51
|
Mohapatra SR, Rama E, Melcher C, Call T, Al Enezy-Ulbrich MA, Pich A, Apel C, Kiessling F, Jockenhoevel S. From In Vitro to Perioperative Vascular Tissue Engineering: Shortening Production Time by Traceable Textile-Reinforcement. Tissue Eng Regen Med 2022; 19:1169-1184. [PMID: 36201158 PMCID: PMC9679079 DOI: 10.1007/s13770-022-00482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/01/2022] Open
Abstract
Background: The production of tissue-engineered vascular graft (TEVG) usually involves a prolonged bioreactor cultivation period of up to several weeks to achieve maturation of extracellular matrix and sufficient mechanical strength. Therefore, we aimed to substantially shorten this conditioning time by combining a TEVG textile scaffold with a recently developed copolymer reinforced fibrin gel as a cell carrier. We further implemented our grafts with magnetic resonance imaging (MRI) contrast agents to allow the in-vitro monitoring of the TEVG’s remodeling process. Methods: Biodegradable polylactic-co-glycolic acid (PLGA) was electrospun onto a non-degradable polyvinylidene fluoride scaffold and molded along with copolymer-reinforced fibrin hydrogel and human arterial cells. Mechanical tests on the TEVGs were performed both instantly after molding and 4 days of bioreactor conditioning. The non-invasive in vitro monitoring of the PLGA degradation and the novel imaging of fluorinated thermoplastic polyurethane (19F-TPU) were performed using 7T MRI. Results: After 4 days of close loop bioreactor conditioning, 617 ± 85 mmHg of burst pressure was achieved, and advanced maturation of extracellular matrix (ECM) was observed by immunohistology, especially in regards to collagen and smooth muscle actin. The suture retention strength (2.24 ± 0.3 N) and axial tensile strength (2.45 ± 0.58 MPa) of the TEVGs achieved higher values than the native arteries used as control. The contrast agents labeling of the TEVGs allowed the monitorability of the PLGA degradation and enabled the visibility of the non-degradable textile component. Conclusion: Here, we present a concept for a novel textile-reinforced TEVG, which is successfully produced in 4 days of bioreactor conditioning, characterized by increased ECM maturation and sufficient mechanical strength. Additionally, the combination of our approach with non-invasive imaging provides further insights into TEVG’s clinical application. Supplementary Information The online version contains supplementary material available at 10.1007/s13770-022-00482-0.
Collapse
Affiliation(s)
- Saurav Ranjan Mohapatra
- Department of Biohybrid and Medical Textiles (BioTex), Center for Biohybrid Medical Systems (CBMS), Institute for Applied Medical Engineering, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Elena Rama
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Christoph Melcher
- Institute for Textile Technology, RWTH Aachen University, Otto-Blumenthal-Str. 1, 52074, Aachen, Germany
| | - Tobias Call
- Department of Biohybrid and Medical Textiles (BioTex), Center for Biohybrid Medical Systems (CBMS), Institute for Applied Medical Engineering, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | | | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Christian Apel
- Department of Biohybrid and Medical Textiles (BioTex), Center for Biohybrid Medical Systems (CBMS), Institute for Applied Medical Engineering, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Biohybrid and Medical Textiles (BioTex), Center for Biohybrid Medical Systems (CBMS), Institute for Applied Medical Engineering, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany.
| |
Collapse
|
52
|
Abstract
Cardiovascular defects, injuries, and degenerative diseases often require surgical intervention and the use of implantable replacement material and conduits. Traditional vascular grafts made of synthetic polymers, animal and cadaveric tissues, or autologous vasculature have been utilized for almost a century with well-characterized outcomes, leaving areas of unmet need for the patients in terms of durability and long-term patency, susceptibility to infection, immunogenicity associated with the risk of rejection, and inflammation and mechanical failure. Research to address these limitations is exploring avenues as diverse as gene therapy, cell therapy, cell reprogramming, and bioengineering of human tissue and replacement organs. Tissue-engineered vascular conduits, either with viable autologous cells or decellularized, are the forefront of technology in cardiovascular reconstruction and offer many benefits over traditional graft materials, particularly in the potential for the implanted material to be adopted and remodeled into host tissue and thus offer safer, more durable performance. This review discusses the key advances and future directions in the field of surgical vascular repair, replacement, and reconstruction, with a focus on the challenges and expected benefits of bioengineering human tissues and blood vessels.
Collapse
Affiliation(s)
- Kaleb M. Naegeli
- Humacyte, Inc, Durham, NC (K.M.N., M.H.K., Y.L., J.W., E.A.H., L.E.N.)
| | - Mehmet H. Kural
- Humacyte, Inc, Durham, NC (K.M.N., M.H.K., Y.L., J.W., E.A.H., L.E.N.)
| | - Yuling Li
- Humacyte, Inc, Durham, NC (K.M.N., M.H.K., Y.L., J.W., E.A.H., L.E.N.)
| | - Juan Wang
- Humacyte, Inc, Durham, NC (K.M.N., M.H.K., Y.L., J.W., E.A.H., L.E.N.)
| | | | - Laura E. Niklason
- Department of Anesthesiology and Biomedical Engineering, Yale University, New Haven, CT (L.E.N.)
| |
Collapse
|
53
|
Latorre M, Szafron JM, Ramachandra AB, Humphrey JD. In vivo development of tissue engineered vascular grafts: a fluid-solid-growth model. Biomech Model Mechanobiol 2022; 21:827-848. [PMID: 35179675 PMCID: PMC9133046 DOI: 10.1007/s10237-022-01562-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/24/2022] [Indexed: 11/02/2022]
Abstract
Methods of tissue engineering continue to advance, and multiple clinical trials are underway evaluating tissue engineered vascular grafts (TEVGs). Whereas initial concerns focused on suture retention and burst pressure, there is now a pressing need to design grafts to have optimal performance, including an ability to grow and remodel in response to changing hemodynamic loads. Toward this end, there is similarly a need for computational methods that can describe and predict the evolution of TEVG geometry, composition, and material properties while accounting for changes in hemodynamics. Although the ultimate goal is a fluid-solid-growth (FSG) model incorporating fully 3D growth and remodeling and 3D hemodynamics, lower fidelity models having high computational efficiency promise to play important roles, especially in the design of candidate grafts. We introduce here an efficient FSG model of in vivo development of a TEVG based on two simplifying concepts: mechanobiologically equilibrated growth and remodeling of the graft and an embedded control volume analysis of the hemodynamics. Illustrative simulations for a model Fontan conduit reveal the utility of this approach, which promises to be particularly useful in initial design considerations involving formal methods of optimization which otherwise add considerably to the computational expense.
Collapse
Affiliation(s)
- Marcos Latorre
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
- Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, València, 46022, Spain.
| | - Jason M Szafron
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Abhay B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Jay D Humphrey
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
54
|
Wolf KJ, Weiss JD, Uzel SGM, Skylar-Scott MA, Lewis JA. Biomanufacturing human tissues via organ building blocks. Cell Stem Cell 2022; 29:667-677. [PMID: 35523137 PMCID: PMC9617289 DOI: 10.1016/j.stem.2022.04.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The construction of human organs on demand remains a tantalizing vision to solve the organ donor shortage. Yet, engineering tissues that recapitulate the cellular and architectural complexity of native organs is a grand challenge. The use of organ building blocks (OBBs) composed of multicellular spheroids, organoids, and assembloids offers an important pathway for creating organ-specific tissues with the desired cellular-to-tissue-level organization. Here, we review the differentiation, maturation, and 3D assembly of OBBs into functional human tissues and, ultimately, organs for therapeutic repair and replacement. We also highlight future challenges and areas of opportunity for this nascent field.
Collapse
Affiliation(s)
- Kayla J Wolf
- Wyss Institute for Biologically Inspired Engineering & John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA
| | - Jonathan D Weiss
- Department of Bioengineering, Stanford University, 240 Pasteur Drive, Stanford, CA 94304, USA
| | - Sebastien G M Uzel
- Wyss Institute for Biologically Inspired Engineering & John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA
| | - Mark A Skylar-Scott
- Department of Bioengineering, Stanford University, 240 Pasteur Drive, Stanford, CA 94304, USA; BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94304, USA.
| | - Jennifer A Lewis
- Wyss Institute for Biologically Inspired Engineering & John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
55
|
Guth C, Naslund T. Surgical management of an infected external iliac artery interposition graft with a bioengineered human acellular vessel. J Vasc Surg Cases Innov Tech 2022; 8:111-114. [PMID: 35146221 PMCID: PMC8818913 DOI: 10.1016/j.jvscit.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/03/2021] [Indexed: 11/24/2022] Open
Abstract
Infection of prosthetic vascular grafts can manifest as pain, pseudoaneurysms, or arterial insufficiency in the leg. We present the case of a female patient with a medical history of a right external iliac artery endofibrosis, with a persistently infected synthetic iliofemoral bypass graft, which we replaced with a bioengineered human acellular vessel. At the 12-month follow-up visit, the clinical and radiologic studies demonstrated adequate human acellular vessel patency, with no signs of infection, stenosis, or pseudoaneurysm. Subsequent to the initiation of hormone therapy and cessation of antiplatelet therapy, the patient developed graft thrombosis. She continued to do well after restoration of patency with lytic therapy. At 22 months, secondary patency has been maintained with continued anticoagulation therapy, and the patient has remained asymptomatic.
Collapse
Affiliation(s)
- Christy Guth
- Correspondence: Christy Guth, MD, Department of Surgery, Vanderbilt University Medical Center, 1161 21st Ave S, D4313 MCN, Nashville, TN 37232-2730
| | | |
Collapse
|
56
|
Koch SE, de Kort BJ, Holshuijsen N, Brouwer HFM, van der Valk DC, Dankers PYW, van Luijk JAKR, Hooijmans CR, de Vries RBM, Bouten CVC, Smits AIPM. Animal studies for the evaluation of in situ tissue-engineered vascular grafts - a systematic review, evidence map, and meta-analysis. NPJ Regen Med 2022; 7:17. [PMID: 35197483 PMCID: PMC8866508 DOI: 10.1038/s41536-022-00211-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Vascular in situ tissue engineering (TE) is an approach that uses bioresorbable grafts to induce endogenous regeneration of damaged blood vessels. The evaluation of newly developed in situ TE vascular grafts heavily relies on animal experiments. However, no standard for in vivo models or study design has been defined, hampering inter-study comparisons and translational efficiency. To provide input for formulating such standard, the goal of this study was to map all animal experiments for vascular in situ TE using off-the-shelf available, resorbable synthetic vascular grafts. A literature search (PubMed, Embase) yielded 15,896 studies, of which 182 studies met the inclusion criteria (n = 5,101 animals). The reports displayed a wide variety of study designs, animal models, and biomaterials. Meta-analysis on graft patency with subgroup analysis for species, age, sex, implantation site, and follow-up time demonstrated model-specific variations. This study identifies possibilities for improved design and reporting of animal experiments to increase translational value.
