51
|
Setzer WN, Stokes SL, Penton AF, Takaku S, Haber WA, Hansell E, Caffrey CR, McKerrow JH. Cruzain Inhibitory Activity of Leaf Essential Oils of Neotropical Lauraceae and Essential Oil Components. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0700201202] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The leaf essential oils of twenty-three species of Lauraceae from Monteverde, Costa Rica, have been screened for inhibition of the cysteine protease cruzain. Of these, nine showed promising cruzain inhibitory activity (IC50 < 100 μg/mL), six showed marginal activity (IC50, 100–500 μg/mL), and eight were inactive (IC50 > 500 μg/mL). The cruzain inhibitory activities of the essential oils can be attributed to active sesquiterpenoid components as well as synergistic effects between two or more components. The sesquiterpenes α-copaene, β-caryophyllene, α-humulene, and germacrene D are active (IC50 ~5–30 μg/mL) alone, but also show increased activity in combination with other essential oil components.
Collapse
Affiliation(s)
- William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| | - Sean L. Stokes
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| | - Ashley F. Penton
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| | - Sayaka Takaku
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| | - William A. Haber
- Missouri Botanical Garden, St. Louis, Missouri 63166, USA Apdo. 50-5655, Monteverde, Puntarenas, Costa Rica, Central America
| | - Elizabeth Hansell
- Department of Pathology, University of California, San Francisco, California 94143, USA
| | - Conor R. Caffrey
- Department of Pathology, University of California, San Francisco, California 94143, USA
| | - James H. McKerrow
- Department of Pathology, University of California, San Francisco, California 94143, USA
| |
Collapse
|
52
|
Luo L, Matthews JD, Robinson BS, Jones RM. Vibrio parahaemolyticus VopA Is a Potent Inhibitor of Cell Migration and Apoptosis in the Intestinal Epithelium of Drosophila melanogaster. Infect Immun 2019; 87:e00669-18. [PMID: 30617204 PMCID: PMC6386545 DOI: 10.1128/iai.00669-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/22/2018] [Indexed: 11/20/2022] Open
Abstract
Animal models have played a key role in providing an understanding of the mechanisms that govern the pathophysiology of intestinal diseases. To expand on the repertoire of organisms available to study enteric diseases, we report on the use of the Drosophila melanogaster model to identify a novel function of an effector protein secreted by Vibrio parahaemolyticus, which is an enteric pathogen found in contaminated seafood. During pathogenesis, V. parahaemolyticus secretes effector proteins that usurp the host's innate immune signaling pathways, thus allowing the bacterium to evade detection by the innate immune system. One secreted effector protein, VopA, has potent inhibitory effects on mitogen-activated protein kinase (MAPK) signaling pathways via the acetylation of critical residues within the catalytic loops of mitogen-activated protein kinase kinases (MAPKKs). Using the Drosophila model and cultured mammalian cells, we show that VopA also has potent modulating activity on focal adhesion complex (FAC) proteins, where VopA markedly reduced the levels of focal adhesion kinase (FAK) phosphorylation at Ser910, whereas the phosphorylation levels of FAK at Tyr397 and Tyr861 were markedly increased. Cultured cells expressing VopA were also impaired in their ability to migrate and repopulate areas subjected to a scratch wound. Consistently, expression of VopA in Drosophila midgut enterocytes disrupted the normal enterocyte arrangement. Finally, VopA inhibited apoptosis in both Drosophila tissues and mammalian cultured cells. Together, our data show that VopA can alter normal intestinal homeostatic processes to facilitate opportunities for V. parahaemolyticus to prolong infection within the host.
Collapse
Affiliation(s)
- Liping Luo
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jason D Matthews
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Brian S Robinson
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rheinallt M Jones
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
53
|
Identifying Pseudomonas syringae Type III Secreted Effector Function via a Yeast Genomic Screen. G3-GENES GENOMES GENETICS 2019; 9:535-547. [PMID: 30573466 PMCID: PMC6385969 DOI: 10.1534/g3.118.200877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gram-negative bacterial pathogens inject type III secreted effectors (T3SEs) directly into host cells to promote pathogen fitness by manipulating host cellular processes. Despite their crucial role in promoting virulence, relatively few T3SEs have well-characterized enzymatic activities or host targets. This is in part due to functional redundancy within pathogen T3SE repertoires as well as the promiscuity of individual T3SEs that can have multiple host targets. To overcome these challenges, we generated and characterized a collection of yeast strains stably expressing 75 T3SE constructs from the plant pathogen Pseudomonas syringae. This collection is devised to facilitate heterologous genetic screens in yeast, a non-host organism, to identify T3SEs that target conserved eukaryotic processes. Among 75 T3SEs tested, we identified 16 that inhibited yeast growth on rich media and eight that inhibited growth on stress-inducing media. We utilized Pathogenic Genetic Array (PGA) screens to identify potential host targets of P. syringae T3SEs. We focused on the acetyltransferase, HopZ1a, which interacts with plant tubulin and alters microtubule networks. To uncover putative HopZ1a host targets, we identified yeast genes with genetic interaction profiles most similar (i.e., congruent) to the PGA profile of HopZ1a and performed a functional enrichment analysis of these HopZ1a-congruent genes. We compared the congruence analyses above to previously described HopZ physical interaction datasets and identified kinesins as potential HopZ1a targets. Finally, we demonstrated that HopZ1a can target kinesins by acetylating the plant kinesins HINKEL and MKRP1, illustrating the utility of our T3SE-expressing yeast library to characterize T3SE functions.
Collapse
|
54
|
Dalmasso G, Nguyen HTT, Faïs T, Massier S, Barnich N, Delmas J, Bonnet R. Crohn's Disease-Associated Adherent-Invasive Escherichia coli Manipulate Host Autophagy by Impairing SUMOylation. Cells 2019; 8:cells8010035. [PMID: 30634511 PMCID: PMC6357120 DOI: 10.3390/cells8010035] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/30/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022] Open
Abstract
The intestinal mucosa of Crohn’s disease (CD) patients is abnormally colonized with adherent-invasive Escherichia coli (AIEC) that are able to adhere to and to invade intestinal epithelial cells (IECs), to survive in macrophages, and to induce a pro-inflammatory response. AIEC persist in the intestine, and induce inflammation in CEABAC10 transgenic mice expressing human CAECAM6, the receptor for AIEC. SUMOylation is a eukaryotic-reversible post-translational modification, in which SUMO, an ubiquitin-like polypeptide, is covalently linked to target proteins. Here, we investigated the role of SUMOylation in host responses to AIEC infection. We found that infection with the AIEC LF82 reference strain markedly decreased the levels of SUMO-conjugated proteins in human intestinal epithelial T84 cells. This was also observed in IECs from LF82-infected CEABAC10 transgenic mice. LF82-induced deSUMOylation in IECs was due in part to increased level of microRNA (miR)-18, which targets PIAS3 mRNA encoding a protein involved in SUMOylation. Over-expression of SUMOs in T84 cells induced autophagy, leading to a significant decrease in the number of intracellular LF82. Consistently, a decreased expression of UBC9, a protein necessary for SUMOylation, was accompanied with a decrease of LF82-induced autophagy, increasing bacterial intracellular proliferation and inflammation. Finally, the inhibition of miR-18 significantly decreased the number of intracellular LF82. In conclusion, our results suggest that AIEC inhibits the autophagy response to replicate intracellularly by manipulating host SUMOylation.
Collapse
Affiliation(s)
- Guillaume Dalmasso
- UMR 1071 Inserm, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- INRA, USC 2018, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
| | - Hang T T Nguyen
- UMR 1071 Inserm, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- INRA, USC 2018, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
| | - Tiphanie Faïs
- UMR 1071 Inserm, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- INRA, USC 2018, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- Centre Hospitalier Universitaire, 58 place Montalembert, Clermont-Ferrand 63000, France.
| | - Sébastien Massier
- UMR 1071 Inserm, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- INRA, USC 2018, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
| | - Nicolas Barnich
- UMR 1071 Inserm, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- INRA, USC 2018, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
| | - Julien Delmas
- UMR 1071 Inserm, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- INRA, USC 2018, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- Centre Hospitalier Universitaire, 58 place Montalembert, Clermont-Ferrand 63000, France.
| | - Richard Bonnet
- UMR 1071 Inserm, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- INRA, USC 2018, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- Centre Hospitalier Universitaire, 58 place Montalembert, Clermont-Ferrand 63000, France.
| |
Collapse
|
55
|
Morrell R, Sadanandom A. Dealing With Stress: A Review of Plant SUMO Proteases. FRONTIERS IN PLANT SCIENCE 2019; 10:1122. [PMID: 31620153 PMCID: PMC6759571 DOI: 10.3389/fpls.2019.01122] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/14/2019] [Indexed: 05/18/2023]
Abstract
The SUMO system is a rapid dynamic post-translational mechanism employed by eukaryotic cells to respond to stress. Plant cells experience hyperSUMOylation of substrates in response to stresses such as heat, ethanol, and drought. Many SUMOylated proteins are located in the nucleus, SUMOylation altering many nuclear processes. The SUMO proteases play two key functions in the SUMO cycle by generating free SUMO; they have an important role in regulating the SUMO cycle, and by cleaving SUMO off SUMOylated proteins, they provide specificity to which proteins become SUMOylated. This review summarizes the broad literature of plant SUMO proteases describing their catalytic activity, domains and structure, evolution, localization, and response to stress and highlighting potential new areas of research in the future.
Collapse
|
56
|
Bastedo DP, Lo T, Laflamme B, Desveaux D, Guttman DS. Diversity and Evolution of Type III Secreted Effectors: A Case Study of Three Families. Curr Top Microbiol Immunol 2019; 427:201-230. [DOI: 10.1007/82_2019_165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
57
|
Abrahamian P, Timilsina S, Minsavage GV, Kc S, Goss EM, Jones JB, Vallad GE. The Type III Effector AvrBsT Enhances Xanthomonas perforans Fitness in Field-Grown Tomato. PHYTOPATHOLOGY 2018; 108:1355-1362. [PMID: 29905507 DOI: 10.1094/phyto-02-18-0052-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Type III secretion system effectors contribute to pathogenicity through various mechanisms. Recent surveys showed an increasing prevalence of the type III secretion effector avrBsT among Xanthomonas perforans strains. We hypothesized that the acquisition of avrBsT has a fitness advantage for the pathogen. The contribution of avrBsT to fitness on tomato was evaluated based on disease severity, in planta growth, competition, and recovery rates of wild-type (WT) and avrBsT mutant strains in greenhouse and field plants. GEV872 and GEV1001, representative strains of two phylogenomic groups of X. perforans, were selected for generating avrBsT mutants. Disease severity was higher for WT strains compared with the avrBsT mutant strains. X. perforans WT and avrBsT mutant strains did not differ following leaf infiltration of greenhouse plants in direct competition and in planta growth assays. The effect of avrBsT on pathogen fitness was noticeable under field conditions. Differences in strain recovery were significant, with WT being recovered two to eight times more than avrBsT mutant strains in the case of both strains GEV872 and GEV1001. WT strains were capable of spreading longer distances across field plots compared with avrBsT mutant strains. Findings suggest that the functional AvrBsT affects the fitness of X. perforans under field conditions, making it an ideal candidate for bacterial spot resistance breeding efforts in tomato.
