51
|
Strain-Specific Metabolic Requirements Revealed by a Defined Minimal Medium for Systems Analyses of Staphylococcus aureus. Appl Environ Microbiol 2019; 85:AEM.01773-19. [PMID: 31471305 DOI: 10.1128/aem.01773-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/26/2019] [Indexed: 01/08/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive pathogenic bacterium that colonizes an estimated one-third of the human population and can cause a wide spectrum of disease, ranging from superficial skin infections to life-threatening sepsis. The adaptive mechanisms that contribute to the success of this pathogen remain obscure partially due to a lack of knowledge of its metabolic requirements. Systems biology approaches can be extremely useful in predicting and interpreting metabolic phenotypes; however, such approaches rely on a chemically defined minimal medium as a basis to investigate the requirements of the cell. In this study, a chemically defined minimal medium formulation, termed synthetic minimal medium (SMM), was investigated and validated to support growth of three S. aureus strains: LAC and TCH1516 (USA300 lineage), as well as D592 (USA100 lineage). The formulated SMM was used in an adaptive laboratory evolution experiment to probe the various mutational trajectories of all three strains leading to optimized growth capabilities. The evolved strains were phenotypically characterized for their growth rate and antimicrobial susceptibility. Strains were also resequenced to examine the genetic basis for observed changes in phenotype and to design follow-up metabolite supplementation assays. Our results reveal evolutionary trajectories that arose from strain-specific metabolic requirements. SMM and the evolved strains can also serve as important tools to study antibiotic resistance phenotypes of S. aureus IMPORTANCE As researchers try to understand and combat the development of antibiotic resistance in pathogens, there is a growing need to thoroughly understand the physiology and metabolism of the microbes. Staphylococcus aureus is a threatening pathogen with increased antibiotic resistance and well-studied virulence mechanisms. However, the adaptive mechanisms used by this pathogen to survive environmental stresses remain unclear, mostly due to the lack of information about its metabolic requirements. Defining the minimal metabolic requirements for S. aureus growth is a first step toward unraveling the mechanisms by which it adapts to metabolic stresses. Here, we present the development of a chemically defined minimal medium supporting growth of three S. aureus strains, and we reveal key genetic mutations contributing to improved growth in minimal medium.
Collapse
|
52
|
Sause WE, Balasubramanian D, Irnov I, Copin R, Sullivan MJ, Sommerfield A, Chan R, Dhabaria A, Askenazi M, Ueberheide B, Shopsin B, van Bakel H, Torres VJ. The purine biosynthesis regulator PurR moonlights as a virulence regulator in Staphylococcus aureus. Proc Natl Acad Sci U S A 2019; 116:13563-13572. [PMID: 31217288 PMCID: PMC6613142 DOI: 10.1073/pnas.1904280116] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The pathogen Staphylococcus aureus colonizes and infects a variety of different sites within the human body. To adapt to these different environments, S. aureus relies on a complex and finely tuned regulatory network. While some of these networks have been well-elucidated, the functions of more than 50% of the transcriptional regulators in S. aureus remain unexplored. Here, we assess the contribution of the LacI family of metabolic regulators to staphylococcal virulence. We found that inactivating the purine biosynthesis regulator purR resulted in a strain that was acutely virulent in bloodstream infection models in mice and in ex vivo models using primary human neutrophils. Remarkably, these enhanced pathogenic traits are independent of purine biosynthesis, as the purR mutant was still highly virulent in the presence of mutations that disrupt PurR's canonical role. Through the use of transcriptomics coupled with proteomics, we revealed that a number of virulence factors are differentially regulated in the absence of purR Indeed, we demonstrate that PurR directly binds to the promoters of genes encoding virulence factors and to master regulators of virulence. These results guided us into further ex vivo and in vivo studies, where we discovered that S. aureus toxins drive the death of human phagocytes and mice, whereas the surface adhesin FnbA contributes to the increased bacterial burden observed in the purR mutant. Thus, S. aureus repurposes a metabolic regulator to directly control the expression of virulence factors, and by doing so, tempers its pathogenesis.
Collapse
Affiliation(s)
- William E Sause
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Divya Balasubramanian
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Irnov Irnov
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Richard Copin
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Mitchell J Sullivan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Alexis Sommerfield
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Rita Chan
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Avantika Dhabaria
- Proteomics Laboratory, New York University School of Medicine, New York, NY 10016
- Division of Advanced Research, New York University School of Medicine, New York, NY 10016
| | - Manor Askenazi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
- Biomedical Hosting LLC, Arlington, MA 02474
| | - Beatrix Ueberheide
- Proteomics Laboratory, New York University School of Medicine, New York, NY 10016
- Division of Advanced Research, New York University School of Medicine, New York, NY 10016
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Bo Shopsin
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016;
| |
Collapse
|
53
|
Graf AC, Leonard A, Schäuble M, Rieckmann LM, Hoyer J, Maass S, Lalk M, Becher D, Pané-Farré J, Riedel K. Virulence Factors Produced by Staphylococcus aureus Biofilms Have a Moonlighting Function Contributing to Biofilm Integrity. Mol Cell Proteomics 2019; 18:1036-1053. [PMID: 30850421 PMCID: PMC6553939 DOI: 10.1074/mcp.ra118.001120] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/19/2019] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is the causative agent of various biofilm-associated infections in humans causing major healthcare problems worldwide. This type of infection is inherently difficult to treat because of a reduced metabolic activity of biofilm-embedded cells and the protective nature of a surrounding extracellular matrix (ECM). However, little is known about S. aureus biofilm physiology and the proteinaceous composition of the ECM. Thus, we cultivated S. aureus biofilms in a flow system and comprehensively profiled intracellular and extracellular (ECM and flow-through (FT)) biofilm proteomes, as well as the extracellular metabolome compared with planktonic cultures. Our analyses revealed the expression of many pathogenicity factors within S. aureus biofilms as indicated by a high abundance of capsule biosynthesis proteins along with various secreted virulence factors, including hemolysins, leukotoxins, and lipases as a part of the ECM. The activity of ECM virulence factors was confirmed in a hemolysis assay and a Galleria mellonella pathogenicity model. In addition, we uncovered a so far unacknowledged moonlighting function of secreted virulence factors and ribosomal proteins trapped in the ECM: namely their contribution to biofilm integrity. Mechanistically, it was revealed that this stabilizing effect is mediated by the strong positive charge of alkaline virulence factors and ribosomal proteins in an acidic ECM environment, which is caused by the release of fermentation products like formate, lactate, and acetate because of oxygen limitation in biofilms. The strong positive charge of these proteins most likely mediates electrostatic interactions with anionic cell surface components, eDNA, and anionic metabolites. In consequence, this leads to strong cell aggregation and biofilm stabilization. Collectively, our study identified a new molecular mechanism during S. aureus biofilm formation and thus significantly widens the understanding of biofilm-associated S. aureus infections - an essential prerequisite for the development of novel antimicrobial therapies.
Collapse
Affiliation(s)
- Alexander C Graf
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Anne Leonard
- §Institute of Biochemistry, Department of Cellular Biochemistry and Metabolomics
| | - Manuel Schäuble
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Lisa M Rieckmann
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Juliane Hoyer
- ¶Institute of Microbiology, Department of Microbial Proteomics; University of Greifswald, Germany
| | - Sandra Maass
- ¶Institute of Microbiology, Department of Microbial Proteomics; University of Greifswald, Germany
| | - Michael Lalk
- §Institute of Biochemistry, Department of Cellular Biochemistry and Metabolomics
| | - Dörte Becher
- ¶Institute of Microbiology, Department of Microbial Proteomics; University of Greifswald, Germany
| | - Jan Pané-Farré
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Katharina Riedel
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology;
| |
Collapse
|
54
|
Co-regulation of CodY and (p)ppGpp synthetases on morphology and pathogenesis of Streptococcus suis. Microbiol Res 2019; 223-225:88-98. [PMID: 31178056 DOI: 10.1016/j.micres.2019.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/28/2019] [Accepted: 04/06/2019] [Indexed: 01/04/2023]
Abstract
CodY and (p)ppGpp synthetases are two important global regulators of bacteria. In some pathogens, such as Listeria monocytogenes, the GTP pool links these two regulatory systems, and introducing a codY mutant into the ΔrelA strain restored the pathogenicity of the attenuated ΔrelA mutant. In previous studies, we identified the (p)ppGpp synthetases (RelA and RelQ) and CodY of Streptococcus suis. To understand the interrelationships between these two regulators in S. suis, a ΔrelAΔrelQΔcodY mutant was constructed, and its growth, morphology, and pathogenicity were evaluated. Compared with ΔrelAΔrelQ, ΔcodY, its growth was very slow, but its chain length was partly restored to the wild-type length and its capsule became thick and rough. The adherence, invasion ability, and resistance to whole-blood killing in vitro of ΔrelAΔrelQΔcodY and its lethality and colonization ability in mice were clearly reduced, which differs from the effects of these mutations in L. monocytogenes. An analysis of gene expression showed that CodY interacted with the relA promoter in a GTP-independent manner to positively regulate the expression of relA. The introduction of a codY mutant into the ΔrelAΔrelQ strain further reduced the expression of virulence factors, which suggests a novel interaction between the (p)ppGpp synthetases and CodY. This study extends our understanding of the relationship between the (p)ppGpp-mediated stringent response and the regulation of CodY in S. suis.
Collapse
|
55
|
Gharaibeh MH, Khalifeh MS, Zattout EM, Abu-Qatouseh LF. Potential antimicrobial effect of plant essential oils and virulence genes expression in methicillin-resistant Staphylococcus aureus isolates. Vet World 2019; 13:669-675. [PMID: 32546910 PMCID: PMC7245711 DOI: 10.14202/vetworld.2020.669-675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/04/2020] [Indexed: 12/24/2022] Open
Abstract
AIM This study aimed to investigate the antibacterial efficacy of eight commercially available essential oil (EO) blends and characterize the effect on the expression of some virulence genes against methicillin-resistant Staphylococcus aureus (MRSA). MATERIALS AND METHODS In vitro evaluation of the antimicrobial effects of oils against MRSA was performed using the disk diffusion method and by measuring the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The EOs (A-F) were contained (β-pinene, carvacrol, carvone, dimethyl trisulfide, linalool, limonene, menthol, monoterpene hydrocarbons, and thymol) in different amounts. In addition, a real-time polymerase chain reaction was also used to determine the gene expression of the virulence genes (intercellular adhesion cluster [ica]-9, ica-15, and RNA III) against MRSA (ATCC 43300) after treatment with selected oils. RESULTS Among the eight EOs evaluated, EO (D), (E), and (A) showed, in general, the greatest antimicrobial activity against MRSA. EO at 1/3 MIC has effectively down-regulated ica-9 and ica-15 of MRSA by 17.83 and 4.94 folds, respectively. Meanwhile, EO (A) has effectively down-regulated RNAIII by 3.74 folds. Our results indicated that some of the EOs exhibit promising antimicrobial effects against MRSA isolates. Moreover, the results of the analyzed virulence genes related to the pathogenicity of MRSA were down-regulated at the sub-MIC concentrations of EOs, indicated that EOs could be successfully used to suppress the virulence factors and, consequently, decreased the pathogenicity of MRSA. CONCLUSION These encouraging results indicate that some of the EOs used in this study can be utilized as a natural antibiotic for the treatment of MRSA disease.