Collapse
Affiliation(s)
- Suzanne E Koch
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bente J de Kort
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Noud Holshuijsen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Hannah F M Brouwer
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Dewy C van der Valk
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Judith A K R van Luijk
- SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Carlijn R Hooijmans
- SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Rob B M de Vries
- SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands. .,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
57
|
A Comparative Study of an Anti-Thrombotic Small-Diameter Vascular Graft with Commercially Available e-PTFE Graft in a Porcine Carotid Model. Tissue Eng Regen Med 2022; 19:537-551. [PMID: 35167044 PMCID: PMC9130378 DOI: 10.1007/s13770-021-00422-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Background: We have designed a reinforced drug-loaded vascular graft composed of polycaprolactone (PCL) and polydioxanone (PDO) via a combination of electrospinning/3D printing approaches. To evaluate its potential for clinical application, we compared the in vivo blood compatibility and performance of PCL/PDO + 10%DY grafts doped with an antithrombotic drug (dipyridamole) with a commercial expanded polytetrafluoroethylene (e-PTFE) graft in a porcine model. Methods: A total of 10 pigs (weight: 25–35 kg) were used in this study. We made a new 5-mm graft with PCL/PDO composite nanofiber via the electrospinning technique. We simultaneously implanted a commercially available e-PTFE graft (n = 5) and our PCL/PDO + 10%DY graft (n = 5) into the carotid arteries of the pigs. No anticoagulant/antiplatelet agent was administered during the follow-up period, and ultrasonography was performed weekly to confirm the patency of the two grafts in vivo. Four weeks later, we explanted and compared the performance of the two grafts by histological analysis and scanning electron microscopy (SEM). Results: No complications, such as sweating on the graft or significant bleeding from the needle hole site, were seen in the PCL/PDO + 10%DY graft immediately after implantation. Serial ultrasonographic examination and immunohistochemical analysis demonstrated that PCL/PDO + 10%DY grafts showed normal physiological blood flow and minimal lumen reduction, and pulsed synchronously with the native artery at 4 weeks after implantation. However, all e-PTFE grafts occluded within the study period. The luminal surface of the PCL/PDO + 10%DY graft in the transitional zone was fully covered with endothelial cells as observed by SEM. Conclusion: The PCL/PDO + 10%DY graft was well tolerated, and no adverse tissue reaction was observed in porcine carotid models during the short-term follow-up. Colonization of the graft by host endothelial and smooth muscle cells coupled with substantial extracellular matrix production marked the regenerative capability. Thus, this material may be an ideal substitute for vascular reconstruction and bypass surgeries. Long-term observations will be necessary to determine the anti-thrombotic and remodeling potential of this device. Supplementary Information The online version contains supplementary material available at 10.1007/s13770-021-00422-4.
Collapse
|
58
|
Karakaya C, van Asten JGM, Ristori T, Sahlgren CM, Loerakker S. Mechano-regulated cell-cell signaling in the context of cardiovascular tissue engineering. Biomech Model Mechanobiol 2022; 21:5-54. [PMID: 34613528 PMCID: PMC8807458 DOI: 10.1007/s10237-021-01521-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
Cardiovascular tissue engineering (CVTE) aims to create living tissues, with the ability to grow and remodel, as replacements for diseased blood vessels and heart valves. Despite promising results, the (long-term) functionality of these engineered tissues still needs improvement to reach broad clinical application. The functionality of native tissues is ensured by their specific mechanical properties directly arising from tissue organization. We therefore hypothesize that establishing a native-like tissue organization is vital to overcome the limitations of current CVTE approaches. To achieve this aim, a better understanding of the growth and remodeling (G&R) mechanisms of cardiovascular tissues is necessary. Cells are the main mediators of tissue G&R, and their behavior is strongly influenced by both mechanical stimuli and cell-cell signaling. An increasing number of signaling pathways has also been identified as mechanosensitive. As such, they may have a key underlying role in regulating the G&R of tissues in response to mechanical stimuli. A more detailed understanding of mechano-regulated cell-cell signaling may thus be crucial to advance CVTE, as it could inspire new methods to control tissue G&R and improve the organization and functionality of engineered tissues, thereby accelerating clinical translation. In this review, we discuss the organization and biomechanics of native cardiovascular tissues; recent CVTE studies emphasizing the obtained engineered tissue organization; and the interplay between mechanical stimuli, cell behavior, and cell-cell signaling. In addition, we review past contributions of computational models in understanding and predicting mechano-regulated tissue G&R and cell-cell signaling to highlight their potential role in future CVTE strategies.
Collapse
Affiliation(s)
- Cansu Karakaya
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
59
|
Current Progress in Vascular Engineering and Its Clinical Applications. Cells 2022; 11:cells11030493. [PMID: 35159302 PMCID: PMC8834640 DOI: 10.3390/cells11030493] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Coronary heart disease (CHD) is caused by narrowing or blockage of coronary arteries due to atherosclerosis. Coronary artery bypass grafting (CABG) is widely used for the treatment of severe CHD cases. Although autologous vessels are a preferred choice, healthy autologous vessels are not always available; hence there is a demand for tissue engineered vascular grafts (TEVGs) to be used as alternatives. However, producing clinical grade implantable TEVGs that could healthily survive in the host with long-term patency is still a great challenge. There are additional difficulties in producing small diameter (<6 mm) vascular conduits. As a result, there have not been TEVGs that are commercially available. Properties of vascular scaffolds such as tensile strength, thrombogenicity and immunogenicity are key factors that determine the biocompatibility of TEVGs. The source of vascular cells employed to produce TEVGs is a limiting factor for large-scale productions. Advanced technologies including the combined use of natural and biodegradable synthetic materials for scaffolds in conjunction with the use of mesenchyme stem cells or induced pluripotent stem cells (iPSCs) provide promising solutions for vascular tissue engineering. The aim of this review is to provide an update on various aspects in this field and the current status of TEVG clinical applications.
Collapse
|
60
|
Weekes A, Bartnikowski N, Pinto N, Jenkins J, Meinert C, Klein TJ. Biofabrication of small diameter tissue-engineered vascular grafts. Acta Biomater 2022; 138:92-111. [PMID: 34781026 DOI: 10.1016/j.actbio.2021.11.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022]
Abstract
Current clinical treatment strategies for the bypassing of small diameter (<6 mm) blood vessels in the management of cardiovascular disease frequently fail due to a lack of suitable autologous grafts, as well as infection, thrombosis, and intimal hyperplasia associated with synthetic grafts. The rapid advancement of 3D printing and regenerative medicine technologies enabling the manufacture of biological, tissue-engineered vascular grafts (TEVGs) with the ability to integrate, remodel, and repair in vivo, promises a paradigm shift in cardiovascular disease management. This review comprehensively covers current state-of-the-art biofabrication technologies for the development of biomimetic TEVGs. Various scaffold based additive manufacturing methods used in vascular tissue engineering, including 3D printing, bioprinting, electrospinning and melt electrowriting, are discussed and assessed against the biomechanical and functional requirements of human vasculature, while the efficacy of decellularization protocols currently applied to engineered and native vessels are evaluated. Further, we provide interdisciplinary insight into the outlook of regenerative medicine for the development of vascular grafts, exploring key considerations and perspectives for the successful clinical integration of evolving technologies. It is expected that continued advancements in microscale additive manufacturing, biofabrication, tissue engineering and decellularization will culminate in the development of clinically viable, off-the-shelf TEVGs for small diameter applications in the near future. STATEMENT OF SIGNIFICANCE: Current clinical strategies for the management of cardiovascular disease using small diameter vessel bypassing procedures are inadequate, with up to 75% of synthetic grafts failing within 3 years of implantation. It is this critically important clinical problem that researchers in the field of vascular tissue engineering and regenerative medicine aim to alleviate using biofabrication methods combining additive manufacturing, biomaterials science and advanced cellular biology. While many approaches facilitate the development of bioengineered constructs which mimic the structure and function of native blood vessels, several challenges must still be overcome for clinical translation of the next generation of tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Angus Weekes
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, 4006, Australia.
| | - Nicole Bartnikowski
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, 4035, Australia.
| | - Nigel Pinto
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, 4006, Australia; Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, 4006, Australia.
| | - Jason Jenkins
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, 4006, Australia; Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, 4006, Australia.
| | - Christoph Meinert
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, 4006, Australia.
| | - Travis J Klein
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia.
| |
Collapse
|
61
|
Blum KM, Zbinden JC, Ramachandra AB, Lindsey SE, Szafron JM, Reinhardt JW, Heitkemper M, Best CA, Mirhaidari GJM, Chang YC, Ulziibayar A, Kelly J, Shah KV, Drews JD, Zakko J, Miyamoto S, Matsuzaki Y, Iwaki R, Ahmad H, Daulton R, Musgrave D, Wiet MG, Heuer E, Lawson E, Schwarz E, McDermott MR, Krishnamurthy R, Krishnamurthy R, Hor K, Armstrong AK, Boe BA, Berman DP, Trask AJ, Humphrey JD, Marsden AL, Shinoka T, Breuer CK. Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth. COMMUNICATIONS MEDICINE 2022; 2:3. [PMID: 35603301 PMCID: PMC9053249 DOI: 10.1038/s43856-021-00063-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022] Open
Abstract
Background Tissue-engineered vascular grafts (TEVGs) have the potential to advance the surgical management of infants and children requiring congenital heart surgery by creating functional vascular conduits with growth capacity. Methods Herein, we used an integrative computational-experimental approach to elucidate the natural history of neovessel formation in a large animal preclinical model; combining an in vitro accelerated degradation study with mechanical testing, large animal implantation studies with in vivo imaging and histology, and data-informed computational growth and remodeling models. Results Our findings demonstrate that the structural integrity of the polymeric scaffold is lost over the first 26 weeks in vivo, while polymeric fragments persist for up to 52 weeks. Our models predict that early neotissue accumulation is driven primarily by inflammatory processes in response to the implanted polymeric scaffold, but that turnover becomes progressively mechano-mediated as the scaffold degrades. Using a lamb model, we confirm that early neotissue formation results primarily from the foreign body reaction induced by the scaffold, resulting in an early period of dynamic remodeling characterized by transient TEVG narrowing. As the scaffold degrades, mechano-mediated neotissue remodeling becomes dominant around 26 weeks. After the scaffold degrades completely, the resulting neovessel undergoes growth and remodeling that mimicks native vessel behavior, including biological growth capacity, further supported by fluid-structure interaction simulations providing detailed hemodynamic and wall stress information. Conclusions These findings provide insights into TEVG remodeling, and have important implications for clinical use and future development of TEVGs for children with congenital heart disease.
