51
|
Kakad SP, Kshirsagar SJ. Neuro-AIDS: Current Status and Challenges to Antiretroviral Drug Therapy (ART) for Its Treatment. CURRENT DRUG THERAPY 2020. [DOI: 10.2174/1574885515666200604123046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
The infiltration of HIV into the brain alters the functions of the nervous
system known as Neuro-AIDS. It leads to neuronal defects clinically manifested by motor and cognitive
dysfunctions.
Materials and Methods:
Current antiretroviral therapy can prevent viral replication but cannot cure
the disease completely. HAART-Highly active antiretroviral therapy is used for the treatment of
HIV infection. Challenges in neuro-AIDS therapy are as shown in the graphical abstract. One of the
challenges is latent viral reservoirs like the brain; which act as a sanctuary site for viruses. Nearly
~50% of HIV patients show neuropathological signs. Nervous system related disorders, including
AIDS dementia, sensory neuropathy, and myelopathy have a 25% of prevalence in patients having
access to a highly active combination of antiretroviral therapy.
Results and Conclusion:
Brain is one of the viral sanctuary sites for HIV. The current need of
neuro-AIDS therapy is to target the brain as a viral reservoir. Drugs should cross or bypass the
blood-brain barrier to reach the brain with effective concentrations. Current research on novel drug
delivery approaches may prove helpful in treating neuro-AIDS and related disorders effectively.
Collapse
Affiliation(s)
- Smita P. Kakad
- Department of Pharmaceutics, MET’s Institute of Pharmacy, Adgaon, Nashik, Savitribai Phule Pune University, Maharashtra, Pune 422003, India
| | - Sanjay J. Kshirsagar
- Department of Pharmaceutics, MET’s Institute of Pharmacy, Adgaon, Nashik, Savitribai Phule Pune University, Maharashtra, Pune 422003, India
| |
Collapse
|
52
|
Interleukin-1β Triggers p53-Mediated Downmodulation of CCR5 and HIV-1 Entry in Macrophages through MicroRNAs 103 and 107. mBio 2020; 11:mBio.02314-20. [PMID: 32994328 PMCID: PMC7527731 DOI: 10.1128/mbio.02314-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Macrophages are a target of human immunodeficiency virus type 1 (HIV-1) and may serve as a viral reservoir during antiretroviral therapy (ART). Their susceptibility to HIV-1 infection is subject to variations from permissiveness to resistance depending on their origin, tissue localization, and polarization profile. This is in part due to the expression of regulatory microRNAs. Here, we identify two microRNA paralogs, microRNA 103 (miR-103) and miR-107, as regulators of CCR5 expression that are upregulated in noninfected bystander cells of HIV-1-infected-monocyte-derived macrophage (MDM) cultures. Transfection of microRNA 103 mimics in MDMs reduced CCR5 expression levels and inhibited CCR5-dependent HIV-1 entry, whereas the corresponding antagomirs enhanced virus spread in HIV-infected MDMs. Treatment of MDMs with interleukin-1β (IL-1β) enhanced microRNA 103 expression, a condition that we found contributed to the reduction of CCR5 mRNA in IL-1β-exposed MDMs. Interestingly, we show that the induction of miR-103/107 expression is part of a tumor suppressor p53 response triggered by secreted IL-1β that renders macrophages refractory to HIV-1 entry. In a more physiological context, the levels of microRNAs 103 and 107 were found enriched in tissue-resident colon macrophages of healthy donors and alveolar macrophages of individuals under antiretroviral therapy, conceivably contributing to their relative resistance to HIV-1 infection. Overall, these findings highlight the role of p53 in enforcing proinflammatory antiviral responses in macrophages, at least in part, through miR-103/107-mediated downmodulation of CCR5 expression and HIV-1 entry.IMPORTANCE Macrophages are heterogeneous immune cells that display varying susceptibilities to HIV-1 infection, in part due to the expression of small noncoding microRNAs involved in the posttranscriptional regulation of gene expression and silencing. Here, we identify microRNAs 103 and 107 as important p53-regulated effectors of the antiviral response triggered by the proinflammatory cytokine IL-1β in macrophages. These microRNAs, which are enriched in colon macrophages of healthy donors and alveolar macrophages of HIV-infected individuals under antiretroviral therapy, act as inhibitors of HIV-1 entry through their capacity to downregulate the CCR5 coreceptor. These results highlight the important role played by miR-103/107 in modulating CCR5 expression and HIV-1 entry in macrophages. They further underscore a distinct function of the tumor suppressor p53 in enforcing proinflammatory antiviral responses in macrophages, thus providing insight into a cellular pathway that could be targeted to limit the establishment of viral reservoirs in these cells.
Collapse
|
53
|
Drug Resistance Mutation Frequency of Single-Genome Amplification-Derived HIV-1 Polymerase Genomes in the Cerebrospinal Fluid and Plasma of HIV-1-Infected Individuals under Nonsuppressive Therapy. J Virol 2020; 94:JVI.01824-19. [PMID: 32759323 DOI: 10.1128/jvi.01824-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 07/13/2020] [Indexed: 01/05/2023] Open
Abstract
HIV-1 evolution in the cerebrospinal fluid (CSF) and plasma may result in discordant drug resistance mutations (DRMs) in the compartments. Single-genome amplification (SGA) was used to generate partial HIV-1 polymerase genomes in paired CSF and plasma samples from 12 HIV-1-positive participants in the CNS HIV Antiretroviral Therapy Effects Research (CHARTER) study who were classified as neurocognitively unimpaired or with various degrees of HIV-associated neurocognitive disorders (HAND). Subjects were viremic on combination antiretroviral therapy (cART). HIV-1 DRMs and phylogenetic characteristics were determined using the Stanford HIVdb program and phylogenetic analyses. Individual DRMs were identified more frequently in plasma than in paired CSF (P = 0.0078). Significant differences in the ratios of DRMs in CSF and plasma were found in 3 individuals with HAND (3/7 = 43%). Two HAND subjects (2/7 = 29%) demonstrated one DRM in CSF not identified in paired plasma. Longitudinal analyses (n = 4) revealed significant temporal differences in the ratios of DRMs in the compartments. Statistically significant differences in the frequency of DRMs in the CSF and plasma are readily found in those on nonsuppressive cART. While compartment-based DRM discordance was largely consistent with increased drug-selective pressures in the plasma, overrepresentation of DRMs in the central nervous system (CNS) can occur. Underlying mechanisms of HAND are complex and multifactorial. The clinical impact of DRM discordance on viral persistence and HAND pathogenesis remains unclear and warrants further investigation in larger, longitudinal cohorts.IMPORTANCE Several antiretroviral agents do not efficiently enter the CNS, and independent evolution of HIV-1 viral variants in the CNS and plasma can occur. We used single-genome amplification (SGA) in cross-sectional and longitudinal analyses to uniquely define both the identity and relative proportions of drug resistance mutations (DRMs) on individual HIV-1 polymerase genomes in the cerebrospinal fluid (CSF) and plasma in individuals with incomplete viral suppression and known neurocognitive status. Statistically significant differences in the ratio of DRMs in the CSF and plasma were readily found in those on nonsuppressive cART, and overrepresentation of DRMs in the CNS can occur. Although questions about the clinical significance of DRM discordance remain, in the quest for viral eradication, it is important to recognize that a significant, dynamic, compartment-based DRM ratio imbalance can exist, as it has the potential to go unnoticed in the setting of standard clinical drug resistance testing.
Collapse
|
54
|
Lubow J, Collins KL. Vpr Is a VIP: HIV Vpr and Infected Macrophages Promote Viral Pathogenesis. Viruses 2020; 12:E809. [PMID: 32726944 PMCID: PMC7472745 DOI: 10.3390/v12080809] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
HIV infects several cell types in the body, including CD4+ T cells and macrophages. Here we review the role of macrophages in HIV infection and describe complex interactions between viral proteins and host defenses in these cells. Macrophages exist in many forms throughout the body, where they play numerous roles in healthy and diseased states. They express pattern-recognition receptors (PRRs) that bind viral, bacterial, fungal, and parasitic pathogens, making them both a key player in innate immunity and a potential target of infection by pathogens, including HIV. Among these PRRs is mannose receptor, a macrophage-specific protein that binds oligosaccharides, restricts HIV replication, and is downregulated by the HIV accessory protein Vpr. Vpr significantly enhances infection in vivo, but the mechanism by which this occurs is controversial. It is well established that Vpr alters the expression of numerous host proteins by using its co-factor DCAF1, a component of the DCAF1-DDB1-CUL4 ubiquitin ligase complex. The host proteins targeted by Vpr and their role in viral replication are described in detail. We also discuss the structure and function of the viral protein Env, which is stabilized by Vpr in macrophages. Overall, this literature review provides an updated understanding of the contributions of macrophages and Vpr to HIV pathogenesis.
Collapse
Affiliation(s)
- Jay Lubow
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Kathleen L. Collins
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
55
|
HIV-1 Persistence and Chronic Induction of Innate Immune Responses in Macrophages. Viruses 2020; 12:v12070711. [PMID: 32630058 PMCID: PMC7412260 DOI: 10.3390/v12070711] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
A hallmark of HIV-1 infection is chronic inflammation, which plays a significant role in disease pathogenesis. Acute HIV infection induces robust inflammatory responses, which are insufficient to prevent or eliminate virus in mucosal tissues. While establishment of viral set-point is coincident with downregulation of acute innate responses, systemic inflammatory responses persist during the course of chronic HIV infection. Since the introduction of combination antiviral therapy (cART), most HIV-1+ individuals can suppress viremia under detection levels for decades. However, chronic immune activation persists and has been postulated to cause HIV associated non-AIDS complications (HANA). Importantly, inflammatory cytokines and activation markers associated with macrophages are strongly and selectively correlated with the incidence of HIV-associated neurocognitive disorder (HAND), cardiovascular dysfunctions (CVD) and other HANA conditions. In this review, we discuss the roles of macrophages in facilitating viral persistence and contributing to generation of persistent inflammatory responses.
Collapse
|
56
|
An Elvitegravir Nanoformulation Crosses the Blood-Brain Barrier and Suppresses HIV-1 Replication in Microglia. Viruses 2020; 12:v12050564. [PMID: 32443728 PMCID: PMC7290679 DOI: 10.3390/v12050564] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Even with an efficient combination of antiretroviral therapy (ART), which significantly decreases viral load in human immunodeficiency virus type 1 (HIV-1)-positive individuals, the occurrence of HIV-1-associated neurocognitive disorders (HAND) still exists. Microglia have been shown to have a significant role in HIV-1 replication in the brain and in subsequent HAND pathogenesis. However, due to the limited ability of ART drugs to cross the blood-brain barrier (BBB) after systemic administration, in addition to efflux transporter expression on microglia, the efficacy of ART drugs for viral suppression in microglia is suboptimal. Previously, we developed novel poly (lactic-co-glycolic acid) (PLGA)-based elvitegravir nanoparticles (PLGA-EVG NPs), which showed improved BBB penetration in vitro and improved viral suppression in HIV-1-infected primary macrophages, after crossing an in vitro BBB model. Our objective in the current study was to evaluate the efficacy of our PLGA-EVG NPs in an important central nervous system (CNS) HIV-1 reservoir, i.e., microglia. In this study, we evaluated the cyto-compatibility of the PLGA-EVG NPs in microglia, using an XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) assay and cellular morphology observation. We also studied the endocytosis pathway and the subcellular localization of PLGA NPs in microglia, using various endocytosis inhibitors and subcellular localization markers. We determined the ability of PLGA-EVG NPs to suppress HIV-1 replication in microglia, after crossing an in vitro BBB model. We also studied the drug levels in mouse plasma and brain tissue, using immunodeficient NOD scid gamma (NSG) mice, and performed a pilot study, to evaluate the efficacy of PLGA-EVG NPs on viral suppression in the CNS, using an HIV-1 encephalitic (HIVE) mouse model. From our results, the PLGA-EVG NPs showed ~100% biocompatibility with microglia, as compared to control cells. The internalization of PLGA NPs in microglia occurred through caveolae-/clathrin-mediated endocytosis. PLGA NPs can also escape from endo-lysosomal compartments and deliver the therapeutics to cells efficiently. More importantly, the PLGA-EVG NPs were able to show ~25% more viral suppression in HIV-1-infected human-monocyte-derived microglia-like cells after crossing the in vitro BBB compared to the EVG native drug, without altering BBB integrity. PLGA-EVG NPs also showed a ~two-fold higher level in mouse brain and a trend of decreasing CNS HIV-1 viral load in HIV-1-infected mice. Overall, these results help us to create a safe and efficient drug delivery method to target HIV-1 reservoirs in the CNS, for potential clinical use.