Collapse
Affiliation(s)
- Mohammad H. Gharaibeh
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030 Irbid 22110 Jordan
| | - Mohammad S. Khalifeh
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030 Irbid 22110 Jordan
| | - Esam M. Zattout
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030 Irbid 22110 Jordan
| | - Luay F. Abu-Qatouseh
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy, University of Petra, Amman, Jordan
| |
Collapse
|
56
|
Behera RK, Mlynek KD, Linz MS, Brinsmade SR. A Fluorescence-based Method to Study Bacterial Gene Regulation in Infected Tissues. J Vis Exp 2019:10.3791/59055. [PMID: 30855576 PMCID: PMC7295204 DOI: 10.3791/59055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bacterial virulence genes are often regulated at the transcriptional level by multiple factors that respond to different environmental signals. Some factors act directly on virulence genes; others control pathogenesis by adjusting the expression of downstream regulators or the accumulation of signals that affect regulator activity. While regulation has been studied extensively during in vitro growth, relatively little is known about how gene expression is adjusted during infection. Such information is important when a particular gene product is a candidate for therapeutic intervention. Transcriptional approaches like quantitative, real-time RT-PCR and RNA-Seq are powerful ways to examine gene expression on a global level but suffer from many technical challenges including low abundance of bacterial RNA compared to host RNA, and sample degradation by RNases. Evaluating regulation using fluorescent reporters is relatively easy and can be multiplexed with fluorescent proteins with unique spectral properties. The method allows for single-cell, spatiotemporal analysis of gene expression in tissues that exhibit complex three-dimensional architecture and physiochemical gradients that affect bacterial regulatory networks. Such information is lost when data are averaged over the bulk population. Herein, we describe a method for quantifying gene expression in bacterial pathogens in situ. The method is based on simple tissue processing and direct observation of fluorescence from reporter proteins. We demonstrate the utility of this system by examining the expression of Staphylococcus aureus thermonuclease (nuc), whose gene product is required for immune evasion and full virulence ex vivo and in vivo. We show that nuc-gfp is strongly expressed in renal abscesses and reveal heterogeneous gene expression due in part to apparent spatial regulation of nuc promoter activity in abscesses fully engaged with the immune response. The method can be applied to any bacterium with a manipulatable genetic system and any infection model, providing valuable information for preclinical studies and drug development.
Collapse
|
57
|
Daou N, Wang Y, Levdikov VM, Nandakumar M, Livny J, Bouillaut L, Blagova E, Zhang K, Belitsky BR, Rhee K, Wilkinson AJ, Sun X, Sonenshein AL. Impact of CodY protein on metabolism, sporulation and virulence in Clostridioides difficile ribotype 027. PLoS One 2019; 14:e0206896. [PMID: 30699117 PMCID: PMC6353076 DOI: 10.1371/journal.pone.0206896] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 09/25/2018] [Indexed: 12/16/2022] Open
Abstract
Toxin synthesis and endospore formation are two of the most critical factors that determine the outcome of infection by Clostridioides difficile. The two major toxins, TcdA and TcdB, are the principal factors causing damage to the host. Spores are the infectious form of C. difficile, permit survival of the bacterium during antibiotic treatment and are the predominant cell form that leads to recurrent infection. Toxin production and sporulation have their own specific mechanisms of regulation, but they share negative regulation by the global regulatory protein CodY. Determining the extent of such regulation and its detailed mechanism is important for understanding the linkage between two apparently independent biological phenomena and raises the possibility of creating new ways of limiting infection. The work described here shows that a codY null mutant of a hypervirulent (ribotype 027) strain is even more virulent than its parent in a mouse model of infection and that the mutant expresses most sporulation genes prematurely during exponential growth phase. Moreover, examining the expression patterns of mutants producing CodY proteins with different levels of residual activity revealed that expression of the toxin genes is dependent on total CodY inactivation, whereas most sporulation genes are turned on when CodY activity is only partially diminished. These results suggest that, in wild-type cells undergoing nutrient limitation, sporulation genes can be turned on before the toxin genes.
Collapse
Affiliation(s)
- Nadine Daou
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Yuanguo Wang
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States of America
| | - Vladimir M. Levdikov
- Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Madhumitha Nandakumar
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY, United States of America
| | - Jonathan Livny
- Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Laurent Bouillaut
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Elena Blagova
- Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Keshan Zhang
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States of America
| | - Boris R. Belitsky
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Kyu Rhee
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY, United States of America
| | - Anthony J. Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Abraham L. Sonenshein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
58
|
Queiroux C, Bonnet M, Saraoui T, Delpech P, Veisseire P, Rifa E, Moussard C, Gagne G, Delbès C, Bornes S. Dialogue between Staphylococcus aureus SA15 and Lactococcus garvieae strains experiencing oxidative stress. BMC Microbiol 2018; 18:193. [PMID: 30466395 PMCID: PMC6251228 DOI: 10.1186/s12866-018-1340-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 11/14/2018] [Indexed: 02/02/2023] Open
Abstract
Background Staphylococcus aureus is an important foodborne pathogen. Lactococcus garvieae is a lactic acid bacterium found in dairy products; some of its strains are able to inhibit S. aureus growth by producing H2O2. Three strains of L. garvieae from different origins were tested for their ability to inhibit S. aureus SA15 growth. Two conditions were tested, one in which H2O2 was produced (high aeration) and another one in which it was not detected (low aeration). Several S. aureus genes related to stress, H2O2-response and virulence were examined in order to compare their level of expression depending on the inoculated L. garvieae strain. Simultaneous L. garvieae H2O2 metabolism gene expression was followed. Results The results showed that under high aeration condition, L. garvieae strains producing H2O2 (N201 and CL-1183) inhibited S. aureus SA15 growth and impaired its ability to deal with hydrogen peroxide by repressing H2O2-degrading genes. L. garvieae strains induced overexpression of S. aureus stress-response genes while cell division genes and virulence genes were repressed. A catalase treatment partially or completely restored the SA15 growth. In addition, the H2O2 non-producing L. garvieae strain (Lg2) did not cause any growth inhibition. The SA15 stress-response genes were down-regulated and cell division genes expression was not affected. Under low aeration condition, while none of the strains tested exhibited H2O2-production, the 3 L. garvieae strains inhibited S. aureus SA15 growth, but to a lesser extent than under high aeration condition. Conclusion Taken together, these results suggest a L. garvieae strain-specific anti-staphylococcal mechanism and an H2O2 involvement in at least two of the tested L. garvieae strains. Electronic supplementary material The online version of this article (10.1186/s12866-018-1340-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Muriel Bonnet
- Université Clermont Auvergne, INRA, UMRF, F-15000, Aurillac, France
| | - Taous Saraoui
- Université Clermont Auvergne, INRA, UMRF, F-15000, Aurillac, France
| | - Pierre Delpech
- Université Clermont Auvergne, INRA, UMRF, F-15000, Aurillac, France
| | | | - Etienne Rifa
- Université Clermont Auvergne, INRA, UMRF, F-15000, Aurillac, France
| | - Cécile Moussard
- Université Clermont Auvergne, INRA, UMRF, F-15000, Aurillac, France
| | - Geneviève Gagne
- Université Clermont Auvergne, INRA, UMRF, F-15000, Aurillac, France
| | - Céline Delbès
- Université Clermont Auvergne, INRA, UMRF, F-15000, Aurillac, France.
| | - Stéphanie Bornes
- Université Clermont Auvergne, INRA, UMRF, F-15000, Aurillac, France
| |
Collapse
|
59
|
Chen J, Shang F, Wang L, Zou L, Bu T, Jin L, Dong Y, Ha NC, Quan C, Nam KH, Xu Y. Structural and Biochemical Analysis of the Citrate-Responsive Mechanism of the Regulatory Domain of Catabolite Control Protein E from Staphylococcus aureus. Biochemistry 2018; 57:6054-6060. [PMID: 30252448 DOI: 10.1021/acs.biochem.8b00671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catabolite control protein E (CcpE) is a LysR-type transcriptional regulator that positively regulates the transcription of the first two enzymes of the TCA cycle, namely, citZ and citB, by sensing accumulated intracellular citrate. CcpE comprises an N-terminal DNA-binding domain and a C-terminal regulatory domain (RD) and senses citrate with conserved arginine residues in the RD. Although the crystal structure of the apo SaCcpE-RD has been reported, the citrate-responsive and DNA-binding mechanisms by which CcpE regulates TCA activity remain unclear. Here, we report the crystal structure of the apo and citrate-bound SaCcpE-RDs. The SaCcpE-RD exhibits conformational changes between the two subdomains via hinge motion of the central β4 and β10 strands. The citrate molecule is located in a positively charged cavity between the two subdomains and interacts with the highly conserved Ser98, Leu100, Arg145, and Arg256 residues. Compared with that of the apo SaCcpE-RD, the distance between the two subdomains of the citrate-bound SaCcpE-RD is more than ∼3 Å due to the binding of the citrate molecule, and this form exhibits a closed structure. The SaCcpE-RD exhibits various citrate-binding-independent conformational changes at the contacting interface. The SaCcpE-RD prefers the dimeric state in solution, whereas the SaCcpE-FL prefers the tetrameric state. Our results provide insight into the molecular function of SaCcpE.
Collapse
Affiliation(s)
- Jinli Chen
- Department of Bioengineering, College of Life Science , Dalian Minzu University , Dalian 116600 , Liaoning , China.,Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University) , Ministry of Education , China
| | - Fei Shang
- Department of Bioengineering, College of Life Science , Dalian Minzu University , Dalian 116600 , Liaoning , China.,Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University) , Ministry of Education , China
| | - Lulu Wang
- Department of Bioengineering, College of Life Science , Dalian Minzu University , Dalian 116600 , Liaoning , China.,Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University) , Ministry of Education , China.,School of Life Science and Biotechnology , Dalian University of Technology , No. 2 Linggong Road , Dalian 116024 , Liaoning , China
| | - Linhai Zou
- Department of Bioengineering, College of Life Science , Dalian Minzu University , Dalian 116600 , Liaoning , China
| | - Tingting Bu
- Department of Bioengineering, College of Life Science , Dalian Minzu University , Dalian 116600 , Liaoning , China
| | - Liming Jin
- Department of Bioengineering, College of Life Science , Dalian Minzu University , Dalian 116600 , Liaoning , China.,Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University) , Ministry of Education , China
| | - Yuesheng Dong
- School of Life Science and Biotechnology , Dalian University of Technology , No. 2 Linggong Road , Dalian 116024 , Liaoning , China
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences , Seoul National University , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Chunshan Quan
- Department of Bioengineering, College of Life Science , Dalian Minzu University , Dalian 116600 , Liaoning , China.,Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University) , Ministry of Education , China
| | - Ki Hyun Nam
- Division of Biotechnology, College of Life Sciences and Biotechnology , Korea University , Seoul 02841 , Republic of Korea.,Institute of Life Science and Natural Resources , Korea University , Seoul 02841 , Republic of Korea
| | - Yongbin Xu
- Department of Bioengineering, College of Life Science , Dalian Minzu University , Dalian 116600 , Liaoning , China.,Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University) , Ministry of Education , China
| |
Collapse
|
60
|
Redirection of Metabolism in Response to Fatty Acid Kinase in Staphylococcus aureus. J Bacteriol 2018; 200:JB.00345-18. [PMID: 30012726 DOI: 10.1128/jb.00345-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/06/2018] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is capable of phosphorylating exogenous fatty acids for incorporation into the bacterium's membrane via the fatty acid kinase, FakA. Additionally, FakA plays a significant role in virulence factor regulation and skin infections. We previously showed that a fakA mutant displays altered growth kinetics in vitro, observed during the late-exponential phase of growth. Here, we demonstrate that the absence of FakA leads to key metabolic changes. First, the fakA mutant has an altered acetate metabolism, with acetate being consumed at an increased rate than in the wild-type strain. Moreover, the growth benefit was diminished with inactivation of the acetate-generating enzyme AckA. Using a mass spectrometry-based approach, we identified altered concentrations of tricarboxylic acid (TCA) cycle intermediates and both intracellular and extracellular amino acids. Together, these data demonstrate a change in carbohydrate carbon utilization and altered amino acid metabolism in the fakA mutant. Energy status analysis revealed the mutant had a similar ADP/ATP ratio to that of the wild type, but a reduced adenylate energy charge. The inactivation of fakA changed the NAD+/NADH and NADP+/NADPH ratios, indicating a more oxidized cellular environment. Evidence points to the global metabolic regulatory proteins CcpA and CodY being important contributors to the altered growth in a fakA mutant. Indeed, it was found that directing amino acids from the urea cycle into the TCA cycle via glutamate dehydrogenase was an essential component of S. aureus growth after glucose depletion. Together, these data identify a previously unidentified role of FakA in the global physiology of S. aureus, linking external fatty acid utilization and central metabolism.IMPORTANCE The fatty acid kinase, FakA, of Staphylococcus aureus plays several important roles in the cell. FakA is important for the activation of the SaeRS two-component system and secreted virulence factors like α-hemolysin. However, the contribution of FakA to cellular metabolism has not been explored. Here, we highlight the metabolic consequence of removal of FakA from the cell. The absence of FakA leads to altered acetate metabolism and altered redox balance, as well as a change in intracellular amino acids. Additionally, the use of environmental amino acid sources is affected by FakA. Together, these results demonstrate for the first time that FakA provides a link between the pathways for exogenous fatty acid use, virulence factor regulation, and other metabolic processes.
