51
|
Abstract
Tight coupling between synaptic vesicle exocytosis and endocytosis is critical for the maintenance of neurotransmission. In this issue of Neuron, Zhu et al. reveal a surprising facet of this coupling by showing that, at low frequencies, fusion of a single vesicle leads to retrieval of two vesicles with dissimilar attributes.
Collapse
Affiliation(s)
- Chihye Chung
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | | |
Collapse
|
52
|
Abstract
Classical physiological work by Katz, Eccles, and others revealed the central importance of synapses in brain function, and characterized the mechanisms involved in synaptic transmission. Building on this work, major advances in the past two decades have elucidated how synapses work molecularly. In the present perspective, we provide a short description of our personal view of these advances, suggest a series of important future questions about synapses, and discuss ideas about how best to achieve further progress in the field.
Collapse
Affiliation(s)
- Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 1050 Arastradero Road, Palo Alto, CA 94304 USA
| | | |
Collapse
|
53
|
Matsumoto M, Nakagawa T, Kojima K, Sakamoto T, Fujiyama F, Ito J. Potential of embryonic stem cell-derived neurons for synapse formation with auditory hair cells. J Neurosci Res 2008; 86:3075-85. [DOI: 10.1002/jnr.21754] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
54
|
Lorincz MT, Zawistowski VA. Expanded CAG repeats in the murine Huntington's disease gene increases neuronal differentiation of embryonic and neural stem cells. Mol Cell Neurosci 2008; 40:1-13. [PMID: 18625318 DOI: 10.1016/j.mcn.2008.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/28/2008] [Accepted: 06/05/2008] [Indexed: 11/26/2022] Open
Abstract
Huntington's disease is an uncommon autosomal dominant neurodegenerative disorder caused by expanded polyglutamine repeats. Increased neurogenesis was demonstrated recently in Huntington's disease post-mortem samples. In this manuscript, neuronally differentiated embryonic stem cells with expanded CAG repeats in the murine Huntington's disease homologue and neural progenitors isolated from the subventricular zone of an accurate mouse Huntington's disease were examined for increased neurogenesis. Embryonic stem cells with expanded CAG repeats in the murine Huntington's disease homologue were demonstrated to undergo facilitated differentiation first into neural progenitors, then into more mature neurons. Neural progenitor cells isolated from the subventricular zone of a Huntington's disease knock-in animal displayed increased production of neural progenitors and increased neurogenesis. These findings suggested that neuronally differentiating embryonic stem cells with expanded CAG repeats is a reasonable system to identify factors responsible for increased neurogenesis in Huntington's disease. Expression profiling analysis comparing neuronally differentiating embryonic stem cells with expanded CAG repeats to neuronally differentiating embryonic stem cells without expanded CAG repeats identified transcripts involved in development and transcriptional regulation as factors possibly mediating increased neurogenesis in response to expanded CAG repeats.
Collapse
Affiliation(s)
- Matthew T Lorincz
- Department of Neurology, University of Michigan School of Medicine, 1500 E. Medical Center Drive, Ann Arbor, MI 48109-2200, USA.
| | | |
Collapse
|
55
|
Tschernatsch M, Klotz M, Probst C, Hosch J, Valtorta F, Diener M, Gerriets T, Kaps M, Schäfer K, Blaes F. Synaptophysin is an autoantigen in paraneoplastic neuropathy. J Neuroimmunol 2008; 197:81-6. [DOI: 10.1016/j.jneuroim.2008.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 03/21/2008] [Accepted: 03/25/2008] [Indexed: 11/28/2022]
|
56
|
Siksou L, Rostaing P, Lechaire JP, Boudier T, Ohtsuka T, Fejtová A, Kao HT, Greengard P, Gundelfinger ED, Triller A, Marty S. Three-dimensional architecture of presynaptic terminal cytomatrix. J Neurosci 2007; 27:6868-77. [PMID: 17596435 PMCID: PMC6672225 DOI: 10.1523/jneurosci.1773-07.2007] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic terminals are specialized for mediating rapid fusion of synaptic vesicles (SVs) after calcium influx. The regulated trafficking of SVs likely results from a highly organized cytomatrix. How this cytomatrix links SVs, maintains them near the active zones (AZs) of release, and organizes docked SVs at the release sites is not fully understood. To analyze the three-dimensional (3D) architecture of the presynaptic cytomatrix, electron tomography of presynaptic terminals contacting spines was performed in the stratum radiatum of the rat hippocampal CA1 area. To preserve the cytomatrix, hippocampal slices were immobilized using high-pressure freezing, followed by cryosubstitution and embedding. SVs are surrounded by a dense network of filaments. A given vesicle is connected to approximately 1.5 neighboring ones. SVs at the periphery of this network are also linked to the plasma membrane, by longer filaments. More of these filaments are found at the AZ. At the AZ, docked SVs are grouped around presynaptic densities. Filaments with adjacent SVs emerge from these densities. Immunogold localizations revealed that synapsin is located in the presynaptic bouton, whereas Bassoon and CAST (ERC2) are at focal points next to the AZ. In synapsin triple knock-out mice, the number of SVs is reduced by 63%, but the size of the boutons is reduced by only 18%, and the mean distance of SVs to the AZ is unchanged. This 3D analysis reveals the morphological constraints exerted by the presynaptic molecular scaffold. SVs are tightly interconnected in the axonal bouton, and this network is preferentially connected to the AZ.
Collapse
Affiliation(s)
- Léa Siksou
- Inserm U789, Ecole Normale Supérieure, 75005 Paris, France
| | | | - Jean-Pierre Lechaire
- Service de CryoMicroscopie Electronique, Institut Fédératif de Recherche Biologie Intégrative 83 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75252 Paris cedex 05, France
| | - Thomas Boudier
- Imagerie Intégrative, Inserm U759, Institut Curie, Bâtiment 112, Centre Universitaire Orsay, 91405 Orsay cedex, France
| | - Toshihisa Ohtsuka
- Department of Clinical and Molecular Pathology, Faculty of Medicine/Graduate School of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Anna Fejtová
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Hung-Teh Kao
- Department of Psychiatry, New York University School of Medicine, and Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962, and
| | - Paul Greengard
- Molecular and Cellular Neuroscience, Rockefeller University, New York, New York 10021
| | - Eckart D. Gundelfinger
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | | | - Serge Marty
- Inserm U789, Ecole Normale Supérieure, 75005 Paris, France
| |
Collapse
|
57
|
Manzini I, Heermann S, Czesnik D, Brase C, Schild D, Rössler W. Presynaptic protein distribution and odour mapping in glomeruli of the olfactory bulb of Xenopus laevis tadpoles. Eur J Neurosci 2007; 26:925-34. [PMID: 17666078 DOI: 10.1111/j.1460-9568.2007.05731.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The sensory input layer in the olfactory bulb (OB) is typically organized into spheroidal aggregates of dense neuropil called glomeruli. This characteristic compartmentalization of the synaptic neuropil is a typical feature of primary olfactory centres in vertebrates and most advanced invertebrates. In the present work we mapped the location of presynaptic sites in glomeruli across the OB using antibodies to presynaptic vesicle proteins and presynaptic membrane proteins in combination with confocal microscopy. In addition the responses of glomeruli upon mucosal application of amino acid-odorants and forskolin were monitored using functional calcium imaging. We first describe the spatial distribution of glomeruli across the main olfactory bulb (MOB) in premetamorphic Xenopus laevis. Second, we show that the heterogeneous organization of glomeruli along the dorsoventral and mediolateral axes of the MOB is associated with a differential distribution of synaptic vesicle proteins. While antibodies to synaptophysin, syntaxin and SNAP-25 uniformly labelled glomeruli in the whole MOB, intense synaptotagmin staining was present only in glomeruli in the lateral, and to a lesser extent in the intermediate, part of the OB. Interestingly, amino acid-responsive glomeruli were always located in the lateral part of the OB, and glomeruli activated by mucosal forskolin application were exclusively located in the medial part of the OB. This correlation between odour mapping and presynaptic protein distribution is an additional hint on the existence of different subsystems within the main olfactory system in larval Xenopus laevis.
