51
|
Link N, Harnish JM, Hull B, Gibson S, Dietze M, Mgbike UE, Medina-Balcazar S, Shah PS, Yamamoto S. A Zika virus protein expression screen in Drosophila to investigate targeted host pathways during development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538736. [PMID: 37163061 PMCID: PMC10168400 DOI: 10.1101/2023.04.28.538736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In the past decade, Zika virus (ZIKV) emerged as a global public health concern. While adult infections are typically mild, maternal infection can lead to adverse fetal outcomes. Understanding how ZIKV proteins disrupt development can provide insights into the molecular mechanisms of symptoms caused by this virus including microcephaly. In this study, we generated a toolkit to ectopically express Zika viral proteins in vivo in Drosophila melanogaster in a tissue-specific manner using the GAL4/UAS system. We use this toolkit to identify phenotypes and host pathways targeted by the virus. Our work identified that expression of most ZIKV proteins cause scorable phenotypes, such as overall lethality, gross morphological defects, reduced brain size, and neuronal function defects. We further use this system to identify strain-dependent phenotypes that may contribute to the increased pathogenesis associated with the more recent outbreak of ZIKV in the Americas. Our work demonstrates Drosophila's use as an efficient in vivo model to rapidly decipher how pathogens cause disease and lays the groundwork for further molecular study of ZIKV pathogenesis in flies.
Collapse
Affiliation(s)
- Nichole Link
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84112, USA
- Howard Hughes Medical Institute, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
| | - J Michael Harnish
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Brooke Hull
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
- Postbaccalaureate Research Education Program (PREP), Houston, TX, 77030, USA
| | - Shelley Gibson
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Miranda Dietze
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Silvia Medina-Balcazar
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Priya S. Shah
- Department of Chemical Engineering, Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
- Postbaccalaureate Research Education Program (PREP), Houston, TX, 77030, USA
- Department of Neuroscience, BCM, Houston, TX, 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX, 77030, USA
| |
Collapse
|
52
|
Chan KWK, Bifani AM, Watanabe S, Choy MM, Ooi EE, Vasudevan SG. Tissue-specific expansion of Zika virus isogenic variants drive disease pathogenesis. EBioMedicine 2023; 91:104570. [PMID: 37068347 PMCID: PMC10130475 DOI: 10.1016/j.ebiom.2023.104570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND The Asian lineage Zika virus (ZIKV) emerged as a public health emergency in 2016 causing severe neurological pathologies with no apparent historical correlate to the mild, disease-causing innocuous member of the mosquito-borne flavivirus genus that was discovered in Africa in 1947. Replication error rate of RNA viruses combined with viral protein/RNA structural plasticity can lead to evolution of virus-induced pathogenicity that is critical to identify and validate. METHODS Infection studies in cells and A129 interferon alpha/beta receptor deficient mice with ZIKV French Polynesian H/PF/2013 clinical isolate, plaque-purified isogenic clone derivatives as well as infectious cDNA clone derived wild-type and site-specific mutant viruses, were employed together with Next-Generation Sequencing (NGS) to pin-point the contributions of specific viral variants in neurovirulence recapitulated in our ZIKV mouse model. FINDINGS NGS analysis of the low-passage inoculum virus as well as mouse serum, brain and testis derived virus, revealed specific enrichment in the mouse brain that were not found in the other tissues. Specifically, non-structural (NS) protein 2A variant at position 117 along with changes in NS1 and NS4B were uniquely associated with the mouse brain isolate. Mutational analysis of these variants in cDNA infectious clones identified the NS2A A117V as the lethal pathogenic determinant with potential epistatic contribution of NS1 and NS4B variants in ZIKV brain penetrance. INTERPRETATION Our findings confirm that viral subpopulations drive ZIKV neuropathogenicity and identify specific sequence variants that expand in the mouse brain that associates with this phenotype which can serve as predictors of severe epidemics. FUNDING Duke-NUS Khoo Post-doctoral Fellowship Award 2020 (KWKC) and National Medical Research Council of Singapore grants MOH-000524 (OFIRG) (SW) and MOH-OFIRG20nov-0002 (SGV).
Collapse
Affiliation(s)
- Kitti Wing Ki Chan
- Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Amanda Makha Bifani
- Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Satoru Watanabe
- Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Milly M Choy
- Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore; Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, 117545, Singapore.
| | - Subhash G Vasudevan
- Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore; Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, 117545, Singapore; Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia.
| |
Collapse
|
53
|
He MJ, Wang HJ, Yan XL, Lou YN, Song GY, Li RT, Zhu Z, Zhang RR, Qin CF, Li XF. Key Residue in the Precursor Region of M Protein Contributes to the Neurovirulence and Neuroinvasiveness of the African Lineage of Zika Virus. J Virol 2023; 97:e0180122. [PMID: 36840584 PMCID: PMC10062131 DOI: 10.1128/jvi.01801-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
The Zika virus (ZIKV) represents an important global health threat due to its unusual association with congenital Zika syndrome. ZIKV strains are phylogenetically grouped into the African and Asian lineages. However, the viral determinants underlying the phenotypic differences between the lineages remain unknown. Here, multiple sequence alignment revealed a highly conserved residue at position 21 of the premembrane (prM) protein, which is glutamic acid and lysine in the Asian and African lineages, respectively. Using reverse genetics, we generated a recombinant virus carrying an E21K mutation based on the genomic backbone of the Asian lineage strain FSS13025 (termed E21K). The E21K mutation significantly increased viral replication in multiple neural cell lines with a higher ratio of M to prM production. Animal studies showed E21K exhibited increased neurovirulence in suckling mice, leading to more severe defects in mouse brains by causing more neural cell death and destruction of hippocampus integrity. Moreover, the E21K substitution enhanced neuroinvasiveness in interferon alpha/beta (IFN-α/β) receptor knockout mice, as indicated by the increased mortality, and enhanced replication in mouse brains. The global transcriptional analysis showed E21K infection profoundly altered neuron development networks and induced stronger antiviral immune response than wild type (WT) in both neural cells and mouse brains. More importantly, the reverse K21E mutation based on the genomic backbone of the African strain MR766 caused less mouse neurovirulence. Overall, our findings support the 21st residue of prM functions as a determinant for neurovirulence and neuroinvasiveness of the African lineage of ZIKV. IMPORTANCE The suspected link of Zika virus (ZIKV) to birth defects led the World Health Organization to declare ZIKV a Public Health Emergency of International Concern. ZIKV has been identified to have two dominant phylogenetic lineages, African and Asian. Significant differences exist between the two lineages in terms of neurovirulence and neuroinvasiveness in mice. However, the viral determinants underlying the phenotypic differences are still unknown. Here, combining reverse genetics, animal studies, and global transcriptional analysis, we provide evidence that a single E21K mutation of prM confers to the Asian lineage strain FSS130125 significantly enhanced replication in neural cell lines and more neurovirulent and neuroinvasiveness phenotypes in mice. Our findings support that the highly conserved residue at position 21 of prM functions as a determinant of neurovirulence and neuroinvasiveness of the African lineage of ZIKV in mice.
Collapse
Affiliation(s)
- Meng-Jiao He
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Hong-Jiang Wang
- Department of Research, The Chinese People’s Liberation Army Strategic Support Force Medical Center, Beijing, China
| | - Xiu-Li Yan
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ya-Nan Lou
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Guang-Yuan Song
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Rui-Ting Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhu Zhu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Rong-Rong Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
54
|
Ali I, Alarcόn-Elbal PM, Mundle M, Noble SAA, Oura CAL, Anzinger JJ, Sandiford SL. The Others: A Systematic Review of the Lesser-Known Arboviruses of the Insular Caribbean. Viruses 2023; 15:843. [PMID: 37112824 PMCID: PMC10144105 DOI: 10.3390/v15040843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The Caribbean enjoys a long-standing eminence as a popular tourist destination; however, over the years it has also amassed the sobriquet "arbovirus hotspot". As the planet warms and vectors expand their habitats, a cognizant working knowledge of the lesser-known arboviruses and the factors that influence their emergence and resurgence becomes essential. The extant literature on Caribbean arboviruses is spread across decades of published literature and is quite often difficult to access, and, in some cases, is obsolete. Here, we look at the lesser-known arboviruses of the insular Caribbean and examine some of the drivers for their emergence and resurgence. We searched the scientific literature databases PubMed and Google Scholar for peer-reviewed literature as well as scholarly reports. We included articles and reports that describe works resulting in serological evidence of the presence of arboviruses and/or arbovirus isolations in the insular Caribbean. Studies without serological evidence and/or arbovirus isolations as well as those including dengue, chikungunya, Zika, and yellow fever were excluded. Of the 545 articles identified, 122 met the inclusion criteria. A total of 42 arboviruses were identified in the literature. These arboviruses and the drivers that affect their emergence/resurgence are discussed.
Collapse
Affiliation(s)
- Inshan Ali
- Department of Microbiology, Faculty of Medical Sciences, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Pedro M. Alarcόn-Elbal
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Marcia Mundle
- Department of Natural Sciences, Faculty of Science and Technology, The Mico University College, Kingston 5, Jamaica
| | - Simmoy A. A. Noble
- Department of Microbiology, Faculty of Medical Sciences, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Chris A. L. Oura
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 685509, Trinidad and Tobago
| | - Joshua J. Anzinger
- Department of Microbiology, Faculty of Medical Sciences, The University of the West Indies, Mona, Kingston 7, Jamaica
- Global Virus Network, Baltimore, MD 21201, USA
| | - Simone L. Sandiford
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Mona, Kingston 7, Jamaica
- Mosquito Control and Research Unit, The University of the West Indies, Mona, Kingston 7, Jamaica
| |
Collapse
|
55
|
Leiva S, Bugnon Valdano M, Gardiol D. Unravelling the epidemiological diversity of Zika virus by analyzing key protein variations. Arch Virol 2023; 168:115. [PMID: 36943525 DOI: 10.1007/s00705-023-05726-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/19/2023] [Indexed: 03/23/2023]
Abstract
The consequences of Zika virus (ZIKV) infections were limited to sporadic mild diseases until almost a decade ago, when epidemic outbreaks took place, with quick spread into the Americas. Simultaneously, novel severe neurological manifestations of ZIKV infections were identified, including congenital microcephaly. However, why the epidemic strains behave differently is not yet completely understood, and many questions remain about the actual significance of genetic variations in the epidemiology and biology of ZIKV. In this study, we analysed a large number of viral sequences to identify genes with different levels of variability and patterns of genomic variations that could be associated with ZIKV diversity. We compared numerous epidemic strains with pre-epidemic strains, using the BWA-mem algorithm, and we also examined specific variations among the epidemic ZIKV strains derived from microcephaly cases. We identified several viral genes with dissimilar mutation rates among the ZIKV strain groups and novel protein variation profiles that might be associated with epidemiological particularities. Finally, we assessed the impact of the detected changes on the structure and stability of the NS1, NS5, and E proteins using the I-TASSER, trRosetta, and RaptorX modelling algorithms, and we found some interesting variations that might help to explain the heterogeneous features of the diverse ZIKA strains. This work contributes to the identification of genetic differences in the ZIKV genome that might have a phenotypic impact, providing a basis for future experimental analysis to elucidate the genetic causes of the recent ZIKV emergency.
Collapse
Affiliation(s)
- Santiago Leiva
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario-CONICET, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Marina Bugnon Valdano
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario-CONICET, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Daniela Gardiol
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario-CONICET, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
56
|
Marano JM, Weger-Lucarelli J. Replication in the presence of dengue convalescent serum impacts Zika virus neutralization sensitivity and fitness. Front Cell Infect Microbiol 2023; 13:1130749. [PMID: 36968111 PMCID: PMC10034770 DOI: 10.3389/fcimb.2023.1130749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction Flaviviruses like dengue virus (DENV) and Zika virus (ZIKV) are mosquito-borne viruses that cause febrile, hemorrhagic, and neurological diseases in humans, resulting in 400 million infections annually. Due to their co-circulation in many parts of the world, flaviviruses must replicate in the presence of pre-existing adaptive immune responses targeted at serologically closely related pathogens, which can provide protection or enhance disease. However, the impact of pre-existing cross-reactive immunity as a driver of flavivirus evolution, and subsequently the implications on the emergence of immune escape variants, is poorly understood. Therefore, we investigated how replication in the presence of convalescent dengue serum drives ZIKV evolution. Methods We used an in vitro directed evolution system, passaging ZIKV in the presence of serum from humans previously infected with DENV (anti-DENV) or serum from DENV-naïve patients (control serum). Following five passages in the presence of serum, we performed next-generation sequencing to identify mutations that arose during passaging. We studied two non-synonymous mutations found in the anti-DENV passaged population (E-V355I and NS1-T139A) by generating individual ZIKV mutants and assessing fitness in mammalian cells and live mosquitoes, as well as their sensitivity to antibody neutralization. Results and discussion Both viruses had increased fitness in Vero cells with and without the addition of anti-DENV serum and in human lung epithelial and monocyte cells. In Aedes aegypti mosquitoes-using blood meals with and without anti-DENV serum-the mutant viruses had significantly reduced fitness compared to wild-type ZIKV. These results align with the trade-off hypothesis of constrained mosquito-borne virus evolution. Notably, only the NS1-T139A mutation escaped neutralization, while E-V335I demonstrated enhanced neutralization sensitivity to neutralization by anti-DENV serum, indicating that neutralization escape is not necessary for viruses passaged under cross-reactive immune pressures. Future studies are needed to assess cross-reactive immune selection in humans and relevant animal models or with different flaviviruses.
