51
|
Liu K, Wang H, Wang Y, Zhang X, Wang R, Zhang Z, Wang J, Lu X, Wu X, Han Y. Exploring the therapeutic potential of Sirt6-enriched adipose stem cell-derived exosomes in myocardial ischemia-reperfusion injury: unfolding new epigenetic frontiers. Clin Epigenetics 2024; 16:7. [PMID: 38172884 PMCID: PMC10765803 DOI: 10.1186/s13148-023-01618-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The management of myocardial ischemia-reperfusion injury (MIRI) presents continuous therapeutic challenges. NAD-dependent deacetylase Sirtuin 6 (Sirt6) plays distinct roles in various disease contexts and is hence investigated for potential therapeutic applications for MIRI. This study aimed to examine the impact of Sirt6-overexpressing exosomes derived from adipose stem cells (S-ASC-Exo) on MIRI, focusing on their influence on AIM2-pyroptosis and mitophagy processes. The sirtuin family of proteins, particularly Sirtuin 6 (Sirt6), play a pivotal role in these processes. This study aimed to explore the potential therapeutic effects of Sirt6-enriched exosomes derived from adipose stem cells (S-ASC-Exo) on regulating MIRI. RESULTS Bioinformatic analysis revealed a significant downregulation of Sirt6 in MIRI subjected to control group, causing a consequential increase in mitophagy and pyroptosis regulator expressions. Therefore, our study revealed that Sirt6-enriched exosomes influenced the progression of MIRI through the regulation of target proteins AIM2 and GSDMD, associated with pyroptosis, and p62 and Beclin-1, related to mitophagy. The introduction of S-ASC-Exo inhibited AIM2-pyroptosis while enhancing mitophagy. Consequently, this led to a significant reduction of GSDMD cleavage and pyroptosis in endothelial cells, catalyzing a deceleration in the progression of atherosclerosis. Extensive in vivo and in vitro assays were performed to validate the expressions of these specific genes and proteins, which affirmed the dynamic modulation by Sirt6-enriched exosomes. Furthermore, treatment with S-ASC-Exo drastically ameliorated cardiac functions and limited infarct size, underlining their cardioprotective attributes. CONCLUSIONS Our study underscores the potential therapeutic role of Sirt6-enriched exosomes in managing MIRI. We demonstrated their profound cardioprotective effect, evident in the enhanced cardiac function and attenuated tissue damage, through the strategic modulation of AIM2-pyroptosis and mitophagy. Given the intricate interplay between Sirt6 and the aforementioned processes, a comprehensive understanding of these pathways is essential to fully exploit the therapeutic potential of Sirt6. Altogether, our findings indicate the promise of Sirt6-enriched exosomes as a novel therapeutic strategy in treating ischemia-reperfusion injuries and cardiovascular diseases at large. Future research needs to underscore optimizing the balance of mitophagy during myocardial ischemia to avoid potential loss of normal myocytes.
Collapse
Affiliation(s)
- Kun Liu
- Department of Cardiac Surgery, Affiliated Hospital, Guizhou Medical University, Guiyang, China
| | - Hecheng Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yiou Wang
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaoxu Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Ruihu Wang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoxuan Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Jian Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xinran Lu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xiaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanshuo Han
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China.
| |
Collapse
|
52
|
Guo Y, Zhou J, Wang Y, Wu X, Mou Y, Song X. Cell type-specific molecular mechanisms and implications of necroptosis in inflammatory respiratory diseases. Immunol Rev 2024; 321:52-70. [PMID: 37897080 DOI: 10.1111/imr.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Necroptosis is generally considered as an inflammatory cell death form. The core regulators of necroptotic signaling are receptor-interacting serine-threonine protein kinases 1 (RIPK1) and RIPK3, and the executioner, mixed lineage kinase domain-like pseudokinase (MLKL). Evidence demonstrates that necroptosis contributes profoundly to inflammatory respiratory diseases that are common public health problem. Necroptosis occurs in nearly all pulmonary cell types in the settings of inflammatory respiratory diseases. The influence of necroptosis on cells varies depending upon the type of cells, tissues, organs, etc., which is an important factor to consider. Thus, in this review, we briefly summarize the current state of knowledge regarding the biology of necroptosis, and focus on the key molecular mechanisms that define the necroptosis status of specific cell types in inflammatory respiratory diseases. We also discuss the clinical potential of small molecular inhibitors of necroptosis in treating inflammatory respiratory diseases, and describe the pathological processes that engage cross talk between necroptosis and other cell death pathways in the context of respiratory inflammation. The rapid advancement of single-cell technologies will help understand the key mechanisms underlying cell type-specific necroptosis that are critical to effectively treat pathogenic lung infections and inflammatory respiratory diseases.
Collapse
Affiliation(s)
- Ying Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Jin Zhou
- Key Laboratory of Spatiotemporal Single-Cell Technologies and Translational Medicine, Yantai, Shandong, China
- Department of Endocrinology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yaqi Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
- Tumor Research Institute, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- Key Laboratory of Spatiotemporal Single-Cell Technologies and Translational Medicine, Yantai, Shandong, China
| |
Collapse
|
53
|
Zhou X, Zhou L, Sun J, Zhang J, Sun L. Electroacupuncture Alleviates Parkinson's Disease by Promoting METTL9-Catalyzed Histidine Methylation of Nuclear Factor-κВ. Crit Rev Eukaryot Gene Expr 2024; 34:17-27. [PMID: 39072406 DOI: 10.1615/critreveukaryotgeneexpr.2024053243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
This study aimed to investigate the effects of electroacupuncture (EA) treatment on Parkinson's disease (PD). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration was used establish PD mice model. The number of neurons is determined by TH staining. mRNA expression is detected by RT-qPCR. Protein expression was detected by Western blot. Gene expression is determined by immunofluorescence and immunohistochemistry. The functions of neurons are determined by TUNEL and flow cytometry assay. The binding sites of nuclear factor kappa B (NF-κB) RELA on the promoter of NLRP3 are predicted by JASPAR and verified by luciferase and ChIP assays. The results showed that EA treatment improves motor dysfunction in patients with PD. In vivo assays show that MPTP administration induces the loss of neurons in mice, which is restored by EA treatment. Moreover, EA treatment alleviates motor deficits in MPTP-induced PD mice. EA treatment also inhibits the enrichment of pro-inflammatory cytokines and lactodehydrogenase and suppresses neuronal pyroptosis. EA treatment increases the expression of METTL9. However, METTL9 deficiency dampens the effects of EA treatment and induces neuronal pyroptosis. Additionally, METTL9 promotes histidine methylation of NF-κB RELA, resulting the inhibition of epigenetic transcription of NLRP3. EA treatment restores neuronal function and improves motor dysfunction via promoting METTL9 histidine methylation of NF-κB/ NLRP3 signaling.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Rehabilitation, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223000, Jiangsu, China
| | - Liang Zhou
- Department of Rheumatology and Immunology, Huai'an Traditional Chinese Medicine Hospital, Huai'an 223000, Jiangsu, China
| | - Jiayi Sun
- School of Health Sciences, Jiangsu Food & Pharmaceutical Science College, Huai'an 223000, Jiangsu, China
| | - Juan Zhang
- Department of Rehabilitation, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223000, Jiangsu, China
| | - Lei Sun
- the Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine
| |
Collapse
|
54
|
Xia Y, Chen R, Ke Y, Han Q, Ma Z, Shi Q. ROS-responsive phenylboronic ester-based nanovesicles as multifunctional drug delivery systems for the treatment of inflammatory and thrombotic complications. Biomater Sci 2023; 11:7805-7816. [PMID: 37872786 DOI: 10.1039/d3bm01427d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Inflammatory and thrombotic complications and a low loading of dual drugs with different hydrophilicities remain challenges to treat thrombosis with drug delivery systems (DDSs). Here, the reactive oxygen species (ROS)-responsive amphiphilic block polymer poly(ethylene glycol)-b-2-((((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)carbonyl)oxy)-ethyl methacrylate (PEG-b-PTBEM) was synthesized and nanovesicles (PPTV) were prepared successfully for the drug delivery platform by controlling the hydrophilic/hydrophobic ratio of molecular chains and molecular self-assembly. The anti-inflammatory drug indomethacin (IDM) was loaded in the wall of nanovesicles and the thrombolytic enzyme nattokinase (NK) was encapsulated in the aqueous cavity of nanovesicles. Both drugs could be rapidly released at the site of thrombosis and/or inflammation with an excessive ROS concentration. The dual drug-loaded nanovesicles not only eliminated ROS, but also alleviated inflammation and dissolved the generated thrombus, showing significant therapeutic efficacy in the in vivo mouse model of carrageenan tail thrombosis. Therefore, drug-delivery nanovesicles play multiple roles in the treatment of inflammation-induced thrombotic disorders, which offer a promising treatment for inflammatory and thrombotic complications.
Collapse
Affiliation(s)
- Yu Xia
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Runhai Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Yue Ke
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qiaoyi Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
55
|
Liao F, Wang L, Wu Z, Luo G, Qian Y, He X, Ding S, Pu J. Disulfiram protects against abdominal aortic aneurysm by ameliorating vascular smooth muscle cells pyroptosis. Cardiovasc Drugs Ther 2023; 37:1-14. [PMID: 35723784 DOI: 10.1007/s10557-022-07352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Recent studies demonstrated that pyroptosis is involved in abdominal aortic aneurysm (AAA) progression, suggesting a potential target for AAA treatment. This study aimed to identify if disulfiram could inhibit angiotensin II (Ang II)-induced vascular smooth muscle cells (VSMCs) damage, thereby exerting protective effects on AAA. METHODS The AAA mouse model was established by continuous subcutaneous Ang II infusion for 28 days. Then aortic tissue of the mice was isolated and subjected to RNA sequencing, qRT-PCR, Western blotting, and immunofluorescence staining. To explore the therapeutic effect of disulfiram, mice were orally administered disulfiram (50 mg/kg/day) or vehicle for 28 days accompanied with Ang II infusion. Pathological changes in aortic tissues were measured using microultrasound imaging analysis and histopathological analysis. In addition, inflammatory response, pyroptosis, and oxidative stress damage were examined in mouse aortic vascular smooth muscle (MOVAS) cells stimulated with Ang II in vitro. RESULTS The RNA sequencing and bioinformatic analysis results suggested that pyroptosis- and inflammation-related genes were significantly upregulated in AAA, consistent with the results of qRT-PCR and Western blotting. Most importantly, the therapeutic effect of disulfiram on AAA was identified in our study. First, disulfiram administration significantly attenuated Ang II-induced inflammation, pyroptosis, and oxidative stress in VSMCs, which is associated with the inhibition of the NF-κB-NLRP3 pathway. Second, in-vivo studies revealed that disulfiram treatment reduced AAA formation and significantly ameliorated collagen deposition and elastin degradation in the aortic wall. CONCLUSION Our findings suggest that disulfiram has a novel protective effect against AAA by inhibiting Ang II-induced VSMCs pyroptosis.
Collapse
Affiliation(s)
- Fei Liao
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Wang
- Department of Blood Transfusion, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhinan Wu
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guqing Luo
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxuan Qian
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinjie He
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Song Ding
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
56
|
Doglio MG, Verboom L, Ruilova Sosoranga E, Frising UC, Asaoka T, Gansemans Y, Van Nieuwerburgh F, van Loo G, Wullaert A. Myeloid OTULIN deficiency couples RIPK3-dependent cell death to Nlrp3 inflammasome activation and IL-1β secretion. Sci Immunol 2023; 8:eadf4404. [PMID: 38000038 DOI: 10.1126/sciimmunol.adf4404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/25/2023] [Indexed: 11/26/2023]
Abstract
Loss-of-function mutations in the deubiquitinase OTULIN result in an inflammatory pathology termed "OTULIN-related autoinflammatory syndrome" (ORAS). Genetic mouse models revealed essential roles for OTULIN in inflammatory and cell death signaling, but the mechanisms by which OTULIN deficiency connects cell death to inflammation remain unclear. Here, we identify OTULIN deficiency as a cellular condition that licenses RIPK3-mediated cell death in murine macrophages, leading to Nlrp3 inflammasome activation and subsequent IL-1β secretion. OTULIN deficiency uncoupled Nlrp3 inflammasome activation from gasdermin D-mediated pyroptosis, instead allowing RIPK3-dependent cell death to act as an Nlrp3 inflammasome activator and mechanism for IL-1β release. Accordingly, elevated serum IL-1β levels in myeloid-specific OTULIN-deficient mice were diminished by deleting either Ripk3 or Nlrp3. These findings identify OTULIN as an inhibitor of RIPK3-mediated IL-1β release in mice.