Collapse
Affiliation(s)
- Ivan Manzini
- Department of Neurophysiology and Cellular Biophysics, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
58
|
Glantz LA, Gilmore JH, Hamer RM, Lieberman JA, Jarskog LF. Synaptophysin and postsynaptic density protein 95 in the human prefrontal cortex from mid-gestation into early adulthood. Neuroscience 2007; 149:582-91. [PMID: 17916412 DOI: 10.1016/j.neuroscience.2007.06.036] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 06/08/2007] [Accepted: 06/22/2007] [Indexed: 02/01/2023]
Abstract
Previous studies of postnatal synaptic development in human frontal cortex have shown that synaptic density rises after birth, reaches a plateau in childhood and then decreases to adult levels by late adolescence. A similar pattern has been seen in nonhuman primate cortex. These earlier studies in human cortex are limited, however, by significant age gaps in study subjects at critical inflection points of the developmental curve. Additionally, it is unclear if synaptic development occurs in different patterns in different cortical layers in prefrontal cortex (PFC). The purpose of this study was to examine synaptic density in human PFC across development by measuring two synaptic marker proteins: synaptophysin (presynaptic), and postsynaptic density protein 95 (PSD-95; postsynaptic). Western blotting was used to assess the relative levels of synaptophysin and PSD-95 in dorsolateral PFC of 42 subjects, distributed in age from 18 weeks gestation to 25 years. In addition, synaptophysin immunoreactivity was examined in each layer of areas 9 and 46 of PFC in 24 subjects, ranging in age from 0.1-25 years. Synaptophysin levels slowly increased from birth until age 5 and then increased more rapidly to peak in late childhood around age 10. Synaptophysin subsequently decreased until the adult level was reached by mid-adolescence, around age 16. PSD-95 levels increased postnatally to reach a stable plateau by early childhood with a slight reduction in late adolescence and early adulthood. The pattern of synaptophysin immunoreactivity seen with immunohistochemistry was similar to the Western experiments but the changes across age were more subtle, with little change by layer within and across age. The developmental patterns exhibited by these synaptic marker proteins expand upon previous studies of developmental synaptic changes in human frontal cortex; synaptic density increases steadily from birth to late childhood, then decreases in early adolescence to reach adult levels by late adolescence.
Collapse
Affiliation(s)
- L A Glantz
- Department of Psychiatry, University of North Carolina at Chapel Hill, CB# 7160, Chapel Hill, NC 27599-7160, USA.
| | | | | | | | | |
Collapse
|
59
|
Liang YJ, Wu DF, Yang LQ, Höllt V, Koch T. Interaction of the mu-opioid receptor with synaptophysin influences receptor trafficking and signaling. Mol Pharmacol 2006; 71:123-31. [PMID: 17005904 DOI: 10.1124/mol.106.026062] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is increasing evidence that the signal transduction of opioid receptors is modulated by receptor-associated proteins. In the search for proteins regulating mu-opioid receptor (MOPr) endocytosis, synaptophysin was found to bind to the rat micro-opioid receptor in yeast two-hybrid assay. Coimmunoprecipitation experiments and bioluminescence resonance energy transfer assays confirmed that the micro-opioid receptor constitutively interacts with synaptophysin in human embryonic kidney 293 cells overexpressing MOPr and synaptophysin. In this study, we show that overexpression of synaptophysin enhances the micro-opioid receptor endocytosis. One explanation for the observed effects is that synaptophysin recruits dynamin to the plasma membrane, facilitating fission of clathrin-coated vesicles. This suggestion is supported by our finding that overexpression of a synaptophysin truncation mutant, which breaks the interaction between synaptophysin and dynamin, prevents agonist-mediated micro-opioid receptor endocytosis. In addition, the synaptophysin-augmented micro-opioid receptor trafficking leads to attenuated agonist-induced receptor desensitization and faster receptor resensitization. Taken together, our findings strongly suggest that synaptophysin plays an important role in the regulation of micro-opioid receptor trafficking and signaling.
Collapse
Affiliation(s)
- Ying-Jian Liang
- Department of Pharmacology and Toxicology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | | | | | | | | |
Collapse
|
60
|
Yokoyama O, Kumashiro M, Iriki A, Ishibashi H. Tactile stimulation-induced rapid elevation of the synaptophysin mRNA expression level in rat somatosensory cortex. Mol Cell Biochem 2006; 293:47-52. [PMID: 16990974 DOI: 10.1007/s11010-006-2493-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 08/26/2005] [Indexed: 10/24/2022]
Abstract
Synaptophysin is an integral membrane protein abundant in the synaptic vesicle and is found in nerve terminals throughout the brain. It was recently suggested that synaptophysin is also involved in the modulation of activity-dependent synapse formation. In this study, we examined at the individual level whether tactile stimulation selectively influenced the synaptophysin mRNA expression level in the somatosensory cortex of rats. Anesthetized rats were caressed on the back by an experimenter's palms for 20 min and the mRNA expression levels in the somatosensory and the visual cortices 5 min afterwards were determined using quantitative PCR methodology. The synaptophysin mRNA expression level was selectively higher in the experimental group than in the control group in the somatosensory cortex but not in the visual cortex. This suggests that the mRNA expression level of synaptophysin induced by neuronal activity is related to the regulation of synapse formation or remodeling or both.
Collapse
Affiliation(s)
- Osamu Yokoyama
- Section of Cognitive Neurobiology, Department of Maxillofacial Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| | | | | | | |
Collapse
|
61
|
Bai L, Spiwoks-Becker I, Leube RE. Transcriptome comparison of murine wild-type and synaptophysin-deficient retina reveals complete identity. Brain Res 2006; 1081:53-8. [PMID: 16519878 DOI: 10.1016/j.brainres.2006.01.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 01/06/2006] [Accepted: 01/22/2006] [Indexed: 11/25/2022]
Abstract
Loss of synaptophysin, one of the major synaptic vesicle membrane proteins, is surprisingly well tolerated in knockout mice. To test whether compensatory gene transcription accounts for the apparent lack of functional deficiencies, comparative transcriptome analyses were carried out. The retina was selected as the most suitable tissue since morphological alterations were observed in mutant photoreceptors, most notably a reduction of synaptic vesicles and concomitant increase in clathrin-coated vesicles. Labeled cRNA was prepared in triplicate from retinae of age- and sex-matched wild-type and mutant litter mates and hybridized to high-density microarray chips. Only three differentially expressed RNAs were identified in this way, one of which was synaptophysin. Further validation by quantitative RT-PCR could only corroborate the results for the latter. We therefore conclude that, despite the distinct morphological phenotype, no significant changes in gene expression are detectable in synaptophysin-deficient animals and that therefore compensatory mechanisms are either pre-existent and/or act at the posttranscriptional level.
Collapse
Affiliation(s)
- Lin Bai
- Department of Anatomy and Cell Biology, Johannes Gutenberg University, Becherweg 13, 55128 Mainz, Germany
| | | | | |
Collapse
|
62
|
Shojo H, Kibayashi K. Changes in localization of synaptophysin following fluid percussion injury in the rat brain. Brain Res 2006; 1078:198-211. [PMID: 16497279 DOI: 10.1016/j.brainres.2006.01.063] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 01/05/2006] [Accepted: 01/09/2006] [Indexed: 11/24/2022]
Abstract
Traumatic brain injuries damage neurons and cause progressing dysfunctions of the brain. Synaptophysin (SYP), a major integral transmembrane protein of synaptic vesicles, provides a molecular marker for the synapse and serves as a functional marker of the brain. This study examined magnitude-dependent changes of SYP in the rat brain 2 days following low, moderate or high fluid percussion injuries and investigated time-dependent changes of SYP in the rat brain with moderate fluid percussion injury 2, 15 and 30 days after trauma using immunohistochemistry and Western blotting. SYP immunoreactivity increased in the lateral cortex and in the subcortical white matter, with increasing magnitude of injury and time after trauma. Increased SYP immunoreactivity was accompanied with degeneration of neuronal cell bodies, their processes and terminals as well as glial cell proliferations. Amounts of SYP measured by Western blotting remained unchanged in brains with moderate fluid percussion within 30 days after trauma. These findings indicate that trauma accumulates SYP at injured sites of neurons without changing SYP contents and that increased SYP immunoreactivity in the cerebral cortex following traumatic injury reflects an inhibition of synaptic vesicle transportation and dysfunction of synapses, thus providing a histological substrate for brain dysfunctions.
Collapse
Affiliation(s)
- Hideki Shojo
- Department of Forensic Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | | |
Collapse
|
63
|
Tawadros T, Martin D, Abderrahmani A, Leisinger HJ, Waeber G, Haefliger JA. IB1/JIP-1 controls JNK activation and increased during prostatic LNCaP cells neuroendocrine differentiation. Cell Signal 2005; 17:929-39. [PMID: 15894166 DOI: 10.1016/j.cellsig.2004.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 11/12/2004] [Accepted: 11/12/2004] [Indexed: 10/25/2022]
Abstract
The scaffold protein Islet-Brain1/c-Jun amino-terminal kinase Interacting Protein-1 (IB1/JIP-1) is a modulator of the c-Jun N-terminal kinase (JNK) activity, which has been implicated in pleiotrophic cellular functions including cell differentiation, division, and death. In this study, we described the presence of IB1/JIP-1 in epithelium of the rat prostate as well as in the human prostatic LNCaP cells. We investigated the functional role of IB1/JIP-1 in LNCaP cells exposed to the proapoptotic agent N-(4-hydroxyphenyl)retinamide (4-HPR) which induced a reduction of IB1/JIP-1 content and a concomittant increase in JNK activity. Conversely, IB1/JIP-1 overexpression using a viral gene transfer prevented the JNK activation and the 4-HPR-induced apoptosis was blunted. In prostatic adenocarcinoma cells, the neuroendocrine (NE) phenotype acquisition is associated with tumor progression and androgen independence. During NE transdifferentiation of LNCaP cells, IB1/JIP-1 levels were increased. This regulated expression of IB1/JIP-1 is secondary to a loss of the neuronal transcriptional repressor neuron restrictive silencing factor (NRSF/REST) function which is known to repress IB1/JIP-1. Together, these results indicated that IB1/JIP-1 participates to the neuronal phenotype of the human LNCaP cells and is a regulator of JNK signaling pathway.
