51
|
Asalla S, Mohareer K, Banerjee S. Small Molecule Mediated Restoration of Mitochondrial Function Augments Anti-Mycobacterial Activity of Human Macrophages Subjected to Cholesterol Induced Asymptomatic Dyslipidemia. Front Cell Infect Microbiol 2017; 7:439. [PMID: 29067283 PMCID: PMC5641336 DOI: 10.3389/fcimb.2017.00439] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) infection manifests into tuberculosis (TB) in a small fraction of the infected population that comprises the TB susceptible group. Identifying the factors potentiating susceptibility to TB persistence is one of the prime agenda of TB control programs. Recently, WHO recognized diabetes as a risk factor for TB disease progression. The closely related pathological state of metabolic imbalance, dyslipidemia, is yet another emerging risk factor involving deregulation in host immune responses. While high cholesterol levels are clinically proven condition for perturbations in cardiac health, a significant fraction of population these days suffer from borderline risk cholesterol profiles. This apparently healthy population is susceptible to various health risks placing them in the "pre-disease" range. Our study focuses on determining the role of such asymptomatic dyslipidemia as a potential risk factor for susceptibility to TB persistence. Macrophages exposed to sub-pathological levels of cholesterol for chronic period, besides impaired release of TNF-α, could not clear intracellular pathogenic mycobacteria effectively as compared to the unexposed cells. These cells also allowed persistence of opportunistic mycobacterial infection by M. avium and M. bovis BCG, indicating highly compromised immune response. The cholesterol-treated macrophages developed a foamy phenotype with a significant increase in intracellular lipid-bodies prior to M.tb infection, potentially contributing to pre-disease state for tuberculosis infection. The foamy phenotype, known to support M.tb infection, increased several fold upon infection in these cells. Additionally, mitochondrial morphology and function were perturbed, more so during infection in cholesterol treated cells. Pharmacological supplementation with small molecule M1 that restored mitochondrial structural and functional integrity limited M.tb survival more effectively in cholesterol exposed macrophages. Mechanistically, M1 molecule promoted clearance of mycobacteria by reducing total cellular lipid content and restoring mitochondrial morphology and function to its steady state. We further supported our observations by infection assays in PBMC-derived macrophages from clinically healthy volunteers with borderline risk cholesterol profiles. With these observations, we propose that prolonged exposure to sub-pathological cholesterol can lead to asymptomatic susceptibility to M.tb persistence. Use of small molecules like M1 sets yet another strategy for host-directed therapy where re-functioning of mitochondria in cholesterol abused macrophages can improve M.tb clearance.
Collapse
Affiliation(s)
- Suman Asalla
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Krishnaveni Mohareer
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sharmistha Banerjee
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
52
|
Singh A, Venugopala KN, Khedr MA, Pillay M, Nwaeze KU, Coovadia Y, Shode F, Odhav B. Antimycobacterial, docking and molecular dynamic studies of pentacyclic triterpenes from Buddleja saligna leaves. J Biomol Struct Dyn 2017; 35:2654-2664. [PMID: 28278765 DOI: 10.1080/07391102.2016.1227725] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
Buddleja saligna (family Buddlejaceae) is a medicinal plant endemic to South Africa. Two isomeric pentacyclic triterpenes, oleanolic acid and ursolic acid, were isolated from the leaves of B. saligna using silica gel column chromatography. Compounds oleanolic acid and ursolic acid were subjected to derivatization with acetic anhydride in the presence of pyridine to obtain oleanolic acid-3-acetate and ursolic acid-3-acetate, respectively. The structures of these compounds were fully characterized by detailed nuclear magnetic resonance (NMR) investigations, which included 1H and 13C NMR. Molecular docking studies predicted the free binding energy of the four triterpenes inside the steroid binding pocket of Mycobacterium tuberculosis fadA5 thiolase compared to a reported inhibitor. Thus, their ability to inhibit the growth of M. tuberculosis was predicted and was confirmed to possess significant antimycobacterial activity when tested against Mycobacterium smegmatis, M. tuberculosis H37Rv (ATCC 25177), clinical isolates of multi-drug-resistant M. tuberculosis (MDR-TB) and extensively drug-resistant M. tuberculosis (XDR-TB) using the Micro Alamar Blue Assay. Ursolic acid was isolated from this plant for the first time.
Collapse
Affiliation(s)
- Alveera Singh
- a Department of Biotechnology and Food Technology , Durban University of Technology , Durban 4001 , South Africa
| | - Katharigatta N Venugopala
- a Department of Biotechnology and Food Technology , Durban University of Technology , Durban 4001 , South Africa
- b Department of Pharmaceutical Sciences , College of Clinical Pharmacy, King Faisal University , Al-Ahsa 31982 , Saudi Arabia
| | - Mohammed A Khedr
- b Department of Pharmaceutical Sciences , College of Clinical Pharmacy, King Faisal University , Al-Ahsa 31982 , Saudi Arabia
- c Faculty of Pharmacy, Department of Pharmaceutical Chemistry , Helwan University , Ein Helwan, Cairo 11795 , Egypt
| | - Mellendran Pillay
- d Department of Microbiology, NHLS , Inkosi Albert Luthuli Hospital , Durban , South Africa
| | - Kenneth U Nwaeze
- e Faculty of Pharmacy, Department of Pharmaceutical Chemistry , University of Lagos , Lagos 100213 , Nigeria
| | - Yacoob Coovadia
- d Department of Microbiology, NHLS , Inkosi Albert Luthuli Hospital , Durban , South Africa
| | - Francis Shode
- a Department of Biotechnology and Food Technology , Durban University of Technology , Durban 4001 , South Africa
| | - Bharti Odhav
- a Department of Biotechnology and Food Technology , Durban University of Technology , Durban 4001 , South Africa
| |
Collapse
|
53
|
Fessler MB, Summer RS. Surfactant Lipids at the Host-Environment Interface. Metabolic Sensors, Suppressors, and Effectors of Inflammatory Lung Disease. Am J Respir Cell Mol Biol 2017; 54:624-35. [PMID: 26859434 DOI: 10.1165/rcmb.2016-0011ps] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The lipid composition of pulmonary surfactant is unlike that of any other body fluid. This extracellular lipid reservoir is also uniquely susceptible by virtue of its direct and continuous exposure to environmental oxidants, inflammatory agents, and pathogens. Historically, the greatest attention has been focused on those biophysical features of surfactant that serve to reduce surface tension at the air-liquid interface. More recently, surfactant lipids have also been recognized as bioactive molecules that maintain immune quiescence in the lung but can also be remodeled by the inhaled environment into neolipids that mediate key roles in inflammation, immunity, and fibrosis. This review focuses on the roles in inflammatory and infectious lung disease of two classes of native surfactant lipids, glycerophospholipids and sterols, and their corresponding oxidized species, oxidized glycerophospholipids and oxysterols. We highlight evidence that surfactant composition is sensitive to circulating lipoproteins and that the lipid milieu of the alveolus should thus be recognized as susceptible to diet and common systemic metabolic disorders. We also discuss intriguing evidence suggesting that oxidized surfactant lipids may represent an evolutionary link between immunity and tissue homeostasis that arose in the primordial lung. Taken together, the emerging picture is one in which the unique environmental susceptibility of the lung, together with its unique extracellular lipid requirements, may have made this organ both an evolutionary hub and an engine for lipid-immune cross-talk.
Collapse
Affiliation(s)
- Michael B Fessler
- 1 Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and
| | - Ross S Summer
- 2 Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
54
|
Statin Use Is Associated With a Lower Risk of TB. Chest 2017; 152:598-606. [PMID: 28479115 DOI: 10.1016/j.chest.2017.04.170] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/31/2017] [Accepted: 04/25/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Statins are widely used to lower cholesterol levels and cardiovascular risk. Further, studies have shown that statins may decrease the risks of infectious diseases and infection-related mortality; however, the association between statin use and active TB disease remains unclear. METHODS Using the Taiwan National Health Insurance Research Database, we conducted a nationwide population-based study. Patients taking statins between 2000 and 2013, without antecedent TB disease, were included. Data from 102,424 statin users and 202,718 age-, sex-, and enrollment date-matched subjects were analyzed. The two cohorts were monitored until December 31, 2013, for incident TB disease. The definition of TB disease was validated using the claims database of Taipei Veterans General Hospital. RESULTS The statin and matched cohorts were observed for 571,568 and 1,027,385 person-years, respectively. Of the total 305,142 subjects, 1,264 (0.41%) developed subsequent TB disease. Validation study confirmed the accuracy of the definition of TB disease (sensitivity, 96.3%), with excellent interobserver agreement (κ = 1.00). Multivariate analysis revealed a reduced risk of TB disease among the statin cohort (hazard ratio [HR], 0.53; 95% CI, 0.47-0.61; P < .001). Compared with the matched group, statin use showed a dose-response relationship with the incident TB disease risk (<180 cumulative defined daily doses [cDDDs]: HR, 1.06; 95% CI, 0.91-1.24; P = .477; 180 to 365 cDDDs: HR, 0.57; 95% CI, 0.45-0.72; P < .001; >365 cDDDs: HR, 0.27; 95% CI, 0.22-0.33; P < .001). CONCLUSIONS Statin use associates with a lower risk of incident TB disease.
Collapse
|
55
|
Gabor KA, Fessler MB. Roles of the Mevalonate Pathway and Cholesterol Trafficking in Pulmonary Host Defense. Curr Mol Pharmacol 2017; 10:27-45. [PMID: 26758950 PMCID: PMC6026538 DOI: 10.2174/1874467209666160112123603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 08/01/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023]
Abstract
The mevalonic acid synthesis pathway, cholesterol, and lipoproteins play fundamental roles in lung physiology and the innate immune response. Recent literature investigating roles for cholesterol synthesis and trafficking in host defense against respiratory infection was critically reviewed. The innate immune response and the cholesterol biosynthesis/trafficking network regulate one another, with important implications for pathogen invasion and host defense in the lung. The activation of pathogen recognition receptors and downstream cellular host defense functions are critically sensitive to cellular cholesterol. Conversely, microorganisms can co-opt the sterol/lipoprotein network in order to facilitate replication and evade immunity. Emerging literature suggests the potential for harnessing these insights towards therapeutic development. Given that >50% of adults in the U.S. have serum cholesterol abnormalities and pneumonia remains a leading cause of death, the potential impact of cholesterol on pulmonary host defense is of tremendous public health significance and warrants further mechanistic and translational investigation.