Collapse
|
61
|
Branching Out: Alterations in Bacterial Physiology and Virulence Due to Branched-Chain Amino Acid Deprivation. mBio 2018; 9:mBio.01188-18. [PMID: 30181248 PMCID: PMC6123439 DOI: 10.1128/mbio.01188-18] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The branched-chain amino acids (BCAAs [Ile, Leu, and Val]) represent important nutrients in bacterial physiology, with roles that range from supporting protein synthesis to signaling and fine-tuning the adaptation to amino acid starvation. In some pathogenic bacteria, the adaptation to amino acid starvation includes induction of virulence gene expression: thus, BCAAs support not only proliferation during infection, but also the evasion of host defenses. The branched-chain amino acids (BCAAs [Ile, Leu, and Val]) represent important nutrients in bacterial physiology, with roles that range from supporting protein synthesis to signaling and fine-tuning the adaptation to amino acid starvation. In some pathogenic bacteria, the adaptation to amino acid starvation includes induction of virulence gene expression: thus, BCAAs support not only proliferation during infection, but also the evasion of host defenses. A body of research has accumulated over the years to describe the multifaceted physiological roles of BCAAs and the mechanisms bacteria use to maintain their intracellular levels. More recent studies have focused on understanding how fluctuations in their intracellular levels impact global regulatory pathways that coordinate the adaptation to nutrient limitation, especially in pathogenic bacteria. In this minireview, we discuss how these studies have refined the individual roles of BCAAs, shed light on how BCAA auxotrophy might promote higher sensitivity to exogenous BCAA levels, and revealed pathogen-specific responses to BCAA deprivation. These advancements improve our understanding of how bacteria meet their nutritional requirements for growth while simultaneously remaining responsive to changes in environmental nutrient availability to promote their survival in a range of environments.
Collapse
|
62
|
MsaB and CodY Interact To Regulate Staphylococcus aureus Capsule in a Nutrient-Dependent Manner. J Bacteriol 2018; 200:JB.00294-18. [PMID: 29941424 DOI: 10.1128/jb.00294-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/19/2018] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus has a complex regulatory network for controlling the production of capsule polysaccharide. In S. aureus, capsule production is controlled by several regulators in response to various environmental stimuli. Previously, we described MsaB as a new regulator that specifically binds to the cap promoter in a growth phase- or nutrient-dependent manner. In addition to MsaB, several other regulators have also been shown to bind the same region. In this study, we examined the interactions between MsaB and other nutrient-sensing regulators (CodY and CcpE) with respect to binding to the cap promoter in a nutrient-dependent manner. We observed that msaABCR and ccpE interact in a complex fashion to regulate capsule production. However, we confirmed that ccpE does not bind cap directly. We also defined the regulatory relationship between msaABCR and CodY. When nutrients (branched-chain amino acids) are abundant, CodY binds to the promoter region of the cap operon and represses its transcription. However, when nutrient concentrations decrease, MsaB, rather than CodY, binds to the cap promoter. Binding of MsaB to the cap promoter activates transcription of the cap operon. We hypothesize that this same mechanism may be used by S. aureus to regulate other virulence factors.IMPORTANCE Findings from this study define the mechanism of regulation of capsule production in Staphylococcus aureus Specifically, we show that two key regulators, MsaB and CodY, coordinate their functions to control the expression of capsule in response to nutrients. S. aureus fine-tunes the production of capsule by coordinating the activity of several regulators and by sensing nutrient levels. This study demonstrates the importance of incorporating multiple inputs prior to the expression of costly virulence factors, such as capsule.
Collapse
|
63
|
Nutritional Regulation of the Sae Two-Component System by CodY in Staphylococcus aureus. J Bacteriol 2018; 200:JB.00012-18. [PMID: 29378891 DOI: 10.1128/jb.00012-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/23/2018] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus subverts innate defenses during infection in part by killing host immune cells to exacerbate disease. This human pathogen intercepts host cues and activates a transcriptional response via the S. aureus exoprotein expression (SaeR/SaeS [SaeR/S]) two-component system to secrete virulence factors critical for pathogenesis. We recently showed that the transcriptional repressor CodY adjusts nuclease (nuc) gene expression via SaeR/S, but the mechanism remained unknown. Here, we identified two CodY binding motifs upstream of the sae P1 promoter, which suggested direct regulation by this global regulator. We show that CodY shares a binding site with the positive activator SaeR and that alleviating direct CodY repression at this site is sufficient to abrogate stochastic expression, suggesting that CodY represses sae expression by blocking SaeR binding. Epistasis experiments support a model that CodY also controls sae indirectly through Agr and Rot-mediated repression of the sae P1 promoter. We also demonstrate that CodY repression of sae restrains production of secreted cytotoxins that kill human neutrophils. We conclude that CodY plays a previously unrecognized role in controlling virulence gene expression via SaeR/S and suggest a mechanism by which CodY acts as a master regulator of pathogenesis by tying nutrient availability to virulence gene expression.IMPORTANCE Bacterial mechanisms that mediate the switch from a commensal to pathogenic lifestyle are among the biggest unanswered questions in infectious disease research. Since the expression of most virulence genes is often correlated with nutrient depletion, this implies that virulence is a response to the lack of nourishment in host tissues and that pathogens like S. aureus produce virulence factors in order to gain access to nutrients in the host. Here, we show that specific nutrient depletion signals appear to be funneled to the SaeR/S system through the global regulator CodY. Our findings reveal a strategy by which S. aureus delays the production of immune evasion and immune-cell-killing proteins until key nutrients are depleted.
Collapse
|
64
|
Joon S, Gopalani M, Rahi A, Kulshreshtha P, Gogoi H, Bhatnagar S, Bhatnagar R. Biochemical characterization of the GTP-sensing protein, CodY of Bacillus anthracis. Pathog Dis 2018; 75:3791465. [PMID: 28472295 DOI: 10.1093/femspd/ftx048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/22/2017] [Indexed: 12/30/2022] Open
Abstract
The pleiotropism of the GTP-sensing transcriptional regulator CodY is evident by the gamut of processes that it regulates in almost all low G+C Gram-positive bacteria, including general metabolism, biosynthesis of some amino acids and transport systems, nitrogen uptake, sporulation, biofilm formation, motility and virulence. The role of CodY in virulence has been established in Bacillus anthracis, the top rated bioterrorism agent. In this study, we investigated the biochemical attributes of this global regulator. Homology modeling and sequence/structure analysis revealed putative GTP-binding residues in CodY of B. anthracis. CodY exhibited an interaction with the GTP as tested by ultraviolet cross-linking experiments. It could autophosphorylate itself at a conserved Ser215 residue. This was further corroborated by the impairment of autophosphorylation activity in the CodYS215A mutant. Autophosphorylation may be speculated as an additional mechanism regulating CodY activity in the cell. The protein could also hydrolyze GTP, albeit weakly, as indicated by thin- layer chromatography and spectrophotometric quantification of its kinetic parameters. Altogether, these observations provide us an insight into the mechanism of action of this global regulator and a better understanding of its functional regulation.
Collapse
Affiliation(s)
- Shikha Joon
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, Munirka, New Delhi 110067, India.,Structural and Computational Biology Laboratory, Department of Biotechnology, Netaji Subhas Institute of Technology, New Delhi 110078, India
| | - Monisha Gopalani
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, Munirka, New Delhi 110067, India
| | - Amit Rahi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, Munirka, New Delhi 110067, India
| | | | - Himanshu Gogoi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, Munirka, New Delhi 110067, India
| | - Sonika Bhatnagar
- Structural and Computational Biology Laboratory, Department of Biotechnology, Netaji Subhas Institute of Technology, New Delhi 110078, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, Munirka, New Delhi 110067, India
| |
Collapse
|
65
|
Zhu D, Sorg JA, Sun X. Clostridioides difficile Biology: Sporulation, Germination, and Corresponding Therapies for C. difficile Infection. Front Cell Infect Microbiol 2018; 8:29. [PMID: 29473021 PMCID: PMC5809512 DOI: 10.3389/fcimb.2018.00029] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/23/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is a Gram-positive, spore-forming, toxin-producing anaerobe, and an important nosocomial pathogen. Due to the strictly anaerobic nature of the vegetative form, spores are the main morphotype of infection and transmission of the disease. Spore formation and their subsequent germination play critical roles in C. difficile infection (CDI) progress. Under suitable conditions, C. difficile spores will germinate and outgrow to produce the pathogenic vegetative form. During CDI, C. difficile produces toxins (TcdA and TcdB) that are required to initiate the disease. Meanwhile, it also produces spores that are responsible for the persistence and recurrence of C. difficile in patients. Recent studies have shed light on the regulatory mechanisms of C. difficile sporulation and germination. This review is to summarize recent advances on the regulation of sporulation/germination in C. difficile and the corresponding therapeutic strategies that are aimed at these important processes.
Collapse
Affiliation(s)
- Duolong Zhu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Joseph A Sorg
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
66
|
Kaiser JC, King AN, Grigg JC, Sheldon JR, Edgell DR, Murphy MEP, Brinsmade SR, Heinrichs DE. Repression of branched-chain amino acid synthesis in Staphylococcus aureus is mediated by isoleucine via CodY, and by a leucine-rich attenuator peptide. PLoS Genet 2018; 14:e1007159. [PMID: 29357354 PMCID: PMC5794164 DOI: 10.1371/journal.pgen.1007159] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/01/2018] [Accepted: 12/18/2017] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus requires branched-chain amino acids (BCAAs; isoleucine, leucine, valine) for protein synthesis, branched-chain fatty acid synthesis, and environmental adaptation by responding to their availability via the global transcriptional regulator CodY. The importance of BCAAs for S. aureus physiology necessitates that it either synthesize them or scavenge them from the environment. Indeed S. aureus uses specialized transporters to scavenge BCAAs, however, its ability to synthesize them has remained conflicted by reports that it is auxotrophic for leucine and valine despite carrying an intact BCAA biosynthetic operon. In revisiting these findings, we have observed that S. aureus can engage in leucine and valine synthesis, but the level of BCAA synthesis is dependent on the BCAA it is deprived of, leading us to hypothesize that each BCAA differentially regulates the biosynthetic operon. Here we show that two mechanisms of transcriptional repression regulate the level of endogenous BCAA biosynthesis in response to specific BCAA availability. We identify a trans-acting mechanism involving isoleucine-dependent repression by the global transcriptional regulator CodY and a cis-acting leucine-responsive attenuator, uncovering how S. aureus regulates endogenous biosynthesis in response to exogenous BCAA availability. Moreover, given that isoleucine can dominate CodY-dependent regulation of BCAA biosynthesis, and that CodY is a global regulator of metabolism and virulence in S. aureus, we extend the importance of isoleucine availability for CodY-dependent regulation of other metabolic and virulence genes. These data resolve the previous conflicting observations regarding BCAA biosynthesis, and reveal the environmental signals that not only induce BCAA biosynthesis, but that could also have broader consequences on S. aureus environmental adaptation and virulence via CodY.
