51
|
SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020. [PMID: 32142651 DOI: 10.1016/j.cell.2020.02.052;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
Collapse
|
52
|
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020. [PMID: 32142651 DOI: 10.1016/j.cell.2020.02.052,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
Collapse
Affiliation(s)
- Markus Hoffmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany.
| | - Hannah Kleine-Weber
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Simon Schroeder
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany; German Centre for Infection Research, associated partner Charité, Berlin, Germany
| | - Nadine Krüger
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany; Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Sandra Erichsen
- Institute for Biomechanics, BG Unfallklinik Murnau, Murnau, Germany; Institute for Biomechanics, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Tobias S Schiergens
- Biobank of the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nai-Huei Wu
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andreas Nitsche
- Robert Koch Institute, ZBS 1 Highly Pathogenic Viruses, WHO Collaborating Centre for Emerging Infections and Biological Threats, Berlin, Germany
| | - Marcel A Müller
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany; German Centre for Infection Research, associated partner Charité, Berlin, Germany; Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Christian Drosten
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany; German Centre for Infection Research, associated partner Charité, Berlin, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany.
| |
Collapse
|
53
|
Pinto D, Park YJ, Beltramello M, Walls AC, Tortorici MA, Bianchi S, Jaconi S, Culap K, Zatta F, De Marco A, Peter A, Guarino B, Spreafico R, Cameroni E, Case JB, Chen RE, Havenar-Daughton C, Snell G, Telenti A, Virgin HW, Lanzavecchia A, Diamond MS, Fink K, Veesler D, Corti D. Structural and functional analysis of a potent sarbecovirus neutralizing antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511354 DOI: 10.1101/2020.04.07.023903] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
SARS-CoV-2 is a newly emerged coronavirus responsible for the current COVID-19 pandemic that has resulted in more than one million infections and 73,000 deaths 1,2 . Vaccine and therapeutic discovery efforts are paramount to curb the pandemic spread of this zoonotic virus. The SARS-CoV-2 spike (S) glycoprotein promotes entry into host cells and is the main target of neutralizing antibodies. Here we describe multiple monoclonal antibodies targeting SARS-CoV-2 S identified from memory B cells of a SARS survivor infected in 2003. One antibody, named S309, potently neutralizes SARS-CoV-2 and SARS-CoV pseudoviruses as well as authentic SARS-CoV-2 by engaging the S receptor-binding domain. Using cryo-electron microscopy and binding assays, we show that S309 recognizes a glycan-containing epitope that is conserved within the sarbecovirus subgenus, without competing with receptor attachment. Antibody cocktails including S309 along with other antibodies identified here further enhanced SARS-CoV-2 neutralization and may limit the emergence of neutralization-escape mutants. These results pave the way for using S309 and S309-containing antibody cocktails for prophylaxis in individuals at high risk of exposure or as a post-exposure therapy to limit or treat severe disease.
Collapse
|
54
|
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020. [DOI: '10.1016/j.cell.2020.02.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
55
|
SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020. [DOI: 10.1016/j.cell.2020.02.052\] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
56
|
SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020. [DOI: 10.1016/j.cell.2020.02.052 or 1=1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
57
|
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020; 181:281-292.e6. [PMID: 32155444 PMCID: PMC7102599 DOI: 10.1016/j.cell.2020.02.058] [Citation(s) in RCA: 5903] [Impact Index Per Article: 1475.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 10/31/2022]
Abstract
The emergence of SARS-CoV-2 has resulted in >90,000 infections and >3,000 deaths. Coronavirus spike (S) glycoproteins promote entry into cells and are the main target of antibodies. We show that SARS-CoV-2 S uses ACE2 to enter cells and that the receptor-binding domains of SARS-CoV-2 S and SARS-CoV S bind with similar affinities to human ACE2, correlating with the efficient spread of SARS-CoV-2 among humans. We found that the SARS-CoV-2 S glycoprotein harbors a furin cleavage site at the boundary between the S1/S2 subunits, which is processed during biogenesis and sets this virus apart from SARS-CoV and SARS-related CoVs. We determined cryo-EM structures of the SARS-CoV-2 S ectodomain trimer, providing a blueprint for the design of vaccines and inhibitors of viral entry. Finally, we demonstrate that SARS-CoV S murine polyclonal antibodies potently inhibited SARS-CoV-2 S mediated entry into cells, indicating that cross-neutralizing antibodies targeting conserved S epitopes can be elicited upon vaccination.
Collapse
Affiliation(s)
- Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute Pasteur & CNRS UMR 3569, Unité de Virologie Structurale, Paris 75015, France
| | - Abigail Wall
- Vaccines and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA
| | - Andrew T McGuire
- Vaccines and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
58
|
SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020; 181:271-280.e8. [PMID: 32142651 PMCID: PMC7102627 DOI: 10.1016/j.cell.2020.02.052] [Citation(s) in RCA: 13660] [Impact Index Per Article: 3415.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/13/2020] [Accepted: 02/25/2020] [Indexed: 11/24/2022]
Abstract
The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention. SARS-CoV-2 uses the SARS-CoV receptor ACE2 for host cell entry The spike protein of SARS-CoV-2 is primed by TMPRSS2 Antibodies against SARS-CoV spike may offer some protection against SARS-CoV-2
Collapse
|
59
|
Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5:562-569. [PMID: 32094589 PMCID: PMC7095430 DOI: 10.1038/s41564-020-0688-y] [Citation(s) in RCA: 2120] [Impact Index Per Article: 530.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 11/22/2022]
Abstract
Over the past 20 years, several coronaviruses have crossed the species barrier into humans, causing outbreaks of severe, and often fatal, respiratory illness. Since SARS-CoV was first identified in animal markets, global viromics projects have discovered thousands of coronavirus sequences in diverse animals and geographic regions. Unfortunately, there are few tools available to functionally test these viruses for their ability to infect humans, which has severely hampered efforts to predict the next zoonotic viral outbreak. Here, we developed an approach to rapidly screen lineage B betacoronaviruses, such as SARS-CoV and the recent SARS-CoV-2, for receptor usage and their ability to infect cell types from different species. We show that host protease processing during viral entry is a significant barrier for several lineage B viruses and that bypassing this barrier allows several lineage B viruses to enter human cells through an unknown receptor. We also demonstrate how different lineage B viruses can recombine to gain entry into human cells, and confirm that human ACE2 is the receptor for the recently emerging SARS-CoV-2. This study describes the development of an approach to rapidly screen lineage B betacoronaviruses, such as SARS-CoV and the recently emerged SARS-CoV-2, for receptor usage and their ability to infect cell types from different species. Using it, they confirm human ACE2 as the receptor for SARs-CoV-2 and show that host protease processing during viral entry is a significant barrier for viral entry.
Collapse
Affiliation(s)
- Michael Letko
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
60
|
Structural Basis for Inhibiting Porcine Epidemic Diarrhea Virus Replication with the 3C-Like Protease Inhibitor GC376. Viruses 2020; 12:v12020240. [PMID: 32098094 PMCID: PMC7077318 DOI: 10.3390/v12020240] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/26/2020] [Accepted: 01/31/2020] [Indexed: 11/17/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), being highly virulent and contagious in piglets, has caused significant damage to the pork industries of many countries worldwide. There are no commercial drugs targeting coronaviruses (CoVs), and few studies on anti-PEDV inhibitors. The coronavirus 3C-like protease (3CLpro) has a conserved structure and catalytic mechanism and plays a key role during viral polyprotein processing, thus serving as an appealing antiviral drug target. Here, we report the anti-PEDV effect of the broad-spectrum inhibitor GC376 (targeting 3Cpro or 3CLpro of viruses in the picornavirus-like supercluster). GC376 was highly effective against the PEDV 3CLpro and exerted similar inhibitory effects on two PEDV strains. Furthermore, the structure of the PEDV 3CLpro in complex with GC376 was determined at 1.65 Å. We elucidated structural details and analyzed the differences between GC376 binding with the PEDV 3CLpro and GC376 binding with the transmissible gastroenteritis virus (TGEV) 3CLpro. Finally, we explored the substrate specificity of PEDV 3CLpro at the P2 site and analyzed the effects of Leu group modification in GC376 on inhibiting PEDV infection. This study helps us to understand better the PEDV 3CLpro substrate specificity, providing information on the optimization of GC376 for development as an antiviral therapeutic against coronaviruses.
Collapse
|
61
|
Menachery VD, Dinnon KH, Yount BL, McAnarney ET, Gralinski LE, Hale A, Graham RL, Scobey T, Anthony SJ, Wang L, Graham B, Randell SH, Lipkin WI, Baric RS. Trypsin Treatment Unlocks Barrier for Zoonotic Bat Coronavirus Infection. J Virol 2020; 94:e01774-19. [PMID: 31801868 PMCID: PMC7022341 DOI: 10.1128/jvi.01774-19] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022] Open
Abstract
Traditionally, the emergence of coronaviruses (CoVs) has been attributed to a gain in receptor binding in a new host. Our previous work with severe acute respiratory syndrome (SARS)-like viruses argued that bats already harbor CoVs with the ability to infect humans without adaptation. These results suggested that additional barriers limit the emergence of zoonotic CoV. In this work, we describe overcoming host restriction of two Middle East respiratory syndrome (MERS)-like bat CoVs using exogenous protease treatment. We found that the spike protein of PDF2180-CoV, a MERS-like virus found in a Ugandan bat, could mediate infection of Vero and human cells in the presence of exogenous trypsin. We subsequently show that the bat virus spike can mediate the infection of human gut cells but is unable to infect human lung cells. Using receptor-blocking antibodies, we show that infection with the PDF2180 spike does not require MERS-CoV receptor DPP4 and antibodies developed against the MERS spike receptor-binding domain and S2 portion are ineffective in neutralizing the PDF2180 chimera. Finally, we found that the addition of exogenous trypsin also rescues HKU5-CoV, a second bat group 2c CoV. Together, these results indicate that proteolytic cleavage of the spike, not receptor binding, is the primary infection barrier for these two group 2c CoVs. Coupled with receptor binding, proteolytic activation offers a new parameter to evaluate the emergence potential of bat CoVs and offers a means to recover previously unrecoverable zoonotic CoV strains.IMPORTANCE Overall, our studies demonstrate that proteolytic cleavage is the primary barrier to infection for a subset of zoonotic coronaviruses. Moving forward, the results argue that both receptor binding and proteolytic cleavage of the spike are critical factors that must be considered for evaluating the emergence potential and risk posed by zoonotic coronaviruses. In addition, the findings also offer a novel means to recover previously uncultivable zoonotic coronavirus strains and argue that other tissues, including the digestive tract, could be a site for future coronavirus emergence events in humans.
Collapse
Affiliation(s)
- Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kenneth H Dinnon
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Boyd L Yount
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eileen T McAnarney
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lisa E Gralinski
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andrew Hale
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Rachel L Graham
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Trevor Scobey
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Simon J Anthony
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Barney Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Scott H Randell
- Department of Cell Biology and Physiology, and Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
62
|
Letko M, Munster V. Functional assessment of cell entry and receptor usage for lineage B β-coronaviruses, including 2019-nCoV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.01.22.915660. [PMID: 32511294 PMCID: PMC7217099 DOI: 10.1101/2020.01.22.915660] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Over the past 20 years, several coronaviruses have crossed the species barrier into humans, causing outbreaks of severe, and often fatal, respiratory illness. Since SARS-CoV was first identified in animal markets, global viromics projects have discovered thousands of coronavirus sequences in diverse animals and geographic regions. Unfortunately, there are few tools available to functionally test these novel viruses for their ability to infect humans, which has severely hampered efforts to predict the next zoonotic viral outbreak. Here we developed an approach to rapidly screen lineage B betacoronaviruses, such as SARS-CoV and the recent 2019-nCoV, for receptor usage and their ability to infect cell types from different species. We show that host protease processing during viral entry is a significant barrier for several lineage B viruses and that bypassing this barrier allows several lineage B viruses to enter human cells through an unknown receptor. We also demonstrate how different lineage B viruses can recombine to gain entry into human cells and confirm that human ACE2 is the receptor for the recently emerging 2019-nCoV.
Collapse
Affiliation(s)
- Michael Letko
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| |
Collapse
|
63
|
Park YJ, Walls AC, Wang Z, Sauer MM, Li W, Tortorici MA, Bosch BJ, DiMaio F, Veesler D. Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors. Nat Struct Mol Biol 2019; 26:1151-1157. [PMID: 31792450 PMCID: PMC7097669 DOI: 10.1038/s41594-019-0334-7] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/21/2019] [Indexed: 11/09/2022]
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe and often lethal respiratory illness in humans, and no vaccines or specific treatments are available. Infections are initiated via binding of the MERS-CoV spike (S) glycoprotein to sialosides and dipeptidyl-peptidase 4 (the attachment and entry receptors, respectively). To understand MERS-CoV engagement of sialylated receptors, we determined the cryo-EM structures of S in complex with 5-N-acetyl neuraminic acid, 5-N-glycolyl neuraminic acid, sialyl-LewisX, α2,3-sialyl-N-acetyl-lactosamine and α2,6-sialyl-N-acetyl-lactosamine at 2.7-3.0 Å resolution. We show that recognition occurs via a conserved groove that is essential for MERS-CoV S-mediated attachment to sialosides and entry into human airway epithelial cells. Our data illuminate MERS-CoV S sialoside specificity and suggest that selectivity for α2,3-linked over α2,6-linked receptors results from enhanced interactions with the former class of oligosaccharides. This study provides a structural framework explaining MERS-CoV attachment to sialoside receptors and identifies a site of potential vulnerability to inhibitors of viral entry.
Collapse
Affiliation(s)
- Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Zhaoqian Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Wentao Li
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institut Pasteur, Unité de Virologie Structurale, Paris, France
- CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Berend-Jan Bosch
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
64
|
Abstract
Coronaviruses (CoVs) have caused outbreaks of deadly pneumonia in humans since the beginning of the 21st century. The severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 and was responsible for an epidemic that spread to five continents with a fatality rate of 10% before being contained in 2003 (with additional cases reported in 2004). The Middle-East respiratory syndrome coronavirus (MERS-CoV) emerged in the Arabian Peninsula in 2012 and has caused recurrent outbreaks in humans with a fatality rate of 35%. SARS-CoV and MERS-CoV are zoonotic viruses that crossed the species barrier using bats/palm civets and dromedary camels, respectively. No specific treatments or vaccines have been approved against any of the six human coronaviruses, highlighting the need to investigate the principles governing viral entry and cross-species transmission as well as to prepare for zoonotic outbreaks which are likely to occur due to the large reservoir of CoVs found in mammals and birds. Here, we review our understanding of the infection mechanism used by coronaviruses derived from recent structural and biochemical studies.
Collapse
Affiliation(s)
- M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institut Pasteur, Unité de Virologie Structurale, Paris, France; CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, United States.
| |
Collapse
|
65
|
Abstract
Coronaviruses are pathogens with a serious impact on human and animal health. They mostly cause enteric or respiratory disease, which can be severe and life threatening, e.g., in the case of the zoonotic coronaviruses causing severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS) in humans. Despite the economic and societal impact of such coronavirus infections, and the likelihood of future outbreaks of additional pathogenic coronaviruses, our options to prevent or treat coronavirus infections remain very limited. This highlights the importance of advancing our knowledge on the replication of these viruses and their interactions with the host. Compared to other +RNA viruses, coronaviruses have an exceptionally large genome and employ a complex genome expression strategy. Next to a role in basic virus replication or virus assembly, many of the coronavirus proteins expressed in the infected cell contribute to the coronavirus-host interplay. For example, by interacting with the host cell to create an optimal environment for coronavirus replication, by altering host gene expression or by counteracting the host’s antiviral defenses. These coronavirus–host interactions are key to viral pathogenesis and will ultimately determine the outcome of infection. Due to the complexity of the coronavirus proteome and replication cycle, our knowledge of host factors involved in coronavirus replication is still in an early stage compared to what is known for some other +RNA viruses. This review summarizes our current understanding of coronavirus–host interactions at the level of the infected cell, with special attention for the assembly and function of the viral RNA-synthesising machinery and the evasion of cellular innate immune responses.
Collapse
|
66
|
Xia S, Yan L, Xu W, Agrawal AS, Algaissi A, Tseng CTK, Wang Q, Du L, Tan W, Wilson IA, Jiang S, Yang B, Lu L. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. SCIENCE ADVANCES 2019; 5:eaav4580. [PMID: 30989115 PMCID: PMC6457931 DOI: 10.1126/sciadv.aav4580] [Citation(s) in RCA: 344] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/14/2019] [Indexed: 05/07/2023]
Abstract
Continuously emerging highly pathogenic human coronaviruses (HCoVs) remain a major threat to human health, as illustrated in past SARS-CoV and MERS-CoV outbreaks. The development of a drug with broad-spectrum HCoV inhibitory activity would address this urgent unmet medical need. Although previous studies have suggested that the HR1 of HCoV spike (S) protein is an important target site for inhibition against specific HCoVs, whether this conserved region could serve as a target for the development of broad-spectrum pan-CoV inhibitor remains controversial. Here, we found that peptide OC43-HR2P, derived from the HR2 domain of HCoV-OC43, exhibited broad fusion inhibitory activity against multiple HCoVs. EK1, the optimized form of OC43-HR2P, showed substantially improved pan-CoV fusion inhibitory activity and pharmaceutical properties. Crystal structures indicated that EK1 can form a stable six-helix bundle structure with both short α-HCoV and long β-HCoV HR1s, further supporting the role of HR1 region as a viable pan-CoV target site.
Collapse
Affiliation(s)
- Shuai Xia
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, and Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 200032, China
| | - Lei Yan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Wei Xu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, and Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 200032, China
| | - Anurodh Shankar Agrawal
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Abdullah Algaissi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Chien-Te K. Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Qian Wang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, and Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 200032, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Wenjie Tan
- MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ian A. Wilson
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC206, La Jolla, CA 92037, USA
- Corresponding author. (I.A.W.); (S.J.); (B.Y.); (L.L.)
| | - Shibo Jiang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, and Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 200032, China
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
- Corresponding author. (I.A.W.); (S.J.); (B.Y.); (L.L.)
| | - Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- Corresponding author. (I.A.W.); (S.J.); (B.Y.); (L.L.)
| | - Lu Lu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, and Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 200032, China
- Corresponding author. (I.A.W.); (S.J.); (B.Y.); (L.L.)
| |
Collapse
|
67
|
Walls AC, Xiong X, Park YJ, Tortorici MA, Snijder J, Quispe J, Cameroni E, Gopal R, Dai M, Lanzavecchia A, Zambon M, Rey FA, Corti D, Veesler D. Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. Cell 2019; 176:1026-1039.e15. [PMID: 30712865 PMCID: PMC6751136 DOI: 10.1016/j.cell.2018.12.028] [Citation(s) in RCA: 454] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/29/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022]
Abstract
Recent outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome, along with the threat of a future coronavirus-mediated pandemic, underscore the importance of finding ways to combat these viruses. The trimeric spike transmembrane glycoprotein S mediates entry into host cells and is the major target of neutralizing antibodies. To understand the humoral immune response elicited upon natural infections with coronaviruses, we structurally characterized the SARS-CoV and MERS-CoV S glycoproteins in complex with neutralizing antibodies isolated from human survivors. Although the two antibodies studied blocked attachment to the host cell receptor, only the anti-SARS-CoV S antibody triggered fusogenic conformational changes via receptor functional mimicry. These results provide a structural framework for understanding coronavirus neutralization by human antibodies and shed light on activation of coronavirus membrane fusion, which takes place through a receptor-driven ratcheting mechanism.
Collapse
Affiliation(s)
- Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Xiaoli Xiong
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA; Institute Pasteur & CNRS UMR 3569, Unité de Virologie Structurale, 75015, Paris, France
| | - Joost Snijder
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | - Robin Gopal
- National Infection Service, Public Health England, London NW9 5HT, UK
| | - Mian Dai
- Crick Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Maria Zambon
- National Infection Service, Public Health England, London NW9 5HT, UK
| | - Félix A Rey
- Institute Pasteur & CNRS UMR 3569, Unité de Virologie Structurale, 75015, Paris, France
| | - Davide Corti
- Humabs Biomed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
68
|
Potent MERS-CoV Fusion Inhibitory Peptides Identified from HR2 Domain in Spike Protein of Bat Coronavirus HKU4. Viruses 2019; 11:v11010056. [PMID: 30646495 PMCID: PMC6357153 DOI: 10.3390/v11010056] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012 and caused continual outbreaks worldwide with high mortality. However, no effective anti-MERS-CoV drug is currently available. Recently, numerous evolutionary studies have suggested that MERS-CoV originated from bat coronavirus (BatCoV). We herein reported that three peptides derived from the HR2 region in spike protein of BatCoV HKU4, including HKU4-HR2P1, HKU4-HR2P2 and HKU4-HR2P3, could bind the MERS-CoV HR1-derived peptide to form a six-helix bundle (6-HB) with high stability. Moreover, these peptides, particularly HKU4-HR2P2 and HKU4-HR2P3, exhibited potent inhibitory activity against MERS-CoV S-mediated cell–cell fusion and viral infection, suggesting that these HKU4 HR2-derived peptides could be candidates for futher development as antiviral agents against MERS-CoV infection.
Collapse
|
69
|
Mutations in the Spike Protein of Middle East Respiratory Syndrome Coronavirus Transmitted in Korea Increase Resistance to Antibody-Mediated Neutralization. J Virol 2019; 93:JVI.01381-18. [PMID: 30404801 PMCID: PMC6321919 DOI: 10.1128/jvi.01381-18] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
MERS-CoV has pandemic potential, and it is important to identify mutations in viral proteins that might augment viral spread. In the course of a large hospital outbreak of MERS in the Republic of Korea in 2015, the spread of a viral variant that contained mutations in the viral spike protein was observed. These mutations were found to reduce receptor binding and viral infectivity. However, it remained unclear whether they also exerted proviral effects. We demonstrate that these mutations reduce sensitivity to antibody-mediated neutralization and are compatible with robust infection of target cells expressing large amounts of the viral receptor DPP4. Middle East respiratory syndrome coronavirus (MERS-CoV) poses a threat to public health. The virus is endemic in the Middle East but can be transmitted to other countries by travel activity. The introduction of MERS-CoV into the Republic of Korea by an infected traveler resulted in a hospital outbreak of MERS that entailed 186 cases and 38 deaths. The MERS-CoV spike (S) protein binds to the cellular protein DPP4 via its receptor binding domain (RBD) and mediates viral entry into target cells. During the MERS outbreak in Korea, emergence and spread of viral variants that harbored mutations in the RBD, D510G and I529T, was observed. Counterintuitively, these mutations were found to reduce DPP4 binding and viral entry into target cells. In this study, we investigated whether they also exerted proviral effects. We confirm that changes D510G and I529T reduce S protein binding to DPP4 but show that this reduction only translates into diminished viral entry when expression of DPP4 on target cells is low. Neither mutation modulated S protein binding to sialic acids, S protein activation by host cell proteases, or inhibition of S protein-driven entry by interferon-induced transmembrane proteins. In contrast, changes D510G and I529T increased resistance of S protein-driven entry to neutralization by monoclonal antibodies and sera from MERS patients. These findings indicate that MERS-CoV variants with reduced neutralization sensitivity were transmitted during the Korean outbreak and that the responsible mutations were compatible with robust infection of cells expressing high levels of DPP4. IMPORTANCE MERS-CoV has pandemic potential, and it is important to identify mutations in viral proteins that might augment viral spread. In the course of a large hospital outbreak of MERS in the Republic of Korea in 2015, the spread of a viral variant that contained mutations in the viral spike protein was observed. These mutations were found to reduce receptor binding and viral infectivity. However, it remained unclear whether they also exerted proviral effects. We demonstrate that these mutations reduce sensitivity to antibody-mediated neutralization and are compatible with robust infection of target cells expressing large amounts of the viral receptor DPP4.
Collapse
|
70
|
Baharoon S, Memish ZA. MERS-CoV as an emerging respiratory illness: A review of prevention methods. Travel Med Infect Dis 2019; 32:101520. [PMID: 31730910 PMCID: PMC7110694 DOI: 10.1016/j.tmaid.2019.101520] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Middle East Respiratory Coronavirus Virus (MERS-CoV) first emerged from Saudi Arabia in 2012 and has since been recognized as a significant human respiratory pathogen on a global level. METHODS In this narrative review, we focus on the prevention of MERS-CoV. We searched PubMed, Embase, Cochrane, Scopus, and Google Scholar, using the following terms: 'MERS', 'MERS-CoV', 'Middle East respiratory syndrome' in combination with 'prevention' or 'infection control'. We also reviewed the references of each article to further include other studies or reports not identified by the search. RESULTS As of Nov 2019, a total of 2468 laboratory-confirmed cases of MERS-CoV were diagnosed mostly from Middle Eastern regions with a mortality rate of at least 35%. A major outbreak that occurred outside the Middle East (in South Korea) and infections reported from 27 countries. MERS-CoV has gained recognition as a pathogen of global significance. Prevention of MERS-CoV infection is a global public health priority. Healthcare facility transmission and by extension community transmission, the main amplifier of persistent outbreaks, can be prevented through early identification and isolation of infected humans. While MERS-CoV vaccine studies were initially hindered by multiple challenges, recent vaccine development for MERS-CoV is showing promise. CONCLUSIONS The main factors leading to sustainability of MERS-CoV infection in high risk courtiers is healthcare facility transmission. MERS-CoV transmission in healthcare facility mainly results from laps in infection control measures and late isolation of suspected cases. Preventive measures for MERS-CoV include disease control in camels, prevention of camel to human transmission.
Collapse
Affiliation(s)
- Salim Baharoon
- Infectious Disease Division, Department of Internal Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia,Department of Critical Care, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia,Professor of Critical Care, King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia
| | - Ziad A. Memish
- Infectious Diseases Division, Department of Medicine and Research Department, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA,Corresponding author. College of Medicine, Alfaisal University, P.O. Box 54146, Riyadh, 11514, Saudi Arabia
| |
Collapse
|
71
|
Lysosomal Proteases Are a Determinant of Coronavirus Tropism. J Virol 2018; 92:JVI.01504-18. [PMID: 30258004 DOI: 10.1128/jvi.01504-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022] Open
Abstract
Cell entry by coronaviruses involves two principal steps, receptor binding and membrane fusion; the latter requires activation by host proteases, particularly lysosomal proteases. Despite the importance of lysosomal proteases in both coronavirus entry and cell metabolism, the correlation between lysosomal proteases and cell tropism of coronaviruses has not been established. Here, we examined the roles of lysosomal proteases in activating coronavirus surface spike proteins for membrane fusion, using the spike proteins from severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) as the model system. To this end, we controlled the contributions from receptor binding and other host proteases, thereby attributing coronavirus entry solely or mainly to the efficiency of lysosomal proteases in activating coronavirus spike-mediated membrane fusion. Our results showed that lysosomal proteases from bat cells support coronavirus spike-mediated pseudovirus entry and cell-cell fusion more effectively than their counterparts from human cells. Moreover, purified lysosomal extracts from bat cells cleave cell surface-expressed coronavirus spikes more efficiently than their counterparts from human cells. Overall, our study suggests that different lysosomal protease activities from different host species and tissue cells are an important determinant of the species and tissue tropism of coronaviruses.IMPORTANCE Coronaviruses are capable of colonizing new species, as evidenced by the recent emergence of SARS and MERS coronaviruses; they can also infect multiple tissues in the same species. Lysosomal proteases play critical roles in coronavirus entry by cleaving coronavirus surface spike proteins and activating the fusion of host and viral membranes; they also play critical roles in cell physiology by processing cellular products. How do different lysosomal protease activities from different cells impact coronavirus entry? Here, we controlled the contributions from known factors that function in coronavirus entry so that lysosomal protease activities became the only or the main determinant of coronavirus entry. Using pseudovirus entry, cell-cell fusion, and biochemical assays, we showed that lysosomal proteases from bat cells activate coronavirus spike-mediated membrane fusion more efficiently than their counterparts from human cells. Our study provides the first direct evidence supporting lysosomal proteases as a determinant of the species and tissue tropisms of coronaviruses.
Collapse
|
72
|
Functional analysis of potential cleavage sites in the MERS-coronavirus spike protein. Sci Rep 2018; 8:16597. [PMID: 30413791 PMCID: PMC6226446 DOI: 10.1038/s41598-018-34859-w] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/18/2018] [Indexed: 11/15/2022] Open
Abstract
The Middle East respiratory syndrome-related coronavirus (MERS-CoV) can cause severe disease and has pandemic potential. Therefore, development of antiviral strategies is an important task. The activation of the viral spike protein (S) by host cell proteases is essential for viral infectivity and the responsible enzymes are potential therapeutic targets. The cellular proteases furin, cathepsin L and TMPRSS2 can activate MERS-S and may cleave the S protein at two distinct sites, termed S1/S2 and S2′. Moreover, a potential cathepsin L cleavage site in MERS-S has been reported. However, the relative importance of these sites for MERS-S activation is incompletely understood. Here, we used mutagenic analysis and MERS-S-bearing vectors to study the contribution of specific cleavage sites to S protein-driven entry. We found that an intact S1/S2 site was only required for efficient entry into cells expressing endogenous TMPRSS2. In keeping with a previous study, pre-cleavage at the S1/S2 motif (RSVR) was important although not essential for subsequent MERS-S activation by TMPRSS2, and indirect evidence was obtained that this motif is processed by a protease depending on an intact RXXR motif, most likely furin. In contrast, the S2′ site (RSAR) was required for robust viral entry into all cell lines tested and the integrity of one of the two arginines was sufficient for efficient entry. These findings suggest that cleavage at S2′ is carried out by proteases recognizing a single arginine, most likely TMPRSS2 and cathepsin L. Finally, mutation of the proposed cathepsin L site did not impact viral entry and double mutation of S1/S2 and S2′ site was compatible with cathepsin L- but not TMPRSS2-dependent host cell entry, indicating that cathepsin L can process the S protein at auxiliary sites. Collectively, our results indicate a rigid sequence requirement for S protein activation by TMPRSS2 but not cathepsin L.
Collapse
|
73
|
Al-Omari A, Rabaan AA, Salih S, Al-Tawfiq JA, Memish ZA. MERS coronavirus outbreak: Implications for emerging viral infections. Diagn Microbiol Infect Dis 2018; 93:265-285. [PMID: 30413355 PMCID: PMC7127703 DOI: 10.1016/j.diagmicrobio.2018.10.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/28/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
Abstract
In September 2012, a novel coronavirus was isolated from a patient who died in Saudi Arabia after presenting with acute respiratory distress and acute kidney injury. Analysis revealed the disease to be due to a novel virus which was named Middle East Respiratory Coronavirus (MERS-CoV). There have been several MERS-CoV hospital outbreaks in KSA, continuing to the present day, and the disease has a mortality rate in excess of 35%. Since 2012, the World Health Organization has been informed of 2220 laboratory-confirmed cases resulting in at least 790 deaths. Cases have since arisen in 27 countries, including an outbreak in the Republic of Korea in 2015 in which 36 people died, but more than 80% of cases have occurred in Saudi Arabia.. Human-to-human transmission of MERS-CoV, particularly in healthcare settings, initially caused a ‘media panic’, however human-to-human transmission appears to require close contact and thus far the virus has not achieved epidemic potential. Zoonotic transmission is of significant importance and evidence is growing implicating the dromedary camel as the major animal host in spread of disease to humans. MERS-CoV is now included on the WHO list of priority blueprint diseases for which there which is an urgent need for accelerated research and development as they have the potential to cause a public health emergency while there is an absence of efficacious drugs and/or vaccines. In this review we highlight epidemiological, clinical, and infection control aspects of MERS-CoV as informed by the Saudi experience. Attention is given to recommended treatments and progress towards vaccine development. 2220 laboratory-confirmed cases of MERS-CoV resulting in at least 790 deaths since 2012 MERS-CoV is on the WHO list of priority blueprint diseases Zoonotic and human-to-human transmission modes need further clarification. No specific therapy has yet been approved. There is a need for well-controlled clinical trials on potential direct therapies.
Collapse
Affiliation(s)
- Awad Al-Omari
- Critical Care and Infection Control Department, Dr. Sulaiman Al-Habib Medical Group, and Al-Faisal University, Riyadh, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia.
| | - Samer Salih
- Internal Medicine Department, Dr.Sulaiman Al-Habib Medical Group, Riyadh, Saudi Arabia
| | - Jaffar A Al-Tawfiq
- Medical Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ziad A Memish
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| |
Collapse
|
74
|
Wang Y, Sun J, Zhu A, Zhao J, Zhao J. Current understanding of middle east respiratory syndrome coronavirus infection in human and animal models. J Thorac Dis 2018; 10:S2260-S2271. [PMID: 30116605 DOI: 10.21037/jtd.2018.03.80] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Middle East respiratory syndrome (MERS) is a highly lethal respiratory disease caused by a novel betacoronavirus (MERS coronavirus, MERS-CoV). Since its first emergence in 2012, multiple transmission events of MERS-CoV (dromedary to human and human to human) have been reported, indicating that MERS-CoV has the potential to cause widespread outbreak. However, the epidemiology of MERS as well as immune responses against the virus in animal models and patients are still not well understood, hindering the vaccine and therapeutic developments. In this review, we summarize recent genetic and epidemic findings of MERS-CoV and the progress in animal model development, immune response studies in both animals and humans. At last, we discussed the breakthrough on vaccine and therapeutic development which are important against potential future MERS outbreak.
Collapse
Affiliation(s)
- Yanqun Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou 510120, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou 510120, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou 510120, China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou 510120, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou 510120, China.,Institute of Infectious disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
75
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Priming Time: How Cellular Proteases Arm Coronavirus Spike Proteins. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122371 DOI: 10.1007/978-3-319-75474-1_4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Coronaviruses are enveloped RNA viruses that infect mammals and birds. Infection of humans with globally circulating human coronaviruses is associated with the common cold. In contrast, transmission of animal coronaviruses to humans can result in severe disease: The severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) are responsible for hundreds of deaths in Asia and the Middle East, respectively, and are both caused by members of the genus Betacoronavirus, SARS-CoV, and MERS-CoV that were zoonotically transmitted from an animal host to humans. At present, neither vaccines nor specific treatment is available to combat coronavirus infection in humans, and novel antiviral strategies are urgently sought. The viral spike protein (S) mediates the first essential step in coronavirus infection, viral entry into target cells. For this, the S protein critically depends on priming by host cell proteases, and the responsible enzymes are potential targets for antiviral intervention. Recent studies revealed that the endosomal cysteine protease cathepsin L and the serine proteases furin and TMPRSS2 prime the S proteins of SARS-CoV and MERS-CoV and provided evidence that successive S protein cleavage at two sites is required for S protein priming. Moreover, mechanisms that control protease choice were unraveled, and insights were obtained into which enzyme promotes viral spread in the host. Here, we will provide basic information on S protein function and proteolytic priming, and we will then discuss recent progress in our understanding of the priming of the S proteins of SARS-CoV and MERS-CoV.
Collapse
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
76
|
Glycan Shield and Fusion Activation of a Deltacoronavirus Spike Glycoprotein Fine-Tuned for Enteric Infections. J Virol 2018; 92:JVI.01628-17. [PMID: 29093093 DOI: 10.1128/jvi.01628-17] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/23/2017] [Indexed: 01/10/2023] Open
Abstract
Coronaviruses recently emerged as major human pathogens causing outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome. They utilize the spike (S) glycoprotein anchored in the viral envelope to mediate host attachment and fusion of the viral and cellular membranes to initiate infection. The S protein is a major determinant of the zoonotic potential of coronaviruses and is also the main target of the host humoral immune response. We report here the 3.5-Å-resolution cryo-electron microscopy structure of the S glycoprotein trimer from the pathogenic porcine deltacoronavirus (PDCoV), which belongs to the recently identified Deltacoronavirus genus. Structural and glycoproteomics data indicate that the glycans of PDCoV S are topologically conserved compared with the human respiratory coronavirus NL63 S, resulting in similar surface areas being shielded from neutralizing antibodies and implying that both viruses are under comparable immune pressure in their respective hosts. The structure further reveals a shortened S2' activation loop, containing a reduced number of basic amino acids, which participates in rendering the spike largely protease resistant. This property distinguishes PDCoV S from recently characterized betacoronavirus S proteins and suggests that the S protein of enterotropic PDCoV has evolved to tolerate the protease-rich environment of the small intestine and to fine-tune its fusion activation to avoid premature triggering and reduction of infectivity.IMPORTANCE Coronaviruses use transmembrane S glycoprotein trimers to promote host attachment and fusion of the viral and cellular membranes. We determined a near-atomic-resolution cryo-electron microscopy structure of the S ectodomain trimer from the pathogenic PDCoV, which is responsible for diarrhea in piglets and has had devastating consequences for the swine industry worldwide. Structural and glycoproteomics data reveal that PDCoV S is decorated with 78 N-linked glycans obstructing the protein surface to limit accessibility to neutralizing antibodies in a way reminiscent of what has recently been described for a human respiratory coronavirus. PDCoV S is largely protease resistant, which distinguishes it from most other characterized coronavirus S glycoproteins and suggests that enteric coronaviruses have evolved to fine-tune fusion activation in the protease-rich environment of the small intestine of infected hosts.
Collapse
|
77
|
Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc Natl Acad Sci U S A 2017; 114:11157-11162. [PMID: 29073020 DOI: 10.1073/pnas.1708727114] [Citation(s) in RCA: 419] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The tremendous pandemic potential of coronaviruses was demonstrated twice in the past few decades by two global outbreaks of deadly pneumonia. The coronavirus spike (S) glycoprotein initiates infection by promoting fusion of the viral and cellular membranes through conformational changes that remain largely uncharacterized. Here we report the cryoEM structure of a coronavirus S glycoprotein in the postfusion state, showing large-scale secondary, tertiary, and quaternary rearrangements compared with the prefusion trimer and rationalizing the free-energy landscape of this conformational machine. We also biochemically characterized the molecular events associated with refolding of the metastable prefusion S glycoprotein to the postfusion conformation using limited proteolysis, mass spectrometry, and single-particle EM. The observed similarity between postfusion coronavirus S and paramyxovirus F structures demonstrates that a conserved refolding trajectory mediates entry of these viruses and supports the evolutionary relatedness of their fusion subunits. Finally, our data provide a structural framework for understanding the mode of neutralization of antibodies targeting the fusion machinery and for engineering next-generation subunit vaccines or inhibitors against this medically important virus family.
Collapse
|
78
|
Abstract
INTRODUCTION In the past five years, there have been 1,936 laboratory-confirmed cases of Middle East Respiratory Syndrome coronavirus (MERS-CoV) in 27 countries, with a mortality rate of 35.6%. Most cases have arisen in the Middle East, particularly the Kingdom of Saudi Arabia, however there was a large hospital-associated outbreak in the Republic of Korea in 2015. Exposure to dromedary camels has been recognized by the World Health Organization (WHO) as a risk factor in primary cases, but the exact mechanisms of transmission are not clear. Rigorous application of nationally defined infection prevention and control measures has reduced the levels of healthcare facility-associated outbreaks. There is currently no approved specific therapy or vaccine available. Areas covered: This review presents an overview of MERS-CoV within the last five years, with a particular emphasis on the key areas of transmission, infection control and prevention, and therapies and vaccines. Expert commentary: MERS-CoV remains a significant threat to public health as transmission mechanisms are still not completely understood. There is the potential for mutations that could increase viral transmission and/or virulence, and zoonotic host range. The high mortality rate highlights the need to expedite well-designed randomized clinical trials for direct, effective therapies and vaccines.
Collapse
Affiliation(s)
- Ali A Rabaan
- a Molecular Diagnostic Laboratory , Johns Hopkins Aramco Healthcare , Dhahran , Saudi Arabia
| |
Collapse
|
79
|
Abstract
Since the identification of the first patients with Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, over 1,600 cases have been reported as of February 2016. Most cases have occurred in Saudi Arabia or in other countries on or near the Arabian Peninsula, but travel-associated cases have also been seen in countries outside the Arabian Peninsula. MERS-CoV causes a severe respiratory illness in many patients, with a case fatality rate as high as 40%, although when contacts are investigated, a significant proportion of patients are asymptomatic or only have mild symptoms. At this time, no vaccines or treatments are available. Epidemiological and other data suggest that the source of most primary cases is exposure to camels. Person-to-person transmission occurs in household and health care settings, although sustained and efficient person-to-person transmission has not been observed. Strict adherence to infection control recommendations has been associated with control of previous outbreaks. Vigilance is needed because genomic changes in MERS-CoV could result in increased transmissibility, similar to what was seen in severe acute respiratory syndrome coronavirus (SARS-CoV).
Collapse
|
80
|
Han X, Qi J, Song H, Wang Q, Zhang Y, Wu Y, Lu G, Yuen KY, Shi Y, Gao GF. Structure of the S1 subunit C-terminal domain from bat-derived coronavirus HKU5 spike protein. Virology 2017; 507:101-109. [PMID: 28432925 PMCID: PMC7111649 DOI: 10.1016/j.virol.2017.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/10/2017] [Accepted: 04/15/2017] [Indexed: 02/05/2023]
Abstract
Accumulating evidence indicates that MERS-CoV originated from bat coronaviruses (BatCoVs). Previously, we demonstrated that both MERS-CoV and BatCoV HKU4 use CD26 as a receptor, but how the BatCoVs evolved to bind CD26 is an intriguing question. Here, we solved the crystal structure of the S1 subunit C-terminal domain of HKU5 (HKU5-CTD), another BatCoV that is phylogenetically related to MERS-CoV but cannot bind to CD26. We observed that the conserved core subdomain and those of other betacoronaviruses (betaCoVs) have a similar topology of the external subdomain, indicating the same ancestor of lineage C betaCoVs. However, two deletions in two respective loops located in HKU5-CTD result in conformational variations in CD26-binding interface and are responsible for the non-binding of HKU5-CTD to CD26. Combined with sequence variation in the HKU5-CTD receptor binding interface, we propose the necessity for surveilling the mutation in BatCoV HKU5 spike protein in case of bat-to-human interspecies transmission.
Collapse
Affiliation(s)
- Xue Han
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Song
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Qihui Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Yanfang Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Wu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Guangwen Lu
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administration Region; Department of Microbiology, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administration Region; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China.
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China; Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China.
| |
Collapse
|
81
|
Rabaan AA, Al-Ahmed SH, Bazzi AM, Al-Tawfiq JA. Dynamics of scientific publications on the MERS-CoV outbreaks in Saudi Arabia. J Infect Public Health 2017. [PMID: 28625842 PMCID: PMC7102777 DOI: 10.1016/j.jiph.2017.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an emerging disease with a relatively high case fatality rate. Most cases have been reported from Saudi Arabia, and the disease epidemic potential is considered to be limited. However, human-human transmission has occurred, usually in the context of healthcare facility-associated outbreaks. The scientific and medical community depends on timely publication of epidemiological information on emerging diseases during outbreaks to appropriately target public health responses. In this review, we considered the academic response to four MERS CoV outbreaks that occurred in Al-Hasa in 2013, Jeddah in 2014 and Riyadh in 2014 and 2015. We analysed 68 relevant epidemiology articles. For articles for which submission dates were available, six articles were submitted during the course of an outbreak. One article was published within a month of the Al-Hasa outbreak, and one each was accepted during the Jeddah and Riyadh outbreaks. MERS-CoV epidemiology articles were cited more frequently than articles on other subjects in the same journal issues. Thus, most epidemiology articles on MERS-CoV were published with no preferential advantage over other articles. Collaboration of the research community and the scientific publishing industry is needed to facilitate timely publication of emerging infectious diseases.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Shamsah H Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Ali M Bazzi
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Jaffar A Al-Tawfiq
- Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
82
|
Rabaan AA, Bazzi AM, Al-Ahmed SH, Al-Tawfiq JA. Molecular aspects of MERS-CoV. Front Med 2017; 11:365-377. [PMID: 28500431 PMCID: PMC7089120 DOI: 10.1007/s11684-017-0521-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/23/2017] [Indexed: 01/19/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a betacoronavirus which can cause acute respiratory distress in humans and is associated with a relatively high mortality rate. Since it was first identified in a patient who died in a Jeddah hospital in 2012, the World Health Organization has been notified of 1735 laboratory-confirmed cases from 27 countries, including 628 deaths. Most cases have occurred in Saudi Arabia. MERS-CoVancestors may be found in OldWorld bats of the Vespertilionidae family. After a proposed bat to camel switching event, transmission of MERS-CoV to humans is likely to have been the result of multiple zoonotic transfers from dromedary camels. Human-to-human transmission appears to require close contact with infected persons, with outbreaks mainly occurring in hospital environments. Outbreaks have been associated with inadequate infection prevention and control implementation, resulting in recommendations on basic and more advanced infection prevention and control measures by the World Health Organization, and issuing of government guidelines based on these recommendations in affected countries including Saudi Arabia. Evolutionary changes in the virus, particularly in the viral spike protein which mediates virus-host cell contact may potentially increase transmission of this virus. Efforts are on-going to identify specific evidence-based therapies or vaccines. The broad-spectrum antiviral nitazoxanide has been shown to have in vitro activity against MERS-CoV. Synthetic peptides and candidate vaccines based on regions of the spike protein have shown promise in rodent and non-human primate models. GLS-5300, a prophylactic DNA-plasmid vaccine encoding S protein, is the first MERS-CoV vaccine to be tested in humans, while monoclonal antibody, m336 has given promising results in animal models and has potential for use in outbreak situations.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia.
| | - Ali M Bazzi
- Microbiology Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia
| | - Shamsah H Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif, 32654, Saudi Arabia
| | - Jaffar A Al-Tawfiq
- Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia.,University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
83
|
Menachery VD, Graham RL, Baric RS. Jumping species-a mechanism for coronavirus persistence and survival. Curr Opin Virol 2017; 23:1-7. [PMID: 28214731 PMCID: PMC5474123 DOI: 10.1016/j.coviro.2017.01.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/01/2017] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Abstract
Zoonotic transmission of novel viruses represents a significant threat to global public health and is fueled by globalization, the loss of natural habitats, and exposure to new hosts. For coronaviruses (CoVs), broad diversity exists within bat populations and uniquely positions them to seed future emergence events. In this review, we explore the host and viral dynamics that shape these CoV populations for survival, amplification, and possible emergence in novel hosts.
Collapse
Affiliation(s)
- Vineet D Menachery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rachel L Graham
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
84
|
Abstract
The first major pandemic of the new millennium that arose from southern China in 2002 was of zoonotic origin from wild game animals, called severe acute respiratory syndrome [SARS]. The culprit was determined to be a coronavirus of animal origin [SARS-CoV]. The discovery of the SARS-CoV, which caused an outbreak of >8000 people in >30 countries with fatality of about 10%, resulted in intense search for novel coronaviruses with potentially high pathogenicity. Ten years later after the SARS pandemic, another novel coronavirus crossed the species barrier from bats to humans through an intermediate camel host, to produce a severe lower respiratory infection labeled the Middle East respiratory syndrome [MERS]. A novel coronavirus [MERS-CoV] was first identified in September 2012, from patients who resided or traveled to Saudi Arabia. The MERS-CoV spread through contacts with camel and subsequently from human to human via droplet transmission. MERS cases occurred in several other countries including in Europe and the United States, mainly from residence or travel to the Arabian Peninsula, but was not of pandemic potential. However, in the spring of 2015, a MERS outbreak started in South Korea which was initiated by a returning traveler from Saudi Arabia, and subsequently secondary infection of over 186 local residents occurred. Recent estimate in May 2015 indicates that the MERS-CoV have afflicted 1167 patients with MERS worldwide with 479 deaths [41% fatality]. Thus MERS is more deadly than SARS but appears to be less contagious. However, unlike SARS which has not reappeared since 2002–2003, MERS-CoV have the potential to cause sporadic or local outbreaks for many years as the virus may now be entrenched endemically in dromedary camels of the Middle East.
Collapse
|
85
|
Shi Z, Wang LF. Evolution of SARS Coronavirus and the Relevance of Modern Molecular Epidemiology. GENETICS AND EVOLUTION OF INFECTIOUS DISEASES 2017. [PMCID: PMC7150232 DOI: 10.1016/b978-0-12-799942-5.00026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The severe acute respiratory syndrome (SARS) is the first major zoonotic infectious disease of the 21st Century. The disease, originally termed “atypical pneumonia,” was first recognized in November 2002 in Guangdong Province, China, which spread rapidly to 26 countries within 5 months and eventually led to 8096 human infection cases and 774 deaths. A previously unrecognized coronavirus, named SARS coronavirus (SARS-CoV), was later identified as the causative agent of SARS. Subsequent investigation indicated that the source of the human infections originated most likely from infected wildlife animals traded in the live animal markets, with masked palm civets considered the most prominent and important carrier. Large-scale culling of civets appeared to be effective in preventing further outbreaks in the region. Subsequent epidemiological studies showed that civets are intermediate host of SARS-CoV and bats are the likely natural reservoir of SARS-CoV and a large number of SARS-like coronaviruses (SL-CoVs). Detailed analysis of the massive SARS-CoV genomic sequence data indicated that SARS-CoV experienced a strong selection pressure during different outbreak phases in humans as well as interspecies transmission from animals to humans. The spike glycoprotein (S) of SARS-CoV plays a key role in virus–host interaction and hence is a key determinant of interspecies transmission. It has been shown that minor changes of amino acid (aa) residues in the S protein could lead to dramatic changes in virus susceptibility in animal and human hosts. This chapter focuses on the genetics and evolution of SARS-CoVs and SL-CoVs in humans, civets, and bats. The events of SARS outbreaks and the accompanying response activities highlight the importance of modern molecular epidemiology in disease investigation and the urgent need to broaden the screening and investigation of unknown viruses in wildlife animals.
Collapse
|
86
|
Du L, Yang Y, Zhou Y, Lu L, Li F, Jiang S. MERS-CoV spike protein: a key target for antivirals. Expert Opin Ther Targets 2016; 21:131-143. [PMID: 27936982 DOI: 10.1080/14728222.2017.1271415] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The continual Middle East respiratory syndrome (MERS) threat highlights the importance of developing effective antiviral therapeutics to prevent and treat MERS coronavirus (MERS-CoV) infection. A surface spike (S) protein guides MERS-CoV entry into host cells by binding to cellular receptor dipeptidyl peptidase-4 (DPP4), followed by fusion between virus and host cell membranes. MERS-CoV S protein represents a key target for developing therapeutics to block viral entry and inhibit membrane fusion. Areas covered: This review illustrates MERS-CoV S protein's structure and function, particularly S1 receptor-binding domain (RBD) and S2 heptad repeat 1 (HR1) as therapeutic targets, and summarizes current advancement on developing anti-MERS-CoV therapeutics, focusing on neutralizing monoclonal antibodies (mAbs) and antiviral peptides. Expert opinion: No anti-MERS-CoV therapeutic is approved for human use. Several S-targeting neutralizing mAbs and peptides have demonstrated efficacy against MERS-CoV infection, providing feasibility for development. Generally, human neutralizing mAbs targeting RBD are more potent than those targeting other regions of S protein. However, emergence of escape mutant viruses and mAb's limitations make it necessary for combining neutralizing mAbs recognizing different neutralizing epitopes and engineering them with improved efficacy and reduced cost. Optimization of the peptide sequences is expected to produce next-generation anti-MERS-CoV peptides with improved potency.
Collapse
Affiliation(s)
- Lanying Du
- a Laboratory of Viral Immunology , Lindsley F. Kimball Research Institute, New York Blood Center , New York , NY , USA
| | - Yang Yang
- b Department of Pharmacology , University of Minnesota Medical School , Minneapolis , MN , USA
| | - Yusen Zhou
- c State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Lu Lu
- d Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology , Fudan University , Shanghai , China
| | - Fang Li
- b Department of Pharmacology , University of Minnesota Medical School , Minneapolis , MN , USA
| | - Shibo Jiang
- a Laboratory of Viral Immunology , Lindsley F. Kimball Research Institute, New York Blood Center , New York , NY , USA.,d Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology , Fudan University , Shanghai , China
| |
Collapse
|
87
|
Recombinant Receptor-Binding Domains of Multiple Middle East Respiratory Syndrome Coronaviruses (MERS-CoVs) Induce Cross-Neutralizing Antibodies against Divergent Human and Camel MERS-CoVs and Antibody Escape Mutants. J Virol 2016; 91:JVI.01651-16. [PMID: 27795425 DOI: 10.1128/jvi.01651-16] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/30/2016] [Indexed: 12/20/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) binds to cellular receptor dipeptidyl peptidase 4 (DPP4) via the spike (S) protein receptor-binding domain (RBD). The RBD contains critical neutralizing epitopes and serves as an important vaccine target. Since RBD mutations occur in different MERS-CoV isolates and antibody escape mutants, cross-neutralization of divergent MERS-CoV strains by RBD-induced antibodies remains unknown. Here, we constructed four recombinant RBD (rRBD) proteins with single or multiple mutations detected in representative human MERS-CoV strains from the 2012, 2013, 2014, and 2015 outbreaks, respectively, and one rRBD protein with multiple changes derived from camel MERS-CoV strains. Like the RBD of prototype EMC2012 (EMC-RBD), all five RBDs maintained good antigenicity and functionality, the ability to bind RBD-specific neutralizing monoclonal antibodies (MAbs) and the DPP4 receptor, and high immunogenicity, able to elicit S-specific antibodies. They induced potent neutralizing antibodies cross-neutralizing 17 MERS pseudoviruses expressing S proteins of representative human and camel MERS-CoV strains identified during the 2012-2015 outbreaks, 5 MAb escape MERS-CoV mutants, and 2 live human MERS-CoV strains. We then constructed two RBDs mutated in multiple key residues in the receptor-binding motif (RBM) of RBD and demonstrated their strong cross-reactivity with anti-EMC-RBD antibodies. These RBD mutants with diminished DPP4 binding also led to virus attenuation, suggesting that immunoevasion after RBD immunization is accompanied by loss of viral fitness. Therefore, this study demonstrates that MERS-CoV RBD is an important vaccine target able to induce highly potent and broad-spectrum neutralizing antibodies against infection by divergent circulating human and camel MERS-CoV strains. IMPORTANCE MERS-CoV was first identified in June 2012 and has since spread in humans and camels. Mutations in its spike (S) protein receptor-binding domain (RBD), a key vaccine target, have been identified, raising concerns over the efficacy of RBD-based MERS vaccines against circulating human and camel MERS-CoV strains. Here, we constructed five vaccine candidates, designated 2012-RBD, 2013-RBD, 2014-RBD, 2015-RBD, and Camel-RBD, containing single or multiple mutations in the RBD of representative human and camel MERS-CoV strains during the 2012-2015 outbreaks. These RBD-based vaccine candidates maintained good functionality, antigenicity, and immunogenicity, and they induced strong cross-neutralizing antibodies against infection by divergent pseudotyped and live MERS-CoV strains, as well as antibody escape MERS-CoV mutants. This study provides impetus for further development of a safe, highly effective, and broad-spectrum RBD-based subunit vaccine to prevent MERS-CoV infection.
Collapse
|
88
|
Omrani AS, Al-Tawfiq JA, Memish ZA. Middle East respiratory syndrome coronavirus (MERS-CoV): animal to human interaction. Pathog Glob Health 2016; 109:354-62. [PMID: 26924345 PMCID: PMC4809235 DOI: 10.1080/20477724.2015.1122852] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel enzootic betacoronavirus that was first described in September 2012. The clinical spectrum of MERS-CoV infection in humans ranges from an asymptomatic or mild respiratory illness to severe pneumonia and multi-organ failure; overall mortality is around 35.7%. Bats harbour several betacoronaviruses that are closely related to MERS-CoV but more research is needed to establish the relationship between bats and MERS-CoV. The seroprevalence of MERS-CoV antibodies is very high in dromedary camels in Eastern Africa and the Arabian Peninsula. MERS-CoV RNA and viable virus have been isolated from dromedary camels, including some with respiratory symptoms. Furthermore, near-identical strains of MERS-CoV have been isolated from epidemiologically linked humans and camels, confirming inter-transmission, most probably from camels to humans. Though inter-human spread within health care settings is responsible for the majority of reported MERS-CoV cases, the virus is incapable at present of causing sustained human-to-human transmission. Clusters can be readily controlled with implementation of appropriate infection control procedures. Phylogenetic and sequencing data strongly suggest that MERS-CoV originated from bat ancestors after undergoing a recombination event in the spike protein, possibly in dromedary camels in Africa, before its exportation to the Arabian Peninsula along the camel trading routes. MERS-CoV serosurveys are needed to investigate possible unrecognized human infections in Africa. Amongst the important measures to control MERS-CoV spread are strict regulation of camel movement, regular herd screening and isolation of infected camels, use of personal protective equipment by camel handlers and enforcing rules banning all consumption of unpasteurized camel milk and urine.
Collapse
Affiliation(s)
- Ali S Omrani
- 1 Department of Medicine, Section of Infectious Diseases, King Faisal Specialist Hospital and Research Centre , Riyadh, Saudi Arabia
| | | | | |
Collapse
|
89
|
Liu C, Ma Y, Yang Y, Zheng Y, Shang J, Zhou Y, Jiang S, Du L, Li J, Li F. Cell Entry of Porcine Epidemic Diarrhea Coronavirus Is Activated by Lysosomal Proteases. J Biol Chem 2016; 291:24779-24786. [PMID: 27729455 PMCID: PMC5114425 DOI: 10.1074/jbc.m116.740746] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/03/2016] [Indexed: 02/03/2023] Open
Abstract
Porcine epidemic diarrhea coronavirus (PEDV) is currently devastating the United States pork industry by causing an 80-100% fatality rate in infected piglets. Coronavirus spike proteins mediate virus entry into cells, a process that requires the spike proteins to be proteolytically activated. It has been a conundrum which proteases activate PEDV entry. Here we systematically investigated the roles of different proteases in PEDV entry using pseudovirus entry, biochemical, and live virus infection assays. We found that the PEDV spike is activated by lysosomal cysteine proteases but not proprotein convertases or cell surface serine proteases. Extracellular trypsin activates PEDV entry when lysosomal cysteine proteases are inhibited. We further pinpointed cathepsin L and cathepsin B as the lysosomal cysteine proteases that activate the PEDV spike. These results advance our understanding of the molecular mechanism for PEDV entry and identify potential antiviral targets for curbing the spread of PEDV.
Collapse
Affiliation(s)
- Chang Liu
- From the Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Yuanmei Ma
- the Department of Veterinary Biosciences, College of Veterinary Medicine, Ohio State University, Columbus, Ohio 43210
| | - Yang Yang
- From the Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Yuan Zheng
- From the Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Jian Shang
- From the Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Yusen Zhou
- the State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Shibo Jiang
- the Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York 10065, and; the Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medicine, Fudan University, Shanghai 200032, China
| | - Lanying Du
- the Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York 10065, and
| | - Jianrong Li
- the Department of Veterinary Biosciences, College of Veterinary Medicine, Ohio State University, Columbus, Ohio 43210,.
| | - Fang Li
- From the Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455,.
| |
Collapse
|
90
|
Abstract
The coronavirus spike protein is a multifunctional molecular machine that mediates coronavirus entry into host cells. It first binds to a receptor on the host cell surface through its S1 subunit and then fuses viral and host membranes through its S2 subunit. Two domains in S1 from different coronaviruses recognize a variety of host receptors, leading to viral attachment. The spike protein exists in two structurally distinct conformations, prefusion and postfusion. The transition from prefusion to postfusion conformation of the spike protein must be triggered, leading to membrane fusion. This article reviews current knowledge about the structures and functions of coronavirus spike proteins, illustrating how the two S1 domains recognize different receptors and how the spike proteins are regulated to undergo conformational transitions. I further discuss the evolution of these two critical functions of coronavirus spike proteins, receptor recognition and membrane fusion, in the context of the corresponding functions from other viruses and host cells.
Collapse
Affiliation(s)
- Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455;
| |
Collapse
|
91
|
Abstract
Coronaviruses (CoVs) have a remarkable potential to change tropism. This is particularly illustrated over the last 15 years by the emergence of two zoonotic CoVs, the severe acute respiratory syndrome (SARS)- and Middle East respiratory syndrome (MERS)-CoV. Due to their inherent genetic variability, it is inevitable that new cross-species transmission events of these enveloped, positive-stranded RNA viruses will occur. Research into these medical and veterinary important pathogens—sparked by the SARS and MERS outbreaks—revealed important principles of inter- and intraspecies tropism changes. The primary determinant of CoV tropism is the viral spike (S) entry protein. Trimers of the S glycoproteins on the virion surface accommodate binding to a cell surface receptor and fusion of the viral and cellular membrane. Recently, high-resolution structures of two CoV S proteins have been elucidated by single-particle cryo-electron microscopy. Using this new structural insight, we review the changes in the S protein that relate to changes in virus tropism. Different concepts underlie these tropism changes at the cellular, tissue, and host species level, including the promiscuity or adaptability of S proteins to orthologous receptors, alterations in the proteolytic cleavage activation as well as changes in the S protein metastability. A thorough understanding of the key role of the S protein in CoV entry is critical to further our understanding of virus cross-species transmission and pathogenesis and for development of intervention strategies.
Collapse
|
92
|
Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat Struct Mol Biol 2016; 23:899-905. [PMID: 27617430 PMCID: PMC5515730 DOI: 10.1038/nsmb.3293] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Abstract
Cryo-EM and mass spectrometry analyses of the spike glycoprotein trimer from coronavirus HcoV-NL63 reveal an extensive glycan shield that covers the protein surface, including an epitope targeted by neutralizing antibodies against several coronaviruses. The threat of a major coronavirus pandemic urges the development of strategies to combat these pathogens. Human coronavirus NL63 (HCoV-NL63) is an α-coronavirus that can cause severe lower-respiratory-tract infections requiring hospitalization. We report here the 3.4-Å-resolution cryo-EM reconstruction of the HCoV-NL63 coronavirus spike glycoprotein trimer, which mediates entry into host cells and is the main target of neutralizing antibodies during infection. The map resolves the extensive glycan shield obstructing the protein surface and, in combination with mass spectrometry, provides a structural framework to understand the accessibility to antibodies. The structure reveals the complete architecture of the fusion machinery including the triggering loop and the C-terminal domains, which contribute to anchoring the trimer to the viral membrane. Our data further suggest that HCoV-NL63 and other coronaviruses use molecular trickery, based on epitope masking with glycans and activating conformational changes, to evade the immune system of infected hosts.
