51
|
Byun S, Han S, Zheng Y, Planelles V, Lee Y. The landscape of alternative splicing in HIV-1 infected CD4 T-cells. BMC Med Genomics 2020; 13:38. [PMID: 32241262 PMCID: PMC7118826 DOI: 10.1186/s12920-020-0680-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Elucidating molecular mechanisms that are altered during HIV-1 infection may provide a better understanding of the HIV-1 life cycle and how it interacts with infected T-cells. One such mechanism is alternative splicing (AS), which has been studied for HIV-1 itself, but no systematic analysis has yet been performed on infected T-cells. We hypothesized that AS patterns in infected T-cells may illuminate the molecular mechanisms underlying HIV-1 infection and identify candidate molecular markers for specifically targeting infected T-cells. Methods We downloaded previously published raw RNA-seq data obtained from HIV-1 infected and non-infected T-cells. We estimated percent spliced in (PSI) levels for each AS exon, then identified differential AS events in the infected cells (FDR < 0.05, PSI difference > 0.1). We performed functional gene set enrichment analysis on the genes with differentially expressed AS exons to identify their functional roles. In addition, we used RT-PCR to validate differential alternative splicing events in cyclin T1 (CCNT1) as a case study. Results We identified 427 candidate genes with differentially expressed AS exons in infected T-cells, including 20 genes related to cell surface, 35 to kinases, and 121 to immune-related genes. In addition, protein-protein interaction analysis identified six essential subnetworks related to the viral life cycle, including Transcriptional regulation by TP53, Class I MHC mediated antigen, G2/M transition, and late phase of HIV life cycle. CCNT1 exon 7 was more frequently skipped in infected T-cells, leading to loss of the key Cyclin_N motif and affecting HIV-1 transcriptional elongation. Conclusions Our findings may provide new insight into systemic host AS regulation under HIV-1 infection and may provide useful initial candidates for the discovery of new markers for specifically targeting infected T-cells.
Collapse
Affiliation(s)
- Seyoun Byun
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Seonggyun Han
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Yue Zheng
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Vicente Planelles
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Younghee Lee
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA. .,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
52
|
Abstract
PURPOSE OF REVIEW Gallant efforts are ongoing to achieve sustained antiretroviral therapy (ART)-free HIV remission in the HIV-infected person; however, most, if not all, current human clinical studies have primarily focused these efforts on targeting viral persistence in CD4 T cells in blood and tissue sanctuaries. The lack of myeloid centered HIV clinical trials, either as primary or secondary end points, has hindered our understanding of the contribution of myeloid cells in unsuccessful trials but may also guide successes in future HIV eradication clinical strategies. RECENT FINDINGS Recent advances have highlighted the importance of myeloid reservoirs as sanctuaries of HIV persistence and therefore may partially be responsible for viral recrudescence following ART treatment interruption in several clinical trials where HIV was not detectable or recovered from CD4 T cells. Given these findings, novel innovative therapeutic approaches specifically focused on HIV clearance in myeloid cell populations need to be vigorously pursued if we are to achieve additional cases of sustained ART-free remission. This review will highlight new research efforts defining myeloid persistence and recent advances in HIV remission and cure trials that would be relevant in targeting this compartment and make an argument as to their clinical relevancy as we progress towards sustained ART-free HIV remission in all HIV-infected persons.
Collapse
Affiliation(s)
- Brooks I Mitchell
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, USA
| | - Elizabeth I Laws
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, USA
| | - Lishomwa C Ndhlovu
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, USA.
| |
Collapse
|
53
|
CD4+CD19+ conjugates favor HIV-1 infection and latency during chronic HIV-1 infection. AIDS 2020; 34:189-195. [PMID: 31634199 DOI: 10.1097/qad.0000000000002402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE CD4CD19 conjugates play an important role in regulating antibody responses and follicular helper T cells development in animal models. However, little is known regarding the characteristic of CD4CD19 conjugates in humans with chronic HIV-1 infection. METHODS The numbers of CD4CD19 conjugates were counted in 86 HIV-1-infected patients, including 66 typical progressors and 20 complete responders. CD4CD19 conjugates were sorted by flow cytometry and dissociated into CD4 T singlets and CD19 B singlets. The phenotypes of these cells were analyzed in both typical progressors and complete responders, and the levels of HIV-1 DNA in CD4CD19 conjugates were measured in 10 complete responders. RESULTS We identified CD4CD19 cells as one type of T-B conjugate in peripheral blood, and the numbers and percentages of CD4CD19 conjugates decreased with HIV-1 disease progression. Phenotypic analysis showed CD4CD19 conjugates expressed higher levels of surface CD32. mRNA analysis found that the mRNA levels for CD32b were significantly higher compared with CD32a in CD4CD19 conjugates. Further analysis found that CD4CD19 conjugates expressed higher levels of CCR7 and CXCR5 than CD4 T and CD19 B singlets. A virus infectivity assay showed that CD4CD19 conjugates expressed higher levels of HIV-1-p24 than CD4CD19 cells. CD4CD19 conjugates in lymph node from typical progressors expressed higher levels of HIV-1-p24 than CD4CD19 conjugates in respective peripheral blood. Importantly, CD4CD19 conjugates from complete responders contained higher levels of HIV-1 DNA than total CD4 T cells. CONCLUSION Our study indicates that CD4CD19 conjugates actively participate in HIV-1 infection and latency, and may serve as a new cellular target to eliminate latency.
Collapse
|
54
|
Kwon KJ, Timmons AE, Sengupta S, Simonetti FR, Zhang H, Hoh R, Deeks SG, Siliciano JD, Siliciano RF. Different human resting memory CD4 + T cell subsets show similar low inducibility of latent HIV-1 proviruses. Sci Transl Med 2020; 12:eaax6795. [PMID: 31996465 PMCID: PMC7875249 DOI: 10.1126/scitranslmed.aax6795] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/10/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022]
Abstract
The latent reservoir of HIV-1 in resting CD4+ T cells is a major barrier to cure. It is unclear whether the latent reservoir resides principally in particular subsets of CD4+ T cells, a finding that would have implications for understanding its stability and developing curative therapies. Recent work has shown that proliferation of HIV-1-infected CD4+ T cells is a major factor in the generation and persistence of the latent reservoir and that latently infected T cells that have clonally expanded in vivo can proliferate in vitro without producing virions. In certain CD4+ memory T cell subsets, the provirus may be in a deeper state of latency, allowing the cell to proliferate without producing viral proteins, thus permitting escape from immune clearance. To evaluate this possibility, we used a multiple stimulation viral outgrowth assay to culture resting naïve, central memory (TCM), transitional memory (TTM), and effector memory (TEM) CD4+ T cells from 10 HIV-1-infected individuals on antiretroviral therapy. On average, only 1.7% of intact proviruses across all T cell subsets were induced to transcribe viral genes and release replication-competent virus after stimulation of the cells. We found no consistent enrichment of intact or inducible proviruses in any T cell subset. Furthermore, we observed notable plasticity among the canonical memory T cell subsets after activation in vitro and saw substantial person-to-person variability in the inducibility of infectious virus release. This finding complicates the vision for a targeted approach for HIV-1 cure based on T cell memory subsets.
Collapse
Affiliation(s)
- Kyungyoon J Kwon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E Timmons
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Srona Sengupta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hao Zhang
- Flow Cytometry and Immunology Core, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rebecca Hoh
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Steven G Deeks
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Howard Hughes Medical Institute, Baltimore, MD, USA
| |
Collapse
|
55
|
Ait-Ammar A, Kula A, Darcis G, Verdikt R, De Wit S, Gautier V, Mallon PWG, Marcello A, Rohr O, Van Lint C. Current Status of Latency Reversing Agents Facing the Heterogeneity of HIV-1 Cellular and Tissue Reservoirs. Front Microbiol 2020; 10:3060. [PMID: 32038533 PMCID: PMC6993040 DOI: 10.3389/fmicb.2019.03060] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
One of the most explored therapeutic approaches aimed at eradicating HIV-1 reservoirs is the "shock and kill" strategy which is based on HIV-1 reactivation in latently-infected cells ("shock" phase) while maintaining antiretroviral therapy (ART) in order to prevent spreading of the infection by the neosynthesized virus. This kind of strategy allows for the "kill" phase, during which latently-infected cells die from viral cytopathic effects or from host cytolytic effector mechanisms following viral reactivation. Several latency reversing agents (LRAs) with distinct mechanistic classes have been characterized to reactivate HIV-1 viral gene expression. Some LRAs have been tested in terms of their potential to purge latent HIV-1 in vivo in clinical trials, showing that reversing HIV-1 latency is possible. However, LRAs alone have failed to reduce the size of the viral reservoirs. Together with the inability of the immune system to clear the LRA-activated reservoirs and the lack of specificity of these LRAs, the heterogeneity of the reservoirs largely contributes to the limited success of clinical trials using LRAs. Indeed, HIV-1 latency is established in numerous cell types that are characterized by distinct phenotypes and metabolic properties, and these are influenced by patient history. Hence, the silencing mechanisms of HIV-1 gene expression in these cellular and tissue reservoirs need to be better understood to rationally improve this cure strategy and hopefully reach clinical success.