Collapse
|
57
|
A minor population of macrophage-tropic HIV-1 variants is identified in recrudescing viremia following analytic treatment interruption. Proc Natl Acad Sci U S A 2020; 117:9981-9990. [PMID: 32300019 DOI: 10.1073/pnas.1917034117] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
HIV-1 persists in cellular reservoirs that can reignite viremia if antiretroviral therapy (ART) is interrupted. Therefore, insight into the nature of those reservoirs may be revealed from the composition of recrudescing viremia following treatment cessation. A minor population of macrophage-tropic (M-tropic) viruses was identified in a library of recombinant viruses constructed with individual envelope genes that were obtained from plasma of six individuals undergoing analytic treatment interruption (ATI). M-tropic viruses could also be enriched from post-ATI plasma using macrophage-specific (CD14) but not CD4+ T cell-specific (CD3) antibodies, suggesting that M-tropic viruses had a macrophage origin. Molecular clock analysis indicated that the establishment of M-tropic HIV-1 variants predated ATI. Collectively, these data suggest that macrophages are a viral reservoir in HIV-1-infected individuals on effective ART and that M-tropic variants can appear in rebounding viremia when treatment is interrupted. These findings have implications for the design of curative strategies for HIV-1.
Collapse
|
58
|
Gong Y, Chowdhury P, Nagesh PKB, Rahman MA, Zhi K, Yallapu MM, Kumar S. Novel elvitegravir nanoformulation for drug delivery across the blood-brain barrier to achieve HIV-1 suppression in the CNS macrophages. Sci Rep 2020; 10:3835. [PMID: 32123217 PMCID: PMC7052245 DOI: 10.1038/s41598-020-60684-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/11/2020] [Indexed: 01/04/2023] Open
Abstract
The use of antiretroviral therapy (ART) has remarkably decreased the morbidity associated with HIV-1 infection, however, the prevalence of HIV-1-associated neurocognitive disorders (HAND) is still increasing. The blood-brain barrier (BBB) is the major impediment for penetration of antiretroviral drugs, causing therapeutics to reach only suboptimal level to the brain. Conventional antiretroviral drug regimens are not sufficient to improve the treatment outcomes of HAND. In our recent report, we have developed a poloxamer-PLGA nanoformulation loaded with elvitegravir (EVG), a commonly used antiretroviral drug. The nanoformulated EVG is capable of elevating intracellular drug uptake and simultaneously enhance viral suppression in HIV-1-infected macrophages. In this work, we identified the clinical parameters including stability, biocompatibility, protein corona, cellular internalization pathway of EVG nanoformulation for its potential clinical translation. We further assessed the ability of this EVG nanoformulation to cross the in vitro BBB model and suppress the HIV-1 in macrophage cells. Compared with EVG native drug, our EVG nanoformulation demonstrated an improved BBB model penetration cross the in vitro BBB model and an enhanced HIV-1 suppression in HIV-1-infected human monocyte-derived macrophages after crossing the BBB model without altering the BBB model integrity. Overall, this is an innovative and optimized treatment strategy that has a potential for therapeutic interventions in reducing HAND.
Collapse
Affiliation(s)
- Yuqing Gong
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Prashanth K B Nagesh
- Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mohammad A Rahman
- National Institute of Environmental Health Sciences, Durham, NC, 27703, USA
| | - Kaining Zhi
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Department of Microbiology and Immunology, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
59
|
HIV-1 Accessory Protein Vpr Interacts with REAF/RPRD2 To Mitigate Its Antiviral Activity. J Virol 2020; 94:JVI.01591-19. [PMID: 31776272 DOI: 10.1128/jvi.01591-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) accessory protein Vpr enhances viral replication in both macrophages and, to a lesser extent, cycling T cells. Virion-packaged Vpr is released in target cells shortly after entry, suggesting it is required in the early phase of infection. Previously, we described REAF (RNA-associated early-stage antiviral factor; RPRD2), a constitutively expressed protein that potently restricts HIV replication at or during reverse transcription. Here, we show that a virus without an intact vpr gene is more highly restricted by REAF and, using delivery by virus-like particles (VLPs), that Vpr alone is sufficient for REAF degradation in primary macrophages. REAF is more highly expressed in macrophages than in cycling T cells, and we detected, by coimmunoprecipitation assay, an interaction between Vpr protein and endogenous REAF. Vpr acts quickly during the early phase of replication and induces the degradation of REAF within 30 min of viral entry. Using Vpr F34I and Q65R viral mutants, we show that nuclear localization and interaction with cullin 4A-DBB1 (DCAF1) E3 ubiquitin ligase are required for REAF degradation by Vpr. In response to infection, cells upregulate REAF levels. This response is curtailed in the presence of Vpr. These findings support the hypothesis that Vpr induces the degradation of a factor, REAF, that impedes HIV infection in macrophages.IMPORTANCE For at least 30 years, it has been known that HIV-1 Vpr, a protein carried in the virion, is important for efficient infection of primary macrophages. Vpr is also a determinant of the pathogenic effects of HIV-1 in vivo A number of cellular proteins that interact with Vpr have been identified. So far, it has not been possible to associate these proteins with altered viral replication in macrophages or to explain why Vpr is carried in the virus particle. Here, we show that Vpr mitigates the antiviral effects of REAF, a protein highly expressed in primary macrophages and one that inhibits virus replication during reverse transcription. REAF is degraded by Vpr within 30 min of virus entry in a manner dependent on the nuclear localization of Vpr and its interaction with the cell's protein degradation machinery.
Collapse
|
60
|
Infrequent HIV Infection of Circulating Monocytes during Antiretroviral Therapy. J Virol 2019; 94:JVI.01174-19. [PMID: 31597764 DOI: 10.1128/jvi.01174-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022] Open
Abstract
Whereas human immunodeficiency virus (HIV) persists in tissue macrophages during antiretroviral therapy (ART), the role of circulating monocytes as HIV reservoirs remains controversial. Three magnetic bead selection methods and flow cytometry cell sorting were compared for their capacity to yield pure CD14+ monocyte populations. Cell sorting by flow cytometry provided the purest population of monocytes (median CD4+ T-cell contamination, 0.06%), and the levels of CD4+ T-cell contamination were positively correlated with the levels of integrated HIV DNA in the monocyte populations. Using cell sorting by flow cytometry, we assessed longitudinally the infection of monocytes and other cell subsets in a cohort of 29 Thai HIV-infected individuals. Low levels of HIV DNA were detected in a minority of monocyte fractions obtained before and after 1 year of ART (27% and 33%, respectively), whereas HIV DNA was readily detected in CD4+ T cells from all samples. Additional samples (2 to 5 years of ART) were obtained from 5 individuals in whom monocyte infection was previously detected. Whereas CD4+ T cells were infected at high levels at all time points, monocyte infection was inconsistent and absent in at least one longitudinal sample from 4/5 individuals. Our results indicate that infection of monocytes is infrequent and highlight the importance of using flow cytometry cell sorting to minimize contamination by CD4+ T cells.IMPORTANCE The role of circulating monocytes as persistent HIV reservoirs during ART is still controversial. Several studies have reported persistent infection of monocytes in virally suppressed individuals; however, others failed to detect HIV in this subset. These discrepancies are likely explained by the diversity of the methods used to isolate monocytes and to detect HIV infection. In this study, we show that only flow cytometry cell sorting yields a highly pure population of monocytes largely devoid of CD4 contaminants. Using this approach in a longitudinal cohort of HIV-infected individuals before and during ART, we demonstrate that HIV is rarely found in monocytes from untreated and treated HIV-infected individuals. This study highlights the importance of using methods that yield highly pure populations of cells as flow cytometry cell sorting to minimize and control for CD4+ T-cell contamination.
Collapse
|
61
|
Wallet C, De Rovere M, Van Assche J, Daouad F, De Wit S, Gautier V, Mallon PWG, Marcello A, Van Lint C, Rohr O, Schwartz C. Microglial Cells: The Main HIV-1 Reservoir in the Brain. Front Cell Infect Microbiol 2019; 9:362. [PMID: 31709195 PMCID: PMC6821723 DOI: 10.3389/fcimb.2019.00362] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Despite efficient combination of the antiretroviral therapy (cART), which significantly decreased mortality and morbidity of HIV-1 infection, a definitive HIV cure has not been achieved. Hidden HIV-1 in cellular and anatomic reservoirs is the major hurdle toward a functional cure. Microglial cells, the Central Nervous system (CNS) resident macrophages, are one of the major cellular reservoirs of latent HIV-1. These cells are believed to be involved in the emergence of drugs resistance and reseeding peripheral tissues. Moreover, these long-life reservoirs are also involved in the development of HIV-1-associated neurocognitive diseases (HAND). Clearing these infected cells from the brain is therefore crucial to achieve a cure. However, many characteristics of microglial cells and the CNS hinder the eradication of these brain reservoirs. Better understandings of the specific molecular mechanisms of HIV-1 latency in microglial cells should help to design new molecules and new strategies preventing HAND and achieving HIV cure. Moreover, new strategies are needed to circumvent the limitations associated to anatomical sanctuaries with barriers such as the blood brain barrier (BBB) that reduce the access of drugs.
Collapse
Affiliation(s)
- Clementine Wallet
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Marco De Rovere
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Jeanne Van Assche
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Fadoua Daouad
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Stéphane De Wit
- Division of Infectious Diseases, Saint-Pierre University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Virginie Gautier
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick W G Mallon
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Olivier Rohr
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| |
Collapse
|
62
|
Rojas-Celis V, Valiente-Echeverría F, Soto-Rifo R, Toro-Ascuy D. New Challenges of HIV-1 Infection: How HIV-1 Attacks and Resides in the Central Nervous System. Cells 2019; 8:cells8101245. [PMID: 31614895 PMCID: PMC6829584 DOI: 10.3390/cells8101245] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/05/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) has become one of the most devastating pandemics in recorded history. The main causal agent of AIDS is the human immunodeficiency virus (HIV), which infects various cell types of the immune system that express the CD4 receptor on their surfaces. Today, combined antiretroviral therapy (cART) is the standard treatment for all people with HIV; although it has improved the quality of life of people living with HIV (PLWH), it cannot eliminate the latent reservoir of the virus. Therefore HIV/AIDS has turned from a fatal disease to a chronic disease requiring lifelong treatment. Despite significant viral load suppression, it has been observed that at least half of patients under cART present HIV-associated neurocognitive disorders (HAND), which have been related to HIV-1 infection and replication in the central nervous system (CNS). Several studies have focused on elucidating the mechanism by which HIV-1 can invade the CNS and how it can generate the effects seen in HAND. This review summarizes the research on HIV-1 and its interaction with the CNS with an emphasis on the generation of HAND, how the virus enters the CNS, the relationship between HIV-1 and cells of the CNS, and the effect of cART on these cells.
Collapse
Affiliation(s)
- Victoria Rojas-Celis
- Instituto de Ciencias Biomedicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile.
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad of Chile, Santiago 8389100, Chile.
