51
|
Glycoengineering of HCELL, the human bone marrow homing receptor: sweetly programming cell migration. Ann Biomed Eng 2011; 40:766-76. [PMID: 22068886 DOI: 10.1007/s10439-011-0461-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/28/2011] [Indexed: 01/13/2023]
Abstract
The successful clinical implementation of adoptive cell therapeutics, including bone marrow transplantation and other stem cell-based treatments, depends critically on the ability to deliver cells to sites where they are needed. E-selectin, an endothelial C-type lectin, binds sialofucosylated carbohydrate determinants on its pertinent ligands. This molecule is expressed in a constitutive manner on bone marrow and dermal microvascular endothelium, and inducibly on post-capillary venules at all sites of tissue injury. Engagement of E-selectin with relevant ligand(s) expressed on circulating cells mediates initial "tethering/rolling" endothelial adhesive interactions prerequisite for extravasation of blood-borne cells at any target tissue. Most mammalian cells express high levels of a transmembrane glycoprotein known as CD44. A specialized glycoform of CD44 called "Hematopoietic Cell E-/L-selectin Ligand" (HCELL) is a potent E-selectin ligand expressed on human cells. Under native conditions, HCELL expression is restricted to human hematopoietic stem/progenitor cells. We have developed a technology called "Glycosyltransferase-Programmed Stereosubstitution" (GPS) for custom-modifying CD44 glycans to create HCELL on the surface of living cells. GPS-based glycoengineering of HCELL endows cell migration to endothelial beds expressing E-selectin. Enforced HCELL expression targets human mesenchymal stem cell homing to marrow, licensing transendothelial migration without chemokine signaling via a VLA-4/VCAM-1-dependent "Step 2-bypass pathway." This review presents an historical framework of the homing receptor concept, and will describe the discovery of HCELL, its function as the bone marrow homing receptor, and how enforced expression of this molecule via chemical engineering of CD44 glycans could enable stem cell-based regenerative medicine and other adoptive cell therapeutics.
Collapse
|
52
|
Pericacho M, Alonso-Martín S, Larrucea S, González-Manchón C, Fernández D, Sánchez I, Ayuso MS, Parrilla R. Diminished thrombogenic responses by deletion of the Podocalyxin Gene in mouse megakaryocytes. PLoS One 2011; 6:e26025. [PMID: 22016802 PMCID: PMC3189243 DOI: 10.1371/journal.pone.0026025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/15/2011] [Indexed: 11/19/2022] Open
Abstract
Podocalyxin (Podxl) is a type I membrane sialoprotein of the CD34 family, originally described in the epithelial glomerular cells of the kidney (podocytes) in which it plays an important function. Podxl can also be found in megakaryocytes and platelets among other extrarenal places. The surface exposure of Podxl upon platelet activation suggested it could play some physiological role. To elucidate the function of Podxl in platelets, we generated mice with restricted ablation of the podxl gene in megakaryocytes using the Cre-LoxP gene targeting methodology. Mice with Podxl-null megakaryocytes did not show any apparent phenotypical change and their rates of growth, life span and fertility did not differ from the floxed controls. However, Podxl-null mice showed prolonged bleeding time and decreased platelet aggregation in response to physiological agonists. The number, size-distribution and polyploidy of Podxl-null megakaryocytes were similar to the floxed controls. Podxl-null platelets showed normal content of surface receptors and normal activation by agonists. However, the mice bearing Podxl-null platelets showed a significant retardation in the ferric chloride-induced occlusion of the carotid artery. Moreover, acute thrombosis induced by the i.v. injection of sublethal doses of collagen and phenylephrine produced a smaller fall in the number of circulating platelets in Podxl-null mice than in control mice. In addition, perfusion of uncoagulated blood from Podxl-null mice in parallel flow chamber showed reduced adhesion of platelets and formation of aggregates under high shear stress. It is concluded that platelet Podxl is involved in the control of hemostasis acting as a platelet co-stimulator, likely due to its pro-adhesive properties.
Collapse
Affiliation(s)
| | - Sonia Alonso-Martín
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Susana Larrucea
- Laboratorio de Inmunología, Hospital de Cruces, Baracaldo, Spain
| | - Consuelo González-Manchón
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - Inés Sánchez
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Matilde S. Ayuso
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Roberto Parrilla
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- * E-mail:
| |
Collapse
|
53
|
Narla A, Dutt S, McAuley JR, Al-Shahrour F, Hurst S, McConkey M, Neuberg D, Ebert BL. Dexamethasone and lenalidomide have distinct functional effects on erythropoiesis. Blood 2011; 118:2296-304. [PMID: 21527522 PMCID: PMC3162357 DOI: 10.1182/blood-2010-11-318543] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 04/14/2011] [Indexed: 12/19/2022] Open
Abstract
Corticosteroids and lenalidomide decrease red blood cell transfusion dependence in patients with Diamond-Blackfan anemia (DBA) and myelodysplastic syndrome (MDS), respectively. We explored the effects of dexamethasone and lenalidomide, individually and in combination, on the differentiation of primary human bone marrow progenitor cells in vitro. Both agents promote erythropoiesis, increasing the absolute number of erythroid cells produced from normal CD34(+) cells and from CD34(+) cells with the types of ribosome dysfunction found in DBA and del(5q) MDS. However, the drugs had distinct effects on the production of erythroid progenitor colonies; dexamethasone selectively increased the number of burst-forming units-erythroid (BFU-E), whereas lenalidomide specifically increased colony-forming unit-erythroid (CFU-E). Use of the drugs in combination demonstrated that their effects are not redundant. In addition, dexamethasone and lenalidomide induced distinct gene-expression profiles. In coculture experiments, we examined the role of the microenvironment in response to both drugs and found that the presence of macrophages, the central cells in erythroblastic islands, accentuated the effects of both agents. Our findings indicate that dexamethasone and lenalidomide promote different stages of erythropoiesis and support the potential clinical utility of combination therapy for patients with bone marrow failure.
Collapse
Affiliation(s)
- Anupama Narla
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Kröger C, Vijayaraj P, Reuter U, Windoffer R, Simmons D, Heukamp L, Leube R, Magin TM. Placental vasculogenesis is regulated by keratin-mediated hyperoxia in murine decidual tissues. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1578-90. [PMID: 21435445 DOI: 10.1016/j.ajpath.2010.12.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/22/2010] [Accepted: 12/30/2010] [Indexed: 11/26/2022]
Abstract
The mammalian placenta represents the interface between maternal and embryonic tissues and provides nutrients and gas exchange during embryo growth. Recently, keratin intermediate filament proteins were found to regulate embryo growth upstream of the mammalian target of rapamycin pathway through glucose transporter relocalization and to contribute to yolk sac vasculogenesis through altered bone morphogenetic protein 4 signaling. Whether keratins have vital functions in extraembryonic tissues is not well understood. Here, we report that keratins are essential for placental function. In the absence of keratins, we find hyperoxia in the decidual tissue directly adjacent to the placenta, because of an increased maternal vasculature. Hyperoxia causes impaired vasculogenesis through defective hypoxia-inducible factor 1α and vascular endothelial growth factor signaling, resulting in invagination defects of fetal blood vessels into the chorion. In turn, the reduced labyrinth, together with impaired gas exchange between maternal and embryonic blood, led to increased hypoxia in keratin-deficient embryos. We provide evidence that keratin-positive trophoblast secretion of prolactin-like protein a (Prlpa) and placental growth factor (PlGF) during decidualization are altered in the absence of keratins, leading to increased infiltration of uterine natural killer cells into placental vicinity and increased vascularization of the maternal decidua. Our findings suggest that keratin mutations might mediate conditions leading to early pregnancy loss due to hyperoxia in the decidua.
Collapse
Affiliation(s)
- Cornelia Kröger
- Division of Cell Biochemistry, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Yang J, Ii M, Kamei N, Alev C, Kwon SM, Kawamoto A, Akimaru H, Masuda H, Sawa Y, Asahara T. CD34+ cells represent highly functional endothelial progenitor cells in murine bone marrow. PLoS One 2011; 6:e20219. [PMID: 21655289 PMCID: PMC3105013 DOI: 10.1371/journal.pone.0020219] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 04/27/2011] [Indexed: 12/13/2022] Open
Abstract
Background Endothelial progenitor cells (EPCs) were shown to have angiogenic potential contributing to neovascularization. However, a clear definition of mouse EPCs by cell surface markers still remains elusive. We hypothesized that CD34 could be used for identification and isolation of functional EPCs from mouse bone marrow. Methodology/Principal Findings CD34+ cells, c-Kit+/Sca-1+/Lin− (KSL) cells, c-Kit+/Lin− (KL) cells and Sca-1+/Lin− (SL) cells were isolated from mouse bone marrow mononuclear cells (BMMNCs) using fluorescent activated cell sorting. EPC colony forming capacity and differentiation capacity into endothelial lineage were examined in the cells. Although CD34+ cells showed the lowest EPC colony forming activity, CD34+ cells exhibited under endothelial culture conditions a more adherent phenotype compared with the others, demonstrating the highest mRNA expression levels of endothelial markers vWF, VE-cadherin, and Flk-1. Furthermore, a dramatic increase in immediate recruitment of cells to the myocardium following myocardial infarction and systemic cell injection was observed for CD34+ cells comparing with others, which could be explained by the highest mRNA expression levels of key homing-related molecules Integrin β2 and CXCR4 in CD34+ cells. Cell retention and incorporation into the vasculature of the ischemic myocardium was also markedly increased in the CD34+ cell-injected group, giving a possible explanation for significant reduction in fibrosis area, significant increase in neovascularization and the best cardiac functional recovery in this group in comparison with the others. Conclusion These findings suggest that mouse CD34+ cells may represent a functional EPC population in bone marrow, which could benefit the investigation of therapeutic EPC biology.
