51
|
Al-Daghistani HI, Zein S, Abbas MA. Microbial communities in the Dead Sea and their potential biotechnological applications. Commun Integr Biol 2024; 17:2369782. [PMID: 38919836 PMCID: PMC11197920 DOI: 10.1080/19420889.2024.2369782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
The Dead Sea is unique compared to other extreme halophilic habitats. Its salinity exceeds 34%, and it is getting saltier. The Dead Sea environment is characterized by a dominance of divalent cations, with magnesium chloride (MgCl2) levels approaching the predicted 2.3 M upper limit for life, an acidic pH of 6.0, and high levels of absorbed ultraviolet radiation. Consequently, only organisms adapted to such a polyextreme environment can survive in the surface, sinkholes, sediments, muds, and underwater springs of the Dead Sea. Metagenomic sequence analysis and amino acid profiling indicated that the Dead Sea is predominantly composed of halophiles that have various adaptation mechanisms and produce metabolites that can be utilized for biotechnological purposes. A variety of products have been obtained from halophilic microorganisms isolated from the Dead Sea, such as antimicrobials, bioplastics, biofuels, extremozymes, retinal proteins, colored pigments, exopolysaccharides, and compatible solutes. These resources find applications in agriculture, food, biofuel production, industry, and bioremediation for the detoxification of wastewater and soil. Utilizing halophiles as a bioprocessing platform offers advantages such as reduced energy consumption, decreased freshwater demand, minimized capital investment, and continuous production.
Collapse
Affiliation(s)
- Hala I. Al-Daghistani
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Sima Zein
- Department of Pharmaceutical Biotechnology, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Manal A. Abbas
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
52
|
Satta M, Passarini F, Cespi D, Ciacci L. Advantages and drawbacks of life cycle assessment application to the pharmaceuticals: a short critical literature review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33964-w. [PMID: 38898347 DOI: 10.1007/s11356-024-33964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Pharmaceuticals are among the most challenging products to assess by life cycle assessment (LCA). The main drawback highlighted by LCA practitioners is the lack of inventory data, both regarding the synthesis of active pharmaceutical ingredient (API) precursors (upstream) and the details concerning the downstream phases (use and end of life). A short critical review of pharma-LCAs found in the literature is here proposed, with discussion of several tools and models used to predict the environmental impacts derived from the life cycle of pharmaceuticals, emphasizing current strengths and weaknesses, and exploring the possibilities for improvements. The case of antibiotics is selected as a representative class of pharmaceuticals, due to their massive use worldwide and the growing related issue of antimicrobial resistance enrichment, which is generally not included in most of LCAs. Also, we comment on drafting product category rules (PCRs) in the relevant field to develop standard methodologies and enhance the comparability of the studies, ultimately advocating collaboration with companies and improving inventory data quality and availability for the whole value chain of products.
Collapse
Affiliation(s)
- Marco Satta
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, 40136, Bologna, Italy
| | - Fabrizio Passarini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, 40136, Bologna, Italy
- Interdepartmental Centre of Industrial Research "Renewable Resources, Environment, Sea and Energy", University of Bologna, Via Angherà 22, 47922, Rimini, Italy
| | - Daniele Cespi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, 40136, Bologna, Italy.
- Interdepartmental Centre of Industrial Research "Renewable Resources, Environment, Sea and Energy", University of Bologna, Via Angherà 22, 47922, Rimini, Italy.
| | - Luca Ciacci
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, 40136, Bologna, Italy
- Interdepartmental Centre of Industrial Research "Renewable Resources, Environment, Sea and Energy", University of Bologna, Via Angherà 22, 47922, Rimini, Italy
| |
Collapse
|
53
|
Peng S, Song J, Wu S, Wang Q, Shen L, Li D, Peng J, Zhang Q, Yang X, Xu H, Redshaw C, Li Y. Aggregation-Induced Emission Photosensitizer with Ag(I)-π Interaction-Enhanced Reactive Oxygen Species for Eliminating Multidrug Resistant Bacteria. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30915-30928. [PMID: 38847621 DOI: 10.1021/acsami.4c05202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Multidrug-resistant (MDR) bacteria pose serious threats to public health due to the lack of effective and biocompatible drugs to kill MDR bacteria. Photodynamic antibacterial therapy has been widely studied due to its low induction of resistance. However, photosensitizers that can efficiently generate reactive oxygen species (ROS) through both type I and type II mechanisms and that have the capability of multiple modes of action are rarely reported. Addressing this issue, we developed a near-infrared-emitting triphenylamine indole iodoethane (TTII) and its silver(I) self-assembled (TTIIS) aggregation-induced emission (AIE) photosensitizer for multimode bacterial infection therapy. TTII can efficiently produce both Type I ROS •OH and Type II ROS 1O2. Interestingly, the Ag(I)-π interaction contributed in TTIIS efficiency promotion of the generation of 1O2. Moreover, by releasing Ag+, TTIIS enabled photodynamic-Ag(I) dual-mode sterilization. As a result, TTIIS achieved an effective enhancement of antibacterial activity, with a 1-2-fold boost against multidrug-resistant Escherichia coli (MDR E. coli). Both TTII and TTIIS at a concentration as low as 0.55 μg mL-1 can kill more than 98% of methicillin resistant Staphylococcus aureus (MRSA) on MRSA-infected full-thickness defect wounds of a mouse, and both TTII and TTIIS were effective in eliminating the bacteria and promoting wound healing.
Collapse
Affiliation(s)
- Senlin Peng
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang 550025, China
| | - Jiayi Song
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Shouting Wu
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang 550025, China
| | - Qian Wang
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Lingyi Shen
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Dongmei Li
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Jian Peng
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Qilong Zhang
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Xianjiong Yang
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Hong Xu
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Cottingham Road, Hull, Yorkshire HU6 7RX, United Kingdom
| | - Ying Li
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
54
|
Abbas A, Barkhouse A, Hackenberger D, Wright GD. Antibiotic resistance: A key microbial survival mechanism that threatens public health. Cell Host Microbe 2024; 32:837-851. [PMID: 38870900 DOI: 10.1016/j.chom.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Antibiotic resistance (AMR) is a global public health threat, challenging the effectiveness of antibiotics in combating bacterial infections. AMR also represents one of the most crucial survival traits evolved by bacteria. Antibiotics emerged hundreds of millions of years ago as advantageous secondary metabolites produced by microbes. Consequently, AMR is equally ancient and hardwired into the genetic fabric of bacteria. Human use of antibiotics for disease treatment has created selection pressure that spurs the evolution of new resistance mechanisms and the mobilization of existing ones through bacterial populations in the environment, animals, and humans. This integrated web of resistance elements is genetically complex and mechanistically diverse. Addressing this mode of bacterial survival requires innovation and investment to ensure continued use of antibiotics in the future. Strategies ranging from developing new therapies to applying artificial intelligence in monitoring AMR and discovering new drugs are being applied to manage the growing AMR crisis.
Collapse
Affiliation(s)
- Amna Abbas
- David Braley Center for Antibiotic Discovery, Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Alexandra Barkhouse
- David Braley Center for Antibiotic Discovery, Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Dirk Hackenberger
- David Braley Center for Antibiotic Discovery, Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Gerard D Wright
- David Braley Center for Antibiotic Discovery, Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
55
|
Haque Pial T, Li Y, Olvera de la Cruz M. Microscopically segregated ligand distribution in co-assembled peptide-amphiphile nanofibers. SOFT MATTER 2024; 20:4640-4647. [PMID: 38819791 DOI: 10.1039/d4sm00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Peptide amphiphiles (PAs) self-assemble into cylindrical nanofibers with applications in protein purification, tissue engineering, and regenerative medicine. For these applications, functionalized PAs are often co-assembled with oppositely charged filler PAs. Finding the conditions at which these fibers are homogeneously mixed or segregated is crucial for the required application. We co-assemble negative C12VVEE fillers and positive C12VVKK-OEG4-Z33 ligands, which are important for antibody purifications. Our results show that the ligands tend to cluster and locally segregate in the fiber surfaces. The Z33s are overall neutral and form large aggregates in bulk solution due to short range attractions. However, full segregation of the C12VVKK-OEG4-Z33 is not observed in the cylindrical surface due to the electrostatic penalty of forming large domains of similarly charged molecules. This is commensurate with previous theoretical predictions, showing that the competition between short-range attractive interactions and long-range electrostatic repulsions leads to pattern formation in cylindrical surfaces. This work offers valuable insight into the design of functionalized nanofibers for various biomedical and chemical applications.
Collapse
Affiliation(s)
- Turash Haque Pial
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA.
- Center of Computation and Theory of Soft Materials, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Yang Li
- Center of Computation and Theory of Soft Materials, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA.
- Center of Computation and Theory of Soft Materials, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
56
|
Vialetto E, Miele S, Goren MG, Yu J, Yu Y, Collias D, Beamud B, Osbelt L, Lourenço M, Strowig T, Brisse S, Barquist L, Qimron U, Bikard D, Beisel C. Systematic interrogation of CRISPR antimicrobials in Klebsiella pneumoniae reveals nuclease-, guide- and strain-dependent features influencing antimicrobial activity. Nucleic Acids Res 2024; 52:6079-6091. [PMID: 38661215 PMCID: PMC11162776 DOI: 10.1093/nar/gkae281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
CRISPR-Cas systems can be utilized as programmable-spectrum antimicrobials to combat bacterial infections. However, how CRISPR nucleases perform as antimicrobials across target sites and strains remains poorly explored. Here, we address this knowledge gap by systematically interrogating the use of CRISPR antimicrobials using multidrug-resistant and hypervirulent strains of Klebsiella pneumoniae as models. Comparing different Cas nucleases, DNA-targeting nucleases outperformed RNA-targeting nucleases based on the tested targets. Focusing on AsCas12a that exhibited robust targeting across different strains, we found that the elucidated modes of escape varied widely, restraining opportunities to enhance killing. We also encountered individual guide RNAs yielding different extents of clearance across strains, which were linked to an interplay between improper gRNA folding and strain-specific DNA repair and survival. To explore features that could improve targeting across strains, we performed a genome-wide screen in different K. pneumoniae strains that yielded guide design rules and trained an algorithm for predicting guide efficiency. Finally, we showed that Cas12a antimicrobials can be exploited to eliminate K. pneumoniae when encoded in phagemids delivered by T7-like phages. Altogether, our results highlight the importance of evaluating antimicrobial activity of CRISPR antimicrobials across relevant strains and define critical parameters for efficient CRISPR-based targeting.
Collapse
Affiliation(s)
- Elena Vialetto
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Solange Miele
- Institut Pasteur, Université Paris Cité, Synthetic Biology, Paris, France
| | - Moran G Goren
- Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Jiaqi Yu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Yanying Yu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Daphne Collias
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Beatriz Beamud
- Institut Pasteur, Université Paris Cité, Synthetic Biology, Paris, France
| | - Lisa Osbelt
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Marta Lourenço
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Till Strowig
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
- University of Würzburg, Medical Faculty, 97080 Würzburg, Germany
| | - Udi Qimron
- Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - David Bikard
- Institut Pasteur, Université Paris Cité, Synthetic Biology, Paris, France
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- University of Würzburg, Medical Faculty, 97080 Würzburg, Germany
| |
Collapse
|
57
|
Cheng Z, He BB, Lei K, Gao Y, Shi Y, Zhong Z, Liu H, Liu R, Zhang H, Wu S, Zhang W, Tang X, Li YX. Rule-based omics mining reveals antimicrobial macrocyclic peptides against drug-resistant clinical isolates. Nat Commun 2024; 15:4901. [PMID: 38851779 PMCID: PMC11162475 DOI: 10.1038/s41467-024-49215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/28/2024] [Indexed: 06/10/2024] Open
Abstract
Antimicrobial resistance remains a significant global threat, driving up mortality rates worldwide. Ribosomally synthesized and post-translationally modified peptides have emerged as a promising source of novel peptide antibiotics due to their diverse chemical structures. Here, we report the discovery of new aminovinyl-(methyl)cysteine (Avi(Me)Cys)-containing peptide antibiotics through a synergistic approach combining biosynthetic rule-based omics mining and heterologous expression. We first bioinformatically identify 1172 RiPP biosynthetic gene clusters (BGCs) responsible for Avi(Me)Cys-containing peptides formation from a vast pool of over 50,000 bacterial genomes. Subsequently, we successfully establish the connection between three identified BGCs and the biosynthesis of five peptide antibiotics via biosynthetic rule-guided metabolic analysis. Notably, we discover a class V lanthipeptide, massatide A, which displays excellent activity against gram-positive pathogens, including drug-resistant clinical isolates like linezolid-resistant S. aureus and methicillin-resistant S. aureus, with a minimum inhibitory concentration of 0.25 μg/mL. The remarkable performance of massatide A in an animal infection model, coupled with a relatively low risk of resistance and favorable safety profile, positions it as a promising candidate for antibiotic development. Our study highlights the potential of Avi(Me)Cys-containing peptides in expanding the arsenal of antibiotics against multi-drug-resistant bacteria, offering promising drug leads in the ongoing battle against infectious diseases.