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad of Chile, Santiago 8389100, Chile.
| | - Daniela Toro-Ascuy
- Instituto de Ciencias Biomedicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile.
| |
Collapse
|
63
|
Chao TC, Zhang Q, Li Z, Tiwari SK, Qin Y, Yau E, Sanchez A, Singh G, Chang K, Kaul M, Karris MAY, Rana TM. The Long Noncoding RNA HEAL Regulates HIV-1 Replication through Epigenetic Regulation of the HIV-1 Promoter. mBio 2019; 10:e02016-19. [PMID: 31551335 PMCID: PMC6759764 DOI: 10.1128/mbio.02016-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/23/2019] [Indexed: 01/01/2023] Open
Abstract
A major challenge in finding a cure for HIV-1/AIDS is the difficulty in identifying and eradicating persistent reservoirs of replication-competent provirus. Long noncoding RNAs (lncRNAs, >200 nucleotides) are increasingly recognized to play important roles in pathophysiology. Here, we report the first genome-wide expression analysis of lncRNAs in HIV-1-infected primary monocyte-derived macrophages (MDMs). We identified an lncRNA, which we named HIV-1-enhanced lncRNA (HEAL), that is upregulated by HIV-1 infection of MDMs, microglia, and T lymphocytes. Peripheral blood mononuclear cells of HIV-1-infected individuals show elevated levels of HEAL Importantly, HEAL is a broad enhancer of multiple HIV-1 strains because depletion of HEAL inhibited X4, R5, and dual-tropic HIV replications and the inhibition was rescued by HEAL overexpression. HEAL forms a complex with the RNA-binding protein FUS, which facilitates HIV replication through at least two mechanisms: (i) HEAL-FUS complex binds the HIV promoter and enhances recruitment of the histone acetyltransferase p300, which positively regulates HIV transcription by increasing histone H3K27 acetylation and P-TEFb enrichment on the HIV promoter, and (ii) HEAL-FUS complex is enriched at the promoter of the cyclin-dependent kinase 2 gene, CDK2, to enhance CDK2 expression. Notably, HEAL knockdown and knockout mediated by RNA interference (RNAi) and CRISPR-Cas9, respectively, prevent HIV-1 recrudescence in T cells and microglia upon cessation of azidothymidine treatment in vitro Our results suggest that silencing of HEAL or perturbation of the HEAL-FUS ribonucleoprotein complex could provide a new epigenetic silencing strategy to eradicate viral reservoirs and effect a cure for HIV-1/AIDS.IMPORTANCE Despite our increased understanding of the functions of lncRNAs, their potential to develop HIV/AIDS cure strategies remains unexplored. A genome-wide analysis of lncRNAs in HIV-1-infected primary monocyte-derived macrophages (MDMs) was performed, and 1,145 differentially expressed lncRNAs were identified. An lncRNA named HIV-1-enhanced lncRNA (HEAL) is upregulated by HIV-1 infection and promotes HIV replication in T cells and macrophages. HEAL forms a complex with the RNA-binding protein FUS to enhance transcriptional coactivator p300 recruitment to the HIV promoter. Furthermore, HEAL knockdown and knockout prevent HIV-1 recrudescence in T cells and microglia upon cessation of azidothymidine treatment, suggesting HEAL as a potential therapeutic target to cure HIV-1/AIDS.
Collapse
Affiliation(s)
- Ti-Chun Chao
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Qiong Zhang
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Zhonghan Li
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Shashi Kant Tiwari
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Yue Qin
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Edwin Yau
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Ana Sanchez
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Gatikrushna Singh
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Kungyen Chang
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Marcus Kaul
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, California, USA
| | - Maile Ann Young Karris
- Division of Infectious Diseases, UCSD Center for AIDS Research, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Tariq M Rana
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
64
|
Abreu CM, Veenhuis RT, Avalos CR, Graham S, Parrilla DR, Ferreira EA, Queen SE, Shirk EN, Bullock BT, Li M, Metcalf Pate KA, Beck SE, Mangus LM, Mankowski JL, Mac Gabhann F, O'Connor SL, Gama L, Clements JE. Myeloid and CD4 T Cells Comprise the Latent Reservoir in Antiretroviral Therapy-Suppressed SIVmac251-Infected Macaques. mBio 2019; 10:e01659-19. [PMID: 31431552 PMCID: PMC6703426 DOI: 10.1128/mbio.01659-19] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus (HIV) eradication or long-term suppression in the absence of antiretroviral therapy (ART) requires an understanding of all viral reservoirs that could contribute to viral rebound after ART interruption. CD4 T cells (CD4s) are recognized as the predominant reservoir in HIV type 1 (HIV-1)-infected individuals. However, macrophages are also infected by HIV-1 and simian immunodeficiency virus (SIV) during acute infection and may persist throughout ART, contributing to the size of the latent reservoir. We sought to determine whether tissue macrophages contribute to the SIVmac251 reservoir in suppressed macaques. Using cell-specific quantitative viral outgrowth assays (CD4-QVOA and MΦ-QVOA), we measured functional latent reservoirs in CD4s and macrophages in ART-suppressed SIVmac251-infected macaques. Spleen, lung, and brain in all suppressed animals contained latently infected macrophages, undetectable or low-level SIV RNA, and detectable SIV DNA. Silent viral genomes with potential for reactivation and viral spread were also identified in blood monocytes, although these cells might not be considered reservoirs due to their short life span. Additionally, virus produced in the MΦ-QVOA was capable of infecting healthy activated CD4s. Our results strongly suggest that functional latent reservoirs in CD4s and macrophages can contribute to viral rebound and reestablishment of productive infection after ART interruption. These findings should be considered in the design and implementation of future HIV cure strategies.IMPORTANCE This study provides further evidence that the latent reservoir is comprised of both CD4+ T cells and myeloid cells. The data presented here suggest that CD4+ T cells and macrophages found throughout tissues in the body can contain replication-competent SIV and contribute to rebound of the virus after treatment interruption. Additionally, we have shown that monocytes in blood contain latent virus and, though not considered a reservoir themselves due to their short life span, could contribute to the size of the latent reservoir upon entering the tissue and differentiating into long-lived macrophages. These new insights into the size and location of the SIV reservoir using a model that is heavily studied in the HIV field could have great implications for HIV-infected individuals and should be taken into consideration with the development of future HIV cure strategies.
Collapse
Affiliation(s)
- Celina M Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Rebecca T Veenhuis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Claudia R Avalos
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Shelby Graham
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Daymond R Parrilla
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Edna A Ferreira
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Erin N Shirk
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Brandon T Bullock
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ming Li
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kelly A Metcalf Pate
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sarah E Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Lisa M Mangus
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shelby L O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
65
|
Molecular Signatures of HIV-1 Envelope Associated with HIV-Associated Neurocognitive Disorders. Curr HIV/AIDS Rep 2019; 15:72-83. [PMID: 29460224 DOI: 10.1007/s11904-018-0374-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The HIV-1 envelope gene (env) has been an intense focus of investigation in the search for genetic determinants of viral entry and persistence in the central nervous system (CNS). RECENT FINDINGS Molecular signatures of CNS-derived HIV-1 env reflect the immune characteristics and cellular constraints of the CNS compartment. Although more readily found in those with advanced HIV-1 and HIV-associated neurocognitive disorders (HAND), molecular signatures distinguishing CNS-derived quasispecies can be identified early in HIV-1 infection, in the presence or absence of combination antiretroviral therapy (cART), and are dynamic. Amino acid signatures of CNS-compartmentalization and HAND have been identified across populations. While some significant overlap exists, none are universal. Detailed analyses of CNS-derived HIV-1 env have allowed researchers to identify a number of molecular determinants associated with neuroadaptation. Future investigations using comprehensive cohorts and longitudinal databases have the greatest potential for the identification of robust, validated signatures of HAND in the cART era.
Collapse
|
66
|
Specific Activation In Vivo of HIV-1 by a Bromodomain Inhibitor from Monocytic Cells in Humanized Mice under Antiretroviral Therapy. J Virol 2019; 93:JVI.00233-19. [PMID: 30971469 DOI: 10.1128/jvi.00233-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/26/2019] [Indexed: 11/20/2022] Open
Abstract
Combination antiretroviral therapy (cART) effectively suppresses HIV-1 replication and enables HIV‑infected individuals to live long, productive lives. However, the persistence of HIV-1 reservoirs of both T and myeloid cells with latent or low-replicating HIV-1 in patients under cART makes HIV-1 infection an incurable disease. Recent studies have focused on the development of strategies to activate and purge these reservoirs. Bromodomain and extraterminal domain proteins (BETs) are epigenetic readers involved in modulating gene expression. Several bromodomain inhibitors (BETi) are reported to activate viral transcription in vitro in HIV-1 latency cell lines in a P-TEFb (CDK9/cyclin T1)-dependent manner. Little is known about BETi efficacy in activating HIV-1 reservoir cells under cART in vivo Here we report that a BETi (I-BET151) efficiently activated HIV-1 reservoirs under effective cART in humanized mice in vivo Interestingly, I-BET151 during suppressive cART in vivo activated HIV-1 gene expression only in monocytic cells and not in CD4+ T cells. We further demonstrate that BETi preferentially enhanced HIV-1 gene expression in monocytic cells rather than in T cells and that whereas CDK9 was involved in activating HIV-1 by I-BET151 in both monocytic and T cells, CDK2 enhanced HIV-1 transcription in monocytic cells but inhibited it in T cells. Our findings reveal a role for CDK2 in differential modulation of HIV-1 gene expression in myeloid cells and in T cells and provide a novel strategy to reactivate monocytic reservoirs with BETi during cART.IMPORTANCE Bromodomain inhibitors have been reported to activate HIV-1 transcription in vitro, but their effect on activation of HIV-1 reservoirs during cART in vivo is unclear. We found that BETi (I-BET151) treatment reactivated HIV-1 gene expression in humanized mice during suppressive cART. Interestingly, I-BET151 preferentially reactivated HIV-1 gene expression in monocytic cells, but not in CD4 T cells, in cART-treated mice. Furthermore, I-BET151 significantly increased HIV-1 transcription in monocytic cells, but not in HIV-1-infected CD4 T cells, via CDK2-dependent mechanisms. Our findings suggest that BETi can preferentially activate monocytic HIV-1 reservoir cells and that a combination of reservoir activation agents targeting different cell types and pathways is needed to achieve reactivation of different HIV-1 reservoir cells during cART.
Collapse
|
67
|
Fields JA, Ellis RJ. HIV in the cART era and the mitochondrial: immune interface in the CNS. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:29-65. [PMID: 31208526 DOI: 10.1016/bs.irn.2019.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HIV-associated neurocognitive disorders (HAND) persist in the era of effective combined antiretroviral therapy (cART). A large body of literature suggests that mitochondrial dysfunction is a prospective etiology of HAND in the cART era. While viral load is often suppressed and the immune system remains intact in HIV+ patients on cART, evidence suggests that the central nervous system (CNS) acts as a reservoir for virus and low-level expression of viral proteins, which interact with mitochondria. In particular, the HIV proteins glycoprotein 120, transactivator of transcription, viral protein R, and negative factor have each been linked to mitochondrial dysfunction in the brain. Moreover, cART drugs have also been shown to have detrimental effects on mitochondrial function. Here, we review the evidence generated from human studies, animal models, and in vitro models that support a role for HIV proteins and/or cART drugs in altered production of adenosine triphosphate, mitochondrial dynamics, mitophagy, calcium signaling and apoptosis, oxidative stress, mitochondrial biogenesis, and immunometabolism in the CNS. When insightful, evidence of HIV or cART-induced mitochondrial dysfunction in the peripheral nervous system or other cell types is discussed. Lastly, therapeutic approaches to targeting mitochondrial dysfunction have been summarized with the aim of guiding new investigations and providing hope that mitochondrial-based drugs may provide relief for those suffering with HAND.
Collapse
Affiliation(s)
- Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States.
| | - Ronald J Ellis
- Department of Neuroscience, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
68
|
Jacobson JM, Khalili K. Toward the Cure of HIV-1 Infection: Lessons Learned and Yet to be Learned as New Strategies are Developed. AIDS Rev 2019; 20:220-225. [PMID: 30548022 DOI: 10.24875/aidsrev.18000027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Here, we review the progress that has been made in achieving a cure of HIV-1 infection. To date, this has only occurred in one person after he received allogeneic stem cell transplants from a CCR5 ∆32 homozygous donor in addition to chemotherapy and radiation to treat his acute myelocytic leukemia. The general consensus is that achieving a sustained remission of infection in the absence of antiretroviral therapy will involve a combination of strategies that involve both the targeting of the latent proviral genome and the induction of more effective anti-HIV-1 immune responses. Efforts to reverse HIV-1 proviral DNA integration in the host cell genome and those to enhance anti-HIV immunity have been disappointing thus far. The lack of clinically validated assays to measure both effects has hampered the development of effective therapies. We suggest the consideration of genome editing as a new approach to reduce the latently integrated proviral genome. In addition, new approaches to therapeutic immunization, alterations of immunoregulatory pathways, anti-HIV-1 antibodies, and anti-HIV-1 chimeric antigen receptor T lymphocytes are in development.