Collapse
Affiliation(s)
- Junjie Yang
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation/RIKEN Center for Developmental Biology, Kobe, Japan
- Division of Cardiovascular Surgery, Department of Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaaki Ii
- Group of Translational Stem Cell Research, Department of Pharmacology, Osaka Medical College, Osaka, Japan
| | - Naosuke Kamei
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation/RIKEN Center for Developmental Biology, Kobe, Japan
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Cantas Alev
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation/RIKEN Center for Developmental Biology, Kobe, Japan
- Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Sang-Mo Kwon
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seoul, Korea
| | - Atsuhiko Kawamoto
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation/RIKEN Center for Developmental Biology, Kobe, Japan
| | - Hiroshi Akimaru
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation/RIKEN Center for Developmental Biology, Kobe, Japan
| | - Haruchika Masuda
- Department of Regenerative Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Yoshiki Sawa
- Division of Cardiovascular Surgery, Department of Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- * E-mail: (TA); (YS)
| | - Takayuki Asahara
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation/RIKEN Center for Developmental Biology, Kobe, Japan
- Department of Regenerative Medicine, Tokai University School of Medicine, Kanagawa, Japan
- * E-mail: (TA); (YS)
| |
Collapse
|
56
|
Czömpöly T, Lábadi A, Kellermayer Z, Olasz K, Arnold HH, Balogh P. Transcription factor Nkx2-3 controls the vascular identity and lymphocyte homing in the spleen. THE JOURNAL OF IMMUNOLOGY 2011; 186:6981-9. [PMID: 21593383 DOI: 10.4049/jimmunol.1003770] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The vasculature in the spleen and peripheral lymph nodes (pLNs) is considerably different, which affects both homing of lymphocytes and antigenic access to these peripheral lymphoid organs. In this paper, we demonstrate that in mice lacking the homeodomain transcription factor Nkx2-3, the spleen develops a pLN-like mRNA expression signature, coupled with the appearance of high endothelial venules (HEVs) that mediate L-selectin-dependent homing of lymphocytes into the mutant spleen. These ectopic HEV-like vessels undergo postnatal maturation and progressively replace MAdCAM-1 by pLN addressin together with the display of CCL21 arrest chemokine in a process that is reminiscent of HEV formation in pLNs. Similarly to pLNs, development of HEV-like vessels in the Nkx2-3-deficient spleen depends on lymphotoxin-β receptor-mediated signaling. The replacement of splenic vessels with a pLN-patterned vasculature impairs the recirculation of adoptively transferred lymphocytes and reduces the uptake of blood-borne pathogens. The Nkx2-3 mutation in BALB/c background causes a particularly disturbed splenic architecture, characterized by the near complete lack of the red pulp, without affecting lymph nodes. Thus, our observations reveal that the organ-specific patterning of splenic vasculature is critically regulated by Nkx2-3, thereby profoundly affecting the lymphocyte homing mechanism and blood filtering capacity of the spleen in a tissue-specific manner.
Collapse
Affiliation(s)
- Tamás Czömpöly
- Department of Immunology and Biotechnology, Faculty of Medicine, University of Pécs, H-7624 Pécs, Hungary
| | | | | | | | | | | |
Collapse
|
57
|
Grassl GA, Faustmann M, Gill N, Zbytnuik L, Merkens H, So L, Rossi FM, McNagny KM, Finlay BB. CD34 mediates intestinal inflammation in Salmonella-infected mice. Cell Microbiol 2011; 12:1562-75. [PMID: 20497179 DOI: 10.1111/j.1462-5822.2010.01488.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CD34 is a highly glycosylated sialomucin expressed on a variety of cells, ranging from vascular endothelial cells to haematopoietic stem cells. Depending on its glycosylation state, CD34 has been shown to promote or inhibit cell adhesion and migration; however, a functional role for CD34 in the gut has not been determined. Using a model of Salmonella-induced gastroenteritis, we investigated the role of CD34 in the context of infection. Upon oral infection, the number of CD34+ cells detected in the submucosa, vascular endothelium and lamina propria significantly increased in S. Typhimurium-infected C57Bl/6 mice. The pathology of S. Typhimurium-infected C57Bl/6 mice was characterized by recruitment of neutrophils to the site of inflammation, submucosal oedema and crypt destruction. In contrast, Cd34(-/-) mice showed a delayed pathology, a defect in inflammatory cell migration into the intestinal tissue and enhanced survival. Importantly, this was not due to a lack of chemotactic signals in Cd34(-/-) mice as these mice had either similar or significantly higher levels of pro-inflammatory cytokines and chemokines post infection when compared with infected C57/Bl6 control mice. In summary, we demonstrate a novel role for CD34 in enhancing migration of inflammatory cells and thereby exacerbating host-mediated immunopathology in the intestine of S. Typhimurium-infected mice.
Collapse
Affiliation(s)
- Guntram A Grassl
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Maltby S, Freeman S, Gold MJ, Baker JHE, Minchinton AI, Gold MR, Roskelley CD, McNagny KM. Opposing roles for CD34 in B16 melanoma tumor growth alter early stage vasculature and late stage immune cell infiltration. PLoS One 2011; 6:e18160. [PMID: 21494591 PMCID: PMC3073928 DOI: 10.1371/journal.pone.0018160] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 02/21/2011] [Indexed: 12/04/2022] Open
Abstract
Tumor growth and metastasis are determined by the complex interplay of factors, including those intrinsic to tumor cells and extrinsic factors associated with the tumor microenvironment. Our previous work demonstrated key roles for CD34 in the maintenance of vascular integrity and eosinophil and mast cell homing. Since both of these functions affect tumor development, we characterized the effect of CD34 ablation on tumor growth using the B16F1 melanoma model. Intriguingly, we found that CD34 plays a biphasic role in tumor progression. In early growth, both subcutaneous-injected tumors and intravenous-injected lung metastases grew more slowly in Cd34−/− mice. This correlated with abnormal vessel morphology and increased vascular permeability in these mice. Bone marrow transplantation experiments confirmed that this reflects a non-hematopoietic function of CD34. At later stages, subcutaneous tumor growth was accelerated in Cd34−/− mice and surpassed growth in wildtype mice. Bone marrow chimera experiments demonstrated this difference was due to a hematopoietic function for CD34 and, correspondingly we found reduced intra-tumor mast cell numbers in Cd34−/− mice. In aggregate, our analysis reveals a novel role for CD34 in both early and late tumor growth and provides novel insights into the role of the tumor microenvironment in tumor progression.
Collapse
Affiliation(s)
- Steven Maltby
- The Biomedical Research Centre, University of British Columbia, Vancouver, Canada
| | - Spencer Freeman
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
- Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- I3 and CELL Research Groups, University of British Columbia, Vancouver, Canada
| | - Matthew J. Gold
- The Biomedical Research Centre, University of British Columbia, Vancouver, Canada
| | - Jennifer H. E. Baker
- Department of Medical Biophysics, British Columbia Cancer Research Centre, University of British Columbia, Vancouver, Canada,
| | - Andrew I. Minchinton
- Department of Medical Biophysics, British Columbia Cancer Research Centre, University of British Columbia, Vancouver, Canada,
| | - Michael R. Gold
- Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- I3 and CELL Research Groups, University of British Columbia, Vancouver, Canada
| | - Calvin D. Roskelley
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
- I3 and CELL Research Groups, University of British Columbia, Vancouver, Canada
| | - Kelly M. McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
59
|
Deterding LJ, Williams JG, Humble MM, Petrovich RM, Wei SJ, Trempus CS, Gates MB, Zhu F, Smart RC, Tennant RW, Tomer KB. CD34 Antigen: Determination of Specific Sites of Phosphorylation In Vitro and In Vivo. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2011; 301:12-21. [PMID: 21499536 PMCID: PMC3077033 DOI: 10.1016/j.ijms.2010.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
CD34, a type I transmembrane glycoprotein, is a surface antigen which is expressed on several cell types, including hematopoietic progenitors, endothelial cells, as well as mast cells. Recently, CD34 has been described as a marker for epidermal stem cells in mouse hair follicles, and is expressed in outer root sheath cells of the human hair follicle. Although the biological function and regulation of CD34 is not well understood, it is thought to be involved in cell adhesion as well as possibly having a role in signal transduction. In addition, CD34 was shown to be critical for skin tumor development in mice, although the exact mechanism remains unknown.Many proteins' functions and biological activities are regulated through post-translational modifications. The extracellular domain of CD34 is heavily glycosylated but the role of these glycans in CD34 function is unknown. Additionally, two sites of tyrosine phosphorylation have been reported on human CD34 and it is known that CD34 is phosphorylated, at least in part, by protein kinase C; however, the precise location of the sites of phosphorylation has not been reported. In an effort to identify specific phosphorylation sites in CD34 and delineate the possible role of protein kinase C, we undertook the identification of the in vitro sites of phosphorylation on the intracellular domain of mouse CD34 (aa 309-382) following PKC treatment. For this work, we are using a combination of enzymatic proteolysis and peptide sequencing by mass spectrometry. After which the in vivo sites of phosphorylation of full-length mouse CD34 expressed from HEK293F cells were determined. The observed in vivo sites of phosphorylation, however, are not consensus PKC sites, but our data indicate that one of these sites may possibly be phosphorylated by AKT2. These results suggest that other kinases, as well as PKC, may have important signaling functions in CD34.