Collapse
Affiliation(s)
- Amina Ait-Ammar
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Anna Kula
- Malopolska Centre of Biotechnology, Laboratory of Virology, Jagiellonian University, Krakow, Poland
| | - Gilles Darcis
- Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | - Roxane Verdikt
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Stephane De Wit
- Service des Maladies Infectieuses, CHU Saint-Pierre, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Virginie Gautier
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick W G Mallon
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Olivier Rohr
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
56
|
Despite early antiretroviral therapy effector memory and follicular helper CD4 T cells are major reservoirs in visceral lymphoid tissues of SIV-infected macaques. Mucosal Immunol 2020; 13:149-160. [PMID: 31723251 PMCID: PMC6914669 DOI: 10.1038/s41385-019-0221-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/22/2019] [Indexed: 02/04/2023]
Abstract
Whereas antiretroviral therapy (ART) suppresses viral replication, ART discontinuation results in viral rebound, indicating the presence of viral reservoirs (VRs) established within lymphoid tissues. Herein, by sorting CD4 T-cell subsets from the spleen, mesenteric and peripheral lymph nodes (LNs) of SIVmac251-infected rhesus macaques (RMs), we demonstrate that effector memory (TEM) and follicular helper (TFH) CD4+ T cells harbor the highest frequency of viral DNA and RNA, as well of early R-U5 transcripts in ART-naïve RMs. Furthermore, our results highlight that these two CD4 T cells subsets harbor viral DNA and early R-U5 transcripts in the spleen and mesenteric LNs (but not in peripheral LN) of RMs treated with ART at day 4 post infection suggesting that these two anatomical sites are important for viral persistence. Finally, after ART interruption, we demonstrate the rapid and, compared to peripheral LNs, earlier seeding of SIV in spleen and mesenteric LNs, thereby emphasizing the importance of these two anatomical sites for viral replication dynamics. Altogether our results advance understanding of early viral seeding in which visceral lymphoid tissues are crucial in maintaining TEM and TFH VRs.
Collapse
|
57
|
Dhummakupt A, Siems LV, Singh D, Chen YH, Anderson T, Collinson-Streng A, Zhang H, Patel P, Agwu A, Persaud D. The Latent Human Immunodeficiency Virus (HIV) Reservoir Resides Primarily in CD32-CD4+ T Cells in Perinatally HIV-Infected Adolescents With Long-Term Virologic Suppression. J Infect Dis 2019; 219:80-88. [PMID: 30053296 DOI: 10.1093/infdis/jiy461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/20/2018] [Indexed: 11/13/2022] Open
Abstract
Background High-level expression of the Fcγ receptor, CD32hi, on CD4+ T cells was associated with enhanced human immunodeficiency virus (HIV) infection of the latent reservoir in a study of adults receiving antiretroviral therapy. We tested the hypothesis that CD32 was the preferential marker of the latent HIV reservoir in virally suppressed, perinatally HIV-infected adolescents. Methods The frequency of CD32hiCD4+ T cells was determined by flow cytometry (N = 5) and the inducible HIV reservoir in both CD32hi and CD32-CD4+ T cells was quantified (N = 4) with a quantitative viral outgrowth assay. Viral outgrowth was measured by the standard p24 enzyme-linked immunosorbent assay and an ultrasensitive p24 assay (Simoa; Quanterix) with lower limits of quantitation. Results We found a 59.55-fold enrichment in the absolute number of infectious cells in the CD32- population compared with CD32hi cells. Exponential HIV replication occurred exclusively in CD32-CD4+ T cells (mean change, 17.46 pg/mL; P = .04). Induced provirus in CD32hiCD4+ T cells replicated to substantially lower levels, which did not increase significantly over time (mean change, 0.026 pg/mL; P = .23) and were detected only with the Simoa assay. Conclusions Our data suggests that the latent HIV reservoir resides mainly in CD32-CD4+ T cells in virally suppressed, perinatally HIV-infected adolescents, which has implications for reservoir elimination strategies.
Collapse
Affiliation(s)
- Adit Dhummakupt
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lilly V Siems
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dolly Singh
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ya Hui Chen
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thuy Anderson
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aleisha Collinson-Streng
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hao Zhang
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Allison Agwu
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Deborah Persaud
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
58
|
Responses to Quadrivalent Influenza Vaccine Reveal Distinct Circulating CD4+CXCR5+ T Cell Subsets in Men Living with HIV. Sci Rep 2019; 9:15650. [PMID: 31666568 PMCID: PMC6821795 DOI: 10.1038/s41598-019-51961-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/02/2019] [Indexed: 11/08/2022] Open
Abstract
T cell help for B cells may be perturbed in people living with HIV (PLWH), even when HIV is suppressed, as evidenced by reports of suboptimal responses to influenza vaccination. We investigated cTFH responses to the 2017-18 inactivated quadrivalent influenza vaccine (QIV) in men living with antiretroviral therapy (ART)-suppressed HIV infection who were treated in the early or chronic phase of infection, and control subjects. Here we show that seroprotective antibody responses in serum and oral fluid correlated with cTFH activation and were equivalent in all three groups, irrespective of when ART was started. These responses were attenuated in those reporting immunisation with influenza vaccine in the preceding three years, independent of HIV infection. Measurement of influenza-specific IgG in oral fluid was closely correlated with haemagglutination inhibition titre. T-SNE and two-dimensional analysis revealed a subset of CD4+CXCR3+CXCR5+ cTFH activated at one week after vaccination. This was distinguishable from cTFH not activated by vaccination, and a rare, effector memory CD4+CXCR5hiCD32hi T cell subset. The data support the use of QIV for immunisation of PLWH, reveal distinct circulating CD4+CXCR5+ T cell subsets and demonstrate oral fluid sampling for influenza-specific IgG is an alternative to phlebotomy.
Collapse
|
59
|
Cantero-Pérez J, Grau-Expósito J, Serra-Peinado C, Rosero DA, Luque-Ballesteros L, Astorga-Gamaza A, Castellví J, Sanhueza T, Tapia G, Lloveras B, Fernández MA, Prado JG, Solé-Sedeno JM, Tarrats A, Lecumberri C, Mañalich-Barrachina L, Centeno-Mediavilla C, Falcó V, Buzon MJ, Genescà M. Resident memory T cells are a cellular reservoir for HIV in the cervical mucosa. Nat Commun 2019; 10:4739. [PMID: 31628331 PMCID: PMC6802119 DOI: 10.1038/s41467-019-12732-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/30/2019] [Indexed: 11/09/2022] Open
Abstract
HIV viral reservoirs are established very early during infection. Resident memory T cells (TRM) are present in tissues such as the lower female genital tract, but the contribution of this subset of cells to the pathogenesis and persistence of HIV remains unclear. Here, we show that cervical CD4+TRM display a unique repertoire of clusters of differentiation, with enrichment of several molecules associated with HIV infection susceptibility, longevity and self-renewing capacities. These protein profiles are enriched in a fraction of CD4+TRM expressing CD32. Cervical explant models show that CD4+TRM preferentially support HIV infection and harbor more viral DNA and protein than non-TRM. Importantly, cervical tissue from ART-suppressed HIV+ women contain high levels of viral DNA and RNA, being the TRM fraction the principal contributor. These results recognize the lower female genital tract as an HIV sanctuary and identify CD4+TRM as primary targets of HIV infection and viral persistence. Thus, strategies towards an HIV cure will need to consider TRM phenotypes, which are widely distributed in tissues.