Collapse
Affiliation(s)
- Thomas Tawadros
- Service of Urology, University Hospital, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
64
|
Rapp S, Baader M, Hu M, Jennen-Steinmetz C, Henn FA, Thome J. Differential regulation of synaptic vesicle proteins by antidepressant drugs. THE PHARMACOGENOMICS JOURNAL 2004; 4:110-3. [PMID: 14708000 DOI: 10.1038/sj.tpj.6500229] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synaptic vesicle proteins (SVP) play a critical role in neurotransmitter release and neural plasticity, and have been implicated in the pathophysiology of psychiatric disorders such as depression. Antidepressant drugs not only alter the level of neurotransmitters, but also modulate de novo gene transcription and synthesis of proteins involved in neural plasticity. In order to investigate the effects of antidepressant compounds on SVP-mRNA levels, the expressions of synaptophysin, synaptotagmin, VAMP, and synapsin-I were analysed by in situ hybridization in rats which had been treated with desipramine, fluoxetine, tranylcypromine, or saline. The results demonstrate that chronic treatment with fluoxetine and tranylcypromine leads to an increased expression of synaptophysin, but decreased expression of synaptotagmin and VAMP in the hippocampus and cerebral cortex. Additionally, synapsin I-mRNA levels in the hippocampus and cerebral cortex are significantly reduced in tranylcypromine-treated animals. This identifies SVP genes as target genes of antidepressant treatment.
Collapse
Affiliation(s)
- S Rapp
- Central Institute of Mental Health, Mannheim, Germany
| | | | | | | | | | | |
Collapse
|
65
|
Sánchez-Fernández C, González MC, Beart PM, Mercer LD, Ruiz-Gayo M, Fernández-Alfonso MS. A novel role for cholecystokinin: regulation of mesenteric vascular resistance. ACTA ACUST UNITED AC 2004; 121:145-53. [PMID: 15256285 DOI: 10.1016/j.regpep.2004.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 04/29/2004] [Accepted: 04/29/2004] [Indexed: 10/26/2022]
Abstract
The aim of this work was to characterize the vasoactive effect of cholecystokinin on mesenteric vasculature. The mesenteric vascular bed of 3-month-old Sprague-Dawley rats was isolated and perfused at constant flow and changes in perfusion pressure monitored. CCK peptides lacked any direct contractile or relaxing effect on the mesenteric smooth muscle. Transmural nerve stimulation (TNS, 200 mA, 0.2 ms, 8 and 16 Hz) elicited an increase in perfusion pressure reflecting contraction of the bed and CCK inhibited neurogenic contractions elicited by 8 and 16 Hz TNS. The inhibition of neurogenic contractions was blocked by the CCK2 receptor (CCK2R) antagonist, L-365,260 (10 and 100 nM), but not by the CCK1R antagonist, SR-27897. The inhibition of neurogenic contractions was reversed by the non-specific NOS inhibitor, L-NAME as well as by the specific nNOS inhibitor, S-methyl-L-thiocitrulline. In whole-mount segments of mesenteric arteries, CCK2R was detected in the adventitia, in nerve terminals, where it co-localized with synaptophysin and nNOS. CCK-8 immunoreactive fibers were also detected. These results suggest that CCK mediates vasodilatation of the mesenteric vascular bed through the release of NO via its presynaptic CCK2R. Our findings provide, for the first time, a neural mechanism by which CCK may increase mesenteric blood flow.
Collapse
Affiliation(s)
- Cristina Sánchez-Fernández
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, sn, Madrid, 28040, Spain
| | | | | | | | | | | |
Collapse
|
66
|
Valtorta F, Pennuto M, Bonanomi D, Benfenati F. Synaptophysin: leading actor or walk-on role in synaptic vesicle exocytosis? Bioessays 2004; 26:445-53. [PMID: 15057942 DOI: 10.1002/bies.20012] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Synaptophysin (Syp) was the first synaptic vesicle (SV) protein to be cloned. Since its discovery in 1985, it has been used by us and by many laboratories around the world as an invaluable marker to study the distribution of synapses in the brain and to uncover the basic features of the life cycle of SVs. Although single gene ablation of Syp does not lead to an overt phenotype, a large body of experimental data both in vitro and in vivo indicate that Syp (alone or in association with homologous proteins) is involved in multiple, important aspects of SV exo-endocytosis, including regulation of SNARE assembly into the fusion core complex, formation of the fusion pore initiating neurotransmitter release, activation of SV endocytosis and SV biogenesis. In this article, we summarise the main results of the studies on Syp carried out by our and other laboratories, and explain why we believe that Syp plays a major role in SV trafficking.
Collapse
Affiliation(s)
- Flavia Valtorta
- Department of Neuroscience, S. Raffaele Scientific Institute and Vita-Salute University, Milan, Italy.
| | | | | | | |
Collapse
|
67
|
Rocher AB, Chapon F, Blaizot X, Baron JC, Chavoix C. Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons. Neuroimage 2004; 20:1894-8. [PMID: 14642499 DOI: 10.1016/j.neuroimage.2003.07.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
It is classically recognized that regional cerebral glucose consumption (CMRglc), as measured by positron emission tomography (PET) and [18F]-2-fluorodeoxyglucose (FDG), is a precise index of the integrated local neuronal activity. However, despite extensive use of the FDG-PET method, the significance of the measured CMRglc has been little addressed so far. In the present study, we aimed for the first time to test whether resting-state CMRglc is directly related to synaptic density. To this end, we investigated in the baboon the relationships between CMR(glc) and the levels of synaptophysin (SY), a presynaptic protein classically used to assess synaptic density. CMR(glc), measured in vivo by FDG-PET at the resting-state, and SY levels, assessed postmortem by the Western blot technique, were quantified in seven brain areas of five baboons. By applying these two techniques to the same animals, we found significant positive correlations between CMR(glc) and SY levels, across all regions and all animals, as well as within individual baboons. These findings strongly support the hypothesis that resting-state CMR(glc) reflects integrated synaptic activity.
Collapse
|
68
|
Abstract
During development, retinal ganglion cells undergo conspicuous structural remodeling as they gradually attain their mature morphology and connectivity. Alterations in their dendritic organization and in their axonal projections can also be achieved following early insult to their targets or their afferents. Other retinal cell types are thought not to display this same degree of developmental plasticity. The present review will consider the evidence, drawn largely from recent experimental studies in the carnivore retina, that photoreceptors also undergo structural remodeling, extending their terminals transiently into inner plexiform layer before retracting to the outer plexiform layer. The determinants of this transient targeting to the inner plexiform layer are considered, and the role of cholinergic amacrine cells is discussed. The factors triggering this retraction are also considered, including the concurrent maturational changes in outer segment formation and in the differentiation of the outer plexiform layer. These results provide new insight into the life history of the photoreceptor cell and its connectivity, and suggest a transient role for the photoreceptors in the circuitry of the inner retina during early development, prior to the onset of phototransduction.
Collapse
Affiliation(s)
- Benjamin E Reese
- Neuroscience Research Institute, Department of Psychology, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, USA.
| |
Collapse
|
69
|
Abstract
Our understanding of synaptic transmission has grown dramatically during the 15 years since the first issue of Neuron was published, a growth rate expected from the rapid progress in modern biology. As in all of biology, new techniques have led to major advances in the cell and molecular biology of synapses, and the subject has evolved in ways (like the production of genetically engineered mice) that could not even be imagined 15 years ago. My plan for this review is to summarize what we knew about neurotransmitter release when Neuron first appeared and what we recognized we did not know, and then to describe how our views have changed in the intervening decade and a half. Some things we knew about synapses--"knew" in the sense that the field had reached a consensus--are no longer accepted, but for the most part, impressive advances have led to a new consensus on many issues. What I find fascinating is that in certain ways nothing has changed--many of the old arguments persist or recur in a different guise--but in other ways the field would be unrecognizable to a neurobiologist time-transported from 1988 to 2003.
Collapse
Affiliation(s)
- Charles F Stevens
- The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
70
|
Shimode H, Ueki A, Morita Y. Nerve growth factor attenuates hippocampal cholinergic deficits and operant learning impairment in rats with entorhinal cortex lesions. Behav Pharmacol 2003; 14:179-90. [PMID: 12799519 DOI: 10.1097/00008877-200305000-00001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the present study we investigated whether continuous intraventricular nerve growth factor (NGF) infusion could ameliorate hippocampal cholinergic deficits and learning impairment following entorhinal cortex lesions. Rats with such lesions received continuous intraventricular infusions of NGF or vehicle. Unlesioned rats with a sham operation were studied as controls. After learning sessions, a dialysis probe was implanted in the CA3 hippocampal region. In addition, brain sections were stained for synaptophysin immunoreactivity. In rats undergoing surgical procedures similar to those in the behavioral study, brains were processed for acetylcholinesterase (AChE) histochemistry. NGF-treated rats showed partial amelioration of lesion-associated hippocampal acetylcholine (ACh) efflux deficits and fixed-interval schedule learning impairment compared with vehicle-treated rats. Histochemical, immunohistologic, and microdensitometric analyses confirmed greater density of AChE-positive fibers and synaptophysin immunoreactivity in CA3, in NGF-treated rats relative to vehicle-treated rats, although not as great as in sham-operation rats, indicating partial recovery in NGF-treated rats. These results suggest that enhanced performance of the learning task with NGF treatment was related to improved hippocampal cholinergic function: specifically, increased cholinergic neurotransmission resulting from NGF effects on cholinergic neurons and presynaptic terminals.
