51
|
Anggraeni YM, Garjito TA, Prihatin MT, Handayani SW, Negari KS, Yanti AO, Hidajat MC, Prastowo D, Satoto TBT, Manguin S, Gavotte L, Frutos R. Fast Expansion of the Asian-Pacific Genotype of the Chikungunya Virus in Indonesia. Front Cell Infect Microbiol 2021; 11:631508. [PMID: 33968797 PMCID: PMC8098665 DOI: 10.3389/fcimb.2021.631508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Chikungunya is repeatedly affecting Indonesia through successive outbreaks. The Asian genotype has been present in Asia since the late 1950s while the ECSA-IOL (East/Central/South Africa - Indian Ocean Lineage) genotype invaded Asia in 2005. In order to determine the extension of the circulation of the chikungunya virus (CHIKV) in Indonesia, mosquitoes were collected in 28 different sites from 12 Indonesian provinces in 2016-2017. The E1 subunit of the CHIKV envelope gene was sequenced while mosquitoes were genotyped using the mitochondrial cox1 (cytochrome C oxidase subunit 1) gene to determine whether a specific population was involved in the vectoring of CHIKV. A total of 37 CHIKV samples were found in 28 Aedes aegypti, 8 Aedes albopictus and 1 Aedes butleri out of 15,362 samples collected and tested. These viruses, like all Indonesian CHIKV since 2000, belonged to a genotype we propose to call the Asian-Pacific genotype. It also comprises the Yap isolates and viruses having emerged in Polynesia, the Caribbean and South America. They differ from the CHIKV of the Asian genotype found earlier in Indonesia indicating a replacement. These results raise the question of the mechanisms behind this fast and massive replacement.
Collapse
Affiliation(s)
- Yusnita Mirna Anggraeni
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, the Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Triwibowo Ambar Garjito
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, the Ministry of Health of Indonesia, Salatiga, Indonesia
- HSM, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Mega Tyas Prihatin
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, the Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Sri Wahyuni Handayani
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, the Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Kusumaningtyas Sekar Negari
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, the Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Ary Oktsari Yanti
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, the Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Muhammad Choirul Hidajat
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, the Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Dhian Prastowo
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, the Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Tri Baskoro Tunggul Satoto
- Department of Parasitology, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - Sylvie Manguin
- HSM, University of Montpellier, CNRS, IRD, Montpellier, France
| | | | | |
Collapse
|
52
|
Powers JM, Haese NN, Denton M, Ando T, Kreklywich C, Bonin K, Streblow CE, Kreklywich N, Smith P, Broeckel R, DeFilippis V, Morrison TE, Heise MT, Streblow DN. Non-replicating adenovirus based Mayaro virus vaccine elicits protective immune responses and cross protects against other alphaviruses. PLoS Negl Trop Dis 2021; 15:e0009308. [PMID: 33793555 PMCID: PMC8051823 DOI: 10.1371/journal.pntd.0009308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/16/2021] [Accepted: 03/15/2021] [Indexed: 11/20/2022] Open
Abstract
Mayaro virus (MAYV) is an alphavirus endemic to South and Central America associated with sporadic outbreaks in humans. MAYV infection causes severe joint and muscle pain that can persist for weeks to months. Currently, there are no approved vaccines or therapeutics to prevent MAYV infection or treat the debilitating musculoskeletal inflammatory disease. In the current study, a prophylactic MAYV vaccine expressing the complete viral structural polyprotein was developed based on a non-replicating human adenovirus V (AdV) platform. Vaccination with AdV-MAYV elicited potent neutralizing antibodies that protected WT mice against MAYV challenge by preventing viremia, reducing viral dissemination to tissues and mitigating viral disease. The vaccine also prevented viral-mediated demise in IFN⍺R1-/- mice. Passive transfer of immune serum from vaccinated animals similarly prevented infection and disease in WT mice as well as virus-induced demise of IFN⍺R1-/- mice, indicating that antiviral antibodies are protective. Immunization with AdV-MAYV also generated cross-neutralizing antibodies against two related arthritogenic alphaviruses-chikungunya and Una viruses. These cross-neutralizing antibodies were protective against lethal infection in IFN⍺R1-/- mice following challenge with these heterotypic alphaviruses. These results indicate AdV-MAYV elicits protective immune responses with substantial cross-reactivity and protective efficacy against other arthritogenic alphaviruses. Our findings also highlight the potential for development of a multi-virus targeting vaccine against alphaviruses with endemic and epidemic potential in the Americas.
Collapse
Affiliation(s)
- John M. Powers
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Nicole N. Haese
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael Denton
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Takeshi Ando
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Craig Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Kiley Bonin
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Cassilyn E. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Nicholas Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Patricia Smith
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Rebecca Broeckel
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Victor DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Mark T. Heise
- Department of Genetics, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| |
Collapse
|
53
|
Zhang S, Garzan A, Haese N, Bostwick R, Martinez-Gzegozewska Y, Rasmussen L, Streblow DN, Haise MT, Pathak AK, Augelli-Szafran CE, Wu M. Pyrimidone inhibitors targeting Chikungunya Virus nsP3 macrodomain by fragment-based drug design. PLoS One 2021; 16:e0245013. [PMID: 33482665 PMCID: PMC7822648 DOI: 10.1371/journal.pone.0245013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/18/2020] [Indexed: 12/29/2022] Open
Abstract
The macrodomain of nsP3 (nsP3MD) is highly conserved among the alphaviruses and ADP-ribosylhydrolase activity of Chikungunya Virus (CHIKV) nsP3MD is critical for CHIKV viral replication and virulence. No small molecule drugs targeting CHIKV nsP3 have been identified to date. Here we report small fragments that bind to nsP3MD which were discovered by virtually screening a fragment library and X-ray crystallography. These identified fragments share a similar scaffold, 2-pyrimidone-4-carboxylic acid, and are specifically bound to the ADP-ribose binding site of nsP3MD. Among the fragments, 2-oxo-5,6-benzopyrimidine-4-carboxylic acid showed anti-CHIKV activity with an IC50 of 23 μM. Our fragment-based drug discovery approach provides valuable information to further develop a specific and potent nsP3 inhibitor of CHIKV viral replication based on the 2-pyrimidone-4-carboxylic acid scaffold. In silico studies suggest this pyrimidone scaffold could also bind to the macrodomains of other alphaviruses and coronaviruses and thus, have potential pan-antiviral activity.
Collapse
Affiliation(s)
- Sixue Zhang
- Drug Discovery Division, Chemistry Department, Southern Research, Birmingham, Alabama, United States of America
| | - Atefeh Garzan
- Drug Discovery Division, Chemistry Department, Southern Research, Birmingham, Alabama, United States of America
| | - Nicole Haese
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Robert Bostwick
- Drug Discovery Division, High-Throughput Screening Center, Southern Research, Birmingham, Alabama, United States of America
| | - Yohanka Martinez-Gzegozewska
- Drug Discovery Division, High-Throughput Screening Center, Southern Research, Birmingham, Alabama, United States of America
| | - Lynn Rasmussen
- Drug Discovery Division, High-Throughput Screening Center, Southern Research, Birmingham, Alabama, United States of America
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Mark T. Haise
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Ashish K. Pathak
- Drug Discovery Division, Chemistry Department, Southern Research, Birmingham, Alabama, United States of America
| | - Corinne E. Augelli-Szafran
- Drug Discovery Division, Chemistry Department, Southern Research, Birmingham, Alabama, United States of America
| | - Mousheng Wu
- Drug Discovery Division, Chemistry Department, Southern Research, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
54
|
Pseudotyping Lentiviral Vectors: When the Clothes Make the Virus. Viruses 2020; 12:v12111311. [PMID: 33207797 PMCID: PMC7697029 DOI: 10.3390/v12111311] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Delivering transgenes to human cells through transduction with viral vectors constitutes one of the most encouraging approaches in gene therapy. Lentivirus-derived vectors are among the most promising vectors for these approaches. When the genetic modification of the cell must be performed in vivo, efficient specific transduction of the cell targets of the therapy in the absence of off-targeting constitutes the Holy Grail of gene therapy. For viral therapy, this is largely determined by the characteristics of the surface proteins carried by the vector. In this regard, an important property of lentiviral vectors is the possibility of being pseudotyped by envelopes of other viruses, widening the panel of proteins with which they can be armed. Here, we discuss how this is achieved at the molecular level and what the properties and the potentialities of the different envelope proteins that can be used for pseudotyping these vectors are.