Collapse
Affiliation(s)
- Kevin M. Blum
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Jacob C. Zbinden
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210 USA
| | | | - Stephanie E. Lindsey
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA 94305 USA
- Institute for Computational and Mathematical Engineering (ICME), Stanford University, Stanford, CA 94305 USA
| | - Jason M. Szafron
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520 USA
| | - James W. Reinhardt
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Megan Heitkemper
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Cameron A. Best
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Gabriel J. M. Mirhaidari
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Yu-Chun Chang
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Anudari Ulziibayar
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - John Kelly
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Kejal V. Shah
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Joseph D. Drews
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Jason Zakko
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Shinka Miyamoto
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Cardiovascular Surgery at Tokyo Women’s Medical University, Tokyo, Japan
| | - Yuichi Matsuzaki
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Ryuma Iwaki
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Hira Ahmad
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Pediatric Colorectal and Pelvic Reconstructive Surgery, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Robbie Daulton
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- University of Cincinnati College of Medicine 3230 Eden Ave, Cincinnati, OH 45267 USA
| | - Drew Musgrave
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Matthew G. Wiet
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Eric Heuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Emily Lawson
- The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Erica Schwarz
- Department of Bioengineering, Stanford University, Stanford, CA 94304 USA
| | - Michael R. McDermott
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Rajesh Krishnamurthy
- Department of Radiology, Nationwide Children’s Hospital, Columbus, Ohio 43205 USA
| | | | - Kan Hor
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Aimee K. Armstrong
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Brian A. Boe
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Darren P. Berman
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Aaron J. Trask
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520 USA
| | - Alison L. Marsden
- Institute for Computational and Mathematical Engineering (ICME), Stanford University, Stanford, CA 94305 USA
- Department of Bioengineering, Stanford University, Stanford, CA 94304 USA
| | - Toshiharu Shinoka
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Cardiothoracic Surgery, The Ohio State University College of Medicine, Columbus, OH 43205 USA
| | - Christopher K. Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| |
Collapse
|
62
|
Five Year Outcome in Patients with End Stage Renal Disease Who Received a Bioengineered Human Acellular Vessel for Dialysis Access. EJVES Vasc Forum 2022; 54:58-63. [PMID: 35243473 PMCID: PMC8881722 DOI: 10.1016/j.ejvsvf.2022.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/01/2021] [Accepted: 01/04/2022] [Indexed: 11/26/2022] Open
Abstract
Objective Patients with end stage renal failure who require haemodialysis suffer morbidity and mortality due to vascular access. Bioengineered human acellular vessels (HAVs) may provide a haemodialysis access option with fewer complications than other grafts. In a prospective phase II trial from 2012 to 2014 (NCT01744418), HAVs were implanted into 40 haemodialysis patients at three sites in Poland. The trial protocol for this “first in man” use of the HAV contemplated only two years of follow up, and the trial results were initially reported in 2016. In light of the retained HAV function seen in many of the patients at the two year time point, follow up for patients who were still alive was extended to a total of 10 years. This interim follow up report, at the long term time point of five years, assessed patient and conduit status in those who continued routine dialysis with the HAV. Methods HAVs are bioengineered by culturing human vascular smooth muscle cells on a biodegradable polymer matrix. In this study, patients with patent HAV implants at 24 months were followed every three months, starting at month 27 through to month 60, or at least five years post-implantation. This report contains the follow up functional and histological data on 29 of the original 40 patients who demonstrated HAV function at the 24 month time point. Results Eleven patients completed at month 60. One patient maintained primary patency, and 10 maintained secondary patency. Secondary patency was estimated at 58.2% (95% confidence interval 39.2–73.1) at five years, after censoring for deaths (n = 8) and withdrawals (n = 1). No HAV conduit infections were reported during the follow up period. Conclusion This phase II long term follow up shows that the human acellular vessel (HAV) may provide durable and functional haemodialysis access for patients with end stage renal disease. This long term follow up assessed conduit status in patients who continued dialysis with an HAV. At month 60, one patient maintained primary patency, and 10 maintained secondary patency. Secondary patency was estimated at 58.2% at five years, after censoring for deaths and withdrawals. No HAV conduit infections were reported during follow up. The HAV provides long term, durable and functional haemodialysis access for patients with ESRD.
Collapse
|
63
|
Liu S, Lin Z. Vascular Smooth Muscle Cells Mechanosensitive Regulators and Vascular Remodeling. J Vasc Res 2021; 59:90-113. [PMID: 34937033 DOI: 10.1159/000519845] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/23/2021] [Indexed: 11/19/2022] Open
Abstract
Blood vessels are subjected to mechanical loads of pressure and flow, inducing smooth muscle circumferential and endothelial shear stresses. The perception and response of vascular tissue and living cells to these stresses and the microenvironment they are exposed to are critical to their function and survival. These mechanical stimuli not only cause morphological changes in cells and vessel walls but also can interfere with biochemical homeostasis, leading to vascular remodeling and dysfunction. However, the mechanisms underlying how these stimuli affect tissue and cellular function, including mechanical stimulation-induced biochemical signaling and mechanical transduction that relies on cytoskeletal integrity, are unclear. This review focuses on signaling pathways that regulate multiple biochemical processes in vascular mesangial smooth muscle cells in response to circumferential stress and are involved in mechanosensitive regulatory molecules in response to mechanotransduction, including ion channels, membrane receptors, integrins, cytoskeletal proteins, nuclear structures, and cascades. Mechanoactivation of these signaling pathways is closely associated with vascular remodeling in physiological or pathophysiological states.
Collapse
Affiliation(s)
- Shangmin Liu
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, China, .,Medical Research Center, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China,
| | - Zhanyi Lin
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, China.,Institute of Geriatric Medicine, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| |
Collapse
|
64
|
Yang S, Zheng X, Qian M, Wang H, Wang F, Wei Y, Midgley AC, He J, Tian H, Zhao Q. Nitrate-Functionalized poly(ε-Caprolactone) Small-Diameter Vascular Grafts Enhance Vascular Regeneration via Sustained Release of Nitric Oxide. Front Bioeng Biotechnol 2021; 9:770121. [PMID: 34917597 PMCID: PMC8670382 DOI: 10.3389/fbioe.2021.770121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/04/2021] [Indexed: 01/04/2023] Open
Abstract
Artificial small-diameter vascular grafts (SDVG) fabricated from synthetic biodegradable polymers, such as poly(ε-caprolactone) (PCL), exhibit beneficial mechanical properties but are often faced with issues impacting their long-term graft success. Nitric oxide (NO) is an important physiological gasotransmitter with multiple roles in orchestrating vascular tissue function and regeneration. We fabricated a functional vascular graft by electrospinning of nitrate-functionalized poly(ε-caprolactone) that could release NO in a sustained manner via stepwise biotransformation in vivo. Nitrate-functionalized SDVG (PCL/NO) maintained patency following abdominal arterial replacement in rats. PCL/NO promoted cell infiltration at 3-months post-transplantation. In contrast, unmodified PCL SDVG showed slow cell in-growth and increased incidence of neointima formation. PCL/NO demonstrated improved endothelial cell (EC) alignment and luminal coverage, and more defined vascular smooth muscle cell (VSMC) layer, compared to unmodified PCL SDVG. In addition, release of NO stimulated Sca-1+ vascular progenitor cells (VPCs) to differentiate and contribute to rapid luminal endothelialization. Furthermore, PCL/NO inhibited the differentiation of VPCs into osteopontin-positive cells, thereby preventing vascular calcification. Overall, PCL/NO demonstrated enhanced cell ingrowth, EC monolayer formation and VSMC layer regeneration; whilst inhibiting calcified plaque formation. Our results suggested that PCL/NO could serve as promising candidates for improved and long-term success of SDVG implants.
Collapse
Affiliation(s)
- Sen Yang
- Department of Peripheral Vascular Disease, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Xueni Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Meng Qian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - He Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Fei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Adam C Midgley
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Ju He
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Hongyan Tian
- Department of Peripheral Vascular Disease, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China.,Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, China
| |
Collapse
|
65
|
Niu Y, Galluzzi M, Fu M, Hu J, Xia H. In vivo performance of electrospun tubular hyaluronic acid/collagen nanofibrous scaffolds for vascular reconstruction in the rabbit model. J Nanobiotechnology 2021; 19:349. [PMID: 34717634 PMCID: PMC8557601 DOI: 10.1186/s12951-021-01091-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/17/2021] [Indexed: 01/08/2023] Open
Abstract
One of the main challenges of tissue-engineered vascular prostheses is restenosis due to intimal hyperplasia. The aim of this study is to develop a material for scaffolds able to support cell growth while tolerating physiological conditions and maintaining the patency of carotid artery model. Tubular hyaluronic acid (HA)-functionalized collagen nanofibrous composite scaffolds were prepared by sequential electrospinning method. The tubular composite scaffold has well-controlled biophysical and biochemical signals, providing a good matrix for the adhesion and proliferation of vascular endothelial cells (ECs), but resisting to platelets adhesion when exposed to blood. Carotid artery replacement experiment from 6-week rabbits showed that the HA/collagen nanofibrous composite scaffold grafts with endothelialization on the luminal surface could maintain vascular patency. At retrieval, the composite scaffold maintained good structural integrity and had comparable mechanical strength as the native artery. This study indicating that electrospun scaffolds combined with cells may become an alternative to prosthetic grafts for vascular reconstruction.
Collapse
Affiliation(s)
- Yuqing Niu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, People's Republic of China
| | - Massimiliano Galluzzi
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Ming Fu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, People's Republic of China
| | - Jinhua Hu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, People's Republic of China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, People's Republic of China.
| |
Collapse
|
66
|
Khanna A, Zamani M, Huang NF. Extracellular Matrix-Based Biomaterials for Cardiovascular Tissue Engineering. J Cardiovasc Dev Dis 2021; 8:137. [PMID: 34821690 PMCID: PMC8622600 DOI: 10.3390/jcdd8110137] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/10/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tissue-engineered replacements. The extracellular matrix (ECM) is a dynamic scaffolding structure characterized by tissue-specific biochemical, biophysical, and mechanical properties that modulates cellular behavior and activates highly regulated signaling pathways. In light of technological advancements, biomaterial-based scaffolds have been developed that better mimic physiological ECM properties, provide signaling cues that modulate cellular behavior, and form functional tissues and organs. In this review, we summarize the in vitro, pre-clinical, and clinical research models that have been employed in the design of ECM-based biomaterials for cardiovascular regenerative medicine. We highlight the research advancements in the incorporation of ECM components into biomaterial-based scaffolds, the engineering of increasingly complex structures using biofabrication and spatial patterning techniques, the regulation of ECMs on vascular differentiation and function, and the translation of ECM-based scaffolds for vascular graft applications. Finally, we discuss the challenges, future perspectives, and directions in the design of next-generation ECM-based biomaterials for cardiovascular tissue engineering and clinical translation.
Collapse
Affiliation(s)
| | - Maedeh Zamani
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Ngan F. Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
67
|
Devillard CD, Marquette CA. Vascular Tissue Engineering: Challenges and Requirements for an Ideal Large Scale Blood Vessel. Front Bioeng Biotechnol 2021; 9:721843. [PMID: 34671597 PMCID: PMC8522984 DOI: 10.3389/fbioe.2021.721843] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
Since the emergence of regenerative medicine and tissue engineering more than half a century ago, one obstacle has persisted: the in vitro creation of large-scale vascular tissue (>1 cm3) to meet the clinical needs of viable tissue grafts but also for biological research applications. Considerable advancements in biofabrication have been made since Weinberg and Bell, in 1986, created the first blood vessel from collagen, endothelial cells, smooth muscle cells and fibroblasts. The synergistic combination of advances in fabrication methods, availability of cell source, biomaterials formulation and vascular tissue development, promises new strategies for the creation of autologous blood vessels, recapitulating biological functions, structural functions, but also the mechanical functions of a native blood vessel. In this review, the main technological advancements in bio-fabrication are discussed with a particular highlights on 3D bioprinting technologies. The choice of the main biomaterials and cell sources, the use of dynamic maturation systems such as bioreactors and the associated clinical trials will be detailed. The remaining challenges in this complex engineering field will finally be discussed.