Collapse
Affiliation(s)
- Jeffrey M. Marano
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
57
|
Silva LVDO, Hermont AP, Magnani IQ, Martins CC, Borges-Oliveira AC. Oral alterations in children with microcephaly associated to congenital Zika syndrome: A systematic review and meta-analyses. SPECIAL CARE IN DENTISTRY 2023; 43:184-198. [PMID: 35912588 DOI: 10.1111/scd.12761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 11/27/2022]
Abstract
AIMS To synthesize the oral alterations observed in children with microcephaly associated with congenital Zika virus syndrome (CZS), and to compare the oral alterations of these children to a normotypic healthy controls. METHODS AND RESULTS A search was performed in six electronic databases. Observational studies published that reported oral alterations in children with CZS were selected. Two authors independently extracted data, assessed study quality, using the Joanna Briggs Institute Critical Appraisal Checklist tools, and the certainty of evidence, using Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. Twenty-one studies were included in this systematic review and meta-analysis. The pooled crude occurrence showed 88% of increased salivation (95%CI: 82%-94%), 83% of biofilm (95%CI: 75%-91%), and 73% of bruxism (95%CI: 52%-95%). Compared to normotypic controls, children with CZS-associated microcephaly had a higher chance to have difficulty in lip sealing (OR: 18.28; 95%CI: 1.42-235.91), inadequate lingual posture at rest (OR: 13.57; 95%CI: 4.24-43.44), and delayed eruption (OR: 12.92; 95%CI: 3.42-48.78), with very low certainty. CONCLUSION There are several oral alterations found among children with CZS-associated microcephaly. They are more prone to present some of these alterations, such as difficulty in lip sealing, although with very low certainty of evidence.
Collapse
Affiliation(s)
- Leni Verônica de Oliveira Silva
- Department of Oral Surgery, Pathology, and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Hermont
- Department of Pediatric Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Isabela Queiroz Magnani
- Department of Social and Preventive Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carolina Castro Martins
- Department of Pediatric Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Cristina Borges-Oliveira
- Department of Social and Preventive Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
58
|
Chen X, Wang Y, Xu Z, Cheng ML, Ma QQ, Li RT, Wang ZJ, Zhao H, Zuo X, Li XF, Fang X, Qin CF. Zika virus RNA structure controls its unique neurotropism by bipartite binding to Musashi-1. Nat Commun 2023; 14:1134. [PMID: 36854751 PMCID: PMC9972320 DOI: 10.1038/s41467-023-36838-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Human RNA binding protein Musashi-1 (MSI1) plays a critical role in neural progenitor cells (NPCs) by binding to various host RNA transcripts. The canonical MSI1 binding site (MBS), A/GU(1-3)AG single-strand motif, is present in many RNA virus genomes, but only Zika virus (ZIKV) genome has been demonstrated to bind MSI1. Herein, we identified the AUAG motif and the AGAA tetraloop in the Xrn1-resistant RNA 2 (xrRNA2) as the canonical and non-canonical MBS, respectively, and both are crucial for ZIKV neurotropism. More importantly, the unique AGNN-type tetraloop is evolutionally conserved, and distinguishes ZIKV from other known viruses with putative MBSs. Integrated structural analysis showed that MSI1 binds to the AUAG motif and AGAA tetraloop of ZIKV in a bipartite fashion. Thus, our results not only identified an unusual viral RNA structure responsible for MSI recognition, but also revealed a role for the highly structured xrRNA in controlling viral neurotropism.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Yan Wang
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhonghe Xu
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Meng-Li Cheng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Qing-Qing Ma
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Rui-Ting Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Zheng-Jian Wang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Hui Zhao
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, China.
| |
Collapse
|
59
|
Chan YT, Cheok YY, Cheong HC, Tang TF, Sulaiman S, Hassan J, Looi CY, Tan KK, AbuBakar S, Wong WF. Immune Recognition versus Immune Evasion Systems in Zika Virus Infection. Biomedicines 2023; 11:biomedicines11020642. [PMID: 36831177 PMCID: PMC9952926 DOI: 10.3390/biomedicines11020642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/22/2023] Open
Abstract
The reemergence of the Zika virus (ZIKV) infection in recent years has posed a serious threat to global health. Despite being asymptomatic or mildly symptomatic in a majority of infected individuals, ZIKV infection can result in severe manifestations including neurological complications in adults and congenital abnormalities in newborns. In a human host, ZIKV is primarily recognized by RIG-like receptors and Toll-like receptors that elicit anti-viral immunity through the secretion of type I interferon (IFN) to limit viral survival, replication, and pathogenesis. Intriguingly, ZIKV evades its host immune system through various immune evasion strategies, including suppressing the innate immune receptors and signaling pathways, mutation of viral structural and non-structural proteins, RNA modulation, or alteration of cellular pathways. Here, we present an overview of ZIKV recognition by the host immune system and the evasion strategies employed by ZIKV. Characterization of the host-viral interaction and viral disease mechanism provide a platform for the rational design of novel prophylactic and therapeutic strategies against ZIKV infection.
Collapse
Affiliation(s)
- Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sofiah Sulaiman
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jamiyah Hassan
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1, Jalan Taylors, Subang Jaya 47500, Malaysia
| | - Kim-Kee Tan
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Higher Education Center of Excellence (HICoE), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Higher Education Center of Excellence (HICoE), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: ; Tel.: +60-(3)-7967-6672
| |
Collapse
|
60
|
Mondeali M, Etemadi A, Barkhordari K, Mobini Kesheh M, Shavandi S, Bahavar A, Tabatabaie FH, Mahmoudi Gomari M, Modarressi MH. The role of S477N mutation in the molecular behavior of SARS-CoV-2 spike protein: An in-silico perspective. J Cell Biochem 2023; 124:308-319. [PMID: 36609701 DOI: 10.1002/jcb.30367] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023]
Abstract
The attachment of SARA-CoV-2 happens between ACE2 and the receptor binding domain (RBD) on the spike protein. Mutations in this domain can affect the binding affinity of the spike protein for ACE2. S477N, one of the most common mutations reported in the recent variants, is located in the RBD. Today's computational approaches in biology, especially during the SARS-CoV-2 pandemic, assist researchers in predicting a protein's behavior in contact with other proteins in more detail. In this study, we investigated the interactions of the S477N-hACE2 in silico to find the impact of this mutation on its binding affinity for ACE2 and immunity responses using dynamics simulation, protein-protein docking, and immunoinformatics methods. Our computational analysis revealed an increased binding affinity of N477 for ACE2. Four new hydrogen and hydrophobic bonds in the mutant RBD-ACE2 were formed (with S19 and Q24 of ACE2), which do not exist in the wild type. Also, the protein spike structure in this mutation was associated with an increase in stabilization and a decrease in its fluctuations at the atomic level. N477 mutation can be considered as the cause of increased escape from the immune system through MHC-II.
Collapse
Affiliation(s)
- Mozhgan Mondeali
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Etemadi
- Medical Biotechnology Department, School of Advanced Technologies in MedicineSchool of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Khabat Barkhordari
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Mobini Kesheh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Shavandi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Atefeh Bahavar
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
61
|
Oliveira G, Vogels CBF, Zolfaghari A, Saraf S, Klitting R, Weger-Lucarelli J, P. Leon K, Ontiveros CO, Agarwal R, Tsetsarkin KA, Harris E, Ebel GD, Wohl S, Grubaugh ND, Andersen KG. Genomic and phenotypic analyses suggest moderate fitness differences among Zika virus lineages. PLoS Negl Trop Dis 2023; 17:e0011055. [PMID: 36753510 PMCID: PMC9907835 DOI: 10.1371/journal.pntd.0011055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 12/22/2022] [Indexed: 02/09/2023] Open
Abstract
RNA viruses have short generation times and high mutation rates, allowing them to undergo rapid molecular evolution during epidemics. However, the extent of RNA virus phenotypic evolution within epidemics and the resulting effects on fitness and virulence remain mostly unknown. Here, we screened the 2015-2016 Zika epidemic in the Americas for lineage-specific fitness differences. We engineered a library of recombinant viruses representing twelve major Zika virus lineages and used them to measure replicative fitness within disease-relevant human primary cells and live mosquitoes. We found that two of these lineages conferred significant in vitro replicative fitness changes among human primary cells, but we did not find fitness changes in Aedes aegypti mosquitoes. Additionally, we found evidence for elevated levels of positive selection among five amino acid sites that define major Zika virus lineages. While our work suggests that Zika virus may have acquired several phenotypic changes during a short time scale, these changes were relatively moderate and do not appear to have enhanced transmission during the epidemic.
Collapse
Affiliation(s)
- Glenn Oliveira
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Ashley Zolfaghari
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sharada Saraf
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Raphaelle Klitting
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Karla P. Leon
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Carlos O. Ontiveros
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Rimjhim Agarwal
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Konstantin A. Tsetsarkin
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Shirlee Wohl
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
62
|
Gilbert RK, Petersen LR, Honein MA, Moore CA, Rasmussen SA. Zika virus as a cause of birth defects: Were the teratogenic effects of Zika virus missed for decades? Birth Defects Res 2023; 115:265-274. [PMID: 36513609 PMCID: PMC10552063 DOI: 10.1002/bdr2.2134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022]
Abstract
Zika virus (ZIKV) was identified as a teratogen in 2016 when an increase in severe microcephaly and other brain defects was observed in fetuses and newborns following outbreaks in French Polynesia (2013-2014) and Brazil (2015-2016) and among travelers to other countries experiencing outbreaks. Some have questioned why ZIKV was not recognized as a teratogen before these outbreaks: whether novel genetic changes in ZIKV had increased its teratogenicity or whether its association with birth defects had previously been undetected. Here we examine the evidence for these two possibilities. We describe evidence for specific mutations that arose before the French Polynesia outbreak that might have increased ZIKV teratogenicity. We also present information on children born with findings consistent with congenital Zika syndrome (CZS) as early as 2009 and epidemiological evidence that suggests increases in CZS-type birth defects before 2013. We also explore reasons why a link between ZIKV and birth defects might have been missed, including issues with surveillance of ZIKV infections and of birth defects, challenges to ZIKV diagnostic testing, and the susceptibility of different populations to ZIKV infection at the time of pregnancy. Although it is not possible to prove definitively that ZIKV had teratogenic properties before 2013, several pieces of evidence support the hypothesis that its teratogenicity had been missed in the past. These findings emphasize the need for further investments in global surveillance for emerging infections and for birth defects so that infectious teratogens can be identified more expeditiously in the future.