Collapse
Affiliation(s)
- Jeffrey M Jacobson
- Department of Neuroscience, Center for Translational AIDS Research, Philadelphia, USA
- Department of Medicine. Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Translational AIDS Research, Philadelphia, USA
| |
Collapse
|
69
|
Inhibition of the lncRNA SAF drives activation of apoptotic effector caspases in HIV-1-infected human macrophages. Proc Natl Acad Sci U S A 2019; 116:7431-7438. [PMID: 30918127 PMCID: PMC6462110 DOI: 10.1073/pnas.1818662116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue resident macrophages are long-lived, self-replenishing myeloid cells. They harbor and support HIV-1 replication, but unlike CD4+ T cells, do not succumb to virus-induced cell death. Here, we have screened a panel of 90 long noncoding RNAs (lncRNA) and identified a lncRNA, SAF, that plays a critical role in the resistance of HIV-1–infected macrophages to activation of apoptotic caspases. We have further shown that down-regulation of SAF expression with siRNA treatment can activate effector caspase-3/7 specifically in virus-infected macrophages without affecting the uninfected and bystander cells. Overall, our study describes the approach of modulating the lncRNA SAF for targeted elimination of HIV-1–infected macrophages that can lead to reduction and potential clearance of these viral reservoir cells. Long noncoding RNAs (lncRNAs) impart significant regulatory functions in a diverse array of biological pathways and manipulation of these RNAs provides an important avenue to modulate such pathways, particularly in disease. Our knowledge about lncRNAs’ role in determination of cellular fate during HIV-1 infection remains sparse. Here, we have identified the impact of the lncRNA SAF in regulating apoptotic effector caspases in macrophages, a long-lived cellular reservoir of HIV-1, that are largely immune to virus-induced cell death. Expression of SAF is significantly up-regulated in HIV-1–infected human monocyte-derived macrophages (MDM) compared with bystander and virus-nonexposed cells. A similar enhancement in SAF RNA expression is also detected in the HIV-1–infected airway macrophages obtained by bronchoalveolar lavage of HIV-1–infected individuals. Down-regulation of SAF with siRNA treatment increases caspase-3/7 activity levels in virus-infected MDMs. This induction of apoptotic caspases occurs exclusively in HIV-1–infected macrophages and not in bystander cells, leading to a significant reduction in HIV-1 replication and overall viral burden in the macrophage culture. This study identifies targeting of the lncRNA SAF as a potential means to specifically induce cell death in HIV-1–infected macrophages.
Collapse
|
70
|
Graziano F, Vicenzi E, Poli G. The ATP/P2X7 axis in human immunodeficiency virus infection of macrophages. Curr Opin Pharmacol 2019; 47:46-52. [PMID: 30901736 DOI: 10.1016/j.coph.2019.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 12/20/2022]
Abstract
HIV-1 infects CD4+ T lymphocytes with a 'helper' function and myeloid cells, mostly tissue-resident macrophages. While infection of CD4 T lymphocytes in the absence of combination antiretroviral therapy (cART) leads to their depletion and to a profound immunodeficiency, macrophages are resistant to virus-induced cytopathicity and are a source of infectious virus, particularly in the central nervous system (CNS). Infected macrophages are characterized by accumulating newly formed viral particles (virions) in subcellular vacuoles defined as 'virus-containing compartments (VCC)', derived from invaginations of the plasma membrane, that are poorly accessible to antiretroviral agents and anti-HIV antibodies. Several factors favor the accumulation of HIV-1 virions in VCC in vitro, whereas extracellular ATP, via binding to its receptor P2X7, is the only agent described thus far as capable of triggering the rapid release of VCC-sequestered virions without simultaneously causing the death of infected macrophages. Thus, the eATP/P2X7 axis could be exploited to achieve a pharmacological control of VCC-associated viral reservoir in individuals under effective cART.
Collapse
Affiliation(s)
- Francesca Graziano
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Milano, Italy; Institute Curie Laboratoire Immunité et Cancer, INSERM U932 Equipe Benaroch, Transport Intracellulaire et Immunité, 75005, Paris, France
| | - Elisa Vicenzi
- Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Guido Poli
- Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Milano, Italy; Vita-Salute San Raffaele University School of Medicine, Milano, Italy.
| |
Collapse
|
71
|
Cat and Mouse: HIV Transcription in Latency, Immune Evasion and Cure/Remission Strategies. Viruses 2019; 11:v11030269. [PMID: 30889861 PMCID: PMC6466452 DOI: 10.3390/v11030269] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
There is broad scientific and societal consensus that finding a cure for HIV infection must be pursued. The major barrier to achieving a cure for HIV/AIDS is the capacity of the HIV virus to avoid both immune surveillance and current antiretroviral therapy (ART) by rapidly establishing latently infected cell populations, termed latent reservoirs. Here, we provide an overview of the rapidly evolving field of HIV cure/remission research, highlighting recent progress and ongoing challenges in the understanding of HIV reservoirs, the role of HIV transcription in latency and immune evasion. We review the major approaches towards a cure that are currently being explored and further argue that small molecules that inhibit HIV transcription, and therefore uncouple HIV gene expression from signals sent by the host immune response, might be a particularly promising approach to attain a cure or remission. We emphasize that a better understanding of the game of "cat and mouse" between the host immune system and the HIV virus is a crucial knowledge gap to be filled in both cure and vaccine research.
Collapse
|
72
|
Cellular HIV Reservoirs and Viral Rebound from the Lymphoid Compartments of 4'-Ethynyl-2-Fluoro-2'-Deoxyadenosine (EFdA)-Suppressed Humanized Mice. Viruses 2019; 11:v11030256. [PMID: 30871222 PMCID: PMC6466357 DOI: 10.3390/v11030256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/02/2019] [Accepted: 03/06/2019] [Indexed: 12/28/2022] Open
Abstract
Although antiretroviral therapy (ART) greatly suppresses HIV replication, lymphoid tissues remain a sanctuary site where the virus may replicate. Tracking the earliest steps of HIV spread from these cellular reservoirs after drug cessation is pivotal for elucidating how infection can be prevented. In this study, we developed an in vivo model of HIV persistence in which viral replication in the lymphoid compartments of humanized mice was inhibited by the HIV reverse transcriptase inhibitor 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) to very low levels, which recapitulated ART-suppression in HIV-infected individuals. Using a combination of RNAscope in situ hybridization (ISH) and immunohistochemistry (IHC), we quantitatively investigated the distribution of HIV in the lymphoid tissues of humanized mice during active infection, EFdA suppression, and after drug cessation. The lymphoid compartments of EFdA-suppressed humanized mice harbored very rare transcription/translation-competent HIV reservoirs that enable viral rebound. Our data provided the visualization and direct measurement of the early steps of HIV reservoir expansion within anatomically intact lymphoid tissues soon after EFdA cessation and suggest a strategy to enhance therapeutic approaches aimed at eliminating the HIV reservoir.
Collapse
|
73
|
Wallet C, De Rovere M, Van Assche J, Daouad F, De Wit S, Gautier V, Mallon PWG, Marcello A, Van Lint C, Rohr O, Schwartz C. Microglial Cells: The Main HIV-1 Reservoir in the Brain. Front Cell Infect Microbiol 2019. [PMID: 31709195 DOI: 10.3389/fcimb.2019.00362/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023] Open
Abstract
Despite efficient combination of the antiretroviral therapy (cART), which significantly decreased mortality and morbidity of HIV-1 infection, a definitive HIV cure has not been achieved. Hidden HIV-1 in cellular and anatomic reservoirs is the major hurdle toward a functional cure. Microglial cells, the Central Nervous system (CNS) resident macrophages, are one of the major cellular reservoirs of latent HIV-1. These cells are believed to be involved in the emergence of drugs resistance and reseeding peripheral tissues. Moreover, these long-life reservoirs are also involved in the development of HIV-1-associated neurocognitive diseases (HAND). Clearing these infected cells from the brain is therefore crucial to achieve a cure. However, many characteristics of microglial cells and the CNS hinder the eradication of these brain reservoirs. Better understandings of the specific molecular mechanisms of HIV-1 latency in microglial cells should help to design new molecules and new strategies preventing HAND and achieving HIV cure. Moreover, new strategies are needed to circumvent the limitations associated to anatomical sanctuaries with barriers such as the blood brain barrier (BBB) that reduce the access of drugs.
Collapse
Affiliation(s)
- Clementine Wallet
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Marco De Rovere
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Jeanne Van Assche
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Fadoua Daouad
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Stéphane De Wit
- Division of Infectious Diseases, Saint-Pierre University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Virginie Gautier
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick W G Mallon
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Olivier Rohr
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| |
Collapse
|
74
|
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) remain a common end-organ manifestation of viral infection. Subclinical and mild symptoms lead to neurocognitive and behavioral abnormalities. These are associated, in part, with viral penetrance and persistence in the central nervous system. Infections of peripheral blood monocytes, macrophages, and microglia are the primary drivers of neuroinflammation and neuronal impairments. While current antiretroviral therapy (ART) has reduced the incidence of HIV-associated dementia, milder forms of HAND continue. Depression, comorbid conditions such as infectious liver disease, drugs of abuse, antiretroviral drugs themselves, age-related neurodegenerative diseases, gastrointestinal maladies, and concurrent social and economic issues can make accurate diagnosis of HAND challenging. Increased life expectancy as a result of ART clearly creates this variety of comorbid conditions that often blur the link between the virus and disease. With the discovery of novel biomarkers, neuropsychologic testing, and imaging techniques to better diagnose HAND, the emergence of brain-penetrant ART, adjunctive therapies, longer life expectancy, and better understanding of disease pathogenesis, disease elimination is perhaps a realistic possibility. This review focuses on HIV-associated disease pathobiology with an eye towards changing trends in the face of widespread availability of ART.
Collapse
|
75
|
Castro-Gonzalez S, Colomer-Lluch M, Serra-Moreno R. Barriers for HIV Cure: The Latent Reservoir. AIDS Res Hum Retroviruses 2018; 34:739-759. [PMID: 30056745 PMCID: PMC6152859 DOI: 10.1089/aid.2018.0118] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Thirty-five years after the identification of HIV-1 as the causative agent of AIDS, we are still in search of vaccines and treatments to eradicate this devastating infectious disease. Progress has been made in understanding the molecular pathogenesis of this infection, which has been crucial for the development of the current therapy regimens. However, despite their efficacy at limiting active viral replication, these drugs are unable to purge the latent reservoir: a pool of cells that harbor transcriptionally inactive, but replication-competent HIV-1 proviruses, and that represent the main barrier to eradicate HIV-1 from affected individuals. In this review, we discuss advances in the field that have allowed a better understanding of HIV-1 latency, including the diverse cell types that constitute the latent reservoir, factors influencing latency, tools to study HIV-1 latency, as well as current and prospective therapeutic approaches to target these latently infected cells, so a functional cure for HIV/AIDS can become a reality.
Collapse
Affiliation(s)
- Sergio Castro-Gonzalez
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| | - Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Ruth Serra-Moreno
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| |
Collapse
|
76
|
Tso FY, Kang G, Kwon EH, Julius P, Li Q, West JT, Wood C. Brain is a potential sanctuary for subtype C HIV-1 irrespective of ART treatment outcome. PLoS One 2018; 13:e0201325. [PMID: 30040863 PMCID: PMC6057662 DOI: 10.1371/journal.pone.0201325] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
Subtype C HIV-1 is responsible for the largest proportion of people living with HIV-1 infection. However, there is limited information about the roles of the brain and its cell types as a potential sanctuary for this subtype and how the sanctuary may be affected by the administration of anti-retroviral therapy (ART). To address this issue, we collected postmortem brain tissues from ART treated HIV-1 infected Zambian individuals who experienced complete viral suppression and those who did not. Tissues from various brain compartments were collected from each individual as frozen and formalin-fixed paraffin embedded brain specimens, for detection and quantification of HIV-1 genomes and identification of the infected cell type. Genomic DNA and RNA were extracted from frozen brain tissues. The extracted DNA and RNA were then subjected to droplet digital PCR for HIV-1 quantification. RNA/DNAscope in situ hybridization (ISH) for HIV-1 was performed on formalin-fixed paraffin embedded brain tissues in conjugation with immunohistochemistry to identify the infected cell types. Droplet digital PCR revealed that HIV-1 gag DNA and RNA were detectable in half of the cases studied regardless of ART success or failure. The presence of HIV-1 lacked specific tissue compartmentalization since detection was random among various brain tissues. When combined with immunohistochemistry, RNA/DNAscope ISH demonstrated co-localization of HIV-1 DNA with CD68 expressing cells indicative of microglia or peripheral macrophage. Our study showed that brain is a potential sanctuary for subtype C HIV-1, as HIV-1 can be detected in the brain of infected individuals irrespective of ART treatment outcome and no compartmentalization of HIV-1 to specific brain compartments was evident.
