51
|
Targeting of murine leukemia virus gag to the plasma membrane is mediated by PI(4,5)P2/PS and a polybasic region in the matrix. J Virol 2010; 84:503-15. [PMID: 19828619 DOI: 10.1128/jvi.01134-09] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Membrane targeting of the human immunodeficiency virus Gag proteins is dependent on phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] located in the plasma membrane. In order to determine if evolutionarily distant retroviral Gag proteins are targeted by a similar mechanism, we generated mutants of the matrix (MA) domain of murine leukemia virus (MuLV) Gag, examined their binding to membrane models in vitro, and analyzed their phenotypes in cell culture. In vitro, we showed that MA bound all the phosphatidylinositol phosphates with significant affinity but displayed a strong specificity for PI(4,5)P(2) only if enhanced by phosphatidylserine. Mutations in the polybasic region in MA dramatically reduced this affinity. In cells, virus production was strongly impaired by PI(4,5)P(2) depletion under conditions of 5ptaseIV overexpression, and mutations in the MA polybasic region altered Gag localization, membrane binding, and virion production. Our results suggest that the N-terminal polybasic cluster of MA is essential for Gag targeting to the plasma membrane. The binding of the MA domain to PI(4,5)P(2) appears to be a conserved feature among retroviruses despite the fact that the MuLV-MA domain is structurally different from that of human immunodeficiency virus types 1 and 2 and lacks a readily identifiable PI(4,5)P(2) binding cleft.
Collapse
|
52
|
Kitagawa Y, Maeda-Sato M, Tanaka K, Tobiume M, Sawa H, Hasegawa H, Kojima A, Hall WW, Kurata T, Sata T, Takahashi H. Covalent bonded Gag multimers in human immunodeficiency virus type-1 particles. Microbiol Immunol 2009; 53:609-20. [PMID: 19903261 DOI: 10.1111/j.1348-0421.2009.00164.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The oligomerization of HIV-1 Gag and Gag-Pol proteins, which are assembled at the plasma membrane, leads to viral budding. The budding generally places the viral components under non-reducing conditions. Here the effects of non-reducing conditions on Gag structures and viral RNA protection were examined. Using different reducing conditions and SDS-PAGE, it was shown that oligomerized Gag possesses intermolecular covalent bonds under non-reducing conditions. In addition, it was demonstrated that the mature viral core contains a large amount of covalent bonded Gag multimers, as does the immature core. Viral genomic RNA becomes sensitive to ribonuclease in reducing conditions. These results suggest that, under non-reducing conditions, covalent bonded Gag multimers are formed within the viral particles and play a role in protection of the viral genome.
Collapse
Affiliation(s)
- Yoshinori Kitagawa
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Analysis of human immunodeficiency virus type 1 matrix binding to membranes and nucleic acids. J Virol 2009; 83:12196-203. [PMID: 19776118 DOI: 10.1128/jvi.01197-09] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein targets HIV-1 precursor Gag (PrGag) proteins to assembly sites at plasma membrane (PM) sites that are enriched in cholesterol and phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)]. MA is myristoylated, which enhances membrane binding, and specifically binds PI(4,5)P(2) through headgroup and 2' acyl chain contacts. MA also binds nucleic acids, although the significance of this association with regard to the viral life cycle is unclear. We have devised a novel MA binding assay and used it to examine MA interactions with membranes and nucleic acids. Our results indicate that cholesterol increases the selectivity of MA for PI(4,5)P(2)-containing membranes, that PI(4,5)P(2) binding tolerates 2' acyl chain variation, and that the MA myristate enhances membrane binding efficiency but not selectivity. We also observed that soluble PI(4,5)P(2) analogues do not compete effectively with PI(4,5)P(2)-containing liposomes for MA binding but surprisingly do increase nonspecific binding to liposomes. Finally, we have demonstrated that PI(4,5)P(2)-containing liposomes successfully outcompete nucleic acids for MA binding, whereas other liposomes do not. These results support a model in which RNA binding protects MA from associating with inappropriate cellular membranes prior to PrGag delivery to PM assembly sites.
Collapse
|
54
|
Bieniasz PD. The cell biology of HIV-1 virion genesis. Cell Host Microbe 2009; 5:550-8. [PMID: 19527882 DOI: 10.1016/j.chom.2009.05.015] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Revised: 05/20/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
Abstract
Recent work has illuminated three critical aspects of the cell biology of HIV-1 particle genesis. First, we have come to understand which cellular membranes are selected as platforms for virus particle assembly and how this occurs. Second, an understanding of how the host ESCRT pathway enables virion budding is accruing. Third, it has become apparent that a host inhibitor can block HIV-1 particle release and that antagonism of this inhibitor underlies the ability of HIV and SIV accessory genes to facilitate particle release. Here, I review recent progress in these three areas.
Collapse
Affiliation(s)
- Paul D Bieniasz
- Howard Hughes Medical Institute, Aaron Diamond AIDS Research Center, New York, NY 10016, USA.
| |
Collapse
|
55
|
Waheed AA, Freed EO. Lipids and membrane microdomains in HIV-1 replication. Virus Res 2009; 143:162-76. [PMID: 19383519 DOI: 10.1016/j.virusres.2009.04.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/01/2009] [Accepted: 04/03/2009] [Indexed: 10/20/2022]
Abstract
Several critical steps in the replication cycle of human immunodeficiency virus type 1 (HIV-1) - entry, assembly and budding - are complex processes that take place at the plasma membrane of the host cell. A growing body of data indicates that these early and late steps in HIV-1 replication take place in specialized plasma membrane microdomains, and that many of the viral and cellular components required for entry, assembly, and budding are concentrated in these microdomains. In particular, a number of studies have shown that cholesterol- and sphingolipid-enriched microdomains known as lipid rafts play important roles in multiple steps in the virus replication cycle. In this review, we provide an overview of what is currently known about the involvement of lipids and membrane microdomains in HIV-1 replication.
Collapse
Affiliation(s)
- Abdul A Waheed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA.
| | | |
Collapse
|
56
|
Evidence that productive human immunodeficiency virus type 1 assembly can occur in an intracellular compartment. J Virol 2009; 83:5375-87. [PMID: 19297499 DOI: 10.1128/jvi.00109-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) assembly occurs predominantly at the plasma membrane of infected cells. The targeting of assembly to intracellular compartments such as multivesicular bodies (MVBs) generally leads to a significant reduction in virus release efficiency, suggesting that MVBs are a nonproductive site for HIV-1 assembly. In the current study, we make use of an HIV-1 Gag-matrix mutant, 29/31KE, that is MVB targeted. We previously showed that this mutant is severely defective for virus particle production in HeLa cells but more modestly affected in primary macrophages. To more broadly examine the consequences of MVB targeting for virus production, we investigated 29/31KE particle production in a range of cell types. Surprisingly, this mutant supported highly efficient assembly and release in T cells despite its striking MVB Gag localization. Manipulation of cellular endocytic pathways revealed that unlike Vpu-defective HIV-1, which demonstrated intracellular Gag localization as a result of Gag endocytosis from the plasma membrane, 29/31KE mutant Gag was targeted directly to an MVB compartment. The 29/31KE mutant was unable to support multiple-round replication; however, this defect could be reversed by truncating the cytoplasmic tail of the transmembrane envelope glycoprotein gp41 and by the acquisition of a 16EK change in matrix. The 16EK/29/31KE matrix mutant replicated efficiently in the MT-4 T-cell line despite maintaining an MVB-targeting phenotype. These results indicate that MVB-targeted Gag can be efficiently released from T cells and primary macrophages, suggesting that under some circumstances, late endosomal compartments can serve as productive sites for HIV-1 assembly in these physiologically relevant cell types.
Collapse
|
57
|
Abstract
Virus particle formation of HIV-1 is a multi-step process driven by a viral structural protein Gag. This process takes place at the plasma membrane in most cell types. However, the pathway that directs Gag to the plasma membrane has recently come under intense scrutiny because of its importance in production of progeny virions as well as virus transmission at cell-cell contacts. This review highlights recent advances in our current understanding of mechanisms that traffic and localize Gag to the plasma membrane. In addition, findings on Gag association with specific plasma membrane domains are discussed in light of potential roles in cell-to-cell transmission.
Collapse
|
58
|
Martinez NW, Xue X, Berro RG, Kreitzer G, Resh MD. Kinesin KIF4 regulates intracellular trafficking and stability of the human immunodeficiency virus type 1 Gag polyprotein. J Virol 2008; 82:9937-50. [PMID: 18684836 PMCID: PMC2566262 DOI: 10.1128/jvi.00819-08] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Retroviral Gag proteins are synthesized as soluble, myristoylated precursors that traffic to the plasma membrane and promote viral particle production. The intracellular transport of human immunodeficiency virus type 1 (HIV-1) Gag to the plasma membrane remains poorly understood, and cellular motor proteins responsible for Gag movement are not known. Here we show that disrupting the function of KIF4, a kinesin family member, slowed temporal progression of Gag through its trafficking intermediates and inhibited virus-like particle production. Knockdown of KIF4 also led to increased Gag degradation, resulting in reduced intracellular Gag protein levels; this phenotype was rescued by reintroduction of KIF4. When KIF4 function was blocked, Gag transiently accumulated in discrete, perinuclear, nonendocytic clusters that colocalized with endogenous KIF4, with Ubc9, an E2 SUMO-1 conjugating enzyme, and with SUMO. These studies identify a novel transit station through which Gag traffics en route to particle assembly and highlight the importance of KIF4 in regulating HIV-1 Gag trafficking and stability.