Collapse
Affiliation(s)
- Leesa J. Deterding
- Laboratory of Structural Biology, National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709
| | - Jason G. Williams
- Laboratory of Structural Biology, National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709
| | - Margaret M. Humble
- Laboratory of Pharmacology and Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709
| | - Robert M. Petrovich
- Laboratory of Structural Biology, National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709
| | - Sung-Jen Wei
- Laboratory of Pharmacology and Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709
| | - Carol S. Trempus
- Laboratory of Pharmacology and Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709
| | - Matthew B. Gates
- Laboratory of Structural Biology, National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709
| | - Feng Zhu
- Cell Signaling and Cancer Group, Department of Environmental and Molecular Toxicology, North Carolina State University, Box 7633, Raleigh, NC 27695
| | - Robert C. Smart
- Cell Signaling and Cancer Group, Department of Environmental and Molecular Toxicology, North Carolina State University, Box 7633, Raleigh, NC 27695
| | - Raymond W. Tennant
- Laboratory of Pharmacology and Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709
| | - Kenneth B. Tomer
- Laboratory of Structural Biology, National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709
| |
Collapse
|
60
|
Liu S, Kiick K. Architecture effects on L-selectin shedding induced by polypeptide-based multivalent ligands. Polym Chem 2011; 2:1513-1522. [PMID: 23926449 DOI: 10.1039/c1py00063b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multivalent interactions between selectins and their ligands play key roles in mediating the rolling and tethering of leukocytes in the early steps of the inflammatory response, as well as in lymphocyte circulation. L-selectin shedding, which is the proteolytic cleavage of L-selectin, can be induced by L-selectin clustering through the binding of multivalent ligands to multiple L-selectin molecules, and it has been shown to regulate leukocyte rolling and subsequent integrin activation for firm adhesion. In this paper, we report the production of homogenous glycopolypeptides modified with a 3,6-disulfo-galactopyranoside equipped with a caproyl linker. The saccharide residue was chemically attached to various polypeptide backbones of differing architectures; the composition and purity of the sulfated glycopolypeptides was confirmed via1H-NMR spectroscopy, amino acid analysis (AAA), and electrophoretic analysis. The retention of the conformation of the polypeptide backbone was confirmed via circular dichroic spectroscopy. The shedding of l-selectin from the surface of Jurkat cells induced by these sulfated glycopolypeptides, determined via ELISA-based methods, varied based on differences in the architectures of the polypeptide scaffolds, suggesting opportunities for these strategies in probing cell-surface receptor arrays and directing cell signaling events.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware, 19716, USA.
| | | |
Collapse
|
61
|
Hayasaka H, Taniguchi K, Fukai S, Miyasaka M. Neogenesis and development of the high endothelial venules that mediate lymphocyte trafficking. Cancer Sci 2010; 101:2302-8. [PMID: 20726857 PMCID: PMC11158135 DOI: 10.1111/j.1349-7006.2010.01687.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Physiological recruitment of lymphocytes from the blood into lymph nodes and Peyer's patches is mediated by high endothelial venules (HEV), specialized blood vessels found in secondary lymphoid tissues except for the spleen. The HEV are distinguished from other types of blood vessels by their tall and plump endothelial cells, and by their expression of specific chemokines and adhesion molecules, which all contribute to the selective lymphocyte trafficking across these blood vessels. The development of HEV is ontogenically regulated, and they appear perinatally in the mouse. High endothelial venules can appear ectopically, for instance in chronically inflamed tissues. Given that HEV enable the efficient trafficking of lymphocytes into tissues, the induction of HEV at a tumor site could potentiate tumor-specific immune responses, and the artificial manipulation of HEV neogenesis might thus provide a new tool for cancer immunotherapy. However, the process of HEV development and the mechanisms by which the unique features of HEV are maintained are incompletely understood. In this review, we discuss the process of HEV neogenesis and development during ontogeny, and their molecular requirements for maintaining their unique characteristics under physiological conditions.
Collapse
Affiliation(s)
- Haruko Hayasaka
- Department of Microbiology and Immunology, Laboratory of Immunodynamics, Osaka University Graduate School of Medicine Laboratory of Immunodynamics, WPI Immunology Frontier Center, Osaka University, Osaka, Japan.
| | | | | | | |
Collapse
|
62
|
Fiorino G, Correale C, Fries W, Repici A, Malesci A, Danese S. Leukocyte traffic control: a novel therapeutic strategy for inflammatory bowel disease. Expert Rev Clin Immunol 2010; 6:567-72. [PMID: 20594130 DOI: 10.1586/eci.10.40] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel diseases share common pathogenetic mechanisms that are not yet completely understood. It is clear, however, that the expression and production of cytokines in response to inflammation plays a key role in mediating the migration of activated leukocytes. The process of angiogenesis and the expression of adhesion molecules on the intestinal microvasculature act as gateways, facilitating the recruitment of leukocytes into the gut mucosa. New agents specifically blocking adhesion molecules, in particular integrins, have been developed in order to limit the passage of activated leukocytes into the mucosa. Non-gut-specific anti-integrin agents, such as natalizumab, have been shown to be effective in the treatment of IBD, but the risk of serious adverse events has limited their further development. The development of a new specific molecule, vedolizumab, is currently under investigation in a large clinical trial. This novel specific anti-integrin drug seems to hold promise in the treatment of gut inflammation.
Collapse
Affiliation(s)
- Gionata Fiorino
- IBD Unit, Division of Gastroenterology and Digestive Endoscopy, IRCCS Humanitas, Rozzano, Milan, Italy
| | | | | | | | | | | |
Collapse
|
63
|
Wang Z, Wang KY, Wu Y, Zhou P, Sun XO, Chen G. Potential role of CD34 in cerebral vasospasm after experimental subarachnoid hemorrhage in rats. Cytokine 2010; 52:245-51. [PMID: 20829062 DOI: 10.1016/j.cyto.2010.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/15/2010] [Accepted: 08/16/2010] [Indexed: 11/30/2022]
Abstract
Inflammatory responses have been implicated in the elaboration of several forms of central nervous system injury, including cerebral vasospasm after subarachnoid hemorrhage (SAH). A critical event participating in such responses is the recruitment of circulating leukocytes into the inflammatory site. CD34 is a key adhesion molecule responsible for recruitment of monocytes/macrophages and the attachment of leukocytes to endothelial cells. However, it has not been investigated whether, and to what degree, CD34 is induced by SAH and also the role of CD34 in the pathogenesis of cerebral vasospasm following SAH remains unknown. Experiment 1 aimed to investigate the timecourse of the CD34 expression in the basilar artery after SAH. In experiment 2, we chose the maximum time point of vasospasm (day 3) and assessed the effect of monoclonal antibody against CD34 on regulation of cerebral vasospasm. As a result, the elevated expression of CD34 was detected in the basilar artery after SAH and peaked on day 3. After intracisternal administration of CD34 monoclonal antibody, the vasospasm was markedly attenuated after blood injection on day 3. Our results suggest that CD34 is increasingly expressed in a parallel time course to the development of cerebral vasospasm in a rat experimental model of SAH and administration of the specific CD34 antibody could prevent or reduce cerebral vasospasm caused by SAH.
Collapse
Affiliation(s)
- Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | | | | | | | | | | |
Collapse
|
64
|
Maltby S, Wohlfarth C, Gold M, Zbytnuik L, Hughes MR, McNagny KM. CD34 is required for infiltration of eosinophils into the colon and pathology associated with DSS-induced ulcerative colitis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1244-54. [PMID: 20696776 DOI: 10.2353/ajpath.2010.100191] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Eosinophil migration into the gut and the release of granular mediators plays a critical role in the pathogenesis of inflammatory bowel diseases, including ulcerative colitis. We recently demonstrated that eosinophil migration into the lung requires cell surface expression of the sialomucin CD34 on mast cells and eosinophils in an asthma model. Based on these findings, we investigated a similar role for CD34 in the migration of eosinophils and other inflammatory cells into the colon as well as explored the effects of CD34 ablation on disease development in a dextran sulfate sodium-induced model of ulcerative colitis. Our findings demonstrate decreased disease severity in dextran sulfate sodium-treated Cd34(-/-) mice, as assessed by weight loss, diarrhea, bleeding, colon shortening and tissue pathology, compared with wild-type controls. CD34 was predominantly expressed on eosinophils within inflamed colon tissues, and Cd34(-/-) animals exhibited drastically reduced colon eosinophil infiltration. Using chimeric animals, we demonstrated that decreased disease pathology resulted from loss of CD34 from bone marrow-derived cells and that eosinophilia in Cd34(-/-)IL5(Tg) animals was sufficient to overcome protection from disease. In addition, we demonstrated a decrease in peripheral blood eosinophil numbers following dextran sulfate sodium treatment. These findings demonstrate that CD34 was expressed on colon-infiltrating eosinophils and played a role in eosinophil migration. Further, our findings suggest CD34 is required for efficient eosinophil migration, but not proliferation or expansion, in the development of ulcerative colitis.
Collapse
Affiliation(s)
- Steven Maltby
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
65
|
Ieronimakis N, Balasundaram G, Rainey S, Srirangam K, Yablonka-Reuveni Z, Reyes M. Absence of CD34 on murine skeletal muscle satellite cells marks a reversible state of activation during acute injury. PLoS One 2010; 5:e10920. [PMID: 20532193 PMCID: PMC2880004 DOI: 10.1371/journal.pone.0010920] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 04/27/2010] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Skeletal muscle satellite cells are myogenic progenitors that reside on myofiber surface beneath the basal lamina. In recent years satellite cells have been identified and isolated based on their expression of CD34, a sialomucin surface receptor traditionally used as a marker of hematopoietic stem cells. Interestingly, a minority of satellite cells lacking CD34 has been described. METHODOLOGY/PRINCIPAL FINDINGS In order to elucidate the relationship between CD34+ and CD34- satellite cells we utilized fluorescence-activated cell sorting (FACS) to isolate each population for molecular analysis, culture and transplantation studies. Here we show that unless used in combination with alpha7 integrin, CD34 alone is inadequate for purifying satellite cells. Furthermore, the absence of CD34 marks a reversible state of activation dependent on muscle injury. CONCLUSIONS/SIGNIFICANCE Following acute injury CD34- cells become the major myogenic population whereas the percentage of CD34+ cells remains constant. In turn activated CD34- cells can reverse their activation to maintain the pool of CD34+ reserve cells. Such activation switching and maintenance of reserve pool suggests the satellite cell compartment is tightly regulated during muscle regeneration.
Collapse
Affiliation(s)
- Nicholas Ieronimakis
- Department of Pathology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Gayathri Balasundaram
- Department of Pathology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Sabrina Rainey
- Department of Pathology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Kiran Srirangam
- Department of Pathology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Zipora Yablonka-Reuveni
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Morayma Reyes
- Department of Pathology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
66
|
Leppänen A, Parviainen V, Ahola-Iivarinen E, Kalkkinen N, Cummings RD. Human L-selectin preferentially binds synthetic glycosulfopeptides modeled after endoglycan and containing tyrosine sulfate residues and sialyl Lewis x in core 2 O-glycans. Glycobiology 2010; 20:1170-85. [PMID: 20507883 DOI: 10.1093/glycob/cwq083] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Endoglycan is a mucin-like glycoprotein expressed by endothelial cells and some leukocytes and is recognized by L-selectin, a C-type lectin important in leukocyte trafficking and extravasation during inflammation. Here, we show that recombinant L-selectin and human T lymphocytes expressing L-selectin bind to synthetic glycosulfopeptides (GSPs). These synthetic glycosulfopeptides contain 37 amino acid residues modeled after the N-terminus of human endoglycan and contain one or two tyrosine sulfates (TyrSO(3)) along with a nearby core-2-based Thr-linked O-glycan with sialyl Lewis x (C2-SLe(x)). TyrSO(3) at position Y118 was more critical for binding than at Y97. C2-SLe(x) at T124 was required for L-selectin recognition. Interestingly, under similar conditions, neither L-selectin nor T lymphocytes showed appreciable binding to the sulfated carbohydrate epitope 6-sulfo-SLe(x). P-selectin also bound to endoglycan-based GSPs but with lower affinity than toward GSPs modeled after PSGL-1, the physiological ligand for P- and L-selectin that is expressed on leukocytes. These results demonstrate that TyrSO(3) residues in association with a C2-SLe(x) moiety within endoglycan and PSGL-1 are preferentially recognized by L-selectin.
