confronted by organic D/A heterojunctions are indicated along with a perspective on the opportunities and new directions for future material explorations.
Collapse
Affiliation(s)
- Yaxiao Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Jiayuan Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Tao Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Yi Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Zhaoyang Yao
- Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
95
|
Li Y, Qi F, Fan B, Liu KK, Yu J, Fu Y, Liu X, Wang Z, Zhang S, Lu G, Lu X, Fan Q, Chow PCY, Ma W, Lin FR, Jen AKY. Eliminating the Burn-in Loss of Efficiency in Organic Solar Cells by Applying Dimer Acceptors as Supramolecular Stabilizers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313393. [PMID: 38573779 DOI: 10.1002/adma.202313393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/31/2024] [Indexed: 04/06/2024]
Abstract
The meta-stable active layer morphology of organic solar cells (OSCs) is identified as the main cause of the rapid burn-in loss of power conversion efficiency (PCE) during long-term device operation. However, effective strategies to eliminate the associated loss mechanisms from the initial stage of device operation are still lacking, especially for high-efficiency material systems. Herein, the introduction of molecularly engineered dimer acceptors with adjustable thermal transition properties into the active layer of OSCs to serve as supramolecular stabilizers for regulating the thermal transitions and optimizing the crystallization of the absorber composites is reported. By establishing intimate π-π interactions with small-molecule acceptors, these stabilizers can effectively reduce the trap-state density (Nt) in the devices to achieve excellent PCEs over 19%. More importantly, the low Nt associated with an initially optimized morphology can be maintained under external stresses to significantly reduce the PCE burn-in loss in devices. This research reveals a judicious approach to improving OPV stability by establishing a comprehensive correlation between material properties, active-layer morphology, and device performance, for developing burn-in-free OSCs.
Collapse
Affiliation(s)
- Yanxun Li
- Department of Materials Science & Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Feng Qi
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Baobing Fan
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Kai-Kai Liu
- Department of Materials Science & Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Jifa Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yuang Fu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Xianzhao Liu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Zhen Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Sen Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Qunping Fan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Philip C Y Chow
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Francis R Lin
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Alex K-Y Jen
- Department of Materials Science & Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
96
|
Yang N, Cui Y, Zhang T, An C, Chen Z, Xiao Y, Yu Y, Wang Y, Hao XT, Hou J. Molecular Design of Fully Nonfused Acceptors for Efficient Organic Photovoltaic Cells. J Am Chem Soc 2024; 146:9205-9215. [PMID: 38523309 DOI: 10.1021/jacs.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The nonfused thiophene-benzene-thiophene (TBT) unit offers advantages in obtaining low-cost organic photovoltaic (OPV) materials due to its simple structure. However, OPV cells, including TBT-based acceptors, exhibit significantly lower energy conversion efficiencies. Here, we introduce a novel approach involving the design and synthesis of three TBT-based acceptors by substituting different position-branched side chains on the TBT unit. In comparison to TBT-10 and TBT-11, TBT-13, which exclusively incorporates α-position branched side chains with a large steric hindrance, demonstrates a more planar and stable conformation. When blended with the donor PBQx-TF, TBT-13-based blend film achieves favorable π-π stacking and aggregation characteristics, resulting in excellent charge transfer performance in the corresponding device. Due to the simultaneous enhancements in short-circuit current density and fill factor, the TBT-13-based OPV cell obtains an outstanding efficiency of 16.1%, marking the highest value for the cells based on fully nonfused acceptors. Our work provides a practical molecular design strategy for high-performance and low-cost OPV materials.
Collapse
Affiliation(s)
- Ni Yang
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Cui
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Zhang
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cunbin An
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhihao Chen
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Xiao
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Yu
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yafei Wang
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Tao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandong 250100, China
| | - Jianhui Hou
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
97
|
Li F, Lin FR, Jen AKY. Current State and Future Perspectives of Printable Organic and Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307161. [PMID: 37828582 DOI: 10.1002/adma.202307161] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/22/2023] [Indexed: 10/14/2023]
Abstract
Photovoltaic technology presents a sustainable solution to address the escalating global energy consumption and a reliable strategy for achieving net-zero carbon emissions by 2050. Emerging photovoltaic technologies, especially the printable organic and perovskite solar cells, have attracted extensive attention due to their rapidly transcending power conversion efficiencies and facile processability, providing great potential to revolutionize the global photovoltaic market. To accelerate these technologies to translate from the laboratory scale to the industrial level, it is critical to develop well-defined and scalable protocols to deposit high-quality thin films of photoactive and charge-transporting materials. Herein, the current state of printable organic and perovskite solar cells is summarized and the view regarding the challenges and prospects toward their commercialization is shared. Different printing techniques are first introduced to provide a correlation between material properties and printing mechanisms, and the optimization of ink formulation and film-formation during large-area deposition of different functional layers in devices are then discussed. Engineering perspectives are also discussed to analyze the criteria for module design. Finally, perspectives are provided regarding the future development of these solar cells toward practical commercialization. It is believed that this perspective will provide insight into the development of printable solar cells and other electronic devices.