Collapse
Affiliation(s)
- Rachel K. Gilbert
- University of Florida College of Medicine, Gainesville, Florida, USA
| | - Lyle R. Petersen
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Margaret A. Honein
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Cynthia A. Moore
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Goldbelt Professional Services, LLC, Chesapeake, Virginia, USA
| | - Sonja A. Rasmussen
- Departments of Pediatrics and Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Epidemiology, College of Medicine and College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
63
|
Sui L, Zhao Y, Wang W, Chi H, Tian T, Wu P, Zhang J, Zhao Y, Wei ZK, Hou Z, Zhou G, Wang G, Wang Z, Liu Q. Flavivirus prM interacts with MDA5 and MAVS to inhibit RLR antiviral signaling. Cell Biosci 2023; 13:9. [PMID: 36639652 PMCID: PMC9837762 DOI: 10.1186/s13578-023-00957-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Vector-borne flaviviruses, including tick-borne encephalitis virus (TBEV), Zika virus (ZIKV), West Nile virus (WNV), yellow fever virus (YFV), dengue virus (DENV), and Japanese encephalitis virus (JEV), pose a growing threat to public health worldwide, and have evolved complex mechanisms to overcome host antiviral innate immunity. However, the underlying mechanisms of flavivirus structural proteins to evade host immune response remain elusive. RESULTS We showed that TBEV structural protein, pre-membrane (prM) protein, could inhibit type I interferon (IFN-I) production. Mechanically, TBEV prM interacted with both MDA5 and MAVS and interfered with the formation of MDA5-MAVS complex, thereby impeding the nuclear translocation and dimerization of IRF3 to inhibit RLR antiviral signaling. ZIKV and WNV prM was also demonstrated to interact with both MDA5 and MAVS, while dengue virus serotype 2 (DENV2) and YFV prM associated only with MDA5 or MAVS to suppress IFN-I production. In contrast, JEV prM could not suppress IFN-I production. Overexpression of TBEV and ZIKV prM significantly promoted the replication of TBEV and Sendai virus. CONCLUSION Our findings reveal the immune evasion mechanisms of flavivirus prM, which may contribute to understanding flavivirus pathogenicity, therapeutic intervention and vaccine development.
Collapse
Affiliation(s)
- Liyan Sui
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yinghua Zhao
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Wenfang Wang
- grid.64924.3d0000 0004 1760 5735College of Basic Medical Science, Jilin University, Changchun, China
| | - Hongmiao Chi
- grid.64924.3d0000 0004 1760 5735College of Basic Medical Science, Jilin University, Changchun, China
| | - Tian Tian
- grid.64924.3d0000 0004 1760 5735College of Basic Medical Science, Jilin University, Changchun, China
| | - Ping Wu
- grid.412246.70000 0004 1789 9091College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jinlong Zhang
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yicheng Zhao
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Zheng-Kai Wei
- grid.443369.f0000 0001 2331 8060School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Zhijun Hou
- grid.412246.70000 0004 1789 9091College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Guoqiang Zhou
- grid.482450.f0000 0004 8514 6702The Biological safety level-3 Laboratory, Changchun Institute of Biological Products Co., Ltd, Changchun, China
| | - Guoqing Wang
- grid.64924.3d0000 0004 1760 5735College of Basic Medical Science, Jilin University, Changchun, China
| | - Zedong Wang
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Quan Liu
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China ,grid.443369.f0000 0001 2331 8060School of Life Sciences and Engineering, Foshan University, Foshan, China
| |
Collapse
|
64
|
Zhang YF, Guo JJ, Yang F, Zhou HY, Zhang NN, Xiong XC, Feng Y, Deng YQ, Qin CF. Characterization and phylogenetic analysis of a neurovirulent Zika virus isolated from Cambodia in 2019. J Med Virol 2023; 95:e28290. [PMID: 36367083 DOI: 10.1002/jmv.28290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
The geographic range of Zika virus (ZIKV) has expanded from Asia to the Americas, leading to the 2015-2016 pandemic with enhanced neurovirulence. At present, ZIKV is continuously circulating in many Southeast Asian countries. Unfortunately, the persistent evolution of ZIKV in Southeast Asia and its influence on the biological characteristics of the virus remain incompletely understood. In this study, the in vitro and in vivo properties of a new ZIKV isolate obtained from Cambodia in 2019 (CAM/2019) were characterized and compared with those of the Cambodian strain (CAM/2010). Compared with CAM/2010, the CAM/2019 virus showed similar plaque morphology and growth curves in cell cultures and induced comparable viremia and organ viral loads profiles in both BALB/c and A129 (IFNAR1-/- ) mice upon intraperitoneal (i.p.) inoculation. Remarkably, the CAM/2019 virus exhibited enhanced neurovirulence in neonatal mice compared with CAM/2010, with a 74-fold reduction in the 50% lethal dose (LD50 ). Consistently, CAM/2019 produced higher viral loads in the brains of BALB/c neonatal mice than CAM/2010 did. Sequence alignment showed that the CAM/2019 virus has acquired 12 amino acid substitutions, several of which were found to be associated with neurovirulence. In particular, the CAM/2019 virus shared an A1204T substitution in NS2A with the Thai isolate SI-BKK02 that was isolated from a microcephaly case. Taken together, our results indicate that a ZIKV strain isolated with specific mutations has emerged in Cambodia, highlighting the need for extensive molecular and disease surveillance in Cambodia and other Asian countries.
Collapse
Affiliation(s)
- Yi-Fei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Jing-Jing Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hang-Yu Zhou
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Na-Na Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Xiao-Chuan Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Yue Feng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Cheng-Feng Qin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| |
Collapse
|
65
|
Dong S, Xiao MZX, Liang Q. Modulation of cellular machineries by Zika virus-encoded proteins. J Med Virol 2023; 95:e28243. [PMID: 36262094 DOI: 10.1002/jmv.28243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/11/2023]
Abstract
The strain of Zika virus (ZIKV) that circulated during the 2015 epidemic in Brazil has been associated with more than 2000 cases of microcephaly from September 2015 through November 2016. The viral genome determines the biology and pathogenesis of a virus and the virus employs its own gene products to evade host immune surveillance, manipulate cellular machineries, and establish efficient replication. Therefore, understanding the functions of virus-encoded protein not only aids the knowledge of ZIKV biology but also guides the development of anti-ZIKV drugs. In this review, we focus on 10 proteins encoded by ZIKV and summarize their functions in ZIKV replication and pathogenesis according to studies published in the past 6 years.
Collapse
Affiliation(s)
- Shupeng Dong
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maggie Z X Xiao
- Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Qiming Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
66
|
Li D, Long M, Li T, Shu Y, Shan X, Zhang J, Ma D, Long S, Wang X, Jia F, Pan Y, Chen J, Liu P, Sun Q. The whole-genome sequencing of prevalent DENV-1 strains during the largest dengue virus outbreak in Xishuangbanna Dai autonomous prefecture in 2019. J Med Virol 2023; 95:e28115. [PMID: 36059257 DOI: 10.1002/jmv.28115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023]
Abstract
In 2019, a serious dengue virus (DENV) infection broke out in the Xishuangbanna Dai Autonomous Prefecture, China. Therefore, we conducted a molecular epidemiological analysis in people that contracted DENV serotype 1 (DENV-1) during this year. We analyzed the molecular epidemiology of six DENV-1 epidemic strains in 2019 by full-length genome sequencing, amino acid mutation site analysis, evolutionary tree analysis, and recombination site comparison analysis. Through the analysis of amino acid mutation sites, it was found that DENV-1 strain (MW386867) was different from the other five epidemic DENV-1 strains in Xishuangbanna in 2019. MW386867 had unique mutation sites at six loci. The six epidemic DENV-1 strains in Xishuangbanna in 2019 were divided into two clusters. MW386867 was highly similar to the MG679800 (Myanmar 2017), MG679801 (Myanmar 2017), and KC172834 (Laos 2008), and the other five strains were highly similar to JQ045660 (Vietnam 2011), FJ176780 (GuangDong 2006). Genetic recombination analysis revealed that there was no recombination signal in the six epidemic DENV-1 strains in Xishuangbanna in 2019. We speculate that the DENV-1 epidemic in 2019 has a co-epidemic of local strains and cross-border strains.
Collapse
Affiliation(s)
- Daiying Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| | - MingWang Long
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| | - Tingting Li
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Yun Shu
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Xiyun Shan
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Juan Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China.,Institute of Medical Biology, Kunming Medical University, Kunming, People's Republic of China
| | - Dehong Ma
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Shuying Long
- Institute of Medical Biology, Kunming Medical University, Kunming, People's Republic of China
| | - Xiaodan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| | - Fan Jia
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China.,Institute of Medical Biology, Kunming Medical University, Kunming, People's Republic of China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| | - Junying Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| | - Pinghua Liu
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| |
Collapse
|
67
|
Aziz A, Suleman M, Shah A, Ullah A, Rashid F, Khan S, Iqbal A, Luo S, Xie L, Xie Z. Comparative mutational analysis of the Zika virus genome from different geographical locations and its effect on the efficacy of Zika virus-specific neutralizing antibodies. Front Microbiol 2023; 14:1098323. [PMID: 36910181 PMCID: PMC9992208 DOI: 10.3389/fmicb.2023.1098323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
The Zika virus (ZIKV), which originated in Africa, has become a significant global health threat. It is an RNA virus that continues to mutate and accumulate multiple mutations in its genome. These genetic changes can impact the virus's ability to infect, cause disease, spread, evade the immune system, and drug resistance. In this study genome-wide analysis of 175 ZIKV isolates deposited at the National Center for Biotechnology Information (NCBI), was carried out. The comprehensive mutational analysis of these isolates was carried out by DNASTAR and Clustal W software, which revealed 257 different substitutions at the proteome level in different proteins when compared to the reference sequence (KX369547.1). The substitutions were capsid (17/257), preM (17/257), envelope (44/257), NS1 (34/257), NS2A (30/257), NS2B (11/257), NS3 (37/257), NS4A (6/257), 2K (1/257), NS4B (15/257), and NS5 (56/257). Based on the coexisting mutational analysis, the MN025403.1 isolate from Guinea was identified as having 111 substitutions in proteins and 6 deletions. The effect of coexisting/reoccurring mutations on the structural stability of each protein was also determined by I-mutant and MUpro online servers. Furthermore, molecular docking and simulation results showed that the coexisting mutations (I317V and E393D) in Domain III (DIII) of the envelope protein enhanced the bonding network with ZIKV-specific neutralizing antibodies. This study, therefore, highlighted the rapid accumulation of different substitutions in various ZIKV proteins circulating in different geographical regions of the world. Surveillance of such mutations in the respective proteins will be helpful in the development of effective ZIKV vaccines and neutralizing antibody engineering.
Collapse
Affiliation(s)
- Abdul Aziz
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Muhammad Suleman
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Pakistan
| | - Abdullah Shah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Upper Dir, Pakistan
| | - Ata Ullah
- New Cross Hospital, The Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom
| | - Farooq Rashid
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Sikandar Khan
- Department of Biotechnology, Shaheed Benazir Bhutto University, Upper Dir, Pakistan
| | - Arshad Iqbal
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Pakistan
| | - Sisi Luo
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China.,Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China.,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Liji Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China.,Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China.,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China.,Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China.,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| |
Collapse
|
68
|
Khongwichit S, Chuchaona W, Vongpunsawad S, Poovorawan Y. Molecular surveillance of arboviruses circulation and co-infection during a large chikungunya virus outbreak in Thailand, October 2018 to February 2020. Sci Rep 2022; 12:22323. [PMID: 36566236 PMCID: PMC9789961 DOI: 10.1038/s41598-022-27028-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022] Open
Abstract
A large national outbreak of chikungunya virus (CHIKV) was recently reported in Thailand. While dengue virus (DENV) infection tends to occur year-round with an upsurge in the rainy season, Zika virus (ZIKV) also circulates in the country. The overlap in the distribution of these viruses increased the probability of co-infections during the heightened CHIKV activity. By examining 1806 patient serum samples submitted for CHIKV diagnostics from October 2018-February 2020 (511 CHIKV-negatives and 1295 CHIKV-positives), we used real-time reverse transcription-polymerase chain reaction to identify DENV and ZIKV individually. A total of 29 ZIKV and 36 DENV single-infections were identified. Interestingly, 13 co-infection cases were observed, of which 8 were CHIKV/DENV, 3 were CHIKV/ZIKV, and 2 were DENV/ZIKV. There were six DENV genotypes (13 DENV-1 genotype I, 10 DENV-2 Asian I, 10 DENV-2 Cosmopolitan, 6 DENV-3 genotype I, 2 DENV-3 genotype III, and 5 DENV-4 genotype I). Additionally, ZIKV strains identified in this study either clustered with strains previously circulating in Thailand and Singapore, or with strains previously reported in China, French Polynesia, and the Americas. Our findings reveal the co-infection and genetic diversity patterns of mosquito-borne viruses circulating in Thailand.