Collapse
Affiliation(s)
| | - Michael B Fessler
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, P.O. Box 12233, Maildrop D2-01, Research Triangle Park, NC 27709, United States
| |
Collapse
|
56
|
Tsai IF, Kuo CP, Lin AB, Chien MN, Ho HT, Wei TY, Wu CL, Lu YT. Potential effect of ezetimibe against Mycobacterium tuberculosis infection in type II diabetes. Respirology 2016; 22:559-566. [PMID: 27879023 DOI: 10.1111/resp.12948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/11/2016] [Accepted: 08/25/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Tuberculosis (TB) risk might be increased in patients with diabetes by factors other than hyperglycaemia, such as dyslipidaemia. Host lipids are essential energy sources used by mycobacteria to persist in a latent TB state. A potential therapy targeting cholesterol catabolism of mycobacteria has been proposed, but the potential of cholesterol-lowering drugs as anti-TB therapy is unclear. The purpose of this study was to determine the effects of ezetimibe, a 2-azetidinone cholesterol absorption inhibitor, on intracellular mycobacteria survival and dormancy. METHODS Intracellular mycobacteria survival was determined by measurements of ATP activity and colony-formation units (CFUs). Gene expression profiles of hypoxia-induced dormant Mycobacterium tuberculosis (Mtb) were analysed by real-time PCR. Flow cytometry and microscopy analysis were used to measure the lipid loads of human macrophages with or without ezetimibe treatment. QuantiFERON-TB Gold In-Tube (QFT-G-IT) assays were performed to diagnose latent TB infection. The levels of intracellular cholesterol/ triglyceride were measured by an enzymatic fluorometric method. RESULTS Ezetimibe was capable of effectively lowering intracellular growth of Mtb and hypoxia-induced dormant Mtb. There was a significant decrease in Mtb growth in leucocytes from ezetimibe-treated patients with diabetes in terms of ATP levels of intracellular mycobacteria and CFU formation. Also, patients receiving ezetimibe therapy had a lower prevalence of latent TB and had lower intracellular lipid contents. CONCLUSION Ezetimibe, which is a currently marketed drug, could hold promise as an adjunctive, host-directed therapy for TB.
Collapse
Affiliation(s)
- I-Fang Tsai
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chiu-Ping Kuo
- Division of Chest Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Andrew B Lin
- Biology Department, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ming-Nan Chien
- Department of Endocrinology and Metabolism, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsin-Tsung Ho
- Department of Laboratory Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Tsai-Yin Wei
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chien-Liang Wu
- Division of Chest Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Yen-Ta Lu
- Division of Chest Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
57
|
Metabolic reprogramming & inflammation: Fuelling the host response to pathogens. Semin Immunol 2016; 28:450-468. [PMID: 27780657 DOI: 10.1016/j.smim.2016.10.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 12/24/2022]
Abstract
Successful immune responses to pathogens rely on efficient host innate processes to contain and limit bacterial growth, induce inflammatory response and promote antigen presentation for the development of adaptive immunity. This energy intensive process is regulated through multiple mechanisms including receptor-mediated signaling, control of phago-lysomal fusion events and promotion of bactericidal activities. Inherent macrophage activities therefore are dynamic and are modulated by signals and changes in the environment during infection. So too does the way these cells obtain their energy to adapt to altered homeostasis. It has emerged recently that the pathways employed by immune cells to derive energy from available or preferred nutrients underline the dynamic changes associated with immune activation. In particular, key breakpoints have been identified in the metabolism of glucose and lipids which direct not just how cells derive energy in the form of ATP, but also cellular phenotype and activation status. Much of this comes about through altered flux and accumulation of intermediate metabolites. How these changes in metabolism directly impact on the key processes required for anti-microbial immunity however, is less obvious. Here, we examine the 2 key nutrient utilization pathways employed by innate cells to fuel central energy metabolism and examine how these are altered in response to activation during infection, emphasising how certain metabolic switches or 'reprogramming' impacts anti-microbial processes. By examining carbohydrate and lipid pathways and how the flux of key intermediates intersects with innate immune signaling and the induction of bactericidal activities, we hope to illustrate the importance of these metabolic switches for protective immunity and provide a potential mechanism for how altered metabolic conditions in humans such as diabetes and hyperlipidemia alter the host response to infection.
Collapse
|
58
|
Aguilar-Ayala DA, Palomino JC, Vandamme P, Martin A, Gonzalez-Y-Merchand JA. "Genetic regulation of Mycobacterium tuberculosis in a lipid-rich environment". INFECTION GENETICS AND EVOLUTION 2016; 55:392-402. [PMID: 27771519 DOI: 10.1016/j.meegid.2016.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 01/19/2023]
Abstract
Tuberculosis (TB) remains as one of the leading causes of morbidity and mortality among infectious diseases worldwide. Although lipids (mainly fatty acids and cholesterol) have been reported to play an important role during active and latent infection of M. tuberculosis, there are other molecular aspects of bacterial response to those substrates that are not fully understood, involving gene regulation background. This review highlights recent insights on pathogen gene expression: regulation during its active growth, during survival in presence of lipids and under variable hostile host microenvironments. We also propose several application options of this knowledge that may contribute for improved TB control.
Collapse
Affiliation(s)
- Diana A Aguilar-Ayala
- Departamento de Microbiologia, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Prolongacion de Carpio y Plan de Ayala S/N, Mexico City, Mexico; Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Juan Carlos Palomino
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Peter Vandamme
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Anandi Martin
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium.
| | - Jorge A Gonzalez-Y-Merchand
- Departamento de Microbiologia, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Prolongacion de Carpio y Plan de Ayala S/N, Mexico City, Mexico; Red Multidisciplinaria de Investigación en Tuberculosis, Mexico.
| |
Collapse
|
59
|
Fozo EM, Rucks EA. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. Adv Microb Physiol 2016; 69:51-155. [PMID: 27720012 DOI: 10.1016/bs.ampbs.2016.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora.
Collapse
Affiliation(s)
- E M Fozo
- University of Tennessee, Knoxville, TN, United States.
| | - E A Rucks
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|
60
|
Soh AZ, Chee CBE, Wang YT, Yuan JM, Koh WP. Dietary Cholesterol Increases the Risk whereas PUFAs Reduce the Risk of Active Tuberculosis in Singapore Chinese. J Nutr 2016; 146:1093-100. [PMID: 27075903 PMCID: PMC4841926 DOI: 10.3945/jn.115.228049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/07/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Experimental studies suggest that cholesterol enhances the intracellular survival of Mycobacterium tuberculosis, whereas marine ω-3 (n-3) and ω-6 (n-6) fatty acids (FAs) may modulate responses to M. tuberculosis in macrophage and animal models. However, there are no epidemiologic data from prospective studies of the relation between dietary cholesterol and FAs and the risk of developing active tuberculosis. OBJECTIVE We aimed to investigate the relation between dietary intake of cholesterol and FAs and the risk of active tuberculosis in a prospective cohort in Singapore. METHODS We analyzed data from the Singapore Chinese Health Study, a cohort of 63,257 Chinese men and women aged 45-74 y recruited between 1993 and 1998. Dietary intake of cholesterol and FAs was determined with the use of a validated food-frequency questionnaire. Incident cases of active tuberculosis were identified via linkage with the nationwide tuberculosis registry. Analysis was performed with the use of Cox proportional hazards models. RESULTS As of 31 December 2013, 1136 incident cases of active tuberculosis were identified. Dietary cholesterol was positively associated with an increased risk of active tuberculosis in a dose-dependent manner. Compared with the lowest intake quartile, the HR was 1.22 (95% CI: 1.00, 1.47) for the highest quartile (P-trend = 0.04). Conversely, dietary marine n-3 and n-6 FAs were associated with a reduced risk of active tuberculosis in a dose-dependent manner. Compared with the lowest quartile, the HR for the highest intake quartile was 0.77 (95% CI: 0.62, 0.95) for marine n-3 FAs (P-trend = 0.01) and 0.82 (95% CI: 0.68, 0.98) for n-6 FAs (P-trend = 0.03). There was no association with saturated, monounsaturated, or plant-based n-3 FA intake. CONCLUSION Dietary intake of cholesterol may increase the risk of active tuberculosis, whereas marine n-3 and n-6 FAs may reduce the risk of active tuberculosis in the Chinese population.
Collapse
Affiliation(s)
- Avril Z Soh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Cynthia BE Chee
- Singapore Tuberculosis Control Unit, Tan Tock Seng Hospital, Singapore
| | - Yee-Tang Wang
- Singapore Tuberculosis Control Unit, Tan Tock Seng Hospital, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, and Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA; and
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Duke-NUS Graduate Medical School Singapore, Singapore
| |
Collapse
|
61
|
Abstract
In this issue of Virulence, Ramon-Garcia et al. demonstrate the requirement of a mycobacterial efflux pump during growth on cholesterol. In this editorial I replace the study in the context of nutrient acquisition by Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Gerald Larrouy-Maumus
- a MRC Center for Molecular Bacteriology and Infection; Department of Life Sciences; Faculty of Natural Sciences; Imperial College London ; London , UK
| |
Collapse
|
62
|
Kornfeld H, West K, Kane K, Kumpatla S, Zacharias RR, Martinez-Balzano C, Li W, Viswanathan V. High Prevalence and Heterogeneity of Diabetes in Patients With TB in South India: A Report from the Effects of Diabetes on Tuberculosis Severity (EDOTS) Study. Chest 2016; 149:1501-8. [PMID: 26973015 DOI: 10.1016/j.chest.2016.02.675] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/15/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Previous studies reported an association of diabetes mellitus (DM) with TB susceptibility. Many studies were retrospective, had weak diagnostic criteria for DM, and did not assess other comorbidities. The Effects of Diabetes on Tuberculosis Severity (EDOTS) study is addressing these limitations with a longitudinal comparison of patients with TB who are classified as diabetic or normoglycemic according to World Health Organization criteria. We report interim findings after enrolling 159 of a planned 300 subjects. METHODS A cohort study of patients with TB in South India with DM or normoglycemia defined by oral glucose tolerance test (OGTT) and fasting glucose. Glycohemoglobin (HbA1c), serum creatinine, lipids, and 25-hydroxyvitamin D were measured at enrollment. Patients were monitored monthly during TB treatment, and HbA1c measurement was repeated after 3 months. RESULTS Of 209 eligible patients, 113 (54.1%) were classified as diabetic, 44 (21.0%) with impaired glucose tolerance, and 52 (24.9%) as normoglycemic. More patients with diabetes were detected by OGTT than by HbA1c. Diabetes was a newly received diagnosis for 37 (32.7%) in the DM group, and their median HbA1c (6.8%) was significantly lower than in those with previously diagnosed DM (HbA1c, 10.4%). Among 129 patients monitored for 3 months, HbA1c declined in all groups, with the greatest difference in patients with a newly received diagnosis of DM. CONCLUSIONS Early EDOTS study results reveal a strikingly high prevalence of glycemic disorders in South Indian patients with pulmonary TB and unexpected heterogeneity within the patient population with diabetes and TB. This glycemic control heterogeneity has implications for the TB-DM interaction and the interpretation of TB studies relying exclusively on HbA1c to define diabetic status.