Collapse
|
55
|
Zaid A, Burt FJ, Liu X, Poo YS, Zandi K, Suhrbier A, Weaver SC, Texeira MM, Mahalingam S. Arthritogenic alphaviruses: epidemiological and clinical perspective on emerging arboviruses. THE LANCET. INFECTIOUS DISEASES 2020; 21:e123-e133. [PMID: 33160445 DOI: 10.1016/s1473-3099(20)30491-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
Abstract
Mosquito-borne viruses, or arboviruses, have been part of the infectious disease landscape for centuries, and are often, but not exclusively, endemic to equatorial and subtropical regions of the world. The past two decades saw the re-emergence of arthritogenic alphaviruses, a genus of arboviruses that includes several members that cause severe arthritic disease. Recent outbreaks further highlight the substantial public health burden caused by these viruses. Arthritogenic alphaviruses are often reported in the context of focused outbreaks in specific regions (eg, Caribbean, southeast Asia, and Indian Ocean) and cause debilitating acute disease that can extend to chronic manifestations for years after infection. These viruses are classified among several antigenic complexes, span a range of hosts and mosquito vectors, and can be distributed along specific geographical locations. In this Review, we highlight key features of alphaviruses that are known to cause arthritic disease in humans and outline the present findings pertaining to classification, immunogenicity, pathogenesis, and experimental approaches aimed at limiting disease manifestations. Although the most prominent alphavirus outbreaks in the past 15 years featured chikungunya virus, and a large body of work has been dedicated to understanding chikungunya disease mechanisms, this Review will instead focus on other arthritogenic alphaviruses that have been identified globally and provide a comprehensive appraisal of present and future research directions.
Collapse
Affiliation(s)
- Ali Zaid
- Emerging Viruses, Inflammation, and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Felicity J Burt
- Division of Virology, National Health Laboratory Services, Bloemfontein, South Africa; Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Xiang Liu
- Emerging Viruses, Inflammation, and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Yee Suan Poo
- Emerging Viruses, Inflammation, and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Keivan Zandi
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Andreas Suhrbier
- Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Scott C Weaver
- Department of Microbiology and Immunology and Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, USA
| | - Mauro M Texeira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Suresh Mahalingam
- Emerging Viruses, Inflammation, and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
56
|
Rodrigues TCS, Nielsen O, Popov VL, Burek-Huntington KA, Rotstein D, Subramaniam K, Waltzek TB. Characterization of an alphavirus isolated from a stranded harbor porpoise (Phocoena phocoena) from Alaska. Virus Res 2020; 291:198187. [PMID: 33075445 DOI: 10.1016/j.virusres.2020.198187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/25/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
The family Togaviridae comprises several significant human and veterinary mosquito-borne pathogens. Two togaviruses (genus Alphavirus) have been previously identified in association with marine mammals, the southern elephant seal virus (SESV) and Eastern equine encephalitis virus (EEEV) from a fatal captive harbor seal infection. Herein we report the ultrastructural and phylogenomic characterization of a novel marine togavirus, the first isolated from a cetacean, an Alaskan harbor porpoise (Phocoena phocoena) displaying ulcerative dermatitis. A skin sample was processed for virus isolation on Vero.DogSLAMtag cells and cytopathic effects (CPE) were observed on primary isolation approximately 20 days post-infection. Transmission electron microscopy of the infected Vero.DogSLAMtag cells revealed typical alphavirus particles budding from both plasma and vacuolar membranes of infected cells. A next-generation sequencing approach was used to determine the near complete genome of the Alaskan harbor porpoise alphavirus (AHPV). Phylogenetic analysis supported the AHPV as the sister species to the SESV, forming a marine mammal alphavirus clade separate from the recognized alphavirus antigenic complexes. Genetic comparison of the protein coding sequence of the AHPV to other alphaviruses demonstrated amino acid identities ranging from 42.1-67.1%, with the highest identity to the SESV. Based on its genetic divergence, we propose the AHPV represents a novel alphavirus species, pending formal proposal to and ratification by the International Committee on Taxonomy of Viruses. The ecological and genetic characteristics of the AHPV and the SESV also suggest they represent a novel antigenic complex within the genus Alphavirus, which we propose to be named the Marine Mammal Virus Complex. The role of the AHPV in the associated harbor porpoise cutaneous pathology, if any, remains unclear. Further research is needed to determine AHPV's route(s) of transmission and potential vectors, host range, prevalence, and pathogenicity in cetaceans including harbour porpoises.
Collapse
Affiliation(s)
- Thaís C S Rodrigues
- Department of Infectious Diseases and Immunology, University of Florida, 2187 Mowry Road, 32611, Gainesville, FL, USA
| | - Ole Nielsen
- Department of Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6 Canada.
| | - Vsevolod L Popov
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609 USA
| | | | | | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, University of Florida, 2187 Mowry Road, 32611, Gainesville, FL, USA
| | - Thomas B Waltzek
- Department of Infectious Diseases and Immunology, University of Florida, 2187 Mowry Road, 32611, Gainesville, FL, USA
| |
Collapse
|
57
|
Zhang R, Earnest JT, Kim AS, Winkler ES, Desai P, Adams LJ, Hu G, Bullock C, Gold B, Cherry S, Diamond MS. Expression of the Mxra8 Receptor Promotes Alphavirus Infection and Pathogenesis in Mice and Drosophila. Cell Rep 2020; 28:2647-2658.e5. [PMID: 31484075 PMCID: PMC6745702 DOI: 10.1016/j.celrep.2019.07.105] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
Mxra8 is a recently described receptor for multiple alphaviruses, including Chikungunya (CHIKV), Mayaro (MAYV), Ross River (RRV), and O'nyong nyong (ONNV) viruses. To determine its role in pathogenesis, we generated mice with mutant Mxra8 alleles: an 8-nucleotide deletion that produces a truncated, soluble form (Mxra8Δ8/Δ8) and a 97-nucleotide deletion that abolishes Mxra8 expression (Mxra8Δ97/Δ97). Mxra8Δ8/Δ8 and Mxra8Δ97/Δ97 fibroblasts show reduced CHIKV infection in culture, and Mxra8Δ8/Δ8 and Mxra8Δ97/Δ97 mice have decreased infection of musculoskeletal tissues with CHIKV, MAYV, RRV, or ONNV. Less foot swelling is observed in CHIKV-infected Mxra8 mutant mice, which correlated with fewer infiltrating neutrophils and cytokines. A recombinant E2-D71A CHIKV with diminished binding to Mxra8 is attenuated in vivo in wild-type mice. Ectopic Mxra8 expression is sufficient to enhance CHIKV infection and lethality in transgenic flies. These studies establish a role for Mxra8 in the pathogenesis of multiple alphaviruses and suggest that targeting this protein may mitigate disease in humans.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - James T Earnest
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Arthur S Kim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lucas J Adams
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gaowei Hu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Christopher Bullock
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Beth Gold
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
58
|
Differential Alphavirus Defective RNA Diversity between Intracellular and Extracellular Compartments Is Driven by Subgenomic Recombination Events. mBio 2020; 11:mBio.00731-20. [PMID: 32817101 PMCID: PMC7439471 DOI: 10.1128/mbio.00731-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Our understanding of viral defective RNAs (D-RNAs), or truncated viral genomes, comes largely from passaging studies in tissue culture under artificial conditions and/or packaged viral RNAs. Here, we show that specific populations of alphavirus D-RNAs arise de novo and that they are not packaged into virions, thus imposing a transmission bottleneck and impeding their prior detection. This raises important questions about the roles of D-RNAs, both in nature and in tissue culture, during viral infection and whether their influence is constrained by packaging requirements. Further, during the course of these studies, we found a novel type of alphavirus D-RNA that is enriched intracellularly; dubbed subgenomic D-RNAs (sgD-RNAs), they are defined by deletion boundaries between the capsid-E3 region and the E1-3′ untranslated region (UTR) and are common to chikungunya, Mayaro, Sindbis, and Aura viruses. These sgD-RNAs are enriched intracellularly and do not appear to be selectively packaged, and additionally, they may exist as subgenome-derived transcripts. Alphaviruses are positive-sense RNA arboviruses that can cause either a chronic arthritis or a potentially lethal encephalitis. Like other RNA viruses, alphaviruses produce truncated, defective viral RNAs featuring large deletions during replication. These defective RNAs (D-RNAs) have primarily been isolated from virions after high-multiplicity-of-infection passaging. Here, we aimed to characterize both intracellular and packaged viral D-RNA populations during early-passage infections under the hypothesis that D-RNAs arise de novo intracellularly that may not be packaged and thus have remained undetected. To this end, we generated next-generation sequencing libraries using RNA derived from passage 1 (P1) stock chikungunya virus (CHIKV) 181/clone 25, intracellular virus, and P2 virions and analyzed samples for D-RNA expression, followed by diversity and differential expression analyses. We found that the diversity of D-RNA species is significantly higher for intracellular D-RNA populations than P2 virions and that specific populations of D-RNAs are differentially expressed between intracellular and extracellular compartments. Importantly, these trends were likewise observed in a murine model of CHIKV AF15561 infection, as well as in vitro studies using related Mayaro, Sindbis, and Aura viruses. Additionally, we identified a novel subtype of subgenomic D-RNA that is conserved across arthritogenic alphaviruses. D-RNAs specific to intracellular populations were defined by recombination events specifically in the subgenomic region, which were confirmed by direct RNA nanopore sequencing of intracellular CHIKV RNAs. Together, these studies show that only a portion of D-RNAs generated intracellularly are packaged and D-RNAs readily arise de novo in the absence of transmitted template.