Collapse
Affiliation(s)
- Chloé D Devillard
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Christophe A Marquette
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| |
Collapse
|
68
|
Tissue-Engineered Vascular Graft with Co-Culture of Smooth Muscle Cells and Human Endothelial Vein Cells on an Electrospun Poly(lactic-co-glycolic acid) Microtube Array Membrane. MEMBRANES 2021; 11:membranes11100732. [PMID: 34677499 PMCID: PMC8539722 DOI: 10.3390/membranes11100732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022]
Abstract
Coronary artery disease is one of the major diseases that plagues today’s modern society. Conventional treatments utilize synthetic vascular grafts such as Dacron® and Teflon® in bypass graft surgery. Despite the wide adaptation, these synthetic grafts are often plagued with weaknesses such as low hemocompatibility, thrombosis, intimal hyperplasia, and risks of graft infection. More importantly, these synthetic grafts are not available at diameters of less than 6 mm. In view of these challenges, we strived to develop and adapt the electrospun Poly Lactic-co-Glycolic Acid (PLGA) Microtube Array Membrane (MTAM) vascular graft for applications smaller than 6 mm in diameter. Homogenously porous PLGA MTAMs were successfully electrospun at 5.5–8.5 kV under ambient conditions. Mechanically, the PLGA MTAMs registered a maximum tensile strength of 5.57 ± 0.85 MPa and Young’s modulus value of 1.134 ± 0.01 MPa; while MTT assay revealed that seven-day Smooth Muscle Cells (SMCs) and Human Umbilical Vein Endothelial Cells (HUVECs) registered a 6 times and 2.4 times higher cell viability when cultured in a co-culture setting in medium containing α-1 haptaglobulin. When rolled into a vascular graft, the PLGA MTAMs registered an overall degradation of 82% after 60 days of cell co-culture. After eight weeks of culturing, immunohistochemistry staining revealed the formation of a monolayer of HUVECs with tight junctions on the surface of the PLGA MTAM, and as for the SMCs housed within the lumens of the PLGA MTAMs, a monolayer with high degree of orientation was observed. The PLGA MTAM registered a burst pressure of 1092.2 ± 175.3 mmHg, which was sufficient for applications such as small diameter blood vessels. Potentially, the PLGA MTAM could be used as a suitable substrate for vascular engineering.
Collapse
|
69
|
Lust ST, Shanahan CM, Shipley RJ, Lamata P, Gentleman E. Design considerations for engineering 3D models to study vascular pathologies in vitro. Acta Biomater 2021; 132:114-128. [PMID: 33652164 PMCID: PMC7611653 DOI: 10.1016/j.actbio.2021.02.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
Many cardiovascular diseases (CVD) are driven by pathological remodelling of blood vessels, which can lead to aneurysms, myocardial infarction, ischaemia and strokes. Aberrant remodelling is driven by changes in vascular cell behaviours combined with degradation, modification, or abnormal deposition of extracellular matrix (ECM) proteins. The underlying mechanisms that drive the pathological remodelling of blood vessels are multifaceted and disease specific; however, unravelling them may be key to developing therapies. Reductionist models of blood vessels created in vitro that combine cells with biomaterial scaffolds may serve as useful analogues to study vascular disease progression in a controlled environment. This review presents the main considerations for developing such in vitro models. We discuss how the design of blood vessel models impacts experimental readouts, with a particular focus on the maintenance of normal cellular phenotypes, strategies that mimic normal cell-ECM interactions, and approaches that foster intercellular communication between vascular cell types. We also highlight how choice of biomaterials, cellular arrangements and the inclusion of mechanical stimulation using fluidic devices together impact the ability of blood vessel models to mimic in vivo conditions. In the future, by combining advances in materials science, cell biology, fluidics and modelling, it may be possible to create blood vessel models that are patient-specific and can be used to develop and test therapies. STATEMENT OF SIGNIFICANCE: Simplified models of blood vessels created in vitro are powerful tools for studying cardiovascular diseases and understanding the mechanisms driving their progression. Here, we highlight the key structural and cellular components of effective models and discuss how including mechanical stimuli allows researchers to mimic native vessel behaviour in health and disease. We discuss the primary methods used to form blood vessel models and their limitations and conclude with an outlook on how blood vessel models that incorporate patient-specific cells and flows can be used in the future for personalised disease modelling.
Collapse
Affiliation(s)
- Suzette T Lust
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, United Kingdom; School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Catherine M Shanahan
- School of Cardiovascular Medicine and Sciences, King's College London, London SE5 9NU, United Kingdom
| | - Rebecca J Shipley
- Institute of Healthcare Engineering and Department of Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Pablo Lamata
- School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, United Kingdom.
| |
Collapse
|
70
|
Zumbardo‐Bacelis GA, Meza‐Villegas LA, Pérez‐Aranda CA, Vargas‐Coronado R, Castillo‐Cruz O, Montaño‐Machado V, Mantovani D, Cauich‐Rodríguez JV. On arginine‐based polyurethane‐blends specific to vascular prostheses. J Appl Polym Sci 2021. [DOI: 10.1002/app.51247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | | | | | | | - Omar Castillo‐Cruz
- Unidad de Materiales Centro de Investigación Científica de Yucatán Mérida Yucatán Mexico
| | - Vanessa Montaño‐Machado
- Lab. for Biomaterials & Bioengineering (CRC‐I), Dept. of Min‐Met‐Materials Engineering & CHU de Quebec Research Center, Regenerative Medicine Laval University Quebec City Canada
| | - Diego Mantovani
- Lab. for Biomaterials & Bioengineering (CRC‐I), Dept. of Min‐Met‐Materials Engineering & CHU de Quebec Research Center, Regenerative Medicine Laval University Quebec City Canada
| | | |
Collapse
|
71
|
Rohiwal SS, Ellederová Z, Ardan T, Klima J. Advancement in Nanostructure-Based Tissue-Engineered Biomaterials for Retinal Degenerative Diseases. Biomedicines 2021; 9:biomedicines9081005. [PMID: 34440209 PMCID: PMC8393745 DOI: 10.3390/biomedicines9081005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
The review intends to overview a wide range of nanostructured natural, synthetic and biological membrane implants for tissue engineering to help in retinal degenerative diseases. Herein, we discuss the transplantation strategies and the new development of material in combination with cells such as induced pluripotent stem cells (iPSC), mature retinal cells, adult stem cells, retinal progenitors, fetal retinal cells, or retinal pigment epithelial (RPE) sheets, etc. to be delivered into the subretinal space. Retinitis pigmentosa and age-related macular degeneration (AMD) are the most common retinal diseases resulting in vision impairment or blindness by permanent loss in photoreceptor cells. Currently, there are no therapies that can repair permanent vision loss, and the available treatments can only delay the advancement of retinal degeneration. The delivery of cell-based nanostructure scaffolds has been presented to enrich cell survival and direct cell differentiation in a range of retinal degenerative models. In this review, we sum up the research findings on different types of nanostructure scaffolds/substrate or material-based implants, with or without cells, used to deliver into the subretinal space for retinal diseases. Though, clinical and pre-clinical trials are still needed for these transplants to be used as a clinical treatment method for retinal degeneration.
Collapse
|
72
|
|
73
|
Liu X, Yue T, Kojima M, Huang Q, Arai T. Bio-assembling and Bioprinting for Engineering Microvessels from the Bottom Up. Int J Bioprint 2021; 7:366. [PMID: 34286151 PMCID: PMC8287491 DOI: 10.18063/ijb.v7i3.366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Blood vessels are essential in transporting nutrients, oxygen, metabolic wastes, and maintaining the homeostasis of the whole human body. Mass of engineered microvessels is required to deliver nutrients to the cells included in the constructed large three-dimensional (3D) functional tissues by diffusion. It is a formidable challenge to regenerate microvessels and build a microvascular network, mimicking the cellular viabilities and activities in the engineered organs with traditional or existing manufacturing techniques. Modular tissue engineering adopting the "bottom-up" approach builds one-dimensional (1D) or two-dimensional (2D) modular tissues in micro scale first and then uses these modules as building blocks to generate large tissues and organs with complex but indispensable microstructural features. Building the microvascular network utilizing this approach could be appropriate and adequate. In this review, we introduced existing methods using the "bottom-up" concept developed to fabricate microvessels including bio-assembling powered by different micromanipulation techniques and bioprinting utilizing varied solidification mechanisms. We compared and discussed the features of the artificial microvessels engineered by these two strategies from multiple aspects. Regarding the future development of engineering the microvessels from the bottom up, potential directions were also concluded.
Collapse
Affiliation(s)
- Xiaoming Liu
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tao Yue
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | - Masaru Kojima
- Department of Materials Engineering Science, Osaka University, Osaka 5608531, Japan
| | - Qiang Huang
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tatsuo Arai
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Center for Neuroscience and Biomedical Engineering, the University of Electro-Communications, Tokyo 1828585, Japan
| |
Collapse
|
74
|
Ye L, Takagi T, Tu C, Hagiwara A, Geng X, Feng Z. The performance of heparin modified poly(ε-caprolactone) small diameter tissue engineering vascular graft in canine-A long-term pilot experiment in vivo. J Biomed Mater Res A 2021; 109:2493-2505. [PMID: 34096176 DOI: 10.1002/jbm.a.37243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 05/12/2021] [Accepted: 05/28/2021] [Indexed: 01/22/2023]
Abstract
Long-term in vivo observation in large animal model is critical for evaluating the potential of small diameter tissue engineering vascular graft (SDTEVG) in clinical application, but is rarely reported. In this study, a SDTEVG is fabricated by the electrospinning of poly(ε-caprolactone) and subsequent heparin modification. SDTEVG is implanted into canine's abdominal aorta for 511 days in order to investigate its clinical feasibility. An active and robust remodeling process was characterized by a confluent endothelium, macrophage infiltrate, extracellular matrix deposition and remodeling on the explanted graft. The immunohistochemical and immunofluorescence analysis further exhibit the regeneration of endothelium and smooth muscle layer on tunica intima and tunica media, respectively. Thus, long-term follow-up reveals viable neovessel formation beyond graft degradation. Furthermore, the von Kossa staining exhibits no occurrence of calcification. However, although no TEVG failure or rupture happens during the follow-up, the aneurysm is found by both Doppler ultrasonic and gross observation. Consequently, as-prepared TEVG shows promising potential in vascular tissue engineering if it can be appropriately strengthened to prevent the occurrence of aneurysm.
Collapse
Affiliation(s)
- Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China.,Department of Medical Life System, Doshisha University, Kyoto, Japan
| | - Toshitaka Takagi
- Department of Medical Life System, Doshisha University, Kyoto, Japan
| | - Chengzhao Tu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Akeo Hagiwara
- Department of Medical Life System, Doshisha University, Kyoto, Japan
| | - Xue Geng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China.,Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China.,Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, China
| |
Collapse
|
75
|
Zhang Q, Bosch-Rué È, Pérez RA, Truskey GA. Biofabrication of tissue engineering vascular systems. APL Bioeng 2021; 5:021507. [PMID: 33981941 PMCID: PMC8106537 DOI: 10.1063/5.0039628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death among persons aged 65 and older in the United States and many other developed countries. Tissue engineered vascular systems (TEVS) can serve as grafts for CVD treatment and be used as in vitro model systems to examine the role of various genetic factors during the CVD progressions. Current focus in the field is to fabricate TEVS that more closely resembles the mechanical properties and extracellular matrix environment of native vessels, which depends heavily on the advance in biofabrication techniques and discovery of novel biomaterials. In this review, we outline the mechanical and biological design requirements of TEVS and explore the history and recent advances in biofabrication methods and biomaterials for tissue engineered blood vessels and microvascular systems with special focus on in vitro applications. In vitro applications of TEVS for disease modeling are discussed.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Èlia Bosch-Rué
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès 08195, Spain
| | - Román A. Pérez
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès 08195, Spain
| | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
76
|
Kim SW, Kim YY, Kim H, Ku SY. Recent Advancements in Engineered Biomaterials for the Regeneration of Female Reproductive Organs. Reprod Sci 2021; 28:1612-1625. [PMID: 33797052 DOI: 10.1007/s43032-021-00553-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
Various gynecologic diseases and chemoradiation or surgery for the management of gynecologic malignancies may damage the uterus and ovaries, leading to clinical problems such as infertility or early menopause. Embryo or oocyte cryopreservation-the standard method for fertility preservation-is not a feasible option for patients who require urgent treatment because the procedure requires ovarian stimulation for at least several days. Hormone replacement therapy (HRT) for patients diagnosed with premature menopause is contraindicated for patients with estrogen-dependent tumors or a history of thrombosis. Furthermore, these methods cannot restore the function of the uterus and ovaries. Although autologous transplantation of cryopreserved ovarian tissue is being attempted, it may re-introduce malignant cells after cancer treatment. With the recent development in regenerative medicine, research on engineered biomaterials for the restoration of female reproductive organs is being actively conducted. The use of engineered biomaterials is a promising option in the field of reproductive medicine because it can overcome the limitations of current therapies. Here, we review the ideal properties of biomaterials for reproductive tissue engineering and the recent advancements in engineered biomaterials for the regeneration of female reproductive organs.