Collapse
Affiliation(s)
- M Giulia Doglio
- Department of Internal Medicine and Paediatrics, Ghent University, 9052 Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium
| | - Lien Verboom
- VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Emily Ruilova Sosoranga
- Department of Internal Medicine and Paediatrics, Ghent University, 9052 Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium
| | - Ulrika C Frising
- Department of Internal Medicine and Paediatrics, Ghent University, 9052 Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium
| | - Tomoko Asaoka
- Department of Internal Medicine and Paediatrics, Ghent University, 9052 Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium
| | | | - Geert van Loo
- VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Andy Wullaert
- Department of Internal Medicine and Paediatrics, Ghent University, 9052 Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium
- Laboratory of Proteinscience, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
57
|
Dondelinger Y, Priem D, Huyghe J, Delanghe T, Vandenabeele P, Bertrand MJM. NINJ1 is activated by cell swelling to regulate plasma membrane permeabilization during regulated necrosis. Cell Death Dis 2023; 14:755. [PMID: 37980412 PMCID: PMC10657445 DOI: 10.1038/s41419-023-06284-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Plasma membrane permeabilization (PMP) is a defining feature of regulated necrosis. It allows the extracellular release of damage-associated molecular patterns (DAMPs) that trigger sterile inflammation. The pore forming molecules MLKL and GSDMs drive PMP in necroptosis and pyroptosis, respectively, but the process of PMP remains unclear in many other forms of regulated necrosis. Here, we identified NINJ1 as a crucial regulator of PMP and consequent DAMP release during ferroptosis, parthanatos, H2O2-induced necrosis and secondary necrosis. Importantly, the membrane-permeabilizing function of NINJ1 takes place after the metabolic death of the cells and is independent of the pore-forming molecules MLKL, GSDMD and GSDME. During ferroptosis, NINJ1 acts downstream of lipid peroxidation, which suggested a role for reactive oxygen species (ROS) in NINJ1 activation. Reactive oxygen species were however neither sufficient nor required to trigger NINJ1-dependent PMP. Instead, we found that NINJ1 oligomerization is induced by the swelling of the cell and that its permeabilizing potential still requires an addition, and yet to be discovered, activation mechanism.
Collapse
Affiliation(s)
- Yves Dondelinger
- Inflammation Research Center, VIB, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium.
| | - Dario Priem
- Inflammation Research Center, VIB, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
| | - Jon Huyghe
- Inflammation Research Center, VIB, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
| | - Tom Delanghe
- Inflammation Research Center, VIB, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
| | - Peter Vandenabeele
- Inflammation Research Center, VIB, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
| | - Mathieu J M Bertrand
- Inflammation Research Center, VIB, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium.
| |
Collapse
|
58
|
Rosli S, Harpur CM, Lam M, West AC, Hodges C, Mansell A, Lawlor KE, Tate MD. Gasdermin D promotes hyperinflammation and immunopathology during severe influenza A virus infection. Cell Death Dis 2023; 14:727. [PMID: 37945599 PMCID: PMC10636052 DOI: 10.1038/s41419-023-06258-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Excessive inflammation and tissue damage during severe influenza A virus (IAV) infection can lead to the development of fatal pulmonary disease. Pyroptosis is a lytic and pro-inflammatory form of cell death executed by the pore-forming protein gasdermin D (GSDMD). In this study, we investigated a potential role for GSDMD in promoting the development of severe IAV disease. IAV infection resulted in cleavage of GSDMD in vivo and in vitro in lung epithelial cells. Mice genetically deficient in GSDMD (Gsdmd-/-) developed less severe IAV disease than wildtype mice and displayed improved survival outcomes. GSDMD deficiency significantly reduced neutrophil infiltration into the airways as well as the levels of pro-inflammatory cytokines TNF, IL-6, MCP-1, and IL-1α and neutrophil-attracting chemokines CXCL1 and CXCL2. In contrast, IL-1β and IL-18 responses were not largely impacted by GSDMD deficiency. In addition, Gsdmd-/- mice displayed significantly improved influenza disease resistance with reduced viral burden and less severe pulmonary pathology, including decreased epithelial damage and cell death. These findings indicate a major role for GSDMD in promoting damaging inflammation and the development of severe IAV disease.
Collapse
Affiliation(s)
- Sarah Rosli
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Vic, Australia
| | - Christopher M Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Vic, Australia
| | - Maggie Lam
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Vic, Australia
| | - Alison C West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Vic, Australia
| | - Christopher Hodges
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Vic, Australia
| | - Ashley Mansell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Vic, Australia
- Adiso Therapeutics, Concord, MA, USA
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Vic, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, Vic, Australia.
| |
Collapse
|
59
|
Hu K, He R, Xu M, Zhang D, Han G, Han S, Xiao L, Xia P, Ling J, Wu T, Li F, Sheng Y, Zhang J, Yu P. Identification of necroptosis-related features in diabetic nephropathy and analysis of their immune microenvironent and inflammatory response. Front Cell Dev Biol 2023; 11:1271145. [PMID: 38020922 PMCID: PMC10661379 DOI: 10.3389/fcell.2023.1271145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Diabetic nephropathy (DN) was considered a severe microvascular complication of diabetes, which was recognized as the second leading cause of end-stage renal diseases. Therefore, identifying several effective biomarkers and models to diagnosis and subtype DN is imminent. Necroptosis, a distinct form of programmed cell death, has been established to play a critical role in various inflammatory diseases. Herein, we described the novel landscape of necroptosis in DN and exploit a powerful necroptosis-mediated model for the diagnosis of DN. Methods: We obtained three datasets (GSE96804, GSE30122, and GSE30528) from the Gene Expression Omnibus (GEO) database and necroptosis-related genes (NRGs) from the GeneCards website. Via differential expression analysis and machine learning, significant NRGs were identified. And different necroptosis-related DN subtypes were divided using consensus cluster analysis. The principal component analysis (PCA) algorithm was utilized to calculate the necroptosis score. Finally, the logistic multivariate analysis were performed to construct the necroptosis-mediated diagnostic model for DN. Results: According to several public transcriptomic datasets in GEO, we obtained eight significant necroptosis-related regulators in the occurrence and progress of DN, including CFLAR, FMR1, GSDMD, IKBKB, MAP3K7, NFKBIA, PTGES3, and SFTPA1 via diversified machine learning methods. Subsequently, employing consensus cluster analysis and PCA algorithm, the DN samples in our training set were stratified into two diverse necroptosis-related subtypes based on our eight regulators' expression levels. These subtypes exhibited varying necroptosis scores. Then, we used various functional enrichment analysis and immune infiltration analysis to explore the biological background, immune landscape and inflammatory status of the above subtypes. Finally, a necroptosis-mediated diagnostic model was exploited based on the two subtypes and validated in several external verification datasets. Moreover, the expression level of our eight regulators were verified in the singe-cell level and glomerulus samples. And we further explored the relationship between the expression of eight regulators and the kidney function of DN. Conclusion: In summary, our necroptosis scoring model and necroptosis-mediated diagnostic model fill in the blank of the relationship between necroptosis and DN in the field of bioinformatics, which may provide novel diagnostic insights and therapy strategies for DN.
Collapse
Affiliation(s)
- Kaibo Hu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Ruifeng He
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Guangyu Han
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Shengye Han
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Leyang Xiao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
| | - Tingyu Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
| | - Fei Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
| | - Yunfeng Sheng
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
| |
Collapse
|
60
|
Siegmund D, Zaitseva O, Wajant H. Fn14 and TNFR2 as regulators of cytotoxic TNFR1 signaling. Front Cell Dev Biol 2023; 11:1267837. [PMID: 38020877 PMCID: PMC10657838 DOI: 10.3389/fcell.2023.1267837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Tumor necrosis factor (TNF) receptor 1 (TNFR1), TNFR2 and fibroblast growth factor-inducible 14 (Fn14) belong to the TNF receptor superfamily (TNFRSF). From a structural point of view, TNFR1 is a prototypic death domain (DD)-containing receptor. In contrast to other prominent death receptors, such as CD95/Fas and the two TRAIL death receptors DR4 and DR5, however, liganded TNFR1 does not instruct the formation of a plasma membrane-associated death inducing signaling complex converting procaspase-8 into highly active mature heterotetrameric caspase-8 molecules. Instead, liganded TNFR1 recruits the DD-containing cytoplasmic signaling proteins TRADD and RIPK1 and empowers these proteins to trigger cell death signaling by cytosolic complexes after their release from the TNFR1 signaling complex. The activity and quality (apoptosis versus necroptosis) of TNF-induced cell death signaling is controlled by caspase-8, the caspase-8 regulatory FLIP proteins, TRAF2, RIPK1 and the RIPK1-ubiquitinating E3 ligases cIAP1 and cIAP2. TNFR2 and Fn14 efficiently recruit TRAF2 along with the TRAF2 binding partners cIAP1 and cIAP2 and can thereby limit the availability of these molecules for other TRAF2/cIAP1/2-utilizing proteins including TNFR1. Accordingly, at the cellular level engagement of TNFR2 or Fn14 inhibits TNFR1-induced RIPK1-mediated effects reaching from activation of the classical NFκB pathway to induction of apoptosis and necroptosis. In this review, we summarize the effects of TNFR2- and Fn14-mediated depletion of TRAF2 and the cIAP1/2 on TNFR1 signaling at the molecular level and discuss the consequences this has in vivo.
Collapse
Affiliation(s)
| | | | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
61
|
Hempel A, D'Osualdo A, Snipas S, Salvesen G. Cell organelles are retained inside pyroptotic corpses during inflammatory cell death. Biosci Rep 2023; 43:BSR20231265. [PMID: 37797233 PMCID: PMC10611922 DOI: 10.1042/bsr20231265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
Many proinflammatory proteins are released via the necrotic form of cell death known as pyroptosis. Sometimes known as gasdermin D (GSDMD) dependent cell death, pyroptosis results from the formation of pores in the plasma membrane leading to eventual cell lysis. Seeking to understand the magnitude of this cell lysis we measured the size of proteins released during pyroptosis. We demonstrate that there is no restriction on the size of soluble proteins released during pyroptosis even at early timepoints. However, even though large molecules can exit the dying cell, organelles are retained within it. This observation indicates that complete cell rupture may not be a consequence of pyroptosis, and that plasma membrane architecture is retained.