Collapse
Affiliation(s)
- Peter Abrahamian
- First, second, fourth, and seventh authors; Gulf Coast and Research Education Center, Wimauma, FL; first, second, third, fifth, sixth, and seventh authors: Department of Plant Pathology, University of Florida, Gainesville; and fifth author: Emerging Pathogens Institute, University of Florida, Gainesville
| | - Sujan Timilsina
- First, second, fourth, and seventh authors; Gulf Coast and Research Education Center, Wimauma, FL; first, second, third, fifth, sixth, and seventh authors: Department of Plant Pathology, University of Florida, Gainesville; and fifth author: Emerging Pathogens Institute, University of Florida, Gainesville
| | - Gerald V Minsavage
- First, second, fourth, and seventh authors; Gulf Coast and Research Education Center, Wimauma, FL; first, second, third, fifth, sixth, and seventh authors: Department of Plant Pathology, University of Florida, Gainesville; and fifth author: Emerging Pathogens Institute, University of Florida, Gainesville
| | - Sushmita Kc
- First, second, fourth, and seventh authors; Gulf Coast and Research Education Center, Wimauma, FL; first, second, third, fifth, sixth, and seventh authors: Department of Plant Pathology, University of Florida, Gainesville; and fifth author: Emerging Pathogens Institute, University of Florida, Gainesville
| | - Erica M Goss
- First, second, fourth, and seventh authors; Gulf Coast and Research Education Center, Wimauma, FL; first, second, third, fifth, sixth, and seventh authors: Department of Plant Pathology, University of Florida, Gainesville; and fifth author: Emerging Pathogens Institute, University of Florida, Gainesville
| | - Jeffrey B Jones
- First, second, fourth, and seventh authors; Gulf Coast and Research Education Center, Wimauma, FL; first, second, third, fifth, sixth, and seventh authors: Department of Plant Pathology, University of Florida, Gainesville; and fifth author: Emerging Pathogens Institute, University of Florida, Gainesville
| | - Gary E Vallad
- First, second, fourth, and seventh authors; Gulf Coast and Research Education Center, Wimauma, FL; first, second, third, fifth, sixth, and seventh authors: Department of Plant Pathology, University of Florida, Gainesville; and fifth author: Emerging Pathogens Institute, University of Florida, Gainesville
| |
Collapse
|
58
|
Prochaska H, Thieme S, Daum S, Grau J, Schmidtke C, Hallensleben M, John P, Bacia K, Bonas U. A conserved motif promotes HpaB-regulated export of type III effectors from Xanthomonas. MOLECULAR PLANT PATHOLOGY 2018; 19:2473-2487. [PMID: 30073738 PMCID: PMC6638074 DOI: 10.1111/mpp.12725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/07/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
The type III secretion (T3S) system, an essential pathogenicity factor in most Gram-negative plant-pathogenic bacteria, injects bacterial effector proteins directly into the plant cell cytosol. Here, the type III effectors (T3Es) manipulate host cell processes to suppress defence and establish appropriate conditions for bacterial multiplication in the intercellular spaces of the plant tissue. T3E export depends on a secretion signal which is also present in 'non-effectors'. The latter are secreted extracellular components of the T3S apparatus, but are not translocated into the plant cell. How the T3S system discriminates between T3Es and non-effectors is still enigmatic. Previously, we have identified a putative translocation motif (TrM) in several T3Es from Xanthomonas campestris pv. vesicatoria (Xcv). Here, we analysed the TrM of the Xcv effector XopB in detail. Mutation studies showed that the proline/arginine-rich motif is required for efficient type III-dependent secretion and translocation of XopB and determines the dependence of XopB transport on the general T3S chaperone HpaB. Similar results were obtained for other effectors from Xcv. As the arginine residues of the TrM mediate specific binding of XopB to cardiolipin, one of the major lipid components in Xanthomonas membranes, we assume that the association of T3Es to the bacterial membrane prior to secretion supports type III-dependent export.
Collapse
Affiliation(s)
- Heike Prochaska
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Sabine Thieme
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Sebastian Daum
- Institute for Chemistry, Department of Biophysical ChemistryMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Jan Grau
- Institute for Informatics, Department of BioinformaticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Cornelius Schmidtke
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Magnus Hallensleben
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Peter John
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Kirsten Bacia
- Institute for Chemistry, Department of Biophysical ChemistryMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Ulla Bonas
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| |
Collapse
|
59
|
Gillespie JJ, Driscoll TP, Verhoeve VI, Rahman MS, Macaluso KR, Azad AF. A Tangled Web: Origins of Reproductive Parasitism. Genome Biol Evol 2018; 10:2292-2309. [PMID: 30060072 PMCID: PMC6133264 DOI: 10.1093/gbe/evy159] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2018] [Indexed: 12/13/2022] Open
Abstract
While typically a flea parasite and opportunistic human pathogen, the presence of Rickettsia felis (strain LSU-Lb) in the non-blood-feeding, parthenogenetically reproducing booklouse, Liposcelis bostrychophila, provides a system to ascertain factors governing not only host transitions but also obligate reproductive parasitism (RP). Analysis of plasmid pLbAR, unique to R. felis str. LSU-Lb, revealed a toxin–antitoxin module with similar features to prophage-encoded toxin–antitoxin modules utilized by parasitic Wolbachia strains to induce another form of RP, cytoplasmic incompatibility, in their arthropod hosts. Curiously, multiple deubiquitinase and nuclease domains of the large (3,841 aa) pLbAR toxin, as well the entire antitoxin, facilitated the detection of an assortment of related proteins from diverse intracellular bacteria, including other reproductive parasites. Our description of these remarkable components of the intracellular mobilome, including their presence in certain arthropod genomes, lends insight on the evolution of RP, while invigorating research on parasite-mediated biocontrol of arthropod-borne viral and bacterial pathogens.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine
| | | | | | | | - Kevin R Macaluso
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine
| |
Collapse
|
60
|
Labriola JM, Zhou Y, Nagar B. Structural Analysis of the Bacterial Effector AvrA Identifies a Critical Helix Involved in Substrate Recognition. Biochemistry 2018; 57:4985-4996. [PMID: 30025209 DOI: 10.1021/acs.biochem.8b00512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial effector proteins are essential for the infection and proliferation of pathogenic bacteria through manipulation of host immune response pathways. AvrA is a Salmonella effector that belongs to the YopJ family of acetyltransferases, which suppresses c-JUN N-terminal kinase (JNK) signaling in mammals through acetylation of mitogen-activated receptor kinase kinases 4 and 7 (MKK4/7). Interestingly, there are two paralogues of AvrA that differ by only a single internal leucine residue, which when absent (AvrAΔL140) abrogates the ability to suppress JNK signaling. Here, we present the first crystal structure of a bacterial effector from an animal pathogen, AvrAΔL140, accompanied by a thorough biophysical characterization of both AvrA variants. The structure in complex with inositol hexaphosphate and coenzyme A reveals two closely associated domains consisting of a catalytic core that resembles the CE clan peptidases and a wedge-shaped regulatory region that mediates cofactor and substrate binding. The loss of the putative function of AvrAΔL140 is due to its inability to interact with MKK4/7, which ultimately arises from an altered conformation of a critical helix adjacent to the active site that harbors L140. These results provide general insights into substrate recognition across the YopJ family of acetyltransferases.
Collapse
Affiliation(s)
- Jonathan M Labriola
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines , McGill University , Montreal , QC H3G 0B1 , Canada
| | - Yifan Zhou
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines , McGill University , Montreal , QC H3G 0B1 , Canada
| | - Bhushan Nagar
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines , McGill University , Montreal , QC H3G 0B1 , Canada
| |
Collapse
|
61
|
Choi S, Jayaraman J, Sohn KH. Arabidopsis thaliana SOBER1 (SUPPRESSOR OF AVRBST-ELICITED RESISTANCE 1) suppresses plant immunity triggered by multiple bacterial acetyltransferase effectors. THE NEW PHYTOLOGIST 2018; 219:324-335. [PMID: 29577317 DOI: 10.1111/nph.15125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/19/2018] [Indexed: 05/21/2023]
Abstract
Plants evolved disease resistance (R) proteins that recognize corresponding pathogen effectors and activate effector-triggered immunity (ETI). However, it is largely unknown why, in some cases, a suppressor of ETI exists in plants. Arabidopsis SOBER1 (Suppressor of AvrBsT-elicited Resistance 1) was identified previously as a suppressor of Xanthomonas acetyltransferase effector AvrBsT-triggered immunity. Nevertheless, the extent to which SOBER1 suppresses ETI is unclear. Here, we identified SOBER1 as a suppressor of Pseudomonas acetyltransferase effector HopZ5-triggered immunity in Arabidopsis using recombinant inbred lines. Further analysis showed that SOBER1 suppresses immunity triggered by multiple bacterial acetyltransferases. Interestingly, SOBER1 interferes with the immunity signalling activated by some but not all tested acetyltransferase effectors, indicating that SOBER1 might target components that are shared between several ETI pathways.
Collapse
Affiliation(s)
- Sera Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, 4474, New Zealand
| | - Jay Jayaraman
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, 4474, New Zealand
- New Zealand Institute for Plant & Food Research Limited (PFR), Mt Albert, Auckland, 1025, New Zealand
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, 4474, New Zealand
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
62
|
Verma V, Croley F, Sadanandom A. Fifty shades of SUMO: its role in immunity and at the fulcrum of the growth-defence balance. MOLECULAR PLANT PATHOLOGY 2018; 19:1537-1544. [PMID: 29024335 PMCID: PMC6637990 DOI: 10.1111/mpp.12625] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 05/10/2023]
Abstract
The sessile nature of plants requires them to cope with an ever-changing environment. Effective adaptive responses require sophisticated cellular mechanisms at the post-transcriptional and post-translational levels. Post-translational modification by small ubiquitin-like modifier (SUMO) proteins is emerging as a key player in these adaptive responses. SUMO conjugation can rapidly change the overall fate of target proteins by altering their stability or interaction with partner proteins or DNA. SUMOylation entails an enzyme cascade that leads to the activation, conjugation and ligation of SUMO to lysine residues of target proteins. In addition to their SUMO processing activities, SUMO proteases also possess de-conjugative activity capable of cleaving SUMO from target proteins, providing reversibility and buffering to the pathway. These proteases play critical roles in the maintenance of the SUMO machinery in equilibrium. We hypothesize that SUMO proteases provide the all-important substrate specificity within the SUMO system. Furthermore, we provide an overview of the role of SUMO in plant innate immunity. SUMOylation also overlaps with multiple growth-promoting and defence-related hormone signalling pathways, and hence is pivotal for the maintenance of the growth-defence balance. This review aims to highlight the intricate molecular mechanisms utilized by SUMO to regulate plant defence and to stabilize the growth-defence equilibrium.