Collapse
Affiliation(s)
- Sung Woo Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea.
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea.
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea.
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, 2024 E. Monument St, Baltimore, MD, 21205, USA.
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
77
|
Drews JD, Pepper VK, Best CA, Szafron JM, Cheatham JP, Yates AR, Hor KN, Zbinden JC, Chang YC, Mirhaidari GJM, Ramachandra AB, Miyamoto S, Blum KM, Onwuka EA, Zakko J, Kelly J, Cheatham SL, King N, Reinhardt JW, Sugiura T, Miyachi H, Matsuzaki Y, Breuer J, Heuer ED, West TA, Shoji T, Berman D, Boe BA, Asnes J, Galantowicz M, Matsumura G, Hibino N, Marsden AL, Pober JS, Humphrey JD, Shinoka T, Breuer CK. Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Sci Transl Med 2021; 12:12/537/eaax6919. [PMID: 32238576 DOI: 10.1126/scitranslmed.aax6919] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/27/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
We developed a tissue-engineered vascular graft (TEVG) for use in children and present results of a U.S. Food and Drug Administration (FDA)-approved clinical trial evaluating this graft in patients with single-ventricle cardiac anomalies. The TEVG was used as a Fontan conduit to connect the inferior vena cava and pulmonary artery, but a high incidence of graft narrowing manifested within the first 6 months, which was treated successfully with angioplasty. To elucidate mechanisms underlying this early stenosis, we used a data-informed, computational model to perform in silico parametric studies of TEVG development. The simulations predicted early stenosis as observed in our clinical trial but suggested further that such narrowing could reverse spontaneously through an inflammation-driven, mechano-mediated mechanism. We tested this unexpected, model-generated hypothesis by implanting TEVGs in an ovine inferior vena cava interposition graft model, which confirmed the prediction that TEVG stenosis resolved spontaneously and was typically well tolerated. These findings have important implications for our translational research because they suggest that angioplasty may be safely avoided in patients with asymptomatic early stenosis, although there will remain a need for appropriate medical monitoring. The simulations further predicted that the degree of reversible narrowing can be mitigated by altering the scaffold design to attenuate early inflammation and increase mechano-sensing by the synthetic cells, thus suggesting a new paradigm for optimizing next-generation TEVGs. We submit that there is considerable translational advantage to combined computational-experimental studies when designing cutting-edge technologies and their clinical management.
Collapse
Affiliation(s)
- Joseph D Drews
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Victoria K Pepper
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Cameron A Best
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jason M Szafron
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - John P Cheatham
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Andrew R Yates
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Kan N Hor
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jacob C Zbinden
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yu-Chun Chang
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Gabriel J M Mirhaidari
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Abhay B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Shinka Miyamoto
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kevin M Blum
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ekene A Onwuka
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jason Zakko
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - John Kelly
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Sharon L Cheatham
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Nakesha King
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - James W Reinhardt
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Tadahisa Sugiura
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Hideki Miyachi
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Yuichi Matsuzaki
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Julie Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Eric D Heuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - T Aaron West
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Toshihiro Shoji
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Darren Berman
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Brian A Boe
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Jeremy Asnes
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mark Galantowicz
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Goki Matsumura
- Department of Cardiovascular Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Narutoshi Hibino
- Department of Surgery, University of Chicago/Advocate Children's Hospital, Chicago, IL 60453, USA
| | - Alison L Marsden
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, CA 94304, USA
| | - Jordan S Pober
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA. .,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.,Department of Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| |
Collapse
|
78
|
Wang J, Kural MH, Wu J, Leiby KL, Mishra V, Lysyy T, Li G, Luo J, Greaney A, Tellides G, Qyang Y, Huang N, Niklason LE. An ex vivo physiologic and hyperplastic vessel culture model to study intra-arterial stent therapies. Biomaterials 2021; 275:120911. [PMID: 34087584 DOI: 10.1016/j.biomaterials.2021.120911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/19/2022]
Abstract
Conventional in vitro methods for biological evaluation of intra-arterial devices such as stents fail to accurately predict cytotoxicity and remodeling events. An ex vivo flow-tunable vascular bioreactor system (VesselBRx), comprising intra- and extra-luminal monitoring capabilities, addresses these limitations. VesselBRx mimics the in vivo physiological, hyperplastic, and cytocompatibility events of absorbable magnesium (Mg)-based stents in ex vivo stent-treated porcine and human coronary arteries, with in-situ and real-time monitoring of local stent degradation effects. Unlike conventional, static cell culture, the VesselBRx perfusion system eliminates unphysiologically high intracellular Mg2+ concentrations and localized O2 consumption resulting from stent degradation. Whereas static stented arteries exhibited only 20.1% cell viability and upregulated apoptosis, necrosis, metallic ion, and hypoxia-related gene signatures, stented arteries in VesselBRx showed almost identical cell viability to in vivo rabbit models (~94.0%). Hyperplastic intimal remodeling developed in unstented arteries subjected to low shear stress, but was inhibited by Mg-based stents in VesselBRx, similarly to in vivo. VesselBRx represents a critical advance from the current static culture standard of testing absorbable vascular implants.
Collapse
Affiliation(s)
- Juan Wang
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - Mehmet H Kural
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - Jonathan Wu
- Department of Biomedical Engineering, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - Katherine L Leiby
- Department of Biomedical Engineering, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - Vinayak Mishra
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Taras Lysyy
- Department of Surgery, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - Guangxin Li
- Department of Surgery, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - Jiesi Luo
- Yale Cardiovascular Research Center, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT06519, USA
| | - Allison Greaney
- Department of Biomedical Engineering, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - George Tellides
- Department of Surgery, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT06519, USA
| | - Nan Huang
- School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Laura E Niklason
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA; Department of Biomedical Engineering, School of Medicine, Yale University, New Haven, CT, 06519, USA.
| |
Collapse
|
79
|
Lepedda AJ, Nieddu G, Formato M, Baker MB, Fernández-Pérez J, Moroni L. Glycosaminoglycans: From Vascular Physiology to Tissue Engineering Applications. Front Chem 2021; 9:680836. [PMID: 34084767 PMCID: PMC8167061 DOI: 10.3389/fchem.2021.680836] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular diseases represent the number one cause of death globally, with atherosclerosis a major contributor. Despite the clinical need for functional arterial substitutes, success has been limited to arterial replacements of large-caliber vessels (diameter > 6 mm), leaving the bulk of demand unmet. In this respect, one of the most challenging goals in tissue engineering is to design a "bioactive" resorbable scaffold, analogous to the natural extracellular matrix (ECM), able to guide the process of vascular tissue regeneration. Besides adequate mechanical properties to sustain the hemodynamic flow forces, scaffold's properties should include biocompatibility, controlled biodegradability with non-toxic products, low inflammatory/thrombotic potential, porosity, and a specific combination of molecular signals allowing vascular cells to attach, proliferate and synthesize their own ECM. Different fabrication methods, such as phase separation, self-assembly and electrospinning are currently used to obtain nanofibrous scaffolds with a well-organized architecture and mechanical properties suitable for vascular tissue regeneration. However, several studies have shown that naked scaffolds, although fabricated with biocompatible polymers, represent a poor substrate to be populated by vascular cells. In this respect, surface functionalization with bioactive natural molecules, such as collagen, elastin, fibrinogen, silk fibroin, alginate, chitosan, dextran, glycosaminoglycans (GAGs), and growth factors has proven to be effective. GAGs are complex anionic unbranched heteropolysaccharides that represent major structural and functional ECM components of connective tissues. GAGs are very heterogeneous in terms of type of repeating disaccharide unit, relative molecular mass, charge density, degree and pattern of sulfation, degree of epimerization and physicochemical properties. These molecules participate in a number of vascular events such as the regulation of vascular permeability, lipid metabolism, hemostasis, and thrombosis, but also interact with vascular cells, growth factors, and cytokines to modulate cell adhesion, migration, and proliferation. The primary goal of this review is to perform a critical analysis of the last twenty-years of literature in which GAGs have been used as molecular cues, able to guide the processes leading to correct endothelialization and neo-artery formation, as well as to provide readers with an overall picture of their potential as functional molecules for small-diameter vascular regeneration.
Collapse
Affiliation(s)
| | - Gabriele Nieddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marilena Formato
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Matthew Brandon Baker
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, Netherlands
| | - Julia Fernández-Pérez
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, Netherlands
| |
Collapse
|
80
|
Wahlsten A, Rütsche D, Nanni M, Giampietro C, Biedermann T, Reichmann E, Mazza E. Mechanical stimulation induces rapid fibroblast proliferation and accelerates the early maturation of human skin substitutes. Biomaterials 2021; 273:120779. [PMID: 33932701 DOI: 10.1016/j.biomaterials.2021.120779] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/28/2021] [Accepted: 03/20/2021] [Indexed: 11/19/2022]
Abstract
The clinical treatment of large, full-thickness skin injuries with tissue-engineered autologous dermo-epidermal skin substitutes is an emerging alternative to split-thickness skin grafting. However, their production requires about one month of in vitro cell and tissue culture, which is a significant drawback for the treatment of patients with severe skin defects. With the aim to reduce the production time, we developed a new dynamic bioreactor setup that applies cyclic biaxial tension to collagen hydrogels for skin tissue engineering. By reliably controlling the time history of mechanical loading, the dynamic culturing results in a three-fold increase in collagen hydrogel stiffness and stimulates the embedded fibroblasts to enter the cell cycle. As a result, the number of fibroblasts is increased by 75% compared to under corresponding static culturing. Enhanced fibroblast proliferation promotes expression of dermal extracellular matrix proteins, keratinocyte proliferation, and the early establishment of the epidermis. The time required for early tissue maturation can therefore be reduced by one week. Analysis of the separate effects of cyclic loading, matrix stiffening, and interstitial fluid flow indicates that cyclic deformation is the dominant biophysical factor determining fibroblast proliferation, while tissue stiffening plays a lesser role. Local differences in the direction of deformation (in-plane equibiaxial vs. uniaxial strain) influence fibroblast orientation but not proliferation, nor the resulting tissue properties. Importantly, dynamic culturing does not activate fibroblast differentiation into myofibroblasts. The present work demonstrates that control of mechanobiological cues can be very effective in driving cell response toward a shorter production time for human skin substitutes.
Collapse
Affiliation(s)
- Adam Wahlsten
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Dominic Rütsche
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Children's Research Center, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Monica Nanni
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Children's Research Center, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Costanza Giampietro
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Children's Research Center, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Ernst Reichmann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Children's Research Center, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland.