Collapse
Affiliation(s)
- Anne Hempel
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, U.S.A
| | - Andrea D'Osualdo
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, U.S.A
| | - Scott J. Snipas
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, U.S.A
| | - Guy S. Salvesen
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, U.S.A
| |
Collapse
|
62
|
Sheng Y, Wu L, Chang Y, Liu W, Tao M, Chen X, Zhang X, Li B, Zhang N, Ye D, Zhang C, Zhu D, Zhao H, Chen A, Chen H, Song J. Tomo-seq identifies NINJ1 as a potential target for anti-inflammatory strategy in thoracic aortic dissection. BMC Med 2023; 21:396. [PMID: 37858098 PMCID: PMC10588060 DOI: 10.1186/s12916-023-03077-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Thoracic aortic dissection (TAD) is a life-threatening disease caused by an intimal tear in the aorta. The histological characteristics differ significantly between the tear area (TA) and the distant area. Previous studies have emphasized that certain specific genes tend to cluster at the TA. Obtaining a thorough understanding of the precise molecular signatures near the TA will assist in discovering therapeutic strategies for TAD. METHODS We performed a paired comparison of the pathological patterns in the TA with that in the remote area (RA). We used Tomo-seq, genome-wide transcriptional profiling with spatial resolution, to obtain gene expression signatures spanning from the TA to the RA. Samples from multiple sporadic TAD patients and animal models were used to validate our findings. RESULTS Pathological examination revealed that the TA of TAD exhibited more pronounced intimal hyperplasia, media degeneration, and inflammatory infiltration compared to the RA. The TA also had more apoptotic cells and CD31+α-SMA+ cells. Tomo-seq revealed four distinct gene expression patterns from the TA to the RA, which were inflammation, collagen catabolism, extracellular matrix remodeling, and cell stress, respectively. The spatial distribution of genes allowed us to identify genes that were potentially relevant with TAD. NINJ1 encoded the protein-mediated cytoplasmic membrane rupture, regulated tissue remodeling, showed high expression levels in the tear area, and co-expressed within the inflammatory pattern. The use of short hairpin RNA to reduce NINJ1 expression in the beta-aminopropionitrile-induced TAD model led to a significant decrease in TAD formation. Additionally, it resulted in reduced infiltration of inflammatory cells and a decrease in the number of CD31+α-SMA+ cells. The NINJ1-neutralizing antibody also demonstrated comparable therapeutic effects and can effectively impede the formation of TAD. CONCLUSIONS Our study showed that Tomo-seq had the advantage of obtaining spatial expression information of TAD across the TA and the RA. We pointed out that NINJ1 may be involved in inflammation and tissue remodeling, which played an important role in the formation of TAD. NINJ1 may serve as a potential therapeutic target for TAD.
Collapse
Affiliation(s)
- Yixuan Sheng
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liying Wu
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Chang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Wendao Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Menghao Tao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xiong Zhang
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Bin Li
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ningning Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Dongting Ye
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chunxi Zhang
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Daliang Zhu
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Haisen Zhao
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Aijun Chen
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Haisheng Chen
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China.
| |
Collapse
|
63
|
Cao LL, Kagan JC. Targeting innate immune pathways for cancer immunotherapy. Immunity 2023; 56:2206-2217. [PMID: 37703879 PMCID: PMC10591974 DOI: 10.1016/j.immuni.2023.07.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/28/2023] [Accepted: 07/26/2023] [Indexed: 09/15/2023]
Abstract
The innate immune system is critical for inducing durable and protective T cell responses to infection and has been increasingly recognized as a target for cancer immunotherapy. In this review, we present a framework wherein distinct innate immune signaling pathways activate five key dendritic cell activities that are important for T cell-mediated immunity. We discuss molecular pathways that can agonize these activities and highlight that no single pathway can agonize all activities needed for durable immunity. The immunological distinctions between innate immunotherapy administration to the tumor microenvironment versus administration via vaccination are examined, with particular focus on the strategies that enhance dendritic cell migration, interferon expression, and interleukin-1 family cytokine production. In this context, we argue for the importance of appreciating necessity vs. sufficiency when considering the impact of innate immune signaling in inflammation and protective immunity and offer a conceptual guideline for the development of efficacious cancer immunotherapies.
Collapse
Affiliation(s)
- Longyue L Cao
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
64
|
Pekayvaz K, Gold C, Hoseinpour P, Engel A, Martinez-Navarro A, Eivers L, Coletti R, Joppich M, Dionísio F, Kaiser R, Tomas L, Janjic A, Knott M, Mehari F, Polewka V, Kirschner M, Boda A, Nicolai L, Schulz H, Titova A, Kilani B, Lorenz M, Fingerle-Rowson G, Bucala R, Enard W, Zimmer R, Weber C, Libby P, Schulz C, Massberg S, Stark K. Mural cell-derived chemokines provide a protective niche to safeguard vascular macrophages and limit chronic inflammation. Immunity 2023; 56:2325-2341.e15. [PMID: 37652021 PMCID: PMC10588993 DOI: 10.1016/j.immuni.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/23/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Maladaptive, non-resolving inflammation contributes to chronic inflammatory diseases such as atherosclerosis. Because macrophages remove necrotic cells, defective macrophage programs can promote chronic inflammation with persistent tissue injury. Here, we investigated the mechanisms sustaining vascular macrophages. Intravital imaging revealed a spatiotemporal macrophage niche across vascular beds alongside mural cells (MCs)-pericytes and smooth muscle cells. Single-cell transcriptomics, co-culture, and genetic deletion experiments revealed MC-derived expression of the chemokines CCL2 and MIF, which actively preserved macrophage survival and their homeostatic functions. In atherosclerosis, this positioned macrophages in viable plaque areas, away from the necrotic core, and maintained a homeostatic macrophage phenotype. Disruption of this MC-macrophage unit via MC-specific deletion of these chemokines triggered detrimental macrophage relocalizing, exacerbated plaque necrosis, inflammation, and atheroprogression. In line, CCL2 inhibition at advanced stages of atherosclerosis showed detrimental effects. This work presents a MC-driven safeguard toward maintaining the homeostatic vascular macrophage niche.
Collapse
Affiliation(s)
- Kami Pekayvaz
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| | - Christoph Gold
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Parandis Hoseinpour
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Anouk Engel
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Luke Eivers
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Raffaele Coletti
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Markus Joppich
- Department of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Flávio Dionísio
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Rainer Kaiser
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Lukas Tomas
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Aleksandar Janjic
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians University, Munich, Germany
| | - Maximilian Knott
- Institute of Pathology, Ludwig-Maximilian University Munich, Munich, Germany
| | - Fitsumbirhan Mehari
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Vivien Polewka
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Megan Kirschner
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Annegret Boda
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Leo Nicolai
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Heiko Schulz
- Institute of Pathology, Ludwig-Maximilian University Munich, Munich, Germany
| | - Anna Titova
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Badr Kilani
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Michael Lorenz
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians University, Munich, Germany
| | - Ralf Zimmer
- Department of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Weber
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillian-Universität (LMU) München, Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
65
|
Yang X, Liu X, Nie Y, Zhan F, Zhu B. Oxidative stress and ROS-mediated cellular events in RSV infection: potential protective roles of antioxidants. Virol J 2023; 20:224. [PMID: 37798799 PMCID: PMC10557227 DOI: 10.1186/s12985-023-02194-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
Respiratory syncytial virus (RSV), a member of the Pneumoviridae family, can cause severe acute lower respiratory tract infection in infants, young children, immunocompromised individuals and elderly people. RSV is associated with an augmented innate immune response, enhanced secretion of inflammatory cytokines, and necrosis of infected cells. Oxidative stress, which is mainly characterized as an imbalance in the production of reactive oxygen species (ROS) and antioxidant responses, interacts with all the pathophysiologic processes above and is receiving increasing attention in RSV infection. A gradual accumulation of evidence indicates that ROS overproduction plays an important role in the pathogenesis of severe RSV infection and serves as a major factor in pulmonary inflammation and tissue damage. Thus, antioxidants seem to be an effective treatment for severe RSV infection. This article mainly reviews the information on oxidative stress and ROS-mediated cellular events during RSV infection for the first time.
Collapse
Affiliation(s)
- Xue Yang
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Xue Liu
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Yujun Nie
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Fei Zhan
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Bin Zhu
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China.
| |
Collapse
|
66
|
Lyu T, Yin Q. Research Progress on Pyroptosis in Hematological Malignancies. Curr Treat Options Oncol 2023; 24:1439-1450. [PMID: 37635159 PMCID: PMC10547621 DOI: 10.1007/s11864-023-01119-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2023] [Indexed: 08/29/2023]
Abstract
OPINION STATEMENT Pyroptosis is a kind of programmed cell death dependent on the caspase pathway that is different from apoptosis and necrosis. Recent studies have shown that pyroptosis can be involved in the pathological processes of many diseases, such as cancers, atherosclerosis, diabetic nephropathy, and blood diseases. However, the specific mechanisms by which pyroptosis participates in the occurrence and development of hematological malignant tumors still need further exploration. This article reviews the characteristics of pyroptosis and the regulatory mechanisms promoting or inhibiting pyroptosis and discusses the role of pyroptosis in hematological malignant tumors, which could provide ideas for the clinical treatment of such tumors in the future.
Collapse
Affiliation(s)
- Tianxin Lyu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Qingsong Yin
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
67
|
Kwon SH, Parthiban S, Tippani M, Divecha HR, Eagles NJ, Lobana JS, Williams SR, Mak M, Bharadwaj RA, Kleinman JE, Hyde TM, Page SC, Hicks SC, Martinowich K, Maynard KR, Collado-Torres L. Influence of Alzheimer's disease related neuropathology on local microenvironment gene expression in the human inferior temporal cortex. GEN BIOTECHNOLOGY 2023; 2:399-417. [PMID: 39329069 PMCID: PMC11426291 DOI: 10.1089/genbio.2023.0019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Neuropathological lesions in the brains of individuals affected with neurodegenerative disorders are hypothesized to trigger molecular and cellular processes that disturb homeostasis of local microenvironments. Here, we applied the 10x Genomics Visium Spatial Proteogenomics (Visium-SPG) platform, which couples spatial gene expression with immunofluorescence protein co-detection, to evaluate its ability to quantify changes in spatial gene expression with respect to amyloid-β (Aβ) and hyperphosphorylated tau (pTau) pathology in post-mortem human brain tissue from individuals with Alzheimer's disease (AD). We identified transcriptomic signatures associated with proximity to Aβ in the human inferior temporal cortex (ITC) during late-stage AD, which we further investigated at cellular resolution with combined immunofluorescence and single molecule fluorescent in situ hybridization (smFISH). The study provides a data analysis workflow for Visium-SPG, and the data represent a proof-of-principal for the power of multi-omic profiling in identifying changes in molecular dynamics that are spatially-associated with pathology in the human brain. We provide the scientific community with web-based, interactive resources to access the datasets of the spatially resolved AD-related transcriptomes at https://research.libd.org/Visium_SPG_AD/.
Collapse
Affiliation(s)
- Sang Ho Kwon
- The Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sowmya Parthiban
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Heena R. Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Nicholas J. Eagles
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Jashandeep S. Lobana
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | | | | | - Rahul A. Bharadwaj
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stephanie C. Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Stephanie C. Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Kristen R. Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
68
|
Ling ZY, Lv QZ, Li J, Lu RY, Chen LL, Xu WH, Wang Y, Zhuang CL. Protective Effect of a Novel RIPK1 Inhibitor, Compound 4-155, in Systemic Inflammatory Response Syndrome and Sepsis. Inflammation 2023; 46:1796-1809. [PMID: 37227549 DOI: 10.1007/s10753-023-01842-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
Excessive inflammatory response is a critical pathogenic factor for the tissue damage and organ failure caused by systemic inflammatory response syndrome (SIRS) and sepsis. In recent years, drugs targeting RIPK1 have proved to be an effective anti-inflammatory strategy. In this study, we identified a novel anti-inflammatory lead compound 4-155 that selectively targets RIPK1. Compound 4-155 significantly inhibited necroptosis of cells, and its activity is about 10 times higher than the widely studied Nec-1 s. The anti-necroptosis effect of 4-155 was mainly dependent on the inhibition of phosphorylation of RIPK1, RIPK3, and MLKL. In addition, we demonstrated that 4-155 specifically binds RIPK1 by drug affinity responsive target stability (DARTS), immunoprecipitation, kinase assay, and immunofluorescence microscopy. More importantly, compound 4-155 could inhibit excessive inflammation in vivo by blocking RIPK1-mediated necroptosis and not influence the activation of MAPK and NF-κB, which is more potential for the subsequent drug development. Compound 4-155 effectively protected mice from TNF-induced SIRS and sepsis. Using different doses, we found that 6 mg/kg oral administration of compound 4-155 could increase the survival rate of SIRS mice from 0 to 90%, and the anti-inflammatory effect of 4-155 in vivo was significantly stronger than Nec-1 s at the same dose. Consistently, 4-155 significantly reduced serum levels of pro-inflammatory cytokines (TNF-α and IL-6) and protected the liver and kidney from excessive inflammatory damages. Taken together, our results suggested that compound 4-155 could inhibit excessive inflammation in vivo by blocking RIPK1-mediated necroptosis, providing a new lead compound for the treatment of SIRS and sepsis.