Collapse
Affiliation(s)
- Hardy Kornfeld
- University of Massachusetts Medical School, Worcester, Massachusetts.
| | - Kim West
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Kevin Kane
- University of Massachusetts Medical School, Worcester, Massachusetts
| | | | | | | | - Wenjun Li
- University of Massachusetts Medical School, Worcester, Massachusetts
| | | |
Collapse
|
63
|
Kumar GA, Jafurulla M, Chattopadhyay A. The membrane as the gatekeeper of infection: Cholesterol in host-pathogen interaction. Chem Phys Lipids 2016; 199:179-185. [PMID: 26902688 DOI: 10.1016/j.chemphyslip.2016.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 11/30/2022]
Abstract
The cellular plasma membrane serves as a portal for the entry of intracellular pathogens. An essential step for an intracellular pathogen to gain entry into a host cell therefore is to be able to cross the cell membrane. In this review, we highlight the role of host membrane cholesterol in regulating the entry of intracellular pathogens using insights obtained from work on the interaction of Leishmania and Mycobacterium with host cells. The entry of these pathogens is known to be dependent on host membrane cholesterol. Importantly, pathogen entry is inhibited either upon depletion (or complexation), or enrichment of membrane cholesterol. In other words, an optimum level of host membrane cholesterol is necessary for efficient infection by pathogens. In this overall context, we propose a general mechanism, based on cholesterol-induced conformational changes, involving cholesterol binding sites in host cell surface receptors that are implicated in this process. A therapeutic strategy targeting modulation of membrane cholesterol would have the advantage of avoiding the commonly encountered problem of drug resistance in tackling infection by intracellular pathogens. Insights into the role of host membrane cholesterol in pathogen entry would be instrumental in the development of novel therapeutic strategies to effectively tackle intracellular pathogenesis.
Collapse
Affiliation(s)
- G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Md Jafurulla
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
64
|
Rabhi S, Rabhi I, Trentin B, Piquemal D, Regnault B, Goyard S, Lang T, Descoteaux A, Enninga J, Guizani-Tabbane L. Lipid Droplet Formation, Their Localization and Dynamics during Leishmania major Macrophage Infection. PLoS One 2016; 11:e0148640. [PMID: 26871576 PMCID: PMC4752496 DOI: 10.1371/journal.pone.0148640] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 01/20/2016] [Indexed: 01/13/2023] Open
Abstract
Leishmania, the causative agent of vector-borne diseases, known as leishmaniases, is an obligate intracellular parasite within mammalian hosts. The outcome of infection depends largely on the activation status of macrophages, the first line of mammalian defense and the major target cells for parasite replication. Understanding the strategies developed by the parasite to circumvent macrophage defense mechanisms and to survive within those cells help defining novel therapeutic approaches for leishmaniasis. We previously showed the formation of lipid droplets (LDs) in L. major infected macrophages. Here, we provide novel insights on the origin of the formed LDs by determining their cellular distribution and to what extent these high-energy sources are directed to the proximity of Leishmania parasites. We show that the ability of L. major to trigger macrophage LD accumulation is independent of parasite viability and uptake and can also be observed in non-infected cells through paracrine stimuli suggesting that LD formation is from cellular origin. The accumulation of LDs is demonstrated using confocal microscopy and live-cell imagin in parasite-free cytoplasmic region of the host cell, but also promptly recruited to the proximity of Leishmania parasites. Indeed LDs are observed inside parasitophorous vacuole and in parasite cytoplasm suggesting that Leishmania parasites besides producing their own LDs, may take advantage of these high energy sources. Otherwise, these LDs may help cells defending against parasitic infection. These metabolic changes, rising as common features during the last years, occur in host cells infected by a large number of pathogens and seem to play an important role in pathogenesis. Understanding how Leishmania parasites and different pathogens exploit this LD accumulation will help us define the common mechanism used by these different pathogens to manipulate and/or take advantage of this high-energy source.
Collapse
Affiliation(s)
- Sameh Rabhi
- Institut Pasteur de Tunis, Laboratoire de Parasitologies médicales biotechnologies et Biomolecules, University of Tunis El Manar, 13, Place Pasteur – B. P. 74, 1002, Tunis-Belvedere, Tunisia
- Université de carthage, Sidi Bou Said, Avenue de la République – B. P .77. 1054, Carthage, Tunisia
| | - Imen Rabhi
- Institut Pasteur de Tunis, Laboratoire de Parasitologies médicales biotechnologies et Biomolecules, University of Tunis El Manar, 13, Place Pasteur – B. P. 74, 1002, Tunis-Belvedere, Tunisia
- Biotechnology and Bio-Geo Resources Valorization Laboratory (LR11ES31); Higher Institute for Biotechnology - University of Manouba, Biotechpole of Sidi Thabet, 2020, Sidi Thabet, Ariana, Tunisia
| | - Bernadette Trentin
- Acobiom Cap Delta-Biopôle Euromédecine II. 1682, rue de la Valsière – 34184, Montpellier, Cedex 4, France
| | - David Piquemal
- Acobiom Cap Delta-Biopôle Euromédecine II. 1682, rue de la Valsière – 34184, Montpellier, Cedex 4, France
| | - Béatrice Regnault
- DNA Chip Platform, Genopole, Institut Pasteur de Paris, 25–28 rue du Dr Roux, 75015, Paris, France
| | - Sophie Goyard
- Institut Pasteur, Département Infection et Epidémiologie, Laboratoire des Processus infectieux à Trypanosomatidés, 26 rue du Dr Roux, 75724, Paris, Cedex 15, France
| | - Thierry Lang
- Institut Pasteur, Département Infection et Epidémiologie, Laboratoire des Processus infectieux à Trypanosomatidés, 26 rue du Dr Roux, 75724, Paris, Cedex 15, France
| | - Albert Descoteaux
- INRS-Institut Armand Frappier and Centre for Host-Parasite Interactions, 531, boulevard des Prairies, Laval (Québec), H7V 1B7, Canada
| | - Jost Enninga
- Institut Pasteur, Dynamics of host-pathogen interactions Unit, 25 Rue du Dr. Roux, 75724, Paris, France
| | - Lamia Guizani-Tabbane
- Institut Pasteur de Tunis, Laboratoire de Parasitologies médicales biotechnologies et Biomolecules, University of Tunis El Manar, 13, Place Pasteur – B. P. 74, 1002, Tunis-Belvedere, Tunisia
| |
Collapse
|
65
|
Lovewell RR, Sassetti CM, VanderVen BC. Chewing the fat: lipid metabolism and homeostasis during M. tuberculosis infection. Curr Opin Microbiol 2016; 29:30-6. [DOI: 10.1016/j.mib.2015.10.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/15/2015] [Indexed: 02/07/2023]
|
66
|
Akesson LS, Burnett JR, Mehta DK, Martin AC. Lipoprotein lipase deficiency presenting with neonatal perianal abscesses. BMJ Case Rep 2016; 2016:bcr-2015-212587. [PMID: 26825936 DOI: 10.1136/bcr-2015-212587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Lipoprotein lipase (LPL), a member of the triglyceride lipase gene family, is synthesised by parenchymal cells of the heart, skeletal muscle and adipose tissues before being transported to luminal surfaces of vascular endothelial cells to exert its main physiological function to hydrolyse plasma lipoproteins. LPL deficiency is a rare autosomal recessive disorder, resulting in severe hypertriglyceridaemia from birth. The effect of marked hypertriglyceridaemia on the immune function in children has not been described. We present a case of a neonate with LPL deficiency and grossly elevated plasma triglyceride levels, presenting with recurrent and recalcitrant perianal abscesses suggestive of underlying immunodeficiency. With reduced levels of plasma triglycerides, the recurrent perianal infections resolved. This case report reviews evidence for potential deleterious effects of hypertriglyceridaemia on immune function, however, underlying mechanisms are poorly understood. Whether hypertriglyceridaemia contributes to immune dysfunction in this context is unknown. If there is a pathophysiological link, this may have implications for hypertriglyceridaemia management.
Collapse
Affiliation(s)
- Lauren S Akesson
- Telethon Kids Institute, West Perth, Western Australia, Australia School of Paediatrics and Child Health, University of Western Australia, Crawley, Western Australia, Australia Department of General Paediatrics, Princess Margaret Hospital for Children, Subiaco, Western Australia, Australia
| | - John R Burnett
- Department of Clinical Biochemistry, PathWest Laboratory Medicine, Royal Perth and Fiona Stanley Hospital Network, Perth, Western Australia, Australia School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
| | - Divyesh K Mehta
- School of Paediatrics and Child Health, University of Western Australia, Crawley, Western Australia, Australia Department of General Paediatrics, Princess Margaret Hospital for Children, Subiaco, Western Australia, Australia
| | - Andrew C Martin
- School of Paediatrics and Child Health, University of Western Australia, Crawley, Western Australia, Australia Department of General Paediatrics, Princess Margaret Hospital for Children, Subiaco, Western Australia, Australia
| |
Collapse
|
67
|
Very-low and low-density lipoproteins induce neutral lipid accumulation and impair migration in monocyte subsets. Sci Rep 2016; 6:20038. [PMID: 26821597 PMCID: PMC4731823 DOI: 10.1038/srep20038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/23/2015] [Indexed: 12/25/2022] Open
Abstract
Blood monocytes are heterogeneous effector cells of the innate immune system. In circulation these cells are constantly in contact with lipid-rich lipoproteins, yet this interaction is poorly characterised. Our aim was to examine the functional effect of hyperlipidaemia on blood monocytes. In the Ldlr−/− mouse monocytes rapidly accumulate cytoplasmic neutral lipid vesicles during hyperlipidaemia. Functional analysis in vivo revealed impaired monocyte chemotaxis towards peritonitis following high fat diet due to retention of monocytes in the greater omentum. In vitro assays using human monocytes confirmed neutral lipid vesicle accumulation after exposure to LDL or VLDL. Neutral lipid accumulation did not inhibit phagocytosis, endothelial adhesion, intravascular crawling and transmigration. However, lipid loading led to a migratory defect towards C5a and disruption of cytoskeletal rearrangement, including an inhibition of RHOA signaling. These data demonstrate distinct effects of hyperlipidaemia on the chemotaxis and cytoskeletal regulation of monocyte subpopulations. These data emphasise the functional consequences of blood monocyte lipid accumulation and reveal important implications for treating inflammation, infection and atherosclerosis in the context of dyslipidaemia.
Collapse
|
68
|
Mvubu NE, Pillay B, Gamieldien J, Bishai W, Pillay M. Canonical pathways, networks and transcriptional factor regulation by clinical strains of Mycobacterium tuberculosis in pulmonary alveolar epithelial cells. Tuberculosis (Edinb) 2015; 97:73-85. [PMID: 26980499 DOI: 10.1016/j.tube.2015.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 12/12/2022]
Abstract
Limited knowledge exists on pathways, networks and transcriptional factors regulated within epithelial cells by diverse Mycobacterium tuberculosis genotypes. This study aimed to elucidate these mechanisms induced in A549 epithelial cells by dominant clinical strains in KwaZulu-Natal, South Africa. RNA for sequencing was extracted from epithelial cells at 48 h post-infection with 5 strains at a multiplicity of infection of approximately 10:1. Bioinformatics analysis performed with the RNA-Seq Tuxedo pipeline identified differentially expressed genes. Changes in pathways, networks and transcriptional factors were identified using Ingenuity Pathway Analysis (IPA). The interferon signalling and hepatic fibrosis/hepatic stellate cell activation pathways were among the top 5 canonical pathways in all strains. Hierarchical clustering for enrichment of cholesterol biosynthesis and immune associated pathways revealed similar patterns for Beijing and Unique; F15/LAM4/KZN and F11; and, F28 and H37Rv strains, respectively. However, the induction of top scoring networks varied among the strains. Among the transcriptional factors, only EHL, IRF7, PML, STAT1, STAT2 and VDR were induced by all clinical strains. Activation of the different pathways, networks and transcriptional factors revealed in the current study may be an underlying mechanism that results in the differential host response by clinical strains of M. tuberculosis.