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
| |
Collapse
|
81
|
Saito J, Yokoyama U, Nakamura T, Kanaya T, Ueno T, Naito Y, Takayama T, Kaneko M, Miyagawa S, Sawa Y, Ishikawa Y. Scaffold-free tissue-engineered arterial grafts derived from human skeletal myoblasts. Artif Organs 2021; 45:919-932. [PMID: 33539557 DOI: 10.1111/aor.13930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/16/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022]
Abstract
Tissue-engineered vascular grafts (TEVGs) are in urgent demand for both adult and pediatric patients. Although several approaches have utilized vascular smooth muscle cells (SMCs) and endothelial cells as cell sources for TEVGs, these cell sources have a limited proliferative capacity that results in an inability to reconstitute neotissues. Skeletal myoblasts are attractive cell sources as they possess high proliferative capacity, and they are already being tested in clinical trials for patients with ischemic cardiomyopathy. Our previous study demonstrated that periodic hydrostatic pressurization (PHP) promoted fibronectin fibrillogenesis in vascular SMCs, and that PHP-induced extracellular matrix (ECM) arrangements enabled the fabrication of implantable arterial grafts derived from SMCs without using a scaffold material. We assessed the molecular response of human skeletal myoblasts to PHP exposure, and aimed to fabricate arterial grafts from the myoblasts by exposure to PHP. To examine the PHP-response genes, human skeletal myoblasts were subjected to bulk RNA-sequencing after PHP exposure. Gene-set enrichment analysis revealed significant positive correlations between PHP exposure and vascular development-related genes. Real-time polymerase chain reaction (RT-PCR) demonstrated that PHP significantly upregulated collagen and elastic fiber formation-related gene expression, such as fibronectin, lysyl oxidase, collagen type I α1, collagen type IV α1, and tropoelastin. Based on these findings showing the potential role of PHP in vessel formation, we fabricated arterial grafts by repeated cell seeding and exposure to PHP every 24 hours. The resultant 15-layered myoblast grafts had high collagen content, which provided a tensile rupture strength of 899 ± 104 mm Hg. Human skeletal myoblast grafts were implanted as patch grafts in the aorta of immunosuppressed rats and found to be endothelialized and completely patent until the endpoint of 60 postoperative days. Implanted human myoblasts were gradually replaced by host-derived cells, which successfully formed vascular neotissues with layered elastic fibers. These findings suggest that human skeletal myoblasts have the potential to be a feasible cell source for scaffold-free implantable arterial grafts under PHP culture conditions.
Collapse
Affiliation(s)
- Junichi Saito
- Department of Physiology, Tokyo Medical University, Tokyo, Japan.,Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, Tokyo, Japan.,Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Takashi Nakamura
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Tomomitsu Kanaya
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takayoshi Ueno
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuji Naito
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| | - Toshio Takayama
- Department of Mechanical Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Makoto Kaneko
- Graduate School of Science and Engineering, Meijo University, Nagoya, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| |
Collapse
|
82
|
A Novel Bioreactor for the Mechanical Stimulation of Clinically Relevant Scaffolds for Muscle Tissue Engineering Purposes. Processes (Basel) 2021. [DOI: 10.3390/pr9030474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Muscular tissue regeneration may be enhanced in vitro by means of mechanical stimulation, inducing cellular alignment and the growth of functional fibers. In this work, a novel bioreactor is designed for the radial stimulation of porcine-derived diaphragmatic scaffolds aiming at the development of clinically relevant tissue patches. A Finite Element (FE) model of the bioreactor membrane is developed, considering two different methods for gripping muscular tissue patch during the stimulation, i.e., suturing and clamping with pliers. Tensile tests are carried out on fresh and decellularized samples of porcine diaphragmatic tissue, and a fiber-reinforced hyperelastic constitutive model is assumed to describe the mechanical behavior of tissue patches. Numerical analyses are carried out by applying pressure to the bioreactor membrane and evaluating tissue strain during the stimulation phase. The bioreactor designed in this work allows one to mechanically stimulate tissue patches in a radial direction by uniformly applying up to 30% strain. This can be achieved by adopting pliers for tissue clamping. Contrarily, the use of sutures is not advisable, since high strain levels are reached in suturing points, exceeding the physiological strain range and possibly leading to tissue laceration. FE analysis allows the optimization of the bioreactor configuration in order to ensure an efficient transduction of mechanical stimuli while preventing tissue damage.
Collapse
|
83
|
Sohn SH, Kim TH, Kim TS, Min TJ, Lee JH, Yoo SM, Kim JW, Lee JE, Kim CH, Park SH, Jo WM. Evaluation of 3D Templated Synthetic Vascular Graft Compared with Standard Graft in a Rat Model: Potential Use as an Artificial Vascular Graft in Cardiovascular Disease. MATERIALS 2021; 14:ma14051239. [PMID: 33807950 PMCID: PMC7962035 DOI: 10.3390/ma14051239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/03/2022]
Abstract
Although the number of vascular surgeries using vascular grafts is increasing, they are limited by vascular graft-related complications and size discrepancy. Current efforts to develop the ideal synthetic vascular graft for clinical application using tissue engineering or 3D printing are far from satisfactory. Therefore, we aimed to re-design the vascular graft with modified materials and 3D printing techniques and also demonstrated the improved applications of our new vascular graft clinically. We designed the 3D printed polyvinyl alcohol (PVA) templates according to the vessel size and shape, and these were dip-coated with salt-suspended thermoplastic polyurethane (TPU). Next, the core template was removed to obtain a customized porous TPU graft. The mechanical testing and cytotoxicity studies of the new synthetic 3D templated vascular grafts (3DT) were more appropriate compared with commercially available polytetrafluoroethylene (PTFE) grafts (ePTFE; standard graft, SG) for clinical use. Finally, we performed implantation of the 3DTs and SGs into the rat abdominal aorta as a patch technique. Four groups of the animal model (SG_7 days, SG_30 days, 3DT_7 days, and 3DT_30 days) were enrolled in this study. The abdominal aorta was surgically opened and sutured with SG or 3DT with 8/0 Prolene. The degree of endothelial cell activation, neovascularization, thrombus formation, calcification, inflammatory infiltrates, and fibrosis were analyzed histopathologically. There was significantly decreased thrombogenesis in the group treated with the 3DT for 30 days compared with the group treated with the SG for 7 and 30 days, and the 3DT for 7 days. In addition, the group treated with the 3DT for 30 days may also have shown increased postoperative endothelialization in the early stages. In conclusion, this study suggests the possibility of using the 3DT as an SG substitute in vascular surgery.
Collapse
Affiliation(s)
- Sung-Hwa Sohn
- Department of Thoracic & Cardiovascular Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea; (S.-H.S.); (T.-S.K.); (S.-M.Y.)
| | - Tae-Hee Kim
- Advanced Textile R&D Department, Korea Institute of Industrial Technology, Ansan 15588, Korea; (T.-H.K.); (J.-E.L.); (C.-H.K.)
| | - Tae-Sik Kim
- Department of Thoracic & Cardiovascular Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea; (S.-H.S.); (T.-S.K.); (S.-M.Y.)
| | - Too-Jae Min
- Department of Anesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea; (T.-J.M.); (J.-W.K.)
| | - Ju-Han Lee
- Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea;
| | - Sung-Mook Yoo
- Department of Thoracic & Cardiovascular Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea; (S.-H.S.); (T.-S.K.); (S.-M.Y.)
| | - Ji-Won Kim
- Department of Anesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea; (T.-J.M.); (J.-W.K.)
| | - Ji-Eun Lee
- Advanced Textile R&D Department, Korea Institute of Industrial Technology, Ansan 15588, Korea; (T.-H.K.); (J.-E.L.); (C.-H.K.)
| | - Chae-Hwa Kim
- Advanced Textile R&D Department, Korea Institute of Industrial Technology, Ansan 15588, Korea; (T.-H.K.); (J.-E.L.); (C.-H.K.)
| | - Suk-Hee Park
- School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, 63 Beon-gil, Geumjeong-gu, Busan 46241, Korea
- Correspondence: (S.-H.P.); (W.-M.J.)
| | - Won-Min Jo
- Department of Thoracic & Cardiovascular Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea; (S.-H.S.); (T.-S.K.); (S.-M.Y.)
- Correspondence: (S.-H.P.); (W.-M.J.)
| |
Collapse
|
84
|
The Angiogenic Potential of Mesenchymal Stem Cells from the Hair Follicle Outer Root Sheath. J Clin Med 2021; 10:jcm10050911. [PMID: 33652691 PMCID: PMC7956349 DOI: 10.3390/jcm10050911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Neovascularization is regarded as a pre-requisite in successful tissue grafting of both hard and soft tissues alike. This study considers mesenchymal stem cells from hair follicle outer root sheath (MSCORS) as powerful tools with a neat angiogenic potential that could in the future have wide scopes of neo-angiogenesis and tissue engineering. Autologous MSCORS were obtained ex vivo by non-invasive plucking of hair and they were differentiated in vitro into both endothelial cells and vascular smooth muscle cells (SMCs), two crucial cellular components of vascular grafts. Assessment was carried out by immunostaining, confocal laser-scanning microscopy, gene expression analysis (qRT-PCR), quantitative analysis of anastomotic network parameters, and cumulative length quantification of immunostained α-smooth muscle actin-containing stress fibers (α -SMA). In comparison to adipose mesenchymal stem cells, MSCORS exhibited a significantly higher differentiation efficiency according to key quantitative criteria and their endothelial derivatives demonstrated a higher angiogenic potential. Furthermore, the cells were capable of depositing their own extracellular matrix in vitro in the form of a membrane-cell sheet, serving as a base for viable co-culture of endothelial cells and SMCs integrated with their autologous matrix. Differentiated MSCORS hereby provided a complex autologous cell-matrix construct that demonstrates vascularization capacity and can serve as a base for personalized repair grafting applications.
Collapse
|
85
|
Saito J, Kaneko M, Ishikawa Y, Yokoyama U. Challenges and Possibilities of Cell-Based Tissue-Engineered Vascular Grafts. CYBORG AND BIONIC SYSTEMS 2021; 2021:1532103. [PMID: 36285145 PMCID: PMC9494692 DOI: 10.34133/2021/1532103] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/19/2021] [Indexed: 10/06/2023] Open
Abstract
There is urgent demand for biologically compatible vascular grafts for both adult and pediatric patients. The utility of conventional nonbiodegradable materials is limited because of their thrombogenicity and inability to grow, while autologous vascular grafts involve considerable disadvantages, including the invasive procedures required to obtain these healthy vessels from patients and insufficient availability in patients with systemic atherosclerosis. All of these issues could be overcome by tissue-engineered vascular grafts (TEVGs). A large body of evidence has recently emerged in support of TEVG technologies, introducing diverse cell sources (e.g., somatic cells and stem cells) and novel fabrication methods (e.g., scaffold-guided and self-assembled approaches). Before TEVG can be applied in a clinical setting, however, several aspects of the technology must be improved, such as the feasibility of obtaining cells, their biocompatibility and mechanical properties, and the time needed for fabrication, while the safety of supplemented materials, the patency and nonthrombogenicity of TEVGs, their growth potential, and the long-term influence of implanted TEVGs in the body must be assessed. Although recent advances in TEVG fabrication have yielded promising results, more research is needed to achieve the most feasible methods for generating optimal TEVGs. This article reviews multiple aspects of TEVG fabrication, including mechanical requirements, extracellular matrix components, cell sources, and tissue engineering approaches. The potential of periodic hydrostatic pressurization in the production of scaffold-free TEVGs with optimal elasticity and stiffness is also discussed. In the future, the integration of multiple technologies is expected to enable improved TEVG performance.