Collapse
Affiliation(s)
- Sarawut Khongwichit
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Watchaporn Chuchaona
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
69
|
Pathogenicity and Structural Basis of Zika Variants with Glycan Loop Deletions in the Envelope Protein. J Virol 2022; 96:e0087922. [PMID: 36377874 PMCID: PMC9749469 DOI: 10.1128/jvi.00879-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The glycan loop of Zika virus (ZIKV) envelope protein (E) contains the glycosylation site and has been well documented to be important for viral pathogenesis and transmission. In the present study, we report that deletions in the E glycan loop, which were recorded in African ZIKV strains previously, have re-emerged in their contemporary Asian lineages. Here, we generated recombinant ZIKV containing specific deletions in the E glycan loop by reverse genetics. Extensive in vitro and in vivo characterization of these deletion mutants demonstrated an attenuated phenotype in an adult A129 mouse model and reduced oral infections in mosquitoes. Surprisingly, these glycan loop deletion mutants exhibited an enhanced neurovirulence phenotype, and resulted in a more severe microcephalic brain in neonatal mouse models. Crystal structures of the ZIKV E protein and a deletion mutant at 2.5 and 2.6 Å, respectively, revealed that deletion of the glycan loop induces encephalitic flavivirus-like conformational alterations, including the appearance of perforations on the surface and a clear change in the topology of the loops. Overall, our results demonstrate that the E glycan loop deletions represent neonatal mouse neurovirulence markers of ZIKV. IMPORTANCE Zika virus (ZIKV) has been identified as a cause of microcephaly and acquired evolutionary mutations since its discovery. Previously deletions in the E glycan loop were recorded in African ZIKV strains, which have re-emerged in the contemporary Asian lineages recently. The glycan loop deletion mutants are not glycosylated, which are attenuated in adult A129 mouse model and reduced oral infections in mosquitoes. More importantly, the glycan loop deletion mutants induce an encephalitic flavivirus-like conformational alteration in the E homodimer, resulting in a significant enhancement of neonatal mouse neurovirulence. This study underscores the critical role of glycan loop deletion mutants in ZIKV pathogenesis, highlighting a need for global virological surveillance for such ZIKV variants.
Collapse
|
70
|
The Colombian Zika Virus Isolate (COL345Si) Replicates in Prostate Adenocarcinoma Cells and Modulates the Antiviral Response. Microorganisms 2022; 10:microorganisms10122420. [PMID: 36557673 PMCID: PMC9782197 DOI: 10.3390/microorganisms10122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Zika virus (ZIKV), a flavivirus that is mainly transmitted by A. aegypti and A. albopictus and sexual transmission, has been documented and described. The ZIKV RNA detection in the semen of vasectomized men indicates that accessory glands such as the prostate could be a site of virus replication. In this study, we characterized the ZIKV infection, evaluated the antiviral profile, and demonstrated the AXL and TIM-1 expression on the PC3 prostate cell line. It was also determined that PC3 cells are susceptible and permissive to ZIKV infection without altering the cell viability or causing a cytopathic effect. The antiviral profile suggests that the PC3 cells modulate the antiviral response through the suppressor molecule expression, SOCS-1, during a ZIKV infection.
Collapse
|
71
|
Evaluation of Zika virus DNA vaccines based on NS1 and domain III of E. Int Immunopharmacol 2022; 113:109308. [DOI: 10.1016/j.intimp.2022.109308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
|
72
|
Ma X, Yuan Z, Yi Z. Identification and characterization of key residues in Zika virus envelope protein for virus assembly and entry. Emerg Microbes Infect 2022; 11:1604-1620. [PMID: 35612559 PMCID: PMC9196690 DOI: 10.1080/22221751.2022.2082888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zika virus (ZIKV), a family member in the Flavivirus genus, has re-emerged as a global public health concern. The envelope (E) proteins of flaviviruses play a dual role in viral assembly and entry. To identify the key residues of E in virus entry, we generated a ZIKV trans-complemented particle (ZIKVTCP) system, in which a subgenomic reporter replicon was packaged by trans-complementation with expression of CprME. We performed mutagenesis studies of the loop regions that protrude from the surface of the virion in the E ectodomains (DI, DII, DIII). Most mutated ZIKVTCPs exhibited deficient egress. Mutations in DII and in the hinge region of DI and DIII affected prM expression. With a bioorthogonal system, photocrosslinking experiments identified crosslinked intracellular E trimers and demonstrated that egress-deficient mutants in DIII impaired E trimerization. Of these mutants, an E-trimerization-dead mutation D389A that nears the E-E interface between two neighbouring spikes in the immature virion completely abolished viral egress. Several mutations abolished ZIKVTCPs’ entry, without severely affecting viral egress. Further virus binding experiments demonstrated a deficiency of the mutated ZIKVTCPs in virus attachment. Strikingly, synthesized peptide containing residues of two mutants (268-273aa in DII) could bind to host cells and significantly compete for viral attachment and interfere with viral infection, suggesting an important role of these resides in virus entry. Our findings uncovered the requirement for DIII mediated-E trimerization in viral egress, and discovered a key residue group in DII that participates in virus entry.
Collapse
Affiliation(s)
- Xiao Ma
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People's Republic of China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People's Republic of China
| | - Zhigang Yi
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People's Republic of China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
73
|
Jung HG, Cho H, Kim M, Jung H, Bak Y, Lee SY, Seo HY, Son YM, Woo H, Yoon G, Kim SJ, Oh JW. Influence of Zika virus 3'-end sequence and nonstructural protein evolution on the viral replication competence and virulence. Emerg Microbes Infect 2022; 11:2447-2465. [PMID: 36149812 PMCID: PMC9621255 DOI: 10.1080/22221751.2022.2128433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022]
Abstract
Zika virus (ZIKV) has been circulating in human networks over 70 years since its first appearance in Africa, yet little is known about whether the viral 3'-terminal sequence and nonstructural (NS) protein diverged genetically from ancient ZIKV have different effects on viral replication and virulence in currently prevailing Asian lineage ZIKV. Here we show, by a reverse genetics approach using an infectious cDNA clone for a consensus sequence (Con1) of ZIKV, which represents Asian ZIKV strains, and another clone derived from the MR766 strain isolated in Uganda, Africa in 1947, that the 3'-end sequence -UUUCU-3' homogeneously present in MR766 genome and the -GUCU-3' sequence strictly conserved in Asian ZIKV isolates are functionally equivalent in viral replication and gene expression. By gene swapping experiments using the two infectious cDNA clones, we show that the NS1-5 proteins of MR766 enhance replication competence of ZIKV Con1. The Con1, which was less virulent than MR766, acquired severe bilateral hindlimb paralysis when its NS1-5 genes were replaced by the counterparts of MR766 in type I interferon receptor (IFNAR1)-deficient A129 mice. Moreover, MR766 NS5 RNA-dependent RNA polymerase (RdRp) alone also rendered the Con1 virulent, despite there being no difference in RdRp activity between MR766 and Con1 NS5 proteins. By contrast, the Con1 derivatives expressing MR766 Nsps, like Con1, did not develop severe disease in wild-type mice treated with an IFNAR1 blocking antibody. Together, our findings uncover an unprecedented role for ZIKV NS proteins in determining viral pathogenicity in immunocompromised hosts.
Collapse
Affiliation(s)
- Hae-Gwang Jung
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Hee Cho
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Minwoo Kim
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Haewon Jung
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Yeonju Bak
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Se-Young Lee
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Han Young Seo
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Yu-Min Son
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Hawon Woo
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Gone Yoon
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Jong-Won Oh
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
74
|
Ji C, Han N, Cheng Y, Shang J, Weng S, Yang R, Zhou HY, Wu A. sitePath: a visual tool to identify polymorphism clades and help find fixed and parallel mutations. BMC Bioinformatics 2022; 23:504. [PMID: 36434502 PMCID: PMC9701067 DOI: 10.1186/s12859-022-05064-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Identifying polymorphism clades on phylogenetic trees could help detect punctual mutations that are associated with viral functions. With visualization tools coloring the tree, it is easy to visually find clades where most sequences have the same polymorphism state. However, with the fast accumulation of viral sequences, a computational tool to automate this process is urgently needed. RESULTS Here, by implementing a branch-and-bound-like search method, we developed an R package named sitePath to identify polymorphism clades automatically. Based on the identified polymorphism clades, fixed and parallel mutations could be inferred. Furthermore, sitePath also integrated visualization tools to generate figures of the calculated results. In an example with the influenza A virus H3N2 dataset, the detected fixed mutations coincide with antigenic shift mutations. The highly specificity and sensitivity of sitePath in finding fixed mutations were achieved for a range of parameters and different phylogenetic tree inference software. CONCLUSIONS The result suggests that sitePath can identify polymorphism clades per site. The clustering of sequences on a phylogenetic tree can be used to infer fixed and parallel mutations. High-quality figures of the calculated results could also be generated by sitePath.
Collapse
Affiliation(s)
- Chengyang Ji
- grid.506261.60000 0001 0706 7839Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005 China ,grid.494590.5Suzhou Institute of Systems Medicine, Suzhou, 215123 Jiangsu China
| | - Na Han
- grid.506261.60000 0001 0706 7839Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005 China ,grid.494590.5Suzhou Institute of Systems Medicine, Suzhou, 215123 Jiangsu China
| | - Yexiao Cheng
- grid.506261.60000 0001 0706 7839Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005 China ,grid.494590.5Suzhou Institute of Systems Medicine, Suzhou, 215123 Jiangsu China ,grid.254147.10000 0000 9776 7793School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211100 China
| | - Jingzhe Shang
- grid.506261.60000 0001 0706 7839Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005 China ,grid.494590.5Suzhou Institute of Systems Medicine, Suzhou, 215123 Jiangsu China
| | - Shenghui Weng
- grid.506261.60000 0001 0706 7839Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005 China ,grid.494590.5Suzhou Institute of Systems Medicine, Suzhou, 215123 Jiangsu China
| | - Rong Yang
- grid.506261.60000 0001 0706 7839Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005 China ,grid.494590.5Suzhou Institute of Systems Medicine, Suzhou, 215123 Jiangsu China
| | - Hang-Yu Zhou
- grid.506261.60000 0001 0706 7839Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005 China ,grid.494590.5Suzhou Institute of Systems Medicine, Suzhou, 215123 Jiangsu China
| | - Aiping Wu
- grid.506261.60000 0001 0706 7839Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005 China ,grid.494590.5Suzhou Institute of Systems Medicine, Suzhou, 215123 Jiangsu China
| |
Collapse
|
75
|
Sullivan KE, Kumar S, Liu X, Zhang Y, de Koning E, Li Y, Yuan J, Fan F. Uncovering the roles of dihydropyrimidine dehydrogenase in fatty-acid induced steatosis using human cellular models. Sci Rep 2022; 12:14109. [PMID: 35982095 PMCID: PMC9388600 DOI: 10.1038/s41598-022-17860-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Pyrimidine catabolism is implicated in hepatic steatosis. Dihydropyrimidine dehydrogenase (DPYD) is an enzyme responsible for uracil and thymine catabolism, and DPYD human genetic variability affects clinically observed toxicity following 5-Fluorouracil administration. In an in vitro model of fatty acid-induced steatosis, the pharmacologic inhibition of DPYD resulted in protection from lipid accumulation. Additionally, a gain-of-function mutation of DPYD, created through clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) engineering, led to an increased lipid burden, which was associated with altered mitochondrial functionality in a hepatocarcionma cell line. The studies presented herein describe a novel role for DPYD in hepatocyte metabolic regulation as a modulator of hepatic steatosis.
Collapse
Affiliation(s)
- Kelly E Sullivan
- Translational Systems Biology Group, Amgen Inc., Cambridge, MA, 02141, USA.,Vertex Pharmaceuticals, Boston, MA, 02210, USA
| | - Sheetal Kumar
- Translational Systems Biology Group, Amgen Inc., Cambridge, MA, 02141, USA.,Nimbus Therapeutics, Cambridge, MA, 02139, USA
| | - Xin Liu
- Translational Systems Biology Group, Amgen Inc., Cambridge, MA, 02141, USA.,Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
| | - Ye Zhang
- Translational Systems Biology Group, Amgen Inc., Cambridge, MA, 02141, USA.,Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
| | - Emily de Koning
- Translational Systems Biology Group, Amgen Inc., Cambridge, MA, 02141, USA.,Amgen Inc., Thousand Oaks, CA, 91320, USA
| | - Yanfei Li
- Amgen Inc., South San Francisco, CA, 90408, USA
| | - Jing Yuan
- Translational Systems Biology Group, Amgen Inc., Cambridge, MA, 02141, USA.,Pfizer Inc., Cambridge, MA, 02139, USA
| | - Fan Fan
- Translational Systems Biology Group, Amgen Inc., Cambridge, MA, 02141, USA. .,Janssen Pharmaceutical Companies of Johnson & Johnson, La Jolla, CA, 92037, USA.
| |
Collapse
|
76
|
Rochman ND, Wolf YI, Koonin EV. Molecular adaptations during viral epidemics. EMBO Rep 2022; 23:e55393. [PMID: 35848484 PMCID: PMC9346483 DOI: 10.15252/embr.202255393] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 07/20/2023] Open
Abstract
In 1977, the world witnessed both the eradication of smallpox and the beginning of the modern age of genomics. Over the following half-century, 7 epidemic viruses of international concern galvanized virologists across the globe and led to increasingly extensive virus genome sequencing. These sequencing efforts exerted over periods of rapid adaptation of viruses to new hosts, in particular, humans provide insight into the molecular mechanisms underpinning virus evolution. Investment in virus genome sequencing was dramatically increased by the unprecedented support for phylogenomic analyses during the COVID-19 pandemic. In this review, we attempt to piece together comprehensive molecular histories of the adaptation of variola virus, HIV-1 M, SARS, H1N1-SIV, MERS, Ebola, Zika, and SARS-CoV-2 to the human host. Disruption of genes involved in virus-host interaction in animal hosts, recombination including genome segment reassortment, and adaptive mutations leading to amino acid replacements in virus proteins involved in host receptor binding and membrane fusion are identified as the key factors in the evolution of epidemic viruses.