Collapse
Affiliation(s)
- Fengzhu Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Francis R Lin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| |
Collapse
|
98
|
Tang H, Bai Y, Zhao H, Qin X, Hu Z, Zhou C, Huang F, Cao Y. Interface Engineering for Highly Efficient Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2212236. [PMID: 36867581 DOI: 10.1002/adma.202212236] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/07/2023] [Indexed: 07/28/2023]
Abstract
Organic solar cells (OSCs) have made dramatic advancements during the past decades owing to the innovative material design and device structure optimization, with power conversion efficiencies surpassing 19% and 20% for single-junction and tandem devices, respectively. Interface engineering, by modifying interface properties between different layers for OSCs, has become a vital part to promote the device efficiency. It is essential to elucidate the intrinsic working mechanism of interface layers, as well as the related physical and chemical processes that manipulate device performance and long-term stability. In this article, the advances in interface engineering aimed to pursue high-performance OSCs are reviewed. The specific functions and corresponding design principles of interface layers are summarized first. Then, the anode interface layer, cathode interface layer in single-junction OSCs, and interconnecting layer of tandem devices are discussed in separate categories, and the interface engineering-related improvements on device efficiency and stability are analyzed. Finally, the challenges and prospects associated with application of interface engineering are discussed with the emphasis on large-area, high-performance, and low-cost device manufacturing.
Collapse
Affiliation(s)
- Haoran Tang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Yuanqing Bai
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Haiyang Zhao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Xudong Qin
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Zhicheng Hu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Cheng Zhou
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| |
Collapse
|
99
|
Jinnai S, Shimohara N, Ishikawa K, Hama K, Iimuro Y, Washio T, Watanabe Y, Ie Y. Green-light wavelength-selective organic solar cells for agrivoltaics: dependence of wavelength on photosynthetic rate. Faraday Discuss 2024; 250:220-232. [PMID: 37971029 DOI: 10.1039/d3fd00141e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
There is a growing demand for the development of novel solar power systems that can simultaneously solve the problems associated with both energy generation and food supply in agriculture. Green-light wavelength-selective organic solar cells (OSCs), whose transmitted blue and red light can be utilized to promote plant growth were recently reported by our group. However, the influence of wavelength variation on the photosynthetic rate in green-light wavelength-selective OSCs remains unclear. In this study, we report on the design and synthesis of new electron-accepting π-conjugated molecules containing cyclopentene-annelated thiophene with a spiro-substituted 2,7-bis(2-ethylhexyl)fluorene (FT) unit (TT-FT-ID) as a green-light wavelength-selective nonfullerene acceptor along with a reference compound TT-T-ID. Photophysical measurements indicate that the introduction of the FT unit leads to an absorption band with a small full width at half maximum in films, leading to the ability to fine-tune the absorption length. Concerning the optimization of the conditions for the fabrication of the active layers, which are composed of a green-light wavelength-selective donor polymer of poly(3-hexylthiophene) (P3HT) and the new acceptors, Bayesian optimization based on Gaussian process regression was applied to minimize the experimental batches. The green-light wavelength-selective factor (SG) and the PCEs in the green-light region (PCE-GR) of the P3HT:TT-FT-ID-based device were determined to be 0.52 and 8.6%, respectively, which are higher values than those of the P3HT:TT-T-ID blend film. The P3HT:TT-FT-ID blend film increased the photosynthetic rate of green pepper compared to that of the P3HT:TT-T-ID blend film. These results indicate that the fine-tuning of the absorbance required for crop growth is an important issue in developing green-light wavelength-selective OSCs for agrivoltaics.
Collapse
Affiliation(s)
- Seihou Jinnai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Osaka 567-0047, Ibaraki, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoto Shimohara
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Osaka 567-0047, Ibaraki, Japan.
| | - Kazunori Ishikawa
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Osaka 567-0047, Ibaraki, Japan.
| | - Kento Hama
- Department of Mechanical and Electrical Engineering, Faculty of Engineering, Suwa University of Science, 5000-1 Toyohira, Chino, Nagano 391-0292, Japan.
| | - Yohei Iimuro
- Department of Mechanical and Electrical Engineering, Faculty of Engineering, Suwa University of Science, 5000-1 Toyohira, Chino, Nagano 391-0292, Japan.
| | - Takashi Washio
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Osaka 567-0047, Ibaraki, Japan.
| | - Yasuyuki Watanabe
- Department of Mechanical and Electrical Engineering, Faculty of Engineering, Suwa University of Science, 5000-1 Toyohira, Chino, Nagano 391-0292, Japan.
| | - Yutaka Ie
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Osaka 567-0047, Ibaraki, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
100
|
Han Z, Zhang C, He T, Gao J, Hou Y, Gu X, Lv J, Yu N, Qiao J, Wang S, Li C, Zhang J, Wei Z, Peng Q, Tang Z, Hao X, Long G, Cai Y, Zhang X, Huang H. Precisely Manipulating Molecular Packing via Tuning Alkyl Side-Chain Topology Enabling High-Performance Nonfused-Ring Electron Acceptors. Angew Chem Int Ed Engl 2024; 63:e202318143. [PMID: 38190621 DOI: 10.1002/anie.202318143] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
In the development of high-performance organic solar cells (OSCs), the self-organization of organic semiconductors plays a crucial role. This study focuses on the precisely manipulation of molecular assemble via tuning alkyl side-chain topology in a series of low-cost nonfused-ring electron acceptors (NFREAs). Among the three NFREAs investigated, DPA-4, which possesses an asymmetric alkyl side-chain length, exhibits a tight packing in the crystal and high crystallinity in the film, contributing to improved electron mobility and favorable film morphology for DPA-4. As a result, the OSC device based on DPA-4 achieves an excellent power conversion efficiency of 16.67 %, ranking among the highest efficiencies for NFREA-based OSCs.
Collapse
Affiliation(s)
- Ziyang Han
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cai'e Zhang
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tengfei He
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
| | - Jinhua Gao
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqi Hou
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaobin Gu
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jikai Lv
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Yu
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiawei Qiao
- School of Physics, School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Sixuan Wang
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congqi Li
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqi Zhang
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaotao Hao
- School of Physics, School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
| | - Yunhao Cai
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhang
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|