Collapse
|
59
|
Quantitative trait loci and genes associated with salmonid alphavirus load in Atlantic salmon: implications for pancreas disease resistance and tolerance. Sci Rep 2020; 10:10393. [PMID: 32587341 PMCID: PMC7316828 DOI: 10.1038/s41598-020-67405-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 06/08/2020] [Indexed: 12/22/2022] Open
Abstract
Salmonid alphavirus infection results in pancreas disease causing severe economic losses for Atlantic salmon aquaculture. Knowledge about genes and pathways contributing to resistance is limited. A 54 K SNP panel was used to genotype 10 full-sibling families each consisting of ~ 110 offspring challenged with salmonid alphavirus subtype 3. Relative heart viral load was assessed at 4- and 10-weeks post-infection using quantitative PCR. A moderate genomic heritability of viral load at 4 weeks (0.15–0.21) and a high positive correlation with survival (0.91–0.98) were detected. Positions of QTL detected on chromosome 3 matched those for survival detected by other studies. The SNP of highest significance occurred in the 3′ untranslated region of gig1, a fish-specific antiviral effector. Locus B of immunoglobulin heavy chain mapped to an area containing multiple SNPs with genome-wide association. Heart mRNA-seq comparing parr from families with high- versus low-genomic breeding value, and matching sample genotypes for SNPs, identified two eQTL for salmonid alphavirus load. Immune genes associated with trans-eQTL were numerous and spread throughout the genome. QTL regions contained several genes with known or predicted immune functions, some differentially expressed. The putative functional genes and variants identified could help improve marker-based selection for pancreas disease resistance.
Collapse
|
60
|
Novel Class of Chikungunya Virus Small Molecule Inhibitors That Targets the Viral Capping Machinery. Antimicrob Agents Chemother 2020; 64:AAC.00649-20. [PMID: 32340991 DOI: 10.1128/aac.00649-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the worldwide reemergence of the chikungunya virus (CHIKV) and the high morbidity associated with CHIKV infections, there is no approved vaccine or antiviral treatment available. Here, we aimed to identify the target of a novel class of CHIKV inhibitors, i.e., the CHVB series. CHVB compounds inhibit the in vitro replication of CHIKV isolates with 50% effective concentrations in the low-micromolar range. A CHVB-resistant variant (CHVBres) was selected that carried two mutations in the gene encoding nsP1 (responsible for viral RNA capping), one mutation in nsP2, and one mutation in nsP3. Reverse genetics studies demonstrated that both nsP1 mutations were necessary and sufficient to achieve ∼18-fold resistance, suggesting that CHVB targets viral mRNA capping. Interestingly, CHVBres was cross-resistant to the previously described CHIKV capping inhibitors from the MADTP series, suggesting they share a similar mechanism of action. In enzymatic assays, CHVB inhibited the methyltransferase and guanylyltransferase activities of alphavirus nsP1 proteins. To conclude, we identified a class of CHIKV inhibitors that targets the viral capping machinery. The potent anti-CHIKV activity makes this chemical scaffold a potential candidate for CHIKV drug development.
Collapse
|
61
|
Sensitivity of Alphaviruses to G3BP Deletion Correlates with Efficiency of Replicase Polyprotein Processing. J Virol 2020; 94:JVI.01681-19. [PMID: 31941782 DOI: 10.1128/jvi.01681-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/02/2020] [Indexed: 11/20/2022] Open
Abstract
We present a comprehensive overview of the dependency of several Old World alphaviruses for the host protein G3BP. Based on their replication ability in G3BP-deleted cells, Old World alphaviruses can be categorized into two groups, being either resistant or sensitive to G3BP deletion. We observed that all sensitive viruses have an Arg residue at the P4 position of the cleavage site between the nonstructural protein P1 (nsP1) and nsP2 regions of the replicase precursor polyprotein (1/2 site), while a different residue is found at this site in viruses resistant to G3BP deletion. Swapping this residue between resistant and sensitive viruses also switches the G3BP deletion sensitivity. In the absence of G3BP, chikungunya virus (CHIKV) replication is at the limit of detection. The P4 Arg-to-His substitution partially rescues this defect. The P4 residue of the 1/2 site is known to play a regulatory role during processing at this site, and we found that if processing is blocked, the influence of the P4 residue on the sensitivity to G3BP deletion is abolished. Immunofluorescence experiments with CHIKV replicase with manipulated processing indicate that the synthesis of double-stranded RNA is defective in the absence of G3BP and suggest a role of G3BP during negative-strand RNA synthesis. This study provides a functional link between the host protein G3BP and the P4 residue of the 1/2 site for viral RNA replication of Old World alphaviruses. While this suggests a link between G3BP proteins and viral replicase polyprotein processing, we propose that G3BP proteins do not have a regulatory role during polyprotein processing.IMPORTANCE Old World alphaviruses comprise several medically relevant viruses, including chikungunya virus and Ross River virus. Recurrent outbreaks and the lack of antivirals and vaccines demand ongoing research to fight the emergence of these infectious diseases. In this context, a thorough investigation of virus-host interactions is critical. Here, we highlight the importance of the host protein G3BP for several Old World alphaviruses. Our data strongly suggest that G3BP plays a crucial role for the activity of the viral replicase and, thus, the amplification of the viral RNA genome. To our knowledge, the present work is the first to provide a functional link between the regulation of viral polyprotein processing and RNA replication and a host factor for alphaviruses. Moreover, the results of this study raise several questions about the fundamental regulatory mechanisms that dictate the activity of the viral replicase, thereby paving the way for future studies.