Collapse
Affiliation(s)
- Julienne C. Kaiser
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Alyssa N. King
- Department of Biology, Georgetown University, Washington, DC, United States of America
| | - Jason C. Grigg
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica R. Sheldon
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - David R. Edgell
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Michael E. P. Murphy
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shaun R. Brinsmade
- Department of Biology, Georgetown University, Washington, DC, United States of America
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, United States of America
| | - David E. Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
67
|
Balasubramanian D, Harper L, Shopsin B, Torres VJ. Staphylococcus aureus pathogenesis in diverse host environments. Pathog Dis 2017; 75:ftx005. [PMID: 28104617 DOI: 10.1093/femspd/ftx005] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/18/2017] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is an eminent human pathogen that can colonize the human host and cause severe life-threatening illnesses. This bacterium can reside in and infect a wide range of host tissues, ranging from superficial surfaces like the skin to deeper tissues such as in the gastrointestinal tract, heart and bones. Due to its multifaceted lifestyle, S. aureus uses complex regulatory networks to sense diverse signals that enable it to adapt to different environments and modulate virulence. In this minireview, we explore well-characterized environmental and host cues that S. aureus responds to and describe how this pathogen modulates virulence in response to these signals. Lastly, we highlight therapeutic approaches undertaken by several groups to inhibit both signaling and the cognate regulators that sense and transmit these signals downstream.
Collapse
Affiliation(s)
- Divya Balasubramanian
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Lamia Harper
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Bo Shopsin
- Department of Medicine, Division of Infectious Diseases, New York University School of Medicine, New York, NY 10016 USA
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
68
|
Rom JS, Atwood DN, Beenken KE, Meeker DG, Loughran AJ, Spencer HJ, Lantz TL, Smeltzer MS. Impact of Staphylococcus aureus regulatory mutations that modulate biofilm formation in the USA300 strain LAC on virulence in a murine bacteremia model. Virulence 2017; 8:1776-1790. [PMID: 28910576 PMCID: PMC5810510 DOI: 10.1080/21505594.2017.1373926] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus causes acute and chronic forms of infection, the latter often associated with formation of a biofilm. It has previously been demonstrated that mutation of atl, codY, rot, sarA, and sigB limits biofilm formation in the USA300 strain LAC while mutation of agr, fur, and mgrA has the opposite effect. Here we used a murine sepsis model to assess the impact of these same loci in acute infection. Mutation of agr, atl, and fur had no impact on virulence, while mutation of mgrA and rot increased virulence. In contrast, mutation of codY, sarA, and sigB significantly attenuated virulence. Mutation of sigB resulted in reduced accumulation of AgrA and SarA, while mutation of sarA resulted in reduced accumulation of AgrA, but this cannot account for the reduced virulence of sarA or sigB mutants because the isogenic agr mutant was not attenuated. Indeed, as assessed by accumulation of alpha toxin and protein A, all of the mutants we examined exhibited unique phenotypes by comparison to an agr mutant and to each other. Attenuation of the sarA, sigB and codY mutants was correlated with increased production of extracellular proteases and global changes in extracellular protein profiles. These results suggest that the inability to repress the production of extracellular proteases plays a key role in attenuating the virulence of S. aureus in acute as well as chronic, biofilm-associated infections, thus opening up the possibility that strategies aimed at the de-repression of protease production could be used to broad therapeutic advantage. They also suggest that the impact of codY, sarA, and sigB on protease production occurs via an agr-independent mechanism.
Collapse
Affiliation(s)
- Joseph S Rom
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Danielle N Atwood
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Karen E Beenken
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Daniel G Meeker
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Allister J Loughran
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Horace J Spencer
- b Department of Biostatistics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Tamara L Lantz
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Mark S Smeltzer
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA.,c Department of Orthopaedic Surgery , University of Arkansas for Medical Sciences , Little Rock , AR , USA.,d Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|
69
|
A Nutrient-Regulated Cyclic Diguanylate Phosphodiesterase Controls Clostridium difficile Biofilm and Toxin Production during Stationary Phase. Infect Immun 2017; 85:IAI.00347-17. [PMID: 28652311 DOI: 10.1128/iai.00347-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Abstract
The signaling molecule cyclic diguanylate (c-di-GMP) mediates physiological adaptation to extracellular stimuli in a wide range of bacteria. The complex metabolic pathways governing c-di-GMP synthesis and degradation are highly regulated, but the specific cues that impact c-di-GMP signaling are largely unknown. In the intestinal pathogen Clostridium difficile, c-di-GMP inhibits flagellar motility and toxin production and promotes pilus-dependent biofilm formation, but no specific biological functions have been ascribed to any of the individual c-di-GMP synthases or phosphodiesterases (PDEs). Here, we report the functional and biochemical characterization of a c-di-GMP PDE, PdcA, 1 of 37 confirmed or putative c-di-GMP metabolism proteins in C. difficile 630. Our studies reveal that pdcA transcription is controlled by the nutrient-regulated transcriptional regulator CodY and accordingly increases during stationary phase. In addition, PdcA PDE activity is allosterically regulated by GTP, further linking c-di-GMP levels to nutrient availability. Mutation of pdcA increased biofilm formation and reduced toxin biosynthesis without affecting swimming motility or global intracellular c-di-GMP. Analysis of the transcriptional response to pdcA mutation indicates that PdcA-dependent phenotypes manifest during stationary phase, consistent with regulation by CodY. These results demonstrate that inactivation of this single PDE gene is sufficient to impact multiple c-di-GMP-dependent phenotypes, including the production of major virulence factors, and suggest a link between c-di-GMP signaling and nutrient availability.
Collapse
|
70
|
Samuels DJ, Wang Z, Rhee KY, Brinsmade SR. A Tandem Liquid Chromatography-Mass Spectrometry-based Approach for Metabolite Analysis of Staphylococcus aureus. J Vis Exp 2017. [PMID: 28448019 DOI: 10.3791/55558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In an effort to thwart bacterial pathogens, hosts often limit the availability of nutrients at the site of infection. This limitation can alter the abundances of key metabolites to which regulatory factors respond, adjusting cellular metabolism. In recent years, a number of proteins and RNA have emerged as important regulators of virulence gene expression. For example, the CodY protein responds to levels of branched-chain amino acids and GTP and is widely conserved in low G+C Gram-positive bacteria. As a global regulator in Staphylococcus aureus, CodY controls the expression of dozens of virulence and metabolic genes. We hypothesize that S. aureus uses CodY, in part, to alter its metabolic state in an effort to adapt to nutrient-limiting conditions potentially encountered in the host environment. This manuscript describes a method for extracting and analyzing metabolites from S. aureus using liquid chromatography coupled with mass spectrometry, a protocol that was developed to test this hypothesis. The method also highlights best practices that will ensure rigor and reproducibility, such as maintaining biological steady state and constant aeration without the use of continuous chemostat cultures. Relative to the USA200 methicillin-susceptible S. aureus isolate UAMS-1 parental strain, the isogenic codY mutant exhibited significant increases in amino acids derived from aspartate (e.g., threonine and isoleucine) and decreases in their precursors (e.g., aspartate and O-acetylhomoserine). These findings correlate well with transcriptional data obtained with RNA-seq analysis: genes in these pathways were up-regulated between 10- and 800-fold in the codY null mutant. Coupling global analyses of the transcriptome and the metabolome can reveal how bacteria alter their metabolism when faced with environmental or nutritional stress, providing potential insight into the physiological changes associated with nutrient depletion experienced during infection. Such discoveries may pave the way for the development of novel anti-infectives and therapeutics.
Collapse
Affiliation(s)
| | - Zhe Wang
- Division of Infectious Diseases, Weill Cornell Medical College
| | - Kyu Y Rhee
- Division of Infectious Diseases, Weill Cornell Medical College; Department of Medicine, Weill Cornell Medical College
| | | |
Collapse
|
71
|
The Staphylococcus epidermidis gdpS regulates biofilm formation independently of its protein-coding function. Microb Pathog 2017; 105:264-271. [PMID: 28259672 DOI: 10.1016/j.micpath.2017.02.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 12/31/2022]
Abstract
The second messenger cyclic di-guanylate (c-di-GMP) plays an important role in controlling the switch between planktonic and biofilm lifestyles. The synthesis of c-di-GMP is catalyzed by di-guanylate cyclases (DGCs) and the enzymes are characterized by the presence of a conserved GGDEF domain. In the sequenced staphylococcal genomes, gdpS is the only gene encoding a GGDEF domain-containing protein. Previous studies have shown that gdpS contributes to staphylococcal biofilm formation, but its effect remains under debate. In the present study, we deleted gdpS in Staphylococcus epidermidis strain RP62A. Disruption of gdpS in this strain impaired biofilm formation under both static and dynamic flow conditions, suggesting that gdpS act as a positive regulator of biofilm development in this high-biofilm-forming isolate. The predicted translational start site of gdpS in S. epidermidis differs between the Refseq database and the Genbank database. By using site-directed mutagenesis and Western blot analysis, we determined GdpS is translated from the start codon annotated in the Refseq database. In addition, mutation in the GGDEF domain did not affect the ability of gdpS to complement the biofilm defect of the gdpS mutant. Heterologous di-guanylate cyclases expressed in trans failed to complement the gdpS mutant. These results confirmed that gdpS modulates staphylococcal biofilm independently of c-di-GMP signaling pathway. Furthermore, mutations of the start codon did not abolish the capacity of gdpS to enhance biofilm formation. Taken together, these findings indicated that the S. epidermidis gdpS regulates biofilm formation independently of its protein-coding function.
Collapse
|
72
|
CodY Promotes Sporulation and Enterotoxin Production by Clostridium perfringens Type A Strain SM101. Infect Immun 2017; 85:IAI.00855-16. [PMID: 28052992 DOI: 10.1128/iai.00855-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/22/2016] [Indexed: 01/04/2023] Open
Abstract
Clostridium perfringens type D strains cause enterotoxemia and enteritis in livestock via epsilon toxin production. In type D strain CN3718, CodY was previously shown to increase the level of epsilon toxin production and repress sporulation. C. perfringens type A strains producing C. perfringens enterotoxin (CPE) cause human food poisoning and antibiotic-associated diarrhea. Sporulation is critical for C. perfringens type A food poisoning since spores contribute to transmission and resistance in the harsh food environment and sporulation is essential for CPE production. Therefore, the current study asked whether CodY also regulates sporulation and CPE production in SM101, a derivative of C. perfringens type A food-poisoning strain NCTC8798. An isogenic codY-null mutant of SM101 showed decreased levels of spore formation, along with lower levels of CPE production. A complemented strain recovered wild-type levels of both sporulation and CPE production. When this result was coupled with the earlier results obtained with CN3718, it became apparent that CodY regulation of sporulation varies among different C. perfringens strains. Results from quantitative reverse transcriptase PCR analysis clearly demonstrated that, during sporulation, codY transcript levels remained high in SM101 but rapidly declined in CN3718. In addition, abrB gene expression patterns varied significantly between codY-null mutants of SM101 and CN3718. Compared to the levels in their wild-type parents, the level of abrB gene expression decreased in the CN3718 codY-null mutant strain but significantly increased in the SM101 codY-null mutant strain, demonstrating CodY-dependent regulation differences in abrB expression between these two strains. This difference appears to be important since overexpression of the abrB gene in SM101 reduced the levels of sporulation and enterotoxin production, supporting the involvement of AbrB repression in regulating C. perfringens sporulation.