Collapse
Affiliation(s)
- Vivek Verma
- Department of BiosciencesDurham UniversityDurham DH1 3LEUK
| | - Fenella Croley
- Department of BiosciencesDurham UniversityDurham DH1 3LEUK
| | - Ari Sadanandom
- Department of BiosciencesDurham UniversityDurham DH1 3LEUK
| |
Collapse
|
63
|
Yoo Y, Park JC, Cho MH, Yang J, Kim CY, Jung KH, Jeon JS, An G, Lee SW. Lack of a Cytoplasmic RLK, Required for ROS Homeostasis, Induces Strong Resistance to Bacterial Leaf Blight in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:577. [PMID: 29868050 PMCID: PMC5968223 DOI: 10.3389/fpls.2018.00577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/13/2018] [Indexed: 05/02/2023]
Abstract
Many scientific findings have been reported on the beneficial function of reactive oxygen species (ROS) in various cellular processes, showing that they are not just toxic byproducts. The double-edged role of ROS shows the importance of the regulation of ROS level. We report a gene, rrsRLK (required for ROS-scavenging receptor-like kinase), that encodes a cytoplasmic RLK belonging to the non-RD kinase family. The gene was identified by screening rice RLK mutant lines infected with Xanthomonas oryzae pv. oryzae (Xoo), an agent of bacterial leaf blight of rice. The mutant (ΔrrsRLK) lacking the Os01g02290 gene was strongly resistant to many Xoo strains, but not to the fungal pathogen Magnaporthe grisea. ΔrrsRLK showed significantly higher expression of OsPR1a, OsPR1b, OsLOX, RBBTI4, and jasmonic acid-related genes than wild type. We showed that rrsRLK protein interacts with OsVOZ1 (vascular one zinc-finger 1) and OsPEX11 (peroxisomal biogenesis factor 11). In the further experiments, abnormal biogenesis of peroxisomes, hydrogen peroxide (H2O2) accumulation, and reduction of activity of ROS-scavenging enzymes were investigated in ΔrrsRLK. These results suggest that the enhanced resistance in ΔrrsRLK is due to H2O2 accumulation caused by irregular ROS-scavenging mechanism, and rrsRLK is most likely a key regulator required for ROS homeostasis in rice.
Collapse
Affiliation(s)
- Youngchul Yoo
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Jong-Chan Park
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Man-Ho Cho
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Jungil Yang
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Chi-Yeol Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Gynheung An
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Sang-Won Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
64
|
Metasecretome Phage Display. Methods Mol Biol 2017. [PMID: 29116525 DOI: 10.1007/978-1-4939-7447-4_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Metasecretome is a collection of cell-surface and secreted proteins that mediate interactions between microbial communities and their environment. These include adhesins, enzymes, surface structures such as pili or flagella, vaccine targets or proteins responsible for immune evasion. Traditional approaches to exploring matasecretome of complex microbial communities via cultivation of microorganisms and screening of individual strains fail to sample extraordinary diversity in these communities, since only a limited fraction of microorganisms are represented by cultures. Advances in culture-independent sequence analysis methods, collectively referred to as metagenomics, offer an alternative approach that enables the direct analysis of collective microbial genomes (metagenome) recovered from environmental samples. This protocol describes a method, metasecretome phage display, which selectively displays the metasecretome portion of the metagenome. The metasecretome library can then be used for two purposes: (1) to sequence the entire metasecretome (using PacBio technology); (2) to identify metasecretome proteins that have a specific function of interest by affinity-screening (bio-panning) using a variety of methods described in other chapters of this volume.
Collapse
|
65
|
Induction of Type I Interferon through a Noncanonical Toll-Like Receptor 7 Pathway during Yersinia pestis Infection. Infect Immun 2017; 85:IAI.00570-17. [PMID: 28847850 PMCID: PMC5649010 DOI: 10.1128/iai.00570-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
Yersinia pestis causes bubonic, pneumonic, and septicemic plague, diseases that are rapidly lethal to most mammals, including humans. Plague develops as a consequence of bacterial neutralization of the host's innate immune response, which permits uncontrolled growth and causes the systemic hyperactivation of the inflammatory response. We previously found that host type I interferon (IFN) signaling is induced during Y. pestis infection and contributes to neutrophil depletion and disease. In this work, we show that type I IFN expression is derived from the recognition of intracellular Y. pestis by host Toll-like receptor 7 (TLR7). Type I IFN expression proceeded independent of myeloid differentiation factor 88 (MyD88), which is the only known signaling adaptor for TLR7, suggesting that a noncanonical mechanism occurs in Y. pestis-infected macrophages. In the murine plague model, TLR7 was a significant contributor to the expression of serum IFN-β, whereas MyD88 was not. Furthermore, like the type I IFN response, TLR7 contributed to the lethality of septicemic plague and was associated with the suppression of neutrophilic inflammation. In contrast, TLR7 was important for defense against disease in the lungs. Together, these data demonstrate that an atypical TLR7 signaling pathway contributes to type I IFN expression during Y. pestis infection and suggest that the TLR7-driven type I IFN response plays an important role in determining the outcome of plague.
Collapse
|
66
|
Hong JK, Hwang IS, Hwang BK. Functional roles of the pepper leucine-rich repeat protein and its interactions with pathogenesis-related and hypersensitive-induced proteins in plant cell death and immunity. PLANTA 2017; 246:351-364. [PMID: 28508261 DOI: 10.1007/s00425-017-2709-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/06/2017] [Indexed: 05/25/2023]
Abstract
Pepper leucine-rich repeat protein (CaLRR1) interacts with defense response proteins to regulate plant cell death and immunity. This review highlights the current understanding of the molecular functions of CaLRR1 and its interactor proteins. Plant cell death and immune responses to microbial pathogens are controlled by complex and tightly regulated molecular signaling networks. Xanthomonas campestris pv. vesicatoria (Xcv)-inducible pepper (Capsicum annuum) leucine-rich repeat protein 1 (CaLRR1) serves as a molecular marker for plant cell death and immunity signaling. In this review, we discuss recent advances in elucidating the functional roles of CaLRR1 and its interacting plant proteins, and understanding how they are involved in the cell death and defense responses. CaLRR1 physically interacts with pepper pathogenesis-related proteins (CaPR10 and CaPR4b) and hypersensitive-induced reaction protein (CaHIR1) to regulate plant cell death and defense responses. CaLRR1 is produced in the cytoplasm and trafficked to the extracellular matrix. CaLRR1 binds to CaPR10 in the cytoplasm and CaPR4b and CaHIR1 at the plasma membrane. CaLRR1 synergistically accelerates CaPR10-triggered hypersensitive cell death, but negatively regulates CaPR4b- and CaHIR1-triggered cell death. CaHIR1 interacts with Xcv filamentous hemagglutinin (Fha1) to trigger disease-associated cell death. The subcellular localization and cellular function of these CaLRR1 interactors during plant cell death and defense responses were elucidated by Agrobacterium-mediated transient expression, virus-induced gene silencing, and transgenic overexpression studies. CaPR10, CaPR4b, and CaHIR1 positively regulate defense signaling mediated by salicylic acid and reactive oxygen species, thereby activating hypersensitive cell death and disease resistance. A comprehensive understanding of the molecular functions of CaLRR1 and its interacting protein partners in cell death and defense responses will provide valuable information for the molecular genetics of plant disease resistance, which could be exploited as a sustainable disease management strategy.
Collapse
Affiliation(s)
- Jeum Kyu Hong
- Laboratory of Plant Pathology and Protection, Department of Horticultural Science, College of Biosciences, Gyeongnam National University of Science and Technology, Jinju, 52725, Republic of Korea
| | - In Sun Hwang
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
67
|
Peterson LW, Philip NH, DeLaney A, Wynosky-Dolfi MA, Asklof K, Gray F, Choa R, Bjanes E, Buza EL, Hu B, Dillon CP, Green DR, Berger SB, Gough PJ, Bertin J, Brodsky IE. RIPK1-dependent apoptosis bypasses pathogen blockade of innate signaling to promote immune defense. J Exp Med 2017; 214:3171-3182. [PMID: 28855241 PMCID: PMC5679171 DOI: 10.1084/jem.20170347] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/19/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022] Open
Abstract
RIPK1 regulates cytokine signaling and cell death during infection and inflammation. Peterson et al. show that RIPK1 kinase activity triggers apoptosis in response to bacterial pathogen blockade of innate immune signaling and that this pathway of effector-triggered immunity is critical for a successful antibacterial response. Many pathogens deliver virulence factors or effectors into host cells in order to evade host defenses and establish infection. Although such effector proteins disrupt critical cellular signaling pathways, they also trigger specific antipathogen responses, a process termed “effector-triggered immunity.” The Gram-negative bacterial pathogen Yersinia inactivates critical proteins of the NF-κB and MAPK signaling cascade, thereby blocking inflammatory cytokine production but also inducing apoptosis. Yersinia-induced apoptosis requires the kinase activity of receptor-interacting protein kinase 1 (RIPK1), a key regulator of cell death, NF-κB, and MAPK signaling. Through the targeted disruption of RIPK1 kinase activity, which selectively disrupts RIPK1-dependent cell death, we now reveal that Yersinia-induced apoptosis is critical for host survival, containment of bacteria in granulomas, and control of bacterial burdens in vivo. We demonstrate that this apoptotic response provides a cell-extrinsic signal that promotes optimal innate immune cytokine production and antibacterial defense, demonstrating a novel role for RIPK1 kinase–induced apoptosis in mediating effector-triggered immunity to circumvent pathogen inhibition of immune signaling.