Collapse
|
62
|
Poh CM, Chan YH, Ng LFP. Role of T Cells in Chikungunya Virus Infection and Utilizing Their Potential in Anti-Viral Immunity. Front Immunol 2020; 11:287. [PMID: 32153590 PMCID: PMC7046835 DOI: 10.3389/fimmu.2020.00287] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/05/2020] [Indexed: 11/17/2022] Open
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne alphavirus that causes hallmark debilitating polyarthralgia, fever, and rash in patients. T cell-mediated immunity, especially CD4+ T cells, are known to participate in the pathogenic role of CHIKV immunopathology. The other T cell subsets, notably CD8+, NKT, and gamma-delta (γδ) T cells, can also contribute to protective immunity, but their effect is not actuated during the natural course of infection. This review serves to consolidate and discuss the multifaceted roles of these T cell subsets during acute and chronic phases of CHIKV infection, and highlight gaps in the current literature. Importantly, the unique characteristics of skin-resident memory T cells are outlined to propose novel prophylactic strategies that utilize their properties to provide adequate, lasting protection.
Collapse
Affiliation(s)
- Chek Meng Poh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yi-Hao Chan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
63
|
Changes in the Transmission Dynamic of Chikungunya Virus in Southeastern Senegal. Viruses 2020; 12:v12020196. [PMID: 32050663 PMCID: PMC7077306 DOI: 10.3390/v12020196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/02/2020] [Accepted: 01/24/2020] [Indexed: 01/08/2023] Open
Abstract
In Senegal, chikungunya virus (CHIKV) is maintained in a sylvatic cycle and causes sporadic cases or small outbreaks in rural areas. However, little is known about the influence of the environment on its transmission. To address the question, 120 villages were randomly selected in the Kedougou region of southeastern Senegal. In each selected village, 10 persons by randomly selected household were sampled and tested for specific anti-CHIKV IgG antibodies by ELISA. We investigated the association of CHIKV seroprevalence with environmental variables using logistic regression analysis and the spatial correlation of village seroprevalence based on semivariogram analysis. Fifty-four percent (51%-57%) of individuals sampled during the survey tested positive for CHIKV-specific IgG. CHIKV seroprevalence was significantly higher in populations living close to forested areas (Normalized Difference Vegetation Index (NDVI), Odds Ratio (OR) = 1.90 (1.42-2.57)), and was negatively associated with population density (OR = 0.76 (0.69-0.84)). In contrast, in gold mining sites where population density was >400 people per km2, seroprevalence peaked significantly among adults (46% (27%-67%)) compared to all other individuals (20% (12%-31%)). However, traditional gold mining activities significantly modify the transmission dynamic of CHIKV, leading to a potential increase of the risk of human exposition in the region.
Collapse
|
64
|
Abstract
Geographically overlapping transmission of Chikungunya virus (CHIKV) and Mayaro virus (MAYV) in Latin America challenges serologic diagnostics and epidemiologic surveillance, as antibodies against the antigenically related viruses can be cross-reactive, potentially causing false-positive test results. We examined whether widely used ELISAs and plaque reduction neutralization testing allow specific antibody detection in the scenario of CHIKV and MAYV coemergence. For this purpose, we used 37 patient-derived MAYV-specific sera from Peru and 64 patient-derived CHIKV-specific sera from Brazil, including longitudinally collected samples. Extensive testing of those samples revealed strong antibody cross-reactivity in ELISAs, particularly for IgM, which is commonly used for patient diagnostics. Cross-neutralization was also observed, albeit at lower frequencies. Parallel testing for both viruses and comparison of ELISA reactivities and neutralizing antibody titers significantly increased diagnostic specificity. Our data provide a convenient and practicable solution to ensure robust differentiation of CHIKV- and MAYV-specific antibodies. Since 2013, the arthropod-borne Chikungunya virus (CHIKV) has cocirculated with the autochthonous Mayaro virus (MAYV) in Latin America. Both belong to the same alphavirus serocomplex, termed the Semliki Forest serocomplex. The extent of antibody cross-reactivity due to the antigenic relatedness of CHIKV and MAYV in commonly used serologic tests remains unclear. By testing 64 CHIKV- and 37 MAYV-specific sera from cohort studies conducted in Peru and Brazil, we demonstrate about 50% false-positive test results using commercially available enzyme-linked immunosorbent assays (ELISAs) based on structural antigens. In contrast, combining ELISAs for CHIKV and MAYV significantly increased positive predictive values (PPV) among all cohorts from 35.3% to 88.2% for IgM and from 61.3% to 96.8% for IgG (P < 0.0001). Testing of longitudinally collected CHIKV-specific patient sera indicated that ELISA specificity is highest for IgM testing at 5 to 9 days post-onset of symptoms (dpo) and for IgG testing at 10 to 14 dpo. IgG cross-reactivity in ELISA was asymmetric, occurring in 57.9% of MAYV-specific sera compared to 29.5% of CHIKV-specific sera. Parallel plaque reduction neutralization testing (PRNT) for CHIKV and MAYV increased the PPV from 80.0% to 100% (P = 0.0053). However, labor-intense procedures and delayed seroconversion limit PRNT for patient diagnostics. In sum, individual testing for CHIKV or MAYV only is prone to misclassifications that dramatically impact patient diagnostics and sero-epidemiologic investigation. Parallel ELISAs for both CHIKV and MAYV provide an easy and efficient solution to differentiate CHIKV from MAYV infections. This approach may provide a template globally for settings in which alphavirus coemergence imposes similar problems. IMPORTANCE Geographically overlapping transmission of Chikungunya virus (CHIKV) and Mayaro virus (MAYV) in Latin America challenges serologic diagnostics and epidemiologic surveillance, as antibodies against the antigenically related viruses can be cross-reactive, potentially causing false-positive test results. We examined whether widely used ELISAs and plaque reduction neutralization testing allow specific antibody detection in the scenario of CHIKV and MAYV coemergence. For this purpose, we used 37 patient-derived MAYV-specific sera from Peru and 64 patient-derived CHIKV-specific sera from Brazil, including longitudinally collected samples. Extensive testing of those samples revealed strong antibody cross-reactivity in ELISAs, particularly for IgM, which is commonly used for patient diagnostics. Cross-neutralization was also observed, albeit at lower frequencies. Parallel testing for both viruses and comparison of ELISA reactivities and neutralizing antibody titers significantly increased diagnostic specificity. Our data provide a convenient and practicable solution to ensure robust differentiation of CHIKV- and MAYV-specific antibodies.
Collapse
|
65
|
Bryden SR, Pingen M, Lefteri DA, Miltenburg J, Delang L, Jacobs S, Abdelnabi R, Neyts J, Pondeville E, Major J, Müller M, Khalid H, Tuplin A, Varjak M, Merits A, Edgar J, Graham GJ, Shams K, McKimmie CS. Pan-viral protection against arboviruses by activating skin macrophages at the inoculation site. Sci Transl Med 2020; 12:eaax2421. [PMID: 31969486 DOI: 10.1126/scitranslmed.aax2421] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/16/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022]
Abstract
Arthropod-borne viruses (arboviruses) are important human pathogens for which there are no specific antiviral medicines. The abundance of genetically distinct arbovirus species, coupled with the unpredictable nature of their outbreaks, has made the development of virus-specific treatments challenging. Instead, we have defined and targeted a key aspect of the host innate immune response to virus at the arthropod bite that is common to all arbovirus infections, potentially circumventing the need for virus-specific therapies. Using mouse models and human skin explants, we identify innate immune responses by dermal macrophages in the skin as a key determinant of disease severity. Post-exposure treatment of the inoculation site by a topical TLR7 agonist suppressed both the local and subsequent systemic course of infection with a variety of arboviruses from the Alphavirus, Flavivirus, and Orthobunyavirus genera. Clinical outcome was improved in mice after infection with a model alphavirus. In the absence of treatment, antiviral interferon expression to virus in the skin was restricted to dermal dendritic cells. In contrast, stimulating the more populous skin-resident macrophages with a TLR7 agonist elicited protective responses in key cellular targets of virus that otherwise proficiently replicated virus. By defining and targeting a key aspect of the innate immune response to virus at the mosquito bite site, we have identified a putative new strategy for limiting disease after infection with a variety of genetically distinct arboviruses.