Collapse
Affiliation(s)
- Nathaniel W Martinez
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 143, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
59
|
Fiorentini S, Marsico S, Becker PD, Iaria ML, Bruno R, Guzmán CA, Caruso A. Synthetic peptide AT20 coupled to KLH elicits antibodies against a conserved conformational epitope from a major functional area of the HIV-1 matrix protein p17. Vaccine 2008; 26:4758-65. [PMID: 18602957 DOI: 10.1016/j.vaccine.2008.06.082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/06/2008] [Accepted: 06/10/2008] [Indexed: 01/14/2023]
Abstract
The major challenge for the development of a highly effective peptide-based vaccine is represented by the diversity of HIV-1 strains among human population. HIV-1 matrix protein p17 is a candidate antigen for therapeutic vaccines against AIDS. Here we show that antibodies elicited in animals by immunizing them with a synthetic peptide representative of the p17 functional epitope (AT20) derived from HIV-1 BH10 (clade B), neutralize the biological activity of p17 derived from divergent strains displaying critical mutations within AT20, by recognizing a highly conserved conformational epitope. This finding shows that AT20, as an immunogenic molecule, elicits broadly neutralizing anti-p17 antibodies.
Collapse
Affiliation(s)
- Simona Fiorentini
- Section of Microbiology, Department of Experimental and Applied Medicine, University of Brescia, P.le Spedali Civili 1, I-25123 Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
60
|
Izumi Y, Watanabe H, Watanabe N, Aoyama A, Jinbo Y, Hayashi N. Solution X-ray Scattering Reveals a Novel Structure of Calmodulin Complexed with a Binding Domain Peptide from the HIV-1 Matrix Protein p17. Biochemistry 2008; 47:7158-66. [DOI: 10.1021/bi702416b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yoshinobu Izumi
- Graduate Program of Human Sensing and Functional Sensor Engineering, Yamagata University, 4-3-16, Jo-nan, Yonezawa, Yamagata 992-8510, Japan, and Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hiroki Watanabe
- Graduate Program of Human Sensing and Functional Sensor Engineering, Yamagata University, 4-3-16, Jo-nan, Yonezawa, Yamagata 992-8510, Japan, and Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Noriko Watanabe
- Graduate Program of Human Sensing and Functional Sensor Engineering, Yamagata University, 4-3-16, Jo-nan, Yonezawa, Yamagata 992-8510, Japan, and Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Aki Aoyama
- Graduate Program of Human Sensing and Functional Sensor Engineering, Yamagata University, 4-3-16, Jo-nan, Yonezawa, Yamagata 992-8510, Japan, and Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yuji Jinbo
- Graduate Program of Human Sensing and Functional Sensor Engineering, Yamagata University, 4-3-16, Jo-nan, Yonezawa, Yamagata 992-8510, Japan, and Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Nobuhiro Hayashi
- Graduate Program of Human Sensing and Functional Sensor Engineering, Yamagata University, 4-3-16, Jo-nan, Yonezawa, Yamagata 992-8510, Japan, and Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
61
|
Chang CY, Chang YF, Wang SM, Tseng YT, Huang KJ, Wang CT. HIV-1 matrix protein repositioning in nucleocapsid region fails to confer virus-like particle assembly. Virology 2008; 378:97-104. [PMID: 18550141 PMCID: PMC7103396 DOI: 10.1016/j.virol.2008.05.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 03/15/2008] [Accepted: 05/12/2008] [Indexed: 11/29/2022]
Abstract
The HIV-1 matrix (MA) protein is similar to nucleocapsid (NC) proteins in its propensity for self-interaction and association with RNA. Here we report on our finding that replacing MA with NC results in the production of wild type (wt)-level RNA and virus-like particles (VLPs). In contrast, constructs containing MA as a substitute for NC are markedly defective in VLP production and form virions with lower densities than wt, even though their RNA content is over 50% that of wt level. We also noted that a ΔMN mutant lacking both MA and NC produces a relatively higher amount of VLPs than those in which MA was substituted for NC. Although ΔMN contains approximately 30% the RNA of wt, it still exhibits virion densities equal (or very similar) to those of wt. The data suggest that neither NC nor RNA are major virion density determinants. Furthermore, we noted that NC(ZIP)—a NC replacement with a leucine zipper dimerization motif—produces VLPs as efficiently as wt. However, the markedly reduced assembly efficiency of NC(ZIP) is associated with the formation of VLPs with densities slightly lower than those of wt following MA removal, suggesting that (a) MA is required to help the inserted leucine zipper motif perform efficient Gag multimerization, and (b) MA plays a role in the virus assembly process.
Collapse
Affiliation(s)
- Ching-Yuan Chang
- Department of Medical Research and Education, Taipei Veterans General Hospital, Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
62
|
Gousset K, Ablan SD, Coren LV, Ono A, Soheilian F, Nagashima K, Ott DE, Freed EO. Real-time visualization of HIV-1 GAG trafficking in infected macrophages. PLoS Pathog 2008; 4:e1000015. [PMID: 18369466 PMCID: PMC2267008 DOI: 10.1371/journal.ppat.1000015] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 01/30/2008] [Indexed: 01/04/2023] Open
Abstract
HIV-1 particle production is driven by the Gag precursor protein Pr55(Gag). Despite significant progress in defining both the viral and cellular determinants of HIV-1 assembly and release, the trafficking pathway used by Gag to reach its site of assembly in the infected cell remains to be elucidated. The Gag trafficking itinerary in primary monocyte-derived macrophages is especially poorly understood. To define the site of assembly and characterize the Gag trafficking pathway in this physiologically relevant cell type, we have made use of the biarsenical-tetracysteine system. A small tetracysteine tag was introduced near the C-terminus of the matrix domain of Gag. The insertion of the tag at this position did not interfere with Gag trafficking, virus assembly or release, particle infectivity, or the kinetics of virus replication. By using this in vivo detection system to visualize Gag trafficking in living macrophages, Gag was observed to accumulate both at the plasma membrane and in an apparently internal compartment that bears markers characteristic of late endosomes or multivesicular bodies. Significantly, the internal Gag rapidly translocated to the junction between the infected macrophages and uninfected T cells following macrophage/T-cell synapse formation. These data indicate that a population of Gag in infected macrophages remains sequestered internally and is presented to uninfected target cells at a virological synapse.
Collapse
Affiliation(s)
- Karine Gousset
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Sherimay D. Ablan
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Lori V. Coren
- AIDS Vaccine Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland, United States of America
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Ferri Soheilian
- Image Analysis Laboratory, Advanced Technology Program, SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Kunio Nagashima
- Image Analysis Laboratory, Advanced Technology Program, SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - David E. Ott
- AIDS Vaccine Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland, United States of America
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, United States of America
| |
Collapse
|
63
|
Abstract
Virus particle formation of HIV-1 is driven by the viral structural protein Gag. In most cell types including T cells, Gag assembles into virus particles at the plasma membrane whereas, in HIV-1-infected macrophages, Gag and virus particles have been shown to accumulate in intracellular vesicles. At the moment, what causes this difference between cell types remains unknown. However, recent findings on the relationships between Gag and the cellular membrane system have substantially increased our understanding of the mechanisms by which sites of virus assembly are determined. I will review our current knowledge regarding the roles played by endosomal trafficking pathways, membrane microdomains, and plasma membrane lipids, and discuss the physiological significance of the interactions between Gag and specific membrane structures.
Collapse
|
64
|
Hearps AC, Wagstaff KM, Piller SC, Jans DA. The N-terminal basic domain of the HIV-1 matrix protein does not contain a conventional nuclear localization sequence but is required for DNA binding and protein self-association. Biochemistry 2008; 47:2199-210. [PMID: 18225865 DOI: 10.1021/bi701360j] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The HIV p17 or matrix (MA) protein has long been implicated in the process of nuclear import of the HIV genome and thus the ability of the virus to infect nondividing cells such as macrophages. While it has been demonstrated that MA is not absolutely required for this process, debate continues to surround the subcellular targeting properties of MA and its potential contribution to nuclear import of the HIV cDNA. Through the use of in vitro techniques we have determined that, despite the ability of MA to interact with importins, the full-length protein fails to enter the nucleus of cells. While MA does contain a region of basic amino acids within its N-terminus which can confer nuclear accumulation of a fusion protein, we show that this is due to nuclear retention mediated by DNA binding and does not represent facilitated import. Importantly, we show that the 26KK residues of MA, previously thought to be part of a nuclear localization sequence, are absolutely required for a number of MA's functions including its ability to bind DNA and RNA and its propensity to form high-order multimers/protein aggregates. The results presented here indicate that the N-terminal basic domain of MA does not appear likely to play a role in HIV cDNA nuclear import; rather this region appears to be a crucial structural and functional motif whose integrity is required for a number of other roles performed by MA during viral infection.
Collapse
Affiliation(s)
- Anna C Hearps
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
65
|
Interaction between the human immunodeficiency virus type 1 Gag matrix domain and phosphatidylinositol-(4,5)-bisphosphate is essential for efficient gag membrane binding. J Virol 2007; 82:2405-17. [PMID: 18094158 DOI: 10.1128/jvi.01614-07] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) particle assembly mediated by the viral structural protein Gag occurs predominantly on the plasma membrane (PM). Although it is known that the matrix (MA) domain of Gag plays a major role in PM localization, molecular mechanisms that determine the location of assembly remain to be elucidated. We observed previously that overexpression of polyphosphoinositide 5-phosphatase IV (5ptaseIV) that depletes PM phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] impairs virus particle production and redirects processed Gag to intracellular compartments. In this study, we examined the impact of PI(4,5)P(2) depletion on the subcellular localization of the entire Gag population using Gag-fluorescent protein chimeras. Upon 5ptaseIV overexpression, in addition to perinuclear localization, Gag also showed a hazy cytosolic signal, suggesting that PI(4,5)P(2) depletion impairs Gag membrane binding. Indeed, Gag was less membrane bound in PI(4,5)P(2)-depleted cells, as assessed by biochemical analysis. These observations are consistent with the hypothesis that Gag interacts with PI(4,5)P(2). To examine a putative Gag interaction with PI(4,5)P(2), we developed an in vitro binding assay using full-length myristoylated Gag and liposome-associated PI(4,5)P(2). Using this assay, we observed that PI(4,5)P(2) significantly enhances liposome binding of wild-type Gag. In contrast, a Gag derivative lacking MA did not require PI(4,5)P(2) for efficient liposome binding. To analyze the involvement of MA in PI(4,5)P(2) binding further, we examined MA basic amino acid substitution mutants. These mutants, previously shown to localize in perinuclear compartments, bound PI(4,5)P(2)-containing liposomes weakly. Altogether, these results indicate that HIV-1 Gag binds PI(4,5)P(2) on the membrane and that the MA basic domain mediates this interaction.