Collapse
Affiliation(s)
- For Yue Tso
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Nebraska, United States of America
| | - Guobin Kang
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Nebraska, United States of America
| | - Eun Hee Kwon
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Nebraska, United States of America
| | - Peter Julius
- Department of Pathology and Microbiology, University Teaching Hospital, Nationalist Road, Lusaka, Zambia
| | - Qingsheng Li
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Nebraska, United States of America
| | - John T. West
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Nebraska, United States of America
| | - Charles Wood
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
77
|
Machado Andrade V, Stevenson M. Host and Viral Factors Influencing Interplay between the Macrophage and HIV-1. J Neuroimmune Pharmacol 2018; 14:33-43. [PMID: 29995208 DOI: 10.1007/s11481-018-9795-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/26/2018] [Indexed: 12/29/2022]
Abstract
HIV-1 persists in cellular reservoirs that cannot be eliminated by antiretroviral therapy (ART). The major reservoir in infected individuals on effective ART is composed of resting memory CD4+ T cells that harbor proviral cDNA, and undergo a state of latency in which viral gene expression is minimal to absent. The CD4+ T cell reservoir has been extensively characterized. However, other HIV-1-permissive cells may contribute to HIV-1 persistence. Lentiviruses have a long recognized association with macrophages. However, the role, if any, played by macrophages in HIV-1 persistence is not well understood. Macrophages are resistant to cell death upon HIV-1 infection, and can survive for long periods of time, making them ideal host cells in which the virus might persist. Studying macrophages is challenging, as these cells reside in nearly all tissues. Moreover, detecting viral DNA or RNA in macrophages does not necessarily indicate that these cells will produce replication-competent viral particles. Currently, the gold standard assay to detect cellular reservoirs is the ex vivo quantitative viral outgrowth assay (QVOA), which requires a patient blood draw. However, macrophages reside deep within tissues that are inaccessible in living subjects, such as the central nervous system (CNS). Therefore, tools other than QVOA must be developed to identify cellular reservoirs that reside in the tissues. In this review, we will focus on the main aspects involved in HIV-1 persistence, including the molecular mechanisms of viral evasion, the main cell types responsible for harboring persistent HIV-1 and the tissue compartments that are likely to be reservoirs for HIV-1.
Collapse
Affiliation(s)
- Viviane Machado Andrade
- Molecular Cell and Developmental Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| | - Mario Stevenson
- Division of Infectious Diseases, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| |
Collapse
|
78
|
Gu CJ, Borjabad A, Hadas E, Kelschenbach J, Kim BH, Chao W, Arancio O, Suh J, Polsky B, McMillan J, Edagwa B, Gendelman HE, Potash MJ, Volsky DJ. EcoHIV infection of mice establishes latent viral reservoirs in T cells and active viral reservoirs in macrophages that are sufficient for induction of neurocognitive impairment. PLoS Pathog 2018; 14:e1007061. [PMID: 29879225 PMCID: PMC5991655 DOI: 10.1371/journal.ppat.1007061] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/29/2018] [Indexed: 02/06/2023] Open
Abstract
Suppression of HIV replication by antiretroviral therapy (ART) or host immunity can prevent AIDS but not other HIV-associated conditions including neurocognitive impairment (HIV-NCI). Pathogenesis in HIV-suppressed individuals has been attributed to reservoirs of latent-inducible virus in resting CD4+ T cells. Macrophages are persistently infected with HIV but their role as HIV reservoirs in vivo has not been fully explored. Here we show that infection of conventional mice with chimeric HIV, EcoHIV, reproduces physiological conditions for development of disease in people on ART including immunocompetence, stable suppression of HIV replication, persistence of integrated, replication-competent HIV in T cells and macrophages, and manifestation of learning and memory deficits in behavioral tests, termed here murine HIV-NCI. EcoHIV established latent reservoirs in CD4+ T lymphocytes in chronically-infected mice but could be induced by epigenetic modulators ex vivo and in mice. In contrast, macrophages expressed EcoHIV constitutively in mice for up to 16 months; murine leukemia virus (MLV), the donor of gp80 envelope in EcoHIV, did not infect macrophages. Both EcoHIV and MLV were found in brain tissue of infected mice but only EcoHIV induced NCI. Murine HIV-NCI was prevented by antiretroviral prophylaxis but once established neither persistent EcoHIV infection in mice nor NCI could be reversed by long-acting antiretroviral therapy. EcoHIV-infected, athymic mice were more permissive to virus replication in macrophages than were wild-type mice, suffered cognitive dysfunction, as well as increased numbers of monocytes and macrophages infiltrating the brain. Our results suggest an important role of HIV expressing macrophages in HIV neuropathogenesis in hosts with suppressed HIV replication.
Collapse
Affiliation(s)
- Chao-Jiang Gu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Alejandra Borjabad
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Eran Hadas
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jennifer Kelschenbach
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Boe-Hyun Kim
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Wei Chao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Jin Suh
- Department of Medicine, St. Joseph’s Regional Medical Center, Paterson, New Jersey, United States of America
| | - Bruce Polsky
- Department of Medicine, NYU Winthrop Hospital, Mineola, New York, United States of America
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Mary Jane Potash
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - David J. Volsky
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
79
|
Central Nervous System Inflammation and Infection during Early, Nonaccelerated Simian-Human Immunodeficiency Virus Infection in Rhesus Macaques. J Virol 2018; 92:JVI.00222-18. [PMID: 29563297 PMCID: PMC5952152 DOI: 10.1128/jvi.00222-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/17/2018] [Indexed: 02/02/2023] Open
Abstract
Studies utilizing highly pathogenic simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) have largely focused on the immunopathology of the central nervous system (CNS) during end-stage neurological AIDS and SIV encephalitis. However, this may not model pathophysiology in earlier stages of infection. In this nonaccelerated SHIV model, plasma SHIV RNA levels and peripheral blood and colonic CD4+ T cell counts mirrored early human immunodeficiency virus (HIV) infection in humans. At 12 weeks postinfection, cerebrospinal fluid (CSF) detection of SHIV RNA and elevations in IP-10 and MCP-1 reflected a discrete neurovirologic process. Immunohistochemical staining revealed a diffuse, low-level CD3+ CD4− cellular infiltrate in the brain parenchyma without a concomitant increase in CD68/CD163+ monocytes, macrophages, and activated microglial cells. Rare SHIV-infected cells in the brain parenchyma and meninges were identified by RNAScope in situ hybridization. In the meninges, there was also a trend toward increased CD4+ infiltration in SHIV-infected animals but no differences in CD68/CD163+ cells between SHIV-infected and uninfected control animals. These data suggest that in a model that closely recapitulates human disease, CNS inflammation and SHIV in CSF are predominantly mediated by T cell-mediated processes during early infection in both brain parenchyma and meninges. Because SHIV expresses an HIV rather than SIV envelope, this model could inform studies to understand potential HIV cure strategies targeting the HIV envelope. IMPORTANCE Animal models of the neurologic effects of HIV are needed because brain pathology is difficult to assess in humans. Many current models focus on the effects of late-stage disease utilizing SIV. In the era of antiretroviral therapy, manifestations of late-stage HIV are less common. Furthermore, new interventions, such as monoclonal antibodies and therapeutic vaccinations, target HIV envelope. We therefore describe a new model of central nervous system involvement in rhesus macaques infected with SHIV expressing HIV envelope in earlier, less aggressive stages of disease. Here, we demonstrate that SHIV mimics the early clinical course in humans and that early neurologic inflammation is characterized by predominantly T cell-mediated inflammation accompanied by SHIV infection in the brain and meninges. This model can be utilized to assess the effect of novel therapies targeted to HIV envelope on reducing brain inflammation before end-stage disease.
Collapse
|
80
|
Skarlis C, Gontika M, Katsavos S, Velonakis G, Toulas P, Anagnostouli M. Multiple Sclerosis and Subsequent Human Immunodeficiency Virus Infection: A Case with the Rare Comorbidity, Focus on Novel Treatment Issues and Review of the Literature. ACTA ACUST UNITED AC 2018; 31:1041-1046. [PMID: 28882979 DOI: 10.21873/invivo.11167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND The comorbidity between Multiple Sclerosis (MS) and Human Immunodeficiency Virus (HIV) infection is particularly rare. Only a few cases of comorbidity of Clinically Definite(CD)-MS and HIV have been documented worldwide, while the potential beneficial role of antiretroviral therapy regarding MS activity has long been an area of debate. CASE REPORT We present a 36-year old male, bearing a diagnosis of CD-MS for twelve years. He had been treated for ten years with interferon-beta-1b, when he voluntarily discontinued therapy, claiming clinical stability. One year later he was diagnosed positive for HIV and he started and continued only on efavirenz/emricitabine/tenofovir-disoproxil fumarate (ATRIPLA®), remaining relapse-free until today. CONCLUSION This fact, in combination with the unique pharmaceutical composition of the drug, which contains a component similar to a newly-approved agent for MS, dimethyl fumarate, prompted us to review the literature regarding this rare comorbidity and to suggest that the role of the antiretroviral therapy should be further explored in MS.
Collapse
Affiliation(s)
- Charalampos Skarlis
- Immunogenetics Laboratory, 1st Department of Neurology, Medical School of National and Kapodistrian University of Athens, Aeginition Hospital, Athens, Greece
| | - Maria Gontika
- Immunogenetics Laboratory, 1st Department of Neurology, Medical School of National and Kapodistrian University of Athens, Aeginition Hospital, Athens, Greece
| | - Serafeim Katsavos
- Immunogenetics Laboratory, 1st Department of Neurology, Medical School of National and Kapodistrian University of Athens, Aeginition Hospital, Athens, Greece
| | - Giorgios Velonakis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Medical School of National and Kapodistrian University of Athens, Eugenidion Hospital, Athens, Greece
| | - Panagiotis Toulas
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Medical School of National and Kapodistrian University of Athens, Eugenidion Hospital, Athens, Greece
| | - Maria Anagnostouli
- Immunogenetics Laboratory, 1st Department of Neurology, Medical School of National and Kapodistrian University of Athens, Aeginition Hospital, Athens, Greece .,Outpatient Section of Demyelinating Diseases Clinic, 1st Department of Neurology, Medical School of National and Kapodistrian University of Athens, Aeginition Hospital, Athens, Greece
| |
Collapse
|
81
|
The role of catecholamines in HIV neuropathogenesis. Brain Res 2018; 1702:54-73. [PMID: 29705605 DOI: 10.1016/j.brainres.2018.04.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022]
Abstract
The success of anti-retroviral therapy has improved the quality of life and lifespan of HIV + individuals, transforming HIV infection into a chronic condition. These improvements have come with a cost, as chronic HIV infection and long-term therapy have resulted in the emergence of a number of new pathologies. This includes a variety of the neuropathological and neurocognitive effects collectively known as HIVassociated neurocognitive disorders (HAND) or NeuroHIV. These effects persist even in the absence of viral replication, suggesting that they are mediated the long-term changes in the CNS induced by HIV infection rather than by active replication. Among these effects are significant changes in catecholaminergic neurotransmission, especially in dopaminergic brain regions. In HIV-infected individuals not treated with ARV show prominent neuropathology is common in dopamine-rich brain regions and altered autonomic nervous system activity. Even infected individuals on therapy, there is significant dopaminergic neuropathology, and elevated stress and norepinephrine levels correlate with a decreased effectiveness of antiretroviral drugs. As catecholamines function as immunomodulatory factors, the resultant dysregulation of catecholaminergic tone could substantially alter the development of HIVassociated neuroinflammation and neuropathology. In this review, we discuss the role of catecholamines in the etiology of HIV neuropathogenesis. Providing a comprehensive examination of what is known about these molecules in the context of HIV-associated disease demonstrates the importance of further studies in this area, and may open the door to new therapeutic strategies that specifically ameliorate the effects of catecholaminergic dysregulation on NeuroHIV.