Collapse
Affiliation(s)
- H Shimode
- Department of Neuropsychioatry, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Jyogo 663-8501, Japan.
| | | | | |
Collapse
|
71
|
Tran MH, Yamada K, Nakajima A, Mizuno M, He J, Kamei H, Nabeshima T. Tyrosine nitration of a synaptic protein synaptophysin contributes to amyloid beta-peptide-induced cholinergic dysfunction. Mol Psychiatry 2003; 8:407-12. [PMID: 12740598 DOI: 10.1038/sj.mp.4001240] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Amyloid beta (Abeta) is a critical factor involved in the pathogenesis of Alzheimer's disease (AD). We have previously demonstrated that continuous intracerebroventricular infusion of Abeta1-40 induced a time-dependent expression of the inducible nitric oxide (NO) synthase (iNOS) and an overproduction of NO in the rat hippocampus. The pathophysiological significance of the overproduction of NO on brain function was manifested by an impairment of nicotine-evoked acetylcholine(ACh) release and memory deficits.(4) Molecular mechanisms by which NO participates in the Abeta-induced brain dysfunction, however, remain to be determined. Here we show that chronic Abeta1-40 infusion caused a robust peroxynitrite formation and subsequent tyrosine nitration of proteins in the hippocampus. Immunoprecipitation and Western blot analyses further revealed that synaptophysin, a synaptic protein, was a main target of tyrosine nitration. Chronic infusion of Abeta1-40 resulted in an impairment of nicotine-evoked ACh release as analyzed by microdialysis. Daily treatment with the iNOS inhibitor aminoguanidine (AG) or the peroxynitrite scavenger uric acid (UA) prevented the tyrosine nitration of synaptophysin as well as the impairment of nicotine-evoked ACh release induced by Abeta. Our findings suggest that the tyrosine nitration of synaptophysin is related to Abeta-induced impairment of ACh release.
Collapse
Affiliation(s)
- M H Tran
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | | | | | | | |
Collapse
|
72
|
Li S, Reinprecht I, Fahnestock M, Racine RJ. Activity-dependent changes in synaptophysin immunoreactivity in hippocampus, piriform cortex, and entorhinal cortex of the rat. Neuroscience 2003; 115:1221-9. [PMID: 12453493 DOI: 10.1016/s0306-4522(02)00485-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Synaptophysin, an integral membrane glycoprotein of synaptic vesicles, has been widely used to investigate synaptogenesis in both animal models and human patients. Kindling is an experimental model of complex partial seizures with secondary generalization, and a useful model for studying activation-induced neural growth in adult systems. Many studies using Timm staining have shown that kindling promotes sprouting in the mossy fiber pathway of the dentate gyrus. In the present study, we used synaptophysin immunohistochemistry to demonstrate activation-induced neural sprouting in non-mossy fiber cortical pathways in the adult rat. We found a significant kindling-induced increase in synaptophysin immunoreactivity in the stratum radiatum of CA1 and stratum lucidum/radiatum of CA3, the hilus, the inner molecular layer of the dentate gyrus, and layer II/III of the piriform cortex, but no significant change in layer II/III of the entorhinal cortex, 4 weeks after the last kindling stimulation. We also found that synaptophysin immunoreactivity was lowest in CA3 near the hilus and increased with increasing distance from the hilus, a reverse pattern to that seen with Timm stains in stratum oriens following kindling. Furthermore, synaptophysin immunoreactivity was lowest in dorsal and greatest in ventral sections of both CA3 and dentate gyrus in both kindled and non-kindled animals. This demonstrates that different populations of sprouting axons are labeled by these two techniques, and suggests that activation-induced sprouting extends well beyond the hippocampal mossy fiber system.
Collapse
Affiliation(s)
- S Li
- Department of Psychology, McMaster University, 1280 Main Street West, L8S 4K1, Hamilton, ON, Canada
| | | | | | | |
Collapse
|
73
|
Sánchez-Fernández C, González C, Mercer LD, Beart PM, Ruiz-Gayo M, Fernández-Alfonso MS. Cholecystokinin induces cerebral vasodilatation via presynaptic CCK2 receptors: new implications for the pathophysiology of panic. J Cereb Blood Flow Metab 2003; 23:364-70. [PMID: 12621311 DOI: 10.1097/01.wcb.0000043948.67811.8f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The authors report that cholecystokinin (CCK), via its subtype 2 receptor (CCK2R) located presynaptically on cerebral arteries, mediates the release of nitric oxide (NO), which induces vasodilatation. Whereas CCK octapeptide and its fragment CCK tetrapeptide (CCK-4) lack a direct effect on the smooth muscle of pial vessels, the authors showed that both CCK peptides modulate the neurogenic responses in bovine cerebral arteries. The neurogenic vasodilatation induced by CCK-4 was blocked by the CCK2R antagonist, L-365,260, and antagonized by neuronal NO synthase (nNOS) inhibitors, but was independent of the endothelium. In whole-mount arteries, CCK2Rs were detected in nerve fibers and colocalized with nNOS and synaptophysin. The findings provide, for the first time, a neural mechanism by which CCK may increase cerebral blood flow.
Collapse
|
74
|
Ding Y, Li J, Clark J, Diaz FG, Rafols JA. Synaptic plasticity in thalamic nuclei enhanced by motor skill training in rat with transient middle cerebral artery occlusion. Neurol Res 2003; 25:189-94. [PMID: 12635521 DOI: 10.1179/016164103101201184] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The goal of this study was to determine if synaptic plasticity in the thalamus of rats subjected to stroke could be altered by motor training. Transient occlusion of right middle cerebral artery in adult female Sprague-Dawley rats (n = 35) was induced with an intraluminal filament followed by three training conditions, 1. motor skill training on Rota-rod requiring balance and coordination skills, 2. simple exercise on treadmill, and 3. nontrained controls. Synaptic plasticity in brain was evaluated by synapotophysin immunocytochemistry at 14 or 28 days after training procedures. Infarct volume was determined in Nissl stained sections. Both at 14 and 28 days after Rota-rod training, intense synaptophysin immunoreactivity was present in the right but not the left mediodorsal and ventromedial nuclei of thalamus of ischemic rats. In treadmill-trained animals, however, similarly intense synaptic plasticity in these two thalamic nuclei was seen only at 28 days. Immunostaining was found also in other brain regions adjacent to or remote from infarct site. The data suggest that motor training, particularly motor skill training involving balance and coordination, facilitates a uniquely lateralized synaptogenesis in the thalamus.
Collapse
Affiliation(s)
- Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Lande Medical Research Building, Room 48, 550 E. Canfield, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
75
|
Lietz M, Hohl M, Thiel G. RE-1 silencing transcription factor (REST) regulates human synaptophysin gene transcription through an intronic sequence-specific DNA-binding site. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2-9. [PMID: 12492469 DOI: 10.1046/j.1432-1033.2003.03360.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Synaptophysin, one of the major proteins on synaptic vesicles, is ubiquitously expressed throughout the brain. Synaptophysin and synapsin I, another synaptic vesicle protein, are also expressed by retinoic acid-induced neuronally differentiated P19 teratocarcinoma cells. Here, we show that inhibition of histone deacetylase activity in P19 cells is sufficient to activate transcription of the synaptophysin and synapsin I genes, indicating that neuronal differentiation and impairment of histone deacetylases results in a similar gene expression pattern. The transcription factor REST, a repressor of neuronal genes in non-neuronal tissues, has been shown to function via recruitment of histone deacetylases to the transcription unit, indicating that modulation of the chromatin structure via histone deacetylation is of major importance for REST function and neuron-specific gene transcription. Furthermore, REST has been shown to be the major regulator of neuronal expression of synapsin I. Here, we have identified a functional binding site for REST in the first intron of the human synaptophysin gene indicating that REST blocks human synaptophysin gene transcription through an intronic neuron-specific silencer element. The synaptophysin promoter is, however, devoid of neuron-specific genetic elements and directs transcription in both neuronal and non-neuronal cells. Using a dominant-negative approach we have identified the transcription factor Sp1 as one of the regulators responsible for constitutive transcription of the human synaptophysin gene.