Collapse
Affiliation(s)
- Lance W Peterson
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA.,Institue for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Naomi H Philip
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA.,Institue for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Alexandra DeLaney
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA.,Institue for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Meghan A Wynosky-Dolfi
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA.,Institue for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Kendra Asklof
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Falon Gray
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Ruth Choa
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA.,Institue for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Elisabet Bjanes
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA.,Institue for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Elisabeth L Buza
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Baofeng Hu
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | | | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Scott B Berger
- Host Defense Discovery Performance Unit, Infectious Disease Therapy Area Unit, GlaxoSmithKline, Collegeville, PA
| | - Peter J Gough
- Host Defense Discovery Performance Unit, Infectious Disease Therapy Area Unit, GlaxoSmithKline, Collegeville, PA
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA .,Institue for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
68
|
Tawk C, Sharan M, Eulalio A, Vogel J. A systematic analysis of the RNA-targeting potential of secreted bacterial effector proteins. Sci Rep 2017; 7:9328. [PMID: 28839189 PMCID: PMC5570926 DOI: 10.1038/s41598-017-09527-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/27/2017] [Indexed: 12/15/2022] Open
Abstract
Many pathogenic bacteria utilize specialized secretion systems to deliver proteins called effectors into eukaryotic cells for manipulation of host pathways. The vast majority of known effector targets are host proteins, whereas a potential targeting of host nucleic acids remains little explored. There is only one family of effectors known to target DNA directly, and effectors binding host RNA are unknown. Here, we take a two-pronged approach to search for RNA-binding effectors, combining biocomputational prediction of RNA-binding domains (RBDs) in a newly assembled comprehensive dataset of bacterial secreted proteins, and experimental screening for RNA binding in mammalian cells. Only a small subset of effectors were predicted to carry an RBD, indicating that if RNA targeting was common, it would likely involve new types of RBDs. Our experimental evaluation of effectors with predicted RBDs further argues for a general paucity of RNA binding activities amongst bacterial effectors. We obtained evidence that PipB2 and Lpg2844, effector proteins of Salmonella and Legionella species, respectively, may harbor novel biochemical activities. Our study presenting the first systematic evaluation of the RNA-targeting potential of bacterial effectors offers a basis for discussion of whether or not host RNA is a prominent target of secreted bacterial proteins.
Collapse
Affiliation(s)
- Caroline Tawk
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Malvika Sharan
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Ana Eulalio
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.
- Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany.
| |
Collapse
|
69
|
Abstract
Beneficial microbes such as rhizobia possess effector proteins that are secreted into the host cytoplasm where they modulate host-signaling pathways. Among these effectors, type 3 secreted effectors (T3Es) of rhizobia play roles in promoting nitrogen-fixing nodule symbiosis, suppressing host defenses and directly activating symbiosis-related processes. Rhizobia use the same strategy as pathogenic bacteria to suppress host defenses such as targeting the MAPK cascade. In addition, rhizobial T3E can promote root nodule symbiosis by directly activating Nod factor signaling, which bypasses Nod factor perception. The various strategies employed by beneficial microbes to promote infection and maintain viability in the host are therefore crucial for plant endosymbiosis.
Collapse
Affiliation(s)
- Hiroki Miwa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Shin Okazaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
70
|
Liu L, Wang Y, Cui F, Fang A, Wang S, Wang J, Wei C, Li S, Sun W. The type III effector AvrXccB in Xanthomonas campestris pv. campestris targets putative methyltransferases and suppresses innate immunity in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2017; 18:768-782. [PMID: 27241588 PMCID: PMC6638230 DOI: 10.1111/mpp.12435] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 05/04/2023]
Abstract
Xanthomonas campestris pv. campestris (Xcc) causes black rot, one of the most important diseases of brassica crops worldwide. The type III effector inventory plays important roles in the virulence and pathogenicity of the pathogen. However, little is known about the virulence function(s) of the putative type III effector AvrXccB in Xcc. Here, we investigated the immune suppression ability of AvrXccB and the possible underlying mechanisms. AvrXccB was demonstrated to be secreted in a type III secretion system-dependent manner. AvrXccB tagged with green fluorescent protein is localized to the plasma membrane in Arabidopsis, and the putative N-myristoylation motif is essential for its localization. Chemical-induced expression of AvrXccB suppresses flg22-triggered callose deposition and the oxidative burst, and promotes the in planta growth of Xcc and Pseudomonas syringae pv. tomato in transgenic Arabidopsis plants. The putative catalytic triad and plasma membrane localization of AvrXccB are required for its immunosuppressive activity. Furthermore, it was demonstrated that AvrXccB interacts with the Arabidopsis S-adenosyl-l-methionine-dependent methyltransferases SAM-MT1 and SAM-MT2. Interestingly, SAM-MT1 is not only self-associated, but also associated with SAM-MT2 in vivo. SAM-MT1 and SAM-MT2 expression is significantly induced upon stimulation of microbe-associated molecular patterns and bacterial infection. Collectively, these findings indicate that AvrXccB targets a putative methyltransferase complex and suppresses plant immunity.
Collapse
Affiliation(s)
- Lijuan Liu
- Department of Plant Pathology, Key Laboratory of Plant Pathology, Ministry of AgricultureChina Agricultural UniversityBeijing100193China
| | - Yanping Wang
- Department of Plant Pathology, Key Laboratory of Plant Pathology, Ministry of AgricultureChina Agricultural UniversityBeijing100193China
| | - Fuhao Cui
- Department of Plant Pathology, Key Laboratory of Plant Pathology, Ministry of AgricultureChina Agricultural UniversityBeijing100193China
| | - Anfei Fang
- Department of Plant Pathology, Key Laboratory of Plant Pathology, Ministry of AgricultureChina Agricultural UniversityBeijing100193China
| | - Shanzhi Wang
- Department of Plant Pathology, Key Laboratory of Plant Pathology, Ministry of AgricultureChina Agricultural UniversityBeijing100193China
| | - Jiyang Wang
- Department of Plant Pathology, Key Laboratory of Plant Pathology, Ministry of AgricultureChina Agricultural UniversityBeijing100193China
| | - Chao Wei
- Department of Plant Pathology, Key Laboratory of Plant Pathology, Ministry of AgricultureChina Agricultural UniversityBeijing100193China
| | - Shuai Li
- Department of Plant Pathology, Key Laboratory of Plant Pathology, Ministry of AgricultureChina Agricultural UniversityBeijing100193China
| | - Wenxian Sun
- Department of Plant Pathology, Key Laboratory of Plant Pathology, Ministry of AgricultureChina Agricultural UniversityBeijing100193China
| |
Collapse
|
71
|
Zhang ZM, Ma KW, Gao L, Hu Z, Schwizer S, Ma W, Song J. Mechanism of host substrate acetylation by a YopJ family effector. NATURE PLANTS 2017; 3:17115. [PMID: 28737762 PMCID: PMC5546152 DOI: 10.1038/nplants.2017.115] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/26/2017] [Indexed: 05/22/2023]
Abstract
The Yersinia outer protein J (YopJ) family of bacterial effectors depends on a novel acetyltransferase domain to acetylate signalling proteins from plant and animal hosts. However, the underlying mechanism is unclear. Here, we report the crystal structures of PopP2, a YopJ effector produced by the plant pathogen Ralstonia solanacearum, in complex with inositol hexaphosphate (InsP6), acetyl-coenzyme A (AcCoA) and/or substrate Resistance to Ralstonia solanacearum 1 (RRS1-R)WRKY. PopP2 recognizes the WRKYGQK motif of RRS1-RWRKY to position a targeted lysine in the active site for acetylation. Importantly, the PopP2-RRS1-RWRKY association is allosterically regulated by InsP6 binding, suggesting a previously unidentified role of the eukaryote-specific cofactor in substrate interaction. Furthermore, we provide evidence for the reaction intermediate of PopP2-mediated acetylation, an acetyl-cysteine covalent adduct, lending direct support to the 'ping-pong'-like catalytic mechanism proposed for YopJ effectors. Our study provides critical mechanistic insights into the virulence activity of YopJ class of acetyltransferases.
Collapse
Affiliation(s)
- Zhi-Min Zhang
- Department of Biochemistry, University of California, Riverside, California 92521, USA
| | - Ka-Wai Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521, USA
| | - Linfeng Gao
- Environmental Toxicology Program, University of California, Riverside, California 92521, USA
| | - Zhenquan Hu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Anhui 230031, China
| | - Simon Schwizer
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521, USA
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521, USA
- Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
- Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, California 92521, USA
- Environmental Toxicology Program, University of California, Riverside, California 92521, USA
| |
Collapse
|
72
|
Gou M, Huang Q, Qian W, Zhang Z, Jia Z, Hua J. Sumoylation E3 Ligase SIZ1 Modulates Plant Immunity Partly through the Immune Receptor Gene SNC1 in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:334-342. [PMID: 28409535 DOI: 10.1094/mpmi-02-17-0041-r] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The small ubiqutin-like modifier E3 ligase SIZ1 regulates multiple processes in Arabidopsis, including salicylic-acid-dependent immune responses. However, the targets of SIZ1 in plant immunity are not known. Here, we provide evidence that the plant immune receptor nucleotide-binding leucine-rich repeat gene SNC1 partially mediates the regulation of plant immunity by SIZ1. The siz1 loss-of-function mutant has an autoimmune phenotype that is dependent on SNC1 and temperature. Overexpression of SIZ1 partially rescues autoimmune mutant phenotypes induced by activation or overaccumulation of SNC1, and the SNC1 protein amount is attenuated by SIZ1 overexpression. In addition, overexpression of the F-box protein CPR1 that degrades the SNC1 protein inhibits the growth defects and disease resistance of the siz1 mutant. Furthermore, we found that the SNC1 protein is sumoylated in planta. Although it remains to be determined whether SIZ1 primarily modulates the SNC1 protein via sumoylation or affects SNC1 transcript level, our data indicate that SNC1 is a major mediator of defense response modulated by SIZ1 and that SNC1 is a crucial target for fine-tuning plant defense responses.
Collapse
Affiliation(s)
- Mingyue Gou
- 1 Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Quansheng Huang
- 1 Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
- 2 Xinjiang Key Laboratory of Crop Biotechnology, Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumuqi 830091, China
| | - Weiqiang Qian
- 1 Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Zemin Zhang
- 1 Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
- 3 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; and
| | - Zhenhua Jia
- 1 Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
- 4 Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, Hebei, 050081, China
| | - Jian Hua
- 1 Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
73
|
Han SW, Hwang BK. Molecular functions of Xanthomonas type III effector AvrBsT and its plant interactors in cell death and defense signaling. PLANTA 2017; 245:237-253. [PMID: 27928637 DOI: 10.1007/s00425-016-2628-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/30/2016] [Indexed: 05/20/2023]
Abstract
Xanthomonas effector AvrBsT interacts with plant defense proteins and triggers cell death and defense response. This review highlights our current understanding of the molecular functions of AvrBsT and its host interactor proteins. The AvrBsT protein is a member of a growing family of effector proteins in both plant and animal pathogens. Xanthomonas type III effector AvrBsT, a member of the YopJ/AvrRxv family, suppresses plant defense responses in susceptible hosts, but triggers cell death signaling leading to hypersensitive response (HR) and defense responses in resistant plants. AvrBsT interacts with host defense-related proteins to trigger the HR cell death and defense responses in plants. Here, we review and discuss recent progress in understanding the molecular functions of AvrBsT and its host interactor proteins in pepper (Capsicum annuum). Pepper arginine decarboxylase1 (CaADC1), pepper aldehyde dehydrogenase1 (CaALDH1), pepper heat shock protein 70a (CaHSP70a), pepper suppressor of the G2 allele of skp1 (CaSGT1), pepper SNF1-related kinase1 (SnRK1), and Arabidopsis acetylated interacting protein1 (ACIP1) have been identified as AvrBsT interactors in pepper and Arabidopsis. Gene expression profiling, virus-induced gene silencing, and transient transgenic overexpression approaches have advanced the functional characterization of AvrBsT-interacting proteins in plants. AvrBsT is localized in the cytoplasm and forms protein-protein complexes with host interactors. All identified AvrBsT interactors regulate HR cell death and defense responses in plants. Notably, CaSGT1 physically binds to both AvrBsT and pepper receptor-like cytoplasmic kinase1 (CaPIK1) in the cytoplasm. During infection with Xanthomonas campestris pv. vesicatoria strain Ds1 (avrBsT), AvrBsT is phosphorylated by CaPIK1 and forms the active AvrBsT-CaSGT1-CaPIK1 complex, which ultimately triggers HR cell death and defense responses. Collectively, the AvrBsT interactor proteins are involved in plant cell death and immunity signaling.