Collapse
|
73
|
Mashruwala AA, Guchte AVD, Boyd JM. Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus. eLife 2017; 6. [PMID: 28221135 PMCID: PMC5380435 DOI: 10.7554/elife.23845] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/20/2017] [Indexed: 01/25/2023] Open
Abstract
Biofilms are communities of microorganisms attached to a surface or each other. Biofilm-associated cells are the etiologic agents of recurrent Staphylococcus aureus infections. Infected human tissues are hypoxic or anoxic. S. aureus increases biofilm formation in response to hypoxia, but how this occurs is unknown. In the current study we report that oxygen influences biofilm formation in its capacity as a terminal electron acceptor for cellular respiration. Genetic, physiological, or chemical inhibition of respiratory processes elicited increased biofilm formation. Impaired respiration led to increased cell lysis via divergent regulation of two processes: increased expression of the AtlA murein hydrolase and decreased expression of wall-teichoic acids. The AltA-dependent release of cytosolic DNA contributed to increased biofilm formation. Further, cell lysis and biofilm formation were governed by the SrrAB two-component regulatory system. Data presented support a model wherein SrrAB-dependent biofilm formation occurs in response to the accumulation of reduced menaquinone. DOI:http://dx.doi.org/10.7554/eLife.23845.001 Millions of bacteria live on the human body. Generally these bacteria co-exist with us peacefully, but sometimes certain bacteria may enter the body and cause infections, such as gum disease or a bone infection called osteomyelitis. Many of these infections are thought to occur when the bacteria become able to form complex communities called biofilms. Bacteria living in a biofilm cooperate and make lifestyle choices as a community, so in this way, they behave like a single organism containing many cells. A sticky glue-like material called the matrix holds the bacteria in a biofilm together. This matrix protects the bacteria in the biofilm from both the human immune system and antibiotics, allowing infections to develop and making them difficult to treat. Previous research has shown that the supply and level of oxygen in infected tissues decreases as an infection gets worse. One bacterium that typically lives peacefully on our bodies, called Staphylococcus aureus, can sometimes cause serious biofilm-associated infections. S. aureus forms biofilms more readily when oxygen is in short supply, but it was not known how these biofilms form. Understanding how S. aureus forms biofilms could help scientists develop better treatments for bacterial infections. Most bacterial cells have a cell wall to provide them with structural support. Mashruwala et al. found that, when oxygen levels are low, S. aureus decreases the production of a type of sugar that makes up the cell wall. At the same time, the bacteria produce more of an enzyme that breaks down cell walls. Together, these processes cause some of the bacteria cells to break open. The contents of these broken cells, including their DNA, help form the matrix that will hold together and protect the other bacterial cells in the biofilm. The experiments also identified a protein called SrrAB that switches on the process that ruptures the cells when oxygen is low. The findings of Mashruwala et al. show how bacteria grown in the laboratory form biofilms when they are starved of oxygen. The next steps following on from this work are to find out whether the same thing happens when bacteria infect animals and whether drugs that block the rupturing of bacterial cells could be used to treat infections. DOI:http://dx.doi.org/10.7554/eLife.23845.002
Collapse
Affiliation(s)
- Ameya A Mashruwala
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, United States
| | - Adriana van de Guchte
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, United States
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, United States
| |
Collapse
|
74
|
Dotto C, Lombarte Serrat A, Cattelan N, Barbagelata MS, Yantorno OM, Sordelli DO, Ehling-Schulz M, Grunert T, Buzzola FR. The Active Component of Aspirin, Salicylic Acid, Promotes Staphylococcus aureus Biofilm Formation in a PIA-dependent Manner. Front Microbiol 2017; 8:4. [PMID: 28167931 PMCID: PMC5253544 DOI: 10.3389/fmicb.2017.00004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/03/2017] [Indexed: 01/10/2023] Open
Abstract
Aspirin has provided clear benefits to human health. But salicylic acid (SAL) -the main aspirin biometabolite- exerts several effects on eukaryote and prokaryote cells. SAL can affect, for instance, the expression of Staphylococcus aureus virulence factors. SAL can also form complexes with iron cations and it has been shown that different iron chelating molecules diminished the formation of S. aureus biofilm. The aim of this study was to elucidate whether the iron content limitation caused by SAL can modify the S. aureus metabolism and/or metabolic regulators thus changing the expression of the main polysaccharides involved in biofilm formation. The exposure of biofilm to 2 mM SAL induced a 27% reduction in the intracellular free Fe2+ concentration compared with the controls. In addition, SAL depleted 23% of the available free Fe2+ cation in culture media. These moderate iron-limited conditions promoted an intensification of biofilms formed by strain Newman and by S. aureus clinical isolates related to the USA300 and USA100 clones. The slight decrease in iron bioavailability generated by SAL was enough to induce the increase of PIA expression in biofilms formed by methicillin-resistant as well as methicillin-sensitive S. aureus strains. S. aureus did not produce capsular polysaccharide (CP) when it was forming biofilms under any of the experimental conditions tested. Furthermore, SAL diminished aconitase activity and stimulated the lactic fermentation pathway in bacteria forming biofilms. The polysaccharide composition of S. aureus biofilms was examined and FTIR spectroscopic analysis revealed a clear impact of SAL in a codY-dependent manner. Moreover, SAL negatively affected codY transcription in mature biofilms thus relieving the CodY repression of the ica operon. Treatment of mice with SAL induced a significant increase of S aureus colonization. It is suggested that the elevated PIA expression induced by SAL might be responsible for the high nasal colonization observed in mice. SAL-induced biofilms may contribute to S. aureus infection persistence in vegetarian individuals as well as in patients that frequently consume aspirin.
Collapse
Affiliation(s)
- Cristian Dotto
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires Buenos Aires, Argentina
| | - Andrea Lombarte Serrat
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires Buenos Aires, Argentina
| | - Natalia Cattelan
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo de Fermentaciones Industriales (CINDEFI), Centro Científico Technológico Consejo Nacional de Investigaciones Científicas y Tócnicas (CTT CONICET La Plata), Universidad Nacional de La Plata La Plata, Argentina
| | - María S Barbagelata
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires Buenos Aires, Argentina
| | - Osvaldo M Yantorno
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo de Fermentaciones Industriales (CINDEFI), Centro Científico Technológico Consejo Nacional de Investigaciones Científicas y Tócnicas (CTT CONICET La Plata), Universidad Nacional de La Plata La Plata, Argentina
| | - Daniel O Sordelli
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires Buenos Aires, Argentina
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute for Microbiology, University of Veterinary Medicine Vienna, Austria
| | - Tom Grunert
- Functional Microbiology, Institute for Microbiology, University of Veterinary Medicine Vienna, Austria
| | - Fernanda R Buzzola
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires Buenos Aires, Argentina
| |
Collapse
|
75
|
Levdikov VM, Blagova E, Young VL, Belitsky BR, Lebedev A, Sonenshein AL, Wilkinson AJ. Structure of the Branched-chain Amino Acid and GTP-sensing Global Regulator, CodY, from Bacillus subtilis. J Biol Chem 2016; 292:2714-2728. [PMID: 28011634 PMCID: PMC5314169 DOI: 10.1074/jbc.m116.754309] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/23/2016] [Indexed: 01/02/2023] Open
Abstract
CodY is a branched-chain amino acid (BCAA) and GTP sensor and a global regulator of transcription in low G + C Gram-positive bacteria. It controls the expression of over 100 genes and operons, principally by repressing during growth genes whose products are required for adaptations to nutrient limitation. However, the mechanism by which BCAA binding regulates transcriptional changes is not clear. It is known that CodY consists of a GAF (cGMP-stimulated phosphodiesterases, adenylate cyclases, FhlA) domain that binds BCAAs and a winged helix-turn-helix (wHTH) domain that binds to DNA, but the way in which these domains interact and the structural basis of the BCAA dependence of this interaction are unknown. To gain new insights, we determined the crystal structure of unliganded CodY from Bacillus subtilis revealing a 10-turn α-helix linking otherwise discrete GAF and wHTH domains. The structure of CodY in complex with isoleucine revealed a reorganized GAF domain. In both complexes CodY was tetrameric. Size exclusion chromatography with multiangle laser light scattering (SEC-MALLS) experiments showed that CodY is a dimer at concentrations found in bacterial cells. Comparison of structures of dimers of unliganded CodY and CodY-Ile derived from the tetramers showed a splaying of the wHTH domains when Ile was bound; splaying is likely to account for the increased affinity of Ile-bound CodY for DNA. Electrophoretic mobility shift and SEC-MALLS analyses of CodY binding to 19-36-bp operator fragments are consistent with isoleucine-dependent binding of two CodY dimers per duplex. The implications of these observations for effector control of CodY activity are discussed.
Collapse
Affiliation(s)
- Vladimir M Levdikov
- From the Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Elena Blagova
- From the Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Vicki L Young
- From the Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Boris R Belitsky
- the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| | - Andrey Lebedev
- the STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Abraham L Sonenshein
- the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| | - Anthony J Wilkinson
- From the Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom,
| |
Collapse
|
76
|
|
77
|
Brinsmade SR. CodY, a master integrator of metabolism and virulence in Gram-positive bacteria. Curr Genet 2016; 63:417-425. [PMID: 27744611 DOI: 10.1007/s00294-016-0656-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
A growing body of evidence points to CodY, a global regulator in Gram-positive bacteria, as a critical link between microbial physiology and pathogenesis in diverse environments. Recent studies uncovering graded regulation of CodY gene targets reflect the true nature of this transcription factor controlled by ligands and reveal nutrient availability as a potentially critical factor in modulating pathogenesis. This review will serve to update the status of the field and raise new questions to be answered.
Collapse
|
78
|
Kaiser JC, Sen S, Sinha A, Wilkinson BJ, Heinrichs DE. The role of two branched-chain amino acid transporters in Staphylococcus aureus growth, membrane fatty acid composition and virulence. Mol Microbiol 2016; 102:850-864. [PMID: 27589208 DOI: 10.1111/mmi.13495] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/24/2022]
Abstract
The branched-chain amino acids (BCAAs) are vital to both growth and virulence of the human pathogen Staphylococcus aureus. In addition to supporting protein synthesis, the BCAAs serve as precursors for branched-chain fatty acids (BCFAs), which are predominant membrane fatty acids, and, in association with the global regulatory protein CodY, the BCAAs are key co-regulators of virulence factors. Despite these critical functions, S. aureus represses Leu and Val synthesis, instead preferring to acquire them from the extracellular milieu. We previously identified BrnQ1 as a BCAA transporter, yet a brnQ1 mutant remained capable of BCAA acquisition. Here, we describe BcaP as an additional BCAA transporter, and determine that it plays a secondary role to BrnQ1 during S. aureus growth in a chemically defined medium. Furthermore, membrane fatty acid composition analysis revealed that BrnQ1, and not BcaP, is required for transporting Leu and Val to be used for iso-BCFA synthesis. Despite a predominant role for BrnQ1 in vitro, both BrnQ1 and BcaP are required for S. aureus fitness in vivo in a hematogenous spread infection model and a nasal colonisation model. These data demonstrate the importance of BrnQ1 and BcaP for growth, environmental adaptation and virulence of S. aureus.