Collapse
Affiliation(s)
- Zhuo Cheng
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 515832, China
| | - Bei-Bei He
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Kangfan Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying Gao
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yuqi Shi
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zheng Zhong
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hongyan Liu
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Runze Liu
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Haili Zhang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 515832, China
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 515832, China.
| | - Yong-Xin Li
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
58
|
Zhou H, Lu Z, Liu X, Bie X, Xue F, Tang S, Feng Q, Cheng Y, Yang J. Environmentally Relevant Concentrations of Tetracycline Promote Horizontal Transfer of Antimicrobial Resistance Genes via Plasmid-Mediated Conjugation. Foods 2024; 13:1787. [PMID: 38891015 PMCID: PMC11171790 DOI: 10.3390/foods13111787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
The ubiquitous presence of antimicrobial-resistant organisms and antimicrobial resistance genes (ARGs) constitutes a major threat to global public safety. Tetracycline (TET) is a common antimicrobial agent that inhibits bacterial growth and is frequently detected in aquatic environments. Although TET may display coselection for resistance, limited knowledge is available on whether and how it might influence plasmid-mediated conjugation. Subinhibitory concentrations (3.9-250 ng/mL) of TET promoted horizontal gene transfer (HGT) via the mobilizable plasmid pVP52-1 from the donor Vibrio parahaemolyticus NJIFDCVp52 to the recipient Escherichia coli EC600 by 1.47- to 3.19-fold. The transcription levels of tetracycline resistance genes [tetA, tetR(A)], conjugation-related genes (traA, traD), outer membrane protein genes (ompA, ompK, ompV), reactive oxygen species (ROS)-related genes (oxyR, rpoS), autoinducer-2 (AI-2) synthesis gene (luxS), and SOS-related genes (lexA, recA) in the donor and recipient were significantly increased. Furthermore, the overproduced intracellular ROS generation and increased cell membrane permeability under TET exposure stimulated the conjugative transfer of ARGs. Overall, this study provides important insights into the contributions of TET to the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Haibo Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.)
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.)
| | - Xinmei Liu
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.)
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Sijie Tang
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Qiushi Feng
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Yiyu Cheng
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Jun Yang
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| |
Collapse
|
59
|
Yu Q, Wang C, Zhang X, Chen H, Wu MX, Lu M. Photochemical Strategies toward Precision Targeting against Multidrug-Resistant Bacterial Infections. ACS NANO 2024; 18:14085-14122. [PMID: 38775446 DOI: 10.1021/acsnano.3c12714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Infectious diseases pose a serious threat and a substantial economic burden on global human and public health security, especially with the frequent emergence of multidrug-resistant (MDR) bacteria in clinical settings. In response to this urgent need, various photobased anti-infectious therapies have been reported lately. This Review explores and discusses several photochemical targeted antibacterial therapeutic strategies for addressing bacterial infections regardless of their antibiotic susceptibility. In contrast to conventional photobased therapies, these approaches facilitate precise targeting of pathogenic bacteria and/or infectious microenvironments, effectively minimizing toxicity to mammalian cells and surrounding healthy tissues. The highlighted therapies include photodynamic therapy, photocatalytic therapy, photothermal therapy, endogenous pigments-based photobleaching therapy, and polyphenols-based photo-oxidation therapy. This comprehensive exploration aims to offer updated information to facilitate the development of effective, convenient, safe, and alternative strategies to counter the growing threat of MDR bacteria in the future.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenxi Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Haoyi Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114, United States
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
60
|
Zhang G, Pan J, Dong X, Li X, Song Z, Liu Y, Liu X, Li Y, Li Q. Construction of atom co-sharing Bi/Bi 4O 5Br 2 nanosheet heterojunction for plasmonic-enhanced visible-light-driven photocatalytic antibacterial activity. Colloids Surf B Biointerfaces 2024; 238:113923. [PMID: 38692173 DOI: 10.1016/j.colsurfb.2024.113923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
The rapid advancement of photodynamic therapy (PDT) antibacterial materials has led to promising alternatives to antibiotics for treating bacterial infections. However, antibacterial drugs have poor light absorption and utilization rates, which limits their practical application. Constructing two-dimensional (2D) heterojunctions from materials with matching photophysical properties has emerged as a highly effective strategy for achieving high-efficiency photo-antibacterial performance. Here, we designed and prepared an atom co-sharing Bi/Bi4O5Br2 nanosheet heterojunction by a simple in situ reduction. This heterojunction material combines outstanding biocompatibility with excellent bactericidal efficiency, which exceeded 90 % against Escherichia coli (a Gram-negative bacterium) and Staphylococcus aureus (a Gram-positive bacterium) under visible light irradiation, around nine-fold higher than that with pure Bi4O5Br2 nanosheets. The results suggest that localized surface plasmon resonance (LSPR) of shared Bi atoms on the Bi4O5Br2 nanosheets promotes light utilization and the separation and transfer of photo-generated charges, thus producing more abundant reactive oxygen species (ROS), which can partake in the PDT antibacterial effect. Our study underscores the potential utility of LSPR-enhanced Bi-based nanosheet heterojunctions for safe and efficient PDT to combat bacterial infections.
Collapse
Affiliation(s)
- Guixue Zhang
- Institute of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Jie Pan
- Department of Stomatology, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Xiaoyi Dong
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xue Li
- Department of Pharmacy, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Zhiguo Song
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yan Liu
- Institute of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Xiaomeng Liu
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yongjin Li
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China.
| | - Qiyan Li
- Department of Stomatology, The First People's Hospital of Yunnan Province, Kunming 650032, China.
| |
Collapse
|
61
|
Wang P, You Q, Liu Y, Miao H, Dong WF, Li L. Combating infections from drug-resistant bacteria: Unleashing synergistic broad-spectrum antibacterial power with high-entropy MXene/CDs. Colloids Surf B Biointerfaces 2024; 238:113874. [PMID: 38581833 DOI: 10.1016/j.colsurfb.2024.113874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
The growing resistance of bacteria to antibiotics has posed challenges in treating associated bacterial infections, while the development of multi-model antibacterial strategies could efficient sterilization to prevent drug resistance. High-entropy MXene has emerged as a promising candidate for antibacterial synergy with inherent photothermal and photodynamic properties. Herein, a high-entropy nanomaterial of MXene/CDs was synthesized to amplify oxidative stress under near-infrared laser irradiation. Well-exfoliated MXene nanosheets have proven to show an excellent photothermal effect for sterilization. The incorporation of CDs could provide photo-generated electrons for MXene nanosheets to generate ROS, meanwhile reducing the recombination of electron-hole pairs to further accelerate the generation of photo-generated electrons. The MXene/CDs material demonstrates outstanding synergistic photothermal and photodynamic effects, possesses excellent biocompatibility and successfully eliminates drug-resistant bacteria as well as inhibits biofilm formation. While attaining a remarkable killing efficiency of up to 99.99% against drug-resistant Escherichia coli and Staphylococcus aureus, it also demonstrates outstanding antibacterial effects against four additional bacterial strains. This work not only establishes a synthesis precedent for preparing high-entropy MXene materials with CDs but also provides a potential approach for addressing the issue of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Panyong Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China
| | - Qiannan You
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China.
| | - Yulu Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China
| | - Huimin Miao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China
| | - Wen-Fei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China.
| | - Li Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China.
| |
Collapse
|
62
|
He C, Bi S, Zhang R, Chen C, Liu R, Zhao X, Gu J, Yan B. A hyaluronic acid hydrogel as a mild photothermal antibacterial, antioxidant, and nitric oxide release platform for diabetic wound healing. J Control Release 2024; 370:543-555. [PMID: 38729434 DOI: 10.1016/j.jconrel.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Hyaluronic acid (HA)-based biopolymer hydrogels are promising therapeutic dressings for various wounds but still underperform in treating diabetic wounds. These wounds are extremely difficult to heal and undergo a prolonged and severe inflammatory process due to bacterial infection, overexpression of reactive oxygen species (ROS), and insufficient synthesis of NO. In this study, a dynamic crosslinked hyaluronic acid (HA) hydrogel dressing (Gel-HAB) loaded with allomelanin (AMNP)-N, N'-dis-sec-butyl-N, N'-dinitroso-1, 4-phenylenediamine (BNN6) nanoparticles (AMNP-BNN6) was developed for healing diabetic wounds. The dynamic acylhydrazone bond formed between hydrazide-modified HA (HA-ADH) and oxidized HA (OHA) makes the hydrogel injectable, self-healing, and biocompatible. The hydrogel, loaded with AMNP-BNN6 nanoparticles, exhibits promising ROS scavenging ability and on-demand release of nitric oxide (NO) under near-infrared (NIR) laser irradiation to achieve mild photothermal antibacterial therapy (PTAT) (∼ 48 °C). Notably, the Gel-HAB hydrogel effectively reduced the oxidative stress level, controlled infections, accelerated vascular regeneration, and promoted angiogenesis, thereby achieving rapid healing of diabetic wounds. The injectable self-healing nanocomposite hydrogel could serve as a mild photothermal-enhanced antibacterial, antioxidant, and nitric oxide release platform for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Changyuan He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Rongya Zhang
- Technology Center, China Tobacco Sichuan Industrial Co. Ltd., Chengdu 610066, China
| | - Chong Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Xueshan Zhao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610000, China.
| | - Bin Yan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
63
|
Diamant M, Obolski U. The straight and narrow: A game theory model of broad- and narrow-spectrum empiric antibiotic therapy. Math Biosci 2024; 372:109203. [PMID: 38670222 DOI: 10.1016/j.mbs.2024.109203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/17/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Physicians prescribe empiric antibiotic treatment when definitive knowledge of the pathogen causing an infection is lacking. The options of empiric treatment can be largely divided into broad- and narrow-spectrum antibiotics. Prescribing a broad-spectrum antibiotic increases the chances of covering the causative pathogen, and hence benefits the current patient's recovery. However, prescription of broad-spectrum antibiotics also accelerates the expansion of antibiotic resistance, potentially harming future patients. We analyse the social dilemma using game theory. In our game model, physicians choose between prescribing broad and narrow-spectrum antibiotics to their patients. Their decisions rely on the probability of an infection by a resistant pathogen before definitive laboratory results are available. We prove that whenever the equilibrium strategies differ from the socially optimal policy, the deviation is always towards a more excessive use of the broad-spectrum antibiotic. We further show that if prescribing broad-spectrum antibiotics only to patients with a high probability of resistant infection is the socially optimal policy, then decentralization of the decision making may make this policy individually irrational, and thus sabotage its implementation. We discuss the importance of improving the probabilistic information available to the physician and promoting centralized decision making.