Collapse
Affiliation(s)
- Steven R Bryden
- Virus Host Interaction Team, Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS9 7TF, UK
- Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Marieke Pingen
- Virus Host Interaction Team, Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS9 7TF, UK
- Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Daniella A Lefteri
- Virus Host Interaction Team, Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS9 7TF, UK
| | - Janne Miltenburg
- Virus Host Interaction Team, Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS9 7TF, UK
| | - Leen Delang
- KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Sofie Jacobs
- KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Rana Abdelnabi
- KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Emilie Pondeville
- MRC‑University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Jack Major
- Virus Host Interaction Team, Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS9 7TF, UK
- Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Marietta Müller
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Henna Khalid
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Margus Varjak
- Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Andres Merits
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Julia Edgar
- Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Gerard J Graham
- Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Kave Shams
- Inflammatory Skin Disease Group, Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS9 7TF, UK
| | - Clive S McKimmie
- Virus Host Interaction Team, Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS9 7TF, UK.
| |
Collapse
|
66
|
[Arthropod-borne viruses (arboviruses)]. Uirusu 2020; 70:3-14. [PMID: 33967110 DOI: 10.2222/jsv.70.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
"Arbovirus" is a term for a virus transmitted to mammals by hematophagous arthropods; arboviruses; replicate in both mammals and arthropods. Since the life cycle of arboviruses is highly dependent on arthropods, control of the arthropods (vectors) is generally considered important for the control of arbovirus infection. Various pathogens that cause diseases in the medical and veterinary fields are grouped into arboviruses with a history of their discoveries since the early 20th century. Furthermore, because of recent advances in sequencing technology, new arboviruses have been discovered one after another. Here we would like to overview the known arboviruses and their infections.
Collapse
|
67
|
Torres-Ruesta A, Teo TH, Chan YH, Rénia L, Ng LFP. Pathogenic Th1 responses in CHIKV-induced inflammation and their modulation upon Plasmodium parasites co-infection. Immunol Rev 2019; 294:80-91. [PMID: 31773780 PMCID: PMC7064921 DOI: 10.1111/imr.12825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022]
Abstract
The induction of polyarthritis and polyarthralgia is a hallmark of arthritogenic alphavirus infections, with an exceptionally higher morbidity observed with chikungunya virus (CHIKV). While the mechanisms underlying these incapacitating acute symptoms remain partially understood, the progression to chronic conditions in some cases remains unanswered. The highly pro‐inflammatory nature of alphavirus disease has suggested the involvement of virus‐specific, joint‐infiltrating Th1 cells as one of the main pathogenic mediators of CHIKV‐induced joint pathologies. This review summarizes the role of cell‐mediated immune responses in CHIKV pathogenesis, with a specific focus on pro‐inflammatory Th1 responses in the development of CHIKV joint inflammation. Furthermore, due to the explosive nature of arthritogenic alphavirus outbreaks and their recent expansion across the world, co‐infections with other highly prevalent pathogens such as malaria are likely to occur but the pathological outcomes of such interactions in humans are unknown. This review will also discuss the potential impact of malaria co‐infections on CHIKV pathogenesis and their relevance in alphavirus control programs in endemic areas.
Collapse
Affiliation(s)
- Anthony Torres-Ruesta
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Teck-Hui Teo
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore.,Department of Cell Biology and Infection, Molecular Microbial Pathogenesis Unit, Institute Pasteur, Paris, France
| | - Yi-Hao Chan
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
68
|
Rodrigues RL, Menezes GDL, Saivish MV, Costa VGD, Pereira M, Moreli ML, Silva RAD. Prediction of MAYV peptide antigens for immunodiagnostic tests by immunoinformatics and molecular dynamics simulations. Sci Rep 2019; 9:13339. [PMID: 31527652 PMCID: PMC6746749 DOI: 10.1038/s41598-019-50008-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
The Mayaro virus is endemic to South America, and the possible involvement of Aedes spp. mosquitoes in its transmission is a risk factor for outbreaks of greater proportions. The virus causes a potentially disabling illness known as Mayaro fever, which is similar to that caused by the chikungunya virus. The cocirculation of both viruses, with their clinical and structural similarities, and the absence of prophylactic and therapeutic measures highlight the need for studies that seek to understand the Mayaro virus. Using approaches in silico, we identified an antigenic and specific epitope (p_MAYV4) in domain A of the E2 glycoprotein of the Mayaro virus. This epitope was theoretically predicted to be stable and exposed on the surface of the protein, where it showed key properties that enable its interaction with neutralizing antibodies. These characteristics make it an interesting target for the development of immunodiagnostic platforms. Molecular dynamics simulation-based structural analysis showed that the PHE95 residue in the E1 fusion loop region is conserved among Alphavirus family members. PHE95 interacts with the hydrophobic residues of the E2 glycoprotein to form a cage-shaped structure that is critical to assemble and stabilize the E1/E2 heterodimer. These results provide important insights useful for the advancement of diagnostic platforms and the study of therapeutic alternatives.
Collapse
Affiliation(s)
- Roger Luiz Rodrigues
- Universidade Federal de Goiás, Laboratório de Virologia, Jataí, GO, 75801-615, Brazil
| | | | | | - Vivaldo Gomes Da Costa
- Universidade de Brasília, Departamento de Biologia Celular, Brasília, DF, 70910-900, Brazil
| | - Maristela Pereira
- Universidade Federal de Goiás, Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Goiânia, GO, 74690-900, Brazil
| | - Marcos Lázaro Moreli
- Universidade Federal de Goiás, Laboratório de Virologia, Jataí, GO, 75801-615, Brazil.
| | - Roosevelt Alves Da Silva
- Universidade Federal de Goiás, Núcleo Colaborativo de BioSistemas, Jataí, GO, 75801-615, Brazil.
| |
Collapse
|
69
|
Barik S. In silico structure analysis of alphaviral RNA genomes shows diversity in the evasion of IFIT1-mediated innate immunity. J Biosci 2019; 44:79. [PMID: 31502557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The IFIT (interferon-induced proteins with tetratricopeptide repeats) family constitutes a major arm of the antiviral function of type I interferon (IFN). Human IFIT1, the earliest discovered member of this family, inhibits several viruses of positivestrand RNA genome. IFIT1 specifically recognizes single-stranded RNAwith canonical 7-methylguanylate cap at the 50 end (Cap0), and inhibits their translation by competing with eIF4E (eukaryotic initiation factor 4E), an essential factor for 50Cap recognition. Recently, a novel viral mechanism of IFIT1 suppression was reported, in which an RNA hairpin in the 50 untranslated region (50UTR) of the viral genome prevented recognition by IFIT1 and enhanced virus growth. Here, I have analyzed the in silico predicted structures in the 50UTR of the genomes of the Alphaviruses, a large group of enveloped RNA virus with positive-sense single-stranded genome. The results uncovered a large ensemble of RNA secondary structures of diverse size and shape in the different viruses, which showed little correspondence to the phylogeny of the viruses. Unexpectedly, the 50UTR of several viral genomes in this family did not fold into any structure, suggesting either their extreme sensitivity to IFIT1 or the existence of alternative viral mechanisms of subverting IFIT1 function.
Collapse
|
70
|
Updated Phylogeny of Chikungunya Virus Suggests Lineage-Specific RNA Architecture. Viruses 2019; 11:v11090798. [PMID: 31470643 PMCID: PMC6784101 DOI: 10.3390/v11090798] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
Chikungunya virus (CHIKV), a mosquito-borne alphavirus of the family Togaviridae, has recently emerged in the Americas from lineages from two continents: Asia and Africa. Historically, CHIKV circulated as at least four lineages worldwide with both enzootic and epidemic transmission cycles. To understand the recent patterns of emergence and the current status of the CHIKV spread, updated analyses of the viral genetic data and metadata are needed. Here, we performed phylogenetic and comparative genomics screens of CHIKV genomes, taking advantage of the public availability of many recently sequenced isolates. Based on these new data and analyses, we derive a revised phylogeny from nucleotide sequences in coding regions. Using this phylogeny, we uncover the presence of several distinct lineages in Africa that were previously considered a single one. In parallel, we performed thermodynamic modeling of CHIKV untranslated regions (UTRs), which revealed evolutionarily conserved structured and unstructured RNA elements in the 3'UTR. We provide evidence for duplication events in recently emerged American isolates of the Asian CHIKV lineage and propose the existence of a flexible 3'UTR architecture among different CHIKV lineages.