Collapse
Affiliation(s)
- Julienne C Kaiser
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Suranjana Sen
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Anshul Sinha
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Brian J Wilkinson
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - David E Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
79
|
Han AR, Kang HR, Son J, Kwon DH, Kim S, Lee WC, Song HK, Song MJ, Hwang KY. The structure of the pleiotropic transcription regulator CodY provides insight into its GTP-sensing mechanism. Nucleic Acids Res 2016; 44:9483-9493. [PMID: 27596595 PMCID: PMC5100569 DOI: 10.1093/nar/gkw775] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022] Open
Abstract
GTP and branched-chain amino acids (BCAAs) are metabolic sensors that are indispensable for the determination of the metabolic status of cells. However, their molecular sensing mechanism remains unclear. CodY is a unique global transcription regulator that recognizes GTP and BCAAs as specific signals and affects expression of more than 100 genes associated with metabolism. Herein, we report the first crystal structures of the full-length CodY complex with sensing molecules and describe their functional states. We observed two different oligomeric states of CodY: a dimeric complex of CodY from Staphylococcus aureus with the two metabolites GTP and isoleucine, and a tetrameric form (apo) of CodY from Bacillus cereus. Notably, the tetrameric state shows in an auto-inhibitory manner by blocking the GTP-binding site, whereas the binding sites of GTP and isoleucine are clearly visible in the dimeric state. The GTP is located at a hinge site between the long helical region and the metabolite-binding site. Together, data from structural and electrophoretic mobility shift assay analyses improve understanding of how CodY senses GTP and operates as a DNA-binding protein and a pleiotropic transcription regulator.
Collapse
Affiliation(s)
- Ah-Reum Han
- Department of Biosystems & Biotechnology, Korea University, Anam-dong, Seoungbuk-gu, Seoul 136-713, South Korea
| | - Hye-Ri Kang
- Department of Biosystems & Biotechnology, Korea University, Anam-dong, Seoungbuk-gu, Seoul 136-713, South Korea
| | - Jonghyeon Son
- Department of Biosystems & Biotechnology, Korea University, Anam-dong, Seoungbuk-gu, Seoul 136-713, South Korea
| | - Do Hoon Kwon
- Department of Life Sciences, College of Life Sciences & Biotechnology, Korea University, Anam-dong, Seoungbuk-gu, Seoul 136-713, South Korea
| | - Sulhee Kim
- Department of Biosystems & Biotechnology, Korea University, Anam-dong, Seoungbuk-gu, Seoul 136-713, South Korea
| | - Woo Cheol Lee
- Department of Biosystems & Biotechnology, Korea University, Anam-dong, Seoungbuk-gu, Seoul 136-713, South Korea
| | - Hyun Kyu Song
- Department of Life Sciences, College of Life Sciences & Biotechnology, Korea University, Anam-dong, Seoungbuk-gu, Seoul 136-713, South Korea
| | - Moon Jung Song
- Department of Biosystems & Biotechnology, Korea University, Anam-dong, Seoungbuk-gu, Seoul 136-713, South Korea
| | - Kwang Yeon Hwang
- Department of Biosystems & Biotechnology, Korea University, Anam-dong, Seoungbuk-gu, Seoul 136-713, South Korea
| |
Collapse
|
80
|
Imae K, Saito Y, Kizaki H, Ryuno H, Mao H, Miyashita A, Suzuki Y, Sekimizu K, Kaito C. Novel Nucleoside Diphosphatase Contributes to Staphylococcus aureus Virulence. J Biol Chem 2016; 291:18608-18619. [PMID: 27422825 DOI: 10.1074/jbc.m116.721845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 11/06/2022] Open
Abstract
We identified SA1684 as a Staphylococcus aureus virulence gene using a silkworm infection model. The SA1684 gene product carried the DUF402 domain, which is found in RNA-binding proteins, and had amino acid sequence similarity with a nucleoside diphosphatase, Streptomyces coelicolor SC4828 protein. The SA1684-deletion mutant exhibited drastically decreased virulence, in which the LD50 against silkworms was more than 10 times that of the parent strain. The SA1684-deletion mutant also exhibited decreased exotoxin production and colony-spreading ability. Purified SA1684 protein had Mn(2+)- or Co(2+)-dependent hydrolyzing activity against nucleoside diphosphates. Alanine substitutions of Tyr-88, Asp-106, and Asp-123/Glu-124, which are conserved between SA1684 and SC4828, diminished the nucleoside diphosphatase activity. Introduction of the wild-type SA1684 gene restored the hemolysin production of the SA1684-deletion mutant, whereas none of the alanine-substituted SA1684 mutant genes restored the hemolysin production. RNA sequence analysis revealed that SA1684 is required for the expression of the virulence regulatory genes agr, sarZ, and sarX, as well as metabolic genes involved in glycolysis and fermentation pathways. These findings suggest that the novel nucleoside diphosphatase SA1684 links metabolic pathways and virulence gene expression and plays an important role in S. aureus virulence.
Collapse
Affiliation(s)
- Kenta Imae
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| | - Yuki Saito
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| | - Hayato Kizaki
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| | - Hiroki Ryuno
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| | - Han Mao
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| | - Atsushi Miyashita
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| | - Yutaka Suzuki
- the Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Kazuhisa Sekimizu
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| | - Chikara Kaito
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| |
Collapse
|
81
|
CodY-Dependent Regulation of Sporulation in Clostridium difficile. J Bacteriol 2016; 198:2113-30. [PMID: 27246573 DOI: 10.1128/jb.00220-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/22/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Clostridium difficile must form a spore to survive outside the gastrointestinal tract. The factors that trigger sporulation in C. difficile remain poorly understood. Previous studies have suggested that a link exists between nutritional status and sporulation initiation in C. difficile In this study, we investigated the impact of the global nutritional regulator CodY on sporulation in C. difficile strains from the historical 012 ribotype and the current epidemic 027 ribotype. Sporulation frequencies were increased in both backgrounds, demonstrating that CodY represses sporulation in C. difficile The 027 codY mutant exhibited a greater increase in spore formation than the 012 codY mutant. To determine the role of CodY in the observed sporulation phenotypes, we examined several factors that are known to influence sporulation in C. difficile Using transcriptional reporter fusions and quantitative reverse transcription-PCR (qRT-PCR) analysis, we found that two loci associated with the initiation of sporulation, opp and sinR, are regulated by CodY. The data demonstrate that CodY is a repressor of sporulation in C. difficile and that the impact of CodY on sporulation and expression of specific genes is significantly influenced by the strain background. These results suggest that the variability of CodY-dependent regulation is an important contributor to virulence and sporulation in current epidemic isolates. This report provides further evidence that nutritional state, virulence, and sporulation are linked in C. difficile IMPORTANCE This study sought to examine the relationship between nutrition and sporulation in C. difficile by examining the global nutritional regulator CodY. CodY is a known virulence and nutritional regulator of C. difficile, but its role in sporulation was unknown. Here, we demonstrate that CodY is a negative regulator of sporulation in two different ribotypes of C. difficile We also demonstrate that CodY regulates known effectors of sporulation, Opp and SinR. These results support the idea that nutrient limitation is a trigger for sporulation in C. difficile and that the response to nutrient limitation is coordinated by CodY. Additionally, we demonstrate that CodY has an altered role in sporulation regulation for some strains.
Collapse
|
82
|
Bronesky D, Wu Z, Marzi S, Walter P, Geissmann T, Moreau K, Vandenesch F, Caldelari I, Romby P. Staphylococcus aureus RNAIII and Its Regulon Link Quorum Sensing, Stress Responses, Metabolic Adaptation, and Regulation of Virulence Gene Expression. Annu Rev Microbiol 2016; 70:299-316. [PMID: 27482744 DOI: 10.1146/annurev-micro-102215-095708] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Staphylococcus aureus RNAIII is one of the main intracellular effectors of the quorum-sensing system. It is a multifunctional RNA that encodes a small peptide, and its noncoding parts act as antisense RNAs to regulate the translation and/or the stability of mRNAs encoding transcriptional regulators, major virulence factors, and cell wall metabolism enzymes. In this review, we explain how regulatory proteins and RNAIII are embedded in complex regulatory circuits to express virulence factors in a dynamic and timely manner in response to stress and environmental and metabolic changes.
Collapse
Affiliation(s)
- Delphine Bronesky
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Zongfu Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Philippe Walter
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Thomas Geissmann
- Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Université de Lyon, INSERM U1111, CNRS UMR 5308, CIRI, 69008 Lyon, France
| | - Karen Moreau
- Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Université de Lyon, INSERM U1111, CNRS UMR 5308, CIRI, 69008 Lyon, France
| | - François Vandenesch
- Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Université de Lyon, INSERM U1111, CNRS UMR 5308, CIRI, 69008 Lyon, France
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| |
Collapse
|
83
|
RpiRc Is a Pleiotropic Effector of Virulence Determinant Synthesis and Attenuates Pathogenicity in Staphylococcus aureus. Infect Immun 2016; 84:2031-2041. [PMID: 27113358 DOI: 10.1128/iai.00285-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/17/2016] [Indexed: 12/16/2022] Open
Abstract
In Staphylococcus aureus, metabolism is intimately linked with virulence determinant biosynthesis, and several metabolite-responsive regulators have been reported to mediate this linkage. S. aureus possesses at least three members of the RpiR family of transcriptional regulators. Of the three RpiR homologs, RpiRc is a potential regulator of the pentose phosphate pathway, which also regulates RNAIII levels. RNAIII is the regulatory RNA of the agr quorum-sensing system that controls virulence determinant synthesis. The effect of RpiRc on RNAIII likely involves other regulators, as the regulators that bind the RNAIII promoter have been intensely studied. To determine which regulators might bridge the gap between RpiRc and RNAIII, sarA, sigB, mgrA, and acnA mutations were introduced into an rpiRc mutant background, and the effects on RNAIII were determined. Additionally, phenotypic and genotypic differences were examined in the single and double mutant strains, and the virulence of select strains was examined using two different murine infection models. The data suggest that RpiRc affects RNAIII transcription and the synthesis of virulence determinants in concert with σ(B), SarA, and the bacterial metabolic status to negatively affect virulence.
Collapse
|
84
|
Waters NR, Samuels DJ, Behera RK, Livny J, Rhee KY, Sadykov MR, Brinsmade SR. A spectrum of CodY activities drives metabolic reorganization and virulence gene expression in Staphylococcus aureus. Mol Microbiol 2016; 101:495-514. [PMID: 27116338 DOI: 10.1111/mmi.13404] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2016] [Indexed: 12/14/2022]
Abstract
The global regulator CodY controls the expression of dozens of metabolism and virulence genes in the opportunistic pathogen Staphylococcus aureus in response to the availability of isoleucine, leucine and valine (ILV), and GTP. Using RNA-Seq transcriptional profiling and partial activity variants, we reveal that S. aureus CodY activity grades metabolic and virulence gene expression as a function of ILV availability, mediating metabolic reorganization and controlling virulence factor production in vitro. Strains lacking CodY regulatory activity produce a PIA-dependent biofilm, but development is restricted under conditions that confer partial CodY activity. CodY regulates the expression of thermonuclease (nuc) via the Sae two-component system, revealing cascading virulence regulation and factor production as CodY activity is reduced. Proteins that mediate the host-pathogen interaction and subvert the immune response are shut off at intermediate levels of CodY activity, while genes coding for enzymes and proteins that extract nutrients from tissue, that kill host cells, and that synthesize amino acids are among the last genes to be derepressed. We conclude that S. aureus uses CodY to limit host damage to only the most severe starvation conditions, providing insight into one potential mechanism by which S. aureus transitions from a commensal bacterium to an invasive pathogen.