Collapse
|
66
|
Saad JS, Kim A, Ghanam RH, Dalton AK, Vogt VM, Wu Z, Lu W, Summers MF. Mutations that mimic phosphorylation of the HIV-1 matrix protein do not perturb the myristyl switch. Protein Sci 2007; 16:1793-7. [PMID: 17656588 PMCID: PMC2203364 DOI: 10.1110/ps.072987607] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent studies indicate that the matrix domain (MA) of the HIV-1 Gag polyprotein directs Gag to the plasma membrane for virus assembly via a phosphatidylinositol-4,5-bisphosphate (PIP(2))-dependent myristyl switch mechanism. MA also has been reported to direct nuclear trafficking via nuclear import and export functions, and some studies suggest that nuclear targeting may be regulated by MA phosphorylation (although this proposal remains controversial). We have prepared and studied a series of HIV-1 MA mutants containing Ser-to-Asp substitutions designed to mimic phosphorylation, including substitutions in regions of the protein involved in protein-protein interactions and known to influence the myristyl switch (S6D, S9D, S67D, S72D, S6D/S9D, and S67D/S72D). We were particularly interested in substitutions at residue 6, since conservative mutations adjacent to this site strongly perturb the myristyl switch equilibrium, and this site had not been genetically tested due to its involvement in post-translational myristylation. Our studies reveal that none of these mutations, including S6D, influences the PIP(2)- or concentration-dependent myristyl switch equilibrium. In addition, all of the mutants bind liposomes with affinities that are only slightly reduced in comparison with the native protein. In contrast, the myristylated mutants bind liposomes with substantially greater affinity than that of the native, unmyristylated protein. These findings support the hypothesis that phosphorylation is unlikely to significantly influence membrane-mediated intracellular trafficking.
Collapse
Affiliation(s)
- Jamil S Saad
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Morikawa Y, Goto T, Yasuoka D, Momose F, Matano T. Defect of human immunodeficiency virus type 2 Gag assembly in Saccharomyces cerevisiae. J Virol 2007; 81:9911-21. [PMID: 17609278 PMCID: PMC2045428 DOI: 10.1128/jvi.00027-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have previously shown that the expression of human immunodeficiency virus type 1 (HIV-1) Gag protein in Saccharomyces cerevisiae spheroplasts produces Gag virus-like particles (VLPs) at the plasma membrane, indicating that yeast has all the host factors necessary for HIV-1 Gag assembly. Here we expand the study by using diverse primate lentiviral Gags and show that yeast does not support the production of HIV-2 or simian immunodeficiency virus SIVmac Gag VLPs but allows the production of SIVagm and SIVmnd Gag VLPs. Particle budding was observed at the surfaces of cells expressing SIVagm and SIVmnd Gags, but cells expressing HIV-2 and SIVmac Gags showed only membrane-ruffling structures, although they were accompanied with electron-dense submembrane layers, suggesting arrest at an early stage of particle budding. Comparison of HIV-1 and HIV-2 Gag expression revealed broadly equivalent levels of intracellular Gag expression and Gag N-terminal myristoylation in yeast. Both Gags showed the same membrane-binding ability and were incorporated into lipid raft fractions at a physiological concentration of salt. HIV-2 Gag, however, failed to form a high-order multimer and easily dissociated from the membrane, phenomena which were not observed in higher eukaryotic cells. A series of chimeric Gags between HIV-1 and HIV-2 and Gag mutants with amino acid substitutions revealed that a defined region in helix 2 of HIV-2 MA (located on the membrane-binding surface of MA) affects higher-order Gag assembly and particle production in yeast. Together, these data suggest that yeast may lack a host factor(s) for HIV-2 and SIVmac Gag assembly.
Collapse
Affiliation(s)
- Yuko Morikawa
- Kitasato Institute for Life Sciences and Graduate School for Infection Control, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan.
| | | | | | | | | |
Collapse
|
68
|
Stansell E, Apkarian R, Haubova S, Diehl WE, Tytler EM, Hunter E. Basic residues in the Mason-Pfizer monkey virus gag matrix domain regulate intracellular trafficking and capsid-membrane interactions. J Virol 2007; 81:8977-88. [PMID: 17596311 PMCID: PMC1951391 DOI: 10.1128/jvi.00657-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mason-Pfizer monkey virus (M-PMV) capsids that have assembled in the cytoplasm must be transported to and associate with the plasma membrane prior to being enveloped by a lipid bilayer during viral release. Structural studies have identified a positive-charge density on the membrane-proximal surface of the matrix (MA) protein component of the Gag polyprotein. To investigate if basic amino acids in MA play a role in intracellular transport and capsid-membrane interactions, mutants were constructed in which lysine and arginine residues (R10, K16, K20, R22, K25, K27, K33, and K39) potentially exposed on the capsid surface were replaced singly and in pairs by alanine. A majority of the charge substitution mutants were released less efficiently than the wild type. Electron microscopy of mutant Gag-expressing cells revealed four distinct phenotypes: K16A and K20A immature capsids accumulated on and budded into intracellular vesicles; R10A, K27A, and R22A capsid transport was arrested at the cellular cortical actin network, while K25A immature capsids were dispersed throughout the cytoplasm and appeared to be defective at an earlier stage of intracellular transport; and the remaining mutant (K33A and K39A) capsids accumulated at the inner surface of the plasma membrane. All mutants that released virions exhibited near-wild-type infectivity in a single-round assay. Thus, basic amino acids in the M-PMV MA define both cellular location and efficiency of virus release.
Collapse
MESH Headings
- Amino Acid Substitution/genetics
- Amino Acids, Basic/genetics
- Amino Acids, Basic/physiology
- Animals
- COS Cells
- Cell Line
- Cell Membrane/ultrastructure
- Cell Membrane/virology
- Chlorocebus aethiops
- Cytoplasm/ultrastructure
- Cytoplasm/virology
- Cytoplasmic Vesicles/ultrastructure
- Cytoplasmic Vesicles/virology
- Gene Products, gag/chemistry
- Gene Products, gag/genetics
- Gene Products, gag/metabolism
- Humans
- Mason-Pfizer monkey virus/genetics
- Mason-Pfizer monkey virus/physiology
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Models, Molecular
- Mutagenesis, Site-Directed
- Protein Binding
- Protein Structure, Tertiary
- Protein Transport/genetics
Collapse
Affiliation(s)
- Elizabeth Stansell
- Department of Pathology and Emory Vaccine Center at Yerkes Regional Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | | | | | | | | | | |
Collapse
|
69
|
Chang YF, Wang SM, Huang KJ, Wang CT. Mutations in capsid major homology region affect assembly and membrane affinity of HIV-1 Gag. J Mol Biol 2007; 370:585-97. [PMID: 17532005 DOI: 10.1016/j.jmb.2007.05.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 04/30/2007] [Accepted: 05/03/2007] [Indexed: 11/22/2022]
Abstract
We introduced mutations into the HIV-1 major homology region (MHR; capsids 153-172) and adjacent C-terminal region to analyze their effects on virus-like particle (VLP) assembly, membrane affinity, and the multimerization of the Gag structural protein. Results indicate that alanine substitutions at K158, F168 or E175 significantly diminished VLP production. All assembly-defective Gag mutants had markedly reduced membrane-binding capacities, but results from a velocity sedimentation analysis suggest that most of the membrane-bound Gag proteins were present, primarily in a higher-order multimerized form. The membrane-binding capacity of the K158A, F168A, and E175A Gag proteins increased sharply upon removal of the MA globular domain. While demonstrating improved multimerization capability, the two MA-deleted versions of F168A and E175A did not show marked improvement in VLP production, presumably due to a defect in association with the raft-like membrane domain. However, K158A bound to detergent-resistant raft-like membrane; this was accompanied by noticeably improved VLP production following MA removal. Our results suggest that the HIV-1 MHR and adjacent downstream region facilitate multimerization and tight Gag packing. Enhanced Gag multimerization may help expose the membrane-binding domain and thus improve Gag membrane binding, thereby promoting Gag multimerization into higher-order assembly products.
Collapse
Affiliation(s)
- Yu-Fen Chang
- Institute of Public Health, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | | | | | | |
Collapse
|
70
|
Ono A, Waheed AA, Freed EO. Depletion of cellular cholesterol inhibits membrane binding and higher-order multimerization of human immunodeficiency virus type 1 Gag. Virology 2007; 360:27-35. [PMID: 17095032 PMCID: PMC1945131 DOI: 10.1016/j.virol.2006.10.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 09/14/2006] [Accepted: 10/05/2006] [Indexed: 12/30/2022]
Abstract
Recent studies have suggested that the plasma membrane contains cholesterol-enriched microdomains known as lipid rafts. HIV-1 Gag binds raft-rich regions of the plasma membrane, and cholesterol depletion impairs HIV-1 particle production. In this study, we sought to define the block imposed by cholesterol depletion. We observed that membrane binding and higher-order multimerization of Gag were markedly reduced upon cholesterol depletion. Fusing to Gag a highly efficient, heterologous membrane-binding sequence reversed the defects in Gag-membrane binding and multimerization caused by cholesterol depletion, indicating that the impact of reducing the membrane cholesterol content on Gag-membrane binding and multimerization can be circumvented by increasing the affinity of Gag for membrane. Virus release efficiency of this Gag derivative was minimally affected by cholesterol depletion. Altogether, these results are consistent with the hypothesis that cholesterol-enriched membrane microdomains promote HIV-1 particle production by facilitating both Gag-membrane binding and Gag multimerization.