Collapse
Affiliation(s)
- Junichi Saito
- Department of Physiology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Makoto Kaneko
- Faculty of Science and Technology, Meijo University, Nagoya, Aichi, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
86
|
Cai Q, Liao W, Xue F, Wang X, Zhou W, Li Y, Zeng W. Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft. Bioact Mater 2021; 6:2557-2568. [PMID: 33665496 PMCID: PMC7887299 DOI: 10.1016/j.bioactmat.2020.12.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue-engineered vascular grafts (TEVGs) have enormous potential for vascular replacement therapy. However, thrombosis and intimal hyperplasia are important problems associated with TEVGs especially small diameter TEVGs (<6 mm) after transplantation. Endothelialization of TEVGs is a key point to prevent thrombosis. Here, we discuss different types of endothelialization and different seed cells of tissue-engineered vascular grafts. Meanwhile, endothelial heterogeneity is also discussed. Based on it, we provide a new perspective for selecting suitable types of endothelialization and suitable seed cells to improve the long-term patency rate of tissue-engineered vascular grafts with different diameters and lengths. The material, diameter and length of tissue-engineered vascular graft are all key factors affecting its long-term patency. Endothelialization strategies should consider the different diameters and lengths of tissue-engineered vascular grafts. Cell heterogeneity and tissue heterogeneity should be considered in the application of seed cells.
Collapse
Affiliation(s)
- Qingjin Cai
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Wanshan Liao
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Fangchao Xue
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaochen Wang
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Weiming Zhou
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yanzhao Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China.,Departments of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
87
|
De Coppi P, Grikscheit TC. Regeneration and tissue engineering: How pediatric surgeons contributed to building a new field to change the future of medicine. Semin Pediatr Surg 2021; 30:151018. [PMID: 33648705 DOI: 10.1016/j.sempedsurg.2021.151018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The authors highlight the speciality field of regenerative medicine and its application to health care. Academic pediatric surgeons have been the early pioneers here sharing exciting discovery and the opportunities for research enterprise. An overview of current and future therapeutics is provided for the reader.
Collapse
Affiliation(s)
- Paolo De Coppi
- Surgery Unit, Great Ormond Street Institute of Child Health, University College London, Great Ormond St. Hospital for Children, 30 Guilford St., London WC1N 1EH, United Kingdom.
| | - T C Grikscheit
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital, Los Angeles, CA, United States of America
| |
Collapse
|
88
|
Luo J, Lin Y, Shi X, Li G, Kural MH, Anderson CW, Ellis MW, Riaz M, Tellides G, Niklason LE, Qyang Y. Xenogeneic-free generation of vascular smooth muscle cells from human induced pluripotent stem cells for vascular tissue engineering. Acta Biomater 2021; 119:155-168. [PMID: 33130306 PMCID: PMC8168373 DOI: 10.1016/j.actbio.2020.10.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 01/30/2023]
Abstract
Development of mechanically advanced tissue-engineered vascular grafts (TEVGs) from human induced pluripotent stem cell (hiPSC)-derived vascular smooth muscle cells (hiPSC-VSMCs) offers an innovative approach to replace or bypass diseased blood vessels. To move current hiPSC-TEVGs toward clinical application, it is essential to obtain hiPSC-VSMC-derived tissues under xenogeneic-free conditions, meaning without the use of any animal-derived reagents. Many approaches in VSMC differentiation of hiPSCs have been reported, although a xenogeneic-free method for generating hiPSC-VSMCs suitable for vascular tissue engineering has yet to be established. Based on our previously established standard method of xenogeneic VSMC differentiation, we have replaced all animal-derived reagents with functional counterparts of human origin and successfully derived functional xenogeneic-free hiPSC-VSMCs (XF-hiPSC-VSMCs). Next, our group developed tissue rings via cellular self-assembly from XF-hiPSC-VSMCs, which exhibited comparable mechanical strength to those developed from xenogeneic hiPSC-VSMCs. Moreover, by seeding XF-hiPSC-VSMCs onto biodegradable polyglycolic acid (PGA) scaffolds, we generated engineered vascular tissues presenting effective collagen deposition which were suitable for implantation into an immunodeficient mice model. In conclusion, our xenogeneic-free conditions for generating hiPSC-VSMCs produce cells with the comparable capacity for vascular tissue engineering as standard xenogeneic protocols, thereby moving the hiPSC-TEVG technology one step closer to safe and efficacious clinical translation.
Collapse
Affiliation(s)
- Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Yuyao Lin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiangyu Shi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Guangxin Li
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, 110122, China
| | - Mehmet H Kural
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Christopher W Anderson
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, 06520 USA
| | - Matthew W Ellis
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06519, USA
| | - Muhammad Riaz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - George Tellides
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Laura E Niklason
- Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Surgery, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, 06520 USA.
| |
Collapse
|
89
|
Torres Y, Gluais M, Da Silva N, Rey S, Grémare A, Magnan L, Kawecki F, L’Heureux N. Cell-assembled extracellular matrix (CAM) sheet production: Translation from using human to large animal cells. J Tissue Eng 2021; 12:2041731420978327. [PMID: 33633827 PMCID: PMC7887678 DOI: 10.1177/2041731420978327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
We have created entirely biological tissue-engineered vascular grafts (TEVGs) using sheets of cell-assembled extracellular matrix (CAM) produced by human fibroblasts in vitro. A large animal TEVG would allow long-term pre-clinical studies in a clinically relevant setting (graft size and allogeneic setting). Therefore, canine, porcine, ovine, and human skin fibroblasts were compared for their ability to form CAM sheets. Serum sourcing greatly influenced CAM production in a species-dependent manner. Ovine cells produced the most homogenous and strongest animal CAM sheets but remained ≈3-fold weaker than human sheets despite variations of serum, ascorbate, insulin, or growth factor supplementations. Key differences in cell growth dynamics, tissue development, and tissue architecture and composition were observed between human and ovine. This study demonstrates critical species-to-species differences in fibroblast behavior and how they pose a challenge when attempting to substitute animal cells for human cells during the development of tissue-engineered constructs that require long-term cultures.
Collapse
Affiliation(s)
- Yoann Torres
- University of Bordeaux, INSERM, BIOTIS, Bordeaux, France
| | - Maude Gluais
- University of Bordeaux, INSERM, BIOTIS, Bordeaux, France
| | | | - Sylvie Rey
- University of Bordeaux, INSERM, BIOTIS, Bordeaux, France
| | - Agathe Grémare
- University of Bordeaux, INSERM, BIOTIS, Bordeaux, France
- CHU Bordeaux, Services d’Odontologie et de Santé Buccale, Bordeaux, France
| | - Laure Magnan
- University of Bordeaux, INSERM, BIOTIS, Bordeaux, France
| | - Fabien Kawecki
- University of Bordeaux, INSERM, BIOTIS, Bordeaux, France
| | | |
Collapse
|
90
|
|
91
|
Advanced 3D Cell Culture Techniques in Micro-Bioreactors, Part II: Systems and Applications. Processes (Basel) 2020. [DOI: 10.3390/pr9010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this second part of our systematic review on the research area of 3D cell culture in micro-bioreactors we give a detailed description of the published work with regard to the existing micro-bioreactor types and their applications, and highlight important results gathered with the respective systems. As an interesting detail, we found that micro-bioreactors have already been used in SARS-CoV research prior to the SARS-CoV2 pandemic. As our literature research revealed a variety of 3D cell culture configurations in the examined bioreactor systems, we defined in review part one “complexity levels” by means of the corresponding 3D cell culture techniques applied in the systems. The definition of the complexity is thereby based on the knowledge that the spatial distribution of cell-extracellular matrix interactions and the spatial distribution of homologous and heterologous cell–cell contacts play an important role in modulating cell functions. Because at least one of these parameters can be assigned to the 3D cell culture techniques discussed in the present review, we structured the studies according to the complexity levels applied in the MBR systems.
Collapse
|
92
|
Boys AJ, Barron SL, Tilev D, Owens RM. Building Scaffolds for Tubular Tissue Engineering. Front Bioeng Biotechnol 2020; 8:589960. [PMID: 33363127 PMCID: PMC7758256 DOI: 10.3389/fbioe.2020.589960] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hollow organs and tissue systems drive various functions in the body. Many of these hollow or tubular systems, such as vasculature, the intestines, and the trachea, are common targets for tissue engineering, given their relevance to numerous diseases and body functions. As the field of tissue engineering has developed, numerous benchtop models have been produced as platforms for basic science and drug testing. Production of tubular scaffolds for different tissue engineering applications possesses many commonalities, such as the necessity for producing an intact tubular opening and for formation of semi-permeable epithelia or endothelia. As such, the field has converged on a series of manufacturing techniques for producing these structures. In this review, we discuss some of the most common tissue engineered applications within the context of tubular tissues and the methods by which these structures can be produced. We provide an overview of the general structure and anatomy for these tissue systems along with a series of general design criteria for tubular tissue engineering. We categorize methods for manufacturing tubular scaffolds as follows: casting, electrospinning, rolling, 3D printing, and decellularization. We discuss state-of-the-art models within the context of vascular, intestinal, and tracheal tissue engineering. Finally, we conclude with a discussion of the future for these fields.
Collapse
Affiliation(s)
| | | | | | - Roisin M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
93
|
Duijvelshoff R, Cabrera MS, Sanders B, Dekker S, Smits AIPM, Baaijens FPT, Bouten CVC. Transcatheter-Delivered Expandable Bioresorbable Polymeric Graft With Stenting Capacity Induces Vascular Regeneration. ACTA ACUST UNITED AC 2020; 5:1095-1110. [PMID: 33294741 PMCID: PMC7691284 DOI: 10.1016/j.jacbts.2020.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 01/22/2023]
Abstract
We designed a transcatheter balloon-expandable resorbable vascular graft with support capacity. After 2 months in vivo, grafts show native-like tissue reconstruction with endoluminal elastin. The concept convenes regenerative grafting, minimally invasive delivery, and clinical stenting.
As the next step in the translation of vascular tissue engineering, this study uniquely combines transcatheter delivery and in situ tissue regeneration using a novel bioresorbable electrospun polymer graft that can be implanted minimally invasively. Once delivered inside a small-diameter vessel, the electrospun microstructure supports the vessel wall, facilitates cellular infiltration, and guides organized tissue formation.
Collapse
Key Words
- BVS, bioresorbable vascular scaffold(s)
- ECM, extracellular matrix
- GPC, gel permeation chromatography
- Mw, weight-average molecular weight
- PBS, phosphate-buffered saline
- SEM, scanning electron microscopy
- SMA, smooth muscle actin
- SMC, smooth muscle cell
- T-TEVG, transcatheter tissue-engineered vascular graft
- TE, tissue engineering
- elastin
- regeneration
- tissue engineering
- transcatheter delivery
- vascular graft
Collapse
Affiliation(s)
- Renee Duijvelshoff
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.,Institute for Complex Molecular Systems, Eindhoven, the Netherlands
| | | | | | - Sylvia Dekker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.,Institute for Complex Molecular Systems, Eindhoven, the Netherlands
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.,Institute for Complex Molecular Systems, Eindhoven, the Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.,Institute for Complex Molecular Systems, Eindhoven, the Netherlands
| |
Collapse
|
94
|
Parfenov VA, Koudan EV, Krokhmal AA, Annenkova EA, Petrov SV, Pereira FDAS, Karalkin PA, Nezhurina EK, Gryadunova AA, Bulanova EA, Sapozhnikov OA, Tsysar SA, Liu K, Oosterwijk E, van Beuningen H, van der Kraan P, Granneman S, Engelkamp H, Christianen P, Kasyanov V, Khesuani YD, Mironov VA. Biofabrication of a Functional Tubular Construct from Tissue Spheroids Using Magnetoacoustic Levitational Directed Assembly. Adv Healthc Mater 2020; 9:e2000721. [PMID: 32809273 DOI: 10.1002/adhm.202000721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Indexed: 12/15/2022]
Abstract
In traditional tissue engineering, synthetic or natural scaffolds are usually used as removable temporal support, which involves some biotechnology limitations. The concept of "scaffield" approach utilizing the physical fields instead of biomaterial scaffold has been proposed recently. In particular, a combination of intense magnetic and acoustic fields can enable rapid levitational bioassembly of complex-shaped 3D tissue constructs from tissue spheroids at low concentration of paramagnetic agent (gadolinium salt) in the medium. In the current study, the tissue spheroids from human bladder smooth muscle cells (myospheres) are used as building blocks for assembling the tubular 3D constructs. Levitational assembly is accomplished at low concentrations of gadolinium salts in the high magnetic field at 9.5 T. The biofabricated smooth muscle constructs demonstrate contraction after the addition of vasoconstrictive agent endothelin-1. Thus, hybrid magnetoacoustic levitational bioassembly is considered as a new technology platform in the emerging field of formative biofabrication. This novel technology of scaffold-free, nozzle-free, and label-free bioassembly opens a unique opportunity for rapid biofabrication of 3D tissue and organ constructs with complex geometry.