Collapse
Affiliation(s)
- Maya Diamant
- Coller School of Management, Tel Aviv University, Tel Aviv, Israel; School of Public Health, Tel Aviv University, Tel Aviv, Israel; Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Uri Obolski
- School of Public Health, Tel Aviv University, Tel Aviv, Israel; Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
64
|
Jinachandran A, Kokulnathan T, Wang TJ, Kumar KMA, Kumar J, Panneerselvam R. Silver nanopopcorns decorated on flexible membrane for SERS detection of nitrofurazone. Mikrochim Acta 2024; 191:347. [PMID: 38802574 DOI: 10.1007/s00604-024-06421-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
The synthesis of three-dimensional silver nanopopcorns (Ag NPCs) onto a flexible polycarbonate membrane (PCM) for the detection of nitrofurazone (NFZ) on the fish surface by surface-enhanced Raman spectroscopy (SERS) is presented. The proposed flexible Ag-NPCs/PCM SERS substrate exhibits significant Raman signal intensity enhancement with the measured enhancement factor of 2.36 × 106. This is primarily attributed to the hotspots created on Ag NPCs, including numerous nanoscale protrusions and internal crevices distributed across the surface of Ag NPCs. The detection of NFZ by this flexible SERS substrate demonstrates a low limit of detection (LOD) of 3.7 × 10-9 M and uniform and reproducible Raman signal intensities with a relative standard deviation below 8.34%. It also exhibits excellent stability, retaining 70% of its efficacy even after 10 days of storage. Notably, the practical detection of NFZ in tap water, honey water, and fish surfaces achieves LOD values of 1.35 × 10-8 M, 5.76 × 10-7 M, and 3.61 × 10-8 M, respectively, which highlights its effectiveness across different sample types. The developed Ag-NPCs/PCM SERS substrate presents promising potential for sensitive SERS detection of toxic substances in real-world samples.
Collapse
Affiliation(s)
- Arunima Jinachandran
- Raman Research Laboratory, Department of Chemistry, SRM University-AP, Andhra Pradesh, Amaravati, 522503, India
| | - Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan.
| | | | - Jayasree Kumar
- Raman Research Laboratory, Department of Chemistry, SRM University-AP, Andhra Pradesh, Amaravati, 522503, India
| | - Rajapandiyan Panneerselvam
- Raman Research Laboratory, Department of Chemistry, SRM University-AP, Andhra Pradesh, Amaravati, 522503, India.
| |
Collapse
|
65
|
Muduli S, Karmakar S, Mishra S. Conformational Dynamics in Corynebacterium glutamicum Diaminopimelate Epimerase: Insights from Ligand Parameterization, Atomistic Simulation, and Markov State Modeling. J Chem Inf Model 2024; 64:4250-4262. [PMID: 38701175 DOI: 10.1021/acs.jcim.4c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The microbial enzyme diaminopimelate epimerase (DapF), a vital enzyme in the lysine biosynthetic pathway, catalyzes the conversion of L, L-diaminopimelate (L, L-DAP) to D, L-diaminopimelate (D, L-DAP) using a catalytic cysteine dyad with one cysteine in thiol state and another in thiolate. Under oxidizing conditions, the catalytic cysteines of apo DapF form a disulfide bond that alters the structure and function of DapF. Given its potential as a target for antimicrobial resistance treatments, understanding DapF's functional dynamics is imperative. In the present work, we employ microsecond-scale all-atom molecular dynamics simulations of product-bound DapF and apo-DapF under oxidized and reduced conditions. We employ a polarized charge model for the ligand and the active site residues, which was necessary to preserve the electrostatic environment in the active site and retain the ligand in the active site. The product-bound DapF and apo-DapF in oxidized and reduced conditions exhibit a closed, semi-open, and open conformation, respectively, as identified using the internal coordinates of the dimeric enzyme and the principal component analysis. The conformational switch is guided by the dynamic catalytic (DC) loop, loop II, and loop III movements in the active site. The time scale of the close-to-open conformational transition is estimated to be 0.8 μs through Markov state modeling (MSM) and transition path theory (TPT). The present study explains the role of various active site residues and loops in ligand binding and protein dynamics in the DapF enzyme under different redox conditions. Such information will be helpful in future inhibitor design studies targeting the DapF enzyme.
Collapse
Affiliation(s)
- Sunita Muduli
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Soumyajit Karmakar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
66
|
Ye J, Kan CH, Yang X, Ma C. Inhibition of bacterial RNA polymerase function and protein-protein interactions: a promising approach for next-generation antibacterial therapeutics. RSC Med Chem 2024; 15:1471-1487. [PMID: 38784472 PMCID: PMC11110800 DOI: 10.1039/d3md00690e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
The increasing prevalence of multidrug-resistant pathogens necessitates the urgent development of new antimicrobial agents with innovative modes of action for the next generation of antimicrobial therapy. Bacterial transcription has been identified and widely studied as a viable target for antimicrobial development. The main focus of these studies has been the discovery of inhibitors that bind directly to the core enzyme of RNA polymerase (RNAP). Over the past two decades, substantial advancements have been made in understanding the properties of protein-protein interactions (PPIs) and gaining structural insights into bacterial RNAP and its associated factors. This has led to the crucial role of computational methods in aiding the identification of new PPI inhibitors to affect the RNAP function. In this context, bacterial transcriptional PPIs present promising, albeit challenging, targets for the creation of new antimicrobials. This review will succinctly outline the structural foundation of bacterial transcription networks and provide a summary of the known small molecules that target transcription PPIs.
Collapse
Affiliation(s)
- Jiqing Ye
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University Hefei 230032 China
| | - Cheuk Hei Kan
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin Hong Kong SAR China
| | - Xiao Yang
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin Hong Kong SAR China
| | - Cong Ma
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
| |
Collapse
|
67
|
Funke FJ, Schlee S, Sterner R. Validation of aminodeoxychorismate synthase and anthranilate synthase as novel targets for bispecific antibiotics inhibiting conserved protein-protein interactions. Appl Environ Microbiol 2024; 90:e0057224. [PMID: 38700332 PMCID: PMC11107160 DOI: 10.1128/aem.00572-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Multi-resistant bacteria are a rapidly emerging threat to modern medicine. It is thus essential to identify and validate novel antibacterial targets that promise high robustness against resistance-mediating mutations. This can be achieved by simultaneously targeting several conserved function-determining protein-protein interactions in enzyme complexes from prokaryotic primary metabolism. Here, we selected two evolutionary related glutamine amidotransferase complexes, aminodeoxychorismate synthase and anthranilate synthase, that are required for the biosynthesis of folate and tryptophan in most prokaryotic organisms. Both enzymes rely on the interplay of a glutaminase and a synthase subunit that is conferred by a highly conserved subunit interface. Consequently, inhibiting subunit association in both enzymes by one competing bispecific inhibitor has the potential to suppress bacterial proliferation. We comprehensively verified two conserved interface hot-spot residues as potential inhibitor-binding sites in vitro by demonstrating their crucial role in subunit association and enzymatic activity. For in vivo target validation, we generated genomically modified Escherichia coli strains in which subunit association was disrupted by modifying these central interface residues. The growth of such strains was drastically retarded on liquid and solid minimal medium due to a lack of folate and tryptophan. Remarkably, the bacteriostatic effect was observed even in the presence of heat-inactivated human plasma, demonstrating that accessible host metabolite concentrations do not compensate for the lack of folate and tryptophan within the tested bacterial cells. We conclude that a potential inhibitor targeting both enzyme complexes will be effective against a broad spectrum of pathogens and offer increased resilience against antibiotic resistance. IMPORTANCE Antibiotics are indispensable for the treatment of bacterial infections in human and veterinary medicine and are thus a major pillar of modern medicine. However, the exposure of bacteria to antibiotics generates an unintentional selective pressure on bacterial assemblies that over time promotes the development or acquisition of resistance mechanisms, allowing pathogens to escape the treatment. In that manner, humanity is in an ever-lasting race with pathogens to come up with new treatment options before resistances emerge. In general, antibiotics with novel modes of action require more complex pathogen adaptations as compared to chemical derivates of existing entities, thus delaying the emergence of resistance. In this contribution, we use modified Escherichia coli strains to validate two novel targets required for folate and tryptophan biosynthesis that can potentially be targeted by one and the same bispecific protein-protein interaction inhibitor and promise increased robustness against bacterial resistances.
Collapse
Affiliation(s)
- Franziska Jasmin Funke
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Sandra Schlee
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| |
Collapse
|
68
|
Ikhane AO, Sithole SZ, Cele ND, Osunsanmi FO, Mosa RA, Opoku AR. In Vitro Antioxidant and In Silico Evaluation of the Anti-β-Lactamase Potential of the Extracts of Cylindrospermum alatosporum NR125682 and Loriellopsis cavenicola NR117881. Antioxidants (Basel) 2024; 13:608. [PMID: 38790713 PMCID: PMC11117491 DOI: 10.3390/antiox13050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Cyanobacteria in recent times have been touted to be a suitable source for the discovery of novel compounds, including antioxidants and antibiotics, due to their large arsenal of metabolites. This study presents the in vitro antioxidant and in silico evaluation of Cylindrospermum alatosporum NR125682 and Loriellopsis cavenicola NR117881, isolated from freshwater ponds around the campus of the University of Zululand, South Africa. The isolates were confirmed using 16S rRNA. Various crude extracts of the isolated microbes were prepared through sequential extraction using hexane, dichloromethane, and 70% ethanol. The chemical constituents of the crude extracts were elucidated by FTIR and GC-MS spectroscopy. The antioxidant potential of the extracts was determined by the free radical (DPPH, ABTS, •OH, and Fe2+) systems. Molecular docking of the major constituents of the extracts against β-lactamase was also evaluated. GC-MS analysis indicated the dominating presence of n-alkanes. The extracts exhibited varying degrees of antioxidant activity (scavenging of free radicals; an IC50 range of 8-10 µg/mL was obtained for ABTS). A good binding affinity (-6.6, -6.3 Kcal/mol) of some the organic chemicals (diglycerol tetranitrate, and 2,2-dimethyl-5-(3-methyl-2-oxiranyl)cyclohexanone) was obtained following molecular docking. The evaluated antioxidant activities, coupled with the obtained docking score, potentiates the antimicrobial activity of the extracts.
Collapse
Affiliation(s)
- Albert O. Ikhane
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (S.Z.S.); (N.D.C.); (A.R.O.)
| | - Siphesihle Z. Sithole
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (S.Z.S.); (N.D.C.); (A.R.O.)
| | - Nkosinathi D. Cele
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (S.Z.S.); (N.D.C.); (A.R.O.)
| | - Foluso O. Osunsanmi
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (S.Z.S.); (N.D.C.); (A.R.O.)
| | - Rebamang A. Mosa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield 0028, South Africa;
| | - Andrew R. Opoku
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (S.Z.S.); (N.D.C.); (A.R.O.)
| |
Collapse
|
69
|
Nirmal GR, Lin ZC, Chiu TS, Alalaiwe A, Liao CC, Fang JY. Chemo-photothermal therapy of chitosan/gold nanorod clusters for antibacterial treatment against the infection of planktonic and biofilm MRSA. Int J Biol Macromol 2024; 268:131673. [PMID: 38642681 DOI: 10.1016/j.ijbiomac.2024.131673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Bacterial infections trigger inflammation and impede the closure of skin wounds. The misuse of antibiotics exacerbates skin infections by generating multidrug-resistant bacteria. In this study, we developed chemo-photothermal therapy (chemo-PTT) based on near-infrared (NIR)-irradiated chitosan/gold nanorod (GNR) clusters as anti-methicillin-resistant Staphylococcus aureus (MRSA) agents. The nanocomposites exhibited an average size of 223 nm with a surface charge of 36 mV. These plasmonic nanocomposites demonstrated on-demand and rapid hyperthermal action under NIR. The combined effect of positive charge and PTT by NIR-irradiated nanocomposites resulted in a remarkable inhibition rate of 96 % against planktonic MRSA, indicating a synergistic activity compared to chitosan nanoparticles or GNR alone. The nanocomposites easily penetrated the biofilm matrix. The combination of chemical and photothermal treatments by NIR-stimulated clusters significantly damaged the biofilm structure, eradicating MRSA inside the biomass. NIR-irradiated chitosan/GNR clusters increased the skin temperature of mice by 13 °C. The plasmonic nanocomposites induced negligible skin irritation in vivo. In summary, this novel nanosystem demonstrated potent antibacterial effects against planktonic and biofilm MRSA, showcasing the possible efficacy in treating skin infections.