Collapse
Affiliation(s)
- Nash D Rochman
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| | - Yuri I Wolf
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| | - Eugene V Koonin
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| |
Collapse
|
77
|
Chen H, Bhowmick B, Tang Y, Lozano-Fernandez J, Han Q. Biochemical Evolution of a Potent Target of Mosquito Larvicide, 3-Hydroxykynurenine Transaminase. Molecules 2022; 27:molecules27154929. [PMID: 35956879 PMCID: PMC9369995 DOI: 10.3390/molecules27154929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
A specific mosquito enzyme, 3-hydroxykynurenine transaminase (HKT), is involved in the processing of toxic metabolic intermediates of the tryptophan metabolic pathway. The HKT enzymatic product, xanthurenic acid, is required for Plasmodium spp. development in the mosquito vectors. Therefore, an inhibitor of HKT may not only be a mosquitocide but also a malaria-transmission blocker. In this work, we present a study investigating the evolution of HKT, which is a lineage-specific duplication of an alanine glyoxylate aminotransferases (AGT) in mosquitoes. Synteny analyses, together with the phylogenetic history of the AGT family, suggests that HKT and the mosquito AGTs are paralogous that were formed via a duplication event in their common ancestor. Furthermore, 41 amino acid sites with significant evidence of positive selection were identified, which could be responsible for biochemical and functional evolution and the stability of conformational stabilization. To get a deeper understanding of the evolution of ligands’ capacity and the ligand-binding mechanism of HKT, the sequence and the 3D homology model of the common ancestor of HKT and AGT in mosquitoes, ancestral mosquito AGT (AncMosqAGT), were inferred and built. The homology model along with 3-hydroxykynurenine, kynurenine, and alanine were used in docking experiments to predict the binding capacity and ligand-binding mode of the new substrates related to toxic metabolites detoxification. Our study provides evidence for the dramatic biochemical evolution of the key detoxifying enzyme and provides potential sites that could hinder the detoxification function, which may be used in mosquito larvicide and design.
Collapse
Affiliation(s)
- Huaqing Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China; (H.C.); (B.B.); (Y.T.)
- One Health Institute, Hainan University, Haikou 570228, China
| | - Biswajit Bhowmick
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China; (H.C.); (B.B.); (Y.T.)
- One Health Institute, Hainan University, Haikou 570228, China
| | - Yu Tang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China; (H.C.); (B.B.); (Y.T.)
- One Health Institute, Hainan University, Haikou 570228, China
| | - Jesus Lozano-Fernandez
- Department of Genetics, Microbiology and Statistics, Biodiversity Research Institute (IRBio), University of Barcelona, Avd. Diagonal 643, 08028 Barcelona, Spain;
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China; (H.C.); (B.B.); (Y.T.)
- One Health Institute, Hainan University, Haikou 570228, China
- Correspondence:
| |
Collapse
|
78
|
Lin CS, Li WJ, Liao CY, Kan JY, Kung SH, Huang SH, Lai HC, Lin CW. A Reverse Mutation E143K within the PrM Protein of Zika Virus Asian Lineage Natal RGN Strain Increases Infectivity and Cytopathicity. Viruses 2022; 14:v14071572. [PMID: 35891552 PMCID: PMC9317194 DOI: 10.3390/v14071572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Zika virus (ZIKV) is a positive-sense single-stranded RNA virus in the Flaviviridae, which is classified into two different lineages Asian and African. The outbreak of ZIKV Asian lineage isolates in 2015–2016 is associated with the increase in cases with prenatal microcephaly and Guillain–Barré syndrome, and has sparked attention throughout the world. Genome sequence alignment and the analysis of Asian and African lineage isolates indicate that amino acid changes, particular in positively charged amino acid substitutions in the pr region of prM protein might involve a phenotypic change that links with the global outbreak of ZIKV Asian-lineage. The study generated and characterized the virological properties of wild type and mutants of single-round infectious particles (SRIPs) and infectious clones (i.c.s) of ZIKV Asian-lineage Natal RGN strain, and then identified the function of amino acid substitutions at the positions 139 [Asn139→Ser139 (N139S)] and 143 [Glu143→Lys143 (E143K)] in ZIKV polyproteins (located within the pr region of prM protein) in the infectivity and cytopathogenicity. The E143K SRIP and i.c. of Natal RGN strain exhibited relatively higher levels of cytopathic effect, EGFP reporter, viral RNA and protein synthesis, and virus yield in three types of human cell lines, TE617, SF268 and HMC3, compared to wild type (WT), N139S SRIPs and i.c.s, which displayed more efficiency in replication kinetics. Additionally, E143K Natal RGN i.c. had greater activities of virus attachment and entry, yielded higher titers of intracellular and extracellular virions, and assembled the E proteins near to the plasma membrane in infected cells than the other i.c.s. The results indicate that the positively charged amino acid residue Lys143, a conserved residue in the pr region of prM of ZIKV African lineages, plays a crucial role in viral replication kinetics, including viral attachment, entry, assembly and egress. Thus, the negatively charged amino acid residue Glu143 within the pr region of prM leads to an alteration of the phenotypes, in particular, a lower replication efficiency of ZIKV Asian-lineage isolates with the attenuation of infectivity and cytopathicity.
Collapse
Affiliation(s)
- Chen-Sheng Lin
- Division of Gastroenterology, Kuang Tien General Hospital, No. 117, Shatian Rd, Shalu District, Taichung 433, Taiwan;
| | - Wei-Jing Li
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung 404, Taiwan; (W.-J.L.); (C.-Y.L.)
| | - Chih-Yi Liao
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung 404, Taiwan; (W.-J.L.); (C.-Y.L.)
| | - Ju-Ying Kan
- The PhD Program of Biotechnology and Biomedical Industry, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung 404, Taiwan;
| | - Szu-Hao Kung
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Su-Hua Huang
- Department of Medical Laboratory Science and Biotechnology, Asia University, No. 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan;
| | - Hsueh-Chou Lai
- Division of Hepato-Gastroenterology, Department of Internal Medicine, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung 404, Taiwan;
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung 404, Taiwan; (W.-J.L.); (C.-Y.L.)
- The PhD Program of Biotechnology and Biomedical Industry, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung 404, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, Asia University, No. 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan;
- Correspondence:
| |
Collapse
|
79
|
Gao Y, Tai W, Wang X, Jiang S, Debnath AK, Du L, Chen S. A gossypol derivative effectively protects against Zika and dengue virus infection without toxicity. BMC Biol 2022; 20:143. [PMID: 35706035 PMCID: PMC9202104 DOI: 10.1186/s12915-022-01344-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
Background Zika virus (ZIKV) and dengue virus (DENV) cause microcephaly and dengue hemorrhagic fever, respectively, leading to severe problems. No effective antiviral agents are approved against infections of these flaviviruses, calling for the need to develop potent therapeutics. We previously identified gossypol as an effective inhibitor against ZIKV and DENV infections, but this compound is toxic and not suitable for in vivo treatment. Results In this study, we showed that gossypol derivative ST087010 exhibited potent and broad-spectrum in vitro inhibitory activity against infections of at least ten ZIKV strains isolated from different hosts, time periods, and countries, as well as DENV-1-4 serotypes, and significantly reduced cytotoxicity compared to gossypol. It presented broad-spectrum in vivo protective efficacy, protecting ZIKV-infected Ifnar1−/− mice from lethal challenge, with increased survival and reduced weight loss. Ifnar1−/− mice treated with this gossypol derivative decreased viral titers in various tissues, including the brain and testis, after infection with ZIKV at different human isolates. Moreover, ST087010 potently blocked ZIKV vertical transmission in pregnant Ifnar1−/− mice, preventing ZIKV-caused fetal death, and it was safe for pregnant mice and their pups. It also protected DENV-2-challenged Ifnar1−/− mice against viral replication by reducing the viral titers in the brain, kidney, heart, and sera. Conclusions Overall, our data indicate the potential for further development of this gossypol derivative as an effective and safe broad-spectrum therapeutic agent to treat ZIKV and DENV diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01344-w.
Collapse
Affiliation(s)
- Yaning Gao
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Wanbo Tai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Xinyi Wang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA.,Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Asim K Debnath
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA.
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA.
| | - Shizhong Chen
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
80
|
Han A, Sun B, Sun Z, Xu X, Yang Q, Xie D, Guan W, Lou Y. Molecular Characterization and Phylogenetic Analysis of the 2019 Dengue Outbreak in Wenzhou, China. Front Cell Infect Microbiol 2022; 12:829380. [PMID: 35663472 PMCID: PMC9161089 DOI: 10.3389/fcimb.2022.829380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/25/2022] [Indexed: 01/03/2023] Open
Abstract
In 2019, a dengue outbreak occurred with 290 confirmed cases in Wenzhou, a coastal city in southeast China. To identify the origin of the dengue virus (DENV) from this outbreak, viral RNA was extracted from four serum samples and sequenced for whole genome analysis. Then, phylogenetic analysis, gene mutation, secondary structure prediction, selection pressure analysis, and recombination analysis were performed. DENV strains Cam-03 and Cam-11 were isolated from patients traveling from Cambodia, while ZJWZ-18 and ZJWZ-62 strains were isolated from local patients without a record of traveling abroad. The whole genome sequence of all four strains was 10,735 nucleotides long. Phylogenetic tree analysis showed that the four strains belonged to genotype 1 of DENV-1, but the local Wenzhou strains and imported strains clustered in different branches. ZJWZ-18 and ZJWZ-62 were closely related to strain MF033254-Singapore-2016, and Cam-03 and Cam-11 were closely related to strain AB608788-China : Taiwan-1994. A comparison of the coding regions between the local strains and the DENV-1 standard strain (EU848545-Hawaii-1944) showed 82 amino acid mutations between the two strains. A total of 55 amino acid mutations were found between the coding regions of the local and imported strains. The overall secondary structure of the 3' UTR of the local strains had changed: apparent changes in the head and tail position were observed when compared to DENV-1 standard strain. Furthermore, selection pressure analysis and recombination detection using the 4 isolates and 41 reference strains showed two credible positive selection sites and eight credible recombination events, which warrant further studies. This study may enhance the understanding of viral replication, infection, evolution, virulence, and pathogenicity of DENV.
Collapse
Affiliation(s)
- Axiang Han
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, China
| | - Baochang Sun
- Department of Laboratory, Wenzhou Center for Disease Control and Prevention, Wenzhou, China
| | - Zhewei Sun
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xuelian Xu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiongying Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Danli Xie
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
81
|
Liu Y, Li K, Xu YP, Zhu Z, Zhao H, Li XF, Ye Q, Yi C, Qin CF. Characterization of m 6 A modifications in the contemporary Zika virus genome and host cellular transcripts. J Med Virol 2022; 94:4309-4318. [PMID: 35587571 DOI: 10.1002/jmv.27869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/07/2022]
Abstract
Zika virus (ZIKV) suddenly evolved from a neglected arthropod-borne flavivirus into a pandemic pathogen during 2015-2016. A panel of amino acid mutations have been shown to be responsible for the enhanced neurovirulence and transmissibility of ZIKV. Recent studies have demonstrated that ZIKV genomic RNA is modified by host N6-methyladenosine (m6 A) machinery during viral replication in host cells, and the m6 A profiles vary among different isolates and different host cells. In the present study, using a contemporary Asian ZIKV strain isolated in 2019 (SZ1901) as a model, we profiled m6 A modifications on both the viral genome RNA and cellular transcripts from the ZIKV-infected human hepatocarcinoma cell line Huh7. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) identified a unique m6 A map in the genome of ZIKV strain SZ1901 that is different from all previous isolates. Meanwhile, ZIKV infection induced m6 A upregulation in the CDS regions but downregulation in the 3' UTR of host RNA transcripts. The m6 A peak intensity in the majority of host genes was downregulated, include including ISG-related genes. Overall, our study describes unique viral and host m6 A profiles in contemporary ZIKV-infected Huh7 cells, highlighting the complexity and importance of m6 A modification during viral infection. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Kai Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yan-Peng Xu
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Zhu Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Hui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Qing Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
82
|
Caldwell HS, Pata JD, Ciota AT. The Role of the Flavivirus Replicase in Viral Diversity and Adaptation. Viruses 2022; 14:1076. [PMID: 35632818 PMCID: PMC9143365 DOI: 10.3390/v14051076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Flaviviruses include several emerging and re-emerging arboviruses which cause millions of infections each year. Although relatively well-studied, much remains unknown regarding the mechanisms and means by which these viruses readily alternate and adapt to different hosts and environments. Here, we review a subset of the different aspects of flaviviral biology which impact host switching and viral fitness. These include the mechanism of replication and structural biology of the NS3 and NS5 proteins, which reproduce the viral genome; rates of mutation resulting from this replication and the role of mutational frequency in viral fitness; and the theory of quasispecies evolution and how it contributes to our understanding of genetic and phenotypic plasticity.