Collapse
Affiliation(s)
- Michael Lietz
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, Homburg, Germany
| | | | | |
Collapse
|
76
|
Alladi PA, Wadhwa S, Singh N. Effect of prenatal auditory enrichment on developmental expression of synaptophysin and syntaxin 1 in chick brainstem auditory nuclei. Neuroscience 2002; 114:577-90. [PMID: 12220561 DOI: 10.1016/s0306-4522(02)00319-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Neural activity plays an important role in shaping the developing brain. We have determined the consequence of increased auditory stimulation on the developmental profile of synaptic proteins, synaptophysin and syntaxin 1, in the chick brainstem auditory nuclei, nucleus magnocellularis and nucleus laminaris, by immunohistochemistry and western blotting techniques. The chick embryos were provided with patterned sounds of species-specific calls or musical notes of a sitar, a stringed instrument, in a graded manner from embryonic day 10 (E10) through hatching, for 15 min every hour. During normal synaptogenesis of nucleus magnocellularis and nucleus laminaris, synaptophysin immunoreactivity increased significantly from E8 to E20, in parallel with synapse formation, and reduced at hatching. The embryos receiving species-specific sound stimuli exhibited a similar pattern with higher levels of immunoreactivity, though the difference between the study groups was not statistically significant. The music stimulated embryos showed an earlier peak at E16, followed by a gradual decline until hatching. In all three groups studied, syntaxin immunoreactivity showed a surge at E12, followed by a decline at E16 and subsequent stabilization. The stimulated groups continually expressed higher amounts of syntaxin immunoreactivity. The results suggest that prenatal sound stimulation enhances the normal pattern of synaptic protein expression in these auditory nuclei.
Collapse
Affiliation(s)
- P A Alladi
- Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | |
Collapse
|
77
|
Gincel D, Shoshan-Barmatz V. The synaptic vesicle protein synaptophysin: purification and characterization of its channel activity. Biophys J 2002; 83:3223-9. [PMID: 12496091 PMCID: PMC1302399 DOI: 10.1016/s0006-3495(02)75324-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The synaptic vesicle protein synaptophysin was solubilized from rat brain synaptosomes with a relatively low concentration of Triton X-100 (0.2%) and was highly purified (above 95%) using a rapid single chromatography step on hydroxyapatite/celite resin. Purified synaptophysin was reconstituted into a planar lipid bilayer and the channel activity of synaptophysin was characterized. In asymmetric KCl solutions (cis 300 mM/trans 100 mM), synaptophysin formed a fast-fluctuating channel with a conductance of 414 +/- 13 pS at +60 mV. The open probability of synaptophysin channels was decreased upon depolarization, and channels were found to be cation-selective. Synaptophysin channels showed higher selectivity for K(+) over Cl(-) (P(K(+))/P(Cl(-)) > 8) and preferred K(+) over Li(+), Na(+), Rb(+), Cs(+), or choline(+). The synaptophysin channel is impermeable to Ca(2+), which has no effect on its channel activity. This study is the second demonstration of purified synaptophysin channel activity, but the first biophysical characterization of its channel properties. The availability of large amounts of purified synaptophysin and of its characteristic channel properties might help to establish the role of synaptophysin in synaptic transmission.
Collapse
Affiliation(s)
- Dan Gincel
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | |
Collapse
|
78
|
Prado VF, Prado MAM. Signals involved in targeting membrane proteins to synaptic vesicles. Cell Mol Neurobiol 2002; 22:565-77. [PMID: 12585680 DOI: 10.1023/a:1021884319363] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. Synaptic vesicles (SVs) mediate fast regulated secretion of classical neurotransmitters. In order to perform their task SVs rely on a restrict set of membrane proteins. The mechanisms responsible for targeting these proteins to the SV membrane are still poorly understood. 2. Likewise, little is known about the intracellular routes taken by these proteins in their way to SV membrane. Recently, several domains and motifs necessary for correct localization of SV proteins have been identified. 3. In this review we summarize the sequence motifs that have been identified in the cytoplasmic domains of SV proteins that are involved in endocytosis and targeting of SVs. We suggest that the vesicular acetylcholine transporter, a protein found predominantly in synaptic vesicles, is perhaps a model protein to understand the pathways and interactions that are used for synaptic vesicle targeting.
Collapse
Affiliation(s)
- Vania F Prado
- Departamento de Bioquímica-Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | | |
Collapse
|
79
|
Ding Y, Li J, Lai Q, Azam S, Rafols JA, Diaz FG. Functional improvement after motor training is correlated with synaptic plasticity in rat thalamus. Neurol Res 2002; 24:829-36. [PMID: 12500709 DOI: 10.1179/016164102101200816] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The goals of this study were to determine whether functional outcome after motor training in rats was linked to synaptic plasticity in thalamus, and whether the Rota-rod apparatus, widely used to test motor function, could be used as an easy and quantitative motor skill training procedure. Adult female Sprague-Dawley rats (n = 39) were evaluated under three training conditions: 1. Movement requiring balance and coordination skills on Rota-rod; 2. simple exercise on treadmill; 3. nontrained controls. Motor function was evaluated by a series of motor tests (foot fault placing, parallel bar crossing, rope and ladder climbing) before and 14 or 28 days after training procedure. Synaptic strength in brain was assessed by synaptophysin immunocytochemistry. After 14 days of training, Rota-rod-trained animals significantly (p < 0.01) improved motor performance, compared to treadmill and nontrained animals. Animals with up to 28 days of simple exercises on the treadmill did not show a significantly improved performance on most motor tasks, except for an improvement in foot fault placing. Intensive synaptophysin immunoreactivity was present in the right but not the left mediodorsal and ventromedial nuclei of thalamus in Rota-rod-trained rats at 14 and 28 days, and in treadmill-trained rats at 28 days. The data suggested that functional outcome is effectively improved by motor skill training rather than by simple exercises, and this may be related, at least partially, to uniquely lateralized synaptogenesis in the thalamus. Both Rota-rod and treadmill could be quantitatively used in rats for motor training of different complexity.
Collapse
Affiliation(s)
- Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Lande Medical Research Building, Room 48, 550 E. Canfield, Detroit, MI 48201, USA.
| | | | | | | | | | | |
Collapse
|
80
|
Hübner K, Windoffer R, Hutter H, Leube RE. Tetraspan vesicle membrane proteins: synthesis, subcellular localization, and functional properties. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 214:103-59. [PMID: 11893164 DOI: 10.1016/s0074-7696(02)14004-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tetraspan vesicle membrane proteins (TVPs) are characterized by four transmembrane regions and cytoplasmically located end domains. They are ubiquitous and abundant components of vesicles in most, if not all, cells of multicellular organisms. TVP-containing vesicles shuttle between various membranous compartments and are localized in biosynthetic and endocytotic pathways. Based on gene organization and amino acid sequence similarities TVPs can be grouped into three distinct families that are referred to as physins, gyrins, and secretory carrier-associated membrane proteins (SCAMPs). In mammals synaptophysin, synaptoporin, pantophysin, and mitsugumin29 constitute the physins, synaptogyrin 1-4 the gyrins, and SCAMP1-5 the SCAMPs. Members of each family are cell-type-specifically synthesized resulting in unique patterns of TVP coexpression and subcellular colocalization. TVP orthologs have been identified in most multicellular organisms, including diverse animal and plant species, but have not been detected in unicellular organisms. They are subject to protein modification, most notably to phosphorylation, and are part of multimeric complexes. Experimental evidence is reviewed showing that TVPs contribute to vesicle trafficking and membrane morphogenesis.
Collapse
Affiliation(s)
- Kirsten Hübner
- Department of Anatomy, Johannes Gutenberg University, Mainz, Germany
| | | | | | | |
Collapse
|
81
|
Grundschober C, Malosio ML, Astolfi L, Giordano T, Nef P, Meldolesi J. Neurosecretion competence. A comprehensive gene expression program identified in PC12 cells. J Biol Chem 2002; 277:36715-24. [PMID: 12070162 DOI: 10.1074/jbc.m203777200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phenotype of neurosecretory cells is characterized by clear vesicles and dense granules, both discharged by regulated exocytosis. However, these organelles are lacking completely in a few neurosecretion-incompetent clones of the pheochromocytoma PC12 line, in which other specific features are maintained (incompetent clones). In view of the heterogeneity of PC12 cells, a differential characterization of the incompetent phenotype based on the comparison of a single incompetent and a single wild-type clone would have been inconclusive. Therefore, we have compared two pairs of PC12 clones, studying in parallel the transcript levels of 4,200 genes and 19,000 express sequence tags (ESTs) by high density oligonucleotide arrays. After accurate data processing for quality control and filtration, a total of 755 transcripts, corresponding to 448 genes and 307 ESTs, was found consistently changed, with 46% up-regulated and 54% down-regulated in incompetent versus wild-type clones. Many but not all neurosecretion genes were profoundly down-regulated in incompetent cells. Expression of endocytosis genes was normal, whereas that of many nuclear and transcription factors, including some previously shown to play key roles in neurogenesis, was profoundly changed. Additional differences appeared in genes involved in signaling and metabolism. Taken together these results demonstrate for the first time that expression of neurosecretory vesicles and granules is part of a complex gene expression program that includes many other features that so far have not been recognized.