Collapse
Affiliation(s)
| | - David J Samuels
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Ranjan K Behera
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Kyu Y Rhee
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY, USA
| | - Marat R Sadykov
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | | |
Collapse
|
85
|
Kavanaugh JS, Horswill AR. Impact of Environmental Cues on Staphylococcal Quorum Sensing and Biofilm Development. J Biol Chem 2016; 291:12556-12564. [PMID: 27129223 DOI: 10.1074/jbc.r116.722710] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Staphylococci are commensal bacteria that colonize the epithelial surfaces of humans and many other mammals. These bacteria can also attach to implanted medical devices and develop surface-associated biofilm communities that resist clearance by host defenses and available chemotherapies. These communities are often associated with persistent staphylococcal infections that place a tremendous burden on the healthcare system. Understanding the regulatory program that controls staphylococcal biofilm development, as well as the environmental conditions that modulate this program, has been a focal point of research in recent years. A central regulator controlling biofilm development is a peptide quorum-sensing system, also called the accessory gene regulator or agr system. In the opportunistic pathogen Staphylococcus aureus, the agr system controls production of exo-toxins and exo-enzymes essential for causing infections, and simultaneously, it modulates the ability of this pathogen to attach to surfaces and develop a biofilm, or to disperse from the biofilm state. In this review, we explore advances on the interconnections between the agr quorum-sensing system and biofilm mechanisms, and topics covered include recent findings on how different environmental conditions influence quorum sensing, the impact on biofilm development, and ongoing questions and challenges in the field. As our understanding of the quorum sensing and biofilm interconnection advances, there are growing opportunities to take advantage of this knowledge and develop therapeutic approaches to control staphylococcal infections.
Collapse
Affiliation(s)
- Jeffrey S Kavanaugh
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Alexander R Horswill
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
86
|
Abstract
Pathogenic bacteria must contend with immune systems that actively restrict the availability of nutrients and cofactors, and create a hostile growth environment. To deal with these hostile environments, pathogenic bacteria have evolved or acquired virulence determinants that aid in the acquisition of nutrients. This connection between pathogenesis and nutrition may explain why regulators of metabolism in nonpathogenic bacteria are used by pathogenic bacteria to regulate both metabolism and virulence. Such coordinated regulation is presumably advantageous because it conserves carbon and energy by aligning synthesis of virulence determinants with the nutritional environment. In Gram-positive bacterial pathogens, at least three metabolite-responsive global regulators, CcpA, CodY, and Rex, have been shown to coordinate the expression of metabolism and virulence genes. In this chapter, we discuss how environmental challenges alter metabolism, the regulators that respond to this altered metabolism, and how these regulators influence the host-pathogen interaction.
Collapse
|
87
|
Marshall DD, Sadykov MR, Thomas VC, Bayles KW, Powers R. Redox Imbalance Underlies the Fitness Defect Associated with Inactivation of the Pta-AckA Pathway in Staphylococcus aureus. J Proteome Res 2016; 15:1205-12. [PMID: 26975873 DOI: 10.1021/acs.jproteome.5b01089] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The phosphotransacetylase-acetate kinase (Pta-AckA) pathway is thought to be a vital ATP generating pathway for Staphylococcus aureus. Disruption of the Pta-AckA pathway during overflow metabolism causes significant reduction in growth rate and viability, albeit not due to intracellular ATP depletion. Here, we demonstrate that toxicity associated with inactivation of the Pta-AckA pathway resulted from an altered intracellular redox environment. Growth of the pta and ackA mutants under anaerobic conditions partially restored cell viability. NMR metabolomics analyses and (13)C6-glucose metabolism tracing experiments revealed the activity of multiple pathways that promote redox (NADH/NAD(+)) turnover to be enhanced in the pta and ackA mutants during anaerobic growth. Restoration of redox homeostasis in the pta mutant by overexpressing l- lactate dehydrogenase partially restored its viability under aerobic conditions. Together, our findings suggest that during overflow metabolism, the Pta-AckA pathway plays a critical role in preventing cell viability defects by promoting intracellular redox homeostasis.
Collapse
Affiliation(s)
- Darrell D Marshall
- Department of Chemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | - Marat R Sadykov
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Vinai C Thomas
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| |
Collapse
|
88
|
Slamti L, Lemy C, Henry C, Guillot A, Huillet E, Lereclus D. CodY Regulates the Activity of the Virulence Quorum Sensor PlcR by Controlling the Import of the Signaling Peptide PapR in Bacillus thuringiensis. Front Microbiol 2016; 6:1501. [PMID: 26779156 PMCID: PMC4701985 DOI: 10.3389/fmicb.2015.01501] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/14/2015] [Indexed: 01/17/2023] Open
Abstract
In Gram-positive bacteria, cell–cell communication mainly relies on cytoplasmic sensors of the RNPP family. Activity of these regulators depends on their binding to secreted signaling peptides that are imported into the cell. These quorum sensing regulators control important biological functions in bacteria of the Bacillus cereus group, such as virulence and necrotrophism. The RNPP quorum sensor PlcR, in complex with its cognate signaling peptide PapR, is the main regulator of virulence in B. cereus and Bacillus thuringiensis (Bt). Recent reports have shown that the global stationary phase regulator CodY, involved in adaptation to nutritional limitation, is required for the expression of virulence genes belonging to the PlcR regulon. However, the mechanism underlying this regulation was not described. Using genetics and proteomics approaches, we showed that CodY regulates the expression of the virulence genes through the import of PapR. We report that CodY positively controls the production of the proteins that compose the oligopeptide permease OppABCDF, and of several other Opp-like proteins. It was previously shown that the pore components of this oligopeptide permease, OppBCDF, were required for the import of PapR. However, the role of OppA, the substrate-binding protein (SBP), was not investigated. Here, we demonstrated that OppA is not the only SBP involved in the recognition of PapR, and that several other OppA-like proteins can allow the import of this peptide. Altogether, these data complete our model of quorum sensing during the lifecycle of Bt and indicate that RNPPs integrate environmental conditions, as well as cell density, to coordinate the behavior of the bacteria throughout growth.
Collapse
Affiliation(s)
- Leyla Slamti
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Christelle Lemy
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Céline Henry
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Alain Guillot
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Eugénie Huillet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| |
Collapse
|
89
|
Gopalani M, Dhiman A, Rahi A, Bhatnagar R. Overexpression of the pleiotropic regulator CodY decreases sporulation, attachment and pellicle formation in Bacillus anthracis. Biochem Biophys Res Commun 2016; 469:672-8. [DOI: 10.1016/j.bbrc.2015.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/05/2015] [Indexed: 11/25/2022]
|
90
|
Subramanian D, Natarajan J. Network analysis of S. aureus response to ramoplanin reveals modules for virulence factors and resistance mechanisms and characteristic novel genes. Gene 2015; 574:149-62. [DOI: 10.1016/j.gene.2015.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 12/27/2022]
|
91
|
Li J, Freedman JC, McClane BA. NanI Sialidase, CcpA, and CodY Work Together To Regulate Epsilon Toxin Production by Clostridium perfringens Type D Strain CN3718. J Bacteriol 2015; 197:3339-53. [PMID: 26260460 PMCID: PMC4573732 DOI: 10.1128/jb.00349-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/05/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Clostridium perfringens type D strains are usually associated with diseases of livestock, and their virulence requires the production of epsilon toxin (ETX). We previously showed (J. Li, S. Sayeed, S. Robertson, J. Chen, and B. A. McClane, PLoS Pathog 7:e1002429, 2011, http://dx.doi.org/10.1371/journal.ppat.1002429) that BMC202, a nanI null mutant of type D strain CN3718, produces less ETX than wild-type CN3718 does. The current study proved that the lower ETX production by strain BMC202 is due to nanI gene disruption, since both genetic and physical (NanI or sialic acid) complementation increased ETX production by BMC202. Furthermore, a sialidase inhibitor that interfered with NanI activity also reduced ETX production by wild-type CN3718. The NanI effect on ETX production was shown to involve reductions in codY and ccpA gene transcription levels in BMC202 versus wild-type CN3718. Similar to CodY, CcpA was found to positively control ETX production. A double codY ccpA null mutant produced even less ETX than a codY or ccpA single null mutant. CcpA bound directly to sequences upstream of the etx or codY start codon, and bioinformatics identified putative CcpA-binding cre sites immediately upstream of both the codY and etx start codons, suggesting possible direct CcpA regulatory effects. A ccpA mutation also decreased codY transcription, suggesting that CcpA effects on ETX production can be both direct and indirect, including effects on codY transcription. Collectively, these results suggest that NanI, CcpA, and CodY work together to regulate ETX production, with NanI-generated sialic acid from the intestines possibly signaling type D strains to upregulate their ETX production and induce disease. IMPORTANCE Clostridium perfringens NanI was previously shown to increase ETX binding to, and cytotoxicity for, MDCK host cells. The current study demonstrates that NanI also regulates ETX production via increased transcription of genes encoding the CodY and CcpA global regulators. Results obtained using single ccpA or codY null mutants and a ccpA codY double null mutant showed that codY and ccpA regulate ETX production independently of one another but that ccpA also affects codY transcription. Electrophoretic mobility shift assays and bioinformatic analyses suggest that both CodY and CcpA may directly regulate etx transcription. Collectively, results of this study suggest that sialic acid generated by NanI from intestinal sources signals ETX-producing C. perfringens strains, via CcpA and CodY, to upregulate ETX production and cause disease.
Collapse
Affiliation(s)
- Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John C Freedman
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
92
|
Tseng SP, Lin YT, Tsai JC, Hung WC, Chen HJ, Chen PF, Hsueh PR, Teng LJ. Genotypes and phenotypes of Staphylococcus lugdunensis isolates recovered from bacteremia. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2015; 48:397-405. [DOI: 10.1016/j.jmii.2013.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/12/2013] [Accepted: 11/12/2013] [Indexed: 11/25/2022]
|
93
|
Staphylococcus aureus transcriptomic response to inhibition by H2O2-producing Lactococcus garvieae. Food Microbiol 2015; 51:163-70. [PMID: 26187841 DOI: 10.1016/j.fm.2015.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 12/19/2022]
Abstract
Growth of the foodborne pathogen Staphylococcus aureus can be inhibited in milk and in cheese by the hydrogen peroxide-producing Lactococcus garvieae N201 dairy strain. Transcriptomic responses of two S. aureus strains, the S. aureus SA15 dairy strain and the MW2 human pathogenic strain, to this growth inhibition were investigated in Brain-Heart Infusion broth under a high or a low aeration level. We demonstrated that S. aureus MW2 had a higher resistance to L. garvieae inhibition under the high aeration level: this correlated to a higher survival under hydrogen peroxide exposure. Conversely, the two strains were similarly inhibited under the low aeration level. Expression of S. aureus genes involved in response to H2O2 or other stresses as well as in cell division was generally repressed by L. garvieae. However, differential expressions between the two S. aureus strains were observed, especially under the high aeration level. Additionally, expression of virulence-related genes (enterotoxins, regulatory genes) was modulated by L. garvieae depending on the aeration level and on the S. aureus strain. This study led to new insights into potential molecular mechanisms of S. aureus inhibition by Lactic Acid Bacteria via H2O2 production.