Collapse
|
71
|
In silico structure analysis of alphaviral RNA genomes shows diversity in the evasion of IFIT1-mediated innate immunity. J Biosci 2019. [DOI: 10.1007/s12038-019-9897-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
72
|
Tschá MK, Suzukawa AA, Gräf T, Piancini LDS, da Silva AM, Faoro H, Riediger IN, Medeiros LC, Wowk PF, Zanluca C, Duarte Dos Santos CN. Identification of a novel alphavirus related to the encephalitis complexes circulating in southern Brazil. Emerg Microbes Infect 2019; 8:920-933. [PMID: 31237479 PMCID: PMC6598490 DOI: 10.1080/22221751.2019.1632152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In early 2017, an outbreak caused by an unknown and supposedly viral agent in the Marilena region of southern Brazil was investigated. Since the etiological agent causing the outbreak was not identified from human samples, mosquitoes from this region were collected. Three out of 121 mosquito pools collected from the region tested positive for alphavirus in molecular tests. Next generation sequencing results revealed the presence of a novel alphavirus, tentatively named here as Caainguá virus (CAAV). DNA barcoding analyses indicated that different species of Culex are hosts for CAAV. This new virus was basal to the New World encephalitic alphaviruses in a comprehensive and robust phylogenetic approach using complete genomes. Viral particles were observed in the cytosol and inside of intracellular compartments of cells in mosquito-derived cell cultures. Despite being noninfectious in vertebrate derived cell cultures, primary culturing of CAAV in human mononuclear cells suggests monocytes and lymphocytes as CAAV targets. However, the epidemiological link of CAAV on the human outbreak should be further explored.
Collapse
Affiliation(s)
- Marcel Kruchelski Tschá
- a Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz PR , Curitiba , Brazil
| | - Andreia Akemi Suzukawa
- a Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz PR , Curitiba , Brazil
| | - Tiago Gräf
- b Departamento de Genética , Instituto de Biologia, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | | | - Allan Martins da Silva
- c Laboratório Central, Secretaria da Saúde do Estado do Paraná , São José dos Pinhais , Brazil
| | - Helisson Faoro
- d Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas/Fiocruz PR , Curitiba , Brazil
| | | | - Lia Carolina Medeiros
- e Laboratório de Biologia Celular, Instituto Carlos Chagas/Fiocruz PR , Curitiba , Brazil
| | - Pryscilla Fanini Wowk
- a Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz PR , Curitiba , Brazil
| | - Camila Zanluca
- a Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz PR , Curitiba , Brazil
| | | |
Collapse
|
73
|
Lura T, Su T, Brown MQ. Preliminary evaluation of Thermo Fisher TaqMan ® Triplex q-PCR kit for simultaneous detection of chikungunya, dengue, and Zika viruses in mosquitoes. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2019; 44:205-209. [PMID: 31124226 DOI: 10.1111/jvec.12347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Taylor Lura
- West Valley Mosquito and Vector Control District, 1295 E. Locust St., Ontario, CA 91761
| | - Tianyun Su
- West Valley Mosquito and Vector Control District, 1295 E. Locust St., Ontario, CA 91761
| | - Michelle Q Brown
- West Valley Mosquito and Vector Control District, 1295 E. Locust St., Ontario, CA 91761
| |
Collapse
|
74
|
Røsæg MV, Garseth ÅH, Brynildsrud OB, Jansen MD. Pancreas disease caused by Salmonid alphavirus subtype 2 reduces growth and feed conversion in farmed Atlantic salmon. Prev Vet Med 2019; 169:104699. [PMID: 31311646 DOI: 10.1016/j.prevetmed.2019.104699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
Pancreas disease (PD), caused by several subtypes of salmonid alphavirus (SAV), is associated with significant economic losses in European salmonid aquaculture. In this retrospective cohort study, we investigate the impact of PD caused by SAV subtype 2 (SAV2) on growth, feed conversion, and mortality in farmed Atlantic salmon (Salmo salar L.). The study was based on harvest data from a large salmon farming company operating in the SAV2 endemic area of Norway. Mixed-effect regression analyses showed a severe impact on both growth and feed conversion when PD appeared late in the production cycle. In a scenario with fixed slaughter time the estimated impact corresponded to a growth reduction of 0.7 kg and 0.07 points increase in feed conversion ratio. No effect on mortality was observed in this data set. In conclusion, the most important consequences of PD caused by SAV2 infection is reduced growth and feed conversion in large Atlantic salmon. The lack of effect on mortality in this study may be due to other factors overshadowing the impact of PD.
Collapse
Affiliation(s)
- Magnus Vikan Røsæg
- SalMar Farming AS, Brattørkaia 15B, 7010 Trondheim, Norway; Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway.
| | | | - Ola Brønstad Brynildsrud
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway; Infectious Diseases Epidemiology and Modelling, Norwegian Institute of Public Health, Lovisenbergsgata 8, 0456 Oslo, Norway
| | | |
Collapse
|
75
|
Cryo-EM Structure of Chikungunya Virus in Complex with the Mxra8 Receptor. Cell 2019; 177:1725-1737.e16. [PMID: 31080061 DOI: 10.1016/j.cell.2019.04.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/22/2019] [Accepted: 04/01/2019] [Indexed: 11/21/2022]
Abstract
Mxra8 is a receptor for multiple arthritogenic alphaviruses that cause debilitating acute and chronic musculoskeletal disease in humans. Herein, we present a 2.2 Å resolution X-ray crystal structure of Mxra8 and 4 to 5 Å resolution cryo-electron microscopy reconstructions of Mxra8 bound to chikungunya (CHIKV) virus-like particles and infectious virus. The Mxra8 ectodomain contains two strand-swapped Ig-like domains oriented in a unique disulfide-linked head-to-head arrangement. Mxra8 binds by wedging into a cleft created by two adjacent CHIKV E2-E1 heterodimers in one trimeric spike and engaging a neighboring spike. Two binding modes are observed with the fully mature VLP, with one Mxra8 binding with unique contacts. Only the high-affinity binding mode was observed in the complex with infectious CHIKV, as viral maturation and E3 occupancy appear to influence receptor binding-site usage. Our studies provide insight into how Mxra8 binds CHIKV and creates a path for developing alphavirus entry inhibitors.
Collapse
|
76
|
Development of an E2 ELISA Methodology to Assess Chikungunya Seroprevalence in Patients from an Endemic Region of Mexico. Viruses 2019; 11:v11050407. [PMID: 31052472 PMCID: PMC6563309 DOI: 10.3390/v11050407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/07/2019] [Accepted: 04/28/2019] [Indexed: 12/19/2022] Open
Abstract
Chikungunya fever is a debilitating disease caused by Chikungunya virus (CHIKV) that can result in long-lasting arthralgias. The early diagnosis of CHIKV relies on PCR during the acute infection phase to allow differential diagnosis with other co-circulating arboviruses such as dengue and Zika. Alternatively, serology can support diagnosis and provide epidemiological information on current and past outbreaks. Many commercial serological ELISA assays are based on the inactivated whole CHIKV, but their sensitivity and specificity show great variability. We produced recombinant CHIKV E2 that is suitable for ELISA assays, which was used for the serodiagnosis of CHIKV infections occurring in an arbovirus endemic Mexican region within Michoacán state. A cross-sectional study was conducted in 2016-2017; sera was obtained from 15 healthy donors and 68 patients presenting undifferentiated febrile illness. Serum samples were screened by RT-PCR and by our in-house ELISA assay. Our results indicate that IgM and IgG anti-CHIKV E2 antibodies were detected with our ELISA assay with higher sensitivity than a commercially available CHIKV ELISA kit. Our simple and sensitive ELISA assay for the serodiagnosis of CHIKV infections can be applied to population-based seroprevalence surveys and has potential for monitoring vaccine immunogenicity in CHIKV vaccine clinical trials.