Collapse
Affiliation(s)
- Zhong-Yi Ling
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Quan-Zhen Lv
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jiao Li
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Ren-Yi Lu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Lin-Lin Chen
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Wei-Heng Xu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yan Wang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Chun-Lin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
69
|
Xu Y, Chen C, Liao Z, Xu P. cGAS-STING signaling in cell death: Mechanisms of action and implications in pathologies. Eur J Immunol 2023; 53:e2350386. [PMID: 37424054 DOI: 10.1002/eji.202350386] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
Cyclic GMP-AMP synthase (cGAS) monitors dsDNA in the cytosol in response to pathogenic invasion or tissue injury, initiating cGAS-STING signaling cascades that regulate various cellular physiologies, including IFN /cytokine production, autophagy, protein synthesis, metabolism, senescence, and distinct types of cell death. cGAS-STING signaling is crucial for host defense and tissue homeostasis; however, its dysfunction frequently leads to infectious, autoimmune, inflammatory, degenerative, and cancerous diseases. Our knowledge regarding the relationships between cGAS-STING signaling and cell death is rapidly evolving, highlighting their essential roles in pathogenesis and disease progression. Nevertheless, the direct control of cell death by cGAS-STING signaling, rather than IFN/NF-κB-mediated transcriptional regulation, remains relatively unexplored. This review examines the mechanistic interplays between cGAS-STING cascades and apoptosis, necroptosis, pyroptosis, ferroptosis, and autophagic/lysosomal cell death. We will also discuss their pathological implications in human diseases, particularly in autoimmunity, cancer, and organ injury scenarios. We hope that this summary will stimulate discussion for further exploration of the complex life-or-death responses to cellular damage mediated by cGAS-STING signaling.
Collapse
Affiliation(s)
- Yifan Xu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Chen Chen
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center (HIC-ZJU), Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
70
|
Okin D, Kagan JC. Inflammasomes as regulators of non-infectious disease. Semin Immunol 2023; 69:101815. [PMID: 37506489 PMCID: PMC10527946 DOI: 10.1016/j.smim.2023.101815] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Inflammasomes are cytoplasmic organelles that stimulate inflammation upon cellular detection of infectious or non-infectious stress. While much foundational work has focused on the infection-associated aspects of inflammasome activities, recent studies have highlighted the role of inflammasomes in non-infectious cellular and organismal functions. Herein, we discuss the evolution of inflammasome components and highlight characteristics that permit inflammasome regulation of physiologic processes. We focus on emerging data that highlight the importance of inflammasome proteins in the regulation of reproduction, development, and malignancy. A framework is proposed to contextualize these findings.
Collapse
Affiliation(s)
- Daniel Okin
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
71
|
Oshitari T. Neurovascular Cell Death and Therapeutic Strategies for Diabetic Retinopathy. Int J Mol Sci 2023; 24:12919. [PMID: 37629100 PMCID: PMC10454228 DOI: 10.3390/ijms241612919] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Diabetic retinopathy (DR) is a major complication of diabetes and a leading cause of blindness worldwide. DR was recently defined as a neurovascular disease associated with tissue-specific neurovascular impairment of the retina in patients with diabetes. Neurovascular cell death is the main cause of neurovascular impairment in DR. Thus, neurovascular cell protection is a potential therapy for preventing the progression of DR. Growing evidence indicates that a variety of cell death pathways, such as apoptosis, necroptosis, ferroptosis, and pyroptosis, are associated with neurovascular cell death in DR. These forms of regulated cell death may serve as therapeutic targets for ameliorating the pathogenesis of DR. This review focuses on these cell death mechanisms and describes potential therapies for the treatment of DR that protect against neurovascular cell death.
Collapse
Affiliation(s)
- Toshiyuki Oshitari
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Japan; ; Tel.: +81-43-226-2124; Fax: +81-43-224-4162
- Department of Ophthalmology, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita 286-8686, Japan
| |
Collapse
|
72
|
Wang SS, Zhu XX, Wu XY, Zhang WW, Ding YD, Jin SW, Zhang PH. Interaction Between Blood Vasculatures and Lymphatic Vasculatures During Inflammation. J Inflamm Res 2023; 16:3271-3281. [PMID: 37560514 PMCID: PMC10408656 DOI: 10.2147/jir.s414891] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023] Open
Abstract
Physiological activity cannot be regulated without the blood and lymphatic vasculatures, which play complementary roles in maintaining the body's homeostasis and immune responses. Inflammation is the body's initial response to pathological injury and is responsible for protecting the body, removing damaged tissues, and restoring and maintaining homeostasis in the body. A growing number of researches have shown that blood and lymphatic vessels play an essential role in a variety of inflammatory diseases. In the inflammatory state, the permeability of blood vessels and lymphatic vessels is altered, and angiogenesis and lymphangiogenesis subsequently occur. The blood vascular and lymphatic vascular systems interact to determine the development or resolution of inflammation. In this review, we discuss the changes that occur in the blood vascular and lymphatic vascular systems of several organs during inflammation, describe the different scenarios of angiogenesis and lymphangiogenesis at different sites of inflammation, and demonstrate the prospect of targeting the blood vasculature and lymphatic vasculature systems to limit the development of inflammation and promote the resolution of inflammation in inflammatory diseases.
Collapse
Affiliation(s)
- Shun-Shun Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Xin-Xu Zhu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Xin-Yi Wu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Wen-Wu Zhang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Yang-Dong Ding
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Sheng-Wei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Pu-Hong Zhang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| |
Collapse
|
73
|
Lentini G, Famà A, De Gaetano GV, Coppolino F, Mahjoub AK, Ryan L, Lien E, Espevik T, Beninati C, Teti G. Caspase-8 inhibition improves the outcome of bacterial infections in mice by promoting neutrophil activation. Cell Rep Med 2023:101098. [PMID: 37390829 PMCID: PMC10394171 DOI: 10.1016/j.xcrm.2023.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/07/2023] [Accepted: 06/08/2023] [Indexed: 07/02/2023]
Abstract
During differentiation, neutrophils undergo a spontaneous pro-inflammatory program that is hypothesized here to be under caspase-8 control. In mice, intraperitoneal administration of the caspase-8 inhibitor z-IETD-fmk is sufficient to unleash the production of pro-inflammatory cytokines and neutrophil influx in the absence of cell death. These effects are due to selective inhibition of caspase-8 and require tonic interferon-β (IFN-β) production and RIPK3 but not MLKL, the essential downstream executioner of necroptotic cell death. In vitro, stimulation with z-IETD-fmk is sufficient to induce significant cytokine production in murine neutrophils but not in macrophages. Therapeutic administration of z-IETD-fmk improves clinical outcome in models of lethal bacterial peritonitis and pneumonia by augmenting cytokine release, neutrophil influx, and bacterial clearance. Moreover, the inhibitor protects mice against high-dose endotoxin shock. Collectively, our data unveil a RIPK3- and IFN-β-dependent pathway that is constitutively activated in neutrophils and can be harnessed therapeutically using caspase-8 inhibition.
Collapse
Affiliation(s)
- Germana Lentini
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, Messina, Italy
| | | | - Francesco Coppolino
- Department of Chemical, Biological and Pharmaceutical Sciences, University of Messina, Messina, Italy
| | | | - Liv Ryan
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Egil Lien
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Division of Infectious Diseases and Immunology, Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Concetta Beninati
- Department of Human Pathology, University of Messina, Messina, Italy; Scylla Biotech Srl, Messina, Italy
| | | |
Collapse
|
74
|
Cao Z, Mu S, Wang M, Zhang Y, Zou G, Yuan X, Huang Y, Yu S, Zhang J, Zhang C. Succinate pretreatment attenuates intestinal ischemia-reperfusion injury by inhibiting necroptosis and inflammation via upregulating Klf4. Int Immunopharmacol 2023; 120:110425. [PMID: 37285681 DOI: 10.1016/j.intimp.2023.110425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/21/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Intestinal ischemia-reperfusion (I/R) injury is a common pathophysiological process in various diseases, and the disruption of the intestinal barrier composed of tight junction proteins is the initiating factor, which then leads to a large number of bacteria and endotoxins in the intestine into the bloodstream causing stress and distant organ damage. The release of inflammatory mediators and abnormal programmed death of intestinal epithelial cells are important factors of intestinal barrier damage. Succinate is an intermediate product of the tricarboxylic acid cycle with anti-inflammatory and pro-angiogenic activities, but its role in the maintenance of intestinal barrier homeostasis after I/R has not been fully elucidated. In this study, we explored the effect of succinate on intestinal ischemia-reperfusion injury and the possible mechanism of its role by flow cytometry, western blotting, real-time quantitative PCR and immunostaining. The results of pretreatment with succinate in the mouse intestinal I/R model and IEC-6 cells hypoxia-reoxygenation (H/R) model revealed a reduction in tissue damage, necroptosis and associated inflammation due to ischemia-reperfusion. Furthermore, it was found that the protective effect of succinate pretreatment may be associated with the transcriptional upregulation of the inflammatory protein KLF4 and the protective effect of intestinal barrier of succinate was diminished after inhibition of KLF4. Thus, our results suggest that succinate can exert a protective effect in intestinal ischemia-reperfusion injury through upregulation of KLF4 and also demonstrate the potential therapeutic value of succinate pretreatment in acute I/R injury of the intestine.
Collapse
Affiliation(s)
- Zhen Cao
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Silong Mu
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Maihuan Wang
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yun Zhang
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Guijun Zou
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xinpu Yuan
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yun Huang
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Siwang Yu
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Jinming Zhang
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Chaojun Zhang
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
75
|
Meng Z, Wang K, Lan Q, Zhou T, Lin Y, Jiang Z, Chen J, Lin Y, Liu X, Lin H, Lin D. Saxagliptin promotes random skin flap survival. Int Immunopharmacol 2023; 120:110364. [PMID: 37224651 DOI: 10.1016/j.intimp.2023.110364] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/30/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Flap necrosis is a common issue encountered in clinical flap transplantation surgery. Here, we assessed the effects of saxagliptin, a dipeptidyl peptidase-4 inhibitor, on flap survival and explored the underlying mechanisms. METHODS A dorsal McFarlane flap model was established in 36 rats, which were randomly divided into a high-dose saxagliptin (HS) group (saxagliptin, 30 mg/kg/day, n = 12), low-dose saxagliptin (LS) group (saxagliptin, 10 mg/kg/day, n = 12), and control group (n = 12). On day 7, flap survival was examined by eye in six rats from each group, along with determination of blood perfusion by laser Doppler flowmetry and angiogenesis by angiography. The remaining rats were sacrificed for harvesting of flap tissue. The status of the flap tissue was examined histopathologically by staining with hematoxylin and eosin (H&E). Oxidative stress was evaluated by determination of superoxide dismutase (SOD) activity and malonaldehyde (MDA) content. Gasdermin D (GSDMD), vascular endothelial growth factor (VEGF), tumor necrosis factor-α (TNF-α), NOD-like receptor pyrin domain containing 3 (NLRP3), interleukin (IL)-6, IL-18, Toll-like receptor 4 (TLR4), IL-1β, caspase-1, and nuclear factor-κB (NF-κB) expression were detected by immunohistochemical analysis. RESULTS The experimental group exhibited a larger area of flap survival, with more blood perfusion and neovascularization and better histopathological status than the control group. The degree of oxidative stress and the levels of NF-κB, TLR4, proinflammatory cytokines, and pyroptosis-associated protein were decreased in the experimental group, while the VEGF level was increased in a saxagliptin dose-dependent manner. CONCLUSION Saxagliptin promotes random skin flap survival.