Collapse
Affiliation(s)
- Anne Leppänen
- Department of Biological Sciences, Division of Biochemistry, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
67
|
Pudelko M, Bull J, Kunz H. Chemical and Chemoenzymatic Synthesis of Glycopeptide Selectin Ligands Containing Sialyl Lewis X Structures. Chembiochem 2010; 11:904-30. [DOI: 10.1002/cbic.201000029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
68
|
H Syndrome: Recently Defined Genodermatosis With Distinct Histologic Features. A Morphological, Histochemical, Immunohistochemical, and Ultrastructural Study of 10 Cases. Am J Dermatopathol 2010; 32:118-28. [DOI: 10.1097/dad.0b013e3181b28572] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
69
|
Mitoma J, Fukuda M. Core O-glycans required for lymphocyte homing gene knockout mice of core 1 beta1,3-N-acetylglucosaminyltransferase and core 2 N-acetylglucosaminyltransferase. Methods Enzymol 2010; 479:257-70. [PMID: 20816171 DOI: 10.1016/s0076-6879(10)79015-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mucin-type O-glycans are synthesized by sequential reaction of glycosyltransferases that have different substrate specificities. To know the significance of specific O-glycan structures, many researchers have been making mice deficient in corresponding enzymes for the synthesis of the O-glycan structures. Here we describe the analysis of gene knockout mice of core 2 branching enzyme (core 2 N-acetylglucosaminyltransferase, Core2GlcNAcT) and core 1 extension enzyme (core 1 beta1,3-N-acetylglucosaminyltransferase, Core1-beta3GlcNAcT). Because mucin-type O-glycans present sialyl Lewis X (sLeX) and sulfated version of the glycans, which are L-selectin ligands, at the reducing end, the amounts of the ligands of these knockout mice would be reduced. The methods described here are to analyze the interaction between L-selectin and its ligand 6-sulfo sLeX such as lymphocyte homing assay, staining of frozen section, and blotting using L- and E-selectin-IgM chimeric proteins.
Collapse
Affiliation(s)
- Junya Mitoma
- Division of Glyco-Signal Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Komatsushima, Aoba, Sendai, Japan
| | | |
Collapse
|
70
|
Matsumoto M, Miyasaka M, Hirata T. P-selectin glycoprotein ligand-1 negatively regulates T-cell immune responses. THE JOURNAL OF IMMUNOLOGY 2009; 183:7204-11. [PMID: 19890058 DOI: 10.4049/jimmunol.0902173] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cell surface sialomucins often act as antiadhesive molecules by virtue of their extended structure and negative charge. CD43 is one such sialomucin, expressed on most leukocytes. P-selectin glycoprotein ligand-1 (PSGL-1) is another sialomucin expressed by leukocytes. It serves as a major selectin ligand, but no antiadhesive role for it has been described. In this study, we showed that PSGL-1-deficient T cells, like CD43-deficient T cells, exhibited increased adhesion and proliferation compared with wild-type cells. The loss of both PSGL-1 and CD43 led to a further increase in T cell adhesion and proliferation. The reexpression of full-length PSGL-1 or CD43 in double-deficient CD4(+) T cells reversed their increased adhesion and proliferation phenotype. Using chimeric constructs of human CD8 and either PSGL-1 or CD43, we demonstrated that the intracellular domain of PSGL-1 or CD43 is required for suppressing proliferation but not adhesion. Furthermore, in a mouse model of inflammatory bowel disease induced by the adoptive transfer of naive T cells into RAG-deficient hosts, a PSGL-1 deficiency exacerbated the development of inflammation. These results reveal a novel regulatory role for PSGL-1 in T cell adhesion and proliferation and suggest that PSGL-1 negatively regulates T cell immune responses in vivo.
Collapse
Affiliation(s)
- Masanori Matsumoto
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Graduate School of Medicine and World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | | | | |
Collapse
|
71
|
Abstract
Podocalyxin, a sialomucin most closely related to CD34 and endoglycan, is expressed by kidney podocytes, hematopoietic progenitors, vascular endothelia, and a subset of neurons; aberrant expression has recently been implicated in a range of cancers. Through interactions with several intracellular proteins and at least one extracellular ligand, podocalyxin regulates both adhesion and cell morphology. In the developing kidney, podocalyxin plays an essential role in the formation and maintenance of podocyte foot processes, and its absence results in perinatal lethality. Podocalyxin expression in the hematopoietic system correlates with cell migration and the seeding of new hematopoietic tissues. In addition, it is abnormally expressed in subsets of breast, prostate, liver, pancreatic, and kidney cancer as well as leukemia. Strikingly, it is often associated with the most aggressive cases, and it is likely involved in metastasis. Thus, a thorough investigation of the normal activities of podocalyxin may facilitate the development of new cancer treatment strategies.
Collapse
Affiliation(s)
- Julie S Nielsen
- The Biomedical Research Centre, Vancouver, British Columbia, Canada
| | | |
Collapse
|
72
|
Abstract
At sites of inflammation, infection or vascular injury local proinflammatory or pathogen-derived stimuli render the luminal vascular endothelial surface attractive for leukocytes. This innate immunity response consists of a well-defined and regulated multi-step cascade involving consecutive steps of adhesive interactions between the leukocytes and the endothelium. During the initial contact with the activated endothelium leukocytes roll along the endothelium via a loose bond which is mediated by selectins. Subsequently, leukocytes are activated by chemokines presented on the luminal endothelial surface, which results in the activation of leukocyte integrins and the firm leukocyte arrest on the endothelium. After their firm adhesion, leukocytes make use of two transmigration processes to pass the endothelial barrier, the transcellular route through the endothelial cell body or the paracellular route through the endothelial junctions. In addition, further circulating cells, such as platelets arrive early at sites of inflammation contributing to both coagulation and to the immune response in parts by facilitating leukocyte-endothelial interactions. Platelets have thereby been implicated in several inflammatory pathologies. This review summarizes the major mechanisms and molecules involved in leukocyte-endothelial and leukocyte-platelet interactions in inflammation.
Collapse
Affiliation(s)
- Harald F Langer
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA.
| | | |
Collapse
|
73
|
Abstract
For almost 30 years, the cell-surface protein CD34 has been widely used as a marker to assist in the identification and Summary isolation of hematopoietic stem cells (HSCs) and progenitors in preparation for bone-marrow transplantation. In addition, it has increasingly been used as a marker to help identify other tissue-specific stem cells, including muscle satellite cells and epidermal precursors. Despite its utility as a stem-cell marker, however, the function of CD34 has remained remarkably elusive. This is probably because: (1) it is subject to a range of tissue-specific post-transcriptional and post-translational modifications that are expected to alter its function dramatically; (2) the simple interpretation of CD34 gain- and loss-of-function experiments has been confounded by the overlapping expression of the two recently discovered CD34-related proteins podocalyxin and endoglycan; and (3) there has been a glaring lack of robust in vitro and in vivo functional assays that permit the structural and functional analysis of CD34 and its relatives. Here, we provide a brief review of the domain structure, genomic organization, and tissue distribution of the CD34 family. We also describe recent insights from gain- and loss-of-function experiments and improved assays, which are elucidating a fascinating role for these molecules in cell morphogenesis and migration.
Collapse
Affiliation(s)
- Julie S Nielsen
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, 2410 Lee Avenue, Victoria, BC, Canada V8R 6V5
| | | |
Collapse
|
74
|
Testa JE, Chrastina A, Oh P, Li Y, Witkiewicz H, Czarny M, Buss T, Schnitzer JE. Immunotargeting and cloning of two CD34 variants exhibiting restricted expression in adult rat endothelia in vivo. Am J Physiol Lung Cell Mol Physiol 2009; 297:L251-62. [PMID: 19465515 DOI: 10.1152/ajplung.90565.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mapping protein expression of endothelial cells (EC) in vivo is fundamental to understanding cellular function and may yield new tissue-selective targets. We have developed a monoclonal antibody, MAb J120, to a protein expressed primarily in rat lung and heart endothelium. The antigen was identified as CD34, a marker of hematopoietic stem cells and global marker of endothelial cells in human and mouse tissues. PCR-based cloning identified two CD34 variant proteins, full length and truncated, both of which are expressed on luminal endothelial cell plasma membranes (P) isolated from lung. Truncated CD34 predominated in heart P, and neither variant was detected in P from kidney or liver. CD34 in lung was readily accessible to (125)I-J120 inoculated intravenously, and immunohistochemistry showed strong CD34 expression in lung EC. Few microvessels stained in heart and kidney, and no CD34 was detected in vessels of other organs or in lymphatics. We present herein the first complete sequence of a rat CD34 variant and show for the first time that the encoded truncated variant is endogenously expressed on EC in vivo. We also demonstrate that CD34 expression in rat EC, unlike mouse and human, is restricted in its distribution enabling quite specific lung targeting in vivo.