Collapse
|
77
|
Development of an Enzyme-Linked Immunosorbent Assay To Detect Antibodies Targeting Recombinant Envelope Protein 2 of Mayaro Virus. J Clin Microbiol 2019; 57:JCM.01892-18. [PMID: 30787146 DOI: 10.1128/jcm.01892-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/08/2019] [Indexed: 12/11/2022] Open
Abstract
Mayaro virus (MAYV) is a neglected arthropod-borne virus (arbovirus) antigenically clustered into the Semliki Forest complex group of Alphavirus genus (Togaviridae family), maintained in an unclear zoonotic cycle involving mosquitoes from Haemagogus genus as the main vector. The genome is composed of a positive single-stranded RNA of 11.5 kb in length, which contains two genes that encode four nonstructural (nsP1 to nsP4) and five structural (C, E3, E2, 6K, and E1) proteins. In the present study, we have developed an enzyme-linked immunosorbent assay (ELISA) using as antigen the recombinant envelope protein 2 of MAYV produced in an Escherichia coli system (rE2-MAYV ELISAs). A panel of 68 human serum samples from suspected arboviral cases was analyzed and titrated for anti-MAYV IgM and IgG antibody detection. The rE2-MAYV ELISA detected 33.8% (23/68) IgG-positive samples, demonstrating 100% sensitivity and 78.95% specificity compared to the MAYV-specific 50% plaque reduction neutralization assay. In addition, the positive MAYV-neutralizing samples showed high titers of detection by rE2-MAYV ELISA, suggesting a highly sensitive test. The rE2-MAYV ELISA also detected 42.5% (29/68) IgM-positive samples, of which 13.8% (4/29) presented high-avidity interactions with rE2-MAYV. Cross-reactivity was observed with Chikungunya virus (CHIKV)-specific murine antibody sample but not with CHIKV-specific human and other Alphavirus murine antibodies. In short, we have developed a rapid, simple, specific, and sensitive MAYV rE2-ELISA, and our preliminary results show its potential applicability to diagnosis of MAYV infections.
Collapse
|
78
|
Reyes-Sandoval A. 51 years in of Chikungunya clinical vaccine development: A historical perspective. Hum Vaccin Immunother 2019; 15:2351-2358. [PMID: 30735447 DOI: 10.1080/21645515.2019.1574149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Chikungunya fever (CHIKF) is a mosquito-borne disease caused by Chikungunya virus (CHIKV). This virus is considered a priority pathogen to the UK government, the US National Institute of Allergy and Infectious Diseases (NIAID) and the US military personnel, due to the potential of CHIKV to cause major outbreaks. Nearly all CHIKV infections are symptomatic, often incapacitating and patients experience severe joint pain and inflammation that can last for more than one year with 0.4-0.5% fatality rates. Mother-to-child transmission has also been described. Despite this re-emerging disease has been documented in more than 100 countries in Europe, Oceania, Africa, Asia, the Caribbean, South and North America, no licensed vaccine is yet available to prevent CHIKF. Nevertheless, various developments have entered phase I and II trials and are now viable options to fight this incapacitating disease. This review focuses on the development of CHIKV vaccines that have reached the stage of clinical trials since the late 1960s up until 2018.
Collapse
Affiliation(s)
- Arturo Reyes-Sandoval
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford. The Henry Wellcome Building for Molecular Physiology , Oxford , UK
| |
Collapse
|
79
|
Chikungunya in Infants and Children: Is Pathogenesis Increasing? Viruses 2019; 11:v11030294. [PMID: 30909568 PMCID: PMC6466311 DOI: 10.3390/v11030294] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/15/2022] Open
Abstract
Chikungunya virus (CHIKV) was first extensively described in children during outbreaks in India and South Asia during the mid-1960s. Prior to the 2005 emergence of CHIKV on Reunion Island, CHIKV infection was usually described as a dengue-like illness with arthralgia in Africa and febrile hemorrhagic disease in Asia. Soon after the 2005 emergence, severe CNS consequences from vertical and perinatal transmission were described and as CHIKV continued to emerge in new areas over the next 10 years, severe manifestation of infection and sequelae were increasingly reported in infants and neonates. The following review describes the global reemergence and the syndromes of Chikungunya fever (CHIKF) in infants and children. The various manifestations of CHIKF are described and connected to the viral lineage that was documented in the area at the time the disease was described. The data show that certain manifestations of CHIKF occur with specific viral lineages and genetic motifs, which suggests that severe manifestations of CHIKF in the very young may be associated with the emergence of new viral lineages.
Collapse
|
80
|
Mostafavi H, Abeyratne E, Zaid A, Taylor A. Arthritogenic Alphavirus-Induced Immunopathology and Targeting Host Inflammation as A Therapeutic Strategy for Alphaviral Disease. Viruses 2019; 11:v11030290. [PMID: 30909385 PMCID: PMC6466158 DOI: 10.3390/v11030290] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022] Open
Abstract
Arthritogenic alphaviruses are a group of medically important arboviruses that cause inflammatory musculoskeletal disease in humans with debilitating symptoms, such as arthralgia, arthritis, and myalgia. The arthritogenic, or Old World, alphaviruses are capable of causing explosive outbreaks, with some viruses of major global concern. At present, there are no specific therapeutics or commercially available vaccines available to prevent alphaviral disease. Infected patients are typically treated with analgesics and non-steroidal anti-inflammatory drugs to provide often inadequate symptomatic relief. Studies to determine the mechanisms of arthritogenic alphaviral disease have highlighted the role of the host immune system in disease pathogenesis. This review discusses the current knowledge of the innate immune response to acute alphavirus infection and alphavirus-induced immunopathology. Therapeutic strategies to treat arthritogenic alphavirus disease by targeting the host immune response are also examined.
Collapse
Affiliation(s)
- Helen Mostafavi
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia.
| | - Eranga Abeyratne
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia.
| | - Ali Zaid
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia.
| | - Adam Taylor
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia.
| |
Collapse
|
81
|
GloPID-R report on Chikungunya, O'nyong-nyong and Mayaro virus, part I: Biological diagnostics. Antiviral Res 2019; 166:66-81. [PMID: 30905821 DOI: 10.1016/j.antiviral.2019.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/17/2019] [Indexed: 11/20/2022]
Abstract
The GloPID-R (Global Research Collaboration for Infectious Disease Preparedness) Chikungunya (CHIKV), O'nyong-nyong (ONNV) and Mayaro virus (MAYV) Working Group is investigating the natural history, epidemiology and medical management of infection by these viruses, to identify knowledge gaps and to propose recommendations for direct future investigations and rectification measures. Here, we present the first report dedicated to diagnostic aspects of CHIKV, ONNV and MAYV. Regarding diagnosis of the disease at the acute phase, molecular assays previously described for the three viruses require further evaluation, standardized protocols and the availability of international standards representing the genetic diversity of the viruses. Detection of specific IgM would benefit from further investigations to clarify the extent of cross-reactivity among the three viruses, the sensitivity of the assays, and the possible interfering role of cryoglobulinaemia. Implementation of reference panels and external quality assessments for both molecular and serological assays is necessary. Regarding sero-epidemiological studies, there is no reported high-throughput assay that can distinguish among these different viruses in areas of potential co-circulation. New specific tools and/or improved standardized protocols are needed to enable large-scale epidemiological studies of public health relevance to be performed. Considering the high risk of future CHIKV, MAYV and ONNV outbreaks, the Working Group recommends that a major investigation should be initiated to fill the existing diagnostic gaps.