Collapse
Affiliation(s)
- Zhefeng Meng
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Kaitao Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Qicheng Lan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medical, Wenzhou Medical University, Wenzhou 325000, China
| | - Taotao Zhou
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Yi Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhikai Jiang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jianpeng Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Yuting Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medical, Wenzhou Medical University, Wenzhou 325000, China
| | - Xuao Liu
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Hang Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medical, Wenzhou Medical University, Wenzhou 325000, China
| | - Dingsheng Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
76
|
Sanz AB, Sanchez-Niño MD, Ramos AM, Ortiz A. Regulated cell death pathways in kidney disease. Nat Rev Nephrol 2023; 19:281-299. [PMID: 36959481 PMCID: PMC10035496 DOI: 10.1038/s41581-023-00694-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 03/25/2023]
Abstract
Disorders of cell number that result from an imbalance between the death of parenchymal cells and the proliferation or recruitment of maladaptive cells contributes to the pathogenesis of kidney disease. Acute kidney injury can result from an acute loss of kidney epithelial cells. In chronic kidney disease, loss of kidney epithelial cells leads to glomerulosclerosis and tubular atrophy, whereas interstitial inflammation and fibrosis result from an excess of leukocytes and myofibroblasts. Other conditions, such as acquired cystic disease and kidney cancer, are characterized by excess numbers of cyst wall and malignant cells, respectively. Cell death modalities act to clear unwanted cells, but disproportionate responses can contribute to the detrimental loss of kidney cells. Indeed, pathways of regulated cell death - including apoptosis and necrosis - have emerged as central events in the pathogenesis of various kidney diseases that may be amenable to therapeutic intervention. Modes of regulated necrosis, such as ferroptosis, necroptosis and pyroptosis may cause kidney injury directly or through the recruitment of immune cells and stimulation of inflammatory responses. Importantly, multiple layers of interconnections exist between different modalities of regulated cell death, including shared triggers, molecular components and protective mechanisms.
Collapse
Affiliation(s)
- Ana B Sanz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Adrian M Ramos
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain.
- RICORS2040, Madrid, Spain.
- Departamento de Farmacología, Universidad Autonoma de Madrid, Madrid, Spain.
| |
Collapse
|
77
|
Fujiki H, Sueoka E, Watanabe T, Komori A, Suganuma M. Cancer progression by the okadaic acid class of tumor promoters and endogenous protein inhibitors of PP2A, SET and CIP2A. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04800-4. [PMID: 37097392 PMCID: PMC10374699 DOI: 10.1007/s00432-023-04800-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/15/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE Okadaic acid class of tumor promoters are transformed into endogenous protein inhibitors of PP2A, SET, and CIP2A in human cancers. This indicates that inhibition of PP2A activity is a common mechanism of cancer progression in humans. It is important to study the roles of SET and CIP2A vis-à-vis their clinical significance on the basis of new information gathered from a search of PubMed. RESULTS AND DISCUSSION The first part of this review introduces the carcinogenic roles of TNF-α and IL-1, which are induced by the okadaic acid class of compounds. The second part describes unique features of SET and CIP2A in cancer progression for several types of human cancer: (1) SET-expressing circulating tumor cells (SET-CTCs) in breast cancer, (2) knockdown of CIP2A and increased PP2A activity in chronic myeloid leukemia, (3) CIP2A and epidermal growth factor receptor (EGFR) activity in erlotinib sensitive- and resistant-non-small cell lung cancer, (4) SET antagonist EMQA plus radiation therapy against hepatocellular carcinoma, (5) PP2A inactivation as a common event in colorectal cancer, (6) prostate cancer susceptibility variants, homeobox transcription factor (HOXB13 T) and CIP2A T, and (7) SET inhibitor OP449 for pre-clinical investigation of pancreatic cancer. In the Discussion, the binding complex of SET is briefly introduced, and overexpression of SET and CIP2A proteins is discussed in relation to age-associated chronic inflammation (inflammaging). CONCLUSION This review establishes the concept that inhibition of PP2A activity is a common mechanism of human cancer progression and activation of PP2A activity leads to effective anticancer therapy.
Collapse
Affiliation(s)
- Hirota Fujiki
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Saga University, Nabeshima, Saga, 849-8501, Japan.
| | - Eisaburo Sueoka
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Saga University, Nabeshima, Saga, 849-8501, Japan
| | - Tatsuro Watanabe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Nabeshima, Saga, 849-8501, Japan
| | - Atsumasa Komori
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center and Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Nagasaki, 856-8562, Japan
| | - Masami Suganuma
- Department of Strategic Research, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| |
Collapse
|
78
|
Xu J, Li S, Jin W, Zhou H, Zhong T, Cheng X, Fu Y, Xiao P, Cheng H, Wang D, Ke Y, Jiang Z, Zhang X. Epithelial Gab1 calibrates RIPK3-dependent necroptosis to prevent intestinal inflammation. JCI Insight 2023; 8:162701. [PMID: 36795486 PMCID: PMC10070107 DOI: 10.1172/jci.insight.162701] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/15/2023] [Indexed: 02/17/2023] Open
Abstract
As a hallmark of inflammatory bowel disease (IBD), elevated intestinal epithelial cell (IEC) death compromises the gut barrier, activating the inflammatory response and triggering more IEC death. However, the precise intracellular machinery that prevents IEC death and breaks this vicious feedback cycle remains largely unknown. Here, we report that Grb2-associated binder 1 (Gab1) expression is decreased in patients with IBD and inversely correlated with IBD severity. Gab1 deficiency in IECs accounted for the exacerbated colitis induced by dextran sodium sulfate owing to sensitizing IECs to receptor-interaction protein kinase 3-mediated (RIPK3-mediated) necroptosis, which irreversibly disrupted the homeostasis of the epithelial barrier and promoted intestinal inflammation. Mechanistically, Gab1 negatively regulated necroptosis signaling through inhibiting the formation of RIPK1/RIPK3 complex in response to TNF-α. Importantly, administration of RIPK3 inhibitor revealed a curative effect in epithelial Gab1-deficient mice. Further analysis indicated mice with Gab1 deletion were prone to inflammation-associated colorectal tumorigenesis. Collectively, our study defines a protective role for Gab1 in colitis and colitis-driven colorectal cancer by negatively regulating RIPK3-dependent necroptosis, which may serve as an important target to address necroptosis and intestinal inflammation-related disease.
Collapse
Affiliation(s)
- Jiaqi Xu
- Department of Pathology, Sir Run Run Shaw Hospital
| | - Shihao Li
- Department of Pathology and Pathophysiology, and Department of Respiratory Medicine of Sir Run Run Shaw Hospital
| | - Wei Jin
- Department of General Surgery and
| | - Hui Zhou
- Department of Pathology and Pathophysiology, and Department of Respiratory Medicine of Sir Run Run Shaw Hospital
| | | | | | - Yujuan Fu
- Department of Pathology, Sir Run Run Shaw Hospital
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, and Department of Cardiology of Sir Run Run Shaw Hospital; and
| | - Di Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, and Department of Respiratory Medicine of Sir Run Run Shaw Hospital
| | | | - Xue Zhang
- Department of Pathology and Pathophysiology, and Department of Respiratory Medicine of Sir Run Run Shaw Hospital
| |
Collapse
|
79
|
Wang Q, Ye Q, Xi X, Cao X, Wang X, Zhang M, Xu Y, Deng T, Deng X, Zhang G, Xiao C. KW2449 ameliorates collagen-induced arthritis by inhibiting RIPK1-dependent necroptosis. Front Immunol 2023; 14:1135014. [PMID: 36993980 PMCID: PMC10040599 DOI: 10.3389/fimmu.2023.1135014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
ObjectiveNecroptosis has recently been found to be associated with the pathogenesis of many autoimmune diseases, including rheumatoid arthritis (RA). This study was undertaken to explore the role of RIPK1-dependent necroptosis in the pathogenesis of RA and the potential new treatment options.MethodsThe plasma levels of receptor-interacting protein kinase 1 (RIPK1) and mixed lineage kinase domain-like pseudokinase (MLKL) in 23 controls and 42 RA patients were detected by ELISA. Collagen-induced arthritis (CIA) rats were treated with KW2449 by gavage for 28 days. Arthritis index score, H&E staining, and Micro-CT analysis were used to evaluate joint inflammation. The levels of RIPK1-dependent necroptosis related proteins and inflammatory cytokines were detected by qRT-PCR, ELISA and Western blot, and the cell death morphology was detected by flow cytometry analysis and high-content imaging analysis.ResultsThe plasma levels of RIPK1 and MLKL in RA patients were higher than those in healthy people, and were positively correlated with the severity of RA. KW2449 could reduce joint swelling, joint bone destruction, tissue damage, and the plasma levels of inflammatory cytokines in CIA rats. Lipopolysaccharide combined with zVAD (LZ) could induce necroptosis in RAW 264.7 cells, which could be reduced by KW2449. RIPK1-dependent necroptosis related proteins and inflammatory factors increased after LZ induction and decreased after KW2449 treatment or knockdown of RIPK1.ConclusionThese findings suggest that the overexpression of RIPK1 is positively correlated with the severity of RA. KW2449, as a small molecule inhibitor targeting RIPK1, has the potential to be a therapeutic strategy for RA treatment by inhibiting RIPK1-dependent necroptosis.
Collapse
Affiliation(s)
- Qiong Wang
- Beijing University of Chinese Medicine, China-Japan Friendship Hospital Clinical Medicine, Beijing, China
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qinbin Ye
- Beijing University of Chinese Medicine, China-Japan Friendship Hospital Clinical Medicine, Beijing, China
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoyu Xi
- Beijing University of Chinese Medicine, China-Japan Friendship Hospital Clinical Medicine, Beijing, China
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xing Wang
- Beijing University of Chinese Medicine, China-Japan Friendship Hospital Clinical Medicine, Beijing, China
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaobing Deng
- Department of Drug Discovery, Double-Crane Run Therapeutics, Beijing, China
| | - Guoqiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Guoqiang Zhang, ; Cheng Xiao,
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Guoqiang Zhang, ; Cheng Xiao,
| |
Collapse
|
80
|
Matsuda T, Takimoto-Ito R, Lipsker D, Kambe N. Similarities and differences in autoinflammatory diseases with urticarial rash, cryopyrin-associated periodic syndrome and Schnitzler syndrome. Allergol Int 2023:S1323-8930(23)00009-6. [PMID: 36906447 DOI: 10.1016/j.alit.2023.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Indexed: 03/12/2023] Open
Abstract
Cryopyrin-associated periodic syndromes (CAPS) and Schnitzler syndrome (SchS) are autoinflammatory diseases that present with urticaria-like rashes. CAPS is characterized by periodic or persistent systemic inflammation caused by the dysfunction of the NLRP3 gene. With the advent of IL-1-targeted therapies, the prognosis of CAPS has improved remarkably. SchS is considered an acquired form of autoinflammatory syndrome. Patients with SchS are adults of relatively older age. The pathogenesis of SchS remains unknown and is not associated with the NLRP3 gene. Previously, the p.L265P mutation in the MYD88 gene, which is frequently detected in Waldenström macroglobulinemia (WM) with IgM gammopathy, was identified in several cases of SchS. However, because persistent fever and fatigue are symptoms of WM that require therapeutic intervention, it is a challenge to determine whether these patients truly had SchS or whether advanced WM was misidentified as SchS. There are no established treatments for SchS. The treatment algorithm proposed with the diagnostic criteria is to use colchicine as first-line treatment, and systemic administration of steroids is not recommended due to concerns about side effects. In difficult-to-treat cases, treatment targeting IL-1 is recommended. If targeted IL-1 treatment does not improve symptoms, the diagnosis should be reconsidered. We hope that the efficacy of IL-1 therapy in clinical practice will serve as a stepping stone to elucidate the pathogenesis of SchS, focusing on its similarities and differences from CAPS.