Collapse
|
82
|
BACE1 Mediates HIV-Associated and Excitotoxic Neuronal Damage Through an APP-Dependent Mechanism. J Neurosci 2018; 38:4288-4300. [PMID: 29632166 DOI: 10.1523/jneurosci.1280-17.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 01/21/2023] Open
Abstract
HIV-associated neurocognitive disorders (HANDs) share common symptoms with Alzheimer's disease (AD), which is characterized by amyloid-β (Aβ) plaques. Plaques are formed by aggregation of Aβ oligomers, which may be the toxic species in AD pathogenesis, and oligomers are generated by cleavage of amyloid precursor protein (APP) by β-site amyloid precursor protein cleaving enzyme 1 (BACE1). BACE1 inhibitors reverse neuronal loss and cognitive decline in animal models of AD. Although studies have also found evidence of altered APP processing in HIV+ patients, it is unknown whether increased BACE1 expression or Aβ oligomer production is a common neuropathological feature of HAND. Moreover, it is unknown whether BACE1 or APP is involved in the excitotoxic, NMDAR-dependent component of HIV-associated neurotoxicity in vitro Herein, we hypothesize that HIV-associated neurotoxicity is mediated by NMDAR-dependent elevation of BACE1 and subsequent altered processing of APP. Supporting this, we observed elevated levels of BACE1 and Aβ oligomers in CNS of male and female HIV+ patients. In a model of HIV-associated neurotoxicity in which rat neurons are treated with supernatants from HIV-infected human monocyte-derived macrophages, we observed NMDAR-dependent elevation of BACE1 protein. NMDA treatment also increased BACE1 and both pharmacological BACE1 inhibition and genetic loss of APP were partially neuroprotective. Moreover, in APP knock-out (APP-/-) mouse neurons, NMDA-induced toxicity was BACE1 independent, indicating that cytotoxicity of BACE1 is dependent upon APP cleavage. Our findings suggest that increased BACE1 and the resultant Aβ oligomer production may contribute to HIV-associated neuropathogenesis and inhibition of BACE1 could have therapeutic potential in HANDs.SIGNIFICANCE STATEMENT HIV-associated neurocognitive disorders (HANDs) represent a range of cognitive impairments affecting ∼50% of HIV+ individuals. The specific causes of HAND are unknown, but evidence suggests that HIV-infected macrophage infiltration into the brain may cause neuronal damage. Herein, we show that neurons treated with conditioned media from HIV-infected macrophages have increased expression of β-site amyloid precursor protein cleaving enzyme 1 (BACE1), a protein implicated in Alzheimer's disease pathogenesis. Moreover, inhibition of BACE1 prevented neuronal loss after conditioned media exposure, but had no effect on HIV-associated neurotoxicity in neurons lacking its cleavage target amyloid precursor protein. We also observed increased BACE1 expression in HIV+ patient brain tissue, confirming the potential relevance of BACE1 as a therapeutic target in HANDs.
Collapse
|
83
|
Evering TH, Tsuji M. Human Immune System Mice for the Study of Human Immunodeficiency Virus-Type 1 Infection of the Central Nervous System. Front Immunol 2018; 9:649. [PMID: 29670623 PMCID: PMC5893637 DOI: 10.3389/fimmu.2018.00649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/16/2018] [Indexed: 01/08/2023] Open
Abstract
Immunodeficient mice transplanted with human cell populations or tissues, also known as human immune system (HIS) mice, have emerged as an important and versatile tool for the in vivo study of human immunodeficiency virus-type 1 (HIV-1) pathogenesis, treatment, and persistence in various biological compartments. Recent work in HIS mice has demonstrated their ability to recapitulate critical aspects of human immune responses to HIV-1 infection, and such studies have informed our knowledge of HIV-1 persistence and latency in the context of combination antiretroviral therapy. The central nervous system (CNS) is a unique, immunologically privileged compartment susceptible to HIV-1 infection, replication, and immune-mediated damage. The unique, neural, and glia-rich cellular composition of this compartment, as well as the important role of infiltrating cells of the myeloid lineage in HIV-1 seeding and replication makes its study of paramount importance, particularly in the context of HIV-1 cure research. Current work on the replication and persistence of HIV-1 in the CNS, as well as cells of the myeloid lineage thought to be important in HIV-1 infection of this compartment, has been aided by the expanded use of these HIS mouse models. In this review, we describe the major HIS mouse models currently in use for the study of HIV-1 neuropathogenesis, recent insights from the field, limitations of the available models, and promising advances in HIS mouse model development.
Collapse
Affiliation(s)
- Teresa H Evering
- Aaron Diamond AIDS Research Center, An Affiliate of the Rockefeller University, New York, NY, United States
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, An Affiliate of the Rockefeller University, New York, NY, United States
| |
Collapse
|
84
|
Zhou T, Lin Z, Puligujja P, Palandri D, Hilaire J, Araínga M, Smith N, Gautam N, McMillan J, Alnouti Y, Liu X, Edagwa B, Gendelman HE. Optimizing the preparation and stability of decorated antiretroviral drug nanocrystals. Nanomedicine (Lond) 2018; 13:871-885. [PMID: 29553879 PMCID: PMC5992566 DOI: 10.2217/nnm-2017-0381] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aim: While the therapeutic potential for current long-acting (LA) antiretroviral therapy (ART) is undeniable, ligand-decorated nanoformulated LA-ART could optimize drug delivery to viral reservoirs. The development of decorated ART hinges, however, on formulation processes and manufacture efficiencies. To this end, we compared manufacture and purification techniques for ligand-decorated antiretroviral drug nanocrystals. Materials & methods: Ligand-decorated nanoparticle manufacturing was tested using folic acid (FA) nanoformulated cabotegravir. Results: Direct manufacturing of FA-cabotegravir resulted in stable particles with high drug loading and monocyte–macrophage targeting. A one step ‘direct’ scheme proved superior over differential centrifugation or tangential flow filtration facilitating particle stability and preparation simplicity and efficiency. Conclusion: Direct manufacturing of FA nanoparticles provides a path toward large-scale clinical grade manufacturing of cell-targeted LA-ART.
Folic acid (FA) decoration on the surface of nanocrystals can be achieved by mixing FA conjugated poloxamer 407 (FA-P407) and native P407 in varied ratios followed by size reduction by homogenization and differential centrifugation or tangential flow filtration to remove excess unbound polymers. The optimized manufacturing scheme is by direct homogenization with predetermined quantity of FA conjugated P407. Direct manufacturing method yields stable homogenous nanoparticles with high drug loading.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zhiyi Lin
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pavan Puligujja
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Diana Palandri
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - James Hilaire
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mariluz Araínga
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nathan Smith
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - JoEllyn McMillan
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yazen Alnouti
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xinming Liu
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benson Edagwa
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
85
|
Barat C, Proust A, Deshiere A, Leboeuf M, Drouin J, Tremblay MJ. Astrocytes sustain long-term productive HIV-1 infection without establishment of reactivable viral latency. Glia 2018; 66:1363-1381. [PMID: 29464785 DOI: 10.1002/glia.23310] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/19/2018] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
Abstract
The "shock and kill" HIV-1 cure strategy proposes eradication of stable cellular reservoirs by clinical treatment with latency-reversing agents (LRAs). Although resting CD4+ T cells latently infected with HIV-1 constitute the main reservoir that is targeted by these approaches, their consequences on other reservoirs such as the central nervous system are still unknown and should be taken into consideration. We performed experiments aimed at defining the possible role of astrocytes in HIV-1 persistence in the brain and the effect of LRA treatments on this viral sanctuary. We first demonstrate that the diminished HIV-1 production in a proliferating astrocyte culture is due to a reduced proliferative capacity of virus-infected cells compared with uninfected astrocytes. In contrast, infection of non-proliferating astrocytes led to a robust HIV-1 infection that was sustained for over 60 days. To identify astrocytes latently infected with HIV-1, we designed a new dual-color reporter virus called NL4.3 eGFP-IRES-Crimson that is fully infectious and encodes for all viral proteins. Although we detected a small fraction of astrocytes carrying silent HIV-1 proviruses, we did not observe any reactivation using various LRAs and even strong inducers such as tumor necrosis factor, thus suggesting that these proviruses were either not transcriptionally competent or in a state of deep latency. Our findings imply that astrocytes might not constitute a latent reservoir per se but that relentless virus production by this brain cell population could contribute to the neurological disorders seen in HIV-1-infected persons subjected to combination antiretroviral therapy.
Collapse
Affiliation(s)
- Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Alizé Proust
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Alexandre Deshiere
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Mathieu Leboeuf
- Département d'Obstétrique, Gynécologie et Reproduction, Faculté de Médecine, Université Laval, Québec, Canada
| | - Jean Drouin
- Département de Médecine Familiale et d'urgence, Faculté de Médecine, Université Laval, Québec, Canada
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada.,Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
86
|
Abstract
While HIV-1 infection of target cells with cell-free viral particles has been largely documented, intercellular transmission through direct cell-to-cell contact may be a predominant mode of propagation in host. To spread, HIV-1 infects cells of the immune system and takes advantage of their specific particularities and functions. Subversion of intercellular communication allows to improve HIV-1 replication through a multiplicity of intercellular structures and membrane protrusions, like tunneling nanotubes, filopodia, or lamellipodia-like structures involved in the formation of the virological synapse. Other features of immune cells, like the immunological synapse or the phagocytosis of infected cells are hijacked by HIV-1 and used as gateways to infect target cells. Finally, HIV-1 reuses its fusogenic capacity to provoke fusion between infected donor cells and target cells, and to form infected syncytia with high capacity of viral production and improved capacities of motility or survival. All these modes of cell-to-cell transfer are now considered as viral mechanisms to escape immune system and antiretroviral therapies, and could be involved in the establishment of persistent virus reservoirs in different host tissues.
Collapse
Affiliation(s)
- Lucie Bracq
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), Institut Pasteur Shanghai-Chinese Academy of Sciences, Shanghai, China.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Maorong Xie
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Serge Benichou
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), Institut Pasteur Shanghai-Chinese Academy of Sciences, Shanghai, China.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Jérôme Bouchet
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| |
Collapse
|
87
|
Ene L. Human Immunodeficiency Virus in the Brain-Culprit or Facilitator? Infect Dis (Lond) 2018; 11:1178633717752687. [PMID: 29467577 PMCID: PMC5815409 DOI: 10.1177/1178633717752687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/15/2017] [Indexed: 01/21/2023] Open
Abstract
Introduction: Human immunodeficiency virus (HIV) enters the brain early, where it can persist, evolve, and become compartmentalized. Central nervous system (CNS) disease can be attributed to HIV alone or to the complex interplay between the virus and other neurotropic pathogens. Aim: The current review aims to describe the direct impact of HIV on the brain as well as its relationship with other pathogens from a practitioner’s perspective, to provide a general clinical overview, brief workup, and, whenever possible, treatment guidance. Methods: A review of PubMed was conducted to identify studies on neuropathogenesis of HIV in relation to host responses. Furthermore, the interaction between the CNS pathogens and the host damage responses were revised in the setting of advanced and also well-controlled HIV infection. Results: Similar to other pathogens, HIV leads to CNS immune activation, inflammation, and viral persistence. Therefore, almost half of the infected individuals present with neurocognitive disorders, albeit mild. Compartmentalized HIV in the CNS can be responsible in a minority of cases for the dramatic presentation of symptomatic HIV escape. Disruption of the immune system secondary to HIV may reactivate latent infections or allow new pathogens to enter the CNS. Opportunistic infections with an inflammatory component are associated with elevated HIV loads in the cerebrospinal fluid and also with greater cognitive impairment. The inflammatory immune reconstitution syndrome associated with CNS opportunistic infections can be a life-threatening condition, which needs to be recognized and managed by efficiently controlling the pathogen burden and timely balanced combination antiretroviral therapy. Latent neurotropic pathogens can reactivate in the brain and mimic HIV-associated severe neurological diseases or contribute to neurocognitive impairment in the setting of stable HIV infection. Conclusions: As HIV can be responsible for considerable brain damage directly or by facilitating other pathogens, more effort is needed to recognize and manage HIV-associated CNS disorders and to eventually target HIV eradication from the brain.