Collapse
Affiliation(s)
- Jacqueline E Testa
- Proteogenomics Research Institute For Systems Medicine, Sidney Kimmel Cancer Center, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Glycoforms of human endothelial CD34 that bind L-selectin carry sulfated sialyl Lewis x capped O- and N-glycans. Blood 2009; 114:733-41. [PMID: 19359410 DOI: 10.1182/blood-2009-03-210237] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Endothelial sialomucin CD34 functions as an L-selectin ligand mediating lymphocyte extravasation only when properly glycosylated to express a sulfated carbohydrate epitope, 6-sulfo sialyl Lewis x (6-sulfo SLe(x)). It is thought that multivalent 6-sulfo SLe(x) expression promotes high-affinity binding to L-selectin by enhancing avidity. However, the reported low amount of 6-sulfo SLe(x) in total human CD34 is inconsistent with this model and prompted us to re-evaluate CD34 glycosylation. We separated CD34 into 2 glycoforms, the L-selectin-binding and nonbinding glycoforms, L-B-CD34 and L-NB-CD34, respectively, and analyzed released O- and N-glycans from both forms. L-B-CD34 is relatively minor compared with L-NB-CD34 and represented less than 10% of total tonsillar CD34. MECA-79, a mAb to sulfated core-1 O-glycans, bound exclusively to L-B-CD34 and this form contained all sulfated and fucosylated O-glycans. 6-Sulfo SLe(x) epitopes occur on core-2 and extended core-1 O-glycans with approximately 20% of total L-B-CD34 O-glycans expressing 6-sulfo SLe(x). N-glycans containing potential 6-sulfo SLe(x) epitopes were also present in L-B-CD34, but their removal did not abolish binding to L-selectin. Thus, a minor glycoform of CD34 carries relatively abundant 6-sulfo SLe(x) epitopes on O-glycans that are important for its recognition by L-selectin.
Collapse
|
76
|
Strell C, Entschladen F. Extravasation of leukocytes in comparison to tumor cells. Cell Commun Signal 2008; 6:10. [PMID: 19055814 PMCID: PMC2627905 DOI: 10.1186/1478-811x-6-10] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 12/04/2008] [Indexed: 12/15/2022] Open
Abstract
The multi-step process of the emigration of cells from the blood stream through the vascular endothelium into the tissue has been termed extravasation. The extravasation of leukocytes is fairly well characterized down to the molecular level, and has been reviewed in several aspects. Comparatively little is known about the extravasation of tumor cells, which is part of the hematogenic metastasis formation. Although the steps of the process are basically the same in leukocytes and tumor cells, i.e. rolling, adhesion, transmigration (diapedesis), the molecules that are involved are different. A further important difference is that leukocyte interaction with the endothelium changes the endothelial integrity only temporarily, whereas tumor cell interaction leads to an irreversible damage of the endothelial architecture. Moreover, tumor cells utilize leukocytes for their extravasation as linkers to the endothelium. Thus, metastasis formation is indirectly susceptible to localization signals that are literally specific for the immune system. We herein compare the extravasation of leukocytes and tumor cells with regard to the involved receptors and the localization signals that direct the cells to certain organs and sites of the body.
Collapse
Affiliation(s)
- Carina Strell
- Institute of Immunology, Witten/Herdecke University, Stockumer Str, 10, 58448 Witten, Germany.
| | | |
Collapse
|
77
|
Rivera-Nieves J, Gorfu G, Ley K. Leukocyte adhesion molecules in animal models of inflammatory bowel disease. Inflamm Bowel Dis 2008; 14:1715-35. [PMID: 18523998 PMCID: PMC2733908 DOI: 10.1002/ibd.20501] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The dysregulated recruitment of leukocytes into the intestine is required for the initiation and maintenance of inflammatory bowel disease (IBD). Several families of molecules regulate the influx of these cells into sites of inflammation. Interference with some of these molecules has already shown efficacy in the clinics and antibodies that target the molecules involved have been approved by the FDA for use in Crohn's disease (CD), multiple sclerosis (i.e., natalizumab), and psoriasis (i.e., efalizumab). Here, we discuss basic aspects of the different families of relevant molecules and compile a large body of preclinical studies that supported the targeting of specific steps of the leukocyte adhesion cascade for therapeutic purposes in colitis and in novel models of CD-like ileitis.
Collapse
Affiliation(s)
- Jesus Rivera-Nieves
- Mucosal Inflammation Program, Division of Gastroenterology, Department of Internal Medicine, University of Colorado Health Sciences Center, Denver Colorado 80206,Address correspondence and reprint requests to: Dr. Jesus Rivera-Nieves, Mucosal Inflammation Program, Division of Gastroenterology, Department of Internal Medicine, University of Colorado Health Sciences Center, Biochemistry Research Building Room 742A, 4200 E. 9th Ave SE, B146, Denver, CO 80206, e-mail address:
| | - Gezahegn Gorfu
- La Jolla Institute for Allergy and Immunology, Division of Inflammation Biology, La Jolla, CA 92037, USA
| | - Klaus Ley
- La Jolla Institute for Allergy and Immunology, Division of Inflammation Biology, La Jolla, CA 92037, USA
| |
Collapse
|
78
|
Maltby S, Hughes MR, Zbytnuik L, Paulson RF, McNagny KM. Podocalyxin selectively marks erythroid-committed progenitors during anemic stress but is dispensable for efficient recovery. Exp Hematol 2008; 37:10-8. [PMID: 19004540 DOI: 10.1016/j.exphem.2008.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 09/10/2008] [Accepted: 09/11/2008] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Podocalyxin expression on Ter119(+) erythroblasts is induced following administration of erythropoietin (Epo) or phenylhydrazine treatment, but is notably absent on committed erythroid progenitors during homeostatic red cell turnover. Following high-dose Epo administration in vivo, podocalyxin surface expression is upregulated, in part, via a signal transducers and activators of transcription 5-dependent pathway and this expression has been postulated to play a role in the release of reticulocytes from hematopoietic organs into the periphery under conditions of increased erythropoietic rate. Here we have thoroughly addressed this hypothesis and further examined the expression profile of podocalyxin during Epo-induced erythroblast expansion and stress erythropoiesis. MATERIALS AND METHODS Following Epo induction, progenitor cells were sorted to characterize podocalyxin expression during stress. In addition, as podocalyxin-deficient mice die perinatally, we used chimeric mice reconstituted with wild-type or podocalyxin-deficient hematopoietic cells to analyze differences in response to high dose Epo administration and chemically induced anemia. RESULTS Podocalyxin surface expression is rapidly upregulated in response to stress and marks early erythroid progenitors and erythroblasts. Despite loss of podocalyxin, chimeras exhibit normal basal erythropoiesis and no differences in erythroid progenitor proportions in the spleen and marrow in response to Epo. Further, podocalyxin is dispensable for efficient recovery from models of anemia. CONCLUSIONS We demonstrate that podocalyxin is a highly specific marker of stress-induced blast-forming unit erythroid and colony-forming unit erythroid progenitors in mouse bone marrow and spleen. In addition, our findings suggest that podocalyxin is not necessary for efficient erythroblast expansion, erythroid differentiation, or reticulocyte release in response to Epo stimulation in vivo.
Collapse
Affiliation(s)
- Steven Maltby
- The Biomedical Research Centre, The University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
79
|
Production of lentiviruses displaying ''early-acting'' cytokines for selective gene transfer into hematopoietic stem cells. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008. [PMID: 18470641 DOI: 10.1007/978-1-60327-248-3_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
A major limitation of current lentiviral vectors (LVs) is their inability to govern efficient gene transfer into quiescent cells, such as human CD34+ cells that reside in the G0 phase of the cell cycle and that are highly enriched in hematopoietic stem cells. This hampers their application for gene therapy of hematopoietic cells. We describe here novel LVs that overcome this restriction by displaying early-acting cytokines on their surface. Display of thrombopoietin, stem cell factor or both cytokines on LV surface allows high transfer into quiescent cord blood CD34+ cells. Moreover, these surface-engineered LVs preferentially transduce and promote survival of resting CD34+ cells rather than cycling cells. These novel LVs allow superior gene transfer in the most immature CD34+ cells compared to conventional LVs, even in the presence of recombinant cytokines. This is demonstrated by their capacity to promote selective transduction in long-term culture initiating cell colonies (LTC-ICs) and of long-term non-obese diabetic/severe combined immunodeficient (NOD/SCID) repopulating cells (SRCs). Here we describe the production of these "early acting cytokine" displaying vectors and the methodology to confirm the capacity of these vectors to promote selective transduction of HSCs.
Collapse
|
80
|
Kerr SC, Fieger CB, Snapp KR, Rosen SD. Endoglycan, a member of the CD34 family of sialomucins, is a ligand for the vascular selectins. THE JOURNAL OF IMMUNOLOGY 2008; 181:1480-90. [PMID: 18606703 DOI: 10.4049/jimmunol.181.2.1480] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interactions of the selectin family of adhesion molecules with their ligands are essential for the initial rolling stage of leukocyte trafficking. Under inflammatory conditions, the vascular selectins, E- and P-selectin, are expressed on activated vessels and interact with carbohydrate-based ligands on the leukocyte surface. While several ligands have been characterized on human T cells, monocytes and neutrophils, there is limited information concerning ligands on B cells. Endoglycan (EG) together with CD34 and podocalyxin comprise the CD34 family of sialomucins. We found that EG, previously implicated as an L-selectin ligand on endothelial cells, was present on human B cells, T cells and peripheral blood monocytes. Upon activation of B cells, EG increased with a concurrent decrease in PSGL-1. Expression of EG on T cells remained constant under the same conditions. We further found that native EG from several sources (a B cell line, a monocyte line and human tonsils) was reactive with HECA-452, a mAb that recognizes sialyl Lewis X and related structures. Moreover, immunopurified EG from these sources was able to bind to P-selectin and where tested E-selectin. This interaction was divalent cation-dependent and required sialylation of EG. Finally, an EG construct supported slow rolling of E- and P-selectin bearing cells in a sialic acid and fucose dependent manner, and the introduction of intact EG into a B cell line facilitated rolling interactions on a P-selectin substratum. These in vitro findings indicate that EG can function as a ligand for the vascular selectins.
Collapse
Affiliation(s)
- Sheena C Kerr
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
81
|
Stefanelli T, Malesci A, De La Rue SA, Danese S. Anti-adhesion molecule therapies in inflammatory bowel disease: Touch and go. Autoimmun Rev 2008; 7:364-9. [DOI: 10.1016/j.autrev.2008.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Accepted: 01/16/2008] [Indexed: 01/14/2023]
|
82
|
Acevedo LM, Londono I, Oubaha M, Ghitescu L, Bendayan M. Glomerular CD34 expression in short- and long-term diabetes. J Histochem Cytochem 2008; 56:605-14. [PMID: 18319274 DOI: 10.1369/jhc.7a7354.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aging and diabetes are associated with exacerbated expression of adhesion molecules. Given their importance in endothelial dysfunction and their possible involvement in the alteration of glomerular permeability occurring in diabetes, we have evaluated expression of the sialomucin-type adhesion molecule CD34 in renal glomerular cells of normal and diabetic animals at two different ages by colloidal gold immunocytochemistry and immunoblotting. CD34 labeling was mostly assigned to the plasma membranes of glomerular endothelium and mesangial processes. Podocyte membranes were also labeled, but to a lesser degree. Short- and long-term diabetes triggers a substantial increase in immunogold labeling for CD34 in renal tissues compared with young normoglycemic animals. However, the level of labeling in old diabetic and healthy control rats is similar, suggesting that the effect of diabetes and aging on CD34 expression is similar but not synergistic. Western blotting of isolated glomerular fractions corroborated immunocytochemical results. Increased expression of CD34 may reflect its involvement in the pathogenesis of glomerular alterations related to age and diabetes. Alterations present in early diabetes, resembling those occurring with age, strengthen the concept that diabetes is an accelerated form of aging.