Collapse
Affiliation(s)
- Nontobeko E Mvubu
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville 3630, South Africa.
| | - Balakrishna Pillay
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville 3630, South Africa.
| | - Junaid Gamieldien
- South African National Bioinformatics Institute/MRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Bellville 7530, South Africa.
| | - William Bishai
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, 1550 Orleans St., Baltimore, MD, United State of America.
| | - Manormoney Pillay
- Medical Microbiology and Infection Control, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Private Bag 7, Congella 4013, Durban, South Africa.
| |
Collapse
|
69
|
Hawn TR, Shah JA, Kalman D. New tricks for old dogs: countering antibiotic resistance in tuberculosis with host-directed therapeutics. Immunol Rev 2015; 264:344-62. [PMID: 25703571 DOI: 10.1111/imr.12255] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite the availability of Mycobacterium tuberculosis (Mtb) drugs for over 50 years, tuberculosis (TB) remains at pandemic levels. New drugs are urgently needed for resistant strains, shortening duration of treatment, and targeting different stages of the disease, especially for treatment during human immunodeficiency virus co-infection. One solution to the conundrum that antibiotics kill the bacillus yet select for resistance is to target the host rather than the pathogen. Here, we discuss recent progress in so-called 'host-directed therapeutics' (HDTs), focusing on two general mechanistic strategies: (i) HDTs that disrupt Mtb pathogenesis in macrophages and (ii) immunomodulatory HDTs that facilitate protective immune responses that kill Mtb or reduce deleterious responses that exacerbate disease. HDTs hold significant promise as adjunctive therapies in that they are less likely to engender resistance, will likely have efficacy against antibiotic-resistant strains, and may have activity against non-replicating Mtb. However, TB is a complex and variegated disease, and human populations exhibit significant diversity in their immune responses to it, which presents a complicated landscape for HDTs to navigate. Nevertheless, we suggest that a detailed mechanistic understanding of drug action, together with careful selection of disease stage targets and dosing strategies may overcome such limitations and allow the development of HDTs as effective adjunctive treatment options for TB.
Collapse
Affiliation(s)
- Thomas R Hawn
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
70
|
Chen CY, Liu CJ, Feng JY, Loong CC, Liu C, Hsia CY, Hu LY, Lin NC, Hu YW, Yeh CM, Chen TJ, Yang CC. Incidence and Risk Factors for Tuberculosis After Liver Transplantation in an Endemic Area: A Nationwide Population-Based Matched Cohort Study. Am J Transplant 2015; 15:2180-7. [PMID: 25872600 DOI: 10.1111/ajt.13235] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 01/05/2015] [Accepted: 01/16/2015] [Indexed: 01/25/2023]
Abstract
Morbidity and mortality from tuberculosis (TB) are high in Taiwan. We conducted a nationwide population-based matched cohort study using data retrieved from the Taiwan's National Health Insurance Research Database to determine the impact of TB after liver transplantation (LT). During 2000-2011, we identified 3202 liver transplant recipients and selected subjects from the general population matched for age, sex, and comorbidities on the same index date of recognition of LT with a 1:10 ratio. The data were analyzed using Cox proportional hazards models. Compared to the matched cohort, liver transplant patients had a higher risk for TB (adjusted HR 2.25, 95% CI 1.65-3.05, p < 0.001), and those with TB showed higher mortality (HR 2.27, 95% CI 1.30-3.97, p = 0.004). Old age (HR 2.64, 95% CI 1.25-5.54, p = 0.011) and mammalian target of rapamycin inhibitors (mTORis) (HR 3.09, 95% CI 1.68-5.69, p < 0.001) were significant risk factors for TB in LT; mTORis were also associated with mortality after adjusting for confounders (HR 2.13, 95% CI 1.73-2.62, p < 0.001). Therefore, regular surveillance of TB and treatment of latent TB infection in high-risk patients after LT are important, especially in TB-endemic areas.
Collapse
Affiliation(s)
- C-Y Chen
- Division of Transplantation Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Public Health, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - C-J Liu
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - J-Y Feng
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Pulmonary Immunology & Infectious Diseases, Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - C-C Loong
- Division of Transplantation Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - C Liu
- Division of Transplantation Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - C-Y Hsia
- Division of Transplantation Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - L-Y Hu
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan.,Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - N-C Lin
- Division of Transplantation Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Y-W Hu
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - C-M Yeh
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - T-J Chen
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - C-C Yang
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Clinical Toxicology & Occupational Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Environmental & Occupational Health Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
71
|
Discovery and verification of serum differential expression proteins for pulmonary tuberculosis. Tuberculosis (Edinb) 2015; 95:547-54. [PMID: 26276261 DOI: 10.1016/j.tube.2015.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/03/2015] [Accepted: 06/07/2015] [Indexed: 01/25/2023]
Abstract
Pulmonary tuberculosis (PTB) is a chronic disease and has remained a severe threat to public health. Valuable biomarkers for improving the detection rate are crucial for controlling this disease. The purpose of this study was to discover potential biomarkers in sera from PTB patients compared with pneumonia patients and normal healthy controls. A total of 336 human serum specimens were enrolled in this study. Differentially expressed proteins were identified using iTRAQ method combining with MALDI-TOF-MS. Data was analyzed using relative bioinformatics methods. Potential biomarkers were further validated by IHC, ELISA and Western blot. As a result, 489 non-redundant proteins were identified in the sera, and 159 of which could be quantified by calculating their iTRAQ ratios. Compared to the controls, 26 differentially expressed proteins were recognized among PTB patients, including 16 overexpressed proteins and 10 downregulated proteins. Analysis of their functional interactions revealed that 12 proteins appeared in the center of the functional network. One of these key proteins, sex hormone binding globulin (SHBG), was found to be significantly elevated among PTB patients as compared with the controls examined by IHC, ELISA and Western blot. This result was consistent with the iTRAQ result. An independent blinded testing set to examine serum SHBG by ELISA achieved an accuracy of 78.74%, sensitivity of 75.6% and specificity of 91.5% in diagnosing PTB. In summary, iTRAQ in combination with MALDI-TOF-MS technology can efficiently screen differentially expressed proteins in sera from the PTB patients. SHBG is suggested to be a possible and novel serum biomarker for PTB.
Collapse
|
72
|
Hypercholesterolemia Induced Immune Response and Inflammation on Progression of Atherosclerosis in Apob(tm2Sgy) Ldlr(tm1Her)/J Mice. Lipids 2015; 50:785-97. [PMID: 26178198 DOI: 10.1007/s11745-015-4046-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 06/22/2015] [Indexed: 12/20/2022]
Abstract
The effect of hypercholesterolemia induced immune response and inflammation on progression of atherosclerosis in ApoB(tm25gy) LDLr(tm1Her) mice, expressing only ApoB100 and deficient in the low density lipoprotein (LDL) receptor, thus closely resembling human cholesterol transport is not well defined. Atherosclerosis was induced by a high cholesterol diet and its progression was studied at 8, 14 and 20 weeks. Antibody response was determined by ELISA. Lymphocytes in spleen and aortic expression of inflammatory markers were studied by flow cytometry, and immunohistochemistry respectively. A rapid increase in plasma LDL levels in the first 8 weeks was followed by the exponential development of atherosclerosis between 8 and 14 weeks. Progression of the disease was accompanied by an accumulation of macrophages and increased expression of IL17 and IFN-γ in the aorta. Hypercholesterolemia resulted in increased immune response to modified lipids and aortic inflammation, with an expansion of Th17 cells in the spleen. Progression of atherosclerosis showed a positive correlation (r = 0.84, P < 0.001) with Th17 cells and a negative correlation with Treg cells (r = 0.83, P < 0.001). IgM antibodies to Ox-LDL and Th17 cells in spleen showed greatest association with disease development. Our results suggest that anti Ox-LDL IgM antibodies, Th17 cells could be developed as a potential marker to study disease progression and to study the effect of therapeutic regulation of inflammation.
Collapse
|
73
|
Barochia AV, Kaler M, Cuento RA, Gordon EM, Weir NA, Sampson M, Fontana JR, MacDonald S, Moss J, Manganiello V, Remaley AT, Levine SJ. Serum apolipoprotein A-I and large high-density lipoprotein particles are positively correlated with FEV1 in atopic asthma. Am J Respir Crit Care Med 2015; 191:990-1000. [PMID: 25692941 DOI: 10.1164/rccm.201411-1990oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Although lipids, apolipoproteins, and lipoprotein particles are important modulators of inflammation, varying relationships exist between these parameters and asthma. OBJECTIVES To determine whether serum lipids and apolipoproteins correlate with the severity of airflow obstruction in subjects with atopy and asthma. METHODS Serum samples were obtained from 154 atopic and nonatopic subjects without asthma, and 159 subjects with atopy and asthma. Serum lipid and lipoprotein levels were quantified using standard diagnostic assays and nuclear magnetic resonance (NMR) spectroscopy. Airflow obstruction was assessed by FEV1% predicted. MEASUREMENTS AND MAIN RESULTS Serum lipid levels correlated with FEV1 only in the subjects with atopy and asthma. Serum levels of high-density lipoprotein (HDL) cholesterol and apolipoprotein A-I (apoA-I) were positively correlated with FEV1 in subjects with atopy and asthma, whereas a negative correlation existed between FEV1 and serum levels of triglycerides, low-density lipoprotein (LDL) cholesterol, apolipoprotein B (apoB), and the apoB/apoA-I ratio. NMR spectroscopy identified a positive correlation between FEV1 and HDLNMR particle size, as well as the concentrations of large HDLNMR particles and total IDLNMR (intermediate-density lipoprotein) particles in subjects with atopy and asthma. In contrast, LDLNMR particle size and concentrations of LDLNMR and VLDLNMR (very-low-density lipoprotein) particles were negatively correlated with FEV1 in subjects with atopy and asthma. CONCLUSIONS In subjects with atopy and asthma, serum levels of apoA-I and large HDLNMR particles are positively correlated with FEV1, whereas serum triglycerides, LDL cholesterol, and apoB are associated with more severe airflow obstruction. These results may facilitate future studies to assess whether apoA-I and large HDLNMR particles can reduce airflow obstruction and disease severity in asthma.