Collapse
Affiliation(s)
- Jon Cantero-Pérez
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judith Grau-Expósito
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carla Serra-Peinado
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniela A Rosero
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Luque-Ballesteros
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Astorga-Gamaza
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Castellví
- Pathology Department, Hospital Universitari Vall d'Hebron, UAB, Barcelona, Spain
| | - Tamara Sanhueza
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Gustavo Tapia
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Belen Lloveras
- Pathology Department, Hospital del Mar, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marco A Fernández
- Flow Cytometry Facility, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Julia G Prado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Josep M Solé-Sedeno
- Obstetrics and Gynecology Department, Hospital del Mar, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antoni Tarrats
- Department of Obstetrics and Gynecology, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Carla Lecumberri
- Department of Obstetrics and Gynecology, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Laura Mañalich-Barrachina
- Department of Obstetrics and Gynecology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Centeno-Mediavilla
- Department of Obstetrics and Gynecology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenç Falcó
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria J Buzon
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Meritxell Genescà
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
60
|
Kim GB, Hege K, Riley JL. CAR Talk: How Cancer-Specific CAR T Cells Can Instruct How to Build CAR T Cells to Cure HIV. Front Immunol 2019; 10:2310. [PMID: 31611880 PMCID: PMC6776630 DOI: 10.3389/fimmu.2019.02310] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/12/2019] [Indexed: 01/21/2023] Open
Abstract
Re-directing T cells via chimeric antigen receptors (CARs) was first tested in HIV-infected individuals with limited success, but these pioneering studies laid the groundwork for the clinically successful CD19 CARs that were recently FDA approved. Now there is great interest in revisiting the concept of using CAR-expressing T cells as part of a strategy to cure HIV. Many lessons have been learned on how to best engineer T cells to cure cancer, but not all of these lessons apply when developing CARs to treat and cure HIV. This mini review will focus on how early CAR T cell studies in HIV paved the way for cancer CAR T cell therapy and how progress in cancer CAR therapy has and will continue to be instructive for the development of HIV CAR T cell therapy. Additionally, the unique challenges that must be overcome to develop a successful HIV CAR T cell therapy will be highlighted.
Collapse
Affiliation(s)
- Gloria B. Kim
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kristen Hege
- Celgene Corporation, San Francisco, CA, United States
| | - James L. Riley
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
61
|
Darcis G, Berkhout B, Pasternak AO. The Quest for Cellular Markers of HIV Reservoirs: Any Color You Like. Front Immunol 2019; 10:2251. [PMID: 31616425 PMCID: PMC6763966 DOI: 10.3389/fimmu.2019.02251] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Combination antiretroviral therapy (ART) suppresses human immunodeficiency virus (HIV) replication and improves immune function, but is unable to eradicate the virus. Therefore, development of an HIV cure has become one of the main priorities of the HIV research field. The main obstacle for an HIV cure is the formation of latent viral reservoirs, where the virus is able to “hide” despite decades of therapy, just to reignite active replication once therapy is stopped. Revealing HIV hiding places is thus central to HIV cure research, but the absence of markers of these reservoir cells greatly complicates the search for a cure. Identification of one or several marker(s) of latently infected cells would represent a significant step forward toward a better description of the cell types involved and improved understanding of HIV latency. Moreover, it could provide a “handle” for selective therapeutic targeting of the reservoirs. A number of cellular markers of HIV reservoir have recently been proposed, including immune checkpoint molecules, CD2, and CD30. CD32a is perhaps the most promising of HIV reservoir markers as it is reported to be associated with a very prominent enrichment in HIV DNA, although this finding has been challenged. In this review, we provide an update on the current knowledge about HIV reservoir markers. We specifically highlight studies that characterized markers of persistently infected cells in the lymphoid tissues.
Collapse
Affiliation(s)
- Gilles Darcis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
62
|
Thornhill JP, Pace M, Martin GE, Hoare J, Peake S, Herrera C, Phetsouphanh C, Meyerowitz J, Hopkins E, Brown H, Dunn P, Olejniczak N, Willberg C, Klenerman P, Goldin R, Fox J, Fidler S, Frater J. CD32 expressing doublets in HIV-infected gut-associated lymphoid tissue are associated with a T follicular helper cell phenotype. Mucosal Immunol 2019; 12:1212-1219. [PMID: 31239514 DOI: 10.1038/s41385-019-0180-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 04/23/2019] [Accepted: 05/28/2019] [Indexed: 02/04/2023]
Abstract
Gut-associated lymphoid tissue (GALT) is a key location for the HIV reservoir. The observation that B-cell-T-cell doublets are enriched for CD32a (a low-affinity IgG receptor) in peripheral blood raises interesting questions, especially as these cells have been associated with HIV DNA in some studies. We sought to determine if similar doublets were present in GALT, the significance of these doublets, and their implications for the HIV reservoir. Given the importance of GALT as a reservoir for HIV, we looked for expression of CD32 on gut CD4 T cells and for evidence of doublets, and any relationship with HIV DNA in HIV + individuals initiated on antiretroviral therapy (ART) during primary HIV infection (PHI). Tonsil tissue was also available for one individual. As previously shown for blood, CD32high CD4 cells were mainly doublets of CD4 T cells and B cells, with T-cell expression of ICOS in tonsil and gut tissue. CD4 T cells associated with CD32 (compared with 'CD32-' CD4 cells) had higher expression of follicular markers CXCR5, PD-1, ICOS, and Bcl-6 consistent with a T follicular helper (TFH) phenotype. There was a significant correlation between rectal HIV DNA levels and CD32 expression on TFH cells. Together, these data suggest that CD32high doublets are primarily composed of TFH cells, a subset known to be preferentially infected by HIV.
Collapse
Affiliation(s)
- John P Thornhill
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Division of Medicine, Wright Fleming Institute, Imperial College, London, UK
| | - Matthew Pace
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Genevieve E Martin
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jonathan Hoare
- Division of Medicine, Wright Fleming Institute, Imperial College, London, UK
| | - Simon Peake
- Division of Medicine, Wright Fleming Institute, Imperial College, London, UK
| | - Carolina Herrera
- Division of Medicine, Wright Fleming Institute, Imperial College, London, UK
| | - Chan Phetsouphanh
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jodi Meyerowitz
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Emily Hopkins
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Helen Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Polly Dunn
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Natalia Olejniczak
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Christian Willberg
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,National Institute of Health Research Biomedical Research Centre, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rob Goldin
- Division of Medicine, Wright Fleming Institute, Imperial College, London, UK
| | - Julie Fox
- Department of Genitourinary Medicine and Infectious Disease, Guys and St Thomas' NHS Trust, London, UK
| | - Sarah Fidler
- Division of Medicine, Wright Fleming Institute, Imperial College, London, UK.,Imperial College NIHR Biomedical Research Centre, London, UK
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Oxford NIHR Biomedical Research Centre, Oxford, UK.
| | | |
Collapse
|
63
|
Serra-Peinado C, Grau-Expósito J, Luque-Ballesteros L, Astorga-Gamaza A, Navarro J, Gallego-Rodriguez J, Martin M, Curran A, Burgos J, Ribera E, Raventós B, Willekens R, Torrella A, Planas B, Badía R, Garcia F, Castellví J, Genescà M, Falcó V, Buzon MJ. Expression of CD20 after viral reactivation renders HIV-reservoir cells susceptible to Rituximab. Nat Commun 2019; 10:3705. [PMID: 31420544 PMCID: PMC6697690 DOI: 10.1038/s41467-019-11556-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 07/19/2019] [Indexed: 01/06/2023] Open
Abstract
The identification of exclusive markers to target HIV-reservoir cells will represent a significant advance in the search for therapies to cure HIV. Here, we identify the B lymphocyte antigen CD20 as a marker for HIV-infected cells in vitro and in vivo. The CD20 molecule is dimly expressed in a subpopulation of CD4-positive (CD4+) T lymphocytes from blood, with high levels of cell activation and heterogeneous memory phenotypes. In lymph node samples from infected patients, CD20 is present in productively HIV-infected cells, and ex vivo viral infection selectively upregulates the expression of CD20 during early infection. In samples from patients on antiretroviral therapy (ART) this subpopulation is significantly enriched in HIV transcripts, and the anti-CD20 monoclonal antibody Rituximab induces cell killing, which reduces the pool of HIV-expressing cells when combined with latency reversal agents. We provide a tool for targeting this active HIV-reservoir after viral reactivation in patients while on ART. Here, the authors identify B lymphocyte antigen CD20 as a marker for HIV-infected T cells and provide evidence for the potential use of anti-CD20 antibodies in combination with latency reversing agents for depletion of viral reactivated CD4 T cells in patients on antiretroviral therapy.