Collapse
Affiliation(s)
- Vladislav A. Parfenov
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
- A. A. Baikov Institute of Metallurgy and Material Science Russian Academy of Sciences Moscow 119334 Russia
| | - Elizaveta V. Koudan
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | - Alisa A. Krokhmal
- Department of Physics Lomonosov Moscow State University Moscow 119991 Russia
| | - Elena A. Annenkova
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | - Stanislav V. Petrov
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | | | - Pavel A. Karalkin
- P. A. Hertsen Moscow Oncology Research Center National Medical Research Radiological Center Moscow 125284 Russia
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University) Moscow 119991 Russia
| | - Elizaveta K. Nezhurina
- P. A. Hertsen Moscow Oncology Research Center National Medical Research Radiological Center Moscow 125284 Russia
| | - Anna A. Gryadunova
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | - Elena A. Bulanova
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | - Oleg A. Sapozhnikov
- Department of Physics Lomonosov Moscow State University Moscow 119991 Russia
| | - Sergey A. Tsysar
- Department of Physics Lomonosov Moscow State University Moscow 119991 Russia
| | - Kaizheng Liu
- Department of Urology Radboud University Medical Center Nijmegen 9102 The Netherlands
| | - Egbert Oosterwijk
- Department of Urology Radboud University Medical Center Nijmegen 9102 The Netherlands
| | - Henk van Beuningen
- Department of Experimental Rheumatology Radboud University Medical Center Nijmegen 9102 The Netherlands
| | - Peter van der Kraan
- Department of Experimental Rheumatology Radboud University Medical Center Nijmegen 9102 The Netherlands
| | - Sanne Granneman
- High Field Magnet Laboratory (HFML‐EMFL) Radboud University Toernooiveld 7 Nijmegen 9010 The Netherlands
| | - Hans Engelkamp
- High Field Magnet Laboratory (HFML‐EMFL) Radboud University Toernooiveld 7 Nijmegen 9010 The Netherlands
| | - Peter Christianen
- High Field Magnet Laboratory (HFML‐EMFL) Radboud University Toernooiveld 7 Nijmegen 9010 The Netherlands
| | - Vladimir Kasyanov
- Riga Stradins University Riga LV‐1007 Latvia
- Riga Technical University Riga LV‐1658 Latvia
| | - Yusef D. Khesuani
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | - Vladimir A. Mironov
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University) Moscow 119991 Russia
| |
Collapse
|
95
|
Kimicata M, Swamykumar P, Fisher JP. Extracellular Matrix for Small-Diameter Vascular Grafts. Tissue Eng Part A 2020; 26:1388-1401. [PMID: 33231135 PMCID: PMC7759287 DOI: 10.1089/ten.tea.2020.0201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/11/2020] [Indexed: 01/15/2023] Open
Abstract
To treat coronary heart disease, coronary artery bypass grafts are used to divert blood flow around blockages in the coronary arteries. Autologous grafts are the gold standard of care, but they are characterized by their lack of availability, low quality, and high failure rates. Alternatively, tissue-engineered small-diameter vascular grafts made from synthetic or natural polymers have not demonstrated adequate results to replace autologous grafts; synthetic grafts result in a loss of patency due to thrombosis and intimal hyperplasia, whereas scaffolds from natural polymers are generally unable to support the physiological conditions. Extracellular matrix (ECM) from a variety of sources, including cell-derived, 2D, and cannular tissues, has become an increasingly useful tool for this application. The current review examines the ECM-based methods that have recently been investigated in the field and comments on their viability for clinical applications.
Collapse
Affiliation(s)
- Megan Kimicata
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, and University of Maryland, College Park, Maryland, USA
| | - Prateek Swamykumar
- Center for Engineering Complex Tissues, and University of Maryland, College Park, Maryland, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - John P. Fisher
- Center for Engineering Complex Tissues, and University of Maryland, College Park, Maryland, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
96
|
Shi X, He L, Zhang SM, Luo J. Human iPS Cell-derived Tissue Engineered Vascular Graft: Recent Advances and Future Directions. Stem Cell Rev Rep 2020; 17:862-877. [PMID: 33230612 DOI: 10.1007/s12015-020-10091-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 12/19/2022]
Abstract
Tissue engineered vascular grafts (TEVGs) generated from human primary cells represent a promising vascular interventional therapy. However, generation and application of these TEVGs may be significantly hindered by the limited accessibility, finite expandability, donor-donor functional variation and immune-incompatibility of primary seed cells from donors. Alternatively, human induced pluripotent stem cells (hiPSCs) offer an infinite source to obtain functional vascular cells in large quantity and comparable quality for TEVG construction. To date, TEVGs (hiPSC-TEVGs) with significant mechanical strength and implantability have been generated using hiPSC-derived seed cells. Despite being in its incipient stage, this emerging field of hiPSC-TEVG research has achieved significant progress and presented promising future potential. Meanwhile, a series of challenges pertaining hiPSC differentiation, vascular tissue engineering technologies and future production and application await to be addressed. Herein, we have composed this review to introduce progress in TEVG generation using hiPSCs, summarize the current major challenges, and encapsulate the future directions of research on hiPSC-based TEVGs. Graphical abstract.
Collapse
Affiliation(s)
- Xiangyu Shi
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine , Yale School of Medicine, 300 George Street, Room 752, New Haven, CT, 06511, USA
| | - Lile He
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, 06520, New Haven, CT, USA
| | - Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine , Yale School of Medicine, 300 George Street, Room 752, New Haven, CT, 06511, USA. .,Yale Stem Cell Center, 06520, New Haven, CT, USA.
| |
Collapse
|
97
|
Abstract
Since the advent of the vascular anastomosis by Alexis Carrel in the early 20th century, the repair and replacement of blood vessels have been key to treating acute injuries, as well as chronic atherosclerotic disease. Arteries serve diverse mechanical and biological functions, such as conducting blood to tissues, interacting with the coagulation system, and modulating resistance to blood flow. Early approaches for arterial replacement used artificial materials, which were supplanted by polymer fabrics in recent decades. With recent advances in the engineering of connective tissues, including arteries, we are on the cusp of seeing engineered human arteries become mainstays of surgical therapy for vascular disease. Progress in our understanding of physiology, cell biology, and biomanufacturing over the past several decades has made these advances possible.
Collapse
Affiliation(s)
- Laura E Niklason
- Departments of Anesthesiology and Biomedical Engineering, Yale University, New Haven, CT, USA. .,Humacyte Inc., Durham, NC 27713, USA
| | - Jeffrey H Lawson
- Humacyte Inc., Durham, NC 27713, USA. .,Department of Surgery, Duke University, Durham, NC, USA
| |
Collapse
|
98
|
Zhou X, Nowicki M, Sun H, Hann SY, Cui H, Esworthy T, Lee JD, Plesniak M, Zhang LG. 3D Bioprinting-Tunable Small-Diameter Blood Vessels with Biomimetic Biphasic Cell Layers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45904-45915. [PMID: 33006880 DOI: 10.1021/acsami.0c14871] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Blood vessel damage resulting from trauma or diseases presents a serious risk of morbidity and mortality. Although synthetic vascular grafts have been successfully commercialized for clinical use, they are currently only readily available for large-diameter vessels (>6 mm). Small-diameter vessel (<6 mm) replacements, however, still present significant clinical challenges worldwide. The primary objective of this study is to create novel, tunable, small-diameter blood vessels with biomimetic two distinct cell layers [vascular endothelial cell (VEC) and vascular smooth muscle cell (VSMC)] using an advanced coaxial 3D-bioplotter platform. Specifically, the VSMCs were laden in the vessel wall and VECs grew in the lumen to mimic the natural composition of the blood vessel. First, a novel bioink consisting of VSMCs laden in gelatin methacryloyl (GelMA)/polyethylene(glycol)diacrylate/alginate and lyase was designed. This specific design is favorable for nutrient exchange in an ambient environment and simultaneously improves laden cell proliferation in the matrix pore without the space restriction inherent with substance encapsulation. In the vessel wall, the laden VSMCs steadily grew as the alginate was gradually degraded by lyase leaving more space for cell proliferation in matrices. Through computational fluid dynamics simulation, the vessel demonstrated significantly perfusable and mechanical properties under various flow velocities, flow viscosities, and temperature conditions. Moreover, both VSMCs in the scaffold matrix and VECs in the lumen steadily proliferated over time creating a significant two-cell-layered structure. Cell proliferation was confirmed visually through staining the markers of alpha-smooth muscle actin and cluster of differentiation 31, commonly tied to angiogenesis phenomena, in the vessel matrices and lumen, respectively. Furthermore, the results were confirmed quantitatively through gene analysis which suggested good angiogenesis expression in the blood vessels. This study demonstrated that the printed blood vessels with two distinct cell layers of VECs and VSMCs could be potential candidates for clinical small-diameter blood vessel replacement applications.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
| | - Margaret Nowicki
- Department of Civil and Mechanical Engineering, The United States Military Academy, West Point, New York 10996, United States
| | - Hao Sun
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
| | - Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
| | - James D Lee
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
| | - Michael Plesniak
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
- Department of Biomedical Engineering, The George Washington University, Washington District of Columbia 20052, United States
- Department of Electrical and Computer Engineering, The George Washington University, Washington District of Columbia 20052, United States
- Department of Medicine, The George Washington University, Washington District of Columbia 20052, United States
| |
Collapse
|
99
|
Abstract
The field of Tissue Engineering and Regenerative Medicine has evolved rapidly over the past thirty years. This review will summarize its history, current status and direction through the lens of clinical need, its progress through science in the laboratory and application back into patients. We can take pride in the fact that much effort and progress began with the surgical problems of children and that many surgeons in the pediatric surgical specialties have become pioneers and investigators in this new field of science, engineering, and medicine. Although the field has yet to fulfill its great promise, there have been several examples where a therapy has progressed from the first idea to human application within a short span of time and, in many cases, it has been applied in the surgical care of children.
Collapse
|
100
|
Hyaluronan promotes the regeneration of vascular smooth muscle with potent contractile function in rapidly biodegradable vascular grafts. Biomaterials 2020; 257:120226. [DOI: 10.1016/j.biomaterials.2020.120226] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/30/2020] [Accepted: 07/04/2020] [Indexed: 12/15/2022]
|