Collapse
Affiliation(s)
- Luminita Ene
- HIV Department, "Dr. Victor Babes" Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| |
Collapse
|
88
|
Abstract
Primary human immunodeficiency virus (HIV) neuropathologies can affect all levels of the neuraxis and occur in all stages of natural history disease. Some, like HIV encephalitis, HIV myelitis, and diffuse infiltrative lymphocytosis of peripheral nerve, reflect productive infection of the nervous system; others, like vacuolar myelopathy, distal symmetric polyneuropathy, and central and peripheral nervous system demyelination, are not clearly related to regional viral replication, and reflect more complex cascades of dysregulated host immunity and metabolic dysfunction. In pediatric patients, the spectrum of neuropathology is altered by the impacts of HIV on a developing nervous system, with microcephaly, abundant brain mineralization, and corticospinal tract degeneration as examples of this unique interaction. With efficacious therapies, CD8 T-cell encephalitis is emerging as a significant entity; often this is clinically recognized as immune reconstitution inflammatory syndrome, but has also been described in the context of viral escape and treatment interruption. The relationship of HIV neuropathology to clinical symptoms is sometimes straightforward, and sometimes mysterious, as individuals can manifest significant deficits in the absence of discrete lesions. However, at all stages of the natural history disease, neuroinflammation is abundant, and critical to the generation of clinical abnormality. Neuropathologic and neurobiologic investigations will be central to understanding HIV nervous system disorders in the era of efficacious therapies.
Collapse
Affiliation(s)
- Susan Morgello
- Departments of Neurology, Neuroscience, and Pathology, Mount Sinai Medical Center, New York, NY, United States.
| |
Collapse
|
89
|
Abstract
A large number of viruses belonging to various families are able to cause central nervous system (CNS) infections and contribute significantly to burden of disease in humans globally. Most viral CNS infections are benign and self-limiting, and most remain undiagnosed. However, some viruses can cause severe inflammation, leading to morbidity and mortality, and result in severe long-term residual damage and neurologic dysfunction in patients. The potential of viruses to cause CNS inflammation greatly varies depending on host factors, such as age, sex, and genetic background, as well as viral factors. Despite the need for protection against viral invasion and replication, the extent of the immune response in the CNS is carefully regulated to prevent excessive inflammation and tissue destruction leading to irretrievable loss of neurons. Direct cytopathology is for many virus infections a major cause of neurologic symptoms; however, the antiviral immune response can in some instances contribute substantially to pathology. This chapter highlights a selection of clinically important neurotropic viruses that infect the CNS and cause neurologic diseases such as meningitis, encephalitis, and myelitis in humans, with a focus on neuropathologic findings.
Collapse
Affiliation(s)
- Nikolaus Deigendesch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
90
|
Painter MM, Zaikos TD, Collins KL. Quiescence Promotes Latent HIV Infection and Resistance to Reactivation from Latency with Histone Deacetylase Inhibitors. J Virol 2017; 91:e01080-17. [PMID: 29021396 PMCID: PMC5709582 DOI: 10.1128/jvi.01080-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/02/2017] [Indexed: 12/28/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) establishes transcriptionally silent latent infections in resting memory T cells and hematopoietic stem and progenitor cells (HSPCs), which allows the virus to persist in infected individuals despite antiretroviral therapy. Developing in vitro models of HIV-1 latency that recapitulate the characteristics of latently infected cells in vivo is crucial to identifying and developing effective latency-reversing therapies. HSPCs exist in a quiescent state in vivo, and quiescence is correlated with latent infections in T cells. However, current models for culturing HSPCs and for infecting T cells in vitro require that the cells be maintained in an actively proliferating state. Here we describe a novel culture system in which primary human HSPCs cultured under hypothermic conditions are maintained in a quiescent state. We show that these quiescent HSPCs are susceptible to predominantly latent infection with HIV-1, while actively proliferating and differentiating HSPCs obtain predominantly active infections. Furthermore, we demonstrate that the most primitive quiescent HSPCs are more resistant to spontaneous reactivation from latency than more differentiated HSPCs and that quiescent HSPCs are resistant to reactivation by histone deacetylase inhibitors or P-TEFb activation but are susceptible to reactivation by protein kinase C (PKC) agonists. We also demonstrate that inhibition of HSP90, a known regulator of HIV transcription, recapitulates the quiescence and latency phenotypes of hypothermia, suggesting that hypothermia and HSP90 inhibition may regulate these processes by similar mechanisms. In summary, these studies describe a novel model for studying HIV-1 latency in human primary cells maintained in a quiescent state.IMPORTANCE Human immunodeficiency virus type 1 (HIV-1) establishes a persistent infection for which there remains no feasible cure. Current approaches are unable to clear the virus despite decades of therapy due to the existence of latent reservoirs of integrated HIV-1, which can reactivate and contribute to viral rebound following treatment interruption. Previous clinical attempts to reactivate the latent reservoirs in an individual so that they can be eliminated by the immune response or viral cytopathic effect have failed, indicating the need for a better understanding of the processes regulating HIV-1 latency. Here we characterize a novel in vitro model of HIV-1 latency in primary hematopoietic stem and progenitor cells isolated from human cord blood that may better recapitulate the behavior of latently infected cells in vivo This model can be used to study mechanisms regulating latency and potential therapeutic approaches to reactivate latent infections in quiescent cells.
Collapse
Affiliation(s)
- Mark M Painter
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas D Zaikos
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathleen L Collins
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
91
|
Mechanisms of CNS Viral Seeding by HIV + CD14 + CD16 + Monocytes: Establishment and Reseeding of Viral Reservoirs Contributing to HIV-Associated Neurocognitive Disorders. mBio 2017; 8:mBio.01280-17. [PMID: 29066542 PMCID: PMC5654927 DOI: 10.1128/mbio.01280-17] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
HIV reservoirs persist despite antiretroviral therapy (ART) and are established within a few days after infection. Infected myeloid cells in the central nervous system (CNS) may contribute to the establishment of a CNS viral reservoir. The mature CD14+ CD16+ monocyte subset enters the CNS in response to chemokines, including CCL2. Entry of infected CD14+ CD16+ monocytes may lead to infection of other CNS cells, including macrophages or microglia and astrocytes, and to release of neurotoxic early viral proteins and additional cytokines. This contributes to neuroinflammation and neuronal damage leading to HIV-associated neurocognitive disorders (HAND) in ~50% of HIV-infected individuals despite ART. We examined the mechanisms of monocyte entry in the context of HIV infection and report for the first time that HIV+ CD14+ CD16+ monocytes preferentially transmigrate across the blood-brain barrier (BBB). The junctional proteins JAM-A and ALCAM and the chemokine receptor CCR2 are essential to their preferential transmigration across the BBB to CCL2. We show here that JAM-A and ALCAM are increased on HIV+ CD14+ CD16+ monocytes compared to their expression on HIVexp CD14+ CD16+ monocytes-cells that are uninfected but exposed to HIV, viral proteins, and inflammatory mediators. Antibodies against JAM-A and ALCAM and the novel CCR2/CCR5 dual inhibitor cenicriviroc prevented or significantly reduced preferential transmigration of HIV+ CD14+ CD16+ monocytes. This indicates that JAM-A, ALCAM, and CCR2 may be potential therapeutic targets to block entry of these infected cells into the brain and prevent or reduce the establishment and replenishment of viral reservoirs within the CNS.IMPORTANCE HIV infects different tissue compartments of the body, including the central nervous system (CNS). This leads to establishment of viral reservoirs within the CNS that mediate neuroinflammation and neuronal damage, contributing to cognitive impairment. Our goal was to examine the mechanisms of transmigration of cells that contribute to HIV infection of the CNS and to continued replenishment of CNS viral reservoirs, to establish potential therapeutic targets. We found that an HIV-infected subset of monocytes, mature HIV+ CD14+ CD16+ monocytes, preferentially transmigrates across the blood-brain barrier. This was mediated, in part, by increased junctional proteins JAM-A and ALCAM and chemokine receptor CCR2. We show that the CCR2/CCR5 dual inhibitor cenicriviroc and blocking antibodies against the junctional proteins significantly reduce, and often completely block, the transmigration of HIV+ CD14+ CD16+ monocytes. This suggests new opportunities to eliminate infection and seeding or reseeding of viral reservoirs within the CNS, thus reducing neuroinflammation, neuronal damage, and cognitive impairment.
Collapse
|
92
|
Asahchop EL, Meziane O, Mamik MK, Chan WF, Branton WG, Resch L, Gill MJ, Haddad E, Guimond JV, Wainberg MA, Baker GB, Cohen EA, Power C. Reduced antiretroviral drug efficacy and concentration in HIV-infected microglia contributes to viral persistence in brain. Retrovirology 2017; 14:47. [PMID: 29037245 PMCID: PMC5644262 DOI: 10.1186/s12977-017-0370-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/01/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND In patients with HIV/AIDS receiving antiretroviral therapy (ART), HIV-1 persistence in brain tissue is a vital and unanswered question. HIV-1 infects and replicates in resident microglia and trafficking macrophages within the brain although the impact of individual ART drugs on viral infection within these brain myeloid cells is unknown. Herein, the effects of contemporary ART drugs were investigated using in vitro and in vivo models of HIV-1 brain infection. RESULTS The EC50 values for specific ART drugs in HIV-infected human microglia were significantly higher compared to bone marrow-derived macrophages and peripheral blood mononuclear cells. Intracellular ART drug concentrations in microglia were significantly lower than in human lymphocytes. In vivo brain concentrations of ART drugs in mice were 10 to 100-fold less in brain tissues compared with plasma and liver levels. In brain tissues from untreated HIV-infected BLT mice, HIV-encoded RNA, DNA and p24 were present in human leukocytes while ART eradicated viral RNA and DNA in both brain and plasma. Interruption of ART resulted in detectable viral RNA and DNA and increased human CD68 expression in brains of HIV-infected BLT mice. In aviremic HIV/AIDS patients receiving effective ART, brain tissues that were collected within hours of last ART dosing showed HIV-encoded RNA and DNA with associated neuroinflammatory responses. CONCLUSIONS ART drugs show variable concentrations and efficacies in brain myeloid cells and tissues in drug-specific manner. Despite low drug concentrations in brain, experimental ART suppressed HIV-1 infection in brain although HIV/AIDS patients receiving effective ART had detectable HIV-1 in brain. These findings suggest that viral suppression in brain is feasible but new approaches to enhancing ART efficacy and concentrations in brain are required for sustained HIV-1 eradication from brain.
Collapse
Affiliation(s)
- Eugene L Asahchop
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | | | - Manmeet K Mamik
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Wing F Chan
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - William G Branton
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Lothar Resch
- Department of Pathology, University of Calgary, Calgary, AB, Canada
| | - M John Gill
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Elie Haddad
- CHU Sainte-Justine, Montréal, Canada.,Department of Pediatrics, Université de Montréal, Montréal, Canada
| | - Jean V Guimond
- CIUSSS du Centre-Sud-de-l'ile-Montréal, CLSC des Faubourgs, Montréal, QC, Canada
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Glen B Baker
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Eric A Cohen
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Canada.,Montreal Clinical Research Institute, Montréal, Canada
| | - Christopher Power
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada. .,Department of Psychiatry, University of Alberta, Edmonton, AB, Canada. .,Department of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
93
|
Wang W, Yang L, Huang X, Fu W, Pan D, Cai L, Ye J, Liu J, Xia N, Cheng T, Zhu H. Outer nuclear membrane fusion of adjacent nuclei in varicella-zoster virus-induced syncytia. Virology 2017; 512:34-38. [PMID: 28910710 DOI: 10.1016/j.virol.2017.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/24/2017] [Accepted: 09/03/2017] [Indexed: 01/25/2023]
Abstract
Syncytia formation has been considered important for cell-to-cell spread and pathogenesis of many viruses. As a syncytium forms, individual nuclei often congregate together, allowing close contact of nuclear membranes and possibly fusion to occur. However, there is currently no reported evidence of nuclear membrane fusion between adjacent nuclei in wild-type virus-induced syncytia. Varicella-zoster virus (VZV) is one typical syncytia-inducing virus that causes chickenpox and shingles in humans. Here, we report, for the first time, an interesting observation of apparent fusion of the outer nuclear membranes from juxtaposed nuclei that comprise VZV syncytia both in ARPE-19 human epithelial cells in vitro and in human skin xenografts in the SCID-hu mouse model in vivo. This work reveals a novel aspect of VZV-related cytopathic effect in the context of multinucleated syncytia. Additionally, the information provided by this study could be helpful for future studies on interactions of viruses with host cell nuclei.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Lianwei Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Xiumin Huang
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital, Xiamen University, Xiamen 361004, PR China
| | - Wenkun Fu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Dequan Pan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Linli Cai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Jianghui Ye
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Jian Liu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, PR China.