Collapse
Affiliation(s)
- Tomoko Matsuda
- Department of Dermatology, Kansai Medical University, Hirakata, Japan
| | - Riko Takimoto-Ito
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Dan Lipsker
- Dermatology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Naotomo Kambe
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
81
|
Tang S, Zhang X, Duan Z, Xu M, Kong M, Zheng S, Bai L, Chen Y. The novel hepatoprotective mechanisms of silibinin-phospholipid complex against d-GalN/LPS-induced acute liver injury. Int Immunopharmacol 2023; 116:109808. [PMID: 36764278 DOI: 10.1016/j.intimp.2023.109808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND & AIMS Silibinin-phospholipid complex (SPC) has been utilized to treat acute liver injury clinically. Nevertheless, the hepatoprotective mechanism of SPC remains to be further dissected in response to new insights into the pathogenesis of acute liver injury. Very recently, we have documented, for the first time, that M2-like macrophages exert the hepatoprotection against acute insult through inhibiting necroptosis-S100A9-necroinflammation. In the present work, we integrated this new finding into the mechanism of action of SPC, and attempted to dissect the hepatoprotective mechanism of SPC from this new perspective. METHODS SPC and corresponding controls were administered intragastrically into control mice subjected to d-GalN/LPS challenge. The hepatic damage was assessed, and the expression of necroptosis-S100A9-necroinflammation signaling molecules was detected. The correlation between SPC and macrophage activation was investigated. The expression of miR-223-3p and its regulation on macrophage activation were analyzed. The targeted inhibitory effects of miR-223-3p on necroptosis and necroinflammation signaling molecules were confirmed. RESULTS SPC alleviated remarkably the hepatic damage triggered by d-GalN/LPS. The administration of SPC inhibited the expression of necroptosis-S100A9-necroinflammation signaling molecules. The levels of M2-like macrophage markers were increased significantly in SPC-treated mice or macrophages. miR-223-3p expression was enhanced in SPC-treated mice. miR-223-3p transfer led to up-regulated expression of M2-like macrophage markers. miR-223-3p directly targeted 3' UTR of RIPK3 and NLRP3, and the expression of necroptosis and necroinflammation signaling molecules was inhibited in miR-223-3p-transferred hepatocytes and macrophages. CONCLUSIONS SPC alleviates acute liver injury through up-regulating the expression of miR-223-3p. MiR-223-3p further promotes M2-like macrophage activation and the targeted inhibition of necroptosis and necroinflammation. Our findings provide novel insight into the hepatoprotective mechanism of SPC against acute liver injury.
Collapse
Affiliation(s)
- Shan Tang
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Xiaodan Zhang
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Zhongping Duan
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Manman Xu
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Ming Kong
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Sujun Zheng
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Li Bai
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China.
| | - Yu Chen
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
82
|
Zhu F, Yu D, Qin X, Qian Y, Ma J, Li W, Liu Q, Wang C, Zhang Y, Li Y, Jiang D, Wang S, Xia P. The neuropeptide CGRP enters the macrophage cytosol to suppress the NLRP3 inflammasome during pulmonary infection. Cell Mol Immunol 2023; 20:264-276. [PMID: 36600053 PMCID: PMC9970963 DOI: 10.1038/s41423-022-00968-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/11/2022] [Indexed: 01/06/2023] Open
Abstract
The NLRP3 inflammasome plays an essential role in resistance to bacterial infection. The nervous system secretes multiple neuropeptides affecting the nervous system as well as immune cells. The precise impact of the neuropeptide CGRP on NLRP3 inflammasome activation is still unclear. Here, we show that CGRP negatively regulates the antibacterial process of host cells. CGRP prevents NLRP3 inflammasome activation and reduces mature IL-1β secretion. Following NLRP3 inflammasome stimulation that triggers endosome leakage, CGRP internalized to endosomal compartments is released into the cell cytosol. Cytosolic CGRP binds directly to NLRP3 and dismantles the NLRP3-NEK7 complex, which is crucial for NLRP3 inflammasome activation. CGRP administration exacerbates bacterial infection, while the treatment with a CGRP antagonist has the opposite effect. Our study uncovers a unique role of CGRP in inhibiting inflammasome activation during infections, which might shed new light on antibacterial therapies in the future.
Collapse
Affiliation(s)
- Fangrui Zhu
- Department of Immunology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, 100191, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, 100191, Beijing, China
| | - Dou Yu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Xiwen Qin
- Department of Immunology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, 100191, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, 100191, Beijing, China
| | - Yan Qian
- Department of Immunology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, 100191, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, 100191, Beijing, China
| | - Juan Ma
- Department of Immunology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, 100191, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, 100191, Beijing, China
| | - Weitao Li
- Department of Immunology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, 100191, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, 100191, Beijing, China
| | - Qiannv Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, 100191, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, 100191, Beijing, China
| | - Chunlei Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, 100191, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, 100191, Beijing, China
| | - Yan Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, 100191, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, 100191, Beijing, China
| | - Yi Li
- Department of Anesthesiology, Peking University Third Hospital, 100191, Beijing, China
| | - Dong Jiang
- Department of Sports Medicine, Peking University Third Hospital, 100191, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine of Peking University, 100191, Beijing, China
| | - Shuo Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
| | - Pengyan Xia
- Department of Immunology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China.
- NHC Key Laboratory of Medical Immunology, Peking University, 100191, Beijing, China.
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, 100191, Beijing, China.
| |
Collapse
|
83
|
Zheng L, Yao Y, Lenardo MJ. Death receptor 5 rises to the occasion. Cell Res 2023; 33:199-200. [PMID: 36646764 PMCID: PMC9977927 DOI: 10.1038/s41422-022-00772-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| | - Yikun Yao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| |
Collapse
|
84
|
Necroptosis of macrophage is a key pathological feature in biliary atresia via GDCA/S1PR2/ZBP1/p-MLKL axis. Cell Death Dis 2023; 14:175. [PMID: 36859525 PMCID: PMC9977961 DOI: 10.1038/s41419-023-05615-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 03/03/2023]
Abstract
Biliary atresia (BA) is a severe inflammatory and fibrosing neonatal cholangiopathy disease characterized by progressive obstruction of extrahepatic bile ducts, resulting in cholestasis and progressive hepatic failure. Cholestasis may play an important role in the inflammatory and fibrotic pathological processes, but its specific mechanism is still unclear. Necroptosis mediated by Z-DNA-binding protein 1 (ZBP1)/phosphorylated-mixed lineage kinase domain-like pseudokinase (p-MLKL) is a prominent pathogenic factor in inflammatory and fibrotic diseases, but its function in BA remains unclear. Here, we aim to determine the effect of macrophage necroptosis in the BA pathology, and to explore the specific molecular mechanism. We found that necroptosis existed in BA livers, which was occurred in liver macrophages. Furthermore, this process was mediated by ZBP1/p-MLKL, and the upregulated expression of ZBP1 in BA livers was correlated with liver fibrosis and prognosis. Similarly, in the bile duct ligation (BDL) induced mouse cholestatic liver injury model, macrophage necroptosis mediated by ZBP1/p-MLKL was also observed. In vitro, conjugated bile acid-glycodeoxycholate (GDCA) upregulated ZBP1 expression in mouse bone marrow-derived monocyte/macrophages (BMDMs) through sphingosine 1-phosphate receptor 2 (S1PR2), and the induction of ZBP1 was a prerequisite for the enhanced necroptosis. Finally, after selectively knocking down of macrophage S1pr2 in vivo, ZBP1/p-MLKL-mediated necroptosis was decreased, and further collagen deposition was markedly attenuated in BDL mice. Furthermore, macrophage Zbp1 or Mlkl specific knockdown also alleviated BDL-induced liver injury/fibrosis. In conclusion, GDCA/S1PR2/ZBP1/p-MLKL mediated macrophage necroptosis plays vital role in the pathogenesis of BA liver fibrosis, and targeting this process may represent a potential therapeutic strategy for BA.
Collapse
|
85
|
Inflammatory cell death: how macrophages sense neighbouring cell infection and damage. Biochem Soc Trans 2023; 51:303-313. [PMID: 36695550 PMCID: PMC9987993 DOI: 10.1042/bst20220807] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
Programmed cell death is a critical host defence strategy during viral infection. Neighbouring cells deal with this death in distinct ways depending on how the infected cell dies. While apoptosis is considered immunologically silent, the lytic pathways of necroptosis and pyroptosis trigger inflammatory responses by releasing inflammatory host molecules. All these pathways have been implicated in influenza A virus infection. Here, we review how cells sense neighbouring infection and death and how sensing shapes ensuing inflammatory responses.
Collapse
|
86
|
Oxidized mitochondrial DNA induces gasdermin D oligomerization in systemic lupus erythematosus. Nat Commun 2023; 14:872. [PMID: 36797275 PMCID: PMC9935630 DOI: 10.1038/s41467-023-36522-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Although extracellular DNA is known to form immune complexes (ICs) with autoantibodies in systemic lupus erythematosus (SLE), the mechanisms leading to the release of DNA from cells remain poorly characterized. Here, we show that the pore-forming protein, gasdermin D (GSDMD), is required for nuclear DNA and mitochondrial DNA (mtDNA) release from neutrophils and lytic cell death following ex vivo stimulation with serum from patients with SLE and IFN-γ. Mechanistically, the activation of FcγR downregulated Serpinb1 following ex vivo stimulation with serum from patients with SLE, leading to spontaneous activation of both caspase-1/caspase-11 and cleavage of GSDMD into GSDMD-N. Furthermore, mtDNA oxidization promoted GSDMD-N oligomerization and cell death. In addition, GSDMD, but not peptidyl arginine deiminase 4 is necessary for extracellular mtDNA release from low-density granulocytes from SLE patients or healthy human neutrophils following incubation with ICs. Using the pristane-induced lupus model, we show that disease severity is significantly reduced in mice with neutrophil-specific Gsdmd deficiency or following treatment with the GSDMD inhibitor, disulfiram. Altogether, our study highlights an important role for oxidized mtDNA in inducing GSDMD oligomerization and pore formation. These findings also suggest that GSDMD might represent a possible therapeutic target in SLE.
Collapse
|
87
|
Lomphithak T, Fadeel B. Die hard: cell death mechanisms and their implications in nanotoxicology. Toxicol Sci 2023; 192:kfad008. [PMID: 36752525 PMCID: PMC10109533 DOI: 10.1093/toxsci/kfad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Cell death is a fundamental biological process, and its fine-tuned regulation is required for life. However, the complexity of regulated cell death is often reduced to a matter of live-dead discrimination. Here, we provide a perspective on programmed or regulated cell death, focusing on apoptosis, pyroptosis, necroptosis, and ferroptosis (the latter three cell death modalities are examples of regulated necrosis). We also touch on other, recently described manifestations of (pathological) cell death including cuproptosis. Furthermore, we address how engineered nanomaterials impact on regulated cell death. We posit that an improved understanding of nanomaterial-induced perturbations of cell death may allow for a better prediction of the consequences of human exposure and could also yield novel approaches by which to mitigate these effects. Finally, we provide examples of the harnessing of nanomaterials to achieve cancer cell killing through the induction of regulated cell death.