Collapse
Affiliation(s)
- G R Nirmal
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
| | - Tai-Sheng Chiu
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Kweishan, Taoyuan, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
70
|
Zhang Y, Zhang D, Zhao W, Li H, Lu Z, Guo B, Meng X, Zhou X, Yang Y. Design, Synthesis, and Biological Evaluation of Novel Arylomycins against Multidrug-Resistant Gram-Negative Bacteria. J Med Chem 2024; 67:6585-6609. [PMID: 38598362 DOI: 10.1021/acs.jmedchem.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
G0775, an arylomycin-type SPase I inhibitor that is being evaluated in a preclinical study, exhibited potent antibacterial activities against some Gram-negative bacteria but meanwhile suffered defects such as a narrow antibacterial spectrum and poor pharmacokinetic properties. Herein, systematic structural modifications were carried out, including optimization of the macrocyclic skeleton, warheads, and lipophilic regions. The optimization culminated in the discovery of 138f, which showed more potent activity and a broader spectrum against clinically isolated carbapenem-resistant Gram-negative bacteria, especially against Acinetobacter baumannii and Pseudomonas aeruginosa. 162, the free amine of 138f, exhibited an excellent pharmacokinetic profile in rats. In a neutropenic mouse thigh model of infection with multidrug-resistant P. aeruginosa, the potent in vivo antibacterial efficacy of 162 was confirmed and superior to that of G0775 (3.5-log decrease vs 1.1-log decrease in colony-forming unit (CFU)). These results support 162 as a potential antimicrobial agent for further research.
Collapse
Affiliation(s)
- Yinyong Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan China
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhao Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyuan Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengyu Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianli Zhou
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan China
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan China
- Affiliated Hospital, The Third People's Hospital of Chengdu, Southwest Jiaotong University, Chengdu 610000, Sichuan, China
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
71
|
Huber CA. Bacterial and Fungal Pathogens: New Weapons to Fight Them. Antibiotics (Basel) 2024; 13:384. [PMID: 38786113 PMCID: PMC11117228 DOI: 10.3390/antibiotics13050384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
In high-income countries, degenerative diseases are the primary cause of death [...].
Collapse
Affiliation(s)
- Charlotte A Huber
- Centre for Clinical Research, The University of Queensland, Herston, Brisbane, QLD 4029, Australia
| |
Collapse
|
72
|
French S, Guo ABY, Ellis MJ, Deisinger JP, Johnson JW, Rachwalski K, Piquette ZA, Lluka T, Zary M, Gamage S, Magolan J, Brown ED. A platform for predicting mechanism of action based on bacterial transcriptional responses identifies an unusual DNA gyrase inhibitor. Cell Rep 2024; 43:114053. [PMID: 38578824 DOI: 10.1016/j.celrep.2024.114053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
In the search for much-needed new antibacterial chemical matter, a myriad of compounds have been reported in academic and pharmaceutical screening endeavors. Only a small fraction of these, however, are characterized with respect to mechanism of action (MOA). Here, we describe a pipeline that categorizes transcriptional responses to antibiotics and provides hypotheses for MOA. 3D-printed imaging hardware PFIboxes) profiles responses of Escherichia coli promoter-GFP fusions to more than 100 antibiotics. Notably, metergoline, a semi-synthetic ergot alkaloid, mimics a DNA replication inhibitor. In vitro supercoiling assays confirm this prediction, and a potent analog thereof (MLEB-1934) inhibits growth at 0.25 μg/mL and is highly active against quinolone-resistant strains of methicillin-resistant Staphylococcus aureus. Spontaneous suppressor mutants map to a seldom explored allosteric binding pocket, suggesting a mechanism distinct from DNA gyrase inhibitors used in the clinic. In all, the work highlights the potential of this platform to rapidly assess MOA of new antibacterial compounds.
Collapse
Affiliation(s)
- Shawn French
- McMaster University, Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON L8S 4L8, Canada
| | - Amelia Bing Ya Guo
- McMaster University, Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON L8S 4L8, Canada
| | - Michael J Ellis
- McMaster University, Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON L8S 4L8, Canada
| | - Julia P Deisinger
- McMaster University, Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON L8S 4L8, Canada
| | - Jarrod W Johnson
- McMaster University, Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON L8S 4L8, Canada
| | - Kenneth Rachwalski
- McMaster University, Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON L8S 4L8, Canada
| | - Zoë A Piquette
- McMaster University, Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON L8S 4L8, Canada
| | - Telmah Lluka
- McMaster University, Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON L8S 4L8, Canada
| | - Miranda Zary
- McMaster University, Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON L8S 4L8, Canada
| | - Sineli Gamage
- McMaster University, Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON L8S 4L8, Canada
| | - Jakob Magolan
- McMaster University, Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON L8S 4L8, Canada
| | - Eric D Brown
- McMaster University, Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
73
|
Zhang Y, Xue G, Wang F, Zhang J, Xu L, Yu C. The impact of antibiotic exposure on antibiotic resistance gene dynamics in the gut microbiota of inflammatory bowel disease patients. Front Microbiol 2024; 15:1382332. [PMID: 38694799 PMCID: PMC11061493 DOI: 10.3389/fmicb.2024.1382332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/26/2024] [Indexed: 05/04/2024] Open
Abstract
Background While antibiotics are commonly used to treat inflammatory bowel disease (IBD), their widespread application can disturb the gut microbiota and foster the emergence and spread of antibiotic resistance. However, the dynamic changes to the human gut microbiota and direction of resistance gene transmission under antibiotic effects have not been clearly elucidated. Methods Based on the Human Microbiome Project, a total of 90 fecal samples were collected from 30 IBD patients before, during and after antibiotic treatment. Through the analysis workflow of metagenomics, we described the dynamic process of changes in bacterial communities and resistance genes pre-treatment, during and post-treatment. We explored potential consistent relationships between gut microbiota and resistance genes, and established gene transmission networks among species before and after antibiotic use. Results Exposure to antibiotics can induce alterations in the composition of the gut microbiota in IBD patients, particularly a reduction in probiotics, which gradually recovers to a new steady state after cessation of antibiotics. Network analyses revealed intra-phylum transfers of resistance genes, predominantly between taxonomically close organisms. Specific resistance genes showed increased prevalence and inter-species mobility after antibiotic cessation. Conclusion This study demonstrates that antibiotics shape the gut resistome through selective enrichment and promotion of horizontal gene transfer. The findings provide insights into ecological processes governing resistance gene dynamics and dissemination upon antibiotic perturbation of the microbiota. Optimizing antibiotic usage may help limit unintended consequences like increased resistance in gut bacteria during IBD management.
Collapse
Affiliation(s)
- Yufei Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Gaogao Xue
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Fan Wang
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Jing Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lida Xu
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
74
|
Zhao X, Cao X, Qiu H, Liang W, Jiang Y, Wang Q, Wang W, Li C, Li Y, Han B, Tang K, Zhao L, Zhang X, Wang X, Liang H. Rational molecular design converting fascaplysin derivatives to potent broad-spectrum inhibitors against bacterial pathogens via targeting FtsZ. Eur J Med Chem 2024; 270:116347. [PMID: 38552428 DOI: 10.1016/j.ejmech.2024.116347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/21/2024]
Abstract
The filamentous temperature-sensitive mutant Z protein (FtsZ), a key player in bacterial cell division machinery, emerges as an attractive target to tackle the plight posed by the ever growing antibiotic resistance over the world. Therefore in this regard, agents with scaffold diversities and broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens are highly needed. In this study, a new class of marine-derived fascaplysin derivatives has been designed and synthesized by Suzuki-Miyaura cross-coupling. Some compounds exhibited potent bactericidal activities against a panel of Gram-positive (MIC = 0.024-6.25 μg/mL) and Gram-negative (MIC = 1.56-12.5 μg/mL) bacteria including methicillin-resistant S. aureus (MRSA). They exerted their effects by dual action mechanism via disrupting the integrity of the bacterial cell membrane and targeting FtsZ protein. These compounds stimulated polymerization of FtsZ monomers and bundling of the polymers, and stabilized the resulting polymer network, thus leading to the dysfunction of FtsZ in cell division. In addition, these agents showed negligible hemolytic activity and low cytotoxicity to mammalian cells. The studies on docking and molecular dynamics simulations suggest that these inhibitors bind to the hydrophilic inter-domain cleft of FtsZ protein and the insights obtained in this study would facilitate the development of potential drugs with broad-spectrum bioactivities.
Collapse
Affiliation(s)
- Xing Zhao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China; Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Xuanyu Cao
- Health Science Center, Ningbo University, Ningbo, 315211, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Hongda Qiu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Weida Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yinli Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Qiang Wang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Weile Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Chengxi Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yang Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Bowen Han
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Keqi Tang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Lingling Zhao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Xuan Zhang
- Health Science Center, Ningbo University, Ningbo, 315211, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China.
| | - Xiao Wang
- Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
75
|
Coco L, Toci EM, Chen PYT, Drennan CL, Freel Meyers CL. Potent Inhibition of E. coli DXP Synthase by a gem-Diaryl Bisubstrate Analog. ACS Infect Dis 2024; 10:1312-1326. [PMID: 38513073 PMCID: PMC11019550 DOI: 10.1021/acsinfecdis.3c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
New antimicrobial strategies are needed to address pathogen resistance to currently used antibiotics. Bacterial central metabolism is a promising target space for the development of agents that selectively target bacterial pathogens. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) converts pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) to DXP, which is required for synthesis of essential vitamins and isoprenoids in bacterial pathogens. Thus, DXPS is a promising antimicrobial target. Toward this goal, our lab has demonstrated selective inhibition of Escherichia coli DXPS by alkyl acetylphosphonate (alkylAP)-based bisubstrate analogs that exploit the requirement for ternary complex formation in the DXPS mechanism. Here, we present the first DXPS structure with a bisubstrate analog bound in the active site. Insights gained from this cocrystal structure guided structure-activity relationship studies of the bisubstrate scaffold. A low nanomolar inhibitor (compound 8) bearing a gem-dibenzyl glycine moiety conjugated to the acetylphosphonate pyruvate mimic via a triazole-based linker emerged from this study. Compound 8 was found to exhibit slow, tight-binding inhibition, with contacts to E. coli DXPS residues R99 and R478 demonstrated to be important for this behavior. This work has discovered the most potent DXPS inhibitor to date and highlights a new role of R99 that can be exploited in future inhibitor designs toward the development of a novel class of antimicrobial agents.
Collapse
Affiliation(s)
- Lauren
B. Coco
- Department
of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Eucolona M. Toci
- Department
of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Percival Yang-Ting Chen
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Catherine L. Drennan
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- Howard
Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Caren L. Freel Meyers
- Department
of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
76
|
Xu Y, Yang T, Miao Y, Zhang Q, Yang M, Mao C. Injectable Phage-Loaded Microparticles Effectively Release Phages to Kill Methicillin-Resistant Staphylococcus aureus. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17232-17241. [PMID: 38554078 PMCID: PMC11009905 DOI: 10.1021/acsami.3c19443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 01/30/2024] [Indexed: 04/01/2024]
Abstract
The increasing prevalence of bacterial multidrug antibiotic resistance has led to a serious threat to public health, emphasizing the urgent need for alternative antibacterial therapeutics. Lytic phages, a class of viruses that selectively infect and kill bacteria, offer promising potential as alternatives to antibiotics. However, injectable carriers with a desired release profile remain to be developed to deliver them to infection sites. To address this challenge, phage-loaded microparticles (Phage-MPs) have been developed to deliver phages to the infection site and release phages for an optimal therapeutic effect. The Phage-MPs are synthesized by allowing phages to be electrostatically attached onto the porous polyethylenimine-modified silk fibroin microparticles (SF-MPs). The high specific surface area of SF-MPs allows them to efficiently load phages, reaching about 1.25 × 1010 pfu per mg of microparticles. The Phage-MPs could release phages in a controlled manner to achieve potent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Unlike the diffuse biodistribution of free phages post-intraperitoneal injection, Phage-MPs could continuously release phages to effectively boost the local phage concentration at the bacterial infection site after they are intraperitoneally injected into an abdominal MRSA-infected mouse model. In a mouse abdominal MRSA infection model, Phage-MPs significantly reduce the bacterial load in major organs, achieving an efficient therapeutic effect. Furthermore, Phage-MPs demonstrate outstanding biocompatibility both in vitro and in vivo. Overall, our research lays the foundation for a new generation of phage-based therapies to combat antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Yajing Xu
- School
of Materials Science and Engineering, Zhejiang
University, Hangzhou 310058, Zhejiang, China
| | - Tao Yang
- School
of Materials Science and Engineering, Zhejiang
University, Hangzhou 310058, Zhejiang, China
| | - Yao Miao
- School
of Materials Science and Engineering, Zhejiang
University, Hangzhou 310058, Zhejiang, China
| | - Qinglei Zhang
- Institute
of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, China
| | - Mingying Yang
- Institute
of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, China
| | - Chuanbin Mao
- Department
of Biomedical Engineering, The Chinese University
of Hong Kong, Shatin 999077, Hong Kong SAR, China
| |
Collapse
|
77
|
Noto Guillen M, Li C, Rosener B, Mitchell A. Antibacterial activity of nonantibiotics is orthogonal to standard antibiotics. Science 2024; 384:93-100. [PMID: 38484036 DOI: 10.1126/science.adk7368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Numerous nonantibiotic drugs have potent antibacterial activity and can adversely affect the human microbiome. The mechanistic underpinning of this toxicity remains largely unknown. We investigated the antibacterial activity of 200 drugs using genetic screens with thousands of barcoded Escherichia coli knockouts. We analyzed 2 million gene-drug interactions underlying drug-specific toxicity. Network-based analysis of drug-drug similarities revealed that antibiotics clustered into modules that are consistent with the mode of action of their established classes, whereas nonantibiotics remained unconnected. Half of the nonantibiotics clustered into separate modules, potentially revealing shared and unexploited targets for new antimicrobials. Analysis of efflux systems revealed that they widely affect antibiotics and nonantibiotics alike, suggesting that the impact of nonantibiotics on antibiotic cross-resistance should be investigated closely in vivo.