Collapse
Affiliation(s)
- Sang Wook Han
- Department of Integrative Plant Science, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 02841, Republic of Korea.
| |
Collapse
|
74
|
Valueva TA, Zaichik BT, Kudryavtseva NN. Role of proteolytic enzymes in the interaction of phytopathogenic microorganisms with plants. BIOCHEMISTRY (MOSCOW) 2017; 81:1709-1718. [DOI: 10.1134/s0006297916130083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
75
|
Sumoylation as an Integral Mechanism in Bacterial Infection and Disease Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:389-408. [DOI: 10.1007/978-3-319-50044-7_22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
76
|
Cao Y, Guan K, He X, Wei C, Zheng Z, Zhang Y, Ma S, Zhong H, Shi W. Yersinia YopJ negatively regulates IRF3-mediated antibacterial response through disruption of STING-mediated cytosolic DNA signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:3148-3159. [DOI: 10.1016/j.bbamcr.2016.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/30/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022]
|
77
|
YopJ Family Effectors Promote Bacterial Infection through a Unique Acetyltransferase Activity. Microbiol Mol Biol Rev 2016; 80:1011-1027. [PMID: 27784797 DOI: 10.1128/mmbr.00032-16] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gram-negative bacterial pathogens rely on the type III secretion system to inject virulence proteins into host cells. These type III secreted "effector" proteins directly manipulate cellular processes to cause disease. Although the effector repertoires in different bacterial species are highly variable, the Yersinia outer protein J (YopJ) effector family is unique in that its members are produced by diverse animal and plant pathogens as well as a nonpathogenic microsymbiont. All YopJ family effectors share a conserved catalytic triad that is identical to that of the C55 family of cysteine proteases. However, an accumulating body of evidence demonstrates that many YopJ effectors modify their target proteins in hosts by acetylating specific serine, threonine, and/or lysine residues. This unique acetyltransferase activity allows the YopJ family effectors to affect the function and/or stability of their targets, thereby dampening innate immunity. Here, we summarize the current understanding of this prevalent and evolutionarily conserved type III effector family by describing their enzymatic activities and virulence functions in animals and plants. In particular, the molecular mechanisms by which representative YopJ family effectors subvert host immunity through posttranslational modification of their target proteins are discussed.
Collapse
|
78
|
Truchan HK, Cockburn CL, May LJ, VieBrock L, Carlyon JA. Anaplasma phagocytophilum-Occupied Vacuole Interactions with the Host Cell Cytoskeleton. Vet Sci 2016; 3:vetsci3030025. [PMID: 29056733 PMCID: PMC5606578 DOI: 10.3390/vetsci3030025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023] Open
Abstract
Anaplasma phagocytophilum is an obligate intracellular bacterial pathogen of humans and animals. The A. phagocytophium-occupied vacuole (ApV) is a critical host-pathogen interface. Here, we report that the intermediate filaments, keratin and vimentin, assemble on the ApV early and remain associated with the ApV throughout infection. Microtubules localize to the ApV to a lesser extent. Vimentin, keratin-8, and keratin-18 but not tubulin expression is upregulated in A. phagocytophilum infected cells. SUMO-2/3 but not SUMO-1 colocalizes with vimentin filaments that surround ApVs. PolySUMOylation of vimentin by SUMO-2/3 but not SUMO-1 decreases vimentin solubility. Consistent with this, more vimentin exists in an insoluble state in A. phagocytophilum infected cells than in uninfected cells. Knocking down the SUMO-conjugating enzyme, Ubc9, abrogates vimentin assembly at the ApV but has no effect on the bacterial load. Bacterial protein synthesis is dispensable for maintaining vimentin and SUMO-2/3 at the ApV. Withaferin A, which inhibits soluble vimentin, reduces vimentin recruitment to the ApV, optimal ApV formation, and the bacterial load when administered prior to infection but is ineffective once vimentin has assembled on the ApV. Thus, A. phagocytophilum modulates cytoskeletal component expression and co-opts polySUMOylated vimentin to aid construction of its vacuolar niche and promote optimal survival.
Collapse
Affiliation(s)
- Hilary K Truchan
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Chelsea L Cockburn
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Levi J May
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Lauren VieBrock
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Jason A Carlyon
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| |
Collapse
|
79
|
Zhang ZM, Ma KW, Yuan S, Luo Y, Jiang S, Hawara E, Pan S, Ma W, Song J. Structure of a pathogen effector reveals the enzymatic mechanism of a novel acetyltransferase family. Nat Struct Mol Biol 2016; 23:847-52. [PMID: 27525589 DOI: 10.1038/nsmb.3279] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/19/2016] [Indexed: 02/07/2023]
Abstract
Effectors secreted by the type III secretion system are essential for bacterial pathogenesis. Members of the Yersinia outer-protein J (YopJ) family of effectors found in diverse plant and animal pathogens depend on a protease-like catalytic triad to acetylate host proteins and produce virulence. However, the structural basis for this noncanonical acetyltransferase activity remains unknown. Here, we report the crystal structures of the YopJ effector HopZ1a, produced by the phytopathogen Pseudomonas syringae, in complex with the eukaryote-specific cofactor inositol hexakisphosphate (IP6) and/or coenzyme A (CoA). Structural, computational and functional characterizations reveal a catalytic core with a fold resembling that of ubiquitin-like cysteine proteases and an acetyl-CoA-binding pocket formed after IP6-induced structural rearrangements. Modeling-guided mutagenesis further identified key IP6-interacting residues of Salmonella effector AvrA that are required for acetylating its substrate. Our study reveals the structural basis of a novel class of acetyltransferases and the conserved allosteric regulation of YopJ effectors by IP6.
Collapse
Affiliation(s)
- Zhi-Min Zhang
- Department of Biochemistry, University of California, Riverside, Riverside, California, USA
| | - Ka-Wai Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, California, USA
| | - Shuguang Yuan
- Laboratory of Physical Chemistry of Polymers and Membranes, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Youfu Luo
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shushu Jiang
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, California, USA
| | - Eva Hawara
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, California, USA
| | - Songqin Pan
- Center for Plant Cell Biology, University of California, Riverside, Riverside, California, USA
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, California, USA.,Center for Plant Cell Biology, University of California, Riverside, Riverside, California, USA.,Institute of Integrative Genome Biology, University of California, Riverside, Riverside, California, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
80
|
Schreiber KJ, Baudin M, Hassan JA, Lewis JD. Die another day: Molecular mechanisms of effector-triggered immunity elicited by type III secreted effector proteins. Semin Cell Dev Biol 2016; 56:124-133. [DOI: 10.1016/j.semcdb.2016.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/02/2016] [Indexed: 11/27/2022]
|
81
|
The Molecular Basis for Ubiquitin and Ubiquitin-like Specificities in Bacterial Effector Proteases. Mol Cell 2016; 63:261-276. [PMID: 27425412 PMCID: PMC4961225 DOI: 10.1016/j.molcel.2016.06.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/02/2016] [Accepted: 06/08/2016] [Indexed: 12/18/2022]
Abstract
Pathogenic bacteria rely on secreted effector proteins to manipulate host signaling pathways, often in creative ways. CE clan proteases, specific hydrolases for ubiquitin-like modifications (SUMO and NEDD8) in eukaryotes, reportedly serve as bacterial effector proteins with deSUMOylase, deubiquitinase, or, even, acetyltransferase activities. Here, we characterize bacterial CE protease activities, revealing K63-linkage-specific deubiquitinases in human pathogens, such as Salmonella, Escherichia, and Shigella, as well as ubiquitin/ubiquitin-like cross-reactive enzymes in Chlamydia, Rickettsia, and Xanthomonas. Five crystal structures, including ubiquitin/ubiquitin-like complexes, explain substrate specificities and redefine relationships across the CE clan. Importantly, this work identifies novel family members and provides key discoveries among previously reported effectors, such as the unexpected deubiquitinase activity in Xanthomonas XopD, contributed by an unstructured ubiquitin binding region. Furthermore, accessory domains regulate properties such as subcellular localization, as exemplified by a ubiquitin-binding domain in Salmonella Typhimurium SseL. Our work both highlights and explains the functional adaptations observed among diverse CE clan proteins. Bacterial CE proteases exhibit distinct ubiquitin/ubiquitin-like specificities Substrate specificity is acquired through variability in three common regions Structural and functional data redefine CE clan relationships across kingdoms CE effectors are fitted with accessory domains that modulate function
Collapse
|
82
|
Abstract
The human pathogens
Yersinia pseudotuberculosis and
Yersinia enterocolitica cause enterocolitis, while
Yersinia pestis is responsible for pneumonic, bubonic, and septicaemic plague. All three share an infection strategy that relies on a virulence factor arsenal to enable them to enter, adhere to, and colonise the host while evading host defences to avoid untimely clearance. Their arsenal includes a number of adhesins that allow the invading pathogens to establish a foothold in the host and to adhere to specific tissues later during infection. When the host innate immune system has been activated, all three pathogens produce a structure analogous to a hypodermic needle. In conjunction with the translocon, which forms a pore in the host membrane, the channel that is formed enables the transfer of six ‘effector’ proteins into the host cell cytoplasm. These proteins mimic host cell proteins but are more efficient than their native counterparts at modifying the host cell cytoskeleton, triggering the host cell suicide response. Such a sophisticated arsenal ensures that yersiniae maintain the upper hand despite the best efforts of the host to counteract the infecting pathogen.
Collapse
Affiliation(s)
- Steve Atkinson
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Paul Williams
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
83
|
Pha K, Navarro L. Yersinia type III effectors perturb host innate immune responses. World J Biol Chem 2016; 7:1-13. [PMID: 26981193 PMCID: PMC4768113 DOI: 10.4331/wjbc.v7.i1.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/02/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023] Open
Abstract
The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia effector proteins and their contribution to Yersinia pathogenesis.