Collapse
Affiliation(s)
- Akira Ono
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| | | | | |
Collapse
|
71
|
Nicholson MG, Barber SA, Clements JE. The SIVmac239 Pr55Gag isoform, SIV p43, suppresses proteolytic cleavage of Pr55Gag. Virology 2007; 360:84-91. [PMID: 17092530 PMCID: PMC1855267 DOI: 10.1016/j.virol.2006.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 08/03/2006] [Accepted: 10/03/2006] [Indexed: 10/23/2022]
Abstract
In human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) the gag gene encodes the precursor polyprotein Pr55Gag, which is cleaved by the viral protease to produce the major structural proteins. Recently, it has been shown that HIV and SIV gag RNAs contain internal ribosome entry sites (IRESs) that mediate translation of Pr55Gag [Pr57Gag in HIV type 2 (HIV-2)] isoforms. Previously, we demonstrated that SIVmac239 p43(-), a mutant that does not express the Pr55Gag isoform, SIV p43, replicates more efficiently than wild-type (WT) SIVmac239 in cell culture. In this study, we characterize SIVmac239 p43(-) virion production and demonstrate that, in the absence of SIV p43, cleavage of Pr55Gag is increased in budded virions, resulting in a higher percentage of mature particles. Additionally, intracellular cleavage of Pr55Gag is increased in SIVmac239 p43(-), suggesting that SIV p43 suppresses premature cleavage of Pr55Gag by the viral protease.
Collapse
Affiliation(s)
- Michael G. Nicholson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Sheila A. Barber
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Janice E. Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
72
|
Dalton AK, Ako-Adjei D, Murray PS, Murray D, Vogt VM. Electrostatic interactions drive membrane association of the human immunodeficiency virus type 1 Gag MA domain. J Virol 2007; 81:6434-45. [PMID: 17392361 PMCID: PMC1900125 DOI: 10.1128/jvi.02757-06] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly of most retroviruses occurs at the plasma membrane. Membrane association is directed by MA, the N-terminal domain of the Gag structural protein. For human immunodeficiency virus type 1 (HIV-1), this association is mediated in part by a myristate fatty acid modification. Conflicting evidence has been presented on the relative importance of myristoylation, of ionic interactions between protein and membrane, and of Gag multimerization in membrane association in vivo. We addressed these questions biochemically by determining the affinity of purified myristoylated HIV-1 MA for liposomes of defined composition, both for monomeric and for dimeric forms of the protein. Myristoylation increases the barely detectable intrinsic affinity of the apo-protein for liposomes by only 10-fold, and the resulting affinity is still weak, similar to that of the naturally nonmyristoylated MA of Rous sarcoma virus. Membrane binding of HIV-1 MA is absolutely dependent on the presence of negatively charged lipid and is abrogated at high ionic strength. Forced dimerization of MA increases its membrane affinity by several orders of magnitude. When green fluorescent protein fusions of monomeric or dimeric MA are expressed in cells, the dimeric but not the monomeric protein becomes strongly membrane associated. Computational modeling supports these results and suggests a molecular mechanism for the modest effect of myristoylation on binding, wherein the membrane provides a hydrophobic environment for the myristate that is energetically similar to that provided by the protein. Overall, the results imply that the driving force for membrane association stems largely from ionic interactions between multimerized Gag and negatively charged phospholipids.
Collapse
Affiliation(s)
- Amanda K Dalton
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
73
|
Abstract
The HIV-1 structural protein matrix (MA) is involved in a number of essential steps during infection and appears to possess multiple, seemingly conflicting targeting signals. Although MA has long been known to be crucial for virion assembly, details regarding this function, and the domains responsible for mediating it, are still emerging. MA has also been implicated in nuclear import of HIV cDNA and is purported to contain a nuclear targeting signal. Little is known about how these opposing plasma membrane and nuclear targeting signals are regulated and which signals predominate at various stages of infection. Additionally, MA has recently been implicated in a number of novel roles during infection including viral entry/uncoating, cytoskeletal-mediated transport, and targeting viral assembly to lipid rafts. Here we discuss our current understanding of MA's functions during infection and explore the recent advancements made in elucidating the mechanism of these processes. It appears that MA possesses a cache of targeting signals that are likely to be regulated throughout the infectious cycle by a combination of structural and biochemical modifications including phosphorylation, myristoylation, and multimerization. The ability of HIV to modify the properties of MA at specific stages of infection is central to the multifunctional behavior of MA and the efficiency of HIV infection. The recently reported success of drugs specifically designed to block MA function (Haffar O, Dubrovsky L, and Lowe R et al. J Virol 2005;79:13028-13036) confirms the importance of this protein for HIV infection and highlights a potentially new avenue in multivalent drug therapy.
Collapse
Affiliation(s)
- Anna C Hearps
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | | |
Collapse
|
74
|
Abstract
Retroviruses make a long and complex journey from outside the cell to the nucleus in the early stages of infection, and then an equally long journey back out again in the late stages of infection. Ongoing efforts are identifying an enormous array of cellular proteins that are used by the viruses in the course of their travels. These host factors are potential new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute HHSC 1310c, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York, New York 10032, USA.
| |
Collapse
|
75
|
Ribet D, Harper F, Dewannieux M, Pierron G, Heidmann T. Murine MusD retrotransposon: structure and molecular evolution of an "intracellularized" retrovirus. J Virol 2007; 81:1888-98. [PMID: 17151128 PMCID: PMC1797557 DOI: 10.1128/jvi.02051-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 11/21/2006] [Indexed: 11/20/2022] Open
Abstract
We had previously identified active autonomous copies of the MusD long terminal repeat-retrotransposon family, which have retained transpositional activity. These elements are closely related to betaretroviruses but lack an envelope (env) gene. Here we show that these elements encode strictly intracellular virus-like particles that can unambiguously be identified by electron microscopy. We demonstrate intracellular maturation of the particles, with a significant proportion of densely packed cores for wild-type MusD but not for a protease mutant. We show that the molecular origin of this unexpected intracellular localization is solely dependent on the N-terminal part of the Gag protein, which lacks a functional sequence for myristoylation and plasma membrane targeting: replacement of the N-terminal domain of the MusD matrix protein by that of its closest relative-the Mason-Pfizer monkey virus-led to targeting of the MusD Gag to the plasma membrane, with viral particles budding and being released into the cell supernatant. These particles can further be pseudotyped with a heterologous envelope protein and become infectious, thus "reconstituting" a functional retrovirus prone to proviral insertions. Consistent with its retroviral origin, a sequence with a constitutive transport element-like activity can further be identified at the MusD 3' untranslated region. A molecular scenario is proposed that accounts for the transition, during evolution, from an ancestral infectious betaretrovirus to the strictly intracellular MusD retrotransposon, involving not only the loss of the env gene but also an inability to escape the cell--via altered targeting of the Gag protein--resulting de facto in the generation of a very successful "intracellularized" insertional mutagen.
Collapse
Affiliation(s)
- David Ribet
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, UMR 8122 CNRS, Institut Gustave Roussy, 39 Rue Camille Desmoulins, 94805 Villejuif Cedex, France
| | | | | | | | | |
Collapse
|
76
|
Adamson CS, Freed EO. Human Immunodeficiency Virus Type 1 Assembly, Release, and Maturation. ADVANCES IN PHARMACOLOGY 2007; 55:347-87. [PMID: 17586320 DOI: 10.1016/s1054-3589(07)55010-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Catherine S Adamson
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | | |
Collapse
|
77
|
Saad JS, Loeliger E, Luncsford P, Liriano M, Tai J, Kim A, Miller J, Joshi A, Freed EO, Summers MF. Point mutations in the HIV-1 matrix protein turn off the myristyl switch. J Mol Biol 2006; 366:574-85. [PMID: 17188710 PMCID: PMC1853300 DOI: 10.1016/j.jmb.2006.11.068] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 11/21/2006] [Accepted: 11/22/2006] [Indexed: 11/18/2022]
Abstract
During the late phase of human immunodeficiency virus type-1 (HIV-1) replication, newly synthesized retroviral Gag proteins are targeted to lipid raft regions of specific cellular membranes, where they assemble and bud to form new virus particles. Gag binds preferentially to the plasma membrane (PM) of most hematopoietic cell types, a process mediated by interactions between the cellular PM marker phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P(2)) and Gag's N-terminally myristoylated matrix (MA) domain. We recently demonstrated that PI(4,5)P(2) binds to a conserved cleft on MA and promotes myristate exposure, suggesting a role as both a direct membrane anchor and myristyl switch trigger. Here we show that PI(4,5)P(2) is also capable of binding to MA proteins containing point mutations that inhibit membrane binding in vitro, and in vivo, including V7R, L8A and L8I. However, these mutants do not exhibit PI(4,5)P(2) or concentration-dependent myristate exposure. NMR studies of V7R and L8A MA reveal minor structural changes that appear to be responsible for stabilizing the myristate-sequestered (myr(s)) species and inhibiting exposure. Unexpectedly, the myristyl group of a revertant mutant with normal PM targeting properties (V7R,L21K) is also tightly sequestered and insensitive to PI(4,5)P(2) binding. This mutant binds PI(4,5)P(2) with twofold higher affinity compared with the native protein, suggesting a potential compensatory mechanism for membrane binding.