Collapse
Affiliation(s)
- Thanpisit Lomphithak
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
88
|
Hu Y, Zhan F, Wang Y, Wang D, Lu H, Wu C, Xia Y, Meng L, Zhang F, Wang X, Zhou S. The Ninj1/Dusp1 Axis Contributes to Liver Ischemia Reperfusion Injury by Regulating Macrophage Activation and Neutrophil Infiltration. Cell Mol Gastroenterol Hepatol 2023; 15:1071-1084. [PMID: 36731792 PMCID: PMC10036740 DOI: 10.1016/j.jcmgh.2023.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIMS Liver ischemia-reperfusion (IR) injury represents a major risk factor in both partial hepatectomy and liver transplantation. Nerve injury-induced protein 1 (Ninj1) is widely recognized as an adhesion molecule in leukocyte trafficking under inflammatory conditions, but its role in regulating sterile inflammation during liver IR injury remains unclear. METHODS Myeloid Ninj1-deficient mice were generated by bone marrow chimeric models using Ninj1 knockout mice and wild-type mice. In vivo, a liver partial warm ischemia model was applied. Liver injury and hepatic inflammation were investigated. In vitro, primary Kupffer cells (KCs) isolated from Ninj1 knockout and wild-type mice were used to explore the function and mechanism of Ninj1 in modulating KC inflammation upon lipopolysaccharide stimulation. RESULTS Ninj1 deficiency in KCs protected mice against liver IR injury during the later phase of reperfusion, especially in neutrophil infiltration, intrahepatic inflammation, and hepatocyte apoptosis. This prompted ischemia-primed KCs to decrease proinflammatory cytokine production. In vitro and in vivo, using small-interfering RNA against dual-specificity phosphatase 1 (DUSP1), we found that Ninj1 deficiency diminished the inflammatory response in KCs and neutrophil infiltration through DUSP1-dependent deactivation of the c-Jun-N-terminal kinase and p38 pathways. Sivelestat, a neutrophil elastase inhibitor, functioned similarly to Ninj1 deficiency, resulting in both mitigated hepatic IR injury in mice and a more rapid recovery of liver function in patients undergoing liver resection. CONCLUSIONS The Ninj1/Dusp1 axis contributes to liver IR injury by regulating the proinflammatory response of KCs, and influences neutrophil infiltration, partly by subsequent regulation of C-X-C motif chemokine ligand 1 (CXCL1) production after IR.
Collapse
Affiliation(s)
- Yuanchang Hu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Feng Zhan
- Department of Hepatobiliary and Laparoscopic Surgery, The Affiliated Yixing Hospital, Jiangsu University, Yixing, China
| | - Yong Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Dong Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hao Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Chen Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yongxiang Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Lijuan Meng
- Department of Geriatric Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xun Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Shun Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
89
|
Xue Y, Jiang X, Wang J, Zong Y, Yuan Z, Miao S, Mao X. Effect of regulatory cell death on the occurrence and development of head and neck squamous cell carcinoma. Biomark Res 2023; 11:2. [PMID: 36600313 PMCID: PMC9814270 DOI: 10.1186/s40364-022-00433-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/08/2022] [Indexed: 01/06/2023] Open
Abstract
Head and neck cancer is a malignant tumour with a high mortality rate characterized by late diagnosis, high recurrence and metastasis rates, and poor prognosis. Head and neck squamous cell carcinoma (HNSCC) is the most common type of head and neck cancer. Various factors are involved in the occurrence and development of HNSCC, including external inflammatory stimuli and oncogenic viral infections. In recent years, studies on the regulation of cell death have provided new insights into the biology and therapeutic response of HNSCC, such as apoptosis, necroptosis, pyroptosis, autophagy, ferroptosis, and recently the newly discovered cuproptosis. We explored how various cell deaths act as a unique defence mechanism against cancer emergence and how they can be exploited to inhibit tumorigenesis and progression, thus introducing regulatory cell death (RCD) as a novel strategy for tumour therapy. In contrast to accidental cell death, RCD is controlled by specific signal transduction pathways, including TP53 signalling, KRAS signalling, NOTCH signalling, hypoxia signalling, and metabolic reprogramming. In this review, we describe the molecular mechanisms of nonapoptotic RCD and its relationship to HNSCC and discuss the crosstalk between relevant signalling pathways in HNSCC cells. We also highlight novel approaches to tumour elimination through RCD.
Collapse
Affiliation(s)
- Yuting Xue
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xuejiao Jiang
- grid.24696.3f0000 0004 0369 153XBeijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Junrong Wang
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuxuan Zong
- Department of Breast Surgery, The First of hospital of Qiqihar, Qiqihar, China
| | - Zhennan Yuan
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Susheng Miao
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xionghui Mao
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
90
|
Abstract
Pyroptosis is a form of regulated cell death that is mediated by the membrane-targeting, pore-forming gasdermin family of proteins. Pyroptosis was initially described as a caspase 1- and inflammasome-dependent cell death pathway typified by the loss of membrane integrity and the secretion of cytokines such as IL-1β. However, gasdermins are now recognized as the principal effectors of this form of regulated cell death; activated gasdermins insert into cell membranes, where they form pores that result in the secretion of cytokines, alarmins and damage-associated molecular patterns and cause cell membrane rupture. It is now evident that gasdermins can be activated by inflammasome- and caspase-independent mechanisms in multiple cell types and that crosstalk occurs between pyroptosis and other cell death pathways. Although they are important for host antimicrobial defence, a growing body of evidence supports the notion that pyroptosis and gasdermins have pathological roles in cancer and several non-microbial diseases involving the gut, liver and skin. The well-documented roles of inflammasome activity and apoptosis pathways in kidney diseases suggests that gasdermins and pyroptosis may also be involved to some extent. However, despite some evidence for involvement of pyroptosis in the context of acute kidney injury and chronic kidney disease, our understanding of gasdermin biology and pyroptosis in the kidney remains limited.
Collapse
|
91
|
Singh R, Rossini V, Stockdale SR, Saiz-Gonzalo G, Hanrahan N, D’ Souza T, Clooney A, Draper LA, Hill C, Nally K, Shanahan F, Andersson-Engels S, Melgar S. An IBD-associated pathobiont synergises with NSAID to promote colitis which is blocked by NLRP3 inflammasome and Caspase-8 inhibitors. Gut Microbes 2023; 15:2163838. [PMID: 36656595 PMCID: PMC9858430 DOI: 10.1080/19490976.2022.2163838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Conflicting evidence exists on the association between consumption of non-steroidal anti-inflammatory drugs (NSAIDs) and symptomatic worsening of inflammatory bowel disease (IBD). We hypothesized that the heterogeneous prevalence of pathobionts [e.g., adherent-invasive Escherichia coli (AIEC)], might explain this inconsistent NSAIDs/IBD correlation. Using IL10-/- mice, we found that NSAID aggravated colitis in AIEC-colonized animals. This was accompanied by activation of the NLRP3 inflammasome, Caspase-8, apoptosis, and pyroptosis, features not seen in mice exposed to AIEC or NSAID alone, revealing an AIEC/NSAID synergistic effect. Inhibition of NLRP3 or Caspase-8 activity ameliorated colitis, with reduction in NLRP3 inflammasome activation, cell death markers, activated T-cells and macrophages, improved histology, and increased abundance of Clostridium cluster XIVa species. Our findings provide new insights into how NSAIDs and an opportunistic gut-pathobiont can synergize to worsen IBD symptoms. Targeting the NLRP3 inflammasome or Caspase-8 could be a potential therapeutic strategy in IBD patients with gut inflammation, which is worsened by NSAIDs.
Collapse
Affiliation(s)
- Raminder Singh
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Medicine, School of Medicine, University College Cork, Cork, Ireland
| | - Valerio Rossini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Gonzalo Saiz-Gonzalo
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Medicine, School of Medicine, University College Cork, Cork, Ireland,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Naomi Hanrahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Medicine, School of Medicine, University College Cork, Cork, Ireland,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Tanya D’ Souza
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Adam Clooney
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Stefan Andersson-Engels
- Irish Photonics Integration Centre, Tyndall National Institute, Cork, Ireland,Department of Physics, University College Cork, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland,CONTACT Silvia Melgar APC Microbiome Ireland, University College Cork, Biosciences Building, 4th Floor, Cork, Ireland
| |
Collapse
|
92
|
Xing C, Lv J, Zhu Z, Cong W, Bian H, Zhang C, Gu R, Chen D, Tan X, Su L, Zhang Y. Regulation of microglia related neuroinflammation contributes to the protective effect of Gelsevirine on ischemic stroke. Front Immunol 2023; 14:1164278. [PMID: 37063929 PMCID: PMC10098192 DOI: 10.3389/fimmu.2023.1164278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
Stroke, especially ischemic stroke, is an important cause of neurological morbidity and mortality worldwide. Growing evidence suggests that the immune system plays an intricate function in the pathophysiology of stroke. Gelsevirine (Gs), an alkaloid from Gelsemium elegans, has been proven to decrease inflammation and neuralgia in osteoarthritis previously, but its role in stroke is unknown. In this study, the middle cerebral artery occlusion (MCAO) mice model was used to evaluate the protective effect of Gs on stroke, and the administration of Gs significantly improved infarct volume, Bederson score, neurobiological function, apoptosis of neurons, and inflammation state in vivo. According to the data in vivo and the conditioned medium (CM) stimulated model in vitro, the beneficial effect of Gs came from the downregulation of the over-activity of microglia, such as the generation of inflammatory factors, dysfunction of mitochondria, production of ROS and so on. By RNA-seq analysis and Western-blot analysis, the JAK-STAT signal pathway plays a critical role in the anti-inflammatory effect of Gs. According to the results of molecular docking, inhibition assay, and thermal shift assay, the binding of Gs on JAK2 inhibited the activity of JAK2 which inhibited the over-activity of JAK2 and downregulated the phosphorylation of STAT3. Over-expression of a gain-of-function STAT3 mutation (K392R) abolished the beneficial effects of Gs. So, the downregulation of JAK2-STAT3 signaling pathway by Gs contributed to its anti-inflammatory effect on microglia in stroke. Our study revealed that Gs was benefit to stroke treatment by decreasing neuroinflammation in stroke as a potential drug candidate regulating the JAK2-STAT3 signal pathway.
Collapse
Affiliation(s)
- Chunlei Xing
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Juan Lv
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhihui Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Wei Cong
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Huihui Bian
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Chenxi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Ruxin Gu
- Department of Geriatric Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Dagui Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xiying Tan
- Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Xiying Tan, ; Li Su, ; Yu Zhang,
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- *Correspondence: Xiying Tan, ; Li Su, ; Yu Zhang,
| | - Yu Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
- *Correspondence: Xiying Tan, ; Li Su, ; Yu Zhang,
| |
Collapse
|
93
|
Scarpellini C, Valembois S, Goossens K, Vadi M, Lanthier C, Klejborowska G, Van Der Veken P, De Winter H, Bertrand MJM, Augustyns K. From PERK to RIPK1: Design, synthesis and evaluation of novel potent and selective necroptosis inhibitors. Front Chem 2023; 11:1160164. [PMID: 37090247 PMCID: PMC10119423 DOI: 10.3389/fchem.2023.1160164] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Receptor-Interacting serine/threonine-Protein Kinase 1 (RIPK1) emerged as an important driver of inflammation and, consequently, inflammatory pathologies. The enzymatic activity of RIPK1 is known to indirectly promote inflammation by triggering cell death, in the form of apoptosis, necroptosis and pyroptosis. Small molecule Receptor-Interacting serine/threonine-Protein Kinase 1 inhibitors have therefore recently entered clinical trials for the treatment of a subset of inflammatory pathologies. We previously identified GSK2656157 (GSK'157), a supposedly specific inhibitor of protein kinase R (PKR)-like ER kinase (PERK), as a much more potent type II Receptor-Interacting serine/threonine-Protein Kinase 1 inhibitor. We now performed further structural optimisation on the GSK'157 scaffold in order to develop a novel class of more selective Receptor-Interacting serine/threonine-Protein Kinase 1 inhibitors. Based on a structure-activity relationship (SAR) reported in the literature, we anticipated that introducing a substituent on the para-position of the pyridinyl ring would decrease the interaction with PERK. Herein, we report a series of novel GSK'157 analogues with different para-substituents with increased selectivity for Receptor-Interacting serine/threonine-Protein Kinase 1. The optimisation led to UAMC-3861 as the best compound of this series in terms of activity and selectivity for Receptor-Interacting serine/threonine-Protein Kinase 1 over PERK. The most selective compounds were screened in vitro for their ability to inhibit RIPK1-dependent apoptosis and necroptosis. With this work, we successfully synthesised a novel series of potent and selective type II Receptor-Interacting serine/threonine-Protein Kinase 1 inhibitors based on the GSK'157 scaffold.