Collapse
|
74
|
Viswanathan G, Jafurulla M, Kumar GA, Raghunand TR, Chattopadhyay A. Dissecting the membrane cholesterol requirement for mycobacterial entry into host cells. Chem Phys Lipids 2015; 189:19-27. [DOI: 10.1016/j.chemphyslip.2015.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 12/28/2022]
|
75
|
Elkhatib WF, Hair PS, Nyalwidhe JO, Cunnion KM. New potential role of serum apolipoprotein E mediated by its binding to clumping factor A during Staphylococcus aureus invasive infections to humans. J Med Microbiol 2015; 64:335-343. [PMID: 25878259 DOI: 10.1099/jmm.0.000010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus is a crucial human pathogen expressing various immune-evasion proteins that interact with the host-cell molecules. Clumping factor A (ClfA) is a microbial surface protein that promotes S. aureus binding to fibrinogen, and is associated with septic arthritis and infective endocarditis. In order to identify the major human serum proteins that bind the ClfA, we utilized recombinant ClfA region A in a plate-based assay. SDS-PAGE analysis of the bound proteins yielded five prominent bands, which were analysed by MS yielding apolipoprotein E (ApoE) as the predominant protein. ClfA-sufficient S. aureus bound purified ApoE by more than one log greater than an isogenic ClfA-deficient mutant. An immunodot-blot assay yielded a linearity model for ClfA binding to human ApoE with a stoichiometric-binding ratio of 1.702 at maximal Pearson's correlation coefficient (0.927). These data suggest that ApoE could be a major and novel binding target for the S. aureus virulence factor ClfA. Thus, ClfA recruitment of serum ApoE to the S. aureus surface may sequester ApoE and blunt its host defence function against S. aureus-invasive infections to humans. In this context, compounds that can block or suppress ClfA binding to ApoE might be utilized as prophylactic or therapeutic agents.
Collapse
Affiliation(s)
- Walid F Elkhatib
- Department of Pharmacy Practice, School of Pharmacy, Hampton University, Kittrell Hall, Hampton, VA 23668, USA.,Department of Pediatrics, Eastern Virginia Medical School, E.V. Williams Hall, 855 W. Brambleton Avenue, Norfolk, VA 23510, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, Cairo 11566, Egypt
| | - Pamela S Hair
- Department of Pediatrics, Eastern Virginia Medical School, E.V. Williams Hall, 855 W. Brambleton Avenue, Norfolk, VA 23510, USA
| | - Julius O Nyalwidhe
- Leroy T. Canoles Jr Cancer Research Center, Eastern Virginia Medical School, 651 Colley Avenue, Norfolk, VA, USA.,Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School 700 West Olney Road, Norfolk, VA, USA
| | - Kenji M Cunnion
- Children's Hospital of the King's Daughters, 601 Children's Lane, Norfolk, VA 23507, USA.,Children's Specialty Group, 601 Children's Lane, Norfolk, VA 23507, USA.,Department of Pediatrics, Eastern Virginia Medical School, E.V. Williams Hall, 855 W. Brambleton Avenue, Norfolk, VA 23510, USA
| |
Collapse
|
76
|
Hypercholesterolemia and ApoE deficiency result in severe infection with Lyme disease and relapsing-fever Borrelia. Proc Natl Acad Sci U S A 2015; 112:5491-6. [PMID: 25870274 DOI: 10.1073/pnas.1502561112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Lyme disease (Borrelia burgdorferi) and relapsing-fever (Borrelia hispanica) agents have distinct infection courses, but both require cholesterol for growth. They acquire cholesterol from the environment and process it to form cholesterol glycolipids that are incorporated onto their membranes. To determine whether higher levels of serum cholesterol could enhance the organ burdens of B. burgdorferi and the spirochetemia of B. hispanica in laboratory mice, apolipoprotein E (apoE)-deficient and low-density lipoprotein receptor (LDLR)-deficient mice that produce large amounts of serum cholesterol were infected with both spirochetes. Both apoE- and LDLR-deficient mice infected with B. burgdorferi had an increased number of spirochetes in the joints and inflamed ankles compared with the infected wild-type (WT) mice, suggesting that mutations in cholesterol transport that result in high serum cholesterol levels can affect the pathogenicity of B. burgdorferi. In contrast, elevated serum cholesterol did not lead to an increase in the spirochetemia of B. hispanica. In the LDLR-deficient mice, the course of infection was indistinguishable from the WT mice. However, infection of apoE-deficient mice with B. hispanica resulted in a longer spirochetemia and increased mortality. Together, these results argue for the apoE deficiency, and not hypercholesterolemia, as the cause for the increased severity with B. hispanica. Serum hyperlipidemias are common human diseases that could be a risk factor for increased severity in Lyme disease.
Collapse
|
77
|
Repasy T, Martinez N, Lee J, West K, Li W, Kornfeld H. Bacillary replication and macrophage necrosis are determinants of neutrophil recruitment in tuberculosis. Microbes Infect 2015; 17:564-74. [PMID: 25862076 DOI: 10.1016/j.micinf.2015.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/13/2015] [Accepted: 03/27/2015] [Indexed: 01/27/2023]
Abstract
We previously determined that burst size necrosis is the chief mode of mononuclear cell death in the lungs of mice with tuberculosis. The present study explored the link between infection-induced necrosis of mononuclear phagocytes and neutrophil accumulation in the lungs of mice challenged with one of four Mycobacterium tuberculosis strains of increasing virulence (RvΔphoPR mutant, H37Ra, H37Rv and Erdman). At all time points studied, Erdman produced the highest bacterial load and the highest proportion and number of M. tuberculosis-infected neutrophils. These parameters, and the proportion of TUNEL-positive cells, tracked with virulence across all strains tested. Differences in neutrophil infection were not reflected by levels of chemoattractant cytokines in bronchoalveolar lavage fluid, while interferon-γ (reported to suppress neutrophil trafficking to the lung in tuberculosis) was highest in Erdman-infected mice. Treating Erdman-infected mice with ethambutol decreased the proportion of mononuclear phagocytes with high bacterial burden and the ratio of infected neutrophils to infected mononuclear cells in a dose-dependent manner. We propose that faster replicating M. tuberculosis strains cause more necrosis which in turn promotes neutrophil recruitment. Neutrophils infected with M. tuberculosis constitute a biomarker for poorly controlled bacterial replication, infection-induced mononuclear cell death, and increased severity of immune pathology in tuberculosis.
Collapse
Affiliation(s)
- Teresa Repasy
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nuria Martinez
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jinhee Lee
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kim West
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Wenjun Li
- Division of Preventive and Behavioral Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
78
|
Palusinska-Szysz M, Zdybicka-Barabas A, Cytryńska M, Wdowiak-Wróbel S, Chmiel E, Gruszecki WI. Analysis of cell surface alterations in Legionella pneumophila cells treated with human apolipoprotein E. Pathog Dis 2015; 73:1-8. [PMID: 25176171 DOI: 10.1111/2049-632x.12214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Binding of human apolipoprotein E (apoE) to Legionella pneumophila lipopolysaccharide was analysed at the molecular level by Fourier-transform infrared spectroscopy, thereby providing biophysical evidence for apoE-L. pneumophila lipopolysaccharide interaction. Atomic force microscopy imaging of apoE-exposed L. pneumophila cells revealed alterations in the bacterial cell surface topography and nanomechanical properties in comparison with control bacteria. The changes induced by apoE binding to lipopolysaccharide on the surface of L. pneumophila cells may participate in: (1) impeding the penetration of host cells by the bacteria; (2) suppression of pathogen intracellular growth and eventually; and (3) inhibition of the development of infection.
Collapse
Affiliation(s)
- Marta Palusinska-Szysz
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, Lublin, Poland
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, Lublin, Poland
| | - Sylwia Wdowiak-Wróbel
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Elżbieta Chmiel
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Wiesław I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Lublin, Poland
| |
Collapse
|
79
|
Moraco AH, Kornfeld H. Cell death and autophagy in tuberculosis. Semin Immunol 2014; 26:497-511. [PMID: 25453227 DOI: 10.1016/j.smim.2014.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 12/13/2022]
Abstract
Mycobacterium tuberculosis has succeeded in infecting one-third of the human race though inhibition or evasion of innate and adaptive immunity. The pathogen is a facultative intracellular parasite that uses the niche provided by mononuclear phagocytes for its advantage. Complex interactions determine whether the bacillus will or will not be delivered to acidified lysosomes, whether the host phagocyte will survive infection or die, and whether the timing and mode of cell death works to the advantage of the host or the pathogen. Here we discuss cell death and autophagy in TB. These fundamental processes of cell biology feature in all aspects of TB pathogenesis and may be exploited to the treatment or prevention of TB disease.
Collapse
Affiliation(s)
- Andrew H Moraco
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
80
|
Thirunavukkarasu S, de Silva K, Plain KM, J Whittington R. Role of host- and pathogen-associated lipids in directing the immune response in mycobacterial infections, with emphasis on Mycobacterium avium subsp. paratuberculosis. Crit Rev Microbiol 2014; 42:262-75. [PMID: 25163812 DOI: 10.3109/1040841x.2014.932327] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mycobacteria have a complex cell wall with a high lipid content that confers unique advantages for bacterial survival in the hostile host environment, leading to long-term infection. There is a wealth of evidence suggesting the role cell wall-associated lipid antigens play at the host-pathogen interface by contributing to bacterial virulence. One pathway that pathogenic mycobacteria use to subvert host immune pathways to their advantage is host cholesterol/lipid homeostasis. This review focuses on the possible role of pathogen- and host-associated lipids in the survival and persistence of pathogenic mycobacteria with emphasis on Mycobacterium avium subsp. paratuberculosis. We draw upon literature in diverse areas of infectious and metabolic diseases and explain a mechanism by which mycobacterial-induced changes in the host cellular energy state could account for phenomena that are a hallmark of chronic mycobacterial diseases.
Collapse
Affiliation(s)
| | - Kumudika de Silva
- a Faculty of Veterinary Science , University of Sydney , Camden , Australia
| | - Karren M Plain
- a Faculty of Veterinary Science , University of Sydney , Camden , Australia
| | | |
Collapse
|
81
|
Abstract
Tuberculosis (TB) remains a devastating infectious disease and, with the emergence of multidrug-resistant forms, represents a major global threat. Much of our understanding of pathogenic and immunologic mechanisms in TB has derived from studies in experimental animals. However, it is becoming increasingly clear in TB as well as in other inflammatory diseases that there are substantial differences in immunological responses of humans not found or predicted by animal studies. Thus, it is critically important to understand mechanisms of pathogenesis and immunological protection in humans. In this review, we will address the key immunological question: What are the necessary and sufficient immune responses required for protection against TB infection and disease in people-specifically protection against infection, protection against the establishment of latency or persistence, and protection against transitioning from latent infection to active disease.
Collapse
Affiliation(s)
- Robert L Modlin
- Division of Dermatology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
82
|
Martinez N, Kornfeld H. Diabetes and immunity to tuberculosis. Eur J Immunol 2014; 44:617-26. [PMID: 24448841 DOI: 10.1002/eji.201344301] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/08/2014] [Accepted: 01/15/2014] [Indexed: 02/06/2023]
Abstract
The dual burden of tuberculosis (TB) and diabetes has attracted much attention in the past decade as diabetes prevalence has increased dramatically in countries already afflicted with a high burden of TB. The confluence of these two major diseases presents a serious threat to global public health; at the same time it also presents an opportunity to learn more about the key elements of human immunity to TB that may be relevant to the general population. Some effects of diabetes on innate and adaptive immunity that are potentially relevant to TB defense have been identified, but have yet to be verified in humans and are unlikely to fully explain the interaction of these two disease states. This review provides an update on the clinical and epidemiological features of TB in the diabetic population and relates them to recent advances in understanding the mechanistic basis of TB susceptibility and other complications of diabetes. Issues that merit further investigation - such as geographic host and pathogen differences in the diabetes/TB interaction, the role of hyperglycemia-induced epigenetic reprogramming in immune dysfunction, and the impact of diabetes on lung injury and fibrosis caused by TB - are highlighted in this review.