Collapse
Affiliation(s)
- Jamil S. Saad
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 USA
| | - Erin Loeliger
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 USA
| | - Paz Luncsford
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 USA
| | - Mellisa Liriano
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 USA
| | - Janet Tai
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 USA
| | - Andrew Kim
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 USA
| | - Jaime Miller
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 USA
| | - Anjali Joshi
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702-1201
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702-1201
| | - Michael F. Summers
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 USA
- * Corresponding author: Phone: (410)-455-2527; FAX: (410)-455-1174;
| |
Collapse
|
78
|
Affiliation(s)
- Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702-1201, USA.
| |
Collapse
|
79
|
Saad JS, Miller J, Tai J, Kim A, Ghanam RH, Summers MF. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci U S A 2006; 103:11364-9. [PMID: 16840558 PMCID: PMC1544092 DOI: 10.1073/pnas.0602818103] [Citation(s) in RCA: 456] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the late phase of HIV type 1 (HIV-1) replication, newly synthesized retroviral Gag proteins are targeted to the plasma membrane of most hematopoietic cell types, where they colocalize at lipid rafts and assemble into immature virions. Membrane binding is mediated by the matrix (MA) domain of Gag, a 132-residue polypeptide containing an N-terminal myristyl group that can adopt sequestered and exposed conformations. Although exposure is known to promote membrane binding, the mechanism by which Gag is targeted to specific membranes has yet to be established. Recent studies have shown that phosphatidylinositol (PI) 4,5-bisphosphate [PI(4,5)P(2)], a factor that regulates localization of cellular proteins to the plasma membrane, also regulates Gag localization and assembly. Here we show that PI(4,5)P(2) binds directly to HIV-1 MA, inducing a conformational change that triggers myristate exposure. Related phosphatidylinositides PI, PI(3)P, PI(4)P, PI(5)P, and PI(3,5)P(2) do not bind MA with significant affinity or trigger myristate exposure. Structural studies reveal that PI(4,5)P(2) adopts an "extended lipid" conformation, in which the inositol head group and 2'-fatty acid chain bind to a hydrophobic cleft, and the 1'-fatty acid and exposed myristyl group bracket a conserved basic surface patch previously implicated in membrane binding. Our findings indicate that PI(4,5)P(2) acts as both a trigger of the myristyl switch and a membrane anchor and suggest a potential mechanism for targeting Gag to membrane rafts.
Collapse
Affiliation(s)
- Jamil S. Saad
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Jaime Miller
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Janet Tai
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Andrew Kim
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Ruba H. Ghanam
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Michael F. Summers
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
80
|
Hübner W, Chen BK. Inhibition of viral assembly in murine cells by HIV-1 matrix. Virology 2006; 352:27-38. [PMID: 16750235 DOI: 10.1016/j.virol.2006.04.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 11/28/2005] [Accepted: 04/06/2006] [Indexed: 11/29/2022]
Abstract
In human cells, the N-terminal matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) Gag targets assembly to specific membrane compartments. In murine fibroblasts, membrane targeting of Gag and assembly of HIV-1 are inefficient. These deficiencies are relieved by replacement of HIV-1 MA with murine leukemia virus (MLV) MA in chimeric proviruses. In this study, we examined chimeric HIV-1 carrying tandem MLV and HIV-1 MA domains and found that the addition of MLV MA to the N-terminus of HIV-1 Gag enhanced membrane binding in murine cells, but was not sufficient to stimulate virus production. Removal of HIV MA was required to observe more efficient Gag processing and increased virus production in murine cells. Deletion of the globular head of MA also alleviated the blocks to membrane binding and Gag processing in murine cells, yet did not lead to increased virus production. These MA-dependent, cell-type-specific phenotypes suggest that host factors interact with the globular head of MA to regulate membrane binding and additional membrane-independent step(s) required for assembly.
Collapse
Affiliation(s)
- Wolfgang Hübner
- Department of Pharmacology and Biological Chemistry, Center for Immunobiology, Mount Sinai School of Medicine, One Gustave Levy Place Box 1215, New York, NY 10029, USA
| | | |
Collapse
|
81
|
Fiorentini S, Becker PD, Marini E, Marconi P, Avolio M, Tosti G, Link C, Manservigi R, Guzman CA, Caruso A. HIV-1 Matrix Protein p17 Modulatesin VivoPreactivated Murine T-Cell Response and Enhances the Induction of Systemic and Mucosal Immunity Against Intranasally Co-administered Antigens. Viral Immunol 2006; 19:177-88. [PMID: 16817760 DOI: 10.1089/vim.2006.19.177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
HIV-1 p17 is a viral cytokine that acts on preactivated, but not on resting, human T cells promoting proliferation, proinflammatory cytokines release and HIV-1 replication, after binding to a cellular receptor (p17R). Here, we demonstrate that p17Rs are expressed on activated murine T cells, which respond to p17 stimulation similarly to their human counterpart. We developed a mouse model of abortive HSV-1 infection to induce T cell activation in vivo. Preactivated cells expressed p17Rs and were highly susceptible to p17 stimulation, which triggered proinflammatory cytokines release and promoted CD4+ T cell survival and expansion. Coculture of in vivo activated splenocytes with macrophages in the presence of p17 further increased their ability to produce IFN-gamma. The presence of macrophages and activated T cells at mucosal sites prompted us to investigate the immunomodulatory activities of p17 in vivo. Intranasal coadministration of p17 with beta-galactosidase (beta-gal) resulted in improved beta-gal specific cellular and humoral immune responses at systemic and mucosal levels. It is well established that HIV-1 replication is driven in an autocrine/paracrine manner by endogenously produced proinflammatory cytokines. Our results highlight the role of p17 in sustaining cellular activation and inflammation, thereby promoting a permissive microenvironment for HIV-1 replication. In addition, p17 is a promising candidate antigen, exhibiting immunomodulatory/adjuvant properties, that need to be exploited in the development of HIV/AIDS vaccines.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Administration, Intranasal
- Animals
- Chlorocebus aethiops
- Female
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, gag/metabolism
- HIV Antigens/genetics
- HIV Antigens/immunology
- HIV Antigens/metabolism
- HIV-1/immunology
- HIV-1/pathogenicity
- Humans
- Immunity, Mucosal/drug effects
- Lymphocyte Activation/drug effects
- Macrophages, Peritoneal/immunology
- Mice
- Mice, Inbred BALB C
- Receptors, Cell Surface/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Vero Cells
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/metabolism
- Virus Replication
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Simona Fiorentini
- Section of Microbiology, Department of Experimental and Applied Medicine, Medical School, University of Brescia, Brescia, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Leung J, Yueh A, Appah FSK, Yuan B, de los Santos K, Goff SP. Interaction of Moloney murine leukemia virus matrix protein with IQGAP. EMBO J 2006; 25:2155-66. [PMID: 16628219 PMCID: PMC1462987 DOI: 10.1038/sj.emboj.7601097] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 03/27/2006] [Indexed: 11/08/2022] Open
Abstract
The matrix protein (MA) of the Moloney murine leukemia virus (M-MuLV) was found to interact with IQGAP1, a prominent regulator of the cytoskeleton. Mutational studies defined residues of MA critical for the interaction, and tests of viruses carrying MA mutations revealed a near-perfect correlation between binding and virus replication. The replication-defective mutants showed defects in both early and late stages of the life cycle. Four viable second-site revertant viruses were isolated from three different replication-defective parental mutants, and in all cases the interaction with IQGAP1 was restored by the suppressor mutations. The interaction of MA and IQGAP1 was readily detected in vitro and in vivo. Virus replication was potently inhibited by a C-terminal fragment of IQGAP1, and impaired by RNAi knockdown of IQGAP1 and 2. We suggest that the IQGAPs link the virus to the cytoskeleton for trafficking both into and out of the cell.