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA.
| |
Collapse
|
94
|
Brain Macrophages in Simian Immunodeficiency Virus-Infected, Antiretroviral-Suppressed Macaques: a Functional Latent Reservoir. mBio 2017; 8:mBio.01186-17. [PMID: 28811349 PMCID: PMC5559639 DOI: 10.1128/mbio.01186-17] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A human immunodeficiency virus (HIV) infection cure requires an understanding of the cellular and anatomical sites harboring virus that contribute to viral rebound upon treatment interruption. Despite antiretroviral therapy (ART), HIV-associated neurocognitive disorders (HAND) are reported in HIV-infected individuals on ART. Biomarkers for macrophage activation and neuronal damage in cerebrospinal fluid (CSF) of HIV-infected individuals demonstrate continued effects of HIV in brain and suggest that the central nervous system (CNS) may serve as a viral reservoir. Using a simian immunodeficiency virus (SIV)/macaque model for HIV encephalitis and AIDS, we evaluated whether infected cells persist in brain despite ART. Eight SIV-infected pig-tailed macaques were virally suppressed with ART, and plasma and CSF viremia levels were analyzed longitudinally. To assess whether virus persisted in brain macrophages (BrMΦ) in these macaques, we used a macrophage quantitative viral outgrowth assay (MΦ-QVOA), PCR, and in situ hybridization (ISH) to measure the frequency of infected cells and the levels of viral RNA and DNA in brain. Viral RNA in brain tissue of suppressed macaques was undetectable, although viral DNA was detected in all animals. The MΦ-QVOA demonstrated that the majority of suppressed animals contained latently infected BrMΦ. We also showed that virus produced in the MΦ-QVOAs was replication competent, suggesting that latently infected BrMΦ are capable of reestablishing productive infection upon treatment interruption. This report provides the first confirmation of the presence of replication-competent SIV in BrMΦ of ART-suppressed macaques and suggests that the highly debated issue of viral latency in macrophages, at least in brain, has been addressed in SIV-infected macaques treated with ART. Resting CD4+ T cells are currently the only cells that fit the definition of a latent reservoir. However, recent evidence suggests that HIV/SIV-infected macrophages persist despite ART. Markers of macrophage activation and neuronal damage are observed in the CSF of HIV-infected individuals and of SIV-infected macaques on suppressive ART regimens, suggesting that the CNS has continued virus infection and latent infection. A controversy exists as to whether brain macrophages represent a latent source of replication-competent virus capable of reestablishing infection upon treatment interruption. In this study, we demonstrated the presence of the latent macrophage reservoir in brains of SIV-infected ART-treated macaques and analyzed the reservoir using our established outgrowth assay to quantitate macrophages harboring replication-competent SIV genomes. Our results support the idea of the existence of other latent reservoirs in addition to resting CD4+ T cells and underscore the importance of macrophages in developing strategies to eradicate HIV.
Collapse
|
95
|
Jaureguiberry-Bravo M, Wilson R, Carvallo L, Berman JW. Opioids and Opioid Maintenance Therapies: Their Impact on Monocyte-Mediated HIV Neuropathogenesis. Curr HIV Res 2017; 14:417-430. [PMID: 27009099 DOI: 10.2174/1570162x14666160324124132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 10/26/2015] [Accepted: 11/10/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND HIV-1 enters the CNS within two weeks after peripheral infection and results in chronic neuroinflammation that leads to HIV associated neurocognitive disorders (HAND) in more than 50% of infected people. HIV enters the CNS by transmigration of infected monocytes across the blood brain barrier. Intravenous drug abuse is a major risk factor for HIV-1 infection, and opioids have been shown to alter the progression and severity of HAND. Methadone and buprenorphine are opioid derivates that are used as opioid maintenance therapies. They are commonly used to treat opioid dependency in HIV infected substance abusers, but their effects on monocyte migration relevant to the development of cognitive impairment are not well characterized. CONCLUSION Here, we will discuss the effects of opioids and opioid maintenance therapies on the inflammatory functions of monocytes and macrophages that are related to the development of neuroinflammation in the context of HIV infection.
Collapse
Affiliation(s)
| | | | | | - Joan W Berman
- Department, of Pathology and Microbiology and Immunology, F727, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461, USA.
| |
Collapse
|
96
|
Murray AJ, Kwon KJ, Farber DL, Siliciano RF. The Latent Reservoir for HIV-1: How Immunologic Memory and Clonal Expansion Contribute to HIV-1 Persistence. THE JOURNAL OF IMMUNOLOGY 2017; 197:407-17. [PMID: 27382129 DOI: 10.4049/jimmunol.1600343] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/12/2016] [Indexed: 12/15/2022]
Abstract
Combination antiretroviral therapy (ART) for HIV-1 infection reduces plasma virus levels to below the limit of detection of clinical assays. However, even with prolonged suppression of viral replication with ART, viremia rebounds rapidly after treatment interruption. Thus, ART is not curative. The principal barrier to cure is a remarkably stable reservoir of latent HIV-1 in resting memory CD4(+) T cells. In this review, we consider explanations for the remarkable stability of the latent reservoir. Stability does not appear to reflect replenishment from new infection events but rather normal physiologic processes that provide for immunologic memory. Of particular importance are proliferative processes that drive clonal expansion of infected cells. Recent evidence suggests that in some infected cells, proliferation is a consequence of proviral integration into host genes associated with cell growth. Efforts to cure HIV-1 infection by targeting the latent reservoir may need to consider the potential of latently infected cells to proliferate.
Collapse
Affiliation(s)
- Alexandra J Murray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Kyungyoon J Kwon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032; Department of Surgery, Columbia University Medical Center, New York, NY 10032; and
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Howard Hughes Medical Institute, Baltimore MD 21250
| |
Collapse
|
97
|
Veenstra M, Williams DW, Calderon TM, Anastos K, Morgello S, Berman JW. Frontline Science: CXCR7 mediates CD14 +CD16 + monocyte transmigration across the blood brain barrier: a potential therapeutic target for NeuroAIDS. J Leukoc Biol 2017; 102:1173-1185. [PMID: 28754798 DOI: 10.1189/jlb.3hi0517-167r] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/22/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
CD14+CD16+ monocytes transmigrate into the CNS of HIV-positive people in response to chemokines elevated in the brains of infected individuals, including CXCL12. Entry of these cells leads to viral reservoirs, neuroinflammation, and neuronal damage. These may eventually lead to HIV-associated neurocognitive disorders. Although antiretroviral therapy (ART) has significantly improved the lives of HIV-infected people, the prevalence of cognitive deficits remains unchanged despite ART, still affecting >50% of infected individuals. There are no therapies to reduce these deficits or to prevent CNS entry of CD14+CD16+ monocytes. The goal of this study was to determine whether CXCR7, a receptor for CXCL12, is expressed on CD14+CD16+ monocytes and whether a small molecule CXCR7 antagonist (CCX771) can prevent CD14+CD16+ monocyte transmigration into the CNS. We showed for the first time that CXCR7 is on CD14+CD16+ monocytes and that it may be a therapeutic target to reduce their entry into the brain. We demonstrated that CD14+CD16+ monocytes and not the more abundant CD14+CD16- monocytes or T cells transmigrate to low homeostatic levels of CXCL12. This may be a result of increased CXCR7 on CD14+CD16+ monocytes. We showed that CCX771 reduced transmigration of CD14+CD16+ monocytes but not of CD14+CD16- monocytes from uninfected and HIV-infected individuals and that it reduced CXCL12-mediated chemotaxis of CD14+CD16+ monocytes. We propose that CXCR7 is a therapeutic target on CD14+CD16+ monocytes to limit their CNS entry, thereby reducing neuroinflammation, neuronal damage, and HIV-associated neurocognitive disorders. Our data also suggest that CCX771 may reduce CD14+CD16+ monocyte-mediated inflammation in other disorders.
Collapse
Affiliation(s)
- Mike Veenstra
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Dionna W Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kathryn Anastos
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Susan Morgello
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; and
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA; .,Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
98
|
Abstract
Despite the success of cART, greater than 50% of HIV infected people develop cognitive and motor deficits termed HIV-associated neurocognitive disorders (HAND). Macrophages are the major cell type infected in the CNS. Unlike for T cells, the virus does not kill macrophages and these long-lived cells may become HIV reservoirs in the brain. They produce cytokines/chemokines and viral proteins that promote inflammation and neuronal damage, playing a key role in HIV neuropathogenesis. HIV Tat is the transactivator of transcription that is essential for replication and transcriptional regulation of the virus and is the first protein to be produced after HIV infection. Even with successful cART, Tat is produced by infected cells. In this study we examined the role of the HIV Tat protein in the regulation of gene expression in human macrophages. Using THP-1 cells, a human monocyte/macrophage cell line, and their infection with lentivirus, we generated stable cell lines that express Tat-Flag. We performed ChIP-seq analysis of these cells and found 66 association sites of Tat in promoter or coding regions. Among these are C5, CRLF2/TSLPR, BDNF, and APBA1/Mint1, genes associated with inflammation/damage. We confirmed the association of Tat with these sequences by ChIP assay and expression of these genes in our THP-1 cell lines by qRT-PCR. We found that HIV Tat increased expression of C5, APBA1, and BDNF, and decreased CRLF2. The K50A Tat-mutation dysregulated expression of these genes without affecting the binding of the Tat complex to their gene sequences. Our data suggest that HIV Tat, produced by macrophage HIV reservoirs in the brain despite successful cART, contributes to neuropathogenesis in HIV-infected people.
Collapse
|
99
|
Wang S, Wu J, Rong L. A note on the global properties of an age-structured viral dynamic model with multiple target cell populations. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2017; 14:805-820. [PMID: 28092964 DOI: 10.3934/mbe.2017044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Some viruses can infect different classes of cells. The age of infection can affect the dynamics of infected cells and viral production. Here we develop a viral dynamic model with the age of infection and multiple target cell populations. Using the methods of semigroup and Lyapunov function, we study the global asymptotic property of the steady states of the model. The results show that when the basic reproductive number falls below 1, the infection is predicted to die out. When the basic reproductive number exceeds 1, there exists a unique infected steady state which is globally asymptotically stable. The model can be extended to study virus dynamics with multiple compartments or coinfection by multiple types of viruses. We also show that under some scenarios the age-structured model can be reduced to an ordinary differential equation system with or without time delays.
Collapse
Affiliation(s)
- Shaoli Wang
- School of Mathematics and Statistics, Henan University, Kaifeng 475001, Henan, China.
| | | | | |
Collapse
|
100
|
Megra BW, Eugenin EA, Berman JW. The Role of Shed PrP c in the Neuropathogenesis of HIV Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:224-232. [PMID: 28533442 DOI: 10.4049/jimmunol.1601041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/21/2017] [Indexed: 01/02/2023]
Abstract
HIV-1 enters the CNS soon after peripheral infection and causes chronic neuroinflammation and neuronal damage that leads to cognitive impairment in 40-70% of HIV-infected people. The nonpathogenic cellular isoform of the human prion protein (PrPc) is an adhesion molecule constitutively expressed in the CNS. Previously, our laboratory showed that shed PrPc (sPrPc) is increased in the cerebrospinal fluid of HIV-infected people with cognitive deficits as compared with infected people with no impairment. In this article, we demonstrate that CCL2 and TNF-α, inflammatory mediators that are elevated in the CNS of HIV-infected people, increase shedding of PrPc from human astrocytes by increasing the active form of the metalloprotease ADAM10. We show that the consequence of this shedding can be the production of inflammatory mediators, because treatment of astrocytes with rPrPc increased secretion of CCL2, CXCL-12, and IL-8. Supernatants from rPrPc-treated astrocytes containing factors produced in response to this treatment, but not rPrPc by itself, cause increased chemotaxis of both uninfected and HIV-infected human monocytes, suggesting a role for sPrPc in monocyte recruitment into the brain. Furthermore, we examined whether PrPc participates in glutamate uptake and found that rPrPc decreased uptake of this metabolite in astrocytes, which could lead to neurotoxicity and neuronal loss. Collectively, our data characterize mediators involved in PrPc shedding and the effect of this sPrPc on monocyte chemotaxis and glutamate uptake from astrocytes. We propose that shedding of PrPc could be a potential target for therapeutics to limit the cognitive impairment characteristic of neuroAIDS.
Collapse
Affiliation(s)
- Bezawit W Megra
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Eliseo A Eugenin
- Public Health Research Institute, Newark, NJ 07103.,Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461; .,Department of Microbiology, Albert Einstein College of Medicine, Bronx, NY 10461; and.,Department of Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|