Collapse
|
84
|
Alugubelly N, Hercik K, Kibler P, Nanduri B, Edelmann MJ. Analysis of differentially expressed proteins in Yersinia enterocolitica-infected HeLa cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:562-9. [PMID: 26854600 DOI: 10.1016/j.bbapap.2016.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/20/2016] [Accepted: 02/03/2016] [Indexed: 12/22/2022]
Abstract
UNLABELLED Yersinia enterocolitica is a facultative intracellular pathogen and a causative agent of yersiniosis, which can be contracted by ingestion of contaminated food. Yersinia secretes virulence factors to subvert critical pathways in the host cell. In this study we utilized shotgun label-free proteomics to study differential protein expression in epithelial cells infected with Y.enterocolitica. We identified a total of 551 proteins, amongst which 42 were downregulated (including Prostaglandin E Synthase 3, POH-1 and Karyopherin alpha) and 22 were upregulated (including Rab1 and RhoA) in infected cells. We validated some of these results by western blot analysis of proteins extracted from Caco-2 and HeLa cells. The proteomic dataset was used to identify host canonical pathways and molecular functions modulated by this infection in the host cells. This study constitutes a proteome of Yersinia-infected cells and can support new discoveries in the area of host-pathogen interactions. STATEMENT OF SIGNIFICANCE OF THE STUDY We describe a proteome of Yersinia enterocolitica-infected HeLa cells, including a description of specific proteins differentially expressed upon infection, molecular functions as well as pathways altered during infection. This proteomic study can lead to a better understanding of Y. enterocolitica pathogenesis in human epithelial cells.
Collapse
Affiliation(s)
- Navatha Alugubelly
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Kamil Hercik
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Peter Kibler
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
85
|
Ma KW, Jiang S, Hawara E, Lee D, Pan S, Coaker G, Song J, Ma W. Two serine residues in Pseudomonas syringae effector HopZ1a are required for acetyltransferase activity and association with the host co-factor. THE NEW PHYTOLOGIST 2015; 208:1157-68. [PMID: 26103463 PMCID: PMC4768790 DOI: 10.1111/nph.13528] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/21/2015] [Indexed: 05/21/2023]
Abstract
Gram-negative bacteria inject type III secreted effectors (T3SEs) into host cells to manipulate the immune response. The YopJ family effector HopZ1a produced by the plant pathogen Pseudomonas syringae possesses acetyltransferase activity and acetylates plant proteins to facilitate infection. Using mass spectrometry, we identified a threonine residue, T346, as the main autoacetylation site of HopZ1a. Two neighboring serine residues, S349 and S351, are required for the acetyltransferase activity of HopZ1a in vitro and are indispensable for the virulence function of HopZ1a in Arabidopsis thaliana. Using proton nuclear magnetic resonance (NMR), we observed a conformational change of HopZ1a in the presence of inositol hexakisphosphate (IP6), which acts as a eukaryotic co-factor and significantly enhances the acetyltransferase activity of several YopJ family effectors. S349 and S351 are required for IP6-binding-mediated conformational change of HopZ1a. S349 and S351 are located in a conserved region in the C-terminal domain of YopJ family effectors. Mutations of the corresponding serine(s) in two other effectors, HopZ3 of P. syringae and PopP2 of Ralstonia solanacerum, also abolished their acetyltransferase activity. These results suggest that, in addition to the highly conserved catalytic residues, YopJ family effectors also require conserved serine(s) in the C-terminal domain for their enzymatic activity.
Collapse
Affiliation(s)
- Ka-Wai Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
- Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA
| | - Shushu Jiang
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
- Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA
| | - Eva Hawara
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
| | - DongHyuk Lee
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Songqin Pan
- Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
- Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
86
|
Catching a DUB in the act: novel ubiquitin-based active site directed probes. Curr Opin Chem Biol 2015; 23:63-70. [PMID: 25461387 PMCID: PMC7185813 DOI: 10.1016/j.cbpa.2014.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/30/2014] [Accepted: 10/08/2014] [Indexed: 01/21/2023]
Abstract
Activity-based probes used to probe DUB inhibitor specificity. Developments in DUB activity-based probe use. Determination of linkage preference of DUBs using activity-based probes. Outlook for development in DUB probe design and current challenges.
Protein ubiquitylation is an important regulator of protein function, localization and half-life. It plays a key role in most cellular processes including immune signaling. Deregulation of this process is a major causative factor for many diseases. A major advancement in the identification and characterization of the enzymes that remove ubiquitin, deubiquitylases (DUBs) was made by the development of activity-based probes (ABPs). Recent advances in chemical protein synthesis and ligation methodology has yielded novel reagents for use in ubiquitylation research. We describe recent advances and discuss future directions in reagent development for studying DUBs.
Collapse
|
87
|
Rufián JS, Lucía A, Macho AP, Orozco-Navarrete B, Arroyo-Mateos M, Bejarano ER, Beuzón CR, Ruiz-Albert J. Auto-acetylation on K289 is not essential for HopZ1a-mediated plant defense suppression. Front Microbiol 2015. [PMID: 26217317 PMCID: PMC4495678 DOI: 10.3389/fmicb.2015.00684] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Pseudomonas syringae type III-secreted effector HopZ1a is a member of the HopZ/YopJ superfamily of effectors that triggers immunity in Arabidopsis. We have previously shown that HopZ1a suppresses both local [effector-triggered immunity (ETI)] and systemic immunity [systemic acquired resistance (SAR)] triggered by the heterologous effector AvrRpt2. HopZ1a has been shown to possess acetyltransferase activity, and this activity is essential to trigger immunity in Arabidopsis. HopZ1a acetyltransferase activity has been reported to require the auto-acetylation of the effector on a specific lysine (K289) residue. In this paper we analyze the relevance of autoacetylation of lysine residue 289 in HopZ1a ability to suppress plant defenses, and on the light of the results obtained, we also revise its relevance for HopZ1a avirulence activity. Our results indicate that, while the HopZ1a(K289R) mutant is impaired to some degree in its virulence and avirulence activities, is by no means phenotypically equivalent to the catalytically inactive HopZ1a(C216A), since it is still able to trigger a defense response that induces detectable macroscopic HR and effectively protects Arabidopsis from infection, reducing growth of P. syringae within the plant. We also present evidence that the HopZ1a(K289R) mutant still displays virulence activities, partially suppressing both ETI and SAR.
Collapse
Affiliation(s)
- José S Rufián
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" - Universidad de Málaga - Consejo Superior de Investigaciones Científicas Málaga, Spain
| | - Ainhoa Lucía
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" - Universidad de Málaga - Consejo Superior de Investigaciones Científicas Málaga, Spain
| | - Alberto P Macho
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" - Universidad de Málaga - Consejo Superior de Investigaciones Científicas Málaga, Spain
| | - Begoña Orozco-Navarrete
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" - Universidad de Málaga - Consejo Superior de Investigaciones Científicas Málaga, Spain
| | - Manuel Arroyo-Mateos
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" - Universidad de Málaga - Consejo Superior de Investigaciones Científicas Málaga, Spain
| | - Eduardo R Bejarano
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" - Universidad de Málaga - Consejo Superior de Investigaciones Científicas Málaga, Spain
| | - Carmen R Beuzón
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" - Universidad de Málaga - Consejo Superior de Investigaciones Científicas Málaga, Spain
| | - Javier Ruiz-Albert
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" - Universidad de Málaga - Consejo Superior de Investigaciones Científicas Málaga, Spain
| |
Collapse
|
88
|
Salmonella Engages Host MicroRNAs To Modulate SUMOylation: a New Arsenal for Intracellular Survival. Mol Cell Biol 2015; 35:2932-46. [PMID: 26100020 DOI: 10.1128/mcb.00397-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/17/2015] [Indexed: 12/13/2022] Open
Abstract
Posttranslational modifications (PTMs) can alter many fundamental properties of a protein. One or combinations of them have been known to regulate the dynamics of many cellular pathways and consequently regulate all vital processes. Understandably, pathogens have evolved sophisticated strategies to subvert these mechanisms to achieve instantaneous control over host functions. Here, we present the first report of modulation by intestinal pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) of host SUMOylation, a PTM pathway central to all fundamental cellular processes. Both in cell culture and in a mouse model, we observed that S. Typhimurium infection led to a dynamic SUMO-conjugated proteome alteration. The intracellular survival of S. Typhimurium was dependent on SUMO status as revealed by reduced infection and Salmonella-induced filaments (SIFs) in SUMO-upregulated cells. S. Typhimurium-dependent SUMO modulation was seen as a result of depletion of crucial SUMO pathway enzymes Ubc-9 and PIAS1, at both the protein and the transcript levels. Mechanistically, depletion of Ubc-9 relied on upregulation of small noncoding RNAs miR30c and miR30e during S. Typhimurium infection. This was necessary and sufficient for both down-modulation of Ubc-9 and a successful infection. Thus, we demonstrate a novel strategy of pathogen-mediated perturbation of host SUMOylation, an integral mechanism underlying S. Typhimurium infection and intracellular survival.
Collapse
|
89
|
Kim NH, Hwang BK. Pepper aldehyde dehydrogenase CaALDH1 interacts with Xanthomonas effector AvrBsT and promotes effector-triggered cell death and defence responses. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3367-80. [PMID: 25873668 PMCID: PMC4449550 DOI: 10.1093/jxb/erv147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Xanthomonas type III effector AvrBsT induces hypersensitive cell death and defence responses in pepper (Capsicum annuum) and Nicotiana benthamiana. Little is known about the host factors that interact with AvrBsT. Here, we identified pepper aldehyde dehydrogenase 1 (CaALDH1) as an AvrBsT-interacting protein. Bimolecular fluorescence complementation and co-immunoprecipitation assays confirmed the interaction between CaALDH1 and AvrBsT in planta. CaALDH1:smGFP fluorescence was detected in the cytoplasm. CaALDH1 expression in pepper was rapidly and strongly induced by avirulent Xanthomonas campestris pv. vesicatoria (Xcv) Ds1 (avrBsT) infection. Transient co-expression of CaALDH1 with avrBsT significantly enhanced avrBsT-triggered cell death in N. benthamiana leaves. Aldehyde dehydrogenase activity was higher in leaves transiently expressing CaALDH1, suggesting that CaALDH1 acts as a cell death enhancer, independently of AvrBsT. CaALDH1 silencing disrupted phenolic compound accumulation, H2O2 production, defence response gene expression, and cell death during avirulent Xcv Ds1 (avrBsT) infection. Transgenic Arabidopsis thaliana overexpressing CaALDH1 exhibited enhanced defence response to Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis infection. These results indicate that cytoplasmic CaALDH1 interacts with AvrBsT and promotes plant cell death and defence responses.