Collapse
Affiliation(s)
- Nuria Martinez
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
83
|
Wheelwright M, Kim EW, Inkeles MS, De Leon A, Pellegrini M, Krutzik SR, Liu PT. All-trans retinoic acid-triggered antimicrobial activity against Mycobacterium tuberculosis is dependent on NPC2. THE JOURNAL OF IMMUNOLOGY 2014; 192:2280-2290. [PMID: 24501203 DOI: 10.4049/jimmunol.1301686] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A role for vitamin A in host defense against Mycobacterium tuberculosis has been suggested through epidemiological and in vitro studies; however, the mechanism is unclear. In this study, we demonstrate that vitamin A-triggered antimicrobial activity against M. tuberculosis requires expression of NPC2. Comparison of monocytes stimulated with all-trans retinoic acid (ATRA) or 1,25-dihydroxyvitamin D3 (1,25D3), the biologically active forms of vitamin A and vitamin D, respectively, indicates that ATRA and 1,25D3 induce mechanistically distinct antimicrobial activities. Stimulation of primary human monocytes with ATRA did not result in expression of the antimicrobial peptide cathelicidin, which is required for 1,25D3 antimicrobial activity. In contrast, ATRA triggered a reduction in the total cellular cholesterol concentration, whereas 1,25D3 did not. Blocking ATRA-induced cellular cholesterol reduction inhibits antimicrobial activity as well. Bioinformatic analysis of ATRA- and 1,25D3-induced gene profiles suggests that NPC2 is a key gene in ATRA-induced cholesterol regulation. Knockdown experiments demonstrate that ATRA-mediated decrease in total cellular cholesterol content and increase in lysosomal acidification are both dependent upon expression of NPC2. Expression of NPC2 was lower in caseous tuberculosis granulomas and M. tuberculosis-infected monocytes compared with normal lung and uninfected cells, respectively. Loss of NPC2 expression ablated ATRA-induced antimicrobial activity. Taken together, these results suggest that the vitamin A-mediated antimicrobial mechanism against M. tuberculosis requires NPC2-dependent expression and function, indicating a key role for cellular cholesterol regulation in the innate immune response.
Collapse
Affiliation(s)
- Matthew Wheelwright
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Elliot W Kim
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Megan S Inkeles
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095
| | - Avelino De Leon
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, CA 90095
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095
| | - Stephan R Krutzik
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Philip T Liu
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, CA 90095
| |
Collapse
|
84
|
Scichilone N, Rizzo M, Benfante A, Catania R, Giglio RV, Nikolic D, Montalto G, Bellia V. Serum low density lipoprotein subclasses in asthma. Respir Med 2013; 107:1866-72. [PMID: 24075885 DOI: 10.1016/j.rmed.2013.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND The levels of serum low-density lipoproteins (LDL) have been implicated in the inflammatory cascade in a murine model of asthma. Recent findings suggest that LDL may modulate the inflammatory state of the asthmatic airways in humans. OBJECTIVE We explored whether LDL subclasses are associated with the occurrence and severity of asthma. METHODS 24 asthmatics (M/F: 11/13) and 24 healthy individuals, with normal BMI and absence of metabolic syndrome, matched for age and gender. Serum concentrations of LDL subclasses were distributed as seven bands (LDL-1 and -2 defined as large, least pro-inflammatory LDL, and LDL-3 to -7 defined as small, most pro-inflammatory LDL), using the LipoPrint(©) System (Quantimetrix Corporation, Redondo Beach, CA, USA). RESULTS LDL-1 was similar in the two groups (56 ± 16% vs. 53 ± 11, p = NS), while LDL-2 was significantly lower in asthmatics as compared to controls (35 ± 8% vs. 43 ± 10%, p = 0.0074). LDL-3 levels were two-fold higher in the asthmatics, but the difference did not reach the statistical significance (8 ± 7.3% vs. 4 ± 3%, p = NS). Smaller subclasses LDL-4 to LDL-7 were undetectable in controls. In asthmatics, LDL-1 was positively associated with VC% predicted (r = +0.572, p = 0.0035) and FEV1% predicted (r = +0.492, p = 0.0146). LDL-3 was inversely correlated with both VC% predicted (r = -0.535, p = 0.0071) and FEV1% predicted (r = -0.465, p = 0.0222). CONCLUSIONS The findings of this pilot study suggest a role of LDL in asthma, and advocate for larger studies to confirm the association between asthma and dyslipidemia.
Collapse
Affiliation(s)
- Nicola Scichilone
- BioMedical Department of Internal Medicine and Medical Specialties (DiBiMIS), University of Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Lei L, Li H, Yan F, Xiao Y. Hyperlipidemia impaired innate immune response to periodontal pathogen porphyromonas gingivalis in apolipoprotein E knockout mice. PLoS One 2013; 8:e71849. [PMID: 23977160 PMCID: PMC3745424 DOI: 10.1371/journal.pone.0071849] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 07/04/2013] [Indexed: 12/18/2022] Open
Abstract
A finely-tuned innate immune response plays a pivotal role in protecting host against bacterial invasion during periodontal disease progression. Hyperlipidemia has been suggested to exacerbate periodontal health condition. However, the underlying mechanism has not been addressed. In the present study, we investigated the effect of hyperlipidemia on innate immune responses to periodontal pathogen Porphyromonas gingivalis infection. Apolipoprotein E-deficient and wild-type mice at the age of 20 weeks were used for the study. Peritoneal macrophages were isolated and subsequently used for the study of viable P. gingivalis infection. ApoE−/− mice demonstrated inhibited iNOS production and impaired clearance of P. gingivalis in vitro and in vivo; furthermore, ApoE−/− mice displayed disrupted cytokine production pattern in response to P. gingivalis, with a decreased production of tumor necrosis factor-α, interleukin-6 (IL-6), IL-1β and monocyte chemotactic protein-1. Microarray data demonstrated that Toll-like receptor (TLR) and NOD-like receptor (NLR) pathway were altered in ApoE−/− mice macrophages; further analysis of pattern recognition receptors (PRRs) demonstrated that expression of triggering receptors on myeloid cells-1 (TREM-1), an amplifier of the TLR and NLR pathway, was decreased in ApoE−/− mice macrophages, leading to decreased recruitment of NF-κB onto the promoters of the TNF-α and IL-6. Our data suggest that in ApoE−/− mice hyperlipidemia disrupts the expression of PRRs, and cripples the host’s capability to generate sufficient innate immune response to P. gingivalis, which may facilitate immune evasion, subgingival colonization and establishment of P. gingivalis in the periodontal niche.
Collapse
MESH Headings
- Animals
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Bacteroidaceae Infections/immunology
- Bacteroidaceae Infections/microbiology
- Cells, Cultured
- Cytokines/genetics
- Cytokines/metabolism
- Gene Expression Regulation/immunology
- Hyperlipidemias/complications
- Hyperlipidemias/immunology
- Immunity, Innate
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/microbiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Periodontal Diseases/immunology
- Periodontal Diseases/microbiology
- Phagocytosis
- Porphyromonas gingivalis/immunology
- Promoter Regions, Genetic
- Protein Binding
- Receptors, Pattern Recognition/genetics
- Receptors, Pattern Recognition/metabolism
- Transcription Factor RelA/metabolism
- Transcriptome
Collapse
Affiliation(s)
- Lang Lei
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Houxuan Li
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Fuhua Yan
- Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, Jiangsu, China
- * E-mail: (FY); (YX)
| | - Yin Xiao
- Bone Research Lab, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- * E-mail: (FY); (YX)
| |
Collapse
|
86
|
Kuda T, Yazaki T, Ono M, Takahashi H, Kimura B. In vitro
cholesterol-lowering properties of Lactobacillus plantarum
AN6 isolated from aji-narezushi. Lett Appl Microbiol 2013; 57:187-92. [DOI: 10.1111/lam.12094] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/25/2013] [Accepted: 04/25/2013] [Indexed: 12/16/2022]
Affiliation(s)
- T. Kuda
- Department of Food Science and Technology; Tokyo University of Marine Science and Technology; Tokyo Japan
| | - T. Yazaki
- Department of Food Science and Technology; Tokyo University of Marine Science and Technology; Tokyo Japan
| | - M. Ono
- Department of Food Science and Technology; Tokyo University of Marine Science and Technology; Tokyo Japan
| | - H. Takahashi
- Department of Food Science and Technology; Tokyo University of Marine Science and Technology; Tokyo Japan
| | - B. Kimura
- Department of Food Science and Technology; Tokyo University of Marine Science and Technology; Tokyo Japan
| |
Collapse
|
87
|
Szabo AM, Endresz V, Somogyvari F, Miczak A, Faludi I. Isocitrate lyase encoding plasmids in BCG cause increased survival in ApoB100-only LDLR-/- mice. Mol Biol Rep 2013; 40:4721-5. [PMID: 23653002 DOI: 10.1007/s11033-013-2568-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
We studied the role of isocitrate lyase in the interaction between Mycobacterium bovis BCG and mice. ApoB100-only LDLR-/- (B6;129S-ApoBtm2SgyLdlrtm1Her/J) mice were inoculated with M. bovis BCG harbouring plasmids carrying the gene for isocitrate lyase. The presence of ~29 times more copies of this gene resulted in a higher bacterial yield in the spleens and lungs of the infected mice. The spleen was 3-4 times heavier, and in the spleen the bacteria survived over 10 days longer than did the bacteria with the control plasmid. Propionate was less toxic for bacteria carrying icl plasmids in vitro. This recombinant BCG can be a possible vaccine candidate.