Collapse
|
94
|
Ohtani K, Shimizu T. Regulation of toxin gene expression in Clostridium perfringens. Res Microbiol 2015; 166:280-9. [DOI: 10.1016/j.resmic.2014.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 11/16/2022]
|
95
|
Atwood DN, Loughran AJ, Courtney AP, Anthony AC, Meeker DG, Spencer HJ, Gupta RK, Lee CY, Beenken KE, Smeltzer MS. Comparative impact of diverse regulatory loci on Staphylococcus aureus biofilm formation. Microbiologyopen 2015; 4:436-51. [PMID: 25810138 PMCID: PMC4475386 DOI: 10.1002/mbo3.250] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/06/2015] [Indexed: 01/01/2023] Open
Abstract
The relative impact of 23 mutations on biofilm formation was evaluated in the USA300, methicillin-resistant strain LAC. Mutation of sarA, atl, codY, rsbU, and sigB limited biofilm formation in comparison to the parent strain, but the limitation imposed by mutation of sarA was greater than that imposed by mutation of any of these other genes. The reduced biofilm formation of all mutants other than the atl mutant was correlated with increased levels of extracellular proteases. Mutation of fur- and mgrA-enhanced biofilm formation but in LAC had no impact on protease activity, nuclease activity, or accumulation of the polysaccharide intercellular adhesin (PIA). The increased capacity of these mutants to form a biofilm was reversed by mutation of sarA, and this was correlated with increased protease production. Mutation of sarA, mgrA, and sigB had the same phenotypic effect in the methicillin-sensitive strain UAMS-1, but mutation of codY increased rather than decreased biofilm formation. As with the UAMS-1 mgrA mutant, this was correlated with increased production of PIA. Examination of four additional clinical isolates suggests that the differential impact of codY on biofilm formation may be a conserved characteristic of methicillin-resistant versus methicillin-sensitive strains.
Collapse
Affiliation(s)
- Danielle N Atwood
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Allister J Loughran
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ashleah P Courtney
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Allison C Anthony
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Daniel G Meeker
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Horace J Spencer
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ravi Kr Gupta
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Chia Y Lee
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Karen E Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mark S Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
96
|
Weidenmaier C, Lee JC. Structure and Function of Surface Polysaccharides of Staphylococcus aureus. Curr Top Microbiol Immunol 2015; 409:57-93. [PMID: 26728067 DOI: 10.1007/82_2015_5018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The major surface polysaccharides of Staphylococcus aureus include the capsular polysaccharide (CP), cell wall teichoic acid (WTA), and polysaccharide intercellular adhesin/poly-β(1-6)-N-acetylglucosamine (PIA/PNAG). These glycopolymers are important components of the staphylococcal cell envelope, but none of them is essential to S. aureus viability and growth in vitro. The overall biosynthetic pathways of CP, WTA, and PIA/PNAG have been elucidated, and the functions of most of the biosynthetic enzymes have been demonstrated. Because S. aureus CP and WTA (but not PIA/PNAG) utilize a common cell membrane lipid carrier (undecaprenyl-phosphate) that is shared by the peptidoglycan biosynthesis pathway, there is evidence that these processes are highly integrated and temporally regulated. Regulatory elements that control glycopolymer biosynthesis have been described, but the cross talk that orchestrates the biosynthetic pathways of these three polysaccharides remains largely elusive. CP, WTA, and PIA/PNAG each play distinct roles in S. aureus colonization and the pathogenesis of staphylococcal infection. However, they each promote bacterial evasion of the host immune defences, and WTA is being explored as a target for antimicrobial therapeutics. All the three glycopolymers are viable targets for immunotherapy, and each (conjugated to a carrier protein) is under evaluation for inclusion in a multivalent S. aureus vaccine. Future research findings that increase our understanding of these surface polysaccharides, how the bacterial cell regulates their expression, and their biological functions will likely reveal new approaches to controlling this important bacterial pathogen.
Collapse
Affiliation(s)
- Christopher Weidenmaier
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen and German Center for Infection Research, Tübingen, Germany
| | - Jean C Lee
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
97
|
Role of BrnQ1 and BrnQ2 in branched-chain amino acid transport and virulence in Staphylococcus aureus. Infect Immun 2014; 83:1019-29. [PMID: 25547798 DOI: 10.1128/iai.02542-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The branched-chain amino acids (BCAAs; Ile, Leu, and Val) not only are important nutrients for the growth of Staphylococcus aureus but also are corepressors for CodY, which regulates virulence gene expression, implicating BCAAs as an important link between the metabolic state of the cell and virulence. BCAAs are either synthesized intracellularly or acquired from the environment. S. aureus encodes three putative BCAA transporters, designated BrnQ1, BrnQ2, and BrnQ3; their functions have not yet been formally tested. In this study, we mutated all three brnQ paralogs so as to characterize their substrate specificities and their roles in growth in vitro and in vivo. We demonstrated that in the community-associated, methicillin-resistant S. aureus (CA-MRSA) strain USA300, BrnQ1 is involved in uptake of all three BCAAs, BrnQ2 transports Ile, and BrnQ3 does not have a significant role in BCAA transport under the conditions tested. Of the three, only BrnQ1 is essential for USA300 to grow in a chemically defined medium that is limited for Leu or Val. Interestingly, we observed that a brnQ2 mutant grew better than USA300 in media limited for Leu and Val, owing to the fact that this mutation leads to overexpression of brnQ1. In a murine infection model, the brnQ1 mutant was attenuated, but in contrast, brnQ2 mutants had significantly increased virulence compared to that of USA300, a phenotype we suggest is at least partially linked to enhanced in vivo scavenging of Leu and Val through BrnQ1. These data uncover a hitherto-undiscovered connection between nutrient acquisition and virulence in CA-MRSA.
Collapse
|
98
|
Sadaka A, Palmer K, Suzuki T, Gilmore MS. In vitro and in vivo models of Staphylococcus aureus endophthalmitis implicate specific nutrients in ocular infection. PLoS One 2014; 9:e110872. [PMID: 25340474 PMCID: PMC4207797 DOI: 10.1371/journal.pone.0110872] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/18/2014] [Indexed: 01/28/2023] Open
Abstract
PURPOSE To define global transcriptional responses of Staphylococcus aureus and its codY mutant (CodY is a transcription regulator of virulence and metabolic genes in response to branched-chain amino acids) when growing in bovine aqueous (AH) and vitreous humor (VH) in vitro, and to investigate the impact of codY deletion on S. aureus virulence in a novel murine anterior chamber (AC) infection model. METHODS For the in vitro model, differential transcriptomic gene expression of S. aureus and its codY mutant grown in chemically defined medium (CDM), AH, and VH was analyzed. Furthermore, the strains were inoculated into the AC of mice. Changes in bacterial growth, electroretinography and inflammation scores were monitored. RESULTS Bovine AH and VH provide sufficient nutrition for S. aureus growth in vitro. Transcriptome analysis identified 72 unique open reading frames differentially regulated ≥10-fold between CDM, AH, and VH. In the AC model, we found comparable growth of the codY mutant and wild type strains in vivo. Average inflammation scores and retinal function were significantly worse for codY mutant-infected eyes at 24 h post-infection. CONCLUSION Our in vitro bovine AH and VH models identified likely nutrient sources for S. aureus in the ocular milieu. The in vivo model suggests that control of branched-chain amino acid availability has therapeutic potential in limiting S. aureus endophthalmitis severity.
Collapse
Affiliation(s)
- Ama Sadaka
- Departments of Ophthalmology, and Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- The Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
- Harvard Microbial Sciences Initiative, Cambridge, Massachusetts, United States of America
| | - Kelli Palmer
- Departments of Ophthalmology, and Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- The Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
- Harvard Microbial Sciences Initiative, Cambridge, Massachusetts, United States of America
| | - Takashi Suzuki
- Departments of Ophthalmology, and Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- The Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
- Harvard Microbial Sciences Initiative, Cambridge, Massachusetts, United States of America
| | - Michael S. Gilmore
- Departments of Ophthalmology, and Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- The Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
- Harvard Microbial Sciences Initiative, Cambridge, Massachusetts, United States of America
| |
Collapse
|
99
|
Bouillaut L, Dubois T, Sonenshein AL, Dupuy B. Integration of metabolism and virulence in Clostridium difficile. Res Microbiol 2014; 166:375-83. [PMID: 25445566 DOI: 10.1016/j.resmic.2014.10.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 01/04/2023]
Abstract
Synthesis of the major toxin proteins of the diarrheal pathogen, Clostridium difficile, is dependent on the activity of TcdR, an initiation (sigma) factor of RNA polymerase. The synthesis of TcdR and the activation of toxin gene expression are responsive to multiple components in the bacterium's nutritional environment, such as the presence of certain sugars, amino acids, and fatty acids. This review summarizes current knowledge about the mechanisms responsible for repression of toxin synthesis when glucose or branched-chain amino acids or proline are in excess and the pathways that lead to synthesis of butyrate, an activator of toxin synthesis. The regulatory proteins implicated in these mechanisms also play key roles in modulating bacterial metabolic pathways, suggesting that C. difficile pathogenesis is intimately connected to the bacterium's metabolic state.
Collapse
Affiliation(s)
- Laurent Bouillaut
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Thomas Dubois
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France.
| | - Abraham L Sonenshein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France.
| |
Collapse
|
100
|
Hartmann T, Baronian G, Nippe N, Voss M, Schulthess B, Wolz C, Eisenbeis J, Schmidt-Hohagen K, Gaupp R, Sunderkötter C, Beisswenger C, Bals R, Somerville GA, Herrmann M, Molle V, Bischoff M. The catabolite control protein E (CcpE) affects virulence determinant production and pathogenesis of Staphylococcus aureus. J Biol Chem 2014; 289:29701-11. [PMID: 25193664 DOI: 10.1074/jbc.m114.584979] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Carbon metabolism and virulence determinant production are often linked in pathogenic bacteria, and several regulatory elements have been reported to mediate this linkage in Staphylococcus aureus. Previously, we described a novel protein, catabolite control protein E (CcpE) that functions as a regulator of the tricarboxylic acid cycle. Here we demonstrate that CcpE also regulates virulence determinant biosynthesis and pathogenesis. Specifically, deletion of ccpE in S. aureus strain Newman revealed that CcpE affects transcription of virulence factors such as capA, the first gene in the capsule biosynthetic operon; hla, encoding α-toxin; and psmα, encoding the phenol-soluble modulin cluster α. Electrophoretic mobility shift assays demonstrated that CcpE binds to the hla promoter. Mice challenged with S. aureus strain Newman or its isogenic ΔccpE derivative revealed increased disease severity in the ΔccpE mutant using two animal models; an acute lung infection model and a skin infection model. Complementation of the mutant with the ccpE wild-type allele restored all phenotypes, demonstrating that CcpE is negative regulator of virulence in S. aureus.
Collapse
Affiliation(s)
- Torsten Hartmann
- From the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Grégory Baronian
- the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier 2, CNRS, UMR 5235, 34090 Montpellier, France
| | - Nadine Nippe
- the Institute of Immunology, University of Münster, 48149 Münster, Germany
| | - Meike Voss
- the Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University Medical Centre, 66421 Homburg/Saar, Germany
| | - Bettina Schulthess
- the Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland
| | - Christiane Wolz
- the Institute of Medical Microbiology and Hygiene, University Hospital of Tübingen, 72076 Tübingen, Germany
| | - Janina Eisenbeis
- From the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Kerstin Schmidt-Hohagen
- the Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Rosmarie Gaupp
- From the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Cord Sunderkötter
- the Department of Dermatology, University of Münster, 48149 Münster, Germany, and
| | - Christoph Beisswenger
- the Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University Medical Centre, 66421 Homburg/Saar, Germany
| | - Robert Bals
- the Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University Medical Centre, 66421 Homburg/Saar, Germany
| | - Greg A Somerville
- the School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska 68583-0903
| | - Mathias Herrmann
- From the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Virginie Molle
- the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier 2, CNRS, UMR 5235, 34090 Montpellier, France
| | - Markus Bischoff
- From the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany,
| |
Collapse
|