Collapse
Affiliation(s)
- Nak Hyun Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| |
Collapse
|
90
|
Vagima Y, Zauberman A, Levy Y, Gur D, Tidhar A, Aftalion M, Shafferman A, Mamroud E. Circumventing Y. pestis Virulence by Early Recruitment of Neutrophils to the Lungs during Pneumonic Plague. PLoS Pathog 2015; 11:e1004893. [PMID: 25974210 PMCID: PMC4431741 DOI: 10.1371/journal.ppat.1004893] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 04/18/2015] [Indexed: 12/20/2022] Open
Abstract
Pneumonic plague is a fatal disease caused by Yersinia pestis that is associated with a delayed immune response in the lungs. Because neutrophils are the first immune cells recruited to sites of infection, we investigated the mechanisms responsible for their delayed homing to the lung. During the first 24 hr after pulmonary infection with a fully virulent Y. pestis strain, no significant changes were observed in the lungs in the levels of neutrophils infiltrate, expression of adhesion molecules, or the expression of the major neutrophil chemoattractants keratinocyte cell-derived chemokine (KC), macrophage inflammatory protein 2 (MIP-2) and granulocyte colony stimulating factor (G-CSF). In contrast, early induction of chemokines, rapid neutrophil infiltration and a reduced bacterial burden were observed in the lungs of mice infected with an avirulent Y. pestis strain. In vitro infection of lung-derived cell-lines with a YopJ mutant revealed the involvement of YopJ in the inhibition of chemoattractants expression. However, the recruitment of neutrophils to the lungs of mice infected with the mutant was still delayed and associated with rapid bacterial propagation and mortality. Interestingly, whereas KC, MIP-2 and G-CSF mRNA levels in the lungs were up-regulated early after infection with the mutant, their protein levels remained constant, suggesting that Y. pestis may employ additional mechanisms to suppress early chemoattractants induction in the lung. It therefore seems that prevention of the early influx of neutrophils to the lungs is of major importance for Y. pestis virulence. Indeed, pulmonary instillation of KC and MIP-2 to G-CSF-treated mice infected with Y. pestis led to rapid homing of neutrophils to the lung followed by a reduction in bacterial counts at 24 hr post-infection and improved survival rates. These observations shed new light on the virulence mechanisms of Y. pestis during pneumonic plague, and have implications for the development of novel therapies against this pathogen.
Collapse
Affiliation(s)
- Yaron Vagima
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ayelet Zauberman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Yinon Levy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - David Gur
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Avital Tidhar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Avigdor Shafferman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
- * E-mail:
| |
Collapse
|
91
|
Asrat S, Davis KM, Isberg RR. Modulation of the host innate immune and inflammatory response by translocated bacterial proteins. Cell Microbiol 2015; 17:785-795. [PMID: 25850689 DOI: 10.1111/cmi.12445] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 12/15/2022]
Abstract
Bacterial secretion systems play a central role in interfering with host inflammatory responses to promote replication in tissue sites. Many intracellular bacteria utilize secretion systems to promote their uptake and survival within host cells. An intracellular niche can help bacteria avoid killing by phagocytic cells, and may limit host sensing of bacterial components. Secretion systems can also play an important role in limiting host sensing of bacteria by translocating proteins that disrupt host immune signalling pathways. Extracellular bacteria, on the other hand, utilize secretion systems to prevent uptake by host cells and maintain an extracellular niche. Secretion systems, in this case, limit sensing and inflammatory signalling which can occur as bacteria replicate and release bacterial products in the extracellular space. In this review, we will cover the common mechanisms used by intracellular and extracellular bacteria to modulate innate immune and inflammatory signalling pathways, with a focus on translocated proteins of the type III and type IV secretion systems.
Collapse
Affiliation(s)
- Seblewongel Asrat
- Howard Hughes Medical Institute, Tufts University School of Medicine,150 Harrison Ave., Boston, MA 02111, USA.,Department of Molecular Biology and Microbiology, Tufts University School of Medicine,150 Harrison Ave., Boston, MA 02111, USA.,Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Science, Tufts University School of Medicine,150 Harrison Ave., Boston, MA 02111, USA
| | - Kimberly M Davis
- Howard Hughes Medical Institute, Tufts University School of Medicine,150 Harrison Ave., Boston, MA 02111, USA.,Department of Molecular Biology and Microbiology, Tufts University School of Medicine,150 Harrison Ave., Boston, MA 02111, USA
| | - Ralph R Isberg
- Howard Hughes Medical Institute, Tufts University School of Medicine,150 Harrison Ave., Boston, MA 02111, USA.,Department of Molecular Biology and Microbiology, Tufts University School of Medicine,150 Harrison Ave., Boston, MA 02111, USA
| |
Collapse
|
92
|
Abstract
The post-translational modification of proteins with ubiquitin represents a complex signalling system that co-ordinates essential cellular functions, including proteolysis, DNA repair, receptor signalling and cell communication. DUBs (deubiquitinases), the enzymes that disassemble ubiquitin chains and remove ubiquitin from proteins, are central to this system. Reflecting the complexity and versatility of ubiquitin signalling, DUB activity is controlled in multiple ways. Although several lines of evidence indicate that aberrant DUB function may promote human disease, the underlying molecular mechanisms are often unclear. Notwithstanding, considerable interest in DUBs as potential drug targets has emerged over the past years. The future success of DUB-based therapy development will require connecting the basic science of DUB function and enzymology with drug discovery. In the present review, we discuss new insights into DUB activity regulation and their links to disease, focusing on the role of DUBs as regulators of cell identity and differentiation, and discuss their potential as emerging drug targets.
Collapse
|
93
|
Li J, Chai QY, Zhang Y, Li BX, Wang J, Qiu XB, Liu CH. Mycobacterium tuberculosis Mce3E suppresses host innate immune responses by targeting ERK1/2 signaling. THE JOURNAL OF IMMUNOLOGY 2015; 194:3756-67. [PMID: 25780035 DOI: 10.4049/jimmunol.1402679] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/12/2015] [Indexed: 11/19/2022]
Abstract
Crucial to the pathogenesis of the tuberculosis (TB)-causing pathogen Mycobacterium tuberculosis is its ability to subvert host immune defenses to promote its intracellular survival. The mammalian cell entry protein 3E (Mce3E), located in the region of difference 15 of the M. tuberculosis genome and absent in Mycobacterium bovis bacillus Calmette-Guérin, has an essential role in facilitating the internalization of mammalian cells by mycobacteria. However, relatively little is known about the role of Mce3E in modulation of host innate immune responses. In this study, we demonstrate that Mce3E inhibits the activation of the ERK1/2 signaling pathway, leading to the suppression of Tnf and Il6 expression, and the promotion of mycobacterial survival within macrophages. Mce3E interacts and colocalizes with ERK1/2 at the endoplasmic reticulum in a DEF motif (an ERK-docking motif)-dependent manner, relocates ERK1/2 from cytoplasm to the endoplasmic reticulum, and finally reduces the association of ERK1/2 with MEK1 and blocks the nuclear translocation of phospho-ERK1/2. A DEF motif mutant form of Mce3E (F294A) loses its ability to suppress Tnf and Il6 expression and to promote intracellular survival of mycobacteria. Inhibition of the ERK1/2 pathway in macrophages using U0126, a specific inhibitor of the ERK pathway, also leads to the suppressed Tnf and Il6 expression and the enhanced intracellular survival of mycobacteria. Taken together, these results suggest that M. tuberculosis Mce3E exploits the ERK1/2 signaling pathway to suppress host innate immune responses, providing a potential Mce3E-ERK1/2 interface-based drug target against M. tuberculosis.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Qi-Yao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Yong Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Bing-Xi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Xiao-Bo Qiu
- Department of Cell Biology, Ministry of Education Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| |
Collapse
|
94
|
Alem F, Yao K, Lane D, Calvert V, Petricoin EF, Kramer L, Hale ML, Bavari S, Panchal RG, Hakami RM. Host response during Yersinia pestis infection of human bronchial epithelial cells involves negative regulation of autophagy and suggests a modulation of survival-related and cellular growth pathways. Front Microbiol 2015; 6:50. [PMID: 25762983 PMCID: PMC4327736 DOI: 10.3389/fmicb.2015.00050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/14/2015] [Indexed: 12/16/2022] Open
Abstract
Yersinia pestis (Yp) causes the re-emerging disease plague, and is classified by the CDC and NIAID as a highest priority (Category A) pathogen. Currently, there is no approved human vaccine available and advances in early diagnostics and effective therapeutics are urgently needed. A deep understanding of the mechanisms of host response to Yp infection can significantly advance these three areas. We employed the Reverse Phase Protein Microarray (RPMA) technology to reveal the dynamic states of either protein level changes or phosphorylation changes associated with kinase-driven signaling pathways during host cell response to Yp infection. RPMA allowed quantitative profiling of changes in the intracellular communication network of human lung epithelial cells at different times post infection and in response to different treatment conditions, which included infection with the virulent Yp strain CO92, infection with a derivative avirulent strain CO92 (Pgm-, Pst-), treatment with heat inactivated CO92, and treatment with LPS. Responses to a total of 111 validated antibodies were profiled, leading to discovery of 12 novel protein hits. The RPMA analysis also identified several protein hits previously reported in the context of Yp infection. Furthermore, the results validated several proteins previously reported in the context of infection with other Yersinia species or implicated for potential relevance through recombinant protein and cell transfection studies. The RPMA results point to strong modulation of survival/apoptosis and cell growth pathways during early host response and also suggest a model of negative regulation of the autophagy pathway. We find significant cytoplasmic localization of p53 and reduced LC3-I to LC3-II conversion in response to Yp infection, consistent with negative regulation of autophagy. These studies allow for a deeper understanding of the pathogenesis mechanisms and the discovery of innovative approaches for prevention, early diagnosis, and treatment of plague.