Collapse
Affiliation(s)
- Christophe Grundschober
- Central Nervous System, F. Hoffmann-La Roche Ltd., Grenzacherstrasse, Basel 4070, Switzerland
| | | | | | | | | | | |
Collapse
|
82
|
Pennuto M, Dunlap D, Contestabile A, Benfenati F, Valtorta F. Fluorescence resonance energy transfer detection of synaptophysin I and vesicle-associated membrane protein 2 interactions during exocytosis from single live synapses. Mol Biol Cell 2002; 13:2706-17. [PMID: 12181340 PMCID: PMC117936 DOI: 10.1091/mbc.e02-01-0036] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To investigate the molecular interactions of synaptophysin I and vesicle-associated membrane protein 2 (VAMP2)/synaptobrevin II during exocytosis, we have used time-lapse videomicroscopy to measure fluorescence resonance energy transfer in live neurons. For this purpose, fluorescent protein variants fused to synaptophysin I or VAMP2 were expressed in rat hippocampal neurons. We show that synaptophysin I and VAMP2 form both homo- and hetero-oligomers on the synaptic vesicle membrane. When exocytosis is stimulated with alpha-latrotoxin, VAMP2 dissociates from synaptophysin I even in the absence of appreciable exocytosis, whereas synaptophysin I oligomers disassemble only upon incorporation of the vesicle with the plasma membrane. We propose that synaptophysin I has multiple roles in neurotransmitter release, regulating VAMP2 availability for the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex and possibly participating in the late steps of exocytosis.
Collapse
Affiliation(s)
- Maria Pennuto
- Department of Neuroscience, S. Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | | | | | | | | |
Collapse
|
83
|
Fonseca M, Woodhams PL, Webb M, Field PM, Raisman G. Monoclonal Antibodies to Late-differentiating Epitopes Identify Mossy Fibre Terminals Innervating Normal and Transplanted Hippocampal CA3 Pyramidal Cells. Eur J Neurosci 2002; 4:448-458. [PMID: 12106354 DOI: 10.1111/j.1460-9568.1992.tb00895.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have derived two monoclonal antibodies, MF-1 and MF-2, which both recognize the same 58-kD antigen. Light and electron microscopic immunocytochemistry showed that this antigen is highly expressed in the large mossy fibre terminals innervating the proximal portion of the apical dendrites of pyramidal neurons in hippocampal field CA3. Staining was seen in the adult hippocampus in rats and mice, and in a post mortem human sample. Comparison with the Timm stain showed that the antibodies recognize mossy fibres from all parts of the adult dendate gyrus except for the tip of the infrapyramidal blade (the latest part of the dentate gyrus to develop). The MF antigen is expressed by mature terminals, and is not detected immunohistochemically in developing hippocampal mossy terminals until the end of the first postnatal week (i.e. later than the Timm-positive material). It was also found in host mossy fibre terminals innervating embryonic CA3 pyramids transplanted into adult hosts, but not in areas of the graft containing transplanted CA1 pyramids. These results indicate that this previously undescribed, late-developing antigen provides a useful specific marker for the mossy fibre projection in both the normal hippocampus and in situations of experimentally manipulated connectivity.
Collapse
Affiliation(s)
- Montserrat Fonseca
- Norman and Sadie Lee Research Centre, National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | | | | | | | | |
Collapse
|
84
|
Wheeler TC, Chin LS, Li Y, Roudabush FL, Li L. Regulation of synaptophysin degradation by mammalian homologues of seven in absentia. J Biol Chem 2002; 277:10273-82. [PMID: 11786535 DOI: 10.1074/jbc.m107857200] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptophysin is an integral membrane protein of synaptic vesicles characterized by four transmembrane domains with both termini facing the cytoplasm. Although synaptophysin has been implicated in neurotransmitter release, and decreased synaptophysin levels have been associated with several neurodegenerative diseases, the molecular mechanism that regulates the degradation of synaptophysin remains unsolved. Using the cytoplasmic C terminus of synaptophysin as bait in a yeast two-hybrid screen, we identified two synaptophysin-binding proteins, Siah-1A and Siah-2, which are rat homologues of Drosophila Seven in Absentia. We demonstrated that Siah-1A and Siah-2 associate with synaptophysin both in vitro and in vivo and defined the binding domains of synaptophysin and Siah that mediate their association. Siah proteins exist in both cytosolic and membrane-associated pools and co-localize with synaptophysin on synaptic vesicles and early endosomes. In addition, Siah proteins interact specifically with the brain-enriched E2 ubiquitin-conjugating enzyme UbcH8 and facilitate the ubiquitination of synaptophysin. Furthermore, overexpression of Siah proteins promotes the degradation of synaptophysin via the ubiquitin-proteasome pathway. Our findings indicate that Siah proteins function as E3 ubiquitin-protein ligases to regulate the ubiquitination and degradation of synaptophysin.
Collapse
Affiliation(s)
- Tiffany C Wheeler
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
85
|
Daly C, Ziff EB. Ca2+-dependent formation of a dynamin-synaptophysin complex: potential role in synaptic vesicle endocytosis. J Biol Chem 2002; 277:9010-5. [PMID: 11779869 DOI: 10.1074/jbc.m110815200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptophysin is a synaptic vesicle (SV) protein of unknown function. Here we show that a repeated sequence in the cytoplasmic tail of synaptophysin mediates the formation of a protein complex containing the GTPase dynamin. The formation of this complex requires a high Ca(2+) concentration, suggesting that it occurs preferentially at the sites of SV exocytosis. Coimmunoprecipitation of a dynamin-synaptophysin complex from brain extracts is promoted by dissociation of vesicle-associated membrane protein 2 from synaptophysin. This finding suggests that dynamin only associates with synaptophysin in vivo after vesicle-associated membrane protein 2 (VAMP2) enters the SNARE complex. GTP binding releases dynamin from synaptophysin, possibly serving to regulate dynamin selfassembly during endocytosis. Our results suggest that synaptophysin plays a role in SV recycling by recruiting dynamin to the vesicle membrane.
Collapse
Affiliation(s)
- Christopher Daly
- Howard Hughes Medical Institute and Department of Biochemistry, New York University Medical Center, New York, New York 10016, USA
| | | |
Collapse
|
86
|
Timmermann DB, Westenbroek RE, Schousboe A, Catterall WA. Distribution of high-voltage-activated calcium channels in cultured gamma-aminobutyric acidergic neurons from mouse cerebral cortex. J Neurosci Res 2002; 67:48-61. [PMID: 11754080 DOI: 10.1002/jnr.10074] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The localization of voltage-gated calcium channel (VGCC) alpha(1) subunits in cultured GABAergic mouse cortical neurons was examined by immunocytochemical methods. Ca(v)1.2 and Ca(v)1.3 subunits of L-type VGCCs were found in cell bodies and dendrites of GABA-immunopositive neurons. Likewise, the Ca(v)2.3 subunit of R-type VGCCs was expressed in a somatodendritic pattern. Ca(v)2.2 subunits of N-type channels were found exclusively in small varicosities that were identified as presynaptic nerve terminals based on their expression of synaptic marker proteins. Two splice variants of the Ca(v)2.1 subunit of P/Q-type VGCCs showed widely differing expression patterns. The rbA isoform displayed a purely somatodendritic staining pattern, whereas the BI isoform was confined to axon-like fibers and nerve terminals. The nerve terminals of these cultured GABAergic neurons express Ca(v)2.2 either alone or in combination with Ca(v)2.1 (BI isoform) but never express Ca(v)2.1 alone. The functional association between VGCCs and the neurotransmitter release machinery was probed using the FM1-43 dye-labeling technique. N-type VGCCs were found to be tightly coupled to exocytosis in these cultured cortical neurons, and P-type VGCCs were also important in a fraction of the cells. The predominant role of N-type VGCCs in neurotransmitter release and the specific localization of the BI isoform of Ca(v)2.1 in the nerve terminals of these neurons distinguish them from previously studied central neurons. The complementary localization patterns observed for two different isoforms of the Ca(v)2.1 subunits provide direct evidence for alternative splicing as a means of generating functional diversity among neuronal calcium channels.
Collapse
Affiliation(s)
- Daniel B Timmermann
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
87
|
Miwa C, Ueki A, Shinjo H, Simode H, Morita Y. Long-term synaptic alteration in the rat hippocampal CA3 field following an entorhinal cortex lesion. Psychiatry Clin Neurosci 2001; 55:573-8. [PMID: 11737789 DOI: 10.1046/j.1440-1819.2001.00908.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The entorhinal cortex is a key initial relay for cortical input to the hippocampus. To better understand hippocampal dysfunction resulting from early entorhinal cortex involvement in Alzheimer's disease, we stereotaxically injected ibotenic acid to produce unilateral entorhinal cortex lesions in rats. We then serially examined the CA3 hippocampal region by neuronal counts, histochemistry for acetylcholinesterase, and synaptophysin immunohistochemistry. Over 12 months, the neuronal counts did not change. Acetylcholinesterase-positive fibers were persistently but non-progressively beginning at 3 months. Synaptophysin immunoreactivity progressively declined over 12 months. Since much of the entorhinal cortex output proceeds to CA3 via the dentate gyrus, transsynaptic degeneration is suspected.