Collapse
Affiliation(s)
- Haley S. Caldwell
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA;
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA;
| | - Janice D. Pata
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA;
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Alexander T. Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA;
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA;
| |
Collapse
|
83
|
Peng NYG, Amarilla AA, Hugo LE, Modhiran N, Sng JDJ, Slonchak A, Watterson D, Setoh YX, Khromykh AA. The distinguishing NS5-M114V mutation in American Zika virus isolates has negligible impacts on virus replication and transmission potential. PLoS Negl Trop Dis 2022; 16:e0010426. [PMID: 35536870 PMCID: PMC9122223 DOI: 10.1371/journal.pntd.0010426] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/20/2022] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
During 2015–2016, outbreaks of Zika virus (ZIKV) occurred in Southeast Asia and the Americas. Most ZIKV infections in humans are asymptomatic, while clinical manifestation is usually a self-limiting febrile disease with maculopapular rash. However, ZIKV is capable of inducing a range of severe neurological complications collectively described as congenital Zika syndrome (CZS). Notably, the scale and magnitude of outbreaks in Southeast Asia were significantly smaller compared to those in the Americas. Sequence comparison between epidemic-associated ZIKV strains from Southeast Asia with those from the Americas revealed a methionine to valine substitution at residue position 114 of the NS5 protein (NS5-M114V) in all the American isolates. Using an American isolate of ZIKV (Natal), we investigated the impact of NS5-M114V mutation on virus replication in cells, virulence in interferon (IFN) α/β receptor knockout (Ifnar-/-) mice, as well as replication and transmission potential in Aedes aegypti mosquitoes. We demonstrated that NS5-M114V mutation had insignificant effect on ZIKV replication efficiency in cells, its ability to degrade STAT2, and virulence in vivo, albeit viremia was slightly prolonged in mice. Furthermore, NS5-M114V mutation decreased mosquito infection and dissemination rates but had no effect on virus secretion into the saliva. Taken together, our findings support the notion that NS5-M114V mutation is unlikely to be a major determinant for virus replication and transmission potential. Zika virus (ZIKV) emerged to cause outbreaks in Southeast Asia and the Americas during 2015–2016. However, the scale of outbreaks in Southeast Asia were significantly smaller compared to epidemic in the Americas. A methionine to valine amino acid mutation at residue position 114 of the NS5 protein (NS5-M114V) is hypothesized to influence the epidemic outcomes of ZIKV, which led to the large-scale epidemic that occurred in the Americas. By analyzing infection of mammalian and mosquito cells, IFNα/β receptor knockout (Ifnar-/-) mice and Aedes aegypti mosquitoes with engineered ZIKV isolates containing either methionine or valine at residue position 114 of the NS5 protein, we demonstrated that the NS5-M114V mutation did not affect virus replication efficiency and STAT2 degradation in cells, virulence in mice, or virus secretion into the mosquito saliva. The NS5-M114V mutation slightly prolonged viremia in Ifnar-/- mice and reduced mosquito infection rate. Collectively, our findings suggest that the NS5-M114V mutation is unlikely to have significantly influenced the ZIKV epidemic in the Americas.
Collapse
Affiliation(s)
- Nias Y. G. Peng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Leon E. Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Queensland, Brisbane, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Julian D. J. Sng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Queensland, Brisbane, Australia
- * E-mail: (DW); (YXS); (AAK)
| | - Yin Xiang Setoh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
- * E-mail: (DW); (YXS); (AAK)
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Queensland, Brisbane, Australia
- * E-mail: (DW); (YXS); (AAK)
| |
Collapse
|
84
|
Raphael LMS, de Mello IS, Gómez MM, Ribeiro IP, Furtado ND, Lima NS, Dos Santos AAC, Fernandes DR, da Cruz SOD, Damasceno LS, Brasil P, Bonaldo MC. Phenotypic and Genetic Variability of Isolates of ZIKV-2016 in Brazil. Microorganisms 2022; 10:microorganisms10050854. [PMID: 35630300 PMCID: PMC9146765 DOI: 10.3390/microorganisms10050854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
The possibility of a Zika virus epidemic resurgence requires studies to understand its mechanisms of pathogenicity. Here, we describe the isolation of the Zika virus from breast milk (Rio-BM1) and compare its genetic and virological properties with two other isolates (Rio-U1 and Rio-S1) obtained during the same epidemic period. Complete genomic analysis of these three viral isolates showed that they carry characteristics of the American isolates and belong to the Asian genotype. Furthermore, we detected eight non-synonymous single nucleotide variants and multiple nucleotide polymorphisms that reflect phenotypic changes. The new isolate, Rio-BM1, showed the lowest replication rates in mammalian cells, induced lower cell death rates, was more susceptible to treatment with type I IFN, and was less pathogenic than Rio-U1 in a murine model. In conclusion, the present study shows evidence that the isolate Rio-BM1 is more attenuated than Rio-U1, probably due to the impact of genetic alterations in the modulation of virulence. The results obtained in our in vitro model were consistent with the pathogenicity observed in the animal model, indicating that this method can be used to assess the virulence level of other isolates or to predict the pathogenicity of reverse genetic constructs containing other polymorphisms.
Collapse
Affiliation(s)
- Lidiane Menezes Souza Raphael
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.M.S.R.); (I.S.d.M.); (I.P.R.); (N.D.F.); (N.S.L.); (A.A.C.D.S.); (D.R.F.); (S.O.D.d.C.)
| | - Iasmim Silva de Mello
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.M.S.R.); (I.S.d.M.); (I.P.R.); (N.D.F.); (N.S.L.); (A.A.C.D.S.); (D.R.F.); (S.O.D.d.C.)
| | - Mariela Martínez Gómez
- Molecular Biology and Genetics Division, Molecular Biology Department, Clemente Estable Biological Research Institute, Montevideo 11600, Uruguay;
| | - Ieda Pereira Ribeiro
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.M.S.R.); (I.S.d.M.); (I.P.R.); (N.D.F.); (N.S.L.); (A.A.C.D.S.); (D.R.F.); (S.O.D.d.C.)
| | - Nathália Dias Furtado
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.M.S.R.); (I.S.d.M.); (I.P.R.); (N.D.F.); (N.S.L.); (A.A.C.D.S.); (D.R.F.); (S.O.D.d.C.)
| | - Noemia Santana Lima
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.M.S.R.); (I.S.d.M.); (I.P.R.); (N.D.F.); (N.S.L.); (A.A.C.D.S.); (D.R.F.); (S.O.D.d.C.)
| | - Alexandre Araújo Cunha Dos Santos
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.M.S.R.); (I.S.d.M.); (I.P.R.); (N.D.F.); (N.S.L.); (A.A.C.D.S.); (D.R.F.); (S.O.D.d.C.)
| | - Déberli Ruiz Fernandes
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.M.S.R.); (I.S.d.M.); (I.P.R.); (N.D.F.); (N.S.L.); (A.A.C.D.S.); (D.R.F.); (S.O.D.d.C.)
| | - Stephanie Oliveira Diaz da Cruz
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.M.S.R.); (I.S.d.M.); (I.P.R.); (N.D.F.); (N.S.L.); (A.A.C.D.S.); (D.R.F.); (S.O.D.d.C.)
| | - Luana Santana Damasceno
- Laboratory of Acute Febrile Diseases, National Institute of Infectious Diseases Evandro Chagas, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.S.D.); (P.B.)
| | - Patrícia Brasil
- Laboratory of Acute Febrile Diseases, National Institute of Infectious Diseases Evandro Chagas, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.S.D.); (P.B.)
| | - Myrna Cristina Bonaldo
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.M.S.R.); (I.S.d.M.); (I.P.R.); (N.D.F.); (N.S.L.); (A.A.C.D.S.); (D.R.F.); (S.O.D.d.C.)
- Correspondence:
| |
Collapse
|
85
|
Abstract
6 years ago, I published a Cell Host and Microbe paper that described randomization of virus genetic populations during mosquito infection. From within the evolutionary chaos, however, there is an order that can reveal a virus' past. Using these insights, I forged a career harnessing virus evolution to understand epidemiological patterns.
Collapse
|
86
|
Regla-Nava JA, Wang YT, Fontes-Garfias CR, Liu Y, Syed T, Susantono M, Gonzalez A, Viramontes KM, Verma SK, Kim K, Landeras-Bueno S, Huang CT, Prigozhin DM, Gleeson JG, Terskikh AV, Shi PY, Shresta S. A Zika virus mutation enhances transmission potential and confers escape from protective dengue virus immunity. Cell Rep 2022; 39:110655. [PMID: 35417697 PMCID: PMC9093040 DOI: 10.1016/j.celrep.2022.110655] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/08/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022] Open
Abstract
Zika virus (ZIKV) and dengue virus (DENV) are arthropod-borne pathogenic flaviviruses that co-circulate in many countries. To understand some of the pressures that influence ZIKV evolution, we mimic the natural transmission cycle by repeating serial passaging of ZIKV through cultured mosquito cells and either DENV-naive or DENV-immune mice. Compared with wild-type ZIKV, the strains passaged under both conditions exhibit increased pathogenesis in DENV-immune mice. Application of reverse genetics identifies an isoleucine-to-valine mutation (I39V) in the NS2B proteins of both passaged strains that confers enhanced fitness and escape from pre-existing DENV immunity. Introduction of I39V or I39T, a naturally occurring homologous mutation detected in recent ZIKV isolates, increases the replication of wild-type ZIKV in human neuronal precursor cells and laboratory-raised mosquitoes. Our data indicate that ZIKV strains with enhanced transmissibility and pathogenicity can emerge in DENV-naive or -immune settings, and that NS2B-I39 mutants may represent ZIKV variants of interest.
Collapse
Affiliation(s)
- Jose Angel Regla-Nava
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ying-Ting Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Camila R Fontes-Garfias
- Department of Biochemistry and Molecular Biology, Sealy Institute for Drug Discovery, Department of Pharmacology and Toxicology and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, Sealy Institute for Drug Discovery, Department of Pharmacology and Toxicology and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thasneem Syed
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Mercylia Susantono
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Andrew Gonzalez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Karla M Viramontes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Shailendra Kumar Verma
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kenneth Kim
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Sara Landeras-Bueno
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Chun-Teng Huang
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Daniil M Prigozhin
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Joseph G Gleeson
- Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Alexey V Terskikh
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, Sealy Institute for Drug Discovery, Department of Pharmacology and Toxicology and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
87
|
Komarasamy TV, Adnan NAA, James W, Balasubramaniam VRMT. Zika Virus Neuropathogenesis: The Different Brain Cells, Host Factors and Mechanisms Involved. Front Immunol 2022; 13:773191. [PMID: 35371036 PMCID: PMC8966389 DOI: 10.3389/fimmu.2022.773191] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/21/2022] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV), despite being discovered six decades earlier, became a major health concern only after an epidemic in French Polynesia and an increase in the number of microcephaly cases in Brazil. Substantial evidence has been found to support the link between ZIKV and neurological complications in infants. The virus targets various cells in the brain, including radial glial cells, neural progenitor cells (NPCs), astrocytes, microglial and glioblastoma stem cells. It affects the brain cells by exploiting different mechanisms, mainly through apoptosis and cell cycle dysregulation. The modulation of host immune response and the inflammatory process has also been demonstrated to play a critical role in ZIKV induced neurological complications. In addition to that, different ZIKV strains have exhibited specific neurotropism and unique molecular mechanisms. This review provides a comprehensive and up-to-date overview of ZIKV-induced neuroimmunopathogenesis by dissecting its main target cells in the brain, and the underlying cellular and molecular mechanisms. We highlighted the roles of the different ZIKV host factors and how they exploit specific host factors through various mechanisms. Overall, it covers key components for understanding the crosstalk between ZIKV and the brain.