Collapse
Affiliation(s)
- Luz Marina Acevedo
- Department of Pathology and Cell Biology, Université de Montréal, Montréal QC H3T 1J4, Canada
| | | | | | | | | |
Collapse
|
83
|
Salati S, Zini R, Bianchi E, Testa A, Mavilio F, Manfredini R, Ferrari S. Role of CD34 antigen in myeloid differentiation of human hematopoietic progenitor cells. Stem Cells 2008; 26:950-9. [PMID: 18192237 DOI: 10.1634/stemcells.2007-0597] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CD34 is a transmembrane protein that is strongly expressed on hematopoietic stem/progenitor cells (HSCs); despite its importance as a marker of HSCs, its function is still poorly understood, although a role in cell adhesion has been demonstrated. To characterize the function of CD34 antigen on human HSCs, we examined, by both inhibition and overexpression, the role of CD34 in the regulation of HSC lineage differentiation. Our results demonstrate that CD34 silencing enhances HSC granulocyte and megakaryocyte differentiation and reduces erythroid maturation. In agreement with these results, the gene expression profile of these cells reveals the upregulation of genes involved in granulocyte and megakaryocyte differentiation and the downregulation of erythroid genes. Consistently, retroviral-mediated CD34 overexpression leads to a remarkable increase in erythroid progenitors and a dramatic decrease in granulocyte progenitors, as evaluated by clonogenic assay. Together, these data indicate that the CD34 molecule promotes the differentiation of CD34+ hematopoietic progenitors toward the erythroid lineage, which is achieved, at least in part, at the expense of granulocyte and megakaryocyte lineages.
Collapse
Affiliation(s)
- Simona Salati
- Department of Biomedical Sciences, Biological Chemistry Section, University of Modena and Reggio Emilia, Via Campi 287, 41100 Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
84
|
|
85
|
Enders S, Bernhard G, Zakrzewicz A, Tauber R. Inhibition of L-selectin binding by polyacrylamide-based conjugates under defined flow conditions. Biochim Biophys Acta Gen Subj 2007; 1770:1441-9. [PMID: 17707590 DOI: 10.1016/j.bbagen.2007.06.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 05/31/2007] [Accepted: 06/27/2007] [Indexed: 11/25/2022]
Abstract
Selectins mediate tethering and rolling of leukocytes along the endothelium in a shear force-dependent manner. This key step in the cellular immune response is a target for experimental anti-inflammatory therapies. In the present paper we have examined the inhibitory activity of the minimal selectin ligand sialyl Lewis x (SiaLe(x)), its isomer sialyl Lewis a (SiaLe(a)) and sulfated tyrosine (sTyr) residues under dynamic flow reflecting the rheological conditions in the blood stream. The monomeric ligands were compared to multivalent polyacrylamide (PAA)-based conjugates under defined flow conditions on the molecular level, using surface plasmon resonance (SPR) technology, and on the cellular level, using a parallel-plate flow chamber. SPR measurements showed that a spatial arrangement of binding epitopes mimicking the selectin binding motif of the natural ligand PSGL-1 inhibits L-selectin binding successfully with IC(50) values in the nanomolar range. Using a flow chamber adhesion assay it could be shown that the multivalent inhibitors efficiently blocked rolling and tethering of NALM-6 pre-B cells transfected with human L-selectin to activated endothelium and that the inhibitory activity increased with rising shear stress. While PAA-conjugates were almost not inhibitory at low shear stress, NALM-6 cell rolling was nearly completely inhibited at high shear stress. The results indicate that multimeric conjugates of SiaLe(x), SiaLe(a) and sTyr are highly effective inhibitors of L-selectin-mediated cell adhesion particularly under flow conditions. Consequently, SiaLe(x), SiaLe(a) and/or sTyr on macromolecular carriers may be promising candidates for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Sven Enders
- Zentralinstitut für Laboratoriumsmedizin und Pathobiochemie, Charité - Universitätsmedizin, Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| | | | | | | |
Collapse
|
86
|
Winn RK, Sharar SR, Vedder NB, Harlan JM. Leukocyte and endothelial adhesion molecules in ischaemia/reperfusion injuries. CIBA FOUNDATION SYMPOSIUM 2007; 189:63-71; discussion 72-6, 77-8. [PMID: 7587638 DOI: 10.1002/9780470514719.ch6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tissue ischaemia and/or reperfusion cause some of the injury seen in several clinical disorders and are responsible for considerable mortality and morbidity in humans. Part of the injury occurring after reperfusion of ischaemic tissue is the result of interactions between leukocytes adhering to vascular endothelium. Blocking the function of the leukocyte adhesion beta 2 integrin complex (CD11/CD18) leads to improved outcome following ischaemia and reperfusion. Functional blockade of either P-selectin or L-selectin prevents leukocyte rolling. Blocking leukocyte adherence at one of several levels may provide improved outcome in a variety of diseases associated with ischaemia and reperfusion.
Collapse
Affiliation(s)
- R K Winn
- Department of Surgery, University of Washington School of Medicine, Harborview Medical Center, Seattle 98104-2499, USA
| | | | | | | |
Collapse
|
87
|
Trempus CS, Morris RJ, Ehinger M, Elmore A, Bortner CD, Ito M, Cotsarelis G, Nijhof JGW, Peckham J, Flagler N, Kissling G, Humble MM, King LC, Adams LD, Desai D, Amin S, Tennant RW. CD34 expression by hair follicle stem cells is required for skin tumor development in mice. Cancer Res 2007; 67:4173-81. [PMID: 17483328 PMCID: PMC2121659 DOI: 10.1158/0008-5472.can-06-3128] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cell surface marker CD34 marks mouse hair follicle bulge cells, which have attributes of stem cells, including quiescence and multipotency. Using a CD34 knockout (KO) mouse, we tested the hypothesis that CD34 may participate in tumor development in mice because hair follicle stem cells are thought to be a major target of carcinogens in the two-stage model of mouse skin carcinogenesis. Following initiation with 200 nmol 7,12-dimethylbenz(a)anthracene (DMBA), mice were promoted with 12-O-tetradecanoylphorbol-13-acetate (TPA) for 20 weeks. Under these conditions, CD34KO mice failed to develop papillomas. Increasing the initiating dose of DMBA to 400 nmol resulted in tumor development in the CD34KO mice, albeit with an increased latency and lower tumor yield compared with the wild-type (WT) strain. DNA adduct analysis of keratinocytes from DMBA-initiated CD34KO mice revealed that DMBA was metabolically activated into carcinogenic diol epoxides at both 200 and 400 nmol. Chronic exposure to TPA revealed that CD34KO skin developed and sustained epidermal hyperplasia. However, CD34KO hair follicles typically remained in telogen rather than transitioning into anagen growth, confirmed by retention of bromodeoxyuridine-labeled bulge stem cells within the hair follicle. Unique localization of the hair follicle progenitor cell marker MTS24 was found in interfollicular basal cells in TPA-treated WT mice, whereas staining remained restricted to the hair follicles of CD34KO mice, suggesting that progenitor cells migrate into epidermis differently between strains. These data show that CD34 is required for TPA-induced hair follicle stem cell activation and tumor formation in mice.
Collapse
Affiliation(s)
- Carol S Trempus
- Cancer Biology Group, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Abstract
In recent decades, it has become evident that the endothelium is by no means a passive inner lining of blood vessels. This 'organ' with a large surface (approximately 350 m2) and a comparatively small total mass (approximately 110 g) is actively involved in vital functions of the cardiovascular system, including regulation of perfusion, fluid and solute exchange, haemostasis and coagulation, inflammatory responses, vasculogenesis and angiogenesis. The present chapter focusses on two central aspects of endothelial structure and function: (1) the heterogeneity in endothelial properties between species, organs, vessel classes and even within individual vessels and (2) the composition and role of the molecular layer on the luminal surface of endothelial cells. The endothelial lining of blood vessels in different organs differs with respect to morphology and permeability and is classified as 'continuous', 'fenestrated' or 'discontinuous'. Furthermore, the mediator release, antigen presentation or stress responses of endothelial cells vary between species, different organs and vessel classes. Finally there are relevant differences even between adjacent endothelial cells, with some cells exhibiting specific functional properties, e.g. as pacemaker cells for intercellular calcium signals. Organ-specific structural and functional properties of the endothelium are marked in the vascular beds of the lung and the brain. Pulmonary endothelium exhibits a high constitutive expression of adhesion molecules which may contribute to the margination of the large intravascular pool of leucocytes in the lung. Furthermore, the pulmonary microcirculation is less permeable to protein and water flux as compared to large pulmonary vessels. Endothelial cells of the blood-brain barrier exhibit a specialised phenotype with no fenestrations, extensive tight junctions and sparse pinocytotic vesicular transport. This barrier allows a strict control of exchange of solutes and circulating cells between the plasma and the interstitial space. It was observed that average haematocrit levels in muscle capillaries are much lower as compared to systemic haematocrit, and that flow resistance of microvascular beds is higher than expected from in vitro studies of blood rheology. This evidence stimulated the concept of a substantial layer on the luminal endothelial surface (endothelial surface layer, ESL) with a thickness in the range of 0.5-1 microm. In comparison, the typical thickness of the glycocalyx directly anchored in the endothelial plasma membrane, as seen in electron micrographs, amounts to only about 50-100 microm. Therefore it is assumed that additional components, e.g. adsorbed plasma proteins or hyaluronan, are essential in constituting the ESL. Functional consequences of the ESL presence are not yet sufficiently understood and acknowledged. However, it is evident that the thick endothelial surface layer significantly impacts haemodynamic conditions, mechanical stresses acting on red cells in microvessels, oxygen transport, vascular control, coagulation, inflammation and atherosclerosis.