Collapse
Affiliation(s)
- C Miwa
- Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.
| | | | | | | | | |
Collapse
|
88
|
Thome J, Pesold B, Baader M, Hu M, Gewirtz JC, Duman RS, Henn FA. Stress differentially regulates synaptophysin and synaptotagmin expression in hippocampus. Biol Psychiatry 2001; 50:809-12. [PMID: 11720700 DOI: 10.1016/s0006-3223(01)01229-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND In view of the effects of stress on synaptic plasticity, the regulation of synaptophysin and synaptotagmin expression by immobilization was analyzed by in situ hybridization. METHODS Rats were exposed to immobilization stress, which induced typical behavioral alterations, such as reduced locomotor activity after stress exposure. Determination of mRNA levels of the integral synaptic vesicle proteins was performed immediately after acute or chronic immobilization. RESULTS The results demonstrate that stress exposure leads to reduced expression of synaptophysin but increased expression of synaptotagmin in the hippocampus. CONCLUSIONS This rapid and differential regulation of synaptic vesicle proteins could be responsible for some of the morphological, biochemical, and behavioral changes observed after stress exposure. These changes may be relevant to such clinical disorders as psychoses, depression, and posttraumatic stress disorder that are sensitive to stress and involve changes in neural and synaptic plasticity.
Collapse
Affiliation(s)
- J Thome
- Laboratory of Biochemistry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | |
Collapse
|
89
|
Gerber SH, Garcia J, Rizo J, Südhof TC. An unusual C(2)-domain in the active-zone protein piccolo: implications for Ca(2+) regulation of neurotransmitter release. EMBO J 2001; 20:1605-19. [PMID: 11285225 PMCID: PMC145501 DOI: 10.1093/emboj/20.7.1605] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ca(2+) regulation of neurotransmitter release is thought to require multiple Ca(2+) sensors with distinct affinities. However, no low-affinity Ca(2+) sensor has been identified at the synapse. We now show that piccolo/aczonin, a recently described active-zone protein with C-terminal C(2)A- and C(2)B-domains, constitutes a presynaptic low-affinity Ca(2+) sensor. Ca(2+) binds to piccolo by virtue of its C(2)A-domain via an unusual mechanism that involves a large conformational change. The distinct Ca(2+)-binding properties of the piccolo C(2)A- domain are mediated by an evolutionarily conserved sequence at the bottom of the C(2)A-domain, which may fold back towards the Ca(2+)-binding sites on the top. Point mutations in this bottom sequence inactivate it, transforming low-affinity Ca(2+) binding (100-200 microM in the presence of phospholipids) into high-affinity Ca(2+) binding (12-14 microM). The unusual Ca(2+)-binding mode of the piccolo C(2)A-domain reveals that C(2)-domains are mechanistically more versatile than previously envisaged. The low Ca(2+) affinity of the piccolo C(2)A-domain suggests that piccolo could function in short-term synaptic plasticity when Ca(2+) concentrations accumulate during repetitive stimulation.
Collapse
Affiliation(s)
| | - Jesus Garcia
- Center for Basic Neuroscience, Department of Molecular Genetics and Howard Hughes Medical Institute and
Departments of Biochemistry and Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| | - Josep Rizo
- Center for Basic Neuroscience, Department of Molecular Genetics and Howard Hughes Medical Institute and
Departments of Biochemistry and Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| | - Thomas C. Südhof
- Center for Basic Neuroscience, Department of Molecular Genetics and Howard Hughes Medical Institute and
Departments of Biochemistry and Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| |
Collapse
|
90
|
Pogson GH. Nucleotide polymorphism and natural selection at the pantophysin (Pan I) locus in the Atlantic cod, Gadus morhua (L.). Genetics 2001; 157:317-30. [PMID: 11139512 PMCID: PMC1461473 DOI: 10.1093/genetics/157.1.317] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Molecular studies of nucleotide sequence variation have rarely attempted to test hypotheses related to geographically varying patterns of natural selection. The present study tested the role of spatially varying selection in producing significant linkage disequilibrium and large differences in the frequencies of two common alleles at the pantophysin (Pan I) locus among five populations of the Atlantic cod, Gadus morhua. Nucleotide sequences of 124 Pan I alleles showed strong evidence for an unusual mix of balancing and directional selection but no evidence of stable geographically varying selection. The alleles were highly divergent at both the nucleotide level (differing on average by 19 mutations) and at amino acid level (each having experienced three amino acid substitutions since diverging from a common ancestral allele). All six amino acid substitutions occurred in a 56-residue intravesicular loop (IV1 domain) of the vesicle protein and each involved a radical change. An analysis of molecular variation revealed significant heterogeneity in the frequencies of recently derived mutations segregating within both allelic classes, suggesting that two selective sweeps may be presently occurring among populations. The dynamic nature of the Pan I polymorphism in G. morhua and clear departure from equilibrium conditions invalidate a simple model of spatially varying selection.
Collapse
Affiliation(s)
- G H Pogson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA.
| |
Collapse
|
91
|
Przyborski SA, Morton IE, Wood A, Andrews PW. Developmental regulation of neurogenesis in the pluripotent human embryonal carcinoma cell line NTERA-2. Eur J Neurosci 2000; 12:3521-8. [PMID: 11029621 DOI: 10.1046/j.1460-9568.2000.00230.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Embryonal carcinoma (EC) cells provide a caricature of pluripotent embryonic stem (ES) cells and may be used as surrogates for investigating the mechanisms that regulate cell differentiation during embryonic development. NTERA-2 is a human EC cell line that differentiates in response to retinoic acid yielding cells that include terminally differentiated neurons. The expression of genes known to be involved in the formation of the vertebrate nervous system was examined during retinoic acid-induced NTERA-2 differentiation. Differentiation of these human EC cells into neurons could be divided into three sequential phases. During phase 1, in the first week of differentiation, hath1 mRNA showed a small transient increase that correlated with the rapid accumulation of nestin message, a marker of neuroprogenitors. Transcripts of nestin were quickly downregulated during phase 2 as expression of neuroD1, characteristic of neuroprogenitors exiting the cell cycle, was induced. A neural cell surface antigen, detected by the monoclonal antibody A2B5, was expressed by cells exiting the cell cycle, correlating with the expression of neuroD1 as the cells became post-mitotic. Markers of mature neural cells (e.g. synaptophysin and neuron-specific enolase) were subsequently increased during phase 3 and were maintained. This regulated pattern of gene expression and commitment to the neural lineage indicates that differentiation of NTERA-2 neurons in vitro follows a similar pathway to that observed by neural ectodermal precursors during vertebrate neurogenesis in vivo.
Collapse
Affiliation(s)
- S A Przyborski
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | | | |
Collapse
|
92
|
Lin D, Edwards AS, Fawcett JP, Mbamalu G, Scott JD, Pawson T. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol 2000; 2:540-7. [PMID: 10934475 DOI: 10.1038/35019582] [Citation(s) in RCA: 487] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cellular asymmetry is critical for the development of multicellular organisms. Here we show that homologues of proteins necessary for asymmetric cell division in Caenorhabditis elegans associate with each other in mammalian cells and tissues. mPAR-3 and mPAR-6 exhibit similar expression patterns and subcellular distributions in the CNS and associate through their PDZ (PSD-95/Dlg/ZO-1) domains. mPAR-6 binds to Cdc42/Rac1 GTPases, and mPAR-3 and mPAR-6 bind independently to atypical protein kinase C (aPKC) isoforms. In vitro, mPAR-3 acts as a substrate and an inhibitor of aPKC. We conclude that mPAR-3 and mPAR-6 have a scaffolding function, coordinating the activities of several signalling proteins that are implicated in mammalian cell polarity.
Collapse
Affiliation(s)
- D Lin
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | |
Collapse
|
93
|
Brooks CC, Scherer PE, Cleveland K, Whittemore JL, Lodish HF, Cheatham B. Pantophysin is a phosphoprotein component of adipocyte transport vesicles and associates with GLUT4-containing vesicles. J Biol Chem 2000; 275:2029-36. [PMID: 10636906 DOI: 10.1074/jbc.275.3.2029] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pantophysin, a protein related to the neuroendocrine-specific synaptophysin, recently has been identified in non-neuronal tissues. In the present study, Northern blots showed that pantophysin mRNA was abundant in adipose tissue and increased during adipogenesis of 3T3-L1 cells. Immunoblot analysis of subcellular fractions showed pantophysin present exclusively in membrane fractions and relatively evenly distributed in the plasma membrane and internal membrane fractions. Sucrose gradient ultracentrifugation demonstrated that pantophysin and GLUT4 exhibited overlapping distribution profiles. Furthermore, immunopurified GLUT4 vesicles contained pantophysin, and both GLUT4 and pantophysin were depleted from this vesicle population following treatment with insulin. Additionally, a subpopulation of immunopurified pantophysin vesicles contained insulin-responsive GLUT4. Consistent with the interaction of synaptophysin with vesicle-associated membrane protein 2 in neuroendocrine tissues, pantophysin associated with vesicle-associated membrane protein 2 in adipocytes. Furthermore, in [(32)P]orthophosphate-labeled cells, pantophysin was phosphorylated in the basal state. This phosphorylation was unchanged in response to insulin; however, insulin stimulated the phosphorylation of a 77-kDa protein associated with alpha-pantophysin immunoprecipitates. Although the functional role of pantophysin in vesicle trafficking is unclear, its presence on GLUT4 vesicles is consistent with the emerging role of soluble N-ethylmaleimide-sensitive protein receptor (SNARE) factor complex and related proteins in regulated vesicle transport in adipocytes. In addition, pantophysin may provide a marker for the analysis of other vesicles in adipocytes.