Collapse
Affiliation(s)
- Thamil Vaani Komarasamy
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Nur Amelia Azreen Adnan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - William James
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Vinod R M T Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
88
|
Schuler-Faccini L, Del Campo M, García-Alix A, Ventura LO, Boquett JA, van der Linden V, Pessoa A, van der Linden Júnior H, Ventura CV, Leal MC, Kowalski TW, Rodrigues Gerzson L, Skilhan de Almeida C, Santi L, Beys-da-Silva WO, Quincozes-Santos A, Guimarães JA, Garcez PP, Gomes JDA, Vianna FSL, Anjos da Silva A, Fraga LR, Vieira Sanseverino MT, Muotri AR, Lopes da Rosa R, Abeche AM, Marcolongo-Pereira C, Souza DO. Neurodevelopment in Children Exposed to Zika in utero: Clinical and Molecular Aspects. Front Genet 2022; 13:758715. [PMID: 35350244 PMCID: PMC8957982 DOI: 10.3389/fgene.2022.758715] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
Five years after the identification of Zika virus as a human teratogen, we reviewed the early clinical manifestations, collectively called congenital Zika syndrome (CZS). Children with CZS have a very poor prognosis with extremely low performance in motor, cognitive, and language development domains, and practically all feature severe forms of cerebral palsy. However, these manifestations are the tip of the iceberg, with some children presenting milder forms of deficits. Additionally, neurodevelopment can be in the normal range in the majority of the non-microcephalic children born without brain or eye abnormalities. Vertical transmission and the resulting disruption in development of the brain are much less frequent when maternal infection occurs in the second half of the pregnancy. Experimental studies have alerted to the possibility of other behavioral outcomes both in prenatally infected children and in postnatal and adult infections. Cofactors play a vital role in the development of CZS and involve genetic, environmental, nutritional, and social determinants leading to the asymmetric distribution of cases. Some of these social variables also limit access to multidisciplinary professional treatment.
Collapse
Affiliation(s)
- Lavínia Schuler-Faccini
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - Miguel Del Campo
- Department of Pediatrics, School of Medicine, University of California San Diego, and Rady Children's Hospital San Diego, San Diego, CA, United States
| | | | - Liana O Ventura
- Department of Ophthalmology, Fundação Altino Ventura, FAV, Recife, Brazil
| | | | | | - André Pessoa
- Hospital Infantil Albert Sabin, Fortaleza, Brazil.,Universidade Estadual do Ceará, Fortaleza, Brazil
| | | | - Camila V Ventura
- Department of Ophthalmology, Fundação Altino Ventura, FAV, Recife, Brazil
| | | | - Thayne Woycinck Kowalski
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,CESUCA-Centro Universitário, Cachoeirinha, Brazil
| | | | | | - Lucélia Santi
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - Walter O Beys-da-Silva
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | | | - Jorge A Guimarães
- Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | | | | | - Fernanda Sales Luiz Vianna
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - André Anjos da Silva
- School of Medicine, Graduate Program in Medical Sciences-Universidade do Vale do Taquari-UNIVATES, Lajeado, Brazil.,School of Medicine, Universidade do Vale do Rio dos Sinos-UNISINOS, São Leopoldo, Brazil
| | - Lucas Rosa Fraga
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - Maria Teresa Vieira Sanseverino
- Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil.,Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Alysson R Muotri
- Department of Pediatrics, School of Medicine, University of California San Diego, and Rady Children's Hospital San Diego, San Diego, CA, United States
| | | | - Alberto Mantovani Abeche
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | | | - Diogo O Souza
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
89
|
Fishburn AT, Pham OH, Kenaston MW, Beesabathuni NS, Shah PS. Let's Get Physical: Flavivirus-Host Protein-Protein Interactions in Replication and Pathogenesis. Front Microbiol 2022; 13:847588. [PMID: 35308381 PMCID: PMC8928165 DOI: 10.3389/fmicb.2022.847588] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Flaviviruses comprise a genus of viruses that pose a significant burden on human health worldwide. Transmission by both mosquito and tick vectors, and broad host tropism contribute to the presence of flaviviruses globally. Like all viruses, they require utilization of host molecular machinery to facilitate their replication through physical interactions. Their RNA genomes are translated using host ribosomes, synthesizing viral proteins that cooperate with each other and host proteins to reshape the host cell into a factory for virus replication. Thus, dissecting the physical interactions between viral proteins and their host protein targets is essential in our comprehension of how flaviviruses replicate and how they alter host cell behavior. Beyond replication, even single interactions can contribute to immune evasion and pathogenesis, providing potential avenues for therapeutic intervention. Here, we review protein interactions between flavivirus and host proteins that contribute to virus replication, immune evasion, and disease.
Collapse
Affiliation(s)
- Adam T Fishburn
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Oanh H Pham
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Matthew W Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Nitin S Beesabathuni
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States.,Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Priya S Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States.,Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
90
|
Dong S, Xie X, Chen Y, Long G, Liang Q, Zhao Z, Zeng J. Protocol for in utero injection to investigate Zika virus-related fetal microcephaly in mice. STAR Protoc 2022; 3:101057. [PMID: 35005639 PMCID: PMC8715324 DOI: 10.1016/j.xpro.2021.101057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Zika virus (ZIKV) is linked to congenital defects including microcephaly. An infection model that can recapitulate most microcephaly-related phenotypes is crucial for understanding ZIKV pathogenesis. Here, we present a protocol to generate ZIKV from an infectious clone through a reverse genetic system and subsequently perform embryonic brain infection with the rescued ZIKV in pregnant mice. We optimized several aspects of the procedures including virus rescue and in utero injection. This protocol facilitates reproducible investigation of virus-induced cortical development defects. For complete details on the use and execution of this protocol, please refer to Zeng et al. (2020) Workflow of Zika virus (ZIKV) preparation from an infectious clone Protocol for in utero ZIKV injection Details for brain sampling after ZIKV injection Guidelines for ZIKV-related microcephaly phenotype analysis
Collapse
Affiliation(s)
- Shupeng Dong
- Research Center of Translational Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaochun Xie
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA
- Zikha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650201, China
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Yujie Chen
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Gang Long
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Qiming Liang
- Research Center of Translational Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200340, China
- Corresponding author
| | - Zhen Zhao
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA
- Zikha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Corresponding author
| | - Jianxiong Zeng
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA
- Zikha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650201, China
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Corresponding author
| |
Collapse
|
91
|
Jaimipuk T, Sachdev S, Yoksan S, Thepparit C. A Small-Plaque Isolate of the Zika Virus with Envelope Domain III Mutations Affect Viral Entry and Replication in Mammalian but Not Mosquito Cells. Viruses 2022; 14:v14030480. [PMID: 35336887 PMCID: PMC8954177 DOI: 10.3390/v14030480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
An Asian Zika virus (ZIKV) isolated from a Thai patient that was serially passaged in Primary Dog Kidney (PDK) cells for attenuation displayed both big and small plaque-forming viruses by the 7th passage. Two small-plaque isolates were selected and purified for characterization as attenuated ZIKV candidates. In vitro growth kinetics showed significantly reduced titers for small-plaque isolates in Vero cells early post-infection compared to the parental ZIKV and a big-plaque isolate, but no significant difference was observed in C6/36 cells. Viral entry experiments elucidate that titer reduction likely occurred due to the diminished entry capabilities of a small-plaque isolate. Additionally, a small-plaque isolate displayed lowered neurovirulence in newborn mice compared to 100% lethality from infection with the parental ZIKV. Genomic analysis revealed the same three unique non-synonymous mutations for both small-plaque isolates: two on the envelope (E) protein at residues 310, alanine to glutamic acid (A310E), and 393, glutamic acid to lysine (E393K), and one on residue 355 of NS3, histidine to tyrosine (H355Y). Three-dimensional (3D) mapping suggests that the E protein mutations located on the receptor-binding and fusion domain III likely affect cell entry, tropism, and virulence. These ZIKV isolates and genotypic markers will be beneficial for vaccine development.
Collapse
|
92
|
Yu X, Cheng G. Adaptive Evolution as a Driving Force of the Emergence and Re-Emergence of Mosquito-Borne Viral Diseases. Viruses 2022; 14:v14020435. [PMID: 35216028 PMCID: PMC8878277 DOI: 10.3390/v14020435] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Emerging and re-emerging mosquito-borne viral diseases impose a significant burden on global public health. The most common mosquito-borne viruses causing recent epidemics include flaviviruses in the family Flaviviridae, including Dengue virus (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV) and West Nile virus (WNV) and Togaviridae viruses, such as chikungunya virus (CHIKV). Several factors may have contributed to the recent re-emergence and spread of mosquito-borne viral diseases. Among these important causes are the evolution of mosquito-borne viruses and the genetic mutations that make them more adaptive and virulent, leading to widespread epidemics. RNA viruses tend to acquire genetic diversity due to error-prone RNA-dependent RNA polymerases, thus promoting high mutation rates that support adaptation to environmental changes or host immunity. In this review, we discuss recent findings on the adaptive evolution of mosquito-borne viruses and their impact on viral infectivity, pathogenicity, vector fitness, transmissibility, epidemic potential and disease emergence.
Collapse
Affiliation(s)
- Xi Yu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
93
|
Santos NP, Santos LH, Torquato Quezado de Magalhães M, Lei J, Hilgenfeld R, Salgado Ferreira R, Bleicher L. Characterization of an Allosteric Pocket in Zika Virus NS2B-NS3 Protease. J Chem Inf Model 2022; 62:945-957. [DOI: 10.1021/acs.jcim.1c01326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Naiá Porã Santos
- Biochemistry and Immunology Department, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Lucianna Helene Santos
- Biochemistry and Immunology Department, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Mariana Torquato Quezado de Magalhães
- Biochemistry and Immunology Department, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Jian Lei
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, Lübeck 23562, Germany
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, Lübeck 23562, Germany
| | - Rafaela Salgado Ferreira
- Biochemistry and Immunology Department, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Lucas Bleicher
- Biochemistry and Immunology Department, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
94
|
Ding LS, Zhang Y, Wen D, Ma J, Yuan H, Li H, Duo S, Yuan F, Zhang YE, Zheng A. Growth, Antigenicity, and Immunogenicity of SARS-CoV-2 Spike Variants Revealed by a Live rVSV-SARS-CoV-2 Virus. Front Med (Lausanne) 2022; 8:793437. [PMID: 35071273 PMCID: PMC8777026 DOI: 10.3389/fmed.2021.793437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
SARS-CoV-2 is an emerging coronavirus threatening human health and the economy worldwide. As an RNA virus, variants emerge during the pandemic and potentially influence the efficacy of the anti-viral drugs and vaccines. Eight spike variants harboring highly recurrent mutations were selected and introduced into a replication-competent recombinant VSV in place of the original G protein (rVSV-SARS-CoV-2). The resulting mutant viruses displayed similar growth curves in vitro as the wild-type virus and could be neutralized by sera from convalescent COVID-19 patients. Several variants, especially Beta strain, showed resistance to human neutralizing monoclonal antibodies targeting the receptor-binding domain (RBD). A single dose of rVSV-SARS-CoV-2 Beta variant could elicit enhanced and broad-spectrum neutralizing antibody responses in human ACE2 knock-in mice and golden Syrian hamsters, while other mutants generated antibody levels comparable to the wild-type. Therefore, our results will be of value to the development of next-generation vaccines and therapeutic antibodies.
Collapse
Affiliation(s)
- Limin S. Ding
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhang Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Dan Wen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianbo Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hao Yuan
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongyue Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Shuguang Duo
- Laboratory Animal Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fei Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yong E. Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| |
Collapse
|
95
|
Bernardo-Menezes LC, Agrelli A, Oliveira ASLED, Moura RRD, Crovella S, Brandão LAC. An overview of Zika virus genotypes and their infectivity. Rev Soc Bras Med Trop 2022; 55:e02632022. [PMID: 36197380 PMCID: PMC9536801 DOI: 10.1590/0037-8682-0263-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Zika virus (ZIKV) is an enveloped, single-stranded RNA arbovirus belonging to the
genus Flavivirus. It was first isolated from a sentinel monkey
in Uganda in 1947. More recently, ZIKV has undergone rapid geographic expansion
and has been responsible for outbreaks in Southeast Asia, the Pacific Islands,
and America. In this review, we have highlighted the influence of viral genetic
variants on ZIKV pathogenesis. Two major ZIKV genotypes (African and Asian) have
been identified. The Asian genotype is subdivided into Southwest Asia, Pacific
Island, and American strains, and is responsible for most outbreaks.