Collapse
Affiliation(s)
- Agnes Mira Szabo
- Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm tér 10, Szeged, 6720, Hungary.
| | | | | | | | | |
Collapse
|
88
|
Repasy T, Lee J, Marino S, Martinez N, Kirschner DE, Hendricks G, Baker S, Wilson AA, Kotton DN, Kornfeld H. Intracellular bacillary burden reflects a burst size for Mycobacterium tuberculosis in vivo. PLoS Pathog 2013; 9:e1003190. [PMID: 23436998 PMCID: PMC3578792 DOI: 10.1371/journal.ppat.1003190] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 12/28/2012] [Indexed: 01/12/2023] Open
Abstract
We previously reported that Mycobacterium tuberculosis triggers macrophage necrosis in vitro at a threshold intracellular load of ∼25 bacilli. This suggests a model for tuberculosis where bacilli invading lung macrophages at low multiplicity of infection proliferate to burst size and spread to naïve phagocytes for repeated cycles of replication and cytolysis. The current study evaluated that model in vivo, an environment significantly more complex than in vitro culture. In the lungs of mice infected with M. tuberculosis by aerosol we observed three distinct mononuclear leukocyte populations (CD11b− CD11c+/hi, CD11b+/lo CD11clo/−, CD11b+/hi CD11c+/hi) and neutrophils hosting bacilli. Four weeks after aerosol challenge, CD11b+/hi CD11c+/hi mononuclear cells and neutrophils were the predominant hosts for M. tuberculosis while CD11b+/lo CD11clo/− cells assumed that role by ten weeks. Alveolar macrophages (CD11b− CD11c+/hi) were a minority infected cell type at both time points. The burst size model predicts that individual lung phagocytes would harbor a range of bacillary loads with most containing few bacilli, a smaller proportion containing many bacilli, and few or none exceeding a burst size load. Bacterial load per cell was enumerated in lung monocytic cells and neutrophils at time points after aerosol challenge of wild type and interferon-γ null mice. The resulting data fulfilled those predictions, suggesting a median in vivo burst size in the range of 20 to 40 bacilli for monocytic cells. Most heavily burdened monocytic cells were nonviable, with morphological features similar to those observed after high multiplicity challenge in vitro: nuclear condensation without fragmentation and disintegration of cell membranes without apoptotic vesicle formation. Neutrophils had a narrow range and lower peak bacillary burden than monocytic cells and some exhibited cell death with release of extracellular neutrophil traps. Our studies suggest that burst size cytolysis is a major cause of infection-induced mononuclear cell death in tuberculosis. Macrophages patrol the lung to ingest and destroy inhaled microbes. Mycobacterium tuberculosis, the bacteria causing tuberculosis, can survive within macrophages and use them as a protected environment for growth. Macrophages by themselves are poorly equipped to kill M. tuberculosis but may undergo programmed cell death (apoptosis) to limit bacterial replication. Virulent M. tuberculosis has evolved the capacity to inhibit macrophage apoptosis, thereby protecting the replication niche. In previous studies we showed that upon reaching a threshold intracellular number (burst size), virulent M. tuberculosis kills macrophages by necrosis and escapes for spreading infection. The present study was designed to test whether this mechanism seen in vitro operates during pulmonary tuberculosis in vivo. The distribution of M. tuberculosis numbers inside lung phagocytes of mice with tuberculosis conformed to predictions based on the burst size hypothesis, as did the appearance of dying cells. We identified four different types of phagocytes hosting intracellular M. tuberculosis. The distribution of M. tuberculosis load within individual phagocytes and between different types of phagocyte changed over the course of tuberculosis disease. These studies reveal the complexity of host defense in tuberculosis that must be considered as new therapies are sought.
Collapse
MESH Headings
- Animals
- Bacterial Load
- Cell Death
- Cells, Cultured
- Interferon-gamma/genetics
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/microbiology
- Lung/immunology
- Lung/microbiology
- Macrophages, Alveolar/cytology
- Macrophages, Alveolar/microbiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Immunological
- Mycobacterium tuberculosis/cytology
- Mycobacterium tuberculosis/growth & development
- Mycobacterium tuberculosis/immunology
- Neutrophils/microbiology
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
Collapse
Affiliation(s)
- Teresa Repasy
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jinhee Lee
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Simeone Marino
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Nuria Martinez
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Denise E. Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Gregory Hendricks
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Stephen Baker
- Department of Quantitative Health Science, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Andrew A. Wilson
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Darrell N. Kotton
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
89
|
Feingold KR, Grunfeld C. Lipids: a key player in the battle between the host and microorganisms. J Lipid Res 2012; 53:2487-9. [PMID: 23075464 DOI: 10.1194/jlr.e033407] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Kenneth R Feingold
- Metabolism Section, Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94121, USA.
| | | |
Collapse
|
90
|
Ghosh J, Das S, Guha R, Ghosh D, Naskar K, Das A, Roy S. Hyperlipidemia offers protection against Leishmania donovani infection: role of membrane cholesterol. J Lipid Res 2012; 53:2560-72. [PMID: 23060454 DOI: 10.1194/jlr.m026914] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Leishmania donovani (LD), the causative agent of visceral leishmaniasis (VL), extracts membrane cholesterol from macrophages and disrupts lipid rafts, leading to their inability to stimulate T cells. Restoration of membrane cholesterol by liposomal delivery corrects the above defects and offers protection in infected hamsters. To reinforce further the protective role of cholesterol in VL, mice were either provided a high-cholesterol (atherogenic) diet or underwent statin treatment. Subsequent LD infection showed that an atherogenic diet is associated with protection, whereas hypocholesterolemia due to statin treatment confers susceptibility to the infection. This observation was validated in apolipoprotein E knockout mice (AE) mice that displayed intrinsic hypercholesterolemia with hepatic granuloma, production of host-protective cytokines, and expansion of antileishmanial CD8(+)IFN- γ (+) and CD8(+)IFN- γ (+)TNF- α (+) T cells in contrast to the wild-type C57BL/6 (BL/6) mice when infected with LD. Normal macrophages from AE mice (N-AE-MΦ) showed 3-fold higher membrane cholesterol coupled with increased fluorescence anisotropy (FA) compared with wild-type macrophage (N-BL/6-MΦ). Characterization of in vitro LD-infected AE macrophage (LD-AE-MΦ) revealed intact raft architecture and ability to stimulate T cells, which were compromised in LD-BL/6-MΦ. This study clearly indicates that hypercholesterolemia, induced intrinsically or extrinsically, can control the pathogenesis of VL by modulating immune repertoire in favor of the host.
Collapse
Affiliation(s)
- June Ghosh
- Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India
| | | | | | | | | | | | | |
Collapse
|
91
|
Gowdy KM, Fessler MB. Emerging roles for cholesterol and lipoproteins in lung disease. Pulm Pharmacol Ther 2012; 26:430-7. [PMID: 22706330 DOI: 10.1016/j.pupt.2012.06.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 05/25/2012] [Accepted: 06/05/2012] [Indexed: 01/02/2023]
Abstract
Dyslipidemia, the condition of elevated serum triglycerides, elevated low-density lipoprotein cholesterol, and/or low high-density lipoprotein cholesterol, is a public health problem of growing concern. Dyslipidemia clusters with other disorders of the metabolic syndrome that together influence, and may derive from, chronic inflammation. While best recognized as a risk factor for atherosclerotic cardiovascular disease, lipid dysregulation has recently been shown to influence a variety of disease processes in several organ systems. This review highlights our current understanding of the role of cholesterol and its homeostatic trafficking in pulmonary physiology and pathophysiology. Gene-targeted mice deficient in regulatory proteins that govern reverse cholesterol transport (e.g., ATP Binding Cassette transporter G1, apolipoprotein E) have recently been shown to have abnormal lung physiology, including dysregulated pulmonary innate and adaptive immune responses to the environment. It has also recently been shown that diet-induced dyslipidemia alters trafficking of immune cells to the lung in a manner that may have important implications for the pathogenesis of acute lung injury, asthma, pneumonia, and other lung disorders. Conversely, cholesterol-targeting pharmacologic agents, such as statins, apolipoprotein mimetic peptides, and Liver X Receptor agonists, have shown early promise in the treatment of several lung disorders. An improved understanding of the precise molecular mechanisms by which cholesterol and its trafficking modify pulmonary immunity will be required before the full implications of dyslipidemia as a lung disease modifier, and the full potential of lipid-targeting agents as pulmonary therapeutics, can be realized.
Collapse
Affiliation(s)
- Kymberly M Gowdy
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 TW Alexander Drive, PO Box 12233, MD D2-01, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
92
|
Martens GW, Vallerskog T, Kornfeld H. Hypercholesterolemic LDL receptor-deficient mice mount a neutrophilic response to tuberculosis despite the timely expression of protective immunity. J Leukoc Biol 2012; 91:849-57. [PMID: 22227965 PMCID: PMC3360472 DOI: 10.1189/jlb.0311164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 10/28/2011] [Accepted: 11/18/2011] [Indexed: 12/31/2022] Open
Abstract
The prevalence of hypercholesterolemia is rising in industrialized and developing countries. We reported previously that host defense against Mtb was impaired by hypercholesterolemia in ApoE(-/-) mice, raising the possibility that people with HC could be more vulnerable to TB. The present study examined whether TB immunity was similarly impaired in a different hypercholesterolemic model, LDL-R(-/-) mice, which developed comparable elevation of total serum cholesterol as ApoE(-/-)mice when fed HC or LC diets. Like ApoE(-/-) mice, LDL-R(-/-) mice had an exaggerated lung inflammatory response to Mtb with increased tissue necrosis. Inflammation, foamy macrophage formation, and tissue necrosis in LDL-R(-/-) mice increased with the degree of hypercholesterolemia. Unlike ApoE(-/-) mice, LDL-R(-/-) mice fed a HC diet mounted a timely and protective adaptive immune response that restricted mycobacterial replication comparably with WT mice. Thus, ApoE(-/-) and LDL-R(-/-) mice share a cholesterol-dependent hyperinflammatory TB phenotype but do not share the impairment of adaptive immunity found in ApoE(-/-) mice. The impact of hypercholesterolemia on TB immunity is more complex than appreciated by total cholesterol alone, possibly reflecting the different functional effect of specific lipoprotein particles.
Collapse
Affiliation(s)
- Gregory W. Martens
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Therese Vallerskog
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
93
|
Müller A, Möller M, Adams LA, Warren RM, Hoal EG, van Helden PD. Comparative analysis of a putative tuberculosis-susceptibility gene, MC3R, and pseudogene sequences in cattle, African buffalo, hyena, rhinoceros and other African bovids and ruminants. Cytogenet Genome Res 2012; 136:117-22. [PMID: 22286663 DOI: 10.1159/000335464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2011] [Indexed: 12/17/2022] Open
Abstract
Studies in humans have suggested the possible involvement of melanocortin-3-receptor (MC3R) and other components of the central melanocortin system in host defense against mycobacteria. We report a genomic DNA nucleotide sequence highly homologous to human MC3R in several bovids and non-bovid African wildlife species. Nucleotide sequence analysis indicates that the orthologous genes of cattle and buffalo are highly homologous (89.4 and 90%, respectively) to the human MC3R gene. Sequence results also identified a typical non-functional, duplicated pseudogene, MC3RP, in 7 species from the family Bovidae. No pseudogene was found in animals outside Bovidae. The presence of the pseudogene in tuberculosis-susceptible species could have possible immunomodulatory effects on susceptibility to bovine tuberculosis infection, as well as a considerable influence on energy metabolism and food conversion efficiency.
Collapse
Affiliation(s)
- A Müller
- DST/NRF Centre of Excellence for Biomedical TB Research/MRC Centre for Molecular and Cellular Biology/ Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | | | | | | | | | | |
Collapse
|
94
|
Ouellet H, Johnston JB, de Montellano PRO. Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis. Trends Microbiol 2011; 19:530-9. [PMID: 21924910 DOI: 10.1016/j.tim.2011.07.009] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/20/2011] [Accepted: 07/29/2011] [Indexed: 11/30/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that infects 10 million people worldwide and kills 2 million people every year. The uptake and utilization of nutrients by Mtb within the host cell is still poorly understood, although lipids play an important role in Mtb persistence. The recent identification of a large regulon of cholesterol catabolic genes suggests that Mtb can use host sterol for infection and persistence. In this review, we report on recent progress in elucidation of the Mtb cholesterol catabolic reactions and their potential utility as targets for tuberculosis therapeutic agents.