Collapse
Affiliation(s)
- Juliana Leung
- Integrated Program in Cellular, Molecular, and Biophysical Studies, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Andrew Yueh
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Frank S K Appah
- Integrated Program in Cellular, Molecular, and Biophysical Studies, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Bing Yuan
- Integrated Program in Cellular, Molecular, and Biophysical Studies, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kenia de los Santos
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Stephen P Goff
- Integrated Program in Cellular, Molecular, and Biophysical Studies, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
83
|
Dorweiler IJ, Ruone SJ, Wang H, Burry RW, Mansky LM. Role of the human T-cell leukemia virus type 1 PTAP motif in Gag targeting and particle release. J Virol 2006; 80:3634-43. [PMID: 16537631 PMCID: PMC1440400 DOI: 10.1128/jvi.80.7.3634-3643.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) Gag is targeted to the plasma membrane for particle assembly and release. How HTLV-1 Gag targeting occurs is not well understood. The PPPY and PTAP motifs were previously shown to be involved in HTLV-1 particle release with PTAP playing a more subtle role in virus budding. These L domains function through the interaction with host cellular proteins normally involved in multivesicular body (MVB) morphogenesis. The plasma membrane pathway rather than the MVB pathway was found to be the primary pathway for HTLV-1 particle release in HeLa cells. Intriguingly, disruption of the PTAP motif led to a defect in the targeting of Gag from the plasma membrane to CD63-positive MVBs. Particles or particle buds were observed to be associated with MVBs by electron microscopy, implying that Gag targeting to the MVB resulted in particle budding. Blocking clathrin-dependent endocytosis was found not to influence localization of the HTLV-1 Gag PTAP mutant, indicating that Gag did not reach the MVBs through clathrin-dependent endocytosis. Our observations imply that the interaction between Gag and TSG101 is not required for Gag targeting to the MVB. Overexpression of dynamitin p50 increased particle release, suggesting that there was an increase in the intracellular transport of MVBs to the cell periphery by the utilization of the dynein-dynactin motor complex. Intriguingly, virus particle release with this mutant was reduced by 20-fold compared to that of wild type in HeLa cells, which is in marked contrast to the less-than-twofold defect observed for particle production of the HTLV-1 Gag PTAP mutant from 293T cells. These results indicate that the role of the PTAP motif in L domain function is cell type dependent.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Antibodies, Monoclonal/metabolism
- Antigens, CD/metabolism
- Antigens, CD/ultrastructure
- Autoantigens
- Cell Membrane/metabolism
- Cell Membrane/virology
- Dynactin Complex
- Fluorescent Antibody Technique, Indirect
- Gene Products, gag/chemistry
- Gene Products, gag/genetics
- Gene Products, gag/metabolism
- Gene Products, gag/ultrastructure
- Genetic Markers
- HeLa Cells
- Human T-lymphotropic virus 1/chemistry
- Human T-lymphotropic virus 1/genetics
- Human T-lymphotropic virus 1/physiology
- Human T-lymphotropic virus 1/ultrastructure
- Humans
- Immunohistochemistry
- Membrane Proteins/metabolism
- Membrane Proteins/ultrastructure
- Microscopy, Confocal
- Microscopy, Electron
- Microtubule-Associated Proteins/metabolism
- Mutation
- Plasmids
- Protein Structure, Tertiary
- Structure-Activity Relationship
- Transfection
- Transferrin/metabolism
- Vesicular Transport Proteins
- Virion/physiology
- Virion/ultrastructure
- Virus Assembly
Collapse
Affiliation(s)
- Irene J Dorweiler
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
84
|
Davis MR, Jiang J, Zhou J, Freed EO, Aiken C. A mutation in the human immunodeficiency virus type 1 Gag protein destabilizes the interaction of the envelope protein subunits gp120 and gp41. J Virol 2006; 80:2405-17. [PMID: 16474147 PMCID: PMC1395406 DOI: 10.1128/jvi.80.5.2405-2417.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Gag protein of human immunodeficiency virus type 1 (HIV-1) associates with the envelope protein complex during virus assembly. The available evidence indicates that this interaction involves recognition of the gp41 cytoplasmic tail (CT) by the matrix protein (MA) region of Pr55(Gag). Here we show that substitution of Asp for Leu at position 49 (L49D) in MA results in a specific reduction in particle-associated gp120 without affecting the levels of gp41. Mutant virions were markedly reduced in single-cycle infectivity despite a relatively modest defect in fusion with target cells. Studies with HIV-1 particles containing decreased levels of envelope proteins suggested that the L49D mutation also inhibits a postentry step in infection. Truncation of the gp41 tail, or pseudotyping by vesicular stomatitis virus glycoprotein, restored both the fusion and infectivity of L49D mutant virions to wild-type levels. Truncation of gp41 also resulted in equivalent levels of gp120 on particles with and without the MA mutation and enhanced the replication of the L49D mutant virus in T cells. The impaired fusion and infectivity of L49D mutant particles were also complemented by a single point mutation in the gp41 CT that disrupted the tyrosine-containing endocytic motif. Our results suggest that an altered interaction between the MA domain of Gag and the gp41 cytoplasmic tail leads to dissociation of gp120 from gp41 during HIV-1 particle assembly, thus resulting in impaired fusion and infectivity.
Collapse
Affiliation(s)
- Melody R Davis
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
| | | | | | | | | |
Collapse
|
85
|
Pisoni G, Bertoni G, Boettcher P, Ponti W, Moroni P. Phylogenetic analysis of the gag region encoding the matrix protein of small ruminant lentiviruses: Comparative analysis and molecular epidemiological applications. Virus Res 2006; 116:159-67. [PMID: 16293335 DOI: 10.1016/j.virusres.2005.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 09/12/2005] [Accepted: 09/28/2005] [Indexed: 11/25/2022]
Abstract
Little sequence information exists on the matrix-protein (MA) encoding region of small ruminant lentiviruses (SRLV). Fifty-two novel sequences were established and permitted a first phylogenetic analysis of this region of the SRLV genome. The variability of the MA encoding region is higher compared to the gag region encoding the capsid protein and surprisingly close to that reported for the env gene. In contrast to primate lentiviruses, the deduced amino acid sequences of the N- and C-terminal domains of MA are variable. This permitted to pinpoint a basic domain in the N-terminal domain that is conserved in all lentiviruses and likely to play an important functional role. Additionally, a seven amino acid insertion was detected in all MVV strains, which may be used to differentiate CAEV and MVV isolates. A molecular epidemiology analysis based on these sequences indicates that the Italian lentivirus strains are closely related to each other and to the CAEV-CO strain, a prototypic strain isolated three decades ago in the US. This suggests a common origin of the SRLV circulating in the monitored flocks, possibly related to the introduction of infected goats in a negative population. Finally, this study shows that the MA region is suitable for phylogenetic studies and may be applied to monitor SRLV eradication programs.
Collapse
Affiliation(s)
- Giuliano Pisoni
- Department of Veterinary Pathology, Hygiene and Public Health, University of Milano, via Celoria 10, 20133 Milano, Italy.
| | | | | | | | | |
Collapse
|
86
|
Villanueva RA, Rouillé Y, Dubuisson J. Interactions between virus proteins and host cell membranes during the viral life cycle. ACTA ACUST UNITED AC 2006; 245:171-244. [PMID: 16125548 PMCID: PMC7112339 DOI: 10.1016/s0074-7696(05)45006-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structure and function of cells are critically dependent on membranes, which not only separate the interior of the cell from its environment but also define the internal compartments. It is therefore not surprising that the major steps of the life cycle of viruses of animals and plants also depend on cellular membranes. Indeed, interactions of viral proteins with host cell membranes are important for viruses to enter into host cells, replicate their genome, and produce progeny particles. To replicate its genome, a virus first needs to cross the plasma membrane. Some viruses can also modify intracellular membranes of host cells to create a compartment in which genome replication will take place. Finally, some viruses acquire an envelope, which is derived either from the plasma membrane or an internal membrane of the host cell. This paper reviews recent findings on the interactions of viral proteins with host cell membranes during the viral life cycle.
Collapse
Affiliation(s)
- Rodrigo A Villanueva
- CNRS-UPR2511, Institut de Biologie de Lille, Institut Pasteur de Lille, 59021 Lille Cedex, France
| | | | | |
Collapse
|
87
|
Young KR, Ross TM. Elicitation of immunity to HIV type 1 Gag is determined by Gag structure. AIDS Res Hum Retroviruses 2006; 22:99-108. [PMID: 16438652 DOI: 10.1089/aid.2006.22.99] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gag gene of the human immunodeficiency virus type 1 (HIV-1) encodes for viral proteins that self-assemble into viral particles. The primary Gag gene products (capsid, matrix, and nucleocapsid) elicit humoral and cellular immune responses during natural infection, and these proteins are included in many preclinical and clinical HIV/AIDS vaccines. However, the structure (particulate or soluble) of these proteins may influence the immunity elicited during vaccination. In this study, mice were inoculated with four different HIV-1 Gag vaccines to compare the elicitation of immune responses by the same Gag immunogen presented to the immune system in different forms. The immunity elicited by particles produced in vivo by DNA plasmid (pGag) was compared to these same proteins retained intracellularly (pGag(DMyr)). In addition, the elicitation of anti- Gag immunity by Gag(p55) virus-like particles (VLPs) or soluble, nonparticulate Gag(p55) proteins was compared. Enhanced cellular responses, but almost no anti-Gag antibodies, were elicited with intracellularly retained Gag proteins. In contrast, DNA vaccines expressing VLPs elicited both anti-Gag antibodies and cellular responses. Mice vaccinated with purified Gag(p55) VLPs elicited robust humoral and cellular immune responses, which were significantly higher than the immunity elicited by soluble, nonparticulate Gag(p55) protein. Overall, purified particles of Gag effectively elicited the broadest and highest titers of anti-Gag immunity. The structural form of Gag influences the elicited immune responses and should be considered in the design of HIV/AIDS vaccines.
Collapse
Affiliation(s)
- Kelly R Young
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, 15261, USA
| | | |
Collapse
|
88
|
Becker PD, Fiorentini S, Link C, Tosti G, Ebensen T, Caruso A, Guzmán CA. The HIV-1 matrix protein p17 can be efficiently delivered by intranasal route in mice using the TLR 2/6 agonist MALP-2 as mucosal adjuvant. Vaccine 2005; 24:5269-76. [PMID: 16713032 DOI: 10.1016/j.vaccine.2005.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 11/02/2005] [Accepted: 11/04/2005] [Indexed: 11/19/2022]
Abstract
The HIV-1 matrix protein p17 is a structural protein essential in the life cycle of HIV, by acting as a virokine/immunomodulator that supports viral replication and spreading. The presence of p17-specific antibodies and CTL responses correlates with slower progression to AIDS. Intranasal vaccination with p17 and the TLR2/6 agonist MALP-2 stimulates strong humoral and cellular immune responses at systemic and mucosal levels. The antibodies blocked p17 binding to its receptor, which is a critical step for the exertion of its virokine activity. Our results suggest that p17 and MALP-2 are attractive candidates for incorporation in mucosal vaccines against HIV/AIDS.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/immunology
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Animals
- Female
- Gene Products, gag/administration & dosage
- Gene Products, gag/chemical synthesis
- Gene Products, gag/chemistry
- Gene Products, gag/immunology
- HIV Antibodies/blood
- HIV Antibodies/metabolism
- HIV Antigens/administration & dosage
- HIV Antigens/chemistry
- HIV Antigens/immunology
- HIV Infections/immunology
- HIV Infections/prevention & control
- HIV-1/immunology
- Humans
- Immunity, Mucosal
- Immunoglobulin A, Secretory/metabolism
- Immunoglobulin G/blood
- Lipopeptides
- Mice
- Mice, Inbred BALB C
- Oligopeptides/administration & dosage
- Oligopeptides/immunology
- Th1 Cells/immunology
- Th2 Cells/immunology
- Toll-Like Receptor 2
- Viral Proteins/administration & dosage
- Viral Proteins/chemical synthesis
- Viral Proteins/chemistry
- Viral Proteins/immunology
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Pablo D Becker
- Department of Vaccinology, GBF-German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
89
|
Dalton AK, Murray PS, Murray D, Vogt VM. Biochemical characterization of rous sarcoma virus MA protein interaction with membranes. J Virol 2005; 79:6227-38. [PMID: 15858007 PMCID: PMC1091718 DOI: 10.1128/jvi.79.10.6227-6238.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MA domain of retroviral Gag proteins mediates association with the host cell membrane during assembly. The biochemical nature of this interaction is not well understood. We have used an in vitro flotation assay to directly measure Rous sarcoma virus (RSV) MA-membrane interaction in the absence of host cell factors. The association of purified MA and MA-containing proteins with liposomes of defined composition was electrostatic in nature and depended upon the presence of a biologically relevant concentration of negatively charged lipids. A mutant MA protein known to be unable to promote Gag membrane association and budding in vivo failed to bind to liposomes. These results were supported by computational modeling. The intrinsic affinity of RSV MA for negatively charged membranes appears insufficient to promote efficient plasma membrane binding during assembly. However, an artificially dimerized form of MA bound to liposomes by at least an order of magnitude more tightly than monomeric MA. This result suggests that the clustering of MA domains, via Gag-Gag interactions during virus assembly, drives membrane association in vivo.