Collapse
Affiliation(s)
- A R Pries
- Dept. of Physiology, Charité Berlin, Arnimallee 22, 14195 Berlin, Germany.
| | | |
Collapse
|
89
|
Mitoma J, Bao X, Petryanik B, Schaerli P, Gauguet JM, Yu SY, Kawashima H, Saito H, Ohtsubo K, Marth JD, Khoo KH, von Andrian UH, Lowe JB, Fukuda M. Critical functions of N-glycans in L-selectin-mediated lymphocyte homing and recruitment. Nat Immunol 2007; 8:409-18. [PMID: 17334369 DOI: 10.1038/ni1442] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 01/23/2007] [Indexed: 01/24/2023]
Abstract
Lymphocyte homing is mediated by specific interaction between L-selectin on lymphocytes and the carbohydrate ligand 6-sulfo sialyl Lewis X on high endothelial venules. Here we generated mice lacking both core 1 extension and core 2 branching enzymes to assess the functions of O-glycan-borne L-selectin ligands in vivo. Mutant mice maintained robust lymphocyte homing, yet they lacked O-glycan L-selectin ligands. Biochemical analyses identified a class of N-glycans bearing the 6-sulfo sialyl Lewis X L-selectin ligand in high endothelial venules. These N-glycans supported the binding of L-selectin to high endothelial venules in vitro and contributed in vivo to O-glycan-independent lymphocyte homing in wild-type and mutant mice. Our results demonstrate the critical function of N-glycan-linked 6-sulfo sialyl Lewis X in L-selectin-dependent lymphocyte homing and recruitment.
Collapse
Affiliation(s)
- Junya Mitoma
- Glycobiology Program, Cancer Research Center, Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Schopperle WM, DeWolf WC. The TRA-1-60 and TRA-1-81 human pluripotent stem cell markers are expressed on podocalyxin in embryonal carcinoma. Stem Cells 2006; 25:723-30. [PMID: 17124010 DOI: 10.1634/stemcells.2005-0597] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have previously identified the cell adhesion protein podocalyxin expressed in a human pluripotent stem cell, embryonal carcinoma (EC), which is a malignant germ cell. Podocalyxin is a heavily glycosylated membrane protein with amino acid sequence homology to the hematopoietic stem cell marker CD34. Since the initial discovery of podocalyxin in a cancerous stem cell, numerous new studies have identified podocalyxin in many different human cancers and in embryonic stem cells lines (ES) derived from human embryos. Embryonal carcinoma, as do all human pluripotent stem cells, expresses TRA-1-60 and TRA-1-81 antigens, and although their molecular identities are unknown, they are commonly used as markers of undifferentiated pluripotent human stem cells. We report here that purified podocalyxin from embryonal carcinoma has binding activity with the TRA-1-60 and TRA-1-81 antibodies. Embryonal carcinoma cells treated with retinoic acid undergo differentiation and lose the TRA-1-60/TRA-1-81 markers from their plasma membrane surface. We show that podocalyxin is modified in the retinoic acid-treated cells and has an apparent molecular mass of 170 kDa on protein blots as compared with the apparent 200-kDa molecular weight form of podocalyxin expressed in untreated cells. Furthermore, the modified form of podocalyxin no longer reacts with the TRA-1-60/TRA-1-81 antibodies. Thus, embryonal carcinoma expresses two distinct forms of podocalyxin, and the larger version is a molecular carrier of the human stem cell-defining antigens TRA-1-60 and TRA-1-81.
Collapse
Affiliation(s)
- William M Schopperle
- Department of Surgery, Beth Israel Deaconess Medical Center, RW-875, 330 Brookline Ave., Boston, MA 02215, USA.
| | | |
Collapse
|
91
|
Faried A, Kimura H, Faried LS, Usman N, Miyazaki T, Kato H, Yazawa S, Kuwano H. Expression of carbohydrate antigens in human esophageal squamous cell carcinoma: prognostic application and its diagnostic implications. Ann Surg Oncol 2006; 14:960-7. [PMID: 17094023 DOI: 10.1245/s10434-006-9200-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2006] [Revised: 07/09/2006] [Accepted: 07/13/2006] [Indexed: 11/18/2022]
Abstract
BACKGROUND Tumor markers whose antigenic determinants have been demonstrated to consist of carbohydrates are probably one of the most extensive tools that have been used in routine cancer diagnosis. In this study, the relevance of carbohydrate antigen expression profile was examined in esophageal squamous cell carcinoma together with prognosis in 130 patients. METHODS The expression of carbohydrate antigens was estimated immunohistochemically by anti-sialyl Lewis a (sialyl Le(a)) and anti-sialyl Lewis x (sialyl Le(x)) monoclonal antibodies, and correlation between their staining and clinicopathological status was examined. In addition, the correlation of both carbohydrate antigens expression was evaluated with microvessel density (MVD). RESULTS Expressions of sialyl Lewis antigens and MVD were associated with several clinicopathological features that reflect the tumor aggressiveness in esophageal cancer. The 5-year survival rate of patients was found to be associated with expression of sialyl Le(a) and sialyl Le(x) antigens and with MVD; thus, all of them were revealed to be independent prognostic factors. CONCLUSIONS Combination of these factors offered a better prediction of prognosis of esophageal squamous cell carcinoma. Further, carbohydrate antigens represent a promising target for therapeutic approaches against the disease.
Collapse
Affiliation(s)
- Ahmad Faried
- Department of General Surgical Science (Surgery I), Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Ninomiya M, Abe A, Katsumi A, Xu J, Ito M, Arai F, Suda T, Ito M, Kiyoi H, Kinoshita T, Naoe T. Homing, proliferation and survival sites of human leukemia cells in vivo in immunodeficient mice. Leukemia 2006; 21:136-42. [PMID: 17039228 DOI: 10.1038/sj.leu.2404432] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cellular components of the hematopoietic stem cell niche have been gradually identified. However, the niche for malignant hematopoiesis remains to be elucidated. Here, using human leukemia cells, which could be transplanted to immunodeficient mice, we studied the in vivo homing, proliferation and survival sites by immunohistopathology, compared with the corresponding sites for cord blood CD34(+) (CBCD34(+)) cells. The human leukemia cells initially localized on the surface of osteoblasts in the epiphysial region, and expanded to the inner vascular and diaphysial regions within 4 weeks. The percentage of CD34(+) leukemia cells in the bone marrow was transiently increased up to 50%. In vivo 5-bromo-2'-deoxyuridine labeling revealed that the epiphysis was the most active site for leukemia cell proliferation. CBCD34(+) cells showed the similar pattern of homing and proliferation to leukemia cells. After high-dose administration of cytosine-1-beta-D-arabinofuranoside, residual leukemia cells were localized in the perivascular endothelium as well as in contact with the trabecular endosteum. These findings suggest that xenotransplantation into immunodeficient mice provides a useful model to study the leukemia niche.
Collapse
Affiliation(s)
- M Ninomiya
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Tsurumai-cho, Showa-ku, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Gangenahalli GU, Singh VK, Verma YK, Gupta P, Sharma RK, Chandra R, Luthra PM. Hematopoietic stem cell antigen CD34: role in adhesion or homing. Stem Cells Dev 2006; 15:305-13. [PMID: 16846369 DOI: 10.1089/scd.2006.15.305] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CD34 is highly glycosylated surface antigen of enormous clinical utility in the identification, enumeration, and purification of engraftable lymphohematopoietic progenitors for transplantation. However, recently its importance in the specific marking of most immature hematopoietic stem/progenitor cells have been questioned by addressing long-term reconstitution capability of CD34(-) hematopoietic cellular fractions. These controversies have stimulated a demand for elucidation of the structure, function, and molecular interactions of CD34 to define exactly its biological significance in clinical regimens. There is accumulating data showing the participation of CD34 in adhesion or perhaps homing of lymphohematopoietic progenitors. On the other hand, CD34 has been demonstrated to down-regulate cytokine-induced differentiation and proliferation of CD34(+) cells. Studies in CD34 knockout mice revealed normal hematopoiesis but a profound delay in hematopoietic reconstitution after sublethal irradiation of the mice. In short, CD34 expression is likely to represent a specific state of hematopoietic development that may have altered adhering properties with expanding and differentiating capabilities in both in vitro and in vivo conditions. This article focuses on the adhesive properties of CD34 and its potential role in homing, which are likely to mimic lymphocyte homing to the inflammatory sites.
Collapse
Affiliation(s)
- Gurudutta U Gangenahalli
- Stem-Cell Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences, Delhi, India.
| | | | | | | | | | | | | |
Collapse
|
94
|
Oostingh GJ, Ludwig RJ, Enders S, Grüner S, Harms G, Boehncke WH, Nieswandt B, Tauber R, Schön MP. Diminished lymphocyte adhesion and alleviation of allergic responses by small-molecule- or antibody-mediated inhibition of L-selectin functions. J Invest Dermatol 2006; 127:90-7. [PMID: 16902419 DOI: 10.1038/sj.jid.5700504] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Selectins are attractive targets for specific anti-inflammatory therapies. Using human lymphocytes as well as an L-selectin-transfected pre-B-cell line in dynamic flow chamber experiments, we could demonstrate that the small-molecule compound efomycine M blocks L-selectin-mediated lymphocyte rolling on sialylated Lewis(X), an action that was confirmed by plasmon resonance spectroscopy. Recruitment of naive lymphocytes to peripheral lymph nodes depends on L-selectin-mediated adhesion to high endothelial venules. We performed intravital microscopy studying lymphocyte rolling in peripheral lymph nodes and showed a 53% reduction (P=0.0006) of lymphocyte rolling in mice treated with efomycine M or a function-blocking antibody against L-selectin. In addition, the number of lymph node-homing T cells was reduced by >60% using either efomycine M or L-selectin-blocking antibodies. As recruitment of naive lymphocytes is a prerequisite for sensitization in T-cell-mediated immune reactions and allergic responses, mice were treated with efomycine M or an L-selectin-specific antibody during contact sensitization with DNFB. After adoptive transfer of corresponding T cells into non-sensitized recipient mice, the capacity of these cells to induce contact hypersensitivity was significantly reduced (P=0.0002 and P=0.0001, respectively). Our data demonstrate that it is possible, in principle, to diminish T-cell-mediated allergic reactions through interference with L-selectin functions during the early sensitization phase.