Collapse
Affiliation(s)
- Carla Serra-Peinado
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judith Grau-Expósito
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Luque-Ballesteros
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Astorga-Gamaza
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Navarro
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jenny Gallego-Rodriguez
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mario Martin
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Adrià Curran
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquin Burgos
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esteban Ribera
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Berta Raventós
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rein Willekens
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ariadna Torrella
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bibiana Planas
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosa Badía
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Felipe Garcia
- Infectious Disease Department, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Josep Castellví
- Department of Pathology, Hospital Vall d'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenç Falcó
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria J Buzon
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
64
|
Phetsouphanh C, Aldridge D, Marchi E, Munier CML, Meyerowitz J, Murray L, Van Vuuren C, Goedhals D, Fidler S, Kelleher A, Klenerman P, Frater J. Maintenance of Functional CD57+ Cytolytic CD4+ T Cells in HIV+ Elite Controllers. Front Immunol 2019; 10:1844. [PMID: 31440240 PMCID: PMC6694780 DOI: 10.3389/fimmu.2019.01844] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/22/2019] [Indexed: 11/29/2022] Open
Abstract
Cytolytic CD4+ T cells play a prominent role in chronic viral infection. CD4+ CTLs clones specific for HIV-1 Nef and Gag are capable of killing HIV-1 infected CD4+ T cells and macrophages. Additionally, HIV-specific cytolytic CD4+ T cell responses in acute HIV infection are predictive of disease progression. CD57 expression on CD4s identifies cytolytic cells. These cells were dramatically increased in chronic HIV infection. CD57 expression correlated with cytolytic granules, granzyme B and perforin expression. They express lower CCR5 compared to CD57- cells, have less HIV total DNA, and were a minor component of the HIV reservoir. A small percentage of CD57+ CD4+ CTLs from EC were HIV-specific, could upregulate IFNγ with Gag peptide stimulation, express cytolytic granule markers and maintain TbethighEomes+ transcription factor phenotype. This was not observed in viraemic controllers. The maintenance of HIV-specific CD4 cytolytic function in Elite controllers together with CD8 CTLs may be important for the control of HIV viraemia and of potential relevance to cure strategies.
Collapse
Affiliation(s)
| | - Daniel Aldridge
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Emanuele Marchi
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - C. Mee Ling Munier
- Department of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Jodi Meyerowitz
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Lyle Murray
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | | | - Dominique Goedhals
- National Health Laboratory Service, Division of Virology, University of the Free State, Bloemfontein, South Africa
| | | | - Anthony Kelleher
- Department of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
65
|
Grau-Expósito J, Luque-Ballesteros L, Navarro J, Curran A, Burgos J, Ribera E, Torrella A, Planas B, Badía R, Martin-Castillo M, Fernández-Sojo J, Genescà M, Falcó V, Buzon MJ. Latency reversal agents affect differently the latent reservoir present in distinct CD4+ T subpopulations. PLoS Pathog 2019; 15:e1007991. [PMID: 31425551 PMCID: PMC6715238 DOI: 10.1371/journal.ppat.1007991] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/29/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
Latency reversal agents (LRAs) have proven to induce HIV-1 transcription in vivo but are ineffective at decreasing the size of the latent reservoir in antiretroviral treated patients. The capacity of the LRAs to perturb the viral reservoir present in distinct subpopulations of cells is currently unknown. Here, using a new RNA FISH/flow ex vivo viral reactivation assay, we performed a comprehensive assessment of the viral reactivation capacity of different families of LRAs, and their combinations, in different CD4+ T cell subsets. We observed that a median of 16.28% of the whole HIV-reservoir induced HIV-1 transcripts after viral reactivation, but only 10.10% of these HIV-1 RNA+ cells produced the viral protein p24. Moreover, none of the LRAs were powerful enough to reactivate HIV-1 transcription in all CD4+ T cell subpopulations. For instance, the combination of Romidepsin and Ingenol was identified as the best combination of drugs at increasing the proportion of HIV-1 RNA+ cells, in most, but not all, CD4+ T cell subsets. Importantly, memory stem cells were identified as highly resistant to HIV-1 reactivation, and only the combination of Panobinostat and Bryostatin-1 significantly increased the number of cells transcribing HIV within this subset. Overall, our results validate the use of the RNA FISH/flow technique to assess the potency of LRAs among different CD4+ T cell subsets, manifest the intrinsic differences between cells that encompass the latent HIV reservoir, and highlight the difficulty to significantly impact the latent infection with the currently available drugs. Thus, our results have important implications for the rational design of therapies aimed at reversing HIV latency from diverse cellular reservoirs.
Collapse
Affiliation(s)
- Judith Grau-Expósito
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Luque-Ballesteros
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Navarro
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Adrian Curran
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquin Burgos
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esteban Ribera
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ariadna Torrella
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bibiana Planas
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosa Badía
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mario Martin-Castillo
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jesús Fernández-Sojo
- Banc de Sang i Teixits, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Meritxell Genescà
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenç Falcó
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria J. Buzon
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
66
|
Abstract
PURPOSE OF REVIEW The HIV-1 reservoir is composed of infected cells poised to replicate and spread the virus upon treatment interruption. It constitutes the main obstacle toward an HIV-1 cure. Whether marker(s) may allow the detection of cells that form the reservoir is an outstanding question. Here, we present and discuss recent advances and controversies in the identification and characterization of markers of the HIV-1 reservoir. RECENT FINDINGS Latently infected T cells that persist under successful therapy do not express viral antigens, making their identification challenging. HIV is not equally distributed across T cells subsets. For instance, central memory, Th17, and T follicular helper cells largely contribute to viral persistence. Recently, novel markers of the reservoir have been identified. Using various strategies, different teams have reported that surface molecules such as immune checkpoints inhibitors, CD30, or CD32a may be enriched in latently infected cells or in cells harboring viral RNA. SUMMARY Understanding the mechanisms underlying the presence of markers of HIV-1 infected cells will provide new insights into the formation and maintenance of the viral reservoir. These markers should also facilitate the detection of persistently infected cells in patients' samples and in animal models, and represent potential targets for elimination of these cells.
Collapse
|
67
|
Abstract
PURPOSE OF REVIEW A number studies are currently underway to develop new drugs aimed at reducing the HIV reservoir or achieving ART-free control of HIV infection. Many markers of HIV reservoirs have been proposed, each one having a different meaning. Total HIV DNA dynamics during the course of HIV infection and its predictive value are now well known. This marker allowed to estimate the size of HIV reservoir at different stages of HIV infection in blood, cell subsets and tissues. Therefore, the purpose of this review is timely and relevant, with the objective to discuss how total HIV DNA might be helpful in the clinical settings. RECENT FINDINGS Among the markers, it appears that HIV DNA is the most well studied, and recent articles confirmed that this marker is easy to use and is precise, specific, practical, robust and reproducible. All these characteristics correspond to what is expected from a helpful clinical marker. SUMMARY HIV DNA level could be considered as a global marker, and it is usually included in current clinical studies to describe the persistence and dynamics of the HIV reservoir, mainly in treated patients. HIV DNA might be helpful in designing clinical trials and personalized medication for HIV patients in the future.
Collapse
|
68
|
Geraghty DE, Thorball CW, Fellay J, Thomas R. Effect of Fc Receptor Genetic Diversity on HIV-1 Disease Pathogenesis. Front Immunol 2019; 10:970. [PMID: 31143176 PMCID: PMC6520634 DOI: 10.3389/fimmu.2019.00970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/15/2019] [Indexed: 11/21/2022] Open
Abstract
Fc receptor (FcR) genes collectively have copy number and allelic polymorphisms that have been implicated in multiple inflammatory and autoimmune diseases. This variation might also be involved in etiology of infectious diseases. The protective role of Fc-mediated antibody-function in HIV-1 immunity has led to the investigation of specific polymorphisms in FcR genes on acquisition, disease progression, and vaccine efficacy in natural history cohorts. The purpose of this review is not only to explore these known HIV-1 host genetic associations, but also to re-evaluate them in the context of genome-wide data. In the current era of effective anti-retroviral therapy, the potential impact of such variation on post-treatment cohorts cannot go unheeded and is discussed here in the light of current findings. Specific polymorphisms associating with HIV-1 pathogenesis have previously been genotyped by assays that captured only the single-nucleotide polymorphism (SNP) of interest without relative information of neighboring variants. With recent technological advances, variation within these genes can now be characterized using next-generation sequencing, allowing precise annotation of the whole chromosomal region. We herein also discuss updates in the annotation of common FcR variants that have been previously associated with HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Christian W Thorball
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Rasmi Thomas
- U. S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| |
Collapse
|
69
|
Vásquez JJ, Aguilar-Rodriguez BL, Rodriguez L, Hogan LE, Somsouk M, McCune JM, Deeks SG, Laszik ZG, Hunt PW, Henrich TJ. CD32-RNA Co-localizes with HIV-RNA in CD3+ Cells Found within Gut Tissues from Viremic and ART-Suppressed Individuals. Pathog Immun 2019; 4:147-160. [PMID: 31139759 PMCID: PMC6508427 DOI: 10.20411/pai.v4i1.271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/08/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Identifying biomarkers for cells harboring replication-competent HIV is a major research priority. Recently, there have been mixed reports addressing the possibility that CD32-expressing T cells are enriched for HIV. There is growing evidence that CD32 expression increases with cellular activation that may be related to, but not necessarily specific for, infection with HIV. However, the relationship of CD32 expression to HIV-infection in subtypes of tissue-resident leukocytes is unclear. METHODS First, we used duplex chromogenic in situ hybridization to identify cells actively transcribing RNA for both CD32 and HIV on human gut tissues. Then we performed multiplexed immunofluorescence and in situ hybridization (mIFISH) on sections from the same tissues to determine the phenotype of individual cells co-expressing HIV-RNA and CD32-RNA. RESULTS HIV-RNA+ cells were more abundant in tissues from viremic individuals than in those receiving suppressive anti-retroviral therapy (ART). However, staining by both methods indicated that a higher proportion of HIV-RNA+ cells co-expressed CD32-RNA in ART-suppressed individuals than in those with viremia. The majority of HIV-RNA+ cells were CD3+. CONCLUSIONS Our data suggest that the transcription of CD32-RNA is correlated with HIV transcriptional activity in CD3+ cells found within human gut tissue. Whether or not up-regulation of CD32-RNA is a direct result of HIV transcription or more global T-cell activation remains unclear.