Collapse
|
93
|
Wang Q, Wong G, Lu G, Yan J, Gao GF. MERS-CoV spike protein: Targets for vaccines and therapeutics. Antiviral Res 2016; 133:165-77. [PMID: 27468951 PMCID: PMC7113765 DOI: 10.1016/j.antiviral.2016.07.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/07/2016] [Accepted: 07/22/2016] [Indexed: 02/05/2023]
Abstract
The disease outbreak caused by Middle East respiratory syndrome coronavirus (MERS-CoV) is still ongoing in the Middle East. Over 1700 people have been infected since it was first reported in September 2012. Despite great efforts, licensed vaccines or therapeutics against MERS-CoV remain unavailable. The MERS-CoV spike (S) protein is an important viral antigen known to mediate host-receptor binding and virus entry, as well as induce robust humoral and cell-mediated responses in humans during infection. In this review, we highlight the importance of the S protein in the MERS-CoV life cycle, summarize recent advances in the development of vaccines and therapeutics based on the S protein, and discuss strategies that can be explored to develop new medical countermeasures against MERS-CoV. A licensed vaccine or therapeutic against MERS-CoV remains unavailable to date. The S protein plays a pivotal role for virus entry and thus is an ideal target for vaccine and antiviral development. DNA vaccines expressing the S protein merit further development for potential human application. nAbs and peptides targeting the S protein needs to be evaluated in NHPs before clinical trials.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Coronavirus Infections/prevention & control
- Coronavirus Infections/therapy
- Drug Discovery
- Humans
- Middle East Respiratory Syndrome Coronavirus/immunology
- Middle East Respiratory Syndrome Coronavirus/physiology
- Receptors, Virus/chemistry
- Receptors, Virus/metabolism
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Structure-Activity Relationship
- Vaccines, DNA/immunology
- Vaccines, Subunit/immunology
- Vaccines, Virus-Like Particle/immunology
- Viral Vaccines/immunology
- Virus Internalization
Collapse
Affiliation(s)
- Qihui Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China.
| | - Gary Wong
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Guangwen Lu
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Jinghua Yan
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - George F Gao
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
94
|
Evolutionary Dynamics of MERS-CoV: Potential Recombination, Positive Selection and Transmission. Sci Rep 2016; 6:25049. [PMID: 27142087 PMCID: PMC4855236 DOI: 10.1038/srep25049] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/08/2016] [Indexed: 12/21/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) belongs to beta group of coronavirus and was first discovered in 2012. MERS-CoV can infect multiple host species and cause severe diseases in human. We conducted a series of phylogenetic and bioinformatic analyses to study the evolution dynamics of MERS-CoV among different host species with genomic data. Our analyses show: 1) 28 potential recombinant sequences were detected and they can be classified into seven potential recombinant types; 2) The spike (S) protein of MERS-CoV was under strong positive selection when MERS-CoV transmitted from their natural host to human; 3) Six out of nine positive selection sites detected in spike (S) protein are located in its receptor-binding domain which is in direct contact with host cells; 4) MERS-CoV frequently transmitted back and forth between human and camel after it had acquired the human-camel infection capability. Together, these results suggest that potential recombination events might have happened frequently during MERS-CoV's evolutionary history and the positive selection sites in MERS-CoV's S protein might enable it to infect human.
Collapse
|
95
|
Abstract
First identified in 2012, Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is listed as a new Category C Priority Pathogen. While the high mortality of MERS-CoV infection is further intensified by potential human-to-human transmissibility, no MERS vaccines are available for human use. This review explains immune responses resulting from MERS-CoV infection, describes MERS vaccine criteria, and presents available small animal models to evaluate the efficacy of MERS vaccines. Current advances in vaccine development are summarized, focusing on specific applications and limitations of each vaccine category. Taken together, this review provides valuable guidelines toward the development of an effective and safe MERS vaccine. This article is written for a Special Focus Issue of Expert Review of Vaccines on 'Vaccines for Biodefence'.
Collapse
Affiliation(s)
- Lanying Du
- a Lindsley F. Kimball Research Institute , New York Blood Center , New York , NY , USA
| | - Wanbo Tai
- a Lindsley F. Kimball Research Institute , New York Blood Center , New York , NY , USA.,b State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Yusen Zhou
- b State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Shibo Jiang
- a Lindsley F. Kimball Research Institute , New York Blood Center , New York , NY , USA.,c Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences , Fudan University , Shanghai , China
| |
Collapse
|
96
|
Munster VJ, Adney DR, van Doremalen N, Brown VR, Miazgowicz KL, Milne-Price S, Bushmaker T, Rosenke R, Scott D, Hawkinson A, de Wit E, Schountz T, Bowen RA. Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis). Sci Rep 2016; 6:21878. [PMID: 26899616 PMCID: PMC4761889 DOI: 10.1038/srep21878] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 02/03/2016] [Indexed: 11/26/2022] Open
Abstract
The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) highlights the zoonotic potential of Betacoronaviruses. Investigations into the origin of MERS-CoV have focused on two potential reservoirs: bats and camels. Here, we investigated the role of bats as a potential reservoir for MERS-CoV. In vitro, the MERS-CoV spike glycoprotein interacted with Jamaican fruit bat (Artibeus jamaicensis) dipeptidyl peptidase 4 (DPP4) receptor and MERS-CoV replicated efficiently in Jamaican fruit bat cells, suggesting there is no restriction at the receptor or cellular level for MERS-CoV. To shed light on the intrinsic host-virus relationship, we inoculated 10 Jamaican fruit bats with MERS-CoV. Although all bats showed evidence of infection, none of the bats showed clinical signs of disease. Virus shedding was detected in the respiratory and intestinal tract for up to 9 days. MERS-CoV replicated transiently in the respiratory and, to a lesser extent, the intestinal tracts and internal organs; with limited histopathological changes observed only in the lungs. Analysis of the innate gene expression in the lungs showed a moderate, transient induction of expression. Our results indicate that MERS-CoV maintains the ability to replicate in bats without clinical signs of disease, supporting the general hypothesis of bats as ancestral reservoirs for MERS-CoV.
Collapse
Affiliation(s)
- Vincent J. Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Danielle R. Adney
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Vienna R. Brown
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Kerri L. Miazgowicz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Shauna Milne-Price
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Trenton Bushmaker
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Dana Scott
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Ann Hawkinson
- Department of Biology, University of Northern Colorado, Greeley, Colorado, USA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Tony Schountz
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
97
|
Affiliation(s)
- Lanlan Liu
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China
- Research Center for Prevention and Control of Infectious Diseases of Guangdong Province, Guangzhou, 510080, China
- One Health Center, Guangzhou, 510080, China
| | - Tao Wang
- Zhongshan Centers for Disease Control and Prevention, Zhongshan, 528400, China
- Zhongshan Research Institute, Zhongshan, 528400, China
| | - Jiahai Lu
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
- Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China.
- Research Center for Prevention and Control of Infectious Diseases of Guangdong Province, Guangzhou, 510080, China.
- One Health Center, Guangzhou, 510080, China.
- Zhongshan Research Institute, Zhongshan, 528400, China.
| |
Collapse
|
98
|
Cross host transmission in the emergence of MERS coronavirus. Curr Opin Virol 2016; 16:55-62. [PMID: 26826951 PMCID: PMC7102731 DOI: 10.1016/j.coviro.2016.01.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/08/2016] [Indexed: 11/24/2022]
Abstract
MERS-CoV genomes have been detected in nasal swabs of dromedaries. Bat CoVs characterized thus far are relatively distantly related to MERS-CoV. Routes of MERS-CoV zoonotic transmission are not well established. Preventive measures should be taken to reduce zoonotic transmission of MERS-CoV.
Coronaviruses (CoVs) able to infect humans emerge through cross-host transmission from animals. There is substantial evidence that the recent Middle East respiratory syndrome (MERS)-CoV outbreak is fueled by zoonotic transmission from dromedary camels. This is largely based on the fact that closely related viruses have been isolated from this but not any other animal species. Given the widespread geographical distribution of dromedaries found seropositive for MERS-CoV, continued transmission may likely occur in the future. Therefore, a further understanding of the cross host transmission of MERS-CoV is needed to limit the risks this virus poses to man.
Collapse
|
99
|
[MERS-CoV, transmission and the role of new host species]. Rev Argent Microbiol 2015; 47:279-81. [PMID: 26652263 PMCID: PMC7131378 DOI: 10.1016/j.ram.2015.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/09/2015] [Indexed: 01/10/2023] Open
|