Collapse
Affiliation(s)
- C C Brooks
- Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
94
|
Tanaka H, Shan W, Phillips GR, Arndt K, Bozdagi O, Shapiro L, Huntley GW, Benson DL, Colman DR. Molecular modification of N-cadherin in response to synaptic activity. Neuron 2000; 25:93-107. [PMID: 10707975 DOI: 10.1016/s0896-6273(00)80874-0] [Citation(s) in RCA: 254] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The relationship between adhesive interactions across the synaptic cleft and synaptic function has remained elusive. At certain CNS synapses, pre- to postsynaptic adhesion is mediated at least in part by neural (N-) cadherin. Here, we demonstrate that upon depolarization of hippocampal neurons in culture by K+ treatment, or application of NMDA or alpha-latrotoxin, synaptic N-cadherin dimerizes and becomes markedly protease resistant. These properties are indices of strong, stable, enhanced cadherin-mediated intercellular adhesion. N-cadherin retained protease resistance for at least 2 hr after recovery, while other surface molecules, including other cadherins, were completely degraded. The acquisition of protease resistance and dimerization of N-cadherin is not dependent on new protein synthesis, nor is it accompanied by internalization of N-cadherin. By immunocytochemistry, we found that high K+ selectively induces surface dispersion of N-cadherin, which, after recovery, returns to synaptic puncta. N-cadherin dispersion under K+ treatment parallels the rapid expansion of the presynaptic membrane consequent to the massive vesicle fusion that occurs with this type of depolarization. In contrast, with NMDA application, N-cadherin does not disperse but does acquire enhanced protease resistance and dimerizes. Our data strongly suggest that synaptic adhesion is dynamically and locally controlled, and modulated by synaptic activity.
Collapse
Affiliation(s)
- H Tanaka
- Program in Cell Adhesion, The Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
Synaptic vesicles, which have been a paradigm for the fusion of a vesicle with its target membrane, also serve as a model for understanding the formation of a vesicle from its donor membrane. Synaptic vesicles, which are formed and recycled at the periphery of the neuron, contain a highly restricted set of neuronal proteins. Insight into the trafficking of synaptic vesicle proteins has come from studying not only neurons but also neuroendocrine cells, which form synaptic-like microvesicles (SLMVs). Formation and recycling of synaptic vesicles/SLMVs takes place from the early endosome and the plasma membrane. The cytoplasmic machinery of synaptic vesicle/SLMV formation and recycling has been studied by a variety of experimental approaches, in particular using cell-free systems. This has revealed distinct machineries for membrane budding and fission. Budding is mediated by clathrin and clathrin adaptors, whereas fission is mediated by dynamin and its interacting protein SH3p4, a lysophosphatidic acid acyl transferase.
Collapse
Affiliation(s)
- M J Hannah
- MRC Laboratory for Molecular Cell Biology, University College London, UK
| | | | | |
Collapse
|
96
|
|
97
|
Janz R, Südhof TC, Hammer RE, Unni V, Siegelbaum SA, Bolshakov VY. Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron 1999; 24:687-700. [PMID: 10595519 DOI: 10.1016/s0896-6273(00)81122-8] [Citation(s) in RCA: 254] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have generated mice lacking synaptogyrin I and synaptophysin I to explore the functions of these abundant tyrosine-phosphorylated proteins of synaptic vesicles. Single and double knockout mice were alive and fertile without significant morphological or biochemical changes. Electrophysiological recordings in the hippocampal CA1 region revealed that short-term and long-term synaptic plasticity were severely reduced in the synaptophysin/synaptogyrin double knockout mice. LTP was decreased independent of the induction protocol, suggesting that the defect in LTP was not caused by insufficient induction. Our data show that synaptogyrin I and synaptophysin I perform redundant and essential functions in synaptic plasticity without being required for neurotransmitter release itself.
Collapse
Affiliation(s)
- R Janz
- Howard Hughes Medical Institute, The University of Texas Southwestern Medical School, Dallas 75235, USA
| | | | | | | | | | | |
Collapse
|
98
|
Di Stasi AM, Mallozzi C, Macchia G, Petrucci TC, Minetti M. Peroxynitrite induces tryosine nitration and modulates tyrosine phosphorylation of synaptic proteins. J Neurochem 1999; 73:727-35. [PMID: 10428070 DOI: 10.1046/j.1471-4159.1999.0730727.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Peroxynitrite, the product of the radical-radical reaction between nitric oxide and superoxide anion, is a potent oxidant involved in tissue damage in neurodegenerative disorders. We investigated the modifications induced by peroxynitrite in tyrosine residues of proteins from synaptosomes. Peroxynitrite treatment (> or =50 microM) induced tyrosine nitration and increased tyrosine phosphorylation. Synaptophysin was identified as one of the major nitrated proteins and pp60src kinase as one of the major phosphorylated substrates. Further fractionation of synaptosomes revealed nitrated synaptophysin in the synaptic vesicles, whereas phosphorylated pp60src was enriched in the postsynaptic density fraction. Tyrosine phosphorylation was increased by treatment with 50-500 microM peroxynitrite and decreased by higher concentrations, suggesting a possible activation/inactivation of kinases. Immunocomplex kinase assay proved that peroxynitrite treatment of synaptosomes modulated the pp60src autophosphorylation activity. The addition of bicarbonate (CO2 1.3 mM) produced a moderate enhancing effect on some nitrated proteins but significantly protected the activity of pp60src against peroxynitrite-mediated inhibition so that at 1 mM peroxynitrite, the kinase was still more active than in untreated synaptosomes. The phosphotyrosine phosphatase activity of synaptosomes was inhibited by peroxynitrite (> or =50 microM) but significantly protected by CO2. Thus, the increase of phosphorylation cannot be attributed to peroxynitrite-mediated inhibition of phosphatases. We suggest that peroxynitrite may regulate the posttranslational modification of tyrosine residues in pre- and postsynaptic proteins. Identification of the major protein targets gives insight into the pathways possibly involved in neuronal degeneration associated with peroxynitrite overproduction.
Collapse
Affiliation(s)
- A M Di Stasi
- Laboratorio di Biologia Cellulare, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | | | |
Collapse
|
99
|
Sugita S, Janz R, Südhof TC. Synaptogyrins regulate Ca2+-dependent exocytosis in PC12 cells. J Biol Chem 1999; 274:18893-901. [PMID: 10383386 DOI: 10.1074/jbc.274.27.18893] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptogyrins constitute a family of synaptic vesicle proteins of unknown function. With the full-length structure of a new brain synaptogyrin isoform, we now show that the synaptogyrin family in vertebrates includes two neuronal and one ubiquitous isoform. All of these synaptogyrins are composed of a short conserved N-terminal cytoplasmic sequence, four homologous transmembrane regions, and a variable cytoplasmic C-terminal tail that is tyrosine-phosphorylated. The localization, abundance, and conservation of synaptogyrins suggest a function in exocytosis. To test this, we employed a secretion assay in PC12 cells expressing transfected human growth hormone (hGH) as a reporter protein. When Ca2+-dependent hGH secretion from PC12 cells was triggered by high K+ or alpha-latrotoxin, co-transfection of all synaptogyrins with hGH inhibited hGH exocytosis as strongly as co-transfection of tetanus toxin light chain. Synaptophysin I, which is distantly related to synaptogyrins, was also inhibitory but less active. Inhibition was independent of the amount of hGH expressed but correlated with the amount of synaptogyrin transfected. Inhibition of exocytosis was not observed with several other synaptic proteins, suggesting specificity. Analysis of the regions of synaptogyrin required for inhibition revealed that the conserved N-terminal domain of synaptogyrin is essential for inhibition, whereas the long C-terminal cytoplasmic tail is largely dispensable. Our results suggest that synaptogyrins are conserved components of the exocytotic apparatus, which function as regulators of Ca2+-dependent exocytosis.
Collapse
Affiliation(s)
- S Sugita
- Center for Basic Neuroscience, Department of Molecular Genetics and Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, Texas 75235-9050, USA
| | | | | |
Collapse
|
100
|
Redecker P. Synaptic-like microvesicles in mammalian pinealocytes. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 191:201-55. [PMID: 10343394 DOI: 10.1016/s0074-7696(08)60160-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The recent deciphering of the protein composition of the synaptic vesicle membrane has led to the unexpected identification of a compartment of electron-lucent microvesicles in neuroendocrine cells which resemble neuronal synaptic vesicles in terms of molecular structure and function. These vesicles are generally referred to as synaptic-like microvesicles (SLMVs) and have been most intensively studied in pancreatic beta-cells, chromaffin cells of the adrenal medulla, and pinealocytes of the pineal gland. This chapter focuses on the present knowledge of SLMVs as now well-established constituents of mammalian pinealocytes. I review the results of morphological, immunocytochemical, and biochemical studies that were important for the characterization of this novel population of secretory vesicles in the pineal organ. The emerging concept that SLMVs serve as a device for intercellular communication within the pineal gland is outlined, and unanswered questions such as those pertaining to the physiological function and regulation of pineal SLMVs are discussed.
Collapse
Affiliation(s)
- P Redecker
- Medizinische Hochschule Hannover, Germany
| |
Collapse
|