Collapse
Affiliation(s)
- Camilla Scarpellini
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Sophie Valembois
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Kenneth Goossens
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Mike Vadi
- Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Ghent, Belgium
- Laboratory Cell Death and Inflammation, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Caroline Lanthier
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Greta Klejborowska
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Pieter Van Der Veken
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Hans De Winter
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Mathieu J. M. Bertrand
- Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Ghent, Belgium
- Laboratory Cell Death and Inflammation, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- *Correspondence: Koen Augustyns,
| |
Collapse
|
94
|
Bader SM, Preston SP, Saliba K, Lipszyc A, Grant ZL, Mackiewicz L, Baldi A, Hempel A, Clark MP, Peiris T, Clow W, Bjelic J, Stutz MD, Arandjelovic P, Teale J, Du F, Coultas L, Murphy JM, Allison CC, Pellegrini M, Samson AL. Endothelial Caspase-8 prevents fatal necroptotic hemorrhage caused by commensal bacteria. Cell Death Differ 2023; 30:27-36. [PMID: 35871233 PMCID: PMC9883523 DOI: 10.1038/s41418-022-01042-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Caspase-8 transduces signals from death receptor ligands, such as tumor necrosis factor, to drive potent responses including inflammation, cell proliferation or cell death. This is a developmentally essential function because in utero deletion of endothelial Caspase-8 causes systemic circulatory collapse during embryogenesis. Whether endothelial Caspase-8 is also required for cardiovascular patency during adulthood was unknown. To address this question, we used an inducible Cre recombinase system to delete endothelial Casp8 in 6-week-old conditionally gene-targeted mice. Extensive whole body vascular gene targeting was confirmed, yet the dominant phenotype was fatal hemorrhagic lesions exclusively within the small intestine. The emergence of these intestinal lesions was not a maladaptive immune response to endothelial Caspase-8-deficiency, but instead relied upon aberrant Toll-like receptor sensing of microbial commensals and tumor necrosis factor receptor signaling. This lethal phenotype was prevented in compound mutant mice that lacked the necroptotic cell death effector, MLKL. Thus, distinct from its systemic role during embryogenesis, our data show that dysregulated microbial- and death receptor-signaling uniquely culminate in the adult mouse small intestine to unleash MLKL-dependent necroptotic hemorrhage after loss of endothelial Caspase-8. These data support a critical role for Caspase-8 in preserving gut vascular integrity in the face of microbial commensals.
Collapse
Affiliation(s)
- Stefanie M. Bader
- grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Simon P. Preston
- grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Katie Saliba
- grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Adam Lipszyc
- grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Zoe L. Grant
- grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia ,grid.249878.80000 0004 0572 7110Gladstone Institutes, San Francisco, CA USA
| | - Liana Mackiewicz
- grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia
| | - Andrew Baldi
- grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Anne Hempel
- grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia
| | - Michelle P. Clark
- grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Thanushi Peiris
- grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - William Clow
- grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Jan Bjelic
- grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Michael D. Stutz
- grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Philip Arandjelovic
- grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Jack Teale
- grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia
| | - Fashuo Du
- grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Leigh Coultas
- grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia
| | - James M. Murphy
- grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Cody C. Allison
- grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Andre L. Samson
- grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| |
Collapse
|
95
|
Tyrkalska SD, Pedoto A, Martínez-López A, Ros-Lucas JA, Mesa-Del-Castillo P, Candel S, Mulero V. Silica crystals activate toll-like receptors and inflammasomes to promote local and systemic immune responses in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104523. [PMID: 36055417 DOI: 10.1016/j.dci.2022.104523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Silica crystals are potent activators of the inflammasome that cause a fibrotic lung disease, called silicosis, with no effective treatment available. We report here that injection of silica crystals into the hindbrain ventricle of zebrafish embryos led to the initiation of local and systemic immune responses driven through both Toll-like receptors (TLR)- and inflammasome-dependent signaling pathways, followed by induction of pro-fibrotic markers. Genetic and pharmacological analysis revealed that the Nlrp3 inflammasome regulated silica crystal-induced inflammation and pyroptotic cell death, but not emergency myelopoiesis. In addition, Cxcl8a/Cxcr2-dependent recruitment of myeloid cells to silica crystals was required to promote emergency myelopoiesis and systemic inflammation. The zebrafish model of silicosis developed here shed light onto the molecular mechanisms involved in the activation of the immune system by silica crystals.
Collapse
Affiliation(s)
- Sylwia D Tyrkalska
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Annamaria Pedoto
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Alicia Martínez-López
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - José A Ros-Lucas
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Servicio de Neumología, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Pablo Mesa-Del-Castillo
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain; Servicio de Reumatología, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Sergio Candel
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Victoriano Mulero
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
96
|
Hu S, Guo W, Shen Y. Potential link between the nerve injury-induced protein (Ninjurin) and the pathogenesis of endometriosis. Int Immunopharmacol 2023; 114:109452. [PMID: 36446236 DOI: 10.1016/j.intimp.2022.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/29/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Abstract
Endometriosis remains a widespread but severe gynecological disease in women of reproductive age, with an unknown etiology and few treatment choices. The menstrual reflux theory is largely accepted as the underlying etiology but does not explain the morbidity or unpleasant pain sensations of endometriosis. The neurological and immune systems are both involved in pain mechanisms of endometriosis, and interlinked through a complex combination of cytokines and neurotransmitters. Numerous pieces of evidence suggest that the nerve injury-inducible protein, Ninjurin, is actively expressed in endometriosis lesions, which contributes to the etiology and development of endometriosis. It may be explored in the future as a novel therapeutic target. The aim of the present review was to elucidate the multifaceted role of Ninjurin. Furthermore, we summarize the association of Ninjurin with the pain mechanism of endometriosis and outline the future research directions. A novel therapeutic pathway can be discovered based on the potential pathogenic variables.
Collapse
Affiliation(s)
- Sijian Hu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weina Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
97
|
Peng Z, Tan X, Xie L, Li Z, Zhou S, Li Y. PKR deficiency delays vascular aging via inhibiting GSDMD-mediated endothelial cell hyperactivation. iScience 2022; 26:105909. [PMID: 36691613 PMCID: PMC9860489 DOI: 10.1016/j.isci.2022.105909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/20/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Vascular aging is an independent risk factor for cardiovascular diseases, but the regulatory mechanism is not clearly understood. In this study, we found that endothelial PKR activity is elevated in aging aorta tissues, which is accompanied with increased endothelial cell hyperactivation, IL-1β and HMGB1 release and vascular smooth muscle cell (VSMC) phenotype transforming. Global knockout of PKR exhibits significantly delayed vascular aging compared to wild-type mice at the same age. In vitro, using PKR siRNA or the cell hyperactivation inhibitor glycine or disulfiram can effectively inhibit H2O2 or palmitic acid-induced endothelial cell hyperactivation, IL-1β and HMGB1 release and co-cultured VSMC phenotype transforming. These results demonstrate that endothelial PKR activation induces GSDMD-mediated endothelial cell hyperactivation to release HMGB1 and IL-1β, which promotes the phenotype transforming of VSMC and subsequent accelerates the process of vascular aging. These discoveries will help to explore the new drug target to inhibit vascular aging.
Collapse
Affiliation(s)
- Zhouyangfan Peng
- Department of Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiqing Tan
- Department of General Practice, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Liangpeng Xie
- Department of Hematology and Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Ze Li
- Department of Hematology and Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Sufang Zhou
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yapei Li
- Department of Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China,Corresponding author
| |
Collapse
|
98
|
Ramirez-Perez S, Reyes-Perez IV, Martinez-Fernandez DE, Hernandez-Palma LA, Bhattaram P. Targeting inflammasome-dependent mechanisms as an emerging pharmacological approach for osteoarthritis therapy. iScience 2022; 25:105548. [PMID: 36465135 PMCID: PMC9708800 DOI: 10.1016/j.isci.2022.105548] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arthritic diseases have attracted enormous scientific interest because of increased worldwide prevalence and represent a significant socioeconomic burden. Osteoarthritis (OA) is the most prevalent form of arthritis. It is a disorder of the diarthrodial joints, characterized by degeneration and loss of articular cartilage associated with adjacent subchondral bone changes. Chronic and unresolving inflammation has been identified as a critical factor driving joint degeneration and pain in OA. Despite numerous attempts at therapeutic intervention, no effective disease-modifying agents targeting OA inflammation are available to the patients. Inflammasomes are protein complexes known to play a critical role in the inflammatory pathology of several diseases, and their roles in OA pathogenesis have become evident over the last decade. In this sense, it is relevant to evaluate the vital role of inflammasomes as potential modulators of pathogenic features in OA. This review will provide an overview and perspectives on why understanding inflammasome activation is critical for identifying effective OA therapies. We elaborate on the contribution of extracellular mediators from the circulatory system and synovial fluid as well as intracellular activators within the synovial fibroblasts and articular chondrocytes toward invoking the inflammasome in OA. We further discuss the merits of emerging inflammasome targeting therapies and speculate on the potential strategies for inflammasome blockade for OA therapy.
Collapse
Affiliation(s)
- Sergio Ramirez-Perez
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Itzel Viridiana Reyes-Perez
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco 44340, México
| | - Diana Emilia Martinez-Fernandez
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco 44430, México
| | - Luis Alexis Hernandez-Palma
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición (IICAN), Centro Universitario del Sur, Universidad de Guadalajara, Guadalajara, Jalisco 49000, México
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco 44340, México
| | - Pallavi Bhattaram
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
99
|
Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat Rev Mol Cell Biol 2022; 24:312-333. [PMID: 36543934 DOI: 10.1038/s41580-022-00564-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
Regulated cell death (RCD) relies on activation and recruitment of pore-forming proteins (PFPs) that function as executioners of specific cell death pathways: apoptosis regulator BAX (BAX), BCL-2 homologous antagonist/killer (BAK) and BCL-2-related ovarian killer protein (BOK) for apoptosis, gasdermins (GSDMs) for pyroptosis and mixed lineage kinase domain-like protein (MLKL) for necroptosis. Inactive precursors of PFPs are converted into pore-forming entities through activation, membrane recruitment, membrane insertion and oligomerization. These mechanisms involve protein-protein and protein-lipid interactions, proteolytic processing and phosphorylation. In this Review, we discuss the structural rearrangements incurred by RCD-related PFPs and describe the mechanisms that manifest conversion from autoinhibited to membrane-embedded molecular states. We further discuss the formation and maturation of membrane pores formed by BAX/BAK/BOK, GSDMs and MLKL, leading to diverse pore architectures. Lastly, we highlight commonalities and differences of PFP mechanisms involving BAX/BAK/BOK, GSDMs and MLKL and conclude with a discussion on how, in a population of challenged cells, the coexistence of cell death modalities may have profound physiological and pathophysiological implications.
Collapse
|
100
|
Huyghe J, Priem D, Van Hove L, Gilbert B, Fritsch J, Uchiyama Y, Hoste E, van Loo G, Bertrand MJM. ATG9A prevents TNF cytotoxicity by an unconventional lysosomal targeting pathway. Science 2022; 378:1201-1207. [PMID: 36520901 DOI: 10.1126/science.add6967] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cell death induced by tumor necrosis factor (TNF) can be beneficial during infection by helping to mount proper immune responses. However, TNF-induced death can also drive a variety of inflammatory pathologies. Protectives brakes, or cell-death checkpoints, normally repress TNF cytotoxicity to protect the organism from its potential detrimental consequences. Thus, although TNF can kill, this only occurs when one of the checkpoints is inactivated. Here, we describe a checkpoint that prevents apoptosis through the detoxification of the cytotoxic complex IIa that forms upon TNF sensing. We found that autophagy-related 9A (ATG9A) and 200kD FAK family kinase-interacting protein (FIP200) promote the degradation of this complex through a light chain 3 (LC3)-independent lysosomal targeting pathway. This detoxification mechanism was found to counteract TNF receptor 1 (TNFR1)-mediated embryonic lethality and inflammatory skin disease in mouse models.
Collapse
Affiliation(s)
- Jon Huyghe
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Dario Priem
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Lisette Van Hove
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Barbara Gilbert
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Jürgen Fritsch
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Yasuo Uchiyama
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 113-8654 Tokyo, Japan
| | - Esther Hoste
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Geert van Loo
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|