Collapse
Affiliation(s)
- Hugues Ouellet
- Department of Pharmaceutical Chemistry, University of California at San Francisco, Genentech Hall, N572D, 600 16th Street, San Francisco, CA 94158-2517, USA
| | | | | |
Collapse
|
95
|
Cross-talk between apolipoprotein E and cytokines. Mediators Inflamm 2011; 2011:949072. [PMID: 21772670 PMCID: PMC3136159 DOI: 10.1155/2011/949072] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 05/02/2011] [Indexed: 02/06/2023] Open
Abstract
Apolipoprotein E (apoE) is a multifunctional glycosylated protein characterized by its wide tissue distribution. Despite its importance in lipid transport and atherosclerosis pathogenesis, apoE is associated with neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson disease, and autoimmune disorders such as multiple sclerosis and psoriasis. Among others, the role of apoE in modulating inflammation and oxidation is crucial in elucidating the risk factors of the above diseases since the function of apoE is closely linked with both proinflammatory and antiinflammatory cytokines. Moreover, apoE modulates inflammatory and immune responses in an isoform-dependent manner. Correspondingly, inflammatory cytokines can either upregulate or downregulate the production of apoE in various tissue types. However, studies on the interactions between apoE and cytokines occasionally yield conflicting results, highlighting the complex roles of apoE and cytokines in various disorders. The present paper summarizes the current knowledge about the cross-talk between apoE and cytokines, with emphasis on the effects of apoE on the Th1/Th2 balance.
Collapse
|
96
|
Mycobacterium tuberculosis induces an atypical cell death mode to escape from infected macrophages. PLoS One 2011; 6:e18367. [PMID: 21483832 PMCID: PMC3069075 DOI: 10.1371/journal.pone.0018367] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 02/28/2011] [Indexed: 01/26/2023] Open
Abstract
Background Macrophage cell death following infection with Mycobacterium tuberculosis plays a central role in tuberculosis disease pathogenesis. Certain attenuated strains induce extrinsic apoptosis of infected macrophages but virulent strains of M. tuberculosis suppress this host response. We previously reported that virulent M. tuberculosis induces cell death when bacillary load exceeds ∼20 per macrophage but the precise nature of this demise has not been defined. Methodology/Principal Findings We analyzed the characteristics of cell death in primary murine macrophages challenged with virulent or attenuated M. tuberculosis complex strains. We report that high intracellular bacillary burden causes rapid and primarily necrotic death via lysosomal permeabilization, releasing hydrolases that promote Bax/Bak-independent mitochondrial damage and necrosis. Cell death was independent of cathepsins B or L and notable for ultrastructural evidence of damage to lipid bilayers throughout host cells with depletion of several host phospholipid species. These events require viable bacteria that can respond to intracellular cues via the PhoPR sensor kinase system but are independent of the ESX1 system. Conclusions/Significance Cell death caused by virulent M. tuberculosis is distinct from classical apoptosis, pyroptosis or pyronecrosis. Mycobacterial genes essential for cytotoxicity are regulated by the PhoPR two-component system. This atypical death mode provides a mechanism for viable bacilli to exit host macrophages for spreading infection and the eventual transition to extracellular persistence that characterizes advanced pulmonary tuberculosis.
Collapse
|
97
|
Walsh MC, Camerlin AJ, Miles R, Pino P, Martinez P, Mora-Guzmán F, Crespo-Solis JG, Olivarez E, Fisher-Hoch SP, McCormick JB, Restrepo BI. The sensitivity of interferon-gamma release assays is not compromised in tuberculosis patients with diabetes. Int J Tuberc Lung Dis 2011; 15:179-iii. [PMID: 21219678 PMCID: PMC3085021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
SETTING AND OBJECTIVES the sensitivity of the interferon-gamma release assays (IGRAs) in the detection of Mycobacterium tuberculosis infection or disease may be affected by immune dysregulation in diabetes. As millions of type 2 diabetes patients are at risk for tuberculosis (TB) worldwide, it is important to determine if the sensitivity of IGRAs is compromised in this vulnerable population. DESIGN the sensitivity of the IGRAs QuantiFERON®-TB Gold (QFT-G) and T-SPOT®.TB was evaluated among specimens from newly diagnosed adults with microbiologically confirmed TB with and without diabetes. We also evaluated the association between QFT-G results and diabetes-associated conditions (dyslipidemia, obesity). RESULTS QFT-G sensitivity was 70% among TB patients. Patients with diabetes, chronic hyperglycemia or overweight/obesity were more than twice as likely to have positive test results in multivariate models (P < 0.05). Low high-density lipoprotein cholesterol or high triglycerides were not associated with assay results. In a separate group of TB patients (n = 43), T-SPOT.TB was 93% sensitive, with similar performance in patients with and without diabetes. CONCLUSION IGRA sensitivity is not compromised by diabetes in TB patients. Accordingly, IGRAs may also be suitable for diagnosing TB infection in diabetes patients, which is required to assess TB risk.
Collapse
Affiliation(s)
- Mary C. Walsh
- Division of Epidemiology, School of Public Health in Brownsville, University of Texas Health Science Center at Houston, Brownsville, Texas
| | - Aulasa J. Camerlin
- Division of Epidemiology, School of Public Health in Brownsville, University of Texas Health Science Center at Houston, Brownsville, Texas
| | - Reyna Miles
- Division of Epidemiology, School of Public Health in Brownsville, University of Texas Health Science Center at Houston, Brownsville, Texas
| | - Paula Pino
- Division of Epidemiology, School of Public Health in Brownsville, University of Texas Health Science Center at Houston, Brownsville, Texas
| | - Perla Martinez
- Division of Epidemiology, School of Public Health in Brownsville, University of Texas Health Science Center at Houston, Brownsville, Texas
| | | | | | | | - Susan P. Fisher-Hoch
- Division of Epidemiology, School of Public Health in Brownsville, University of Texas Health Science Center at Houston, Brownsville, Texas
| | - Joseph B. McCormick
- Division of Epidemiology, School of Public Health in Brownsville, University of Texas Health Science Center at Houston, Brownsville, Texas
| | - Blanca I. Restrepo
- Division of Epidemiology, School of Public Health in Brownsville, University of Texas Health Science Center at Houston, Brownsville, Texas
| |
Collapse
|
98
|
Semba RD, Darnton-Hill I, de Pee S. Addressing Tuberculosis in the Context of Malnutrition and HIV Coinfection. Food Nutr Bull 2010. [DOI: 10.1177/15648265100314s404] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Tuberculosis is the second leading cause of infectious disease mortality (1.8 million/year), after HIV/AIDS. There are more than 9 million new cases each year. One-third of the world's population, and 50% of adults in sub-Saharan Africa, South Asia, and South-East Asia, are infected, representing an enormous pool of individuals at risk for developing the disease. The situation is complicated by the HIV/AIDS pandemic, widespread undernutrition, smoking, diabetes, increased mobility, and emergence of multi- and extensively drug-resistant tuberculosis. Objective To review the scientific evidence about the interactions among tuberculosis, nutrition, and HIV coinfection. Results HIV infection and malnutrition lower immunity, increasing the risk of reactivation tuberculosis and primary progressive disease. Having either tuberculosis or HIV infection causes weight loss. Malnutrition markedly increases mortality among both tuberculosis and HIV/AIDS patients and should be treated concurrently with treatment of the infections. Tuberculosis treatment is a prerequisite for nutritional recovery, in addition to intake of nutrients required for rebuilding tissues, which is constrained in food-insecure households. Additional pharmaceutical treatment to reduce the catabolic impact of inflammation or promote growth may be needed. Specific nutrients can contribute to faster sputum smear clearance, which is important for reducing transmission, as well as faster weight gain when combined with an adequate diet. Adequate nutrition and weight gain in undernourished populations might reduce the incidence of tuberculosis. Conclusions The many risk factors for the development of tuberculosis need to be addressed simultaneously, especially HIV/AIDS and food insecurity and undernutrition. For stronger evidence-based guidelines, existing recommendations and clinical applications need to be more widely applied and evaluated.
Collapse
|
99
|
de la Fuente J, Gortazar C, Vicente J, Villar M. Host expression of methylmalonyl-CoA mutase and tuberculosis: a missing link? Med Hypotheses 2010; 76:361-4. [PMID: 21084167 DOI: 10.1016/j.mehy.2010.10.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 10/26/2010] [Indexed: 02/04/2023]
Abstract
Bovine tuberculosis (bTB) is a disease caused by Mycobacterium bovis and closely related species of the Mycobacterium tuberculosis complex. bTB is an important health problem affecting livestock, wild animals and accounting for up to 10% of human TB cases worldwide. Several hypotheses have been considered to explain the low incidence of active TB despite high infection rates and the variable response to BCG vaccination. These hypotheses have considered genetic factors of immunized individuals and BCG strains, sensitization to environmental mycobacteria and metabolic processes. However, a link has not been established between genetic factors and metabolic processes that may affect the outcome of M. bovis infection and response to BCG vaccination. Herein we used published data linking host cholesterol metabolism with mycobacterial infection, persistence and disease outcome, and results obtained from studies of M. bovis infection and BCG vaccination in the wild boar bTB model to propose a hypothesis: host genetically-defined higher host methylmalonyl-CoA mutase (MUT) expression levels result in lower serum cholesterol concentration and tissue deposits that increase the protective immune response to M. bovis, thus resulting in resistance to bTB and better response to BCG vaccination. If the hypothesis is proven true, these results have important implications for the prevention and treatment of bTB in humans and for the eradication of bTB in wildlife reservoir hosts.
Collapse
Affiliation(s)
- José de la Fuente
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | | | | | | |
Collapse
|
100
|
Kim MJ, Wainwright HC, Locketz M, Bekker LG, Walther GB, Dittrich C, Visser A, Wang W, Hsu FF, Wiehart U, Tsenova L, Kaplan G, Russell DG. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med 2010; 2:258-74. [PMID: 20597103 PMCID: PMC2913288 DOI: 10.1002/emmm.201000079] [Citation(s) in RCA: 342] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The progression of human tuberculosis (TB) to active disease and transmission involves the development of a caseous granuloma that cavitates and releases infectious Mycobacterium tuberculosis bacilli. In the current study, we exploited genome-wide microarray analysis to determine that genes for lipid sequestration and metabolism were highly expressed in caseous TB granulomas. Immunohistological analysis of these granulomas confirmed the disproportionate abundance of the proteins involved in lipid metabolism in cells surrounding the caseum; namely, adipophilin, acyl-CoA synthetase long-chain family member 1 and saposin C. Biochemical analysis of the lipid species within the caseum identified cholesterol, cholesteryl esters, triacylglycerols and lactosylceramide, which implicated low-density lipoprotein-derived lipids as the most likely source. M. tuberculosis infection in vitro induced lipid droplet formation in murine and human macrophages. Furthermore, the M. tuberculosis cell wall lipid, trehalose dimycolate, induced a strong granulomatous response in mice, which was accompanied by foam cell formation. These results provide molecular and biochemical evidence that the development of the human TB granuloma to caseation correlates with pathogen-mediated dysregulation of host lipid metabolism.
Collapse
Affiliation(s)
- Mi-Jeong Kim
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|