Collapse
Affiliation(s)
- Mariana Noto Guillen
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Carmen Li
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Brittany Rosener
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Amir Mitchell
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
78
|
Mermans F, De Baets H, García-Timermans C, Teughels W, Boon N. Unlocking the mechanism of action: a cost-effective flow cytometry approach for accelerating antimicrobial drug development. Microbiol Spectr 2024; 12:e0393123. [PMID: 38483479 PMCID: PMC10986550 DOI: 10.1128/spectrum.03931-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Antimicrobial resistance is one of the greatest challenges to global health. While the development of new antimicrobials can combat resistance, low profitability reduces the number of new compounds brought to market. Elucidating the mechanism of action is crucial for developing new antimicrobials. This can become expensive as there are no universally applicable pipelines. Phenotypic heterogeneity of microbial populations resulting from antimicrobial treatment can be captured through flow cytometric fingerprinting. Since antimicrobials are classified into limited groups, the mechanism of action of known compounds can be used for predictive modeling. We demonstrate a cost-effective flow cytometry approach for determining the mechanism of action of new compounds. Cultures of Actinomyces viscosus and Fusobacterium nucleatum were treated with different antimicrobials and measured by flow cytometry. A Gaussian mixture mask was applied over the data to construct phenotypic fingerprints. Fingerprints were used to assess statistical differences between mechanism of action groups and to train random forest classifiers. Classifiers were then used to predict the mechanism of action of cephalothin. Statistical differences were found among the different mechanisms of action groups. Pairwise comparison showed statistical differences for 35 out of 45 pairs for A. viscosus and for 32 out of 45 pairs for F. nucleatum after 3.5 h of treatment. The best-performing random forest classifier yielded a Matthews correlation coefficient of 0.92 and the mechanism of action of cephalothin could be successfully predicted. These findings suggest that flow cytometry can be a cheap and fast alternative for determining the mechanism of action of new antimicrobials.IMPORTANCEIn the context of the emerging threat of antimicrobial resistance, the development of novel antimicrobials is a commonly employed strategy to combat resistance. Elucidating the mechanism of action of novel compounds is crucial in this development but can become expensive, as no universally applicable pipelines currently exist. We present a novel flow cytometry-based approach capable of determining the mechanism of action swiftly and cost-effectively. The workflow aims to accelerate drug discovery and could help facilitate a more targeted approach for antimicrobial treatment of patients.
Collapse
Affiliation(s)
- Fabian Mermans
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- Department of Oral Health Sciences, KU Leuven & Dentistry (Periodontology), University Hospitals Leuven, Leuven, Belgium
| | - Hanna De Baets
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Cristina García-Timermans
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Wim Teughels
- Department of Oral Health Sciences, KU Leuven & Dentistry (Periodontology), University Hospitals Leuven, Leuven, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
79
|
Ngoma MT, Sitali D, Mudenda S, Mukuma M, Bumbangi FN, Bunuma E, Skjerve E, Muma JB. Community antibiotic consumption and associated factors in Lusaka district of Zambia: findings and implications for antimicrobial resistance and stewardship. JAC Antimicrob Resist 2024; 6:dlae034. [PMID: 38449513 PMCID: PMC10914457 DOI: 10.1093/jacamr/dlae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Antimicrobial resistance (AMR) is a global public health crisis. This study assessed the general public's consumption of antibiotics and associated factors in the Lusaka district of Zambia. Methods This cross-sectional study was conducted among 2038 participants between December 2022 and January 2023. Data were analysed using Stata 13.0. Multivariable regression techniques were used to determine the factors that influenced antibiotic consumption. Results Of the 2038 participants, 53.4% were female, and 51.5% had attended at least secondary school. Antibiotic use was 99.2%, of which 40.9% were appropriately used. Overall, 79.1% of antibiotics were prescribed in hospitals, while 20.9% were used from leftovers and accessed without prescriptions. This study found that the appropriate use of antibiotics was associated with being female, being aged 35 years and above, attaining secondary school or tertiary education, having a monthly expenditure of 195 USD and above, being aware that antibiotics were not the same as painkillers, and being confident that when someone was hospitalized, they would get well. Conclusions This study found that the appropriate use of antibiotics was low, and this is an urgent public health issue requiring community engagement in tackling AMR and adherence to treatment guidelines in healthcare facilities. Additionally, there is a need to implement and strengthen antimicrobial stewardship programmes in healthcare facilities to promote the rational use of antibiotics in Zambia. There is also a need to heighten community awareness campaigns and educational activities on the appropriate use of antibiotics.
Collapse
Affiliation(s)
- Maty Tsumbu Ngoma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Doreen Sitali
- Department of Health Promotion, School of Public Health, University of Zambia, Lusaka, Zambia
| | - Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Mercy Mukuma
- Department of Food Science, School of Agricultural Sciences and Nutrition, University of Zambia, Lusaka, Zambia
| | - Flavien Nsoni Bumbangi
- Department of Medicine and Clinical Sciences, School of Medicine, Eden University, Lusaka, Zambia
| | - Emmanuel Bunuma
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Eystein Skjerve
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| |
Collapse
|
80
|
Li J, Han N, Li Y, Zhao F, Xiong W, Zeng Z. The synergistic antibacterial activity and mechanism of colistin-oxethazaine combination against gram-negative pathogens. Front Pharmacol 2024; 15:1363441. [PMID: 38576480 PMCID: PMC10991713 DOI: 10.3389/fphar.2024.1363441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
Background The rapid spread of bacteria with plasmid-mediated resistance to antibiotics poses a serious threat to public health. The search for potential compounds that can increase the antibacterial activity of existing antibiotics is a promising strategy for addressing this issue. Methods Synergistic activity of the FDA-approved agent oxethazine combined with colistin was investigated in vitro using checkerboard assays and time-kill curves. The synergistic mechanisms of their combination of oxethazine and colistin was explored by fluorescent dye, scanning electron microscopy (SEM) and LC-MS/MS. The synergistic efficacy was evaluated in vivo by the Galleria mellonella and mouse sepsis models. Results In this study, we found that oxethazine could effectively enhance the antibacterial activity of colistin against both mcr-positive and -negative pathogens, and mechanistic assays revealed that oxethazine could improve the ability of colistin to destruct bacterial outer membrane and cytoplasmic membrane permeability. In addition, their combination triggered the accumulation of reactive oxygen species causing additional damage to the membrane structure resulting in cell death. Furthermore, oxethazine significantly enhanced the therapeutic efficacy of colistin in two animal models. Conclusion These results suggested that oxethazine, as a promising antibiotic adjuvant, can effectively enhance colistin activity, providing a potential strategy for treating multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Jie Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Ning Han
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Yangyang Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Feifei Zhao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| |
Collapse
|
81
|
Singh A, Ottavi S, Krieger I, Planck K, Perkowski A, Kaneko T, Davis AM, Suh C, Zhang D, Goullieux L, Alex A, Roubert C, Gardner M, Preston M, Smith DM, Ling Y, Roberts J, Cautain B, Upton A, Cooper CB, Serbina N, Tanvir Z, Mosior J, Ouerfelli O, Yang G, Gold BS, Rhee KY, Sacchettini JC, Fotouhi N, Aubé J, Nathan C. Redirecting raltitrexed from cancer cell thymidylate synthase to Mycobacterium tuberculosis phosphopantetheinyl transferase. SCIENCE ADVANCES 2024; 10:eadj6406. [PMID: 38489355 PMCID: PMC10942122 DOI: 10.1126/sciadv.adj6406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024]
Abstract
There is a compelling need to find drugs active against Mycobacterium tuberculosis (Mtb). 4'-Phosphopantetheinyl transferase (PptT) is an essential enzyme in Mtb that has attracted interest as a potential drug target. We optimized a PptT assay, used it to screen 422,740 compounds, and identified raltitrexed, an antineoplastic antimetabolite, as the most potent PptT inhibitor yet reported. While trying unsuccessfully to improve raltitrexed's ability to kill Mtb and remove its ability to kill human cells, we learned three lessons that may help others developing antibiotics. First, binding of raltitrexed substantially changed the configuration of the PptT active site, complicating molecular modeling of analogs based on the unliganded crystal structure or the structure of cocrystals with inhibitors of another class. Second, minor changes in the raltitrexed molecule changed its target in Mtb from PptT to dihydrofolate reductase (DHFR). Third, the structure-activity relationship for over 800 raltitrexed analogs only became interpretable when we quantified and characterized the compounds' intrabacterial accumulation and transformation.
Collapse
Affiliation(s)
- Amrita Singh
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Samantha Ottavi
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Inna Krieger
- Department of Biochemistry and Biophysics, Texas Agricultural and Mechanical University, College Station, TX 77843, USA
| | - Kyle Planck
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Andrew Perkowski
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Takushi Kaneko
- Global Alliance for TB Drug Development, New York, NY 10005, USA
| | | | - Christine Suh
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10021, USA
| | - David Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10021, USA
| | | | - Alexander Alex
- AMG Consultants Limited, Camburgh House, 27 New Dover Road, Canterbury, Kent, CT1 3DN, UK
- Evenor Consulting Limited, The New Barn, Mill Lane, Eastry, Kent CT13 0JW, UK
| | | | - Mark Gardner
- AMG Consultants Limited, Camburgh House, 27 New Dover Road, Canterbury, Kent, CT1 3DN, UK
| | - Marian Preston
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Dave M. Smith
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Yan Ling
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Bastien Cautain
- Evotec ID (Lyon), SAS 40 Avenue Tony Garnier, Lyon 69001, France
| | - Anna Upton
- Evotec ID (Lyon), SAS 40 Avenue Tony Garnier, Lyon 69001, France
| | | | - Natalya Serbina
- Global Alliance for TB Drug Development, New York, NY 10005, USA
| | - Zaid Tanvir
- Global Alliance for TB Drug Development, New York, NY 10005, USA
| | - John Mosior
- Department of Biochemistry and Biophysics, Texas Agricultural and Mechanical University, College Station, TX 77843, USA
| | - Ouathek Ouerfelli
- Organic Synthesis Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Guangli Yang
- Organic Synthesis Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ben S. Gold
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Kyu Y. Rhee
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas Agricultural and Mechanical University, College Station, TX 77843, USA
| | - Nader Fotouhi
- Global Alliance for TB Drug Development, New York, NY 10005, USA
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
82
|
Chen S, Qin S, Li R, Qu Y, Ampomah-Wireko M, Nininahazwe L, Wang M, Gao C, Zhang E. Design, synthesis and antibacterial evaluation of low toxicity amphiphilic-cephalosporin derivatives. Eur J Med Chem 2024; 268:116293. [PMID: 38447461 DOI: 10.1016/j.ejmech.2024.116293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Global public health is facing a serious problem as a result of the rise in antibiotic resistance and the decline in the discovery of new antibiotics. In this study, two series of amphiphilic-cephalosporins were designed and synthesized, several of which showed good antibacterial activity against both Gram-positive and Gram-negative bacteria. Structure-activity relationships indicated that the length of the hydrophobic alkyl chain significantly affects the antibacterial activity against Gram-negative bacteria. The best compound 2d showed high activity against drug-susceptible Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) with MICs of 0.5 and 2-4 μg/mL, respectively. Furthermore, 2d remained active in complex mammalian body fluids and had a longer post-antibiotic effect (PAE) than vancomycin. Mechanism studies indicated that compound 2d lacks membrane-damaging properties and can target penicillin-binding proteins to disrupt bacterial cell wall structure, inhibit the metabolic activity and induce the accumulation of reactive oxygen species (ROS) in bacteria. Compound 2d showed minimal drug resistance and was nontoxic to HUVEC and HBZY-1 cells with CC50 > 128 μg/mL. These findings suggest that 2d is a promising drug candidate for treating bacterial infections.