Collapse
Affiliation(s)
- Amanda K Dalton
- Department of Molecular Biology and Genetics, Cornell University, 360 Biotechnology Building, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
90
|
Rue SM, Roos JW, Clements JE, Barber SA. Conserved serines in simian immunodeficiency virus capsid are required for virus budding. Virology 2005; 336:37-50. [PMID: 15866069 DOI: 10.1016/j.virol.2005.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 11/13/2004] [Accepted: 03/04/2005] [Indexed: 10/25/2022]
Abstract
The simian immunodeficiency virus (SIV) capsid protein (CA), a constituent of the Pr55Gag polyprotein, is phosphorylated in virions but not in virus-producing cells (Rue, S.M., Roos, J.W., Tarwater, P.M., Clements, J.E., Barber, S.A., 2005. Phosphorylation and proteolytic cleavage of gag proteins in budded simian immunodeficiency virus. J. Virol. 79 (4), 2484-2492.). Using phosphoamino acid analysis of CA, we show that serine is the primary phosphate acceptor. A series of substitution mutants of serines in the CA domain of Pr55Gag were constructed in the infectious viral clone SIVmac239. These virus mutants were examined for defects in virus replication and virion infectivity, release, and morphology, as well as alterations in phosphorylation of CA-containing proteins. Although the virus mutants exhibited a number of replication defects, none of these defects could be directly attributed to aberrant CA phosphorylation. A novel defect was a block in early budding, which was common among several virus mutants with substitutions in the CA N terminus. Together, these results indicate that certain residues in the CA N terminus are crucial for early budding events.
Collapse
Affiliation(s)
- Sarah M Rue
- Department of Comparative Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Room 831, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
91
|
Lingappa JR, Newman MA, Klein KC, Dooher JE. Comparing capsid assembly of primate lentiviruses and hepatitis B virus using cell-free systems. Virology 2005; 333:114-23. [PMID: 15708597 DOI: 10.1016/j.virol.2004.12.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 10/11/2004] [Accepted: 12/20/2004] [Indexed: 01/02/2023]
Abstract
Many viruses that assemble their capsids in the eukaryotic cytoplasm require a threshold concentration of capsid protein to achieve capsid assembly. Strategies for achieving this include maintaining high levels of capsid protein synthesis and targeting to specific sites to raise the effective concentration of capsid polypeptides. To understand how different viruses achieve the threshold capsid protein concentration required for assembly, we used cell-free systems to compare capsid assembly of hepatitis B virus (HBV) and three primate lentiviruses. Capsid formation of these diverse viruses in a common eukaryotic extract was dependent on capsid protein concentration. HBV capsid assembly was also dependent on the presence of intact membrane surfaces. Surprisingly, not all of the primate lentiviral capsid proteins examined required myristoylation and intact membranes for assembly, even though all contain a myristoylation signal. These findings reveal significant diversity in how different capsid proteins assemble in the same cellular extract.
Collapse
Affiliation(s)
- Jaisri R Lingappa
- Department of Pathobiology, University of Washington, Box 357238, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
92
|
Deml L, Speth C, Dierich MP, Wolf H, Wagner R. Recombinant HIV-1 Pr55gag virus-like particles: potent stimulators of innate and acquired immune responses. Mol Immunol 2005; 42:259-77. [PMID: 15488613 DOI: 10.1016/j.molimm.2004.06.028] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several previous reports have clearly demonstrated the strong effectiveness of human immunodeficiency virus (HIV) Gag polyprotein-based virus-like particles (VLP) to stimulate humoral and cellular immune responses in complete absence of additional adjuvants. Yet, the mechanisms underlying the strong immunogenicity of these particulate antigens are still not very clear. However, current reports strongly indicate that these VLP act as "danger signals" to trigger the innate immune system and possess potent adjuvant activity to enhance the immunogenicity of per se only weakly immunogenic peptides and proteins. Here, we review the current understanding of how various particle-associated substances and other impurities may contribute to the observed immune-activating properties of these complex immunogens.
Collapse
Affiliation(s)
- Ludwig Deml
- Institute of Medical Microbiology, University of Regensburg, Franz-Josef-Straurr-Allee 11, D-93053 Regensburg, Germany.
| | | | | | | | | |
Collapse
|
93
|
Manrique ML, González SA, Affranchino JL. Functional relationship between the matrix proteins of feline and simian immunodeficiency viruses. Virology 2004; 329:157-67. [PMID: 15476883 DOI: 10.1016/j.virol.2004.07.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 06/22/2004] [Accepted: 07/29/2004] [Indexed: 11/16/2022]
Abstract
To investigate the functional relationship between the matrix (MA) proteins of feline and simian immunodeficiency viruses (FIV and SIV, respectively), we generated chimeric proviruses in which the MA-coding region of an SIV infectious molecular clone was partially or fully replaced by its FIV counterpart. Chimeric SIV proviruses containing the amino-terminal 36 residues or the central and carboxy-terminal regions of the FIV MA assembled into virions as efficiently as wild-type SIV. However, the resulting virions were noninfectious in single-cycle infectivity assays. Furthermore, a chimeric SIV provirus containing the entire FIV MA was found to be severely impaired in virion production due to inefficient membrane binding of the chimeric Gag polyprotein. Interestingly, the assembly defective phenotype of this chimeric Gag precursor could be reversed either by introducing the G31K/G33K double amino acid substitution in the FIV-derived MA domain or by coexpression with wild-type SIV Gag. Of note, a chimeric FIV provirus expressing the SIV MA not only assembled into particles as efficiently as wild-type FIV, but also replicated in feline T cells with wild-type kinetics. Our results thus provide novel information about the functional homology between the MA proteins of distantly related lentiviruses.
Collapse
Affiliation(s)
- Mariana L Manrique
- Centro de Virología Animal (CEVAN-CONICET), C1414DEM Buenos Aires, Argentina
| | | | | |
Collapse
|
94
|
Fiorentini S, Marini E, Bozzo L, Trainini L, Saadoune L, Avolio M, Pontillo A, Bonfanti C, Sarmientos P, Caruso A. Preclinical studies on immunogenicity of the HIV-1 p17-based synthetic peptide AT20-KLH. Biopolymers 2004; 76:334-43. [PMID: 15386266 DOI: 10.1002/bip.20130] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Several studies have suggested that HIV-1 p17 matrix protein may play an important role in AIDS pathogenesis, since anti-p17 antibodies represent a serological marker of disease progression during HIV-1 infection both in adults and children. Moreover, it has been recently reported that the viral protein is capable of significantly increasing the proliferation of preactivated T lymphocytes and the release of proinflammatory cytokines. Recombinant HIV-1 p17 also has induced an increased rate of HIV-1 replication in vitro. All p17 biological activities are exerted after its binding to a specific cellular receptor expressed on activated T lymphocytes. The functional p17 epitope involved in receptor binding was found to be located at the NH(2)-terminal region of the viral protein. Immunization of C57BL/6 mice with a 20 amino acid synthetic peptide representative of the HIV-1 p17 functional region (AT20) coupled to the carrier protein keyhole limpet hemocyanin (KLH) and given in Freund's incomplete adjuvant, resulted in the development of p17-neutralizing antibodies capable of blocking p17/p17 receptor interaction, and consequently, all biological activities of the viral protein. Moreover, it was possible to skew the humoral response induced by priming mice with AT20-KLH toward cell-mediated immune responses, boosting animals with p17. Our findings may provide a new strategy to develop a synthetic AIDS vaccine based on a potentially effective and safe subunit vaccine against the HIV-1 cytokine-like matrix protein p17. Preclinical immunogenicity data for AT20-KLH provide the basis for evaluation of the peptide-based vaccine, alone and in combination with p17 or p17 DNA vaccines, in Phase I clinical trials.
Collapse
Affiliation(s)
- Simona Fiorentini
- Department of Experimental and Applied Medicine, University of Brescia Medical School, Brescia, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Liao WH, Chiu HC, Wang CT. Effects of mutations in an HIV-1gag gene containing a 107-codon tandem repeat in the matrix region on assembly and processing of the protein product. J Med Virol 2004; 74:528-35. [PMID: 15484268 DOI: 10.1002/jmv.20209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It has been demonstrated previously that a human immunodeficiency virus (HIV) type 1 Gag mutant (MA2) with a tandem repeat of 107-matrix codons in the matrix domain could direct virus particle assembly and budding [Wang et al. (2000c): J Med Virol 61:423-432]. Since the regions involved functionally in HIV Gag assembly and transport have been mapped to the matrix domain, it was interesting to test the effects of the duplicated matrix-coding sequence on Gag assembly, transport, and virus processing of some assembly-defective HIV matrix mutants. In this study, a number of HIV matrix mutations were introduced into either the proximal or distal copy of the duplicated matrix-coding sequence. Assembly, release, processing, and subcellular localization of the Gag mutants were analyzed by transient expression in 293T cells. The result indicates that the budding defect of HIV matrix mutants could be moderately or significantly reversed when the additional 107-matrix codons were present; however, these matrix double mutations affected significantly the virus particle processing. Mislocalized matrix mutants could also be redistributed to a certain degree in the presence of the duplicated matrix copy. Although the subcellular distribution patterns of the matrix mutants did not correlate completely with the budding efficiency, the data suggest that the budding defect caused by the matrix mutations could be masked to some extent by the duplicated matrix coding sequence.