Collapse
Affiliation(s)
- Gertie J Oostingh
- Rudolf Virchow Center, and Department of Dermatology, Julius Maximilians University, Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Furness SGB, McNagny K. Beyond mere markers: functions for CD34 family of sialomucins in hematopoiesis. Immunol Res 2006. [PMID: 16720896 DOI: 10.1385/ir: 34: 1: 13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
CD34, podocalyxin, and endoglycan are members of a family of single-pass transmembrane proteins that show distinct expression on early hematopoietic precursors and vascular-associated tissue. In spite of the fact that the expression of CD34 on these early progenitors has been known for over 20 yr and used clinically in hematopoietic stem cell transplantation for more than 15 yr, little is known about its exact role or function. More recently, CD34 expression has been shown to distinguish activated early progenitors from quiescent cells. With the subsequent identification of podocalyxin and endoglycan as related family members also expressed on early progenitor cells, attention is slowly shifting toward understanding how these molecules might contribute to progenitor function and behavior. In this review we examine the existing evidence and propose testable models to reveal the importance of these molecules for stem and progenitor cell function.
Collapse
|
96
|
Furness SGB, McNagny K. Beyond mere markers: functions for CD34 family of sialomucins in hematopoiesis. Immunol Res 2006; 34:13-32. [PMID: 16720896 DOI: 10.1385/ir:34:1:13] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/28/2022]
Abstract
CD34, podocalyxin, and endoglycan are members of a family of single-pass transmembrane proteins that show distinct expression on early hematopoietic precursors and vascular-associated tissue. In spite of the fact that the expression of CD34 on these early progenitors has been known for over 20 yr and used clinically in hematopoietic stem cell transplantation for more than 15 yr, little is known about its exact role or function. More recently, CD34 expression has been shown to distinguish activated early progenitors from quiescent cells. With the subsequent identification of podocalyxin and endoglycan as related family members also expressed on early progenitor cells, attention is slowly shifting toward understanding how these molecules might contribute to progenitor function and behavior. In this review we examine the existing evidence and propose testable models to reveal the importance of these molecules for stem and progenitor cell function.
Collapse
|
97
|
Prakobphol A, Genbacev O, Gormley M, Kapidzic M, Fisher SJ. A role for the L-selectin adhesion system in mediating cytotrophoblast emigration from the placenta. Dev Biol 2006; 298:107-17. [PMID: 16930583 DOI: 10.1016/j.ydbio.2006.06.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 06/13/2006] [Accepted: 06/13/2006] [Indexed: 11/19/2022]
Abstract
Cytotrophoblast (CTB) aggregates that bridge the gap between the placenta and the uterus are suspended as cell columns in the intervillous space, where they experience significant amounts of shear stress generated by maternal blood flow. The proper formation of these structures is crucial to pregnancy outcome as they play a vital role in anchoring the embryo/fetus to the decidua. At the same time, they provide a route by which CTBs enter the uterine wall. The mechanism by which the integrity of the columns is maintained while allowing cell movement is unknown. Here, we present evidence that the interactions of L-selectin with its carbohydrate ligands, a specialized adhesion system that is activated by shear stress, play an important role. CTBs in cell columns, particularly near the distal ends, stained brightly for L-selectin and with the TRA-1-81 antibody, which recognizes carbohydrate epitopes that support binding of L-selectin chimeras in vitro. Function-perturbing antibodies that inhibited either receptor or ligand activity also inhibited formation of cell columns in vitro. Together, these results suggest an autocrine role for the CTB L-selectin adhesion system in forming and maintaining cell columns during the early stages of placental development, when the architecture of the basal plate region is established. This type of adhesion may also facilitate CTB exit from cell columns, a prerequisite for uterine invasion.
Collapse
Affiliation(s)
- Akraporn Prakobphol
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
98
|
Umemoto E, Tanaka T, Kanda H, Jin S, Tohya K, Otani K, Matsutani T, Matsumoto M, Ebisuno Y, Jang MH, Fukuda M, Hirata T, Miyasaka M. Nepmucin, a novel HEV sialomucin, mediates L-selectin-dependent lymphocyte rolling and promotes lymphocyte adhesion under flow. ACTA ACUST UNITED AC 2006; 203:1603-14. [PMID: 16754720 PMCID: PMC2118321 DOI: 10.1084/jem.20052543] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lymphocyte trafficking to lymph nodes (LNs) is initiated by the interaction between lymphocyte L-selectin and certain sialomucins, collectively termed peripheral node addressin (PNAd), carrying specific carbohydrates expressed by LN high endothelial venules (HEVs). Here, we identified a novel HEV-associated sialomucin, nepmucin (mucin not expressed in Peyer's patches [PPs]), that is expressed in LN HEVs but not detectable in PP HEVs at the protein level. Unlike conventional sialomucins, nepmucin contains a single V-type immunoglobulin (Ig) domain and a mucin-like domain. Using materials affinity-purified from LN lysates with soluble L-selectin, we found that two higher molecular weight species of nepmucin (75 and 95 kD) were decorated with oligosaccharides that bind L-selectin as well as an HEV-specific MECA-79 monoclonal antibody. Electron microscopic analysis showed that nepmucin accumulates in the extended luminal microvillus processes of LN HEVs. Upon appropriate glycosylation, nepmucin supported lymphocyte rolling via its mucin-like domain under physiological flow conditions. Furthermore, unlike most other sialomucins, nepmucin bound lymphocytes via its Ig domain, apparently independently of lymphocyte function–associated antigen 1 and very late antigen 4, and promoted shear-resistant lymphocyte binding in combination with intercellular adhesion molecule 1. Collectively, these results suggest that nepmucin may serve as a dual-functioning PNAd in LN HEVs, mediating both lymphocyte rolling and binding via different functional domains.
Collapse
Affiliation(s)
- Eiji Umemoto
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Ezaki T, Kuwahara K, Morikawa S, Shimizu K, Sakaguchi N, Matsushima K, Matsuno K. Production of two novel monoclonal antibodies that distinguish mouse lymphatic and blood vascular endothelial cells. ACTA ACUST UNITED AC 2006; 211:379-93. [PMID: 16685512 DOI: 10.1007/s00429-006-0091-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2006] [Indexed: 11/25/2022]
Abstract
We produced two novel rat monoclonal antibodies (LA102 and LA5) to identify mouse lymphatic vessels and blood vessels, respectively. We characterized the two antibodies as to the morphological and functional specificities of endothelial cells of both types of vessels. The antibodies were produced by a rapid differential immunization of DA rats with collagenase- and neuraminidase-treated mouse lymphangioma tissues. LA102 specifically reacted with mouse lymphatic vessels except the thoracic duct and the marginal sinus of lymph nodes, but not with any blood vessels. In contrast, LA5 reacted with most mouse blood vessels with a few exceptions, but not with lymphatics. LA102 recognized a protein of 25-27 kDa, whereas LA5 recognized a molecule of 12-13 kDa. Neither antibody recognized any currently identified lymphatic or vascular endothelial cell antigens. Immunoelectron microscopy revealed that the antigens recognized by LA102 and LA5 were localized on both luminal and abluminal endothelial cell membranes of each vessel type. Interestingly, LA102 immunoreactivity was strongly expressed on pinocytic or transport vesicle membrane in the cytoplasm of lymphatic endothelium. Besides endothelial cells, both antibodies also recognized some types of lymphoid cells. Since, the LA102 antigen molecule is expressed on some lymphoid cells, it may play important roles in the migration of lymphoid cells and in some transport mechanisms through lymphatic endothelial cells.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Biomarkers
- Cell Line, Tumor
- Endothelial Cells/immunology
- Endothelial Cells/ultrastructure
- Endothelium, Lymphatic/cytology
- Endothelium, Lymphatic/immunology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/immunology
- Female
- Hybridomas
- Immunization/methods
- Immunoenzyme Techniques
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Microcirculation/immunology
- Microscopy, Confocal
- Microscopy, Immunoelectron
- Rats
- Rats, Inbred Strains
Collapse
Affiliation(s)
- Taichi Ezaki
- Department of Anatomy and Developmental Biology, Tokyo Women's Medical University, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
100
|
Wahrenbrock MG, Varki A. Multiple hepatic receptors cooperate to eliminate secretory mucins aberrantly entering the bloodstream: are circulating cancer mucins the "tip of the iceberg"? Cancer Res 2006; 66:2433-41. [PMID: 16489050 DOI: 10.1158/0008-5472.can-05-3851] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hollow organs lined by columnar epithelial cells normally secrete mucins and their proteolytic fragments vectorially into the lumen. These heterogeneously O-glycosylated molecules are known to aberrantly enter the bloodstream in the setting of epithelial carcinomas and possibly during injury or inflammation. We have recently shown that carcinoma mucin fragments can trigger the rapid formation of platelet-rich microthrombi in vivo. Thus, mechanisms to clear such aberrantly secreted mucins must exist. Indeed, we found that i.v. injected carcinoma mucin fragments had an approximately 1 minute half-life in mice, which was primarily due to rapid clearance by hepatic reticuloendothelial cells. Inhibition of known glycan-recognizing hepatic clearance receptors showed involvement of multiple partially overlapping clearance systems. Studies of genetically deficient mice and incomplete competition between different mucins confirmed this result. Thus, multiple hepatic clearance receptors cooperate to eliminate secretory mucins entering the circulation, limiting potential pathology. This may also explain why mucin-type clustered O-glycosylation is rare on plasma proteins. Notably, small subsets of injected carcinoma mucins remained unrecognized by clearance systems, had a much longer half-life, and carried highly sialylated O-glycans. Similar circulating mucins were found in tumor-bearing mice despite lack of saturation of hepatic clearance mechanisms. Thus, circulating cancer mucins currently used as clinical diagnostic markers likely represent only the clearance-resistant "tip of the iceberg." Such aberrantly circulating mucins could play pathologic roles not only in cancer but also during injury or inflammation of hollow organs and in liver disease.
Collapse
Affiliation(s)
- Mark G Wahrenbrock
- Glycobiology Research and Training Center, Department of Medicine, University of California, San Diego, California 92093-0687, USA
| | | |
Collapse
|