Collapse
Affiliation(s)
- Shengcong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ruirui Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ye Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lauraine Nininahazwe
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Meng Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Chen Gao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - En Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China; Pingyuan Laboratory (Zhengzhou University), PR China.
| |
Collapse
|
83
|
Needham P, Page RC, Yehl K. Phage-layer interferometry: a companion diagnostic for phage therapy and a bacterial testing platform. Sci Rep 2024; 14:6026. [PMID: 38472239 PMCID: PMC10933294 DOI: 10.1038/s41598-024-55776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
The continuing and rapid emergence of antibiotic resistance (AMR) calls for innovations in antimicrobial therapies. A promising, 're-emerging' approach is the application of bacteriophage viruses to selectively infect and kill pathogenic bacteria, referred to as phage therapy. In practice, phage therapy is personalized and requires companion diagnostics to identify efficacious phages, which are then formulated into a therapeutic cocktail. The predominant means for phage screening involves optical-based assays, but these methods cannot be carried out in complex media, such as colored solutions, inhomogeneous mixtures, or high-viscosity samples, which are often conditions encountered in vivo. Moreover, these assays cannot distinguish phage binding and lysis parameters, which are important for standardizing phage cocktail formulation. To address these challenges, we developed Phage-layer Interferometry (PLI) as a companion diagnostic. Herein, PLI is assessed as a quantitative phage screening method and prototyped as a bacterial detection platform. Importantly, PLI is amenable to automation and is functional in complex, opaque media, such as baby formula. Due to these newfound capabilities, we foresee immediate and broad impact of PLI for combating AMR and protecting against foodborne illnesses.
Collapse
Affiliation(s)
- Patrick Needham
- Department of Chemistry and Biochemistry, Miami University, Oxford, 45056, USA
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, 45056, USA
| | - Kevin Yehl
- Department of Chemistry and Biochemistry, Miami University, Oxford, 45056, USA.
| |
Collapse
|
84
|
Jeong Y, Ahmad S, Irudayaraj J. Dynamic Effect of β-Lactam Antibiotic Inactivation Due to the Inter- and Intraspecies Interaction of Drug-Resistant Microbes. ACS Biomater Sci Eng 2024; 10:1461-1472. [PMID: 38315631 PMCID: PMC10936524 DOI: 10.1021/acsbiomaterials.3c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
The presence of β-lactamase positive microorganisms imparts a pharmacological effect on a variety of organisms that can impact drug efficacy by influencing the function or composition of bacteria. Although studies to assess dynamic intra- and interspecies communication with bacterial communities exist, the efficacy of drug treatment and quantitative assessment of multiorganism response is not well understood due to the lack of technological advances that can be used to study coculture interactions in a dynamic format. In this study, we investigate how β-lactamase positive microorganisms can neutralize the effect of β-lactam antibiotics in a dynamic format at the inter- and intraspecies level using microbial bead technology. Three interactive models for the biological compartmentalization of organisms were demonstrated to evaluate the effect of β-lactam antibiotics on coculture systems. Our model at the intraspecies level attempts to mimic the biofilm matrix more closely as a community-level feature of microorganisms, which acknowledges the impact of nondrug-resistant species in shaping the dynamic response. In particular, the results of intraspecies studies are highly supportive of the biofilm mode of bacterial growth, which can provide structural support and protect the bacteria from an assault on host or environmental factors. Our findings also indicate that β-lactamase positive bacteria can neutralize the cytotoxic effect of β-lactam antibiotics at the interspecies level when cocultured with cancer cells. Results were validated using β-lactamase positive bacteria isolated from environmental niches, which can trigger phenotypical alteration of β-lactams when cocultured with other organisms. Our compartmentalization strategy acts as an independent ecosystem and provides a new avenue for multiscale studies to assess intra- and interspecies interactions.
Collapse
Affiliation(s)
- Yoon Jeong
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Cancer
Center at Illinois, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Saeed Ahmad
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Joseph Irudayaraj
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Cancer
Center at Illinois, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
- Carle
R. Woese Institute for Genomic Biology, Beckman Institute, Urbana, Illinois 61801, United States
| |
Collapse
|
85
|
Alexandrova LA, Oskolsky IA, Makarov DA, Jasko MV, Karpenko IL, Efremenkova OV, Vasilyeva BF, Avdanina DA, Ermolyuk AA, Benko EE, Kalinin SG, Kolganova TV, Berzina MY, Konstantinova ID, Chizhov AO, Kochetkov SN, Zhgun AA. New Biocides Based on N4-Alkylcytidines: Effects on Microorganisms and Application for the Protection of Cultural Heritage Objects of Painting. Int J Mol Sci 2024; 25:3053. [PMID: 38474298 DOI: 10.3390/ijms25053053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
The rapid increase in the antibiotic resistance of microorganisms, capable of causing diseases in humans as destroying cultural heritage sites, is a great challenge for modern science. In this regard, it is necessary to develop fundamentally novel and highly active compounds. In this study, a series of N4-alkylcytidines, including 5- and 6-methylcytidine derivatives, with extended alkyl substituents, were obtained in order to develop a new generation of antibacterial and antifungal biocides based on nucleoside derivatives. It has been shown that N4-alkyl 5- or 6-methylcytidines effectively inhibit the growth of molds, isolated from the paintings in the halls of the Ancient Russian Paintings of the State Tretyakov Gallery, Russia, Moscow. The novel compounds showed activity similar to antiseptics commonly used to protect works of art, such as benzalkonium chloride, to which a number of microorganisms have acquired resistance. It was also shown that the activity of N4-alkylcytidines is comparable to that of some antibiotics used in medicine to fight Gram-positive bacteria, including resistant strains of Staphylococcus aureus and Mycobacterium smegmatis. N4-dodecyl-5- and 6-methylcytidines turned out to be the best. This compound seems promising for expanding the palette of antiseptics used in painting, since quite often the destruction of painting materials is caused by joint fungi and bacteria infection.
Collapse
Affiliation(s)
| | - Ivan A Oskolsky
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov Str., Moscow 119991, Russia
| | - Dmitry A Makarov
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov Str., Moscow 119991, Russia
| | - Maxim V Jasko
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov Str., Moscow 119991, Russia
| | - Inna L Karpenko
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov Str., Moscow 119991, Russia
| | - Olga V Efremenkova
- Gause Institute of New Antibiotics, 11 Bol'shaya Pirogovskaya, Moscow 119021, Russia
| | - Byazilya F Vasilyeva
- Gause Institute of New Antibiotics, 11 Bol'shaya Pirogovskaya, Moscow 119021, Russia
| | - Darya A Avdanina
- Research Center of Biotechnology RAS, 33 Leninsky Ave, Moscow 119071, Russia
| | - Anna A Ermolyuk
- Research Center of Biotechnology RAS, 33 Leninsky Ave, Moscow 119071, Russia
| | - Elizaveta E Benko
- Research Center of Biotechnology RAS, 33 Leninsky Ave, Moscow 119071, Russia
| | - Stanislav G Kalinin
- Research Center of Biotechnology RAS, 33 Leninsky Ave, Moscow 119071, Russia
| | | | - Maria Ya Berzina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Irina D Konstantinova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Alexander O Chizhov
- Zelinsky Institute of Organic Chemistry RAS 47 Leninsky Ave, Moscow 119991, Russia
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov Str., Moscow 119991, Russia
| | - Alexander A Zhgun
- Research Center of Biotechnology RAS, 33 Leninsky Ave, Moscow 119071, Russia
| |
Collapse
|
86
|
Junk L, Schmiedel VM, Guha S, Fischel K, Greb P, Vill K, Krisilia V, van Geelen L, Rumpel K, Kaur P, Krishnamurthy RV, Narayanan S, Shandil RK, Singh M, Kofink C, Mantoulidis A, Biber P, Gmaschitz G, Kazmaier U, Meinhart A, Leodolter J, Hoi D, Junker S, Morreale FE, Clausen T, Kalscheuer R, Weinstabl H, Boehmelt G. Homo-BacPROTAC-induced degradation of ClpC1 as a strategy against drug-resistant mycobacteria. Nat Commun 2024; 15:2005. [PMID: 38443338 PMCID: PMC10914731 DOI: 10.1038/s41467-024-46218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/12/2024] [Indexed: 03/07/2024] Open
Abstract
Antimicrobial resistance is a global health threat that requires the development of new treatment concepts. These should not only overcome existing resistance but be designed to slow down the emergence of new resistance mechanisms. Targeted protein degradation, whereby a drug redirects cellular proteolytic machinery towards degrading a specific target, is an emerging concept in drug discovery. We are extending this concept by developing proteolysis targeting chimeras active in bacteria (BacPROTACs) that bind to ClpC1, a component of the mycobacterial protein degradation machinery. The anti-Mycobacterium tuberculosis (Mtb) BacPROTACs are derived from cyclomarins which, when dimerized, generate compounds that recruit and degrade ClpC1. The resulting Homo-BacPROTACs reduce levels of endogenous ClpC1 in Mycobacterium smegmatis and display minimum inhibitory concentrations in the low micro- to nanomolar range in mycobacterial strains, including multiple drug-resistant Mtb isolates. The compounds also kill Mtb residing in macrophages. Thus, Homo-BacPROTACs that degrade ClpC1 represent a different strategy for targeting Mtb and overcoming drug resistance.
Collapse
Affiliation(s)
- Lukas Junk
- Organic Chemistry I, Saarland University, Campus Building C4.2, 66123, Saarbrücken, Germany.
| | - Volker M Schmiedel
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Somraj Guha
- Organic Chemistry I, Saarland University, Campus Building C4.2, 66123, Saarbrücken, Germany
| | - Katharina Fischel
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Peter Greb
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Kristin Vill
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical Biology and Biotechnology, 40225, Düsseldorf, Germany
| | - Violetta Krisilia
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical Biology and Biotechnology, 40225, Düsseldorf, Germany
| | - Lasse van Geelen
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical Biology and Biotechnology, 40225, Düsseldorf, Germany
| | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Parvinder Kaur
- Foundation for Neglected Disease Research, Plot No. 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru, 561203, Karnataka, India
| | - Ramya V Krishnamurthy
- Foundation for Neglected Disease Research, Plot No. 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru, 561203, Karnataka, India
| | - Shridhar Narayanan
- Foundation for Neglected Disease Research, Plot No. 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru, 561203, Karnataka, India
| | - Radha Krishan Shandil
- Foundation for Neglected Disease Research, Plot No. 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru, 561203, Karnataka, India
| | - Mayas Singh
- Foundation for Neglected Disease Research, Plot No. 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru, 561203, Karnataka, India
| | - Christiane Kofink
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Andreas Mantoulidis
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Philipp Biber
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Gerhard Gmaschitz
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Uli Kazmaier
- Organic Chemistry I, Saarland University, Campus Building C4.2, 66123, Saarbrücken, Germany
| | - Anton Meinhart
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Julia Leodolter
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - David Hoi
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Sabryna Junker
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | | | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Rainer Kalscheuer
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical Biology and Biotechnology, 40225, Düsseldorf, Germany
| | - Harald Weinstabl
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria.
| | - Guido Boehmelt
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria.
| |
Collapse
|
87
|
Wang X, Wang D, Lu H, Wang X, Wang X, Su J, Xia G. Strategies to Promote the Journey of Nanoparticles Against Biofilm-Associated Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305988. [PMID: 38178276 DOI: 10.1002/smll.202305988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Indexed: 01/06/2024]
Abstract
Biofilm-associated infections are one of the most challenging healthcare threats for humans, accounting for 80% of bacterial infections, leading to persistent and chronic infections. The conventional antibiotics still face their dilemma of poor therapeutic effects due to the high tolerance and resistance led by bacterial biofilm barriers. Nanotechnology-based antimicrobials, nanoparticles (NPs), are paid attention extensively and considered as promising alternative. This review focuses on the whole journey of NPs against biofilm-associated infections, and to clarify it clearly, the journey is divided into four processes in sequence as 1) Targeting biofilms, 2) Penetrating biofilm barrier, 3) Attaching to bacterial cells, and 4) Translocating through bacterial cell envelope. Through outlining the compositions and properties of biofilms and bacteria cells, recent advances and present the strategies of each process are comprehensively discussed to combat biofilm-associated infections, as well as the combined strategies against these infections with drug resistance, aiming to guide the rational design and facilitate wide application of NPs in biofilm-associated infections.