Collapse
Affiliation(s)
- Joshua J. Vásquez
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California, San Francisco, Department of Medicine, Department of Medicine, Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco
| | | | - Leonardo Rodriguez
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco
| | - Louise E. Hogan
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco
| | - Ma Somsouk
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, Department of Medicine, Division of Gastroenterology, University of California, San Francisco
| | - Joseph M. McCune
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco
| | - Steven G. Deeks
- Department of Medicine, Department of Medicine, Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco
| | - Zoltan G. Laszik
- Department of Pathology, University of California, San Francisco
| | - Peter W. Hunt
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, Department of Medicine, Department of Medicine, Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, These two authors contributed equally to this work
| | - Timothy J. Henrich
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, Department of Medicine, Department of Medicine, Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, These two authors contributed equally to this work
| |
Collapse
|
70
|
Humanized Mouse Model of HIV-1 Latency with Enrichment of Latent Virus in PD-1 + and TIGIT + CD4 T Cells. J Virol 2019; 93:JVI.02086-18. [PMID: 30842333 DOI: 10.1128/jvi.02086-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/01/2019] [Indexed: 12/18/2022] Open
Abstract
Combination anti-retroviral drug therapy (ART) potently suppresses HIV-1 replication but does not result in virus eradication or a cure. A major contributing factor is the long-term persistence of a reservoir of latently infected cells. To study this reservoir, we established a humanized mouse model of HIV-1 infection and ART suppression based on an oral ART regimen. Similar to humans, HIV-1 levels in the blood of ART-treated animals were frequently suppressed below the limits of detection. However, the limited timeframe of the mouse model and the small volume of available samples makes it a challenging model with which to achieve full viral suppression and to investigate the latent reservoir. We therefore used an ex vivo latency reactivation assay that allows a semiquantitative measure of the latent reservoir that establishes in individual animals, regardless of whether they are treated with ART. Using this assay, we found that latently infected human CD4 T cells can be readily detected in mouse lymphoid tissues and that latent HIV-1 was enriched in populations expressing markers of T cell exhaustion, PD-1 and TIGIT. In addition, we were able to use the ex vivo latency reactivation assay to demonstrate that HIV-specific TALENs can reduce the fraction of reactivatable virus in the latently infected cell population that establishes in vivo, supporting the use of targeted nuclease-based approaches for an HIV-1 cure.IMPORTANCE HIV-1 can establish latent infections that are not cleared by current antiretroviral drugs or the body's immune responses and therefore represent a major barrier to curing HIV-infected individuals. However, the lack of expression of viral antigens on latently infected cells makes them difficult to identify or study. Here, we describe a humanized mouse model that can be used to detect latent but reactivatable HIV-1 in both untreated mice and those on ART and therefore provides a simple system with which to study the latent HIV-1 reservoir and the impact of interventions aimed at reducing it.
Collapse
|
71
|
Pitman MC, Lau JSY, McMahon JH, Lewin SR. Barriers and strategies to achieve a cure for HIV. Lancet HIV 2019; 5:e317-e328. [PMID: 29893245 DOI: 10.1016/s2352-3018(18)30039-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 12/14/2022]
Abstract
9 years since the report of a cure for HIV after C-C chemokine receptor type 5 Δ32 stem cell transplantation, no other case of HIV cure has been reported, despite much research. However, substantial progress has been made in understanding the biology of the latent HIV reservoir, and in measuring the amount of virus that persists after antiretroviral therapy (ART) with increasingly sophisticated approaches. This knowledge is being translated into a long pipeline of clinical trials seeking to reduce viral persistence in participants on suppressive treatment and ultimately to allow safe cessation of ART. In this Review, we discuss the main barriers preventing the development of an HIV cure, methods used to measure HIV persistence in individuals on ART, clinical strategies that aim to cure HIV, and future directions for studies in the field of HIV cure research.
Collapse
Affiliation(s)
- Matthew C Pitman
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Jillian S Y Lau
- Department of Infectious Diseases, Monash University, Alfred Hospital, Melbourne, VIC, Australia
| | - James H McMahon
- Department of Infectious Diseases, Monash University, Alfred Hospital, Melbourne, VIC, Australia; Department of Infectious Diseases, Monash Medical Centre, Clayton, VIC, Australia
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, and Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Infectious Diseases, Monash University, Alfred Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
72
|
Ben Mkaddem S, Benhamou M, Monteiro RC. Understanding Fc Receptor Involvement in Inflammatory Diseases: From Mechanisms to New Therapeutic Tools. Front Immunol 2019; 10:811. [PMID: 31057544 PMCID: PMC6481281 DOI: 10.3389/fimmu.2019.00811] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
Fc receptors (FcRs) belong to the ITAM-associated receptor family. FcRs control the humoral and innate immunity which are essential for appropriate responses to infections and prevention of chronic inflammation or auto-immune diseases. Following their crosslinking by immune complexes, FcRs play various roles such as modulation of the immune response by released cytokines or of phagocytosis. Here, we review FcR involvement in pathologies leading notably to altered intracellular signaling with functionally relevant consequences to the host, and targeting of Fc receptors as therapeutic approaches. Special emphasis will be given to some FcRs, such as the FcαRI, the FcγRIIA and the FcγRIIIA, which behave like the ancient god Janus depending on the ITAM motif to inhibit or activate immune responses depending on their targeting by monomeric/dimeric immunoglobulins or by immune complexes. This ITAM duality has been recently defined as inhibitory or activating ITAM (ITAMi or ITAMa) which are controlled by Src family kinases. Involvement of various ITAM-bearing FcRs observed during infectious or autoimmune diseases is associated with allelic variants, changes in ligand binding ability responsible for host defense perturbation. During auto-immune diseases such as rheumatoid arthritis, lupus or immune thrombocytopenia, the autoantibodies and immune complexes lead to inflammation through FcR aggregation. We will discuss the role of FcRs in autoimmune diseases, and focus on novel approaches to target FcRs for resolution of antibody-mediated autoimmunity. We will finally also discuss the down-regulation of FcR functionality as a therapeutic approach for autoimmune diseases.
Collapse
Affiliation(s)
- Sanae Ben Mkaddem
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France.,CNRS ERL8252, Paris, France.,Faculté de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Site Xavier Bichat, Paris, France.,Inflamex Laboratory of Excellence, Paris, France
| | - Marc Benhamou
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France.,CNRS ERL8252, Paris, France.,Faculté de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Site Xavier Bichat, Paris, France.,Inflamex Laboratory of Excellence, Paris, France
| | - Renato C Monteiro
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France.,CNRS ERL8252, Paris, France.,Faculté de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Site Xavier Bichat, Paris, France.,Inflamex Laboratory of Excellence, Paris, France.,Service d'Immunologie, DHU Fire, Hôpital Bichat-Claude Bernard, Assistance Publique de Paris, Paris, France
| |
Collapse
|
73
|
Anania JC, Chenoweth AM, Wines BD, Hogarth PM. The Human FcγRII (CD32) Family of Leukocyte FcR in Health and Disease. Front Immunol 2019; 10:464. [PMID: 30941127 PMCID: PMC6433993 DOI: 10.3389/fimmu.2019.00464] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/21/2019] [Indexed: 12/15/2022] Open
Abstract
FcγRs have been the focus of extensive research due to their key role linking innate and humoral immunity and their implication in both inflammatory and infectious disease. Within the human FcγR family FcγRII (activatory FcγRIIa and FcγRIIc, and inhibitory FcγRIIb) are unique in their ability to signal independent of the common γ chain. Through improved understanding of the structure of these receptors and how this affects their function we may be able to better understand how to target FcγR specific immune activation or inhibition, which will facilitate in the development of therapeutic monoclonal antibodies in patients where FcγRII activity may be desirable for efficacy. This review is focused on roles of the human FcγRII family members and their link to immunoregulation in healthy individuals and infection, autoimmunity and cancer.