Collapse
|
82
|
Naveca FG, Claro I, Giovanetti M, de Jesus JG, Xavier J, Iani FCDM, do Nascimento VA, de Souza VC, Silveira PP, Lourenço J, Santillana M, Kraemer MUG, Quick J, Hill SC, Thézé J, Carvalho RDDO, Azevedo V, Salles FCDS, Nunes MRT, Lemos PDS, Candido DDS, Pereira GDC, Oliveira MAA, Meneses CAR, Maito RM, Cunha CRSB, Campos DPDS, Castilho MDC, Siqueira TCDS, Terra TM, de Albuquerque CFC, da Cruz LN, de Abreu AL, Martins DV, Simoes DSDMV, de Aguiar RS, Luz SLB, Loman N, Pybus OG, Sabino EC, Okumoto O, Alcantara LCJ, Faria NR. Genomic, epidemiological and digital surveillance of Chikungunya virus in the Brazilian Amazon. PLoS Negl Trop Dis 2019; 13:e0007065. [PMID: 30845267 PMCID: PMC6424459 DOI: 10.1371/journal.pntd.0007065] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/19/2019] [Accepted: 02/01/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Since its first detection in the Caribbean in late 2013, chikungunya virus (CHIKV) has affected 51 countries in the Americas. The CHIKV epidemic in the Americas was caused by the CHIKV-Asian genotype. In August 2014, local transmission of the CHIKV-Asian genotype was detected in the Brazilian Amazon region. However, a distinct lineage, the CHIKV-East-Central-South-America (ECSA)-genotype, was detected nearly simultaneously in Feira de Santana, Bahia state, northeast Brazil. The genomic diversity and the dynamics of CHIKV in the Brazilian Amazon region remains poorly understood despite its importance to better understand the epidemiological spread and public health impact of CHIKV in the country. METHODOLOGY/PRINCIPAL FINDINGS We report a large CHIKV outbreak (5,928 notified cases between August 2014 and August 2018) in Boa vista municipality, capital city of Roraima's state, located in the Brazilian Amazon region. We generated 20 novel CHIKV-ECSA genomes from the Brazilian Amazon region using MinION portable genome sequencing. Phylogenetic analyses revealed that despite an early introduction of the Asian genotype in 2015 in Roraima, the large CHIKV outbreak in 2017 in Boa Vista was caused by an ECSA-lineage most likely introduced from northeastern Brazil. Epidemiological analyses suggest a basic reproductive number of R0 of 1.66, which translates in an estimated 39 (95% CI: 36 to 45) % of Roraima's population infected with CHIKV-ECSA. Finally, we find a strong association between Google search activity and the local laboratory-confirmed CHIKV cases in Roraima. CONCLUSIONS/SIGNIFICANCE This study highlights the potential of combining traditional surveillance with portable genome sequencing technologies and digital epidemiology to inform public health surveillance in the Amazon region. Our data reveal a large CHIKV-ECSA outbreak in Boa Vista, limited potential for future CHIKV outbreaks, and indicate a replacement of the Asian genotype by the ECSA genotype in the Amazon region.
Collapse
Affiliation(s)
- Felipe Gomes Naveca
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, FIOCRUZ, Manaus, Brazil
| | - Ingra Claro
- Instituto de Medicina Tropical e Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marta Giovanetti
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jaqueline Goes de Jesus
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Patologia Experimental, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Joilson Xavier
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Patologia Experimental, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Felipe Campos de Melo Iani
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratório Central de Saúde Pública, Instituto Octávio Magalhães, FUNED, Belo Horizonte, Minas Gerais, Brazil
| | - Valdinete Alves do Nascimento
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, FIOCRUZ, Manaus, Brazil
| | - Victor Costa de Souza
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, FIOCRUZ, Manaus, Brazil
| | - Paola Paz Silveira
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Lourenço
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Mauricio Santillana
- Harvard Medical School, Department of Pediatrics, Boston, MA, United States of America
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, United States of America
| | - Moritz U. G. Kraemer
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
- Computational Epidemiology Lab, Boston Children’s Hospital, Boston, MA, United States of America
| | - Josh Quick
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Sarah C. Hill
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Julien Thézé
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Rodrigo Dias de Oliveira Carvalho
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | - Glauco de Carvalho Pereira
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marluce Aparecida Assunção Oliveira
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | - Marcia da Costa Castilho
- Departamento de Virologia, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | | | - Tiza Matos Terra
- Laboratório Central de Saúde Pública do Amazonas, Manaus, Amazonas, Brazil
| | | | | | - André Luis de Abreu
- Secretaria de Vigilância em Saúde, Ministério da Saúde (SVS/MS), Brasília-DF, Brazil
| | | | | | - Renato Santana de Aguiar
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sérgio Luiz Bessa Luz
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, FIOCRUZ, Manaus, Brazil
| | - Nicholas Loman
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Oliver G. Pybus
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Ester C. Sabino
- Instituto de Medicina Tropical e Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Osnei Okumoto
- Secretaria de Vigilância em Saúde, Ministério da Saúde (SVS/MS), Brasília-DF, Brazil
| | - Luiz Carlos Junior Alcantara
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nuno Rodrigues Faria
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
| |
Collapse
|
83
|
Higuera A, Ramírez JD. Molecular epidemiology of dengue, yellow fever, Zika and Chikungunya arboviruses: An update. Acta Trop 2019; 190:99-111. [PMID: 30444971 DOI: 10.1016/j.actatropica.2018.11.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/10/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
Abstract
Arboviruses are a group of viruses transmitted by arthropods. They are characterized by a wide geographic distribution, which is associated with the presence of the vector, and cause asymptomatic infections or febrile diseases in humans in both enzootic and urban cycles. Recent reports of human infections caused by viruses such as dengue, Zika, and chikungunya have raised concern regarding public health, and have led to the re-evaluation of surveillance mechanisms and measures to control the transmission of these arboviruses. Viruses such as Mayaro and Usutu are not currently responsible for a high number of symptomatic infections in humans, but should remain under epidemiological surveillance to avoid the emergence of new epidemics, as happened with Zika virus, that are associated with new or more severe symptoms. Additionally, significant variation has been observed in these viruses, giving rise to different lineages. Until recently, the emergence of new lineages has primarily been related to geographical distribution and dispersion, allowing us to ascertain the possible origins and direction of expansion of each virus type, and to make predictions regarding regions where active infections in humans are likely to occur. Therefore, this review is focused on untangling the molecular epidemiology of Dengue, Yellow fever, Zika and Chikungunya due to their recent epidemics in Latinamerica but provides an update on the geographical distribution globally of these viral variants, and outlines the need for further understanding of the genotypes/lineages assignment.
Collapse
|
84
|
Oliver GF, Carr JM, Smith JR. Emerging infectious uveitis: Chikungunya, dengue, Zika and Ebola: A review. Clin Exp Ophthalmol 2019; 47:372-380. [PMID: 30474222 DOI: 10.1111/ceo.13450] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022]
Abstract
Recently recognized forms of uveitis include intraocular inflammations that occur during or following one of several emerging infectious diseases: chikungunya fever, dengue, Zika virus disease and Ebola virus disease. Anterior, intermediate, posterior and pan-uveitis have been described in individuals infected with chikungunya virus. Persons who contract dengue or Zika viruses also may develop different types of uveitis in the course of the infection: maculopathy is a common manifestation of dengue eye disease, and Zika eye disease may cause hypertensive anterior uveitis or mimic a white dot syndrome. Up to one-third of Ebola survivors develop aggressive uveitis, which is frequently associated with vision loss and complicated by cataract. There are no specific anti-viral drugs for these forms of uveitis, and thus treatment is largely supportive. In this article, we summarize the systemic infectious diseases and virology, and describe the clinical presentations, outcomes and management of emerging viral forms of uveitis.
Collapse
Affiliation(s)
- Genevