51
|
Bosch BJ, de Haan CA, Smits SL, Rottier PJ. Spike protein assembly into the coronavirion: exploring the limits of its sequence requirements. Virology 2005; 334:306-18. [PMID: 15780881 PMCID: PMC7111810 DOI: 10.1016/j.virol.2005.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 10/17/2004] [Accepted: 02/01/2005] [Indexed: 02/04/2023]
Abstract
The coronavirus spike (S) protein, required for receptor binding and membrane fusion, is incorporated into the assembling virion by interactions with the viral membrane (M) protein. Earlier we showed that the ectodomain of the S protein is not involved in this process. Here we further defined the requirements of the S protein for virion incorporation. We show that the cytoplasmic domain, not the transmembrane domain, determines the association with the M protein and suffices to effect the incorporation into viral particles of chimeric spikes as well as of foreign viral glycoproteins. The essential sequence was mapped to the membrane-proximal region of the cytoplasmic domain, which is also known to be of critical importance for the fusion function of the S protein. Consistently, only short C-terminal truncations of the S protein were tolerated when introduced into the virus by targeted recombination. The important role of the about 38-residues cytoplasmic domain in the assembly of and membrane fusion by this approximately 1300 amino acids long protein is discussed.
Collapse
|
52
|
Guillén J, Pérez-Berná AJ, Moreno MR, Villalaín J. Identification of the membrane-active regions of the severe acute respiratory syndrome coronavirus spike membrane glycoprotein using a 16/18-mer peptide scan: implications for the viral fusion mechanism. J Virol 2005; 79:1743-52. [PMID: 15650199 PMCID: PMC544113 DOI: 10.1128/jvi.79.3.1743-1752.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Accepted: 09/16/2004] [Indexed: 02/07/2023] Open
Abstract
We have identified the membrane-active regions of the severe acute respiratory syndrome coronavirus (SARS CoV) spike glycoprotein by determining the effect on model membrane integrity of a 16/18-mer SARS CoV spike glycoprotein peptide library. By monitoring the effect of this peptide library on membrane leakage in model membranes, we have identified three regions on the SARS CoV spike glycoprotein with membrane-interacting capabilities: region 1, located immediately upstream of heptad repeat 1 (HR1) and suggested to be the fusion peptide; region 2, located between HR1 and HR2, which would be analogous to the loop domain of human immunodeficiency virus type 1; and region 3, which would correspond to the pretransmembrane region. The identification of these membrane-active regions, which are capable of modifying the biophysical properties of phospholipid membranes, supports their direct role in SARS CoV-mediated membrane fusion, as well as facilitating the future development of SARS CoV entry inhibitors.
Collapse
Affiliation(s)
- Jaime Guillén
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, E-03202 Elche-Alicante, Spain
| | | | | | | |
Collapse
|
53
|
Coronavirus Receptors. EXPERIMENTAL MODELS OF MULTIPLE SCLEROSIS 2005. [PMCID: PMC7122215 DOI: 10.1007/0-387-25518-4_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The major receptor for murine coronavirus, mouse hepatitis virus (MHV), is identified as a protein, cell-adhesion molecule 1 in the carcinoembryonic antigen family (CEACAM1), which is classified in the immunoglobulin superfamily. There are four CEACAM1 isoforms, with either four or two ectodomains, resulting from an alternative splicing mechanism. CEACAM1 is expressed on the epithelium and in endothelial cells of a variety of tissues and hemopoietic cells, and functions as a homophilic and heterophilic adhesion molecule. It is used as a receptor for some bacteria as well. The N terminal domain participates in mediating homophilic adhesion. This domain is also responsible for binding to the MHV spike (S) protein; the CC’ face protruding in this domain interacts with an N terminal region of the S protein composed of 330 amino acids (called S1N330). The binding of CEACAM1 with MHV S protein induces S protein conformational changes and converts fusion-negative S protein to a fusion-positive form. The allelic forms of CEACAM1 found among mouse strains are thought to be an important determinant for mouse susceptibility to MHV.
Collapse
|
54
|
Shen S, Law Y, Liu D. A single amino acid mutation in the spike protein of coronavirus infectious bronchitis virus hampers its maturation and incorporation into virions at the nonpermissive temperature. Virology 2004; 326:288-98. [PMID: 15302214 PMCID: PMC7126609 DOI: 10.1016/j.virol.2004.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 05/25/2004] [Accepted: 06/03/2004] [Indexed: 11/22/2022]
Abstract
The spike (S) glycoprotein of coronavirus is responsible for receptor binding and membrane fusion. A number of variants with deletions and mutations in the S protein have been isolated from naturally and persistently infected animals and tissue cultures. Here, we report the emergence and isolation of two temperature sensitive (ts) mutants and a revertant in the process of cold-adaptation of coronavirus infectious bronchitis virus (IBV) to a monkey kidney cell line. The complete sequences of wild type (wt) virus, two ts mutants, and the revertant were compared and variations linked to phenotypes were mapped. A single amino acid reversion (L294-to-Q) in the S protein is sufficient to abrogate the ts phenotype. Interestingly, unlike wt virus, the revertant grows well at and below 32 degrees C, the permissive temperature, as it carries other mutations in multiple genes that might be associated with the cold-adaptation phenotype. If the two ts mutants were allowed to enter cells at 32 degrees C, the S protein was synthesized, core-glycosylated and at least partially modified at 40 degrees C. However, compared with wt virus and the revertant, no infectious particles of these ts mutants were assembled and released from the ts mutant-infected cells at 40 degrees C. Evidence presented demonstrated that the Q294-to-L294 mutation, located at a highly conserved domain of the S1 subunit, might hamper processing of the S protein to a matured 180-kDa, endo-glycosidase H-resistant glycoprotein and the translocation of the protein to the cell surface. Consequently, some essential functions of the S protein, including mediation of cell-to-cell fusion and its incorporation into virions, were completely abolished.
Collapse
Affiliation(s)
| | | | - D.X Liu
- Corresponding author. Institute of Molecular and Cell Biology, 30 Medical Drive, 117609, Singapore. Fax: +65-67791117.
| |
Collapse
|
55
|
Ye R, Montalto-Morrison C, Masters PS. Genetic analysis of determinants for spike glycoprotein assembly into murine coronavirus virions: distinct roles for charge-rich and cysteine-rich regions of the endodomain. J Virol 2004; 78:9904-17. [PMID: 15331724 PMCID: PMC514984 DOI: 10.1128/jvi.78.18.9904-9917.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The coronavirus spike protein (S) forms the distinctive virion surface structures that are characteristic of this viral family, appearing in negatively stained electron microscopy as stems capped with spherical bulbs. These structures are essential for the initiation of infection through attachment of the virus to cellular receptors followed by fusion to host cell membranes. The S protein can also mediate the formation of syncytia in infected cells. The S protein is a type I transmembrane protein that is very large compared to other viral fusion proteins, and all except a short carboxy-terminal segment of the S molecule constitutes the ectodomain. For the prototype coronavirus mouse hepatitis virus (MHV), it has previously been established that S protein assembly into virions is specified by the carboxy-terminal segment, which comprises the transmembrane domain and the endodomain. We have genetically dissected these domains in the MHV S protein to localize the determinants of S incorporation into virions. Our results establish that assembly competence maps to the endodomain of S, which was shown to be sufficient to target a heterologous integral membrane protein for incorporation into MHV virions. In particular, mutational analysis indicated a major role for the charge-rich carboxy-terminal region of the endodomain. Additionally, we found that the adjacent cysteine-rich region of the endodomain is critical for fusion of infected cells, confirming results previously obtained with S protein expression systems.
Collapse
Affiliation(s)
- Rong Ye
- Wadsworth Center, New York State Department of Health, New Scotland Ave., P.O. Box 22002, Albany, NY 12201-2002, USA
| | | | | |
Collapse
|
56
|
Giroglou T, Cinatl J, Rabenau H, Drosten C, Schwalbe H, Doerr HW, von Laer D. Retroviral vectors pseudotyped with severe acute respiratory syndrome coronavirus S protein. J Virol 2004; 78:9007-15. [PMID: 15308697 PMCID: PMC506966 DOI: 10.1128/jvi.78.17.9007-9015.2004] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The worldwide outbreak of severe acute respiratory syndrome (SARS) was shown to be associated with a novel coronavirus (CoV) now called SARS CoV. We report here the generation of SARS CoV S protein-pseudotyped murine leukemia virus (MLV) vector particles. The wild-type S protein pseudotyped MLV vectors, although at a low efficiency. Partial deletion of the cytoplasmic tail of S dramatically increased infectivity of pseudotypes, with titers only two- to threefold lower than those of pseudotypes generated in parallel with the vesicular stomatitis virus G protein. S-pseudotyped MLV particles were used to analyze viral tropism. MLV(SARS) pseudotypes and wild-type SARS CoV displayed similar cell types and tissue and host restrictions, indicating that the expression of a functional receptor is the major restraint in permissiveness to SARS CoV infection. Efficient gene transfer could be detected in Vero and CaCo2 cells, whereas the level of gene marking of 293T, HeLa, and HepG2 cells was only slightly above background levels. A cat cell line and a dog cell line were not susceptible. Interestingly, PK-15, a porcine kidney cell line, and primary porcine kidney cells were also highly permissive for SARS S pseudotypes and wild-type SARS CoV. This finding suggests that swine may be susceptible to SARS infection and may be a source for infection of humans. Taken together, these results indicate that MLV(SARS) pseudotypes are highly valuable for functional studies of viral tropism and entry and, in addition, can be a powerful tool for the development of therapeutic entry inhibitors without posing a biohazard to human beings.
Collapse
Affiliation(s)
- Tsanan Giroglou
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt University Medical School, Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
57
|
Zhang H, Wang G, Li J, Nie Y, Shi X, Lian G, Wang W, Yin X, Zhao Y, Qu X, Ding M, Deng H. Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies. J Virol 2004; 78:6938-45. [PMID: 15194770 PMCID: PMC421668 DOI: 10.1128/jvi.78.13.6938-6945.2004] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) is a life-threatening disease caused by a newly identified coronavirus (CoV), SARS-CoV. The spike (S) glycoprotein of CoV is the major structural protein responsible for induction of host immune response and virus neutralization by antibodies. Hence, knowledge of neutralization determinants on the S protein is helpful for designing protective vaccines. To analyze the antigenic structure of the SARS-CoV S2 domain, the carboxyl-terminal half of the S protein, we first used sera from convalescent SARS patients to test the antigenicity of 12 overlapping fragments spanning the entire S2 and identified two antigenic determinants (Leu 803 to Ala 828 and Pro 1061 to Ser 1093). To determine whether neutralizing antibodies can be elicited by these two determinants, we immunized animals and found that both of them could induce the S2-specific antisera. In some animals, however, only one determinant (Leu 803 to Ala 828) was able to induce the antisera with the binding ability to the native S protein and the neutralizing activity to the SARS-CoV pseudovirus. This determinant is highly conserved across different SARS-CoV isolates. Identification of a conserved antigenic determinant on the S2 domain of the SARS-CoV S protein, which has the potential for inducing neutralizing antibodies, has implications in the development of effective vaccines against SARS-CoV.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
de Haan CAM, Stadler K, Godeke GJ, Bosch BJ, Rottier PJM. Cleavage inhibition of the murine coronavirus spike protein by a furin-like enzyme affects cell-cell but not virus-cell fusion. J Virol 2004; 78:6048-54. [PMID: 15141003 PMCID: PMC415802 DOI: 10.1128/jvi.78.11.6048-6054.2004] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cleavage of the mouse hepatitis coronavirus strain A59 spike protein was blocked in a concentration-dependent manner by a peptide furin inhibitor, indicating that furin or a furin-like enzyme is responsible for this process. While cell-cell fusion was clearly affected by preventing spike protein cleavage, virus-cell fusion was not, indicating that these events have different requirements.
Collapse
Affiliation(s)
- Cornelis A M de Haan
- Virology Division, Department of Infectious Diseases & Immunology, Yalelaan 1, 3584CL Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
59
|
Fu L, Gonzales DM, Das Sarma J, Lavi E. A combination of mutations in the S1 part of the spike glycoprotein gene of coronavirus MHV-A59 abolishes demyelination. J Neurovirol 2004; 10:41-51. [PMID: 14982727 PMCID: PMC7095319 DOI: 10.1080/13550280490262229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The A59 strain of coronavirus, mouse hepatitis virus (MHV), produces acute hepatitis, meningoencephalitis, and chronic demyelination. The authors have previously shown that the spike (S) glycoprotein gene of MHV contains determinants of virulence, hepatitis, and demyelination. They then identified viruses containing mutations in the S gene that exhibit alterations in viral pathogenesis. In the present study, the authors produced new recombinant viruses with each one of these S gene mutations by site-directed mutagenesis and targeted recombination and studied the effect of each individual mutation on the pathogenesis of the virus. They identified a combination of mutations in the S1 gene (I375M and L652I) that abolishes demyelination. Individual mutation and other combinations of mutations in the S gene only interfere with virulence and hepatitis and only reduce demyelination (I375M), but do not abolish demyelination completely. Thus, demyelination determinants exist within genomic regions on both sides of the hypervariable region, downstream from the receptor-binding domain in the S1 part of the MHV spike glycoprotein gene. The structure and precise function of these regions awaits further investigation.
Collapse
Affiliation(s)
- Li Fu
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, 613 Stellar-Chance Laboratories, University of Pennsylvania, School of Medicine, 422 Curie Boulevard, 19104-6100 Philadelphia, PA USA
| | - Donna M. Gonzales
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, 613 Stellar-Chance Laboratories, University of Pennsylvania, School of Medicine, 422 Curie Boulevard, 19104-6100 Philadelphia, PA USA
| | - Jayasri Das Sarma
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, 613 Stellar-Chance Laboratories, University of Pennsylvania, School of Medicine, 422 Curie Boulevard, 19104-6100 Philadelphia, PA USA
- Present Address: Department of Physiology, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania USA
| | - Ehud Lavi
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, 613 Stellar-Chance Laboratories, University of Pennsylvania, School of Medicine, 422 Curie Boulevard, 19104-6100 Philadelphia, PA USA
| |
Collapse
|
60
|
Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci U S A 2004; 101:4240-5. [PMID: 15010527 PMCID: PMC384725 DOI: 10.1073/pnas.0306446101] [Citation(s) in RCA: 431] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is a rapidly emerging pathogen with potentially serious consequences for public health. Here we describe conditions that result not only in the efficient expression of the SARS-CoV spike (S) protein on the surface of cells, but in its incorporation into lentiviral particles that can be used to transduce cells in an S glycoprotein-dependent manner. We found that although some primate cell lines, including Vero E6, 293T and Huh-7 cells, could be efficiently transduced by SARS-CoV S glycoprotein pseudoviruses, other cells lines were either resistant or very poorly permissive to virus entry. Infection by pseudovirions could be inhibited by several lysosomotropic agents, suggesting a requirement for acidification of endosomes for efficient S-mediated viral entry. In addition, we were able to develop a cell-cell fusion assay that could be used to monitor S glycoprotein-dependent membrane fusion. Although proteolysis did not enhance the infectivity of cell-free pseudovirions, trypsin activation is required for cell-cell fusion. Additionally, there was no apparent pH requirement for S glycoprotein-mediated cell-cell fusion. Together, these studies describe important tools that can be used to study SARS-CoV S glycoprotein structure and function, including approaches that can be used to identify inhibitors of the entry of SARS-CoV into target cells.
Collapse
Affiliation(s)
- Graham Simmons
- Department of Microbiology, University of Pennsylvania School of Medicine, 225 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
61
|
Tripet B, Howard MW, Jobling M, Holmes RK, Holmes KV, Hodges RS. Structural characterization of the SARS-coronavirus spike S fusion protein core. J Biol Chem 2004; 279:20836-49. [PMID: 14996844 PMCID: PMC8060857 DOI: 10.1074/jbc.m400759200] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The spike (S) glycoprotein of coronaviruses mediates viral entry into host cells. It is a type 1 viral fusion protein that characteristically contains two heptad repeat regions, denoted HR-N and HR-C, that form coiled-coil structures within the ectodomain of the protein. Previous studies have shown that the two heptad repeat regions can undergo a conformational change from their native state to a 6-helix bundle (trimer of dimers), which mediates fusion of viral and host cell membranes. Here we describe the biophysical analysis of the two predicted heptad repeat regions within the severe acute respiratory syndrome coronavirus S protein. Our results show that in isolation the HR-N region forms a stable α-helical coiled coil that associates in a tetrameric state. The HR-C region in isolation formed a weakly stable trimeric coiled coil. When mixed together, the two peptide regions (HR-N and HR-C) associated to form a very stable α-helical 6-stranded structure (trimer of heterodimers). Systematic peptide mapping showed that the site of interaction between the HR-N and HR-C regions is between residues 916–950 of HR-N and residues 1151–1185 of HR-C. Additionally, interchain disulfide bridge experiments showed that the relative orientation of the HR-N and HR-C helices in the complex was antiparallel. Overall, the structure of the hetero-stranded complex is consistent with the structures observed for other type 1 viral fusion proteins in their fusion-competent state.
Collapse
Affiliation(s)
- Brian Tripet
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
62
|
Miura HS, Nakagaki K, Taguchi F. N-terminal domain of the murine coronavirus receptor CEACAM1 is responsible for fusogenic activation and conformational changes of the spike protein. J Virol 2004; 78:216-23. [PMID: 14671103 PMCID: PMC303413 DOI: 10.1128/jvi.78.1.216-223.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mouse hepatitis virus (MHV) receptor (MHVR), CEACAM1, has two different functions for MHV entry into cells: binding to MHV spike protein (S protein) and activation of the S protein to execute virus-cell membrane fusion, the latter of which is accompanied by conformational changes of the S protein. The MHVR comprising the N-terminal and fourth domains [R1(1,4)] displays these two activities, and the N domain is thought to be critical for binding to MHV. In this study, we have addressed whether or not the N domain alone is sufficient for these activities. We examined three types of soluble form MHVR (soMHVR), one consisting of the N domain alone [soR1(1)], one with the N and second domains [soR1(1,2)], and one [soR1(1,4)] expressed by recombinant baculoviruses. We assessed the abilities of these three types of soMHVR to bind to MHV, activate fusogenicity, and induce conformational changes of the S protein. All three types of soMHVR similarly bound to MHV, as examined by a solid-phase binding assay and neutralized MHV infectivity. They also activated S protein fusogenicity and induced its conformational changes with similar levels of efficiency. However, R1(1) expressed on the BHK cell surface failed to serve as a receptor in spite of a sufficient level of expression. The inability of expressed R1(1) to work as a receptor was due to the inaccessibility of virions to R1(1); however, these were accessible using the MHVR-specific monoclonal antibody CC1. These results collectively indicated that the N domain retains all biological activities necessary for receptor function.
Collapse
Affiliation(s)
- Hideka S Miura
- National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan
| | | | | |
Collapse
|
63
|
Ren Y, Zhou Z, Liu J, Lin L, Li S, Wang H, Xia J, Zhao Z, Wen J, Zhou C, Wang J, Yin J, Xu N, Liu S. A strategy for searching antigenic regions in the SARS-CoV spike protein. GENOMICS, PROTEOMICS & BIOINFORMATICS 2003; 1:207-15. [PMID: 15629033 PMCID: PMC5172407 DOI: 10.1016/s1672-0229(03)01026-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the face of the worldwide threat of severe acute respiratory syndrome (SARS) to human life, some of the most urgent challenges are to develop fast and accurate analytical methods for early diagnosis of this disease as well as to create a safe anti-viral vaccine for prevention. To these ends, we investigated the antigenicity of the spike protein (S protein), a major structural protein in the SARS-coronavirus (SARS-CoV). Based upon the theoretical analysis for hydrophobicity of the S protein, 18 peptides were synthesized. Using Enzyme-Linked Immunosorbent Assay (ELISA), these peptides were screened in the sera from SARS patients. According to these results, two fragments of the S gene were amplified by PCR and cloned into pET-32a. Both S fragments were expressed in the BL-21 strain and further purified with an affinity chromatography. These recombinant S fragments were confirmed to have positive cross-reactions with SARS sera, either by Western blot or by ELISA. Our results demonstrated that the potential epitope regions were located at Codons 469-882 in the S protein, and one epitope site was located at Codons 599-620. Identification of antigenic regions in the SARS-CoV S protein may be important for the functional studies of this virus or the development of clinical diagnosis.