Collapse
Affiliation(s)
- Jessica C Anania
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Alicia M Chenoweth
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
74
|
Pardons M, Baxter AE, Massanella M, Pagliuzza A, Fromentin R, Dufour C, Leyre L, Routy JP, Kaufmann DE, Chomont N. Single-cell characterization and quantification of translation-competent viral reservoirs in treated and untreated HIV infection. PLoS Pathog 2019; 15:e1007619. [PMID: 30811499 PMCID: PMC6411230 DOI: 10.1371/journal.ppat.1007619] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/11/2019] [Accepted: 02/05/2019] [Indexed: 12/31/2022] Open
Abstract
The phenotypic characterization of the cells in which HIV persists during antiretroviral therapy (ART) remains technically challenging. We developed a simple flow cytometry-based assay to quantify and characterize infected cells producing HIV proteins during untreated and treated HIV infection. By combining two antibodies targeting the HIV capsid in a standard intracellular staining protocol, we demonstrate that p24-producing cells can be detected with high specificity and sensitivity in the blood from people living with HIV. In untreated individuals, the frequency of productively infected cells strongly correlated with plasma viral load. Infected cells preferentially displayed a transitional memory phenotype and were enriched in Th17, peripheral Tfh and regulatory T cells subsets. These cells also preferentially expressed activation markers (CD25, HLA-DR, Ki67), immune checkpoint molecules (PD-1, LAG-3, TIGIT, Tim-3) as well as the integrins α4β7 and α4β1. In virally suppressed individuals on ART, p24-producing cells were only detected upon stimulation (median frequency of 4.3 p24+ cells/106 cells). These measures correlated with other assays assessing the size of the persistent reservoir including total and integrated HIV DNA, Tat/rev Induced Limiting Dilution Assay (TILDA) and quantitative viral outgrowth assay (QVOA). In ART-suppressed individuals, p24-producing cells preferentially displayed a transitional and effector memory phenotype, and expressed immune checkpoint molecules (PD-1, TIGIT) as well as the integrin α4β1. Remarkably, α4β1 was expressed by more than 70% of infected cells both in untreated and ART-suppressed individuals. Altogether, these results highlight a broad diversity in the phenotypes of HIV-infected cells in treated and untreated infection and suggest that strategies targeting multiple and phenotypically distinct cellular reservoirs will be needed to exert a significant impact on the size of the reservoir. HIV persists in a small pool of infected CD4+ T cells during ART. A better characterization of these cells is a pre-requisite to the development of HIV eradication strategies. We developed a novel assay, named HIV-Flow, to simultaneously quantify and characterize reservoir cells in individuals receiving ART. With this assay, we found that a median of only 5 cells/million have the ability to produce the HIV protein Gag in individuals on suppressive ART. These frequencies correlated with other assays aimed at measuring HIV reservoirs. Importantly, we show that the HIV reservoir is phenotypically diverse, with numerous cell subsets contributing to the pool of persistently infected cells. Nonetheless, we identified several markers preferentially expressed at the surface or these rare reservoir cells, including immune checkpoint molecules and homing receptors. By combining these markers, we identified discrete cellular subsets highly enriched in HIV-infected cells. This novel assay will facilitate the identification of markers expressed by cellular HIV reservoirs.
Collapse
Affiliation(s)
- Marion Pardons
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Amy E. Baxter
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Marta Massanella
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Amélie Pagliuzza
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Caroline Dufour
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Louise Leyre
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Pierre Routy
- Division of Hematology & Chronic Viral Illness Service, McGill University Heath Centre, Montreal, Quebec, Canada
| | - Daniel E. Kaufmann
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
75
|
BCL6 Inhibitor-Mediated Downregulation of Phosphorylated SAMHD1 and T Cell Activation Are Associated with Decreased HIV Infection and Reactivation. J Virol 2019; 93:JVI.01073-18. [PMID: 30355686 DOI: 10.1128/jvi.01073-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
Clearance of HIV-infected germinal center (GC) CD4+ follicular helper T cells (Tfh) after combination antiretroviral therapy (ART) is essential to an HIV cure. Blocking B cell lymphoma 6 (BCL6; the master transcription factor for Tfh cells) represses HIV infection of tonsillar CD4+ Tfh ex vivo, reduces GC formation, and limits immune activation in vivo We assessed the anti-HIV activity of a novel BCL6 inhibitor, FX1, in Tfh/non-Tfh CD4+ T cells and its impact on T cell activation and SAMHD1 phosphorylation (Thr592). FX1 repressed HIV-1 infection of peripheral CD4+ T cells and tonsillar Tfh/non-Tfh CD4+ T cells (P < 0.05) and total elongated and multispliced HIV-1 RNA production during the first round of viral life cycle (P < 0.01). Using purified circulating CD4+ T cells from uninfected donors, we demonstrate that FX1 treatment resulted in downregulation pSAMHD1 expression (P < 0.05) and T cell activation (HLA-DR, CD25, and Ki67; P < 0.01) ex vivo corresponding with inhibition of HIV-1 and HIV-2 replication. Ex vivo HIV-1 reactivation using purified peripheral CD4+ T cells from HIV-infected ART-suppressed donors was also blocked by FX1 treatment (P < 0.01). Our results indicate that BCL6 function contributes to Tfh/non-Tfh CD4+ T cell activation and cellular susceptibility to HIV infection. BCL6 inhibition represents a novel therapeutic strategy to potentiate HIV suppression in Tfh/non-Tfh CD4+ T cells without reactivation of latent virus.IMPORTANCE The expansion and accumulation of HIV-infected BCL6+ Tfh CD4+ T cells are thought to contribute to the persistence of viral reservoirs in infected subjects undergoing ART. Two mechanisms have been raised for the preferential retention of HIV within Tfh CD4+ T cells: (i) antiretroviral drugs have limited tissue distribution, resulting in insufficient tissue concentration and lower efficacy in controlling HIV replication in lymphoid tissues, and (ii) cytotoxic CD8+ T cells within lymphoid tissues express low levels of chemokine receptor (CXCR5), thus limiting their ability to enter the GCs to control/eliminate HIV-infected Tfh cells. Our results indicate that the BCL6 inhibitor FX1 can not only repress HIV infection of tonsillar Tfh ex vivo but also suppress HIV infection and reactivation in primary, non-Tfh CD4+ T cells. Our study provides a rationale for targeting BCL6 protein to extend ART-mediated reduction of persistent HIV and/or support strategies toward HIV remission beyond ART cessation.
Collapse
|
76
|
Giacomelli A, de Rose S, Rusconi S. Clinical pharmacology in HIV cure research - what impact have we seen? Expert Rev Clin Pharmacol 2019; 12:17-29. [PMID: 30570410 DOI: 10.1080/17512433.2019.1561272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Combined antiretroviral therapy (cART) has transformed an inexorably fatal disease into a chronic pathology, shifting the focus of research from the control of viral replication to the possibility of HIV cure. Areas covered: The present review assesses the principal pharmacological strategies that have been tested for an HIV cure starting from the in vitro proof of concept and the potential rationale of their in vivo applicability. We evaluated the possible pharmacological procedures employed during the early-stage HIV infection and the possibility of cART-free remission. We then analyzed the shock and kill approach from the single compounds in vitro mechanism of action, to the in vivo application of single or combined actions. Finally, we briefly considered the novel immunological branch through the discovery and development of broadly neutralizing antibodies in regard to the current and future in vivo therapeutic strategies aiming to verify the clinical applicability of these compounds. Expert opinion: Despite an incredible effort in HIV research cure, the likelihood of completely eradicating HIV is unreachable within our current knowledge. A better understanding of the mechanism of viral latency and the full characterization of HIV reservoir are crucial for the discovery of new therapeutic targets and novel pharmacological entities.
Collapse
Affiliation(s)
- Andrea Giacomelli
- a Infectious Diseases Unit, DIBIC Luigi Sacco , University of Milan , Milan , Italy
| | - Sonia de Rose
- a Infectious Diseases Unit, DIBIC Luigi Sacco , University of Milan , Milan , Italy
| | - Stefano Rusconi
- a Infectious Diseases Unit, DIBIC Luigi Sacco , University of Milan , Milan , Italy
| |
Collapse
|
77
|
Targeting the DNA-PK complex: Its rationale use in cancer and HIV-1 infection. Biochem Pharmacol 2018; 160:80-91. [PMID: 30529192 DOI: 10.1016/j.bcp.2018.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023]
Abstract
The DNA-PK complex is the major component of the predominant mechanism of DSB repair in humans. In addition, this complex is involved in many other processes such as DNA recombination, genome maintenance, apoptosis and transcription regulation. Several studies have linked the decrease of the DNA-PK activity with cancer initiation, due to defects in the repair. On another hand, higher DNA-PK expression and activity have been observed in various other tumor cells and have been linked with a decrease of the efficiency of anti-tumor drugs. It has also been shown that DNA-PK is critical for the integration of the HIV-1 DNA into the cell host genome and promotes replication and transcription of the virus. Targeting this complex makes therefore sense to treat these two pathologies. However, according to the status of HIV-1 replication (active versus latent replication) or to the tumor grade cells (initiation versus metastasis), the way to target this DNA-PK complex might be rather different. In this review, we discuss the importance of DNA-PK complex in two major pathologies i.e. HIV-1 infection and cancer, and the rationale use of therapies aiming to target this complex.
Collapse
|
78
|
Yang H, Wallace Z, Dorrell L. Therapeutic Targeting of HIV Reservoirs: How to Give T Cells a New Direction. Front Immunol 2018; 9:2861. [PMID: 30564246 PMCID: PMC6288286 DOI: 10.3389/fimmu.2018.02861] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/20/2018] [Indexed: 01/02/2023] Open
Abstract
HIV cannot be cured by current antiretroviral therapy (ART) because it persists in a transcriptionally silent form in long-lived CD4+ cells. Leading efforts to develop a functional cure have prioritized latency reversal to expose infected cells to immune surveillance, coupled with enhancement of the natural cytolytic function of immune effectors, or "kick and kill." The most clinically advanced approach to improving the kill is therapeutic immunization, which aims to augment or re-focus HIV-specific cytolytic T cell responses. However, no vaccine strategy has enabled sustained virological control after ART withdrawal. Novel approaches are needed to overcome the limitations of natural adaptive immune responses, which relate to their specificity, potency, durability, and access to tissue reservoirs. Adoptive T cell therapy to treat HIV infection was first attempted over two decades ago, without success. Since then, progress in the field of cancer immunotherapy, together with recognition of the similarities in tumor microenvironments and HIV reservoirs has reignited interest in the application of T cell therapies to HIV eradication. Advances in engineering of chimeric antigen receptor (CAR)-transduced T cells have led to improved potency, persistence and latterly, resistance to HIV infection. Immune retargeting platforms have incorporated non-neutralizing and broadly neutralizing antibodies to generate Bispecific T cell Engagers (BiTEs) and Dual-Affinity Re-Targeting proteins (DARTs). T cell receptor engineering has enabled the development of the first bispecific Immune-mobilizing monoclonal T Cell receptors Against Viruses (ImmTAV) molecules. Here, we review the potential for these agents to provide a better "kill" and the challenges ahead for clinical development.
Collapse
Affiliation(s)
- Hongbing Yang
- Nuffield Department of Medicine, University of Oxford, Oxfordshire, United Kingdom
| | - Zoë Wallace
- Nuffield Department of Medicine, University of Oxford, Oxfordshire, United Kingdom.,Immunocore Ltd., Oxon, United Kingdom
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, Oxfordshire, United Kingdom.,Immunocore Ltd., Oxon, United Kingdom.,Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
79
|
Holgado MP, Sananez I, Raiden S, Geffner JR, Arruvito L. CD32 Ligation Promotes the Activation of CD4 + T Cells. Front Immunol 2018; 9:2814. [PMID: 30555482 PMCID: PMC6284025 DOI: 10.3389/fimmu.2018.02814] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/14/2018] [Indexed: 11/20/2022] Open
Abstract
Low affinity receptors for the Fc portion of IgG (FcγRs) represent a critical link between innate and adaptive immunity. Immune complexes (ICs) are the natural ligands for low affinity FcγRs, and high levels of ICs are usually detected in both, chronic viral infections and autoimmune diseases. The expression and function of FcγRs in myeloid cells, NK cells and B cells have been well characterized. By contrast, there are controversial reports about the expression and function of FcγRs in T cells. Here, we demonstrated that ~2% of resting CD4+ T cells express cell surface FcγRII (CD32). Analysis of CD32 expression in permeabilized cells revealed an increased proportion of CD4+CD32+ T cells (~9%), indicating that CD4+ T cells store a CD32 cytoplasmic pool. Activation of CD4+ T cells markedly increased the expression of CD32 either at the cell surface or intracellularly. Analysis of CD32 mRNA transcripts in activated CD4+ T cells revealed the presence of both, the stimulatory FcγRIIa (CD32a) and the inhibitory FcγRIIb (CD32b) isoforms of CD32, being the CD32a:CD32b mRNA ratio ~5:1. Consistent with this finding, we found not only that CD4+ T cells bind aggregated IgG, used as an IC model, but also that CD32 ligation by specific mAb induced a strong calcium transient in CD4+ T cells. Moreover, we found that pretreatment of CD4+ T cells with immobilized IgG as well as cross-linking of CD32 by specific antibodies increased both, the proliferative response of CD4+ T cells and the release of a wide pattern of cytokines (IL-2, IL-5, IL-10, IL-17, IFN-γ, and TNF-α) triggered by either PHA or anti-CD3 mAb. Collectively, our results indicate that ligation of CD32 promotes the activation of CD4+ T cells. These findings suggest that ICs might contribute to the perpetuation of chronic inflammatory responses by virtue of its ability to directly interact with CD4+ T cells through CD32a, promoting the activation of T cells into different inflammatory profiles.
Collapse
Affiliation(s)
- María Pía Holgado
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Inés Sananez
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Silvina Raiden
- Unidad I, Departamento de Clínica Médica, Hospital de Niños Pedro de Elizalde, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge R Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lourdes Arruvito
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
80
|
Tomalka AG, Resto-Garay I, Campbell KS, Popkin DL. In vitro Evidence That Combination Therapy With CD16-Bearing NK-92 Cells and FDA-Approved Alefacept Can Selectively Target the Latent HIV Reservoir in CD4+ CD2hi Memory T Cells. Front Immunol 2018; 9:2552. [PMID: 30455699 PMCID: PMC6230627 DOI: 10.3389/fimmu.2018.02552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/17/2018] [Indexed: 12/24/2022] Open
Abstract
Elimination of the latent HIV reservoir remains the biggest hurdle to achieve HIV cure. In order to specifically eliminate HIV infected cells they must be distinguishable from uninfected cells. CD2 was recently identified as a potential marker enriched in the HIV-1 reservoir on CD4+ T cells, the largest, longest-lived and best-characterized constituent of the HIV reservoir. We previously proposed to repurpose FDA-approved alefacept, a humanized α-CD2 fusion protein, to reduce the HIV reservoir in CD2hi CD4+ memory T cells. Here, we show the first evidence that alefacept can specifically target and reduce CD2hi HIV infected cells in vitro. We explore a variety of natural killer (NK) cells as mediators of antibody-dependent cell-mediated cytotoxicity (ADCC) including primary NK cells, expanded NK cells as well as the CD16 transduced NK-92 cell line which is currently under study in clinical trials as a treatment for cancer. We demonstrate that CD16.NK-92 has a natural preference to kill CD2hi CD45RA- memory T cells, specifically CD45RA- CD27+ central memory/transitional memory (TCM/TM) subset in both healthy and HIV+ patient samples as well as to reduce HIV DNA from HIV+ samples from donors well controlled on antiretroviral therapy. Lastly, alefacept can combine with CD16.NK-92 to decrease HIV DNA in some patient samples and thus may yield value as part of a strategy toward sustained HIV remission.
Collapse
Affiliation(s)
- Amanda G. Tomalka
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Ivelisse Resto-Garay
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Kerry S. Campbell
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, PA, United States
| | - Daniel L. Popkin
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
81
|
García M, Navarrete-Muñoz MA, Ligos JM, Cabello A, Restrepo C, López-Bernaldo JC, de la Hera FJ, Barros C, Montoya M, Fernández-Guerrero M, Estrada V, Górgolas M, Benito JM, Rallón N. CD32 Expression is not Associated to HIV-DNA content in CD4 cell subsets of individuals with Different Levels of HIV Control. Sci Rep 2018; 8:15541. [PMID: 30341387 PMCID: PMC6195600 DOI: 10.1038/s41598-018-33749-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/05/2018] [Indexed: 01/20/2023] Open
Abstract
A recent study has pointed out to CD32a as a potential biomarker of HIV-persistent CD4 cells. We have characterized the level and phenotype of CD32+ cells contained in different subsets of CD4 T-cells and its potential correlation with level of total HIV-DNA in thirty HIV patients (10 typical progressors naïve for cART, 10 cART-suppressed patients, and 10 elite controllers). Total HIV-DNA was quantified in different subsets of CD4 T-cells: Trm and pTfh cells. Level and immunephenotype of CD32+ cells were analyzed in these same subsets by flow cytometry. CD32 expression in Trm and pTfh subsets was similar in the different groups, and there was no significant correlation between the level of total HIV-DNA and the level of CD32 expression in these subsets. However, total HIV-DNA level was correlated with expression of CD127 (rho = -0.46, p = 0.043) and of CCR6 (rho = -0.418, p = 0.027) on CD32+ cells. Our results do not support CD32 as a biomarker of total HIV-DNA content. However, analyzing the expression of certain markers by CD32+ cells could improve the utility of this marker in the clinical setting, prompting the necessity of further studies to both validate our results and to explore the potential utility of certain markers expressed by CD32+ cells.