Non-synonymous mutations in ZIKV proteins C, prM, E, NS1, NS2A, NS2B, NS3, and
NS4B were found to have a higher prevalence and association with virulent
strains of the Asian genotype. Consequently, the Asian genotype appears to have
acquired higher cellular permissiveness, tissue persistence, and viral tropism
in human neural cells. Therefore, mutations in specific coding regions of the
Asian genotype may enhance ZIKV infectivity. Considering that mutations in the
genomes of emerging viruses may lead to new virulent variants in humans, there
is a potential for the re-emergence of new ZIKV cases in the future.
Collapse
|
96
|
Liu Z, Zhang Y, Cheng M, Ge N, Shu J, Xu Z, Su X, Kou Z, Tong Y, Qin C, Jin X. A single nonsynonymous mutation on ZIKV E protein-coding sequences leads to markedly increased neurovirulence in vivo. Virol Sin 2022; 37:115-126. [PMID: 35234632 PMCID: PMC8922429 DOI: 10.1016/j.virs.2022.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/20/2021] [Indexed: 01/23/2023] Open
Abstract
Zika virus (ZIKV) can infect a wide range of tissues including the developmental brain of human fetus. Whether specific viral genetic variants are linked to neuropathology is incompletely understood. To address this, we have intracranially serially passaged a clinical ZIKV isolate (SW01) in neonatal mice and discovered variants that exhibit markedly increased virulence and neurotropism. Deep sequencing analysis combining with molecular virology studies revealed that a single 67D (Aspartic acid) to N (Asparagine) substitution on E protein is sufficient to confer the increased virulence and neurotropism in vivo. Notably, virus clones with D67N mutation had higher viral production and caused more severe cytopathic effect (CPE) in human neural astrocytes U251 cells in vitro, indicating its potential neurological toxicity to human brain. These findings revealed that a single mutation D67N on ZIKV envelope may lead to severe neuro lesion that may help to explain the neurovirulence of ZIKV and suggest monitoring the occurrence of this mutation during nature infection may be important. Construction of a ZIKV adaptation mouse mode. Specific viral genetic changes of ZIKV are associated with severe neuropathology. D67N mutation on E protein markedly increase the neurovirulence of ZIKA virus.
Collapse
Affiliation(s)
- Zhihua Liu
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yawei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Mengli Cheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ningning Ge
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jiayi Shu
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Su
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihua Kou
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Chengfeng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Xia Jin
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
97
|
Seabra SG, Libin PJK, Theys K, Zhukova A, Potter BI, Nebenzahl-Guimaraes H, Gorbalenya AE, Sidorov IA, Pimentel V, Pingarilho M, de Vasconcelos ATR, Dellicour S, Khouri R, Gascuel O, Vandamme AM, Baele G, Cuypers L, Abecasis AB. OUP accepted manuscript. Virus Evol 2022; 8:veac029. [PMID: 35478717 PMCID: PMC9035895 DOI: 10.1093/ve/veac029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The Zika virus (ZIKV) disease caused a public health emergency of international concern that started in February 2016. The overall number of ZIKV-related cases increased until November 2016, after which it declined sharply. While the evaluation of the potential risk and impact of future arbovirus epidemics remains challenging, intensified surveillance efforts along with a scale-up of ZIKV whole-genome sequencing provide an opportunity to understand the patterns of genetic diversity, evolution, and spread of ZIKV. However, a classification system that reflects the true extent of ZIKV genetic variation is lacking. Our objective was to characterize ZIKV genetic diversity and phylodynamics, identify genomic footprints of differentiation patterns, and propose a dynamic classification system that reflects its divergence levels. We analysed a curated dataset of 762 publicly available sequences spanning the full-length coding region of ZIKV from across its geographical span and collected between 1947 and 2021. The definition of genetic groups was based on comprehensive evolutionary dynamics analyses, which included recombination and phylogenetic analyses, within- and between-group pairwise genetic distances comparison, detection of selective pressure, and clustering analyses. Evidence for potential recombination events was detected in a few sequences. However, we argue that these events are likely due to sequencing errors as proposed in previous studies. There was evidence of strong purifying selection, widespread across the genome, as also detected for other arboviruses. A total of 50 sites showed evidence of positive selection, and for a few of these sites, there was amino acid (AA) differentiation between genetic clusters. Two main genetic clusters were defined, ZA and ZB, which correspond to the already characterized ‘African’ and ‘Asian’ genotypes, respectively. Within ZB, two subgroups, ZB.1 and ZB.2, represent the Asiatic and the American (and Oceania) lineages, respectively. ZB.1 is further subdivided into ZB.1.0 (a basal Malaysia sequence sampled in the 1960s and a recent Indian sequence), ZB.1.1 (South-Eastern Asia, Southern Asia, and Micronesia sequences), and ZB.1.2 (very similar sequences from the outbreak in Singapore). ZB.2 is subdivided into ZB.2.0 (basal American sequences and the sequences from French Polynesia, the putative origin of South America introduction), ZB.2.1 (Central America), and ZB.2.2 (Caribbean and North America). This classification system does not use geographical references and is flexible to accommodate potential future lineages. It will be a helpful tool for studies that involve analyses of ZIKV genomic variation and its association with pathogenicity and serve as a starting point for the public health surveillance and response to on-going and future epidemics and to outbreaks that lead to the emergence of new variants.
Collapse
Affiliation(s)
| | | | | | - Anna Zhukova
- Institut Pasteur, Université Paris Cité, Unité Bioinformatique Evolutive, 25-28 rue du Dr Roux, Paris F-75015, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 25-28 rue du Dr Roux, Paris F-75015, France
| | | | - Hanna Nebenzahl-Guimaraes
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira 100, Lisboa 1349-008, Portugal
| | | | | | - Victor Pimentel
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira 100, Lisboa 1349-008, Portugal
| | - Marta Pingarilho
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira 100, Lisboa 1349-008, Portugal
| | | | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Herestraat 49 - box 1030, Leuven 3000, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP 264/3, 50 av. F.D. Roosevelt, Bruxelles B-1050, Belgium
| | | | | | | | | | - Lize Cuypers
- Department of Laboratory Medicine, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Ana B Abecasis
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira 100, Lisboa 1349-008, Portugal
| |
Collapse
|
98
|
Single dose of chimeric dengue-2/Zika vaccine candidate protects mice and non-human primates against Zika virus. Nat Commun 2021; 12:7320. [PMID: 34916486 PMCID: PMC8677809 DOI: 10.1038/s41467-021-27578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022] Open
Abstract
The development of a safe and effective Zika virus (ZIKV) vaccine has become a global health priority since the widespread epidemic in 2015-2016. Based on previous experience in using the well-characterized and clinically proven dengue virus serotype-2 (DENV-2) PDK-53 vaccine backbone for live-attenuated chimeric flavivirus vaccine development, we developed chimeric DENV-2/ZIKV vaccine candidates optimized for growth and genetic stability in Vero cells. These vaccine candidates retain all previously characterized attenuation phenotypes of the PDK-53 vaccine virus, including attenuation of neurovirulence for 1-day-old CD-1 mice, absence of virulence in interferon receptor-deficient mice, and lack of transmissibility in the main mosquito vectors. A single DENV-2/ZIKV dose provides protection against ZIKV challenge in mice and rhesus macaques. Overall, these data indicate that the ZIKV live-attenuated vaccine candidates are safe, immunogenic and effective at preventing ZIKV infection in multiple animal models, warranting continued development.
Collapse
|
99
|
Yau C, Low JZH, Gan ES, Kwek SS, Cui L, Tan HC, Mok DZL, Chan CYY, Sessions OM, Watanabe S, Vasudevan SG, Lee YH, Chan KR, Ooi EE. Dysregulated metabolism underpins Zika-virus-infection-associated impairment in fetal development. Cell Rep 2021; 37:110118. [PMID: 34910902 DOI: 10.1016/j.celrep.2021.110118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/09/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
Zika virus (ZIKV) is an Aedes-mosquito-borne flavivirus that causes debilitating congenital and developmental disorders. Improved understanding of ZIKV pathogenesis could assist efforts to fill the therapeutic and vaccine gap. We use several ZIKV strains, including a pair differing by a single phenylalanine-to-leucine substitution (M-F37L) in the membrane (M) protein, coupled with unbiased genomics to demarcate the border between attenuated and pathogenic infection. We identify infection-induced metabolic dysregulation as a minimal set of host alterations that differentiates attenuated from pathogenic ZIKV strains. Glycolytic rewiring results in impaired oxidative phosphorylation and mitochondrial dysfunction that trigger inflammation and apoptosis in pathogenic but not attenuated ZIKV strains. Critically, pyruvate supplementation prevents cell death, in vitro, and rescues fetal development in ZIKV-infected dams. Our findings thus demonstrate dysregulated metabolism as an underpinning of ZIKV pathogenicity and raise the potential of pyruvate supplementation in expectant women as a prophylaxis against congenital Zika syndrome.
Collapse
Affiliation(s)
- Clement Yau
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - John Z H Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Esther S Gan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Swee Sen Kwek
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Liang Cui
- Singapore-MIT Alliance in Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Singapore 138602, Singapore
| | - Hwee Cheng Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Darren Z L Mok
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Candice Y Y Chan
- Department of Infectious Diseases, Singapore General Hospital, Singapore 169854, Singapore
| | - October M Sessions
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore; Department of Pharmacy, National University of Singapore, Singapore 117559, Singapore
| | - Satoru Watanabe
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Subhash G Vasudevan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Yie Hou Lee
- Singapore-MIT Alliance in Research and Technology, Critical Analytics for Manufacturing Personalized-Medicine, Singapore 138602, Singapore
| | - Kuan Rong Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore.
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Singapore-MIT Alliance in Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Singapore 138602, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore.
| |
Collapse
|
100
|
Ferreira G, Santander A, Savio F, Guirado M, Sobrevia L, Nicolson GL. SARS-CoV-2, Zika viruses and mycoplasma: Structure, pathogenesis and some treatment options in these emerging viral and bacterial infectious diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166264. [PMID: 34481867 PMCID: PMC8413106 DOI: 10.1016/j.bbadis.2021.166264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/22/2021] [Accepted: 08/30/2021] [Indexed: 01/28/2023]
Abstract
The molecular evolution of life on earth along with changing environmental, conditions has rendered mankind susceptible to endemic and pandemic emerging infectious diseases. The effects of certain systemic viral and bacterial infections on morbidity and mortality are considered as examples of recent emerging infections. Here we will focus on three examples of infections that are important in pregnancy and early childhood: SARS-CoV-2 virus, Zika virus, and Mycoplasma species. The basic structural characteristics of these infectious agents will be examined, along with their general pathogenic mechanisms. Coronavirus infections, such as caused by the SARS-CoV-2 virus, likely evolved from zoonotic bat viruses to infect humans and cause a pandemic that has been the biggest challenge for humanity since the Spanish Flu pandemic of the early 20th century. In contrast, Zika Virus infections represent an expanding infectious threat in the context of global climate change. The relationship of these infections to pregnancy, the vertical transmission and neurological sequels make these viruses highly relevant to the topics of this special issue. Finally, mycoplasmal infections have been present before mankind evolved, but they were rarely identified as human pathogens until recently, and they are now recognized as important coinfections that are able to modify the course and prognosis of various infectious diseases and other chronic illnesses. The infectious processes caused by these intracellular microorganisms are examined as well as some general aspects of their pathogeneses, clinical presentations, and diagnoses. We will finally consider examples of treatments that have been used to reduce morbidity and mortality of these infections and discuss briefly the current status of vaccines, in particular, against the SARS-CoV-2 virus. It is important to understand some of the basic features of these emerging infectious diseases and the pathogens involved in order to better appreciate the contributions of this special issue on how infectious diseases can affect human pregnancy, fetuses and neonates.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay.
| | - Axel Santander
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Florencia Savio
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Mariana Guirado
- Department of Infectious Diseases, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaeology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), São Paulo State University (UNESP), Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston QLD 4029, Queensland, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), 9713GZ Groningen, the Netherlands
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|