Collapse
|
64
|
Jitrapakdee S, Unajak S, Sittidilokratna N, Hodgson RAJ, Cowley JA, Walker PJ, Panyim S, Boonsaeng V. Identification and analysis of gp116 and gp64 structural glycoproteins of yellow head nidovirus of Penaeus monodon shrimp. J Gen Virol 2003; 84:863-873. [PMID: 12655087 DOI: 10.1099/vir.0.18811-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Yellow head virus (YHV) is a major agent of disease in farmed penaeid shrimp. YHV virions purified from infected shrimp contain three major structural proteins of molecular mass 116 kDa (gp116), 64 kDa (gp64) and 20 kDa (p20). Two different staining methods indicated that the gp116 and gp64 proteins are glycosylated. Here we report the complete nucleotide sequence of ORF3, which encodes a polypeptide of 1666 amino acids with a calculated molecular mass of 185 713 Da (pI=6.68). Hydropathy analysis of the deduced ORF3 protein sequence identified six potential transmembrane helices and three ectodomains containing multiple sites for potential N-linked and O-linked glycosylation. N-terminal sequence analysis of mature gp116 and gp64 proteins indicated that each was derived from ORF3 by proteolytic cleavage of the polyprotein between residues Ala(228) and Thr(229), and Ala(1127) and Leu(1128), located at the C-terminal side of transmembrane helices 3 and 5, respectively. Comparison with the deduced ORF3 protein sequence of Australian gill-associated virus (GAV) indicated 83 % amino acid identity in gp64 and 71 % identity in gp116, which featured two significant sequence deletions near the N terminus. Database searches revealed no significant homology with other proteins. Recombinant gp64 expressed in E. coli with and without the C-terminal transmembrane region was shown to react with antibody raised against native gp64 purified from virions.
Collapse
Affiliation(s)
- Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- CENTEX Shrimp, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- CENTEX Shrimp, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Nusra Sittidilokratna
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- CENTEX Shrimp, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Richard A J Hodgson
- CSIRO Livestock Industries, Long Pocket Laboratories, Indooroopilly, Queensland, Australia
| | - Jeff A Cowley
- CSIRO Livestock Industries, Long Pocket Laboratories, Indooroopilly, Queensland, Australia
| | - Peter J Walker
- CSIRO Livestock Industries, Long Pocket Laboratories, Indooroopilly, Queensland, Australia
| | - Sakol Panyim
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Vichai Boonsaeng
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- CENTEX Shrimp, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
65
|
Abstract
Although murine coronavirus mouse hepatitis virus (MHV) enters cells by virus-cell membrane fusion triggered by its spike (S) protein, it is not well known how the S protein participates in fusion events. We reported that the soluble form of MHV receptor (soMHVR) transformed a nonfusogenic S protein into a fusogenic one (F. Taguchi and S. Matsuyama, J. Virol. 76:950-958, 2002). In the present study, we demonstrate that soMHVR induces the conformational changes of the S protein, as shown by the proteinase digestion test. A cl-2 mutant, srr7, of the MHV JHM virus (JHMV) was digested with proteinase K after treatment with soMHVR, and the resultant S protein was analyzed by Western blotting using monoclonal antibody (MAb) 10G, specific for the membrane-anchored S2 subunit. A 58-kDa fragment, encompassing the two heptad repeats in S2, was detected when srr7 was digested after soMHVR treatment, while no band was seen when the virus was untreated. The appearance of the proteinase-resistant fragment was dependent on the temperature and time of srr7 incubation with soMHVR and also on the concentration of soMHVR. Coimmunoprecipitation indicated that the direct binding of soMHVR to srr7 S protein induced these conformational changes; this was also suggested by the inhibition of the changes following pretreatment of soMHVR with anti-MHVR MAb CC1. soMHVR induced conformational changes of the S proteins of wild-type (wt) JHMV cl-2, as well as revertants from srr7, srr7A and srr7B; however, a major proportion of these S proteins were resistant to proteinase K even without soMHVR treatment. The implications of this proteinase-resistant fraction are discussed. This is the first report on receptor-induced conformational changes of the membrane-anchored fragment of the coronavirus S protein.
Collapse
Affiliation(s)
- Shutoku Matsuyama
- National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan
| | | |
Collapse
|
66
|
Lewicki DN, Gallagher TM. Quaternary structure of coronavirus spikes in complex with carcinoembryonic antigen-related cell adhesion molecule cellular receptors. J Biol Chem 2002; 277:19727-34. [PMID: 11912215 PMCID: PMC8060896 DOI: 10.1074/jbc.m201837200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oligomeric spike (S) glycoproteins extend from coronavirus membranes. These integral membrane proteins assemble within the endoplasmic reticulum of infected cells and are subsequently endoproteolyzed in the Golgi, generating noncovalently associated S1 and S2 fragments. Once on the surface of infected cells and virions, peripheral S1 fragments bind carcinoembryonic antigen-related cell adhesion molecule (CEACAM) receptors, and this triggers membrane fusion reactions mediated by integral membrane S2 fragments. We focused on the quaternary structure of S and its interaction with CEACAMs. We discovered that soluble S1 fragments were dimers and that CEACAM binding was entirely dependent on this quaternary structure. However, two differentially tagged CEACAMs could not co-precipitate with the S dimers, suggesting that binding sites were closely juxtaposed in the dimer (steric hindrance) or that a single CEACAM generated global conformational changes that precluded additional interactions (negative cooperativity). CEACAM binding did indeed alter S1 conformations, generating alternative disulfide linkages that were revealed on SDS gels. CEACAM binding also induced separation of S1 and S2. Differentially tagged S2 fragments that were free of S1 dimers were not co-precipitated, suggesting that S1 harbored the primary oligomerization determinants. We discuss the distinctions between the S.CEACAM interaction and other virus-receptor complexes involved in receptor-triggered entry.
Collapse
Affiliation(s)
- Daniel N Lewicki
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | |
Collapse
|
67
|
Matsuyama S, Taguchi F. Communication between S1N330 and a region in S2 of murine coronavirus spike protein is important for virus entry into cells expressing CEACAM1b receptor. Virology 2002; 295:160-71. [PMID: 12033774 PMCID: PMC7133742 DOI: 10.1006/viro.2002.1391] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The soluble receptor-resistant (srr) mutants, srr7 and srr11, isolated from a murine coronavirus, mouse hepatitis virus (MHV) JHMV, have an amino acid mutation at positions 1114 (Leu to Phe) and 65 (Leu to His), respectively, in the spike (S) protein. These mutants failed to efficiently infect BHK cells expressing CEACAM1b (BHK-R2), due to their low entry into this cell line, although they infected cells expressing CEACAM1a (BHK-R1) in a manner similar to that of wild-type (wt) JHMV cl-2 (Matsuyama and Taguchi, Virology 273, 80-89, 2000). Following the repeated passage of these mutants through BHK-R2 cells, viruses were no longer isolated from srr11-infected cells, while two distinct mutants, srr7A and srr7B, were obtained from srr7-infected cells. Srr7A and srr7B grew 2 log10 higher than srr7 and induced fusion in BHK-R2 cells, being similar to wt virus. In addition to the amino acid change at position 1114 that stemmed from parental srr7, srr7A and srr7B had mutations around position 280, corresponding to the third region of the S1N330 receptor-binding site (S1N330-III) common to all MHV strains examined thus far. Srr7A and srr7B S proteins showed high fusogenicity in both BHK-R1 and BHK-R2 cells, like the wt virus, while srr7Aa and srr7Ba S proteins, which had mutations in S1N330-III but not at amino acid 1114, exhibited profoundly reduced fusion activity in these cell lines. These findings suggest that communication between S1N330-III and the amino acid at position 1114 is important for efficient fusion activity in BHK-R2 cells. S1N330-III is a possible region in the S1 involved in viral entry into cells.
Collapse
Affiliation(s)
- Shutoku Matsuyama
- National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
| | | |
Collapse
|
68
|
Abstract
Feline infectious peritonitis (FIP) is a common cause of death in cats. Management of this disease has been hampered by difficulties identifying the infection and determining the immunological status of affected cats and by high variability in the clinical, pathological, and immunological characteristics of affected cats. Neurological FIP, which is much more homogeneous than systemic effusive or noneffusive FIP, appears to be a good model for establishing the basic features of FIP immunopathogenesis. Very little information is available about the immunopathogenesis of neurologic FIP, and it is reasonable to use research from the well-characterized mouse hepatitis virus (MHV) immune-mediated encephalitis system, as a template for FIP investigation, and to contrast findings from the MHV model with those of FIP. It is expected that the immunopathogenic mechanisms will have important similarities. Such comparative research may lead to better understanding of FIP immunopathogenesis and rational prospects for management of this frustrating disease.
Collapse
Affiliation(s)
- J E Foley
- School of Veterinary Medicine, Department of Medicine and Epidemiology, University of California, Davis 95616, USA.
| | | |
Collapse
|
69
|
Taguchi F, Matsuyama S. Soluble receptor potentiates receptor-independent infection by murine coronavirus. J Virol 2002; 76:950-8. [PMID: 11773370 PMCID: PMC135807 DOI: 10.1128/jvi.76.3.950-958.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse hepatitis virus (MHV) infection spreads from MHV-infected DBT cells, which express the MHV receptor CEACAM1 (MHVR), to BHK cells, which are devoid of the receptor, by intercellular membrane fusion (MHVR-independent fusion). This mode of infection is a property of wild-type (wt) JHMV cl-2 virus but is not seen in cultures infected with the mutant virus JHMV srr7. In this study, we show that soluble MHVR (soMHVR) potentiates MHVR-independent fusion in JHMV srr7-infected cultures. Thus, in the presence of soMHVR, JHMV srr7-infected DBT cells overlaid onto BHK cells induce BHK cell syncytia and the spread of JHMV srr7 infection. This does not occur in the absence of soMHVR. soMHVR also enhanced wt virus MHVR-independent fusion. These effects were dependent on the concentration of soMHVR in the culture and were specifically blocked by the anti-MHVR monoclonal antibody CC1. Together with these observations, direct binding of soMHVR to the virus spike (S) glycoprotein as revealed by coimmunoprecipitation demonstrated that the effect is mediated by the binding of soMHVR to the S protein. Furthermore, fusion of BHK cells expressing the JHMV srr7 S protein was also induced by soMHVR. These results indicated that the binding of soMHVR to the S protein expressed on the DBT cell surface potentiates the fusion of MHV-infected DBT cells with nonpermissive BHK cells. We conclude that the binding of soMHVR to the S protein converts the S protein to a fusion-active form competent to mediate cell-cell fusion, in a fashion similar to the fusion of virus and cell membranes.
Collapse
Affiliation(s)
- Fumihiro Taguchi
- National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.
| | | |
Collapse
|
70
|
Foley JE, Leutenegger C. A review of coronavirus infection in the central nervous system of cats and mice. J Vet Intern Med 2001; 15:438-44. [PMID: 11596730 PMCID: PMC7166525 DOI: 10.1892/0891-6640(2001)015<0438:arocii>2.3.co;2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/15/2000] [Accepted: 02/28/2001] [Indexed: 12/25/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a common cause of death in cats. Management of this disease has been hampered by difficulties identifying the infection and determining the immunological status of affected cats and by high variability in the clinical, pathological, and immunological characteristics of affected cats. Neurological FIP, which is much more homogeneous than systemic effusive or noneffusive FIP, appears to be a good model for establishing the basic features of FIP immunopathogenesis. Very little information is available about the immunopathogenesis of neurologic FIP, and it is reasonable to use research from the well-characterized mouse hepatitis virus (MHV) immune-mediated encephalitis system, as a template for FIP investigation, and to contrast findings from the MHV model with those of FIP. It is expected that the immunopathogenic mechanisms will have important similarities. Such comparative research may lead to better understanding of FIP immunopathogenesis and rational prospects for management of this frustrating disease.
Collapse
Affiliation(s)
- J E Foley
- School of Veterinary Medicine, Department of Medicine and Epidemiology, University of California, Davis 95616, USA.
| | | |
Collapse
|
71
|
Yoo D, Deregt D. A single amino acid change within antigenic domain II of the spike protein of bovine coronavirus confers resistance to virus neutralization. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2001; 8:297-302. [PMID: 11238212 PMCID: PMC96053 DOI: 10.1128/cdli.8.2.297-302.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The spike glycoprotein is a major neutralizing antigen of bovine coronavirus (BCV). Conformational neutralizing epitopes of group A and group B monoclonal antibodies (MAbs) have previously been mapped to two domains at amino acids 351 to 403 (domain I) and amino acids 517 to 621 (domain II). To further map antigenic sites, neutralization escape mutants of BCV were selected with a group A MAb which has both in vitro and in vivo virus-neutralizing ability. The escape mutants were demonstrated to be neutralization resistant to the selecting group A MAb and remained sensitive to neutralization by a group B MAb. In radioimmunoprecipitation assays, the spike proteins of neutralization escape mutants were shown to have lost their reactivities with the selecting group A MAb. Sequence analysis of the spike protein genes of the escape mutants identified a single nucleotide substitution of C to T at position 1583, resulting in the change of alanine to valine at amino acid position 528 (A528V). The mutation occurs in domain II and in a location which corresponds to the hypervariable region of the spike protein of the coronavirus mouse hepatitis virus. Experimental introduction of the A528V mutation into the wild-type spike protein resulted in the loss of MAb binding of the mutant protein, confirming that the single point mutation was responsible for the escape of BCV from immunological selective pressure.
Collapse
Affiliation(s)
- D Yoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1.
| | | |
Collapse
|
72
|
Taguchi F, Shimazaki YK. Functional analysis of an epitope in the S2 subunit of the murine coronavirus spike protein: involvement in fusion activity. J Gen Virol 2000; 81:2867-2871. [PMID: 11086117 DOI: 10.1099/0022-1317-81-12-2867] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The monoclonal antibody (MAb) 5B19.2, which has virus-neutralizing and fusion inhibition activities, binds to an epitope (S2A) consisting of nine hydrophobic amino acids in the S2 subunit of the mouse hepatitis virus (MHV) spike (S) protein. This suggests that the S2A epitope may be involved in binding the virus to the MHV receptor and/or in virus-cell fusion. Co-immunoprecipitation analyses demonstrated that while the binding of virus to the receptor was blocked by anti-S1 MAbs, it was not blocked by the S2A antiserum, indicating that S2A was not involved in receptor-binding. The S proteins prepared in this study with mutations in the S2A epitope were either fusogenic or non-fusogenic and their fusogenicity did not correlate with the hydrophobic feature of the S2A epitope. All of these wt and mutated S proteins were similarly transported onto the cell membrane independent of their fusogenicity capability. These results suggest that S2A may mediate the fusion activity of the MHV S protein during virus entry into cells.
Collapse
Affiliation(s)
- Fumihiro Taguchi
- National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan1
| | - Yohko K Shimazaki
- National Veterinary Assay Laboratory, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan2
- National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan1
| |
Collapse
|
73
|
Matsuyama S, Taguchi F. Impaired entry of soluble receptor-resistant mutants of mouse hepatitis virus into cells expressing MHVR2 receptor. Virology 2000; 273:80-9. [PMID: 10891410 DOI: 10.1006/viro.2000.0409] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mouse hepatitis virus (MHV) JHMV and its soluble receptor-resistant (srr) mutants, srr7, srr11, and srr18, grew and induced syncytia equally well in BHK-R1 cells expressing the MHVR1 receptor derived from MHV-susceptible BALB/c mice. In contrast, srr growth and syncytia formations were drastically reduced relative to wild-type (wt) virus in BHK-R2 cells expressing the MHVR2 receptor from MHV-resistant SJL mice. Infections by these srr mutants in BHK-R2 cells were 0.7 to 1.5 log10 less efficient than those of wt virus. BHK cells expressing both MHVR1 and MHVR2 supported srr replication to the same extent as did BHK-R1 cells, suggesting that inefficient infection by srr mutants in BHK-R2 cells resulted from the absence of the effective receptor MHVR1. Virus-receptor binding tests failed to demonstrate a difference between the abilities of wt and srr18 to bind MHVR2. The binding of srr7 and srr11 to both MHVR1 and MHVR2 was revealed lower by two- to fourfold relative to the wt binding. The fusion activity of srr S proteins as examined by the expression with recombinant vaccinia virus was apparently lower than that of the wt S protein in BHK-R2 cells, while there was not such a remarkable difference in BHK-R1 cells. This suggests that the most likely reason for inefficient infection by mutants in BHK-R2 is impaired virus entry into cells. These observations suggest that inefficient infections in BHK-R2 cells by srr mutants occur in the absence of a functional receptor MHVR1, which plays an important role in srr entry into cells.
Collapse
Affiliation(s)
- S Matsuyama
- National Institute of Neuroscience, NCNP 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
| | | |
Collapse
|
74
|
Yu MW, Talbot PJ. Characterization of protection against coronavirus infection by noninternal image antiidiotypic antibody. Viral Immunol 2000; 13:93-106. [PMID: 10733172 DOI: 10.1089/vim.2000.13.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previously, we have reported protective vaccination of mice against a coronavirus infection using rabbit polyclonal noninternal image Ab2gamma anti-idiotypic (anti-Id) antibody specific for a virus-neutralizing and protective monoclonal antibody (mAb) 7-10A against the viral surface S glycoprotein. To characterize further the mechanisms involved in the induction of protective immunity by this noninternal image anti-Id, plasma and splenocytes from Ab2gamma-immunized BALB/c mice were passively transferred to naive BALB/c mice, followed by viral challenge. A reproducible significant delay in mortality observed in mice to which plasma was passively transferred, together with the presence of specific in vitro neutralizing antiviral Ab3 identified the humoral immune response as the major element responsible for protection. The activation of specific and cross-reactive T lymphocytes by both virus and anti-Id in immunized mice and the absence of adoptive transfer of protection by splenocytes suggested the participation of T helper activity in the induction of protective virus-neutralizing Ab3. To obtain more defined monoclonal reagents for a better understanding of anti-Id-induced protection, mAb2 were generated against the same mAb1 7-10A and characterized. We report the successful generation of mAb2 of the gamma type. However, unlike the polyclonal Ab2gamma, they were not capable of inducing a protective immune response.
Collapse
Affiliation(s)
- M W Yu
- Laboratory of Neuroimmunovirology, Human Health Research Center, INRS-Institut Armand-Frappier, Université du Québec, Laval, Canada
| | | |
Collapse
|
75
|
Yu MW, Scott JK, Fournier A, Talbot PJ. Characterization of murine coronavirus neutralization epitopes with phage-displayed peptides. Virology 2000; 271:182-96. [PMID: 10814583 PMCID: PMC3987775 DOI: 10.1006/viro.2000.0310] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2000] [Revised: 02/07/2000] [Accepted: 03/10/2000] [Indexed: 11/22/2022]
Abstract
Phage-displayed peptide libraries were used to map immunologically relevant epitopes on the surface (S) glycoprotein of a neurotropic murine coronavirus (MHV-A59). Three in vitro virus-neutralizing and in vivo protective mAbs against either continuous or discontinuous epitopes on the S glycoprotein were used to screen 12 different peptide libraries expressed on the pVIII major coat protein of the fd filamentous bacteriophage. Consensus sequences that matched short sequences within the S glycoprotein were identified. The sequence of a tight-binding, mAb-selected peptide suggested the location of a discontinuous epitope within the N-terminal S1 subunit. Several tightly binding phage were amplified and used directly as immunogens in BALB/c and C57BL/6 mice. Partial protection of C57BL/6 mice against a lethal acute virus infection was achieved with a phage preparation that displayed a linear epitope. Protection correlated with the presence of sufficient levels of specific antiviral antibodies recognizing the same immunodominant domain and 13-mer peptide, located within the C-terminal S2 subunit, as the selecting mAb. Thus, the direct use of phage-displayed peptides to evaluate protective antiviral immune responses complements their use to characterize antibody-binding epitopes. This is the first evaluation of protective immunization induced by mAb-selected phage-displayed peptides.
Collapse
Affiliation(s)
- M W Yu
- Human Health Research Center, INRS-Institut Armand-Frappier, Laval, Québec, H7V 1B7, Canada
| | | | | | | |
Collapse
|
76
|
Chang KW, Sheng Y, Gombold JL. Coronavirus-induced membrane fusion requires the cysteine-rich domain in the spike protein. Virology 2000; 269:212-24. [PMID: 10725213 PMCID: PMC7131280 DOI: 10.1006/viro.2000.0219] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spike glycoprotein of mouse hepatitis virus strain A59 mediates the early events leading to infection of cells, including fusion of the viral and cellular membranes. The spike is a type I membrane glycoprotein that possesses a conserved transmembrane anchor and an unusual cysteine-rich (cys) domain that bridges the putative junction of the anchor and the cytoplasmic tail. In this study, we examined the role of these carboxyl-terminal domains in spike-mediated membrane fusion. We show that the cytoplasmic tail is not required for fusion but has the capacity to enhance membrane fusion activity. Chimeric spike protein mutants containing substitutions of the entire transmembrane anchor and cys domain with the herpes simplex virus type 1 glycoprotein D (gD-1) anchor demonstrated that fusion activity requires the presence of the A59 membrane-spanning domain and the portion of the cys domain that lies upstream of the cytoplasmic tail. The cys domain is a required element since its deletion from the wild-type spike protein abrogates fusion activity. However, addition of the cys domain to fusion-defective chimeric proteins was unable to restore fusion activity. Thus, the cys domain is necessary but is not sufficient to complement the gD-1 anchor and allow for membrane fusion. Site-specific mutations of conserved cysteine residues in the cys domain markedly reduce membrane fusion, which further supports the conclusion that this region is crucial for spike function. The results indicate that the carboxyl-terminus of the spike transmembrane anchor contains at least two distinct domains, both of which are necessary for full membrane fusion.
Collapse
Affiliation(s)
- K W Chang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | |
Collapse
|
77
|
Luo Z, Matthews AM, Weiss SR. Amino acid substitutions within the leucine zipper domain of the murine coronavirus spike protein cause defects in oligomerization and the ability to induce cell-to-cell fusion. J Virol 1999; 73:8152-9. [PMID: 10482565 PMCID: PMC112832 DOI: 10.1128/jvi.73.10.8152-8159.1999] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The murine coronavirus spike (S) protein contains a leucine zipper domain which is highly conserved among coronaviruses. To assess the role of this leucine zipper domain in S-induced cell-to-cell fusion, the six heptadic leucine and isoleucine residues were replaced with alanine by site-directed mutagenesis. The mutant S proteins were analyzed for cell-to-cell membrane fusion activity as well as for progress through the glycoprotein maturation process, including intracellular glycosylation, oligomerization, and cell surface expression. Single-alanine-substitution mutations had minimal, if any, effects on S-induced cell-to-cell fusion. Significant reduction in fusion activity was observed, however, when two of the four middle heptadic leucine or isoleucine residues were replaced with alanine. Double alanine substitutions that involved either of the two end heptadic leucine residues did not significantly affect fusion. All double-substitution mutant S proteins displayed levels of endoglycosidase H resistance and cell surface expression similar to those of the wild-type S. However, fusion-defective double-alanine-substitution mutants exhibited defects in S oligomerization. These results indicate that the leucine zipper domain plays a role in S-induced cell-to-cell fusion and that the ability of S to induce fusion may be dependent on the oligomeric structure of S.
Collapse
Affiliation(s)
- Z Luo
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6076, USA
| | | | | |
Collapse
|
78
|
Tsai CW, Chang SC, Chang MF. A 12-amino acid stretch in the hypervariable region of the spike protein S1 subunit is critical for cell fusion activity of mouse hepatitis virus. J Biol Chem 1999; 274:26085-90. [PMID: 10473557 DOI: 10.1074/jbc.274.37.26085] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The spike (S) glycoprotein of mouse hepatitis virus (MHV) plays a major role in the viral pathogenesis. It is often processed into the N-terminal S1 and the C-terminal S2 subunits that were evidently important for binding to cell receptor and inducing cell-cell fusion, respectively. As a consequence of cell-cell fusion, most of the naturally occurring infections of MHV are associated with syncytia formation. So far, only MHV-2 was identified to be fusion-negative. In this study, the S gene of MHV-2 was molecularly cloned, and the nucleotide sequence was determined. The MHV-2 S protein lacks a 12-amino acid stretch in the S1 hypervariable region from amino acid residue 446 to 457 when compared with the fusion-positive strain MHV-JHM. In addition, there are three amino acid substitutions in the S2 subunit, Tyr-1144 to Asp, Glu-1165 to Asp, and Arg-1209 to Lys. The cloned MHV-2 S protein exhibited the fusion-negative property in DBT cells as the intrinsic viral protein. Furthermore, similar to the fusion-positive MHV-JHM strain, proteolytic cleavage activity was detected both in DBT cells infected with the fusion-negative MHV-2 and in the transfected cells that expressed the cloned MHV-2 S protein. Domain swapping experiments demonstrated that the 12-amino acid stretch missing in the MHV-2 S1 subunit, but not the proteolytic cleavage site, was critical for the cell-fusion activity of MHV.
Collapse
Affiliation(s)
- C W Tsai
- Institute of Biochemistry, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | | |
Collapse
|
79
|
Phillips JJ, Chua MM, Lavi E, Weiss SR. Pathogenesis of chimeric MHV4/MHV-A59 recombinant viruses: the murine coronavirus spike protein is a major determinant of neurovirulence. J Virol 1999; 73:7752-60. [PMID: 10438865 PMCID: PMC104302 DOI: 10.1128/jvi.73.9.7752-7760.1999] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mouse hepatitis virus (MHV) spike glycoprotein, S, has been implicated as a major determinant of viral pathogenesis. In the absence of a full-length molecular clone, however, it has been difficult to address the role of individual viral genes in pathogenesis. By using targeted RNA recombination to introduce the S gene of MHV4, a highly neurovirulent strain, into the genome of MHV-A59, a mildly neurovirulent strain, we have been able to directly address the role of the S gene in neurovirulence. In cell culture, the recombinants containing the MHV4 S gene, S4R22 and S4R21, exhibited a small-plaque phenotype and replicated to low levels, similar to wild-type MHV4. Intracranial inoculation of C57BL/6 mice with S4R22 and S4R21 revealed a marked alteration in pathogenesis. Relative to wild-type control recombinant viruses (wtR13 and wtR9), containing the MHV-A59 S gene, the MHV4 S gene recombinants exhibited a dramatic increase in virulence and an increase in both viral antigen staining and inflammation in the central nervous system. There was not, however, an increase in the level of viral replication in the brain. These studies demonstrate that the MHV4 S gene alone is sufficient to confer a highly neurovirulent phenotype to a recombinant virus deriving the remainder of its genome from a mildly neurovirulent virus, MHV-A59. This definitively confirms previous findings, suggesting that the spike is a major determinant of pathogenesis.
Collapse
Affiliation(s)
- J J Phillips
- Departments of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6076, USA
| | | | | | | |
Collapse
|
80
|
Koo M, Bendahmane M, Lettieri GA, Paoletti AD, Lane TE, Fitchen JH, Buchmeier MJ, Beachy RN. Protective immunity against murine hepatitis virus (MHV) induced by intranasal or subcutaneous administration of hybrids of tobacco mosaic virus that carries an MHV epitope. Proc Natl Acad Sci U S A 1999; 96:7774-9. [PMID: 10393897 PMCID: PMC22137 DOI: 10.1073/pnas.96.14.7774] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hybrids of tobacco mosaic virus (TMV) were constructed with the use of fusion to the coat protein peptides of 10 or 15 amino acids, containing the 5B19 epitope from the spike protein of murine hepatitis virus (MHV) and giving rise to TMV-5B19 and TMV-5B19L, respectively. The TMV hybrids were propagated in tobacco plants, and the virus particles were purified. Immunogold labeling, with the use of the monoclonal MAb5B19 antibody, showed specific decoration of hybrid TMV particles, confirming the expression and display of the MHV epitope on the surface of the TMV. Mice were immunized with purified hybrid viruses after several regimens of immunization. Mice that received TMV-5B19L intranasally developed serum IgG and IgA specific for the 5B19 epitope and for the TMV coat protein. Hybrid TMV-5B19, administered by subcutaneous injections, elicited high titers of serum IgG that was specific for the 5B19 epitope and for coat protein, but IgA that was specific against 5B19 was not observed. Mice that were immunized with hybrid virus by subcutaneous or intranasal routes of administration survived challenge with a lethal dose (10 x LD50) of MHV strain JHM, whereas mice administered wild-type TMV died 10 d post challenge. Furthermore, there was a positive correlation between the dose of administered immunogen and protection against MHV infection. These studies show that TMV can be an effective vaccine delivery vehicle for parenteral and mucosal immunization and for protection from challenge with viral infection.
Collapse
MESH Headings
- Administration, Intranasal
- Amino Acid Sequence
- Animals
- Epitopes/administration & dosage
- Epitopes/immunology
- Female
- Hemagglutinins, Viral/administration & dosage
- Hemagglutinins, Viral/immunology
- Hepatitis B Vaccines
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/prevention & control
- Immunization Schedule
- Injections, Subcutaneous
- Membrane Glycoproteins/administration & dosage
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred BALB C
- Murine hepatitis virus/immunology
- Spike Glycoprotein, Coronavirus
- Tobacco Mosaic Virus/immunology
- Vaccines, Synthetic
- Viral Envelope Proteins/administration & dosage
- Viral Envelope Proteins/immunology
- Viral Hepatitis Vaccines
Collapse
Affiliation(s)
- M Koo
- Department of Cell Biology, Division of Plant Biology, BCC 206, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Hingley ST, Leparc-Goffart I, Weiss SR. The mouse hepatitis virus A59 spike protein is not cleaved in primary hepatocyte and glial cell cultures. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 440:529-35. [PMID: 9782325 DOI: 10.1007/978-1-4615-5331-1_68] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mouse hepatitis virus strain A59 (MHV-A59) produces mild meningoencephalitis and severe hepatitis during acute infection. To determine whether an in vitro system could be established which would mimic in vivo replication of the virus, we examined the ability of MHV-A59 to replicate in primary cultures of hepatocytes derived from C57BL/6 mice. Infection of hepatocytes with MHV-A59 resulted in low levels of replication, with virus remaining cell associated. Maximum viral yield was observed at 24 hours postinfection, while occasional syncytia were observed at 48 hours postinfection. Primary glial cell culture represents a potential in vitro system representing the second main target of MHV-A59, namely the brain. It is known that MHV-A59 produces a productive, but nonlytic infection in these cultures. Since cell-to-cell fusion is associated with the cleavage of S, the observation of little or no syncytia following MHV-A59 infection of both hepatocytes and glial cells prompted us to examine the cleavage of the spike protein (S) by Western blot analysis. The cleavage of S is inefficient in MHV-A59 infected hepatocytes and in glial cells. Furthermore, no cleavage of this protein was detected in liver homogenates from C57BL/6 mice infected with MHV-A59. These data suggest that cleavage of the MHV-A59 S protein, and by inference cell-to-cell fusion, does not seem to be essential for entry and spread of the virus in vivo and in vitro.
Collapse
Affiliation(s)
- S T Hingley
- Department of Microbiology and Immunology, Philadelphia College of Osteopathic Medicine, Pennsylvania 19131, USA
| | | | | |
Collapse
|
82
|
Gilbert JM, Greenberg HB. Cleavage of rhesus rotavirus VP4 after arginine 247 is essential for rotavirus-like particle-induced fusion from without. J Virol 1998; 72:5323-7. [PMID: 9573313 PMCID: PMC116396 DOI: 10.1128/jvi.72.6.5323-5327.1998] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/1997] [Accepted: 02/27/1998] [Indexed: 02/07/2023] Open
Abstract
We recently described our finding that recombinant baculovirus-produced virus-like particles (VLPs) can induce cell-cell fusion similar to that induced by intact rotavirus in our assay for viral entry into tissue culture cells (J. M. Gilbert and H. B. Greenberg, J. Virol. 71:4555-4563, 1997). The conditions required for syncytium formation are similar to those for viral penetration of the plasma membrane during the course of viral infection. This VLP-mediated fusion activity was dependent on the presence of the outer-layer proteins, viral protein 4 (VP4) and VP7, and on the trypsinization of VP4. Fusion activity occurred only with cells that are permissive for rotavirus infection. Here we begin to dissect the role of VP4 in rotavirus entry by examining the importance of the precise trypsin cleavage of VP4 and the activation of VP4 function related to viral entry. We present evidence that the elimination of the three trypsin-susceptible arginine residues of VP4 by specific site-directed mutagenesis prevents syncytium formation. Two of the three arginine residues in VP4 are dispensable for syncytium formation, and only the arginine residue at site 247 appears to be required for activation of VP4 functions and cell-cell fusion. Using the recombinant VLPs in our syncytium assay will aid in understanding the conformational changes that occur in VP4 involved in rotavirus penetration into host cells.
Collapse
Affiliation(s)
- J M Gilbert
- Departments of Microbiology and Immunology and of Medicine, Division of Gastroenterology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | |
Collapse
|
83
|
Luo Z, Weiss SR. Roles in cell-to-cell fusion of two conserved hydrophobic regions in the murine coronavirus spike protein. Virology 1998; 244:483-94. [PMID: 9601516 PMCID: PMC7130564 DOI: 10.1006/viro.1998.9121] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spike (S) protein of coronavirus mouse hepatitis virus (MHV), mediates attachment and fusion during viral entry and cell-to-cell fusion later in infection. By analogy with other viral proteins that induce cell fusion the MHV S protein would be expected to have a hydrophobic stretch of amino acids that serves as a fusion peptide. Sequence analysis suggests that the S protein falls within the group of fusion proteins having internal rather than N-terminal fusion peptides. Based on the features of known viral fusion peptides, we identified two regions (PEP1 and PEP2) of MHV-A59 S2 as possible fusion peptides. Site-directed mutagenesis and an in viro cell-to-cell fusion assay were used to evaluate the roles of PEP1 and PEP2, as well as a third previously identified putative fusion domain (PEP3) in membrane fusion. Substitution of bulky hydrophobic residues with charged residues within PEP1 affects the fusion activity of the S protein without affecting processing and surface expression. Similar substitutions within PEP2 result in a fusion-negative phenotype; however, these mutant S proteins also exhibit defects in protein processing and surface expression which likely explain the loss of the ability to induce fusion. Thus PEP1 remains a candidate fusion peptide, while PEP2 may play a significant role in the overall structure or oligomerization of the S protein. PEP3 is an unlikely putative fusion peptide since it is not conserved among coronaviruses and nonconservative amino acid substitutions in PEP3 have minimal effects on cell-to-cell fusion.
Collapse
Affiliation(s)
- Z Luo
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104-6076, USA
| | | |
Collapse
|
84
|
Bos EC, Luytjes W, Spaan WJ. The function of the spike protein of mouse hepatitis virus strain A59 can be studied on virus-like particles: cleavage is not required for infectivity. J Virol 1997; 71:9427-33. [PMID: 9371603 PMCID: PMC230247 DOI: 10.1128/jvi.71.12.9427-9433.1997] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The spike protein (S) of the murine coronavirus mouse hepatitis virus strain A59 (MHV-A59) induces both virus-to-cell fusion during infection and syncytium formation. Thus far, only syncytium formation could be studied after transient expression of S. We have recently described a system in which viral infectivity is mimicked by using virus-like particles (VLPs) and reporter defective-interfering (DI) RNAs (E. C. W. Bos, W. Luytjes, H. Van der Meulen, H. K. Koerten, and W. J. M. Spaan, Virology 218:52-60, 1996). Production of VLPs of MHV-A59 was shown to be dependent on the expression of M and E. We now show in several ways that the infectivity of VLPs is dependent on S. Infectivity was lost when spikeless VLPs were produced. Infectivity was blocked upon treatment of the VLPs with MHV-A59-neutralizing anti-S monoclonal antibody (MAb) A2.3 but not with nonneutralizing anti-S MAb A1.4. When the target cells were incubated with antireceptor MAb CC1, which blocks MHV-A59 infection, VLPs did not infect the target cells. Thus, S-mediated VLP infectivity resembles MHV-A59 infectivity. The system can be used to identify domains in S that are essential for infectivity. As a first application, we investigated the requirements of cleavage of S for the infectivity of MHV-A59. We inserted three mutant S proteins that were previously shown to be uncleaved (E. C. W. Bos, L. Heijnen, W. Luytjes, and W. J. M. Spaan, Virology 214:453-463, 1995) into the VLPs. Here we show that cleavage of the spike protein of MHV-A59 is not required for infectivity.
Collapse
Affiliation(s)
- E C Bos
- Department of Virology, Leiden University, The Netherlands
| | | | | |
Collapse
|
85
|
Abstract
This chapter discusses the manipulation of clones of coronavirus and of complementary DNAs (cDNAs) of defective-interfering (DI) RNAs to study coronavirus RNA replication, transcription, recombination, processing and transport of proteins, virion assembly, identification of cell receptors for coronaviruses, and processing of the polymerase. The nature of the coronavirus genome is nonsegmented, single-stranded, and positive-sense RNA. Its size ranges from 27 to 32 kb, which is significantly larger when compared with other RNA viruses. The gene encoding the large surface glycoprotein is up to 4.4 kb, encoding an imposing trimeric, highly glycosylated protein. This soars some 20 nm above the virion envelope, giving the virus the appearance-with a little imagination-of a crown or coronet. Coronavirus research has contributed to the understanding of many aspects of molecular biology in general, such as the mechanism of RNA synthesis, translational control, and protein transport and processing. It remains a treasure capable of generating unexpected insights.
Collapse
Affiliation(s)
- M M Lai
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, University of Southern California School of Medicine, Los Angeles 90033-1054, USA
| | | |
Collapse
|
86
|
Gallagher TM. A role for naturally occurring variation of the murine coronavirus spike protein in stabilizing association with the cellular receptor. J Virol 1997; 71:3129-37. [PMID: 9060676 PMCID: PMC191445 DOI: 10.1128/jvi.71.4.3129-3137.1997] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Murine hepatitis virus (MHV), a coronavirus, initiates infection by binding to its cellular receptor (MHVR) via spike (S) proteins projecting from the virion membrane. The structures of these S proteins vary considerably among MHV strains, and this variation is generally considered to be important in determining the strain-specific pathologies of MHV infection, perhaps by affecting the interaction between MHV and the MHVR. To address the relationships between S variation and receptor binding, assays capable of measuring interactions between MHV and MHVR were developed. The assays made use of a novel soluble form of the MHVR, sMHVR-Ig, which comprised the virus-binding immunoglobulin-like domain of MHVR fused to the Fc portion of human immunoglobulin G1. sMHVR-Ig was stably expressed as a disulfide-linked dimer in human 293 EBNA cells and was immobilized to Sepharose-protein G via the Fc domain. The resulting Sepharose beads were used to adsorb radiolabelled MHV particles. At 4 degrees C, the beads specifically adsorbed two prototype MHV strains, MHV JHM (strain 4) and a tissue culture-adapted mutant of MHV JHM, the JHMX strain. A shift to 37 degrees C resulted in elution of JHM but not JHMX. This in vitro observation of JHM (but not JHMX) elution from its receptor at 37 degrees C was paralleled by a corresponding 37 degrees C elution of receptor-associated JHM (but not JHMX) from tissue culture cells. The basis for this difference in maintenance of receptor association was correlated with a large deletion mutation present within the JHMX S protein, as sMHVR-Ig exhibited relatively thermostable binding to vaccinia virus-expressed S proteins containing the deletion. These results indicate that naturally occurring mutations in the coronavirus S protein affect the stability of the initial interaction with the host cell and thus contribute to the likelihood of successful infection by incoming virions. These changes in virus entry features may result in coronaviruses with novel pathogenic properties.
Collapse
Affiliation(s)
- T M Gallagher
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois 60153, USA.
| |
Collapse
|
87
|
Rowe CL, Baker SC, Nathan MJ, Fleming JO. Evolution of mouse hepatitis virus: detection and characterization of spike deletion variants during persistent infection. J Virol 1997; 71:2959-69. [PMID: 9060655 PMCID: PMC191424 DOI: 10.1128/jvi.71.4.2959-2969.1997] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
High-frequency RNA recombination has been proposed as an important mechanism for generating viral deletion variants of murine coronavirus. Indeed, a number of variants with deletions in the spike glycoprotein have been isolated from persistently infected animals. However, the significance of generating and potentially accumulating deletion variants in the persisting viral RNA population is unclear. To study this issue, we evaluated the evolution of spike variants by examining the population of spike RNA sequences detected in the brains and spinal cords of mice inoculated with coronavirus and sacrificed at 4, 42, or 100 days postinoculation. We focused on the S1 hypervariable region since previous investigators had shown that this region is subject to recombination and deletion. RNA isolated from the brains or spinal cords of infected mice was rescued by reverse transcription-PCR, and the amplified products were cloned and used in differential colony hybridizations to identify individual isolates with deletions. We found that 11 of 20 persistently infected mice harbored spike deletion variants (SDVs), indicating that deletions are common but not required for persistent infection. To determine if a specific type of SDV accumulated during persistence, we sequenced 106 of the deletion isolates. We identified 23 distinct patterns of SDVs, including 5 double-deletion variants. Furthermore, we found that each mouse harbored distinct variants in its central nervous system (CNS), suggesting that SDVs are generated during viral replication in the CNS. Interestingly, mice with the most severe and persisting neurological disease harbored the most prevalent and diverse quasispecies of SDVs. Overall, these findings illustrate the complexity of the population of persisting viral RNAs which may contribute to chronic disease.
Collapse
Affiliation(s)
- C L Rowe
- Department of Microbiology and Immunology, Loyola University of Chicago, Stritch School of Medicine, Maywood, Illinois 60153, USA
| | | | | | | |
Collapse
|
88
|
Lai MM, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res 1997; 48:1-100. [PMID: 9233431 PMCID: PMC7130985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This chapter discusses the manipulation of clones of coronavirus and of complementary DNAs (cDNAs) of defective-interfering (DI) RNAs to study coronavirus RNA replication, transcription, recombination, processing and transport of proteins, virion assembly, identification of cell receptors for coronaviruses, and processing of the polymerase. The nature of the coronavirus genome is nonsegmented, single-stranded, and positive-sense RNA. Its size ranges from 27 to 32 kb, which is significantly larger when compared with other RNA viruses. The gene encoding the large surface glycoprotein is up to 4.4 kb, encoding an imposing trimeric, highly glycosylated protein. This soars some 20 nm above the virion envelope, giving the virus the appearance-with a little imagination-of a crown or coronet. Coronavirus research has contributed to the understanding of many aspects of molecular biology in general, such as the mechanism of RNA synthesis, translational control, and protein transport and processing. It remains a treasure capable of generating unexpected insights.
Collapse
Affiliation(s)
- M M Lai
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, University of Southern California School of Medicine, Los Angeles 90033-1054, USA
| | | |
Collapse
|
89
|
Gallagher TM. Murine coronavirus membrane fusion is blocked by modification of thiols buried within the spike protein. J Virol 1996; 70:4683-90. [PMID: 8676494 PMCID: PMC190404 DOI: 10.1128/jvi.70.7.4683-4690.1996] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The envelopes of murine hepatitis virus (MHV) particles are studded with glycoprotein spikes that function both to promote virion binding to its cellular receptor and to mediate virion-cell membrane fusion. In this study, the cysteine-rich spikes were subjected to chemical modification to determine whether such structural alterations impact the virus entry process. Ellman reagent, a membrane-impermeant oxidizing agent which reacts with exposed cysteine residues to effect covalent addition of large thionitrobenzoate moieties, was incubated at 37 degrees C with the JHM strain of MHV. Relative to untreated virus, 1 mM Ellman reagent reduced infectivity by 2 log(10) after 1 h. This level of inhibition was not observed at incubation temperatures below 21 degrees C, suggesting that virion surface proteins undergo thermal transitions that expose cysteine residues to modification by the reagent. Quantitative receptor binding and membrane fusion assays were developed and used to show that Ellman reagent specifically inhibited membrane fusion induced by the MHV JHM spike protein. However, this inhibition was strain specific, because the closely related MHV strain A59 was unaffected. To identify the basis for this strain specificity, spike cDNAs were prepared in which portions encoded either JHM or A59 residues. cDNAs were expressed with vaccinia virus vectors and tested for sensitivity to Ellman reagent in the fusion assays. The results revealed a correlation between the severity of inhibition mediated by Ellman reagent and the presence of a JHM-specific cysteine (Cys-1163). Thus, the presence of this cysteine increases the availability of spikes for a thiol modification that ultimately prevents fusion competence.
Collapse
Affiliation(s)
- T M Gallagher
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois 60153-5500, USA.
| |
Collapse
|
90
|
Ricard CS, Koetzner CA, Sturman LS, Masters PS. A conditional-lethal murine coronavirus mutant that fails to incorporate the spike glycoprotein into assembled virions. Virus Res 1995; 39:261-76. [PMID: 8837889 PMCID: PMC7134215 DOI: 10.1016/0168-1702(95)00100-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/1995] [Revised: 09/11/1995] [Accepted: 09/12/1995] [Indexed: 02/02/2023]
Abstract
The coronavirus spike glycoprotein (S) mediates both the attachment of virus to the host cell receptor and membrane fusion. We describe here the characterization of a temperature-sensitive mutant of the coronavirus mouse hepatitis virus A59 (MHV-A59) having multiple S protein-related defects. The most remarkable of these was that the mutant, designated Albany 18 (Alb18), assembled virions devoid of the S glycoprotein at the nonpermissive temperature. Alb18 also failed to bring about syncytia formation in cells infected at the nonpermissive temperature. Virions of the mutant assembled at the permissive temperature were much more thermolabile than wild type. Moreover, mutant S protein that was incorporated into virions at the permissive temperature showed enhanced pH-dependent thermolability in its ability to bind to the MHV receptor. Alb18 was found to have a single point mutation in S resulting in a change of serine 287 to isoleucine, and it was shown by revertant analysis that this was the lesion responsible for the phenotype of the mutant.
Collapse
Affiliation(s)
- C S Ricard
- Department of Microbiology, Immunology, and Molecular Genetics, Albany Medical College, NY 12208, USA
| | | | | | | |
Collapse
|
91
|
Horsburgh BC, Brown TD. Cloning, sequencing and expression of the S protein gene from two geographically distinct strains of canine coronavirus. Virus Res 1995; 39:63-74. [PMID: 8607285 PMCID: PMC7133993 DOI: 10.1016/s0168-1702(95)00068-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/1995] [Accepted: 06/23/1995] [Indexed: 01/31/2023]
Abstract
The gene encoding the spike (S) protein from two geographically distinct strains (American and British) of canine coronavirus (CCV) was cloned and sequenced. The nucleotide sequence revealed open reading frames of 1443 or 1453 amino acids, respectively. Structural features include an N-terminal hydrophobic signal sequence, a hydrophilic cysteine-rich cluster near the C-terminus, two heptad repeats and 29 or 33 potential N-glycosylation sites. Pairwise comparisons of S amino acid sequences from these isolates with other CCV strains (Insavc1 and K378) revealed that heterogeneity, found mostly in the form of conservative substitutions, is distributed throughout the canine sequences. However, 5 variable regions could be identified. Similar analysis with feline, porcine, murine, chicken and human coronavirus sequences revealed that the canine sequences are much more closely related to the feline S protein sequence than to the porcine S protein sequences even though they are all from the same antigenic group. Moreover, the sequence similarity between CCV isolates and the feline coronavirus, feline infectious peritonitis virus (FIPV) was comparable. Expression of the CCV or the transmissible gastroenteritis virus (TGEV) S gene using the vaccinia virus system produced a protein of the expected size which could induce extensive syncytia formation in infected canine A72 cells.
Collapse
Affiliation(s)
- B C Horsburgh
- Department of Pathology, University of Cambridge, UK
| | | |
Collapse
|
92
|
Steffan AM, Pereira CA, Bingen A, Valle M, Martin JP, Koehren F, Royer C, Gendrault JL, Kirn A. Mouse hepatitis virus type 3 infection provokes a decrease in the number of sinusoidal endothelial cell fenestrae both in vivo and in vitro. Hepatology 1995; 22:395-401. [PMID: 7635406 PMCID: PMC7131019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/1994] [Accepted: 03/07/1995] [Indexed: 01/26/2023]
Abstract
Fenestrations of hepatic endothelial cells play an active role as a sieving barrier allowing extensive exchange between the blood and liver parenchyma. Alteration of these structures may be induced in the course of various pathological events and provoke important perturbations of liver function. We demonstrate here that sinusoidal endothelial cells are permissive for mouse hepatitis virus 3 (MHV3) in vivo and in vitro and that this infection leads to a striking decrease in the number of fenestrae. The disappearance of these structures observed under scanning electron microscopy or in cryofracture preparations in vivo and in vitro cannot be reversed by the action of cytochalasin B on the microfilament network. The decrease in the porosity seems to be related directly to the productive infection of the endothelial cells, because it was not observed in A/J mice resistant to the virus and in susceptible BALB/c mice immunized with a thermosensitive mutant in which no viral replication occurs. In conclusion, a viral infection of liver endothelial cells may cause extensive loss of the fenestrations and thus lead to important functional pertubations.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Coronavirus Infections/drug therapy
- Coronavirus Infections/immunology
- Coronavirus Infections/pathology
- Cytochalasin B/therapeutic use
- Endothelium, Vascular/pathology
- Hepatitis, Viral, Animal/drug therapy
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/pathology
- Immunity, Innate/genetics
- Liver/blood supply
- Mice
- Mice, Inbred A
- Mice, Inbred BALB C
- Microscopy, Electron, Scanning
- Murine hepatitis virus
Collapse
Affiliation(s)
- A M Steffan
- Unité INSERM 74 et Institut de Virologie de la Faculté de Médecine, Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Steffan AM, Pereira CA, Bingen A, Valle M, Martin JP, Koehren F, Royer C, Gendrault JL, Kirn A. Mouse hepatitis virus type 3 infection provokes a decrease in the number of sinusoidal endothelial cell fenestrae both in vivo and in vitro. Hepatology 1995. [PMID: 7635406 PMCID: PMC7131019 DOI: 10.1016/0270-9139(95)90556-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Fenestrations of hepatic endothelial cells play an active role as a sieving barrier allowing extensive exchange between the blood and liver parenchyma. Alteration of these structures may be induced in the course of various pathological events and provoke important perturbations of liver function. We demonstrate here that sinusoidal endothelial cells are permissive for mouse hepatitis virus 3 (MHV3) in vivo and in vitro and that this infection leads to a striking decrease in the number of fenestrae. The disappearance of these structures observed under scanning electron microscopy or in cryofracture preparations in vivo and in vitro cannot be reversed by the action of cytochalasin B on the microfilament network. The decrease in the porosity seems to be related directly to the productive infection of the endothelial cells, because it was not observed in A/J mice resistant to the virus and in susceptible BALB/c mice immunized with a thermosensitive mutant in which no viral replication occurs. In conclusion, a viral infection of liver endothelial cells may cause extensive loss of the fenestrations and thus lead to important functional pertubations.
Collapse
Affiliation(s)
- Anne-Marie Steffan
- Unité INSERM 74 et Institut de Virologie de la Faculté de Médecine, Strasbourg, France,Address reprint requests to: Anne-Marie Steffan, PhD, Unité INSERM 74 et Institut de Virologie de la Faculté de Médecine, 3 rue Koeberlé, 67000 Strasbourg, France
| | | | - Annick Bingen
- Unité INSERM 74 et Institut de Virologie de la Faculté de Médecine, Strasbourg, France
| | - Michele Valle
- Unité INSERM 74 et Institut de Virologie de la Faculté de Médecine, Strasbourg, France
| | - Jean-Pierre Martin
- Unité INSERM 74 et Institut de Virologie de la Faculté de Médecine, Strasbourg, France
| | - Françoise Koehren
- Unité INSERM 74 et Institut de Virologie de la Faculté de Médecine, Strasbourg, France
| | - Cathy Royer
- Unité INSERM 74 et Institut de Virologie de la Faculté de Médecine, Strasbourg, France
| | - Jean-Louis Gendrault
- Unité INSERM 74 et Institut de Virologie de la Faculté de Médecine, Strasbourg, France
| | - André Kirn
- Unité INSERM 74 et Institut de Virologie de la Faculté de Médecine, Strasbourg, France
| |
Collapse
|
94
|
Tahir RA, Pomeroy KA, Goyal SM. Evaluation of shell vial cell culture technique for the detection of bovine coronavirus. J Vet Diagn Invest 1995; 7:301-4. [PMID: 7578442 DOI: 10.1177/104063879500700301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The effect of blind passage and centrifugation on the isolation of bovine coronavirus in human rectal tumor cells cultured in shell vials was investigated. A total of 68 fecal samples known to be positive for bovine coronavirus by transmission electron microscopic (TEM) examination were used. The samples were centrifuged onto human rectal tumor cell monolayers and incubated in the presence of trypsin. The growth of bovine coronavirus in infected cells was demonstrated by fluorescent antibody staining, and the extracellular virus was detected and confirmed by hemagglutination and hemagglutination-inhibition tests, respectively. Of the 68 TEM-positive samples, 51 (75%), 58 (85%), and 61 (90%) grew in shell vial cell cultures at first, second, and third passages, respectively. Of the 51 cultures positive on first passage, 19 were examined by TEM; 18 of these were positive for bovine coronavirus. The shell vial technique was also compared with direct detection of bovine coronavirus by staining cryostat sections of infected tissues in a direct fluorescent antibody assay. The results of direct fluorescent antibody assay were available for 54 of the 68 samples, of which 53 (98%) and 43 (80%) were positive by shell vial technique and direct fluorescent antibody assay, respectively. For identification of bovine coronavirus, shell vials using human rectal tumor cells in the presence of trypsin is more sensitive than direct fluorescent antibody assay but is relatively less sensitive than transmission electron microscopy.
Collapse
Affiliation(s)
- R A Tahir
- Department of Veterinary Diagnostic Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul 55108, USA
| | | | | |
Collapse
|
95
|
Kunita S, Zhang L, Homberger FR, Compton SR. Molecular characterization of the S proteins of two enterotropic murine coronavirus strains. Virus Res 1995; 35:277-89. [PMID: 7785316 PMCID: PMC7134003 DOI: 10.1016/0168-1702(94)00089-u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Enterotropic strains of murine coronaviruses (MHV-Y and MHV-RI) differ extensively in their pathogenesis from the prototypic respiratory strains of murine coronaviruses. In an effort to determine which viral proteins might be determinants of enterotropism, immunoblots of MHV-Y and MHV-RI virions using anti-S, -N and -M protein-specific antisera were performed. The uncleaved MHV-Y and MHV-RI S proteins migrated slightly faster than the MHV-A59 S protein. The MHV-Y S protein was inefficiently cleaved. The MHV-Y, MHV-RI and MHV-A59 N and M proteins showed only minor differences in their migration. The S genes of MHV-Y and MHV-RI were cloned, sequenced and found to encode 1361 and 1376 amino acid long proteins, respectively. The presence of several amino acids changes upstream from the predicted cleavage site of the MHV-Y S protein may contribute its inefficient cleavage. A high degree of homology was found between the MHV-RI and MHV-4 S proteins, whereas the homology between the MHV-Y S protein and the S proteins of other MHV strains was much lower. These results indicate that the enterotropism of MHV-RI and MHV-Y may be determined by different amino acid changes in the S protein and/or by changes in other viral proteins.
Collapse
Affiliation(s)
- S Kunita
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520-8016, USA
| | | | | | | |
Collapse
|
96
|
Oleszak EL, Kuzmak J, Hogue B, Parr R, Collisson EW, Rodkey LS, Leibowitz JL. Molecular mimicry between Fc receptor and S peplomer protein of mouse hepatitis virus, bovine corona virus, and transmissible gastroenteritis virus. Hybridoma (Larchmt) 1995; 14:1-8. [PMID: 7768529 DOI: 10.1089/hyb.1995.14.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have previously demonstrated molecular mimicry between the S peplomer protein of mouse hepatitis virus (MHV) and Fc gamma R (Fc gamma R). A monoclonal antibody (MAb) to mouse Fc gamma R (2.4G2 anti-Fc gamma R MAb), purified rabbit immunoglobulin, but not their F(ab')2 fragments, as well as mouse and rat IgG, immunoprecipitated (1) recombinant S peplomer protein expressed by a vaccinia virus recombinant in human, rabbit, and mouse cells, and (2) natural S peplomer protein from cells infected with several strains of MHV and MHV escaped mutants. We report here results of studies documenting molecular mimicry between Fc gamma R and S peplomer protein of viruses representing three distinct antigenic subgroups of the Coronaviridae. We have shown a molecular mimicry between the S peplomer protein of bovine corona virus (BCV) and Fc gamma R. The 2.4G2 anti-Fc gamma R MAb, rabbit IgG, but not its F(ab')2 fragments, as well as homologous bovine serum, free of anti-BCV antibodies, immunoprecipitated S peplomer protein of BCV (Mebus strain). In contrast, we did not find molecular mimicry between S peplomer protein of human corona virus (HCV-OC43) and Fc gamma R. Although the OC43 virus belongs to the same antigenic group as MHV and BCV, MAb specific for human Fc gamma RI or Fc gamma RII and purified human IgG1, IgG2, and IgG3 myeloma proteins did not immunoprecipitate the S peplomer protein from HCV-OC43-infected RD cells. In addition, we did demonstrate molecular mimicry between the S peplomer protein of porcine transmissible gastroenteritis virus (TGEV) and Fc gamma R. TGEV belongs to the second antigenic subgroup of coronaviridae.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E L Oleszak
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | |
Collapse
|
97
|
Affiliation(s)
- E S Razvi
- Department of Pathology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | |
Collapse
|
98
|
Zhang XM, Herbst W, Kousoulas KG, Storz J. Biological and genetic characterization of a hemagglutinating coronavirus isolated from a diarrhoeic child. J Med Virol 1994; 44:152-61. [PMID: 7852955 PMCID: PMC7166597 DOI: 10.1002/jmv.1890440207] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The coronavirus strain HECV-4408 was isolated from diarrhea fluid of a 6-year-old child with acute diarrhea and propagated in human rectal tumor (HRT-18) cells. Electron microscopy revealed coronavirus particles in the diarrhea fluid sample and the infected HRT-18 cell cultures. This virus possessed hemagglutinating and acetylesterase activities and caused cytopathic effects in HRT-18 cells but not in MDBK, GBK and FE cells. One of four S-specific monoclonal antibodies reacted in Western blots with HECV-4408, BCV-L9 and BCV-LY138 but not with HCV-OC43, and two reacted with BCV-L9 but not with HECV-4408, BCV-LY138 and HCV-OC43. One S-specific and two N-specific monoclonal antibodies reacted with all of these strains. cDNA encompassing the 3' 8.5 kb of the viral RNA genome was isolated by reverse transcription followed by polymerase chain reaction amplification had size and restriction endonuclease patterns similar to those of BCV-L9 and BCV-LY138. In contrast, the M gene of HCV-OC43 differed in restriction patterns from HECV-4408 and BCV. A genomic deletion located between the S and M within the non-structural genes of HCV-OC43 was not detected in HECV-4408. DNA sequence analyses of the S and HE genes revealed more than 99% nucleotide and deduced amino acid homologies between HECV-4408 and the virulent wild-type BCV. Forty-nine nucleotide and 22 amino acid differences were found between the HE genes of HECV-4408 and HCV-OC43, while only 16 nucleotide and 3 amino acid differences occurred between the HE genes of HECV-4408 and BCV-LY138. We thus conclude that the strain HECV-4408 is a hemagglutinating enteric coronavirus that is biologically, antigenically and genomically more closely related to the virulent BCV-LY138 than to HCV-OC43.
Collapse
Affiliation(s)
- X M Zhang
- Department of Veterinary Microbiology and Parasitology, School of Veterinary Medicine, Louisiana State University, Baton Rouge
| | | | | | | |
Collapse
|
99
|
Ignjatovic J, Galli L. The S1 glycoprotein but not the N or M proteins of avian infectious bronchitis virus induces protection in vaccinated chickens. Arch Virol 1994; 138:117-34. [PMID: 7980002 PMCID: PMC7087189 DOI: 10.1007/bf01310043] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The S1, N and M proteins, obtained from the nephropathogenic N1/62 strain of infectious bronchitis virus (IBV) by immunoaffinity purification with monoclonal antibodies, were used for immunization of chickens. For all three antigens multiple immunizations were necessary for induction of an antibody response. Protection of chickens vaccinated with the S1 glycoprotein against virulent challenge was demonstrated by the complete absence of virus in tracheas and kidneys of vaccinated chickens. Following four immunizations with the S1 glycoprotein 71% and 86% of chickens were protected at the level of tracheas and kidneys, respectively. Three immunizations with the S1 glycoprotein protected 70% and 10% of chickens at the level of kidney and trachea, respectively. Neither the N nor the M antigen induced protection to a virulent challenge with the nephropathogenic N1/62 strain of IBV after four immunizations. Virus neutralizing, haemagglutination inhibiting and ELISA antibodies were detected in chickens immunized with the S1 glycoprotein and inactivated N1/62 virus, however there was no correlation between the presence of any of these antibodies and protection.
Collapse
Affiliation(s)
- J Ignjatovic
- CSIRO Division of Animal Health, Animal Health Research Laboratory, Parkville, Victoria, Australia
| | | |
Collapse
|
100
|
Zhang X, Herbst W, Kousoulas KG, Storz J. Comparison of the S genes and the biological properties of respiratory and enteropathogenic bovine coronaviruses. Arch Virol 1994; 134:421-6. [PMID: 8129626 PMCID: PMC7087011 DOI: 10.1007/bf01310579] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nucleotide sequence of the S gene of the bovine respiratory coronavirus (BRCV) strain G95, which was isolated from nasal swabs of a calf suffering from respiratory disorders, was determined and compared with the S gene of the enteropathogenic bovine coronavirus (BECV) strain LY138. Sequence analysis revealed 98.7% nucleotide and 98.3% deduced amino acid identities between the S genes of BRCV-G95 and BECV-LY138 without any deletions or insertions. Nucleotide substitutions were distributed randomly throughout the gene. Five monoclonal antibodies specific for the S protein distinguished BRCV-G95 from BECV-L9, but failed to differentiate it from BECV-LY138 in Western blots under denatured and native conditions. BRCV-G95 induced cytopathic changes in cell cultures that were similar to BECV-LY138 but different from BECV-L9. These results suggest that strain BRCV-G95 is more closely related to the virulent strain BECV-LY138 than to the avirulent, cell culture-adapted strain BECV-L9.
Collapse
Affiliation(s)
- X Zhang
- Department of Veterinary Microbiology and Parasitology, School of Veterinary Medicine, Louisiana State University, Baton Rouge
| | | | | | | |
Collapse
|