Collapse
Affiliation(s)
- Wei-Hao Liao
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | |
Collapse
|
96
|
Abdurahman S, Höglund S, Goobar-Larsson L, Vahlne A. Selected amino acid substitutions in the C-terminal region of human immunodeficiency virus type 1 capsid protein affect virus assembly and release. J Gen Virol 2004; 85:2903-2913. [PMID: 15448352 DOI: 10.1099/vir.0.80137-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The capsid protein (CA or p24) of human immunodeficiency virus type 1 (HIV-1) plays a major role both early and late in the virus replication cycle. Many studies have suggested that the C-terminal domain of this protein is involved in dimerization and proper assembly of the viral core. Point mutations were introduced in two conserved sites of this region and their effects on viral protein expression, particle assembly and infectivity were studied. Eight different mutants (L205A+P207A, L205A, P207A, 223GPG225AAA, G223A, P224A, G225A and V221G) of the infectious clone pNL4-3 were constructed. Most substitutions had no substantial effect on HIV-1 protein synthesis, yet they impaired viral infectivity and particle production. The two mutants P207A and V221G also had a profound effect on Gag–Pol protein processing in HeLa–tat cells. However, these results were cell line-specific and Gag–Pol processing of P207A was not affected in 293T cells. In HeLa–tat cells, no virus particles were detected with the P207A mutation, whereas the other mutant virus particles were heterogeneous in size and morphology. None of the mutants showed normal, mature, conical core structures in HeLa–tat cells. These results indicate that the two conserved sequences in the C-terminal CA domain are essential for proper morphogenesis and infectivity of HIV-1 particles.
Collapse
Affiliation(s)
- Samir Abdurahman
- Division of Clinical Virology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Stefan Höglund
- Department of Biochemistry, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Laura Goobar-Larsson
- Division of Clinical Chemistry, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Vahlne
- Division of Clinical Virology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
97
|
Ono A, Ablan SD, Lockett SJ, Nagashima K, Freed EO. Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc Natl Acad Sci U S A 2004; 101:14889-94. [PMID: 15465916 PMCID: PMC522033 DOI: 10.1073/pnas.0405596101] [Citation(s) in RCA: 427] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A critical early event in the HIV type 1 (HIV-1) particle assembly pathway is the targeting of the Gag protein to the site of virus assembly. In many cell types, assembly takes place predominantly at the plasma membrane. Cellular factors that regulate Gag targeting remain undefined. The phosphoinositide phosphatidylinositol (4,5) bisphosphate [PI(4,5)P2] controls the plasma membrane localization of a number of cellular proteins. To explore the possibility that this lipid may be involved in Gag targeting and virus particle production, we overexpressed phosphoinositide 5-phosphatase IV, an enzyme that depletes cellular PI(4,5)P2, or overexpressed a constitutively active form of Arf6 (Arf6/Q67L), which induces the formation of PI(4,5)P2-enriched endosomal structures. Both approaches severely reduced virus production. Upon 5-phosphatase IV overexpression, Gag was no longer localized on the plasma membrane but instead was retargeted to late endosomes. Strikingly, in cells expressing Arf6/Q67L, Gag was redirected to the PI(4,5)P2-enriched vesicles and HIV-1 virions budded into these vesicles. These results demonstrate that PI(4,5)P2 plays a key role in Gag targeting to the plasma membrane and thus serves as a cellular determinant of HIV-1 particle production.
Collapse
Affiliation(s)
- Akira Ono
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702-1201, USA.
| | | | | | | | | |
Collapse
|
98
|
Wu Z, Alexandratos J, Ericksen B, Lubkowski J, Gallo RC, Lu W. Total chemical synthesis of N-myristoylated HIV-1 matrix protein p17: structural and mechanistic implications of p17 myristoylation. Proc Natl Acad Sci U S A 2004; 101:11587-92. [PMID: 15280532 PMCID: PMC511025 DOI: 10.1073/pnas.0404649101] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The HIV-1 matrix protein p17, excised proteolytically from the N terminus of the Gag polyprotein, forms a protective shell attached to the inner surface of the plasma membrane of the virus. During the late stages of the HIV-1 replication cycle, the N-terminally myristoylated p17 domain targets the Gag polyprotein to the host-cell membrane for particle assembly. In the early stages of HIV-1 replication, however, some p17 molecules dissociate from the viral membrane to direct the preintegration complex to the host-cell nucleus. These two opposing targeting functions of p17 require that the protein be capable of reversible membrane interaction. It is postulated that a significant structural change in p17 triggered by proteolytic cleavage of the Gag polyprotein sequesters the N-terminal myristoyl group, resulting in a weaker membrane binding by the matrix protein than the Gag precursor. To test this "myristoyl switch" hypothesis, we obtained highly purified synthetic HIV-1 p17 of 131 amino acid residues and its N-myristoylated form in large quantity. Both forms of p17 were characterized by circular dichroism spectroscopy, protein chemical denaturation, and analytical centrifugal sedimentation. Our results indicate that although N-myristoylation causes no spectroscopically discernible conformational change in p17, it stabilizes the protein by 1 kcal/mol and promotes protein trimerization in solution. These findings support the premise that the myristoyl switch in p17 is triggered not by a structural change associated with proteolysis, but rather by the destabilization of oligomeric structures of membrane-bound p17 in the absence of downstream Gag subdomains.
Collapse
Affiliation(s)
- Zhibin Wu
- Institute of Human Virology, University of Maryland Biotechnology Institute, and School of Medicine, University of Maryland, 725 West Lombard Street, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
99
|
Wild J, Bojak A, Deml L, Wagner R. Influence of polypeptide size and intracellular sorting on the induction of epitope-specific CTL responses by DNA vaccines in a mouse model. Vaccine 2004; 22:1732-43. [PMID: 15068857 DOI: 10.1016/j.vaccine.2004.01.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have analysed the influence of size, intracellular localisation, and sorting of various human immunodeficiency virus type 1 (HIV-1)-derived Gag and Env polypeptides containing well defined H2(d)-restricted cytotoxic T lymphocyte (CTL) epitopes on the induction of a humoral and cellular immune response after DNA vaccination. Thus, expression vectors were generated based on RNA- and codon-optimised genes encoding (i). budding competent full-length Gag, (ii). a myristylation defect mutant GagMyr(-), (iii). the isolated p24 capsid moiety of Gag as well as variants of these proteins, which were C-terminally fused HIV gp120-derived V3 epitope (R10I), respectively. These constructs were compared to different minitopes each encoding one of the H2(d)-restricted Gag epitopes A9I and E10F or the V3 epitope R10I that were directly linked to the C-terminus of an Ad2-E3 protein-derived ER signal peptide. Immunological evaluation of these constructs in BALB/c mice revealed that both, the budding competent as well as the intracellular Gag proteins were-irrespective of their molecular weights-equally efficient in the priming of Gag-specific humoral and cellular immune responses. In addition, the capacity of these constructs to stimulate Gag-specific humoral as well as H2-K(d) and H2-L(d) restricted cellular immune responses was not influenced by C-terminal fusion of the immunodominant H2-D(d) restricted V3 epitope. Chimeric GagV3 polyproteins encoding all three major CTL epitopes within a continuous polyprotein were more efficient to stimulate epitope-specific cellular immune responses than the selected minitopes. In addition, the minitopes failed to induce epitope-specific antibody responses. These results clearly show the advantages of complex polypeptides over minitopes regarding the induction of strong humoral and cellular immune responses.
Collapse
Affiliation(s)
- Jens Wild
- Institute of Medical Microbiology, University of Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany
| | | | | | | |
Collapse
|
100
|
Sugahara D, Tsuji-Kawahara S, Miyazawa M. Identification of a protective CD4+ T-cell epitope in p15gag of Friend murine leukemia virus and role of the MA protein targeting the plasma membrane in immunogenicity. J Virol 2004; 78:6322-34. [PMID: 15163726 PMCID: PMC416509 DOI: 10.1128/jvi.78.12.6322-6334.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have demonstrated an essential role of Gag-specific CD4+ T-cell responses for viral control in individuals infected with human immunodeficiency virus type 1. However, little is known about epitope specificities and functional roles of the Gag-specific helper T-cell responses in terms of vaccine-induced protection against a pathogenic retroviral challenge. We have previously demonstrated that immunization with Friend murine leukemia virus (F-MuLV) Gag proteins protects mice against the fatal Friend retrovirus (FV) infection. We report here the structure of a protective T helper cell (Th) epitope, (I)VTWEAIAVDPPP, identified in the p15 (MA) region of F-MuLV Gag. In mice immunized with the Th epitope-harboring peptide or a vaccinia virus-expressed native full-length MA protein, FV-induced early splenomegaly regressed rapidly. In these mice, FV-infected cells were eliminated within 4 weeks and the production of virus-neutralizing antibodies was induced rapidly after FV challenge, resulting in strong protection against the virus infection. Interestingly, mice immunized with the whole MA mounted strong CD4+ T-cell responses to the identified Th epitope, whereas mice immunized with mutant MA proteins that were not bound to the plasma membrane failed to mount efficient CD4+ T-cell responses, despite the presence of the Th epitope. These mutant MA proteins also failed to induce strong protection against FV challenge. These data indicate the importance of the properly processible MA molecule for CD4+ T-cell priming and for the resultant induction of an effective immune response against retrovirus infections.
Collapse
Affiliation(s)
- Daisuke Sugahara
- Department of Immunology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | | | | |
Collapse
|