Collapse
Affiliation(s)
- Farhang Alem
- National Center for Biodefense and Infectious Diseases and School of Systems Biology, George Mason University Manassas, VA, USA
| | - Kuan Yao
- National Center for Biodefense and Infectious Diseases and School of Systems Biology, George Mason University Manassas, VA, USA
| | - Douglas Lane
- U.S. Army Medical Research Institute of Infectious Diseases Frederick, MD, USA
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Liana Kramer
- National Center for Biodefense and Infectious Diseases and School of Systems Biology, George Mason University Manassas, VA, USA
| | - Martha L Hale
- U.S. Army Medical Research Institute of Infectious Diseases Frederick, MD, USA
| | - Sina Bavari
- U.S. Army Medical Research Institute of Infectious Diseases Frederick, MD, USA
| | - Rekha G Panchal
- U.S. Army Medical Research Institute of Infectious Diseases Frederick, MD, USA
| | - Ramin M Hakami
- National Center for Biodefense and Infectious Diseases and School of Systems Biology, George Mason University Manassas, VA, USA
| |
Collapse
|
95
|
Kim NH, Hwang BK. Pepper heat shock protein 70a interacts with the type III effector AvrBsT and triggers plant cell death and immunity. PLANT PHYSIOLOGY 2015; 167:307-22. [PMID: 25491184 PMCID: PMC4326749 DOI: 10.1104/pp.114.253898] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Heat shock proteins (HSPs) function as molecular chaperones and are essential for the maintenance and/or restoration of protein homeostasis. The genus Xanthomonas type III effector protein AvrBsT induces hypersensitive cell death in pepper (Capsicum annuum). Here, we report the identification of the pepper CaHSP70a as an AvrBsT-interacting protein. Bimolecular fluorescence complementation and coimmunoprecipitation assays confirm the specific interaction between CaHSP70a and AvrBsT in planta. The CaHSP70a peptide-binding domain is essential for its interaction with AvrBsT. Heat stress (37°C) and Xanthomonas campestris pv vesicatoria (Xcv) infection distinctly induce CaHSP70a in pepper leaves. Cytoplasmic CaHSP70a proteins significantly accumulate in pepper leaves to induce the hypersensitive cell death response by Xcv (avrBsT) infection. Transient CaHSP70a overexpression induces hypersensitive cell death under heat stress, which is accompanied by strong induction of defense- and cell death-related genes. The CaHSP70a peptide-binding domain and ATPase-binding domain are required to trigger cell death under heat stress. Transient coexpression of CaHSP70a and avrBsT leads to cytoplasmic localization of the CaHSP70a-AvrBsT complex and significantly enhances avrBsT-triggered cell death in Nicotiana benthamiana. CaHSP70a silencing in pepper enhances Xcv growth but disrupts the reactive oxygen species burst and cell death response during Xcv infection. Expression of some defense marker genes is significantly reduced in CaHSP70a-silenced leaves, with lower levels of the defense hormones salicylic acid and jasmonic acid. Together, these results suggest that CaHSP70a interacts with the type III effector AvrBsT and is required for cell death and immunity in plants.
Collapse
Affiliation(s)
- Nak Hyun Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| |
Collapse
|
96
|
Üstün S, Bartetzko V, Börnke F. The Xanthomonas effector XopJ triggers a conditional hypersensitive response upon treatment of N. benthamiana leaves with salicylic acid. FRONTIERS IN PLANT SCIENCE 2015; 6:599. [PMID: 26284106 PMCID: PMC4522559 DOI: 10.3389/fpls.2015.00599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/20/2015] [Indexed: 05/09/2023]
Abstract
XopJ is a Xanthomonas type III effector protein that promotes bacterial virulence on susceptible pepper plants through the inhibition of the host cell proteasome and a resultant suppression of salicylic acid (SA) - dependent defense responses. We show here that Nicotiana benthamiana leaves transiently expressing XopJ display hypersensitive response (HR) -like symptoms when exogenously treated with SA. This apparent avirulence function of XopJ was further dependent on effector myristoylation as well as on an intact catalytic triad, suggesting a requirement of its enzymatic activity for HR-like symptom elicitation. The ability of XopJ to cause a HR-like symptom development upon SA treatment was lost upon silencing of SGT1 and NDR1, respectively, but was independent of EDS1 silencing, suggesting that XopJ is recognized by an R protein of the CC-NBS-LRR class. Furthermore, silencing of NPR1 abolished the elicitation of HR-like symptoms in XopJ expressing leaves after SA application. Measurement of the proteasome activity indicated that proteasome inhibition by XopJ was alleviated in the presence of SA, an effect that was not observed in NPR1 silenced plants. Our results suggest that XopJ - triggered HR-like symptoms are closely related to the virulence function of the effector and that XopJ follows a two-signal model in order to elicit a response in the non-host plant N. benthamiana.
Collapse
Affiliation(s)
- Suayib Üstün
- Plant Health, Plant Metabolism Group, Leibniz-Institute of Vegetable and Ornamental Crops, GroßbeerenGermany
| | - Verena Bartetzko
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, ErlangenGermany
| | - Frederik Börnke
- Plant Health, Plant Metabolism Group, Leibniz-Institute of Vegetable and Ornamental Crops, GroßbeerenGermany
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, ErlangenGermany
- Institute of Biochemistry and Biology, University of PotsdamPotsdam, Germany
- *Correspondence: Frederik Börnke, Plant Health, Plant Metabolism Group, Leibniz-Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany,
| |
Collapse
|
97
|
Üstün S, Börnke F. Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways. FRONTIERS IN PLANT SCIENCE 2014; 5:736. [PMID: 25566304 PMCID: PMC4270169 DOI: 10.3389/fpls.2014.00736] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/03/2014] [Indexed: 05/26/2023]
Abstract
In eukaryotes, regulated protein turnover is required during many cellular processes, including defense against pathogens. Ubiquitination and degradation of ubiquitinated proteins via the ubiquitin-proteasome system (UPS) is the main pathway for the turnover of intracellular proteins in eukaryotes. The extensive utilization of the UPS in host cells makes it an ideal pivot for the manipulation of cellular processes by pathogens. Like many other Gram-negative bacteria, Xanthomonas species secrete a suite of type-III effector proteins (T3Es) into their host cells to promote virulence. Some of these T3Es exploit the plant UPS to interfere with immunity. This review summarizes T3E examples from the genus Xanthomonas with a proven or suggested interaction with the host UPS or UPS-like systems and also discusses the apparent paradox that arises from the presence of T3Es that inhibit the UPS in general while others rely on its activity for their function.
Collapse
Affiliation(s)
- Suayib Üstün
- Plant Metabolism Group, Leibniz-Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
| | - Frederik Börnke
- Plant Metabolism Group, Leibniz-Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
- Institute of Biochemistry and Biology, University of PotsdamPotsdam, Germany
| |
Collapse
|
98
|
Mainprice D, Bachmann F, Hielscher R, Schaeben H. Descriptive tools for the analysis of texture projects with large datasets using MTEX: strength, symmetry and components. ACTA ACUST UNITED AC 2014. [DOI: 10.1144/sp409.8] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractThis paper presents the background for the calculation of various numbers that can be used to characterize crystal-preferred orientation (CPO), also known as texture in materials science, for large datasets using the combined scripting possibilities of MTEX and MatLab®. The paper is focused on three aspects in particular: the strength of CPO represented by orientation and misorientation distribution functions (ODFs, MDFs) or pole figures (PFs); symmetry of PFs and components of ODFs; and elastic tensors. The traditional measurements of texture strength of ODFs, MDFs and PFs are integral measurements of the distribution squared. The M-index is a partial measure of the MDF as the difference between uniform and measured misorientation angles. In addition there other parameters based on eigen analysis, but there are restrictions on their use. Eigen analysis does provide some shape factors for the distributions. The maxima of an ODF provides information on the modes. MTEX provides an estimate of the lower bound uniform fraction of an ODF. Finally, we illustrate the decomposition of arbitrary elastic tensor into symmetry components as an example of components in anisotropic physical properties. Ten examples scripts and their output are provided in the appendix.
Collapse
Affiliation(s)
- David Mainprice
- Geosciences Montpellier UMR CNRS 5243, Université Montpellier 2, 34095 Montpellier Cedex 05, France
| | - Florian Bachmann
- Mathematische Geologie und Geoinformatik, Institut für Geophysik und Geoinformatik, Technische Universität Freiberg, 09596 Freiberg, Germany
| | - Ralf Hielscher
- Fakultät für Mathematik, Technische Universität Chemnitz, 09126 Chemnitz, Germany
| | - Helmut Schaeben
- Mathematische Geologie und Geoinformatik, Institut für Geophysik und Geoinformatik, Technische Universität Freiberg, 09596 Freiberg, Germany
| |
Collapse
|
99
|
Üstün S, König P, Guttman DS, Börnke F. HopZ4 from Pseudomonas syringae, a member of the HopZ type III effector family from the YopJ superfamily, inhibits the proteasome in plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:611-23. [PMID: 24625030 DOI: 10.1094/mpmi-12-13-0363-r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The YopJ family of type III effector proteins (T3E) is one of the largest and most widely distributed families of effector proteins, whose members are highly diversified in virulence functions. In the present study, HopZ4, a member of the YopJ family of T3E from the cucumber pathogen Pseudomonas syringae pv. lachrymans is described. HopZ4 shares high sequence similarity with the Xanthomonas T3E XopJ, and a functional analysis suggests a conserved virulence function between these two T3E. As has previously been shown for XopJ, HopZ4 interacts with the proteasomal subunit RPT6 in yeast and in planta to inhibit proteasome activity during infection. The inhibitory effect on the proteasome is dependent on localization of HopZ4 to the plasma membrane as well as on an intact catalytic triad of the effector protein. Furthermore, HopZ4 is able to complement loss of XopJ in Xanthomonas spp., as it prevents precocious host cell death during a compatible Xanthomonas-pepper interaction. The data presented here suggest that different bacterial species employ inhibition of the proteasome as a virulence strategy by making use of conserved T3E from the YopJ family of bacterial effector proteins.
Collapse
|
100
|
Gao Y, Chen X, Fang L, Liu F, Cai R, Peng C, Qi Y. Rhein exerts pro- and anti-inflammatory actions by targeting IKKβ inhibition in LPS-activated macrophages. Free Radic Biol Med 2014; 72:104-12. [PMID: 24721152 DOI: 10.1016/j.freeradbiomed.2014.04.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/25/2014] [Accepted: 04/01/2014] [Indexed: 12/12/2022]
Abstract
Because steroids and cyclooxygenase inhibitors may cause serious side effects, the IκB kinase (IKK) β/nuclear factor-κB (NF-κB) system has become an intriguing candidate anti-inflammatory target. Rhein, the active metabolite of diacerein, possesses anti-inflammatory ability with a gastrointestinal protective effect. However, in a preliminary study, we accidentally found that rhein showed both anti- and proinflammatory activities in lipopolysaccharide (LPS)-activated macrophages. Thus, in this study, we explored the underlying molecular mechanisms of the dual effects of rhein. In LPS-activated macrophages, rhein inhibits NF-κB activation and sequentially suppresses its downstream inducible nitric oxide synthase, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) transcription and supernatant nitric oxide and IL-6 levels by inhibiting IKKβ (IC50 ≈ 11.79μM). But in the meantime, rhein enhances the activity of caspase-1 by inhibiting intracellular (in situ) IKKβ, in turn increasing the IL-1β and high-mobility-group box 1 release, which can be amplified by rhein׳s reductive effect on intracellular superoxide anion. Unexpectedly, it is because of IKKβ inhibition that rhein significantly enhances TNF-α secretion and phagocytosis in macrophages with or without LPS. These results indicate that rhein exerts anti- and proinflammatory activities by targeting IKKβ inhibition, providing a molecular mechanism for the unanticipated role of rhein in macrophages. Furthermore, our study also highlights the potential complications of IKKβ inhibitor (e.g., rhein, diacerein, etc.) application in inflammation disorders, for the overall effects of IKKβ inhibition in various organ systems and disease processes are not easily predictable under all circumstances.
Collapse
Affiliation(s)
- Yuan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xi Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Lei Fang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Fen Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Runlan Cai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Cheng Peng
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Yun Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|