Collapse
Affiliation(s)
- Xiaobo Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Hongwei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Jiayi Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| |
Collapse
|
88
|
El-Fateh M, Chatterjee A, Zhao X. A systematic review of peptide nucleic acids (PNAs) with antibacterial activities: Efficacy, potential and challenges. Int J Antimicrob Agents 2024; 63:107083. [PMID: 38185398 DOI: 10.1016/j.ijantimicag.2024.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Peptide nucleic acids (PNAs) are synthetic molecules that are like DNA/RNA, but with different building blocks. PNAs target and bind to mRNAs and disrupt the function of a targeted gene, hence they have been studied as potential antibacterials. The aim of this systematic review was to provide an in-depth analysis of the current status of PNAs as antibacterial agents, define the characteristics of the effective PNA constructs, and address the gap in advancing PNAs to become clinically competent agents. Following the PRISMA model, four electronic databases were searched: Web of Science, PubMed, SciFinder and Scopus. A total of 627 articles published between 1994 and 2023 were found. After screening and a rigorous selection process using explicit inclusion and exclusion criteria, 65 scientific articles were selected, containing 656 minimum inhibitory concentration (MIC) data. The antibacterial activity of PNAs was assessed against 20 bacterial species. The most studied Gram-negative and Gram-positive bacteria were Escherichia coli (n=266) and Staphylococcus aureus (n=53), respectively. In addition, the effect of PNA design, including construct length, binding location, and carrier agents, on antibacterial activity was shown. Finally, antibacterial test models to assess the inhibitory effects of PNAs were examined, emphasising gaps and prospects. This systematic review provides a comprehensive assessment of the potential of PNAs as antibacterial agents and offers valuable insights for researchers and clinicians seeking novel therapeutic strategies in the context of increasing rates of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Mohamed El-Fateh
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada, H9X3V9; Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, 35516, El-Dakhelia, Egypt; Antimicrobial Regeneration Consortium Labs, Louisville, CO, 80027, USA
| | - Anushree Chatterjee
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA; Antimicrobial Regeneration Consortium Labs, Louisville, CO, 80027, USA
| | - Xin Zhao
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada, H9X3V9; Antimicrobial Regeneration Consortium Labs, Louisville, CO, 80027, USA.
| |
Collapse
|
89
|
Sun R, You R, Yu X, Zhao D, Li L. Discovery and Synthesis of a Gram-Negative-Active Cationic Lipopeptide Antibiotic Inspired by Primary Sequences from Underexplored Gram-Negative Bacteria. Org Lett 2024; 26:1348-1352. [PMID: 38341869 DOI: 10.1021/acs.orglett.3c04232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
The emergence of multidrug-resistant Gram-negative pathogens poses a serious threat to global health. Gram-negative bacteria have become increasingly recognized as underexplored sources of Gram-negative-active cationic lipopeptide (CLP) antibiotics. We systematically screened 8982 sequenced genomes from 42 underexplored Gram-negative bacterial genera and identified eight potential CLP biosynthetic gene clusters. Their predicted products were rapidly accessed by solid-phase total synthesis, which led to the novel antibiotic chospeptin with good activities against clinically isolated colistin-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Runze Sun
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ruixiang You
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Xuchang Yu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Di Zhao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lei Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
90
|
Shen T, Guo J, Han Z, Zhang G, Liu Q, Si X, Wang D, Wu S, Xia J. AutoMolDesigner for Antibiotic Discovery: An AI-Based Open-Source Software for Automated Design of Small-Molecule Antibiotics. J Chem Inf Model 2024; 64:575-583. [PMID: 38265916 DOI: 10.1021/acs.jcim.3c01562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Discovery of small-molecule antibiotics with novel chemotypes serves as one of the essential strategies to address antibiotic resistance. Although a considerable number of computational tools committed to molecular design have been reported, there is a deficit in holistic and efficient tools specifically developed for small-molecule antibiotic discovery. To address this issue, we report AutoMolDesigner, a computational modeling software dedicated to small-molecule antibiotic design. It is a generalized framework comprising two functional modules, i.e., generative-deep-learning-enabled molecular generation and automated machine-learning-based antibacterial activity/property prediction, wherein individually trained models and curated datasets are out-of-the-box for whole-cell-based antibiotic screening and design. It is open-source, thus allowing for the incorporation of new features for flexible use. Unlike most software programs based on Linux and command lines, this application equipped with a Qt-based graphical user interface can be run on personal computers with multiple operating systems, making it much easier to use for experimental scientists. The software and related materials are freely available at GitHub (https://github.com/taoshen99/AutoMolDesigner) and Zenodo (https://zenodo.org/record/10097899).
Collapse
Affiliation(s)
- Tao Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiale Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zunsheng Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Gao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qingxin Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Xinxin Si
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Dongmei Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
91
|
Wang X, Deng Z, Gao J. Exploring the antibiotic potential of cultured 'unculturable' bacteria. Trends Microbiol 2024; 32:124-127. [PMID: 38102034 DOI: 10.1016/j.tim.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
In response to the severe global antibiotic resistance crisis, this forum delves into 'unculturable' bacteria, believed to be a promising source of novel antibiotics. We propose remarkable drug discovery strategies that leverage these bacteria's diversity, aspiring to transform resistance management. The urgent call for new antibiotics accentuates the essentiality of further research.
Collapse
Affiliation(s)
- Xiaozhao Wang
- Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiangtao Gao
- Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
92
|
Nie M, Alejandro Valdes-Pena M, Frohock BH, Smits E, Daiker JC, Gilbertie JM, Schnabel LV, Pierce JG. Expanded library of novel 2,3-pyrrolidinedione analogues exhibit anti-biofilm activity. Bioorg Med Chem Lett 2024; 99:129609. [PMID: 38191097 PMCID: PMC10872213 DOI: 10.1016/j.bmcl.2024.129609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
Herein we report a new library of 2,3-pyrrolidinedione analogues that expands on our previous report on the antimicrobial studies of this heterocyclic scaffold. The novel 2,3-pyrrolidinediones reported herein have been evaluated against S. aureus and methicillin-resistant S. aureus (MRSA) biofilms, and this work constitutes our first report on the antibiofilm properties of this class of compounds. The antibiofilm activity of these 2,3-pyrrolidinediones has been assessed through minimum biofilm eradication concentration (MBEC) and minimum biofilm inhibition concentration (MBIC) assays. The compounds displayed antibiofilm properties and represent intriguing scaffolds for further optimization and development.
Collapse
Affiliation(s)
- Minhua Nie
- Department of Chemistry, College of Sciences, NC State University, Raleigh, NC 27695, USA; Comparative Medicine Institute, NC State University, Raleigh, NC 27695, USA
| | - M Alejandro Valdes-Pena
- Department of Chemistry, College of Sciences, NC State University, Raleigh, NC 27695, USA; Comparative Medicine Institute, NC State University, Raleigh, NC 27695, USA
| | - Bram H Frohock
- Department of Chemistry, College of Sciences, NC State University, Raleigh, NC 27695, USA; Comparative Medicine Institute, NC State University, Raleigh, NC 27695, USA
| | - Emma Smits
- Department of Chemistry, College of Sciences, NC State University, Raleigh, NC 27695, USA; Comparative Medicine Institute, NC State University, Raleigh, NC 27695, USA
| | - Jennifer C Daiker
- Department of Chemistry, College of Sciences, NC State University, Raleigh, NC 27695, USA; Department of Clinical Sciences College of Veterinary Medicine, NC State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; Comparative Medicine Institute, NC State University, Raleigh, NC 27695, USA
| | - Jessica M Gilbertie
- Department of Clinical Sciences College of Veterinary Medicine, NC State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; Comparative Medicine Institute, NC State University, Raleigh, NC 27695, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences College of Veterinary Medicine, NC State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; Comparative Medicine Institute, NC State University, Raleigh, NC 27695, USA
| | - Joshua G Pierce
- Department of Chemistry, College of Sciences, NC State University, Raleigh, NC 27695, USA; Comparative Medicine Institute, NC State University, Raleigh, NC 27695, USA.
| |
Collapse
|
93
|
Messenger SR, McGuinniety EMR, Stevenson LJ, Owen JG, Challis GL, Ackerley DF, Calcott MJ. Metagenomic domain substitution for the high-throughput modification of nonribosomal peptides. Nat Chem Biol 2024; 20:251-260. [PMID: 37996631 DOI: 10.1038/s41589-023-01485-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023]
Abstract
The modular nature of nonribosomal peptide biosynthesis has driven efforts to generate peptide analogs by substituting amino acid-specifying domains within nonribosomal peptide synthetase (NRPS) enzymes. Rational NRPS engineering has increasingly focused on finding evolutionarily favored recombination sites for domain substitution. Here we present an alternative evolution-inspired approach that involves large-scale diversification and screening. By amplifying amino acid-specifying domains en masse from soil metagenomic DNA, we substitute more than 1,000 unique domains into a pyoverdine NRPS. Initial fluorescence and mass spectrometry screens followed by sequencing reveal more than 100 functional domain substitutions, collectively yielding 16 distinct pyoverdines as major products. This metagenomic approach does not require the high success rates demanded by rational NRPS engineering but instead enables the exploration of large numbers of substitutions in parallel. This opens possibilities for the discovery and production of nonribosomal peptides with diverse biological activities.
Collapse
Affiliation(s)
- Sarah R Messenger
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Edward M R McGuinniety
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Luke J Stevenson
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Jeremy G Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, Australia
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand.
| | - Mark J Calcott
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
94
|
Bonjorno AF, Pavan AR, Fernandes GFS, Scarim CB, Castagnolo D, Dos Santos JL. BacPROTACs targeting Clp protease: a promising strategy for anti-mycobacterial drug discovery. Front Chem 2024; 12:1358539. [PMID: 38357296 PMCID: PMC10864484 DOI: 10.3389/fchem.2024.1358539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Tuberculosis (TB) has claimed more lives over the course of two millennia than any other infectious disease worldwide. In 2021, the World Health Organization (WHO) estimated that 10.6 million people were diagnosed with TB, resulting in the deaths of 1.4 million HIV-negative individuals. The emergence of multidrug-resistant TB (MDR-TB), defined as resistance to at least rifampicin (RIF) and isoniazid (INH), and extensively drug-resistant TB (XDR-TB), poses the primary challenge to overcome in the coming years. We have recently conducted an extensive analysis of investments and research endeavours in the field, with the overarching objective of achieving the established milestone of TB eradication by the year 2030. Over the past several years, there has been notable progress in advancing a multitude of promising compounds, each possessing distinct mechanisms of action, into clinical phases of development. However, it is worth noting that strains of mycobacteria resistant to current antitubercular drugs have already emerged for some of these compounds The exploration of the innovative Proteolytic Target Chimeras (PROTACs) protein degradation approach has emerged as a viable avenue for the discovery of novel antimicrobials. While the ubiquitin system is exclusive to eukaryotic cells, certain bacteria use a similar degradation system that relies on the recognition of phosphorylated arginine residues (pArg) by the ClpC:ClpP (ClpCP) protease, thereby leading to protein degradation. In this opinion article, we have described and analized the advances in the use of PROTACs that leverage bacterial proteolytic machinery (BacPROTACs) to design new antitubercular agents. Scope Statement. The development of novel pharmaceuticals for tuberculosis treatment is deemed urgently necessary due to the emergence of resistant strains. In this context, the introduction of new technologies capable of alleviating the disease and attaining the objectives outlined by the World Health Organization is imperative. Among the innovative strategies, the degradation of proteins that are crucial for the survival of the bacillus holds promise for generating new medications, particularly those that are effective at treating latent (non-replicating) Mycobacterium tuberculosis. Within this perspective, we present the advancements and obstacles encountered in the exploration of new BacPROTAC compounds, with the intention of encouraging research and illuminating challenges associated with the implementation of BacPROTACs to address to the global tuberculosis crisis.