Collapse
Affiliation(s)
- Marcial García
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - María Angeles Navarrete-Muñoz
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - José M Ligos
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Alfonso Cabello
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Clara Restrepo
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | | | | | | | - María Montoya
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | | - Miguel Górgolas
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - José M Benito
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain. .,Hospital Universitario Rey Juan Carlos, Móstoles, Spain.
| | - Norma Rallón
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain. .,Hospital Universitario Rey Juan Carlos, Móstoles, Spain.
| |
Collapse
|
82
|
CD32 + and PD-1 + Lymph Node CD4 T Cells Support Persistent HIV-1 Transcription in Treated Aviremic Individuals. J Virol 2018; 92:JVI.00901-18. [PMID: 29976671 PMCID: PMC6158413 DOI: 10.1128/jvi.00901-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/29/2018] [Indexed: 11/20/2022] Open
Abstract
A recent study conducted in blood has proposed CD32 as the marker identifying the "elusive" HIV reservoir. We have investigated the distribution of CD32+ CD4 T cells in blood and lymph nodes (LNs) of HIV-1-uninfected subjects and viremic untreated and long-term-treated HIV-1-infected individuals and their relationship with PD-1+ CD4 T cells. The frequency of CD32+ CD4 T cells was increased in viremic compared to treated individuals in LNs, and a large proportion (up to 50%) of CD32+ cells coexpressed PD-1 and were enriched within T follicular helper (Tfh) cells. We next investigated the role of LN CD32+ CD4 T cells in the HIV reservoir. Total HIV DNA was enriched in CD32+ and PD-1+ CD4 T cells compared to CD32- and PD-1- cells in both viremic and treated individuals, but there was no difference between CD32+ and PD-1+ cells. There was no enrichment of latently infected cells with inducible HIV-1 in CD32+ versus PD-1+ cells in antiretroviral therapy (ART)-treated individuals. HIV-1 transcription was then analyzed in LN memory CD4 T cell populations sorted on the basis of CD32 and PD-1 expression. CD32+ PD-1+ CD4 T cells were significantly enriched in cell-associated HIV RNA compared to CD32- PD-1- (averages of 5.2-fold in treated individuals and 86.6-fold in viremics), CD32+ PD-1- (2.2-fold in treated individuals and 4.3-fold in viremics), and CD32- PD-1+ (2.2-fold in ART-treated individuals and 4.6-fold in viremics) cell populations. Similar levels of HIV-1 transcription were found in CD32+ PD-1- and CD32- PD-1+ CD4 T cells. Interestingly, the proportion of CD32+ and PD-1+ CD4 T cells negatively correlated with CD4 T cell counts and length of therapy. Therefore, the expression of CD32 identifies, independently of PD-1, a CD4 T cell population with persistent HIV-1 transcription and coexpression of CD32 and PD-1, the CD4 T cell population with the highest levels of HIV-1 transcription in both viremic and treated individuals.IMPORTANCE The existence of long-lived latently infected resting memory CD4 T cells represents a major obstacle to the eradication of HIV infection. Identifying cell markers defining latently infected cells containing replication-competent virus is important in order to determine the mechanisms of HIV persistence and to develop novel therapeutic strategies to cure HIV infection. We provide evidence that PD-1 and CD32 may have a complementary role in better defining CD4 T cell populations infected with HIV-1. Furthermore, CD4 T cells coexpressing CD32 and PD-1 identify a CD4 T cell population with high levels of persistent HIV-1 transcription.
Collapse
|
83
|
|
84
|
Natural product-derived compounds in HIV suppression, remission, and eradication strategies. Antiviral Res 2018; 158:63-77. [PMID: 30063970 DOI: 10.1016/j.antiviral.2018.07.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/10/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022]
Abstract
While combination antiretroviral therapy (cART) has successfully converted HIV to a chronic but manageable infection in many parts of the world, HIV continues to persist within latent cellular reservoirs, which can become reactivated at any time to produce infectious virus. New therapies are therefore needed not only for HIV suppression but also for containing or eliminating HIV reservoirs. Compounds derived from plant, marine, and other natural products have been found to combat HIV infection and/or target HIV reservoirs, and these discoveries have substantially guided current HIV therapy-based studies. Here we summarize the role of natural product-derived compounds in current HIV suppression, remission, and cure strategies.
Collapse
|
85
|
CD32 expression is associated to T-cell activation and is not a marker of the HIV-1 reservoir. Nat Commun 2018; 9:2739. [PMID: 30013105 PMCID: PMC6048139 DOI: 10.1038/s41467-018-05157-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/12/2018] [Indexed: 11/26/2022] Open
Abstract
CD32 has been shown to be preferentially expressed in latently HIV-1-infected cells in an in vitro model of quiescent CD4 T cells. Here we show that stimulation of CD4+ T cells with IL-2, IL-7, PHA, and anti-CD3/CD28 antibodies induces T-cell proliferation, co-expression of CD32 and the activation of the markers HLA-DR and CD69. HIV-1 infection increases CD32 expression. 79.2% of the CD32+/CD4+ T cells from HIV+ individuals under antiretroviral treatment were HLA-DR+. Resting CD4+ T cells infected in vitro generally results in higher integration of provirus. We observe no difference in provirus integration or replication-competent inducible latent HIV-1 in CD32+ or CD32− CD4+ T cells from HIV+ individuals. Our results demonstrate that CD32 expression is a marker of CD4+ T cell activation in HIV+ individuals and raises questions regarding the immune resting status of CD32+ cells harboring HIV-1 proviruses. CD32 has been previously shown to be expressed preferentially by CD4 T cells latently harbouring HIV-1. Here the authors show that CD32 expression in CD4 T cells is associated with T cell activation, is up-regulated by HIV-1 infection and importantly does not appear to represent an enriched cellular niche for latent HIV-1.
Collapse
|
86
|
Coindre S, Tchitchek N, Alaoui L, Vaslin B, Bourgeois C, Goujard C, Avettand-Fenoel V, Lecuroux C, Bruhns P, Le Grand R, Beignon AS, Lambotte O, Favier B. Mass Cytometry Analysis Reveals the Landscape and Dynamics of CD32a + CD4 + T Cells From Early HIV Infection to Effective cART. Front Immunol 2018; 9:1217. [PMID: 29915583 PMCID: PMC5995043 DOI: 10.3389/fimmu.2018.01217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/15/2018] [Indexed: 11/24/2022] Open
Abstract
CD32a has been proposed as a specific marker of latently HIV-infected CD4+ T cells. However, CD32a was recently found to be expressed on CD4+ T cells of healthy donors, leading to controversy on the relevance of this marker in HIV persistence. Here, we used mass cytometry to characterize the landscape and variation in the abundance of CD32a+ CD4+ T cells during HIV infection. To this end, we analyzed CD32a+ CD4+ T cells in primary HIV infection before and after effective combination antiretroviral therapy (cART) and in healthy donors. We found that CD32a+ CD4+ T cells include heterogeneous subsets that are differentially affected by HIV infection. Our analysis revealed that naive (N), central memory (CM), and effector/memory (Eff/Mem) CD32a+ CD4+ T-cell clusters that co-express LILRA2- and CD64-activating receptors were more abundant in primary HIV infection and cART stages. Conversely, LILRA2− CD32a+ CD4+ T-cell clusters of either the TN, TCM, or TEff/Mem phenotype were more abundant in healthy individuals. Finally, an activated CD32a+ CD4+ TEff/Mem cell cluster co-expressing LILRA2, CD57, and NKG2C was more abundant in all HIV stages, particularly during primary HIV infection. Overall, our data show that multiple abundance modifications of CD32a+ CD4+ T-cell subsets occur in the early phase of HIV infection, and some of which are conserved after effective cART. Our study brings a better comprehension of the relationship between CD32a expression and CD4+ T cells during HIV infection.
Collapse
Affiliation(s)
- Sixtine Coindre
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Nicolas Tchitchek
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Lamine Alaoui
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Bruno Vaslin
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Christine Bourgeois
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Cecile Goujard
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne et Immunologie Clinique, Groupe Hospitalier Universitaire Paris Sud, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Veronique Avettand-Fenoel
- Paris Descartes University, EA 7327, Sorbonne Paris Cité, APHP, Necker Hospital, Virology Department, Paris, France
| | - Camille Lecuroux
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Pierre Bruhns
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France.,INSERM, U1222, Paris, France
| | - Roger Le Grand
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Anne-Sophie Beignon
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Olivier Lambotte
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France.,Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne et Immunologie Clinique, Groupe Hospitalier Universitaire Paris Sud, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Benoit Favier
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | | |
Collapse
|