Collapse
Affiliation(s)
| | - Aline Renata Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Cauê Benito Scarim
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Daniele Castagnolo
- Department of Chemistry, University College London, London, United Kingdom
| | | |
Collapse
|
95
|
Kim DY, Patel SKS, Rasool K, Lone N, Bhatia SK, Seth CS, Ghodake GS. Bioinspired silver nanoparticle-based nanocomposites for effective control of plant pathogens: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168318. [PMID: 37956842 DOI: 10.1016/j.scitotenv.2023.168318] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/15/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Plant pathogens, including bacteria, fungi, and viruses, pose significant challenges to the farming community due to their extensive diversity, the rapidly evolving phenomenon of multi-drug resistance (MDR), and the limited availability of effective control measures. Amid mounting global pressure, particularly from the World Health Organization, to limit the use of antibiotics in agriculture and livestock management, there is increasing consideration of engineered nanomaterials (ENMs) as promising alternatives for antimicrobial applications. Studies focusing on the application of ENMs in the fight against MDR pathogens are receiving increasing attention, driven by significant losses in agriculture and critical knowledge gaps in this crucial field. In this review, we explore the potential contributions of silver nanoparticles (AgNPs) and their nanocomposites in combating plant diseases, within the emerging interdisciplinary arena of nano-phytopathology. AgNPs and their nanocomposites are increasingly acknowledged as promising countermeasures against plant pathogens, owing to their unique physicochemical characteristics and inherent antimicrobial properties. This review explores recent advancements in engineered nanocomposites, highlights their diverse mechanisms for pathogen control, and draws attention to their potential in antibacterial, antifungal, and antiviral applications. In the discussion, we briefly address three crucial dimensions of combating plant pathogens: green synthesis approaches, toxicity-environmental concerns, and factors influencing antimicrobial efficacy. Finally, we outline recent advancements, existing challenges, and prospects in scholarly research to facilitate the integration of nanotechnology across interdisciplinary fields for more effective treatment and prevention of plant diseases.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | | | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nasreena Lone
- School of Allied Healthcare and Sciences, JAIN Deemed University, Whitefield, Bangalore 560066, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | | | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
96
|
Rox K, Jansen R, Lukežič T, Greweling-Pils M, Herrmann J, Miethke M, Hüttel S, Hennessen F, Abou Fayad A, Holzhausen C, Lundberg CV, Teague J, Sudarman E, Bülter L, Hesterkamp T, Stadler M, Brönstrup M, Müller R. Pharmacokinetic and pharmacodynamic evaluation of the atypical tetracyclines chelocardin and amidochelocardin in murine infection models. Microbiol Spectr 2024; 12:e0128923. [PMID: 38047701 PMCID: PMC10783034 DOI: 10.1128/spectrum.01289-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE There is a strong need to find novel treatment options against urinary tract infections associated with antimicrobial resistance. This study evaluates two atypical tetracyclines, namely chelocardin (CHD) and amidochelocardin (CDCHD), with respect to their pharmacokinetics and pharmacodynamics. We show CHD and CDCHD are cleared at high concentrations in mouse urine. Especially, CDCHD is highly effective in an ascending urinary tract infection model, suggesting further preclinical evaluation.
Collapse
Affiliation(s)
- Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- German Centre for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Rolf Jansen
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Tadeja Lukežič
- German Centre for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University Campus, Saarbrücken, Germany
| | - Marina Greweling-Pils
- Mouse Pathology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Jennifer Herrmann
- German Centre for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University Campus, Saarbrücken, Germany
| | - Marcus Miethke
- German Centre for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University Campus, Saarbrücken, Germany
| | - Stephan Hüttel
- German Centre for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Fabienne Hennessen
- German Centre for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University Campus, Saarbrücken, Germany
| | - Antoine Abou Fayad
- German Centre for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University Campus, Saarbrücken, Germany
| | - Cornelia Holzhausen
- Mouse Pathology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | | | | | - Enge Sudarman
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Lisa Bülter
- German Centre for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
- Translational Product Development Office, German Centre for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Thomas Hesterkamp
- German Centre for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
- Translational Product Development Office, German Centre for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Marc Stadler
- German Centre for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- German Centre for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Rolf Müller
- German Centre for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University Campus, Saarbrücken, Germany
| |
Collapse
|
97
|
Alfei S. Shifting from Ammonium to Phosphonium Salts: A Promising Strategy to Develop Next-Generation Weapons against Biofilms. Pharmaceutics 2024; 16:80. [PMID: 38258091 PMCID: PMC10819902 DOI: 10.3390/pharmaceutics16010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Since they are difficult and sometimes impossible to treat, infections sustained by multidrug-resistant (MDR) pathogens, emerging especially in nosocomial environments, are an increasing global public health concern, translating into high mortality and healthcare costs. In addition to having acquired intrinsic abilities to resist available antibiotic treatments, MDR bacteria can transmit genetic material encoding for resistance to non-mutated bacteria, thus strongly decreasing the number of available effective antibiotics. Moreover, several pathogens develop resistance by forming biofilms (BFs), a safe and antibiotic-resistant home for microorganisms. BFs are made of well-organized bacterial communities, encased and protected in a self-produced extracellular polymeric matrix, which impedes antibiotics' ability to reach bacteria, thus causing them to lose efficacy. By adhering to living or abiotic surfaces in healthcare settings, especially in intensive care units where immunocompromised older patients with several comorbidities are hospitalized BFs cause the onset of difficult-to-eradicate infections. In this context, recent studies have demonstrated that quaternary ammonium compounds (QACs), acting as membrane disruptors and initially with a low tendency to develop resistance, have demonstrated anti-BF potentialities. However, a paucity of innovation in this space has driven the emergence of QAC resistance. More recently, quaternary phosphonium salts (QPSs), including tri-phenyl alkyl phosphonium derivatives, achievable by easy one-step reactions and well known as intermediates of the Wittig reaction, have shown promising anti-BF effects in vitro. Here, after an overview of pathogen resistance, BFs, and QACs, we have reviewed the QPSs developed and assayed to this end, so far. Finally, the synthetic strategies used to prepare QPSs have also been provided and discussed to spur the synthesis of novel compounds of this class. We think that the extension of the knowledge about these materials by this review could be a successful approach to finding effective weapons for treating chronic infections and device-associated diseases sustained by BF-producing MDR bacteria.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4, 16148 Genova, Italy
| |
Collapse
|
98
|
Ozer T, Henry CS. Recent Trends in Nanomaterial Based Electrochemical Sensors for Drug Detection: Considering Green Assessment. Curr Top Med Chem 2024; 24:952-972. [PMID: 38415434 DOI: 10.2174/0115680266286981240207053402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 02/29/2024]
Abstract
An individual's therapeutic drug exposure level is directly linked to corresponding clinical effects. Rapid, sensitive, inexpensive, portable and reliable devices are needed for diagnosis related to drug exposure, treatment, and prognosis of diseases. Electrochemical sensors are useful for drug monitoring due to their high sensitivity and fast response time. Also, they can be combined with portable signal read-out devices for point-of-care applications. In recent years, nanomaterials such as carbon-based, carbon-metal nanocomposites, noble nanomaterials have been widely used to modify electrode surfaces due to their outstanding features including catalytic abilities, conductivity, chemical stability, biocompatibility for development of electrochemical sensors. This review paper presents the most recent advances about nanomaterials-based electrochemical sensors including the use of green assessment approach for detection of drugs including anticancer, antiviral, anti-inflammatory, and antibiotics covering the period from 2019 to 2023. The sensor characteristics such as analyte interactions, fabrication, sensitivity, and selectivity are also discussed. In addition, the current challenges and potential future directions of the field are highlighted.
Collapse
Affiliation(s)
- Tugba Ozer
- Department of Bioengineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Türkiye
- Health Biotechnology Joint Research and Application Center of Excellence, 34220, Esenler, Istanbul, Türkiye
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO80523, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, 80523, United States
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
99
|
Yu S, Wang J, Liang M, Shang J, Chen Y, Liu X, Song D, Wang F. Rational Engineering of a Multifunctional DNA Assembly for Enhanced Antibacterial Efficacy and Accelerated Wound Healing. Adv Healthc Mater 2024; 13:e2300694. [PMID: 37846795 DOI: 10.1002/adhm.202300694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 10/18/2023]
Abstract
DNA-based assemblies hold immense prospects for antibacterial application, yet are constrained by their poor specificity and deficient antibacterial delivery. Herein, the fabrication of a versatile rolling circle amplification (RCA)-sustained DNA assembly is reported, encoding simultaneously with multivalent aptamers and tandem antibacterial agents, for target-specific and efficient antibacterial application. In the compact RCA-sustained antibacterial platform, the facilely organized multivalent aptamers guarantee the target bacteria-specific delivery of sufficient antibacterial agents which is assembled through DNA-stabilizing silver nanostructures. It is shown that the biocompatible DNA system could enhance bacteria elimination and simultaneously facilitate wound healing in vivo. By virtue of the programmable RCA assembly, the present RCA-sustained system provides a highly modular and scalable approach to design versatile multifunctional therapeutic systems.
Collapse
Affiliation(s)
- Shanshan Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Research Institute of Shenzhen, Wuhan University, Wuhan, 430072, P. R. China
| | - Jing Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Research Institute of Shenzhen, Wuhan University, Wuhan, 430072, P. R. China
| | - Meijuan Liang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Research Institute of Shenzhen, Wuhan University, Wuhan, 430072, P. R. China
| | - Jinhua Shang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Research Institute of Shenzhen, Wuhan University, Wuhan, 430072, P. R. China
| | - Yingying Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Research Institute of Shenzhen, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaoqing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Research Institute of Shenzhen, Wuhan University, Wuhan, 430072, P. R. China
| | - Dengpeng Song
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Fuan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Research Institute of Shenzhen, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430072, P. R. China
| |
Collapse
|
100
|
Bishi MA, Kaur P, Vyas M, Sharma S. Ameliorating Gonorrhea: Recent Therapeutic Adaptations and Scope to Improve its Prevailing Condition. Infect Disord Drug Targets 2024; 24:e180124225807. [PMID: 38243969 DOI: 10.2174/0118715265258305231124105334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Gonorrhea is a sexually transmitted infection (STI) caused by the bacteria Neisseria gonorrhoeae. According to recent research, the prevalence of gonorrhea has been increasing in many parts of the world, with some areas reporting high rates of antibiotic resistance. In the United States, the Centers for Disease Control and Prevention (CDC) reported that the number of reported gonorrhea cases increased by 56% between 2015 and 2019. Globally, the World Health Organization (WHO) estimated that there were 87 million new cases of gonorrhea in 2016, with the highest burden of infection in low- and middle-income countries. Research has also shown that gonorrhea is becoming increasingly resistant to conventional antibiotics, increasing the prevalence of gonorrhea. This raises concerns and challenges in disease management. OBJECTIVES The present review gives updated insight on the current state of the disease, challenges, and shortcomings of existing approaches along with the modern and alternative direction like vaccine development, its challenges, and scope to confront the existing state of drug resistance and increased rate of incidence. Alternative strategies like immunotherapy and phage therapy along with recent antibiotics researched for the treatment of gonorrhea. CONCLUSION The review provides a thorough insight into the current state of the disease and various available methods used currently and recommended by WHO. To overcome disease prevalence, various alternate therapies are coming into the limelight. However, scientists and researchers show a lack of interest in the drug development and research of gonorrhea, due to less commercial scope, lack of funding, and limited scope in the scientific scenario. These hurdles need to be overcome to meet the WHO vision of reducing gonorrhea by 90% by 2030. So, there is a need to optimize the drug therapy (optimizing dosing schedule, and precision monitoring) to reduce the chance of drug resistance. Also, there is a wide scope for drug and therapeutic system development.
Collapse
Affiliation(s)
- Munyaradzi Amon Bishi
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India
| | - Palwinder Kaur
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India
| | - Manish Vyas
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India
| | - Sandeep Sharma
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, Punjab 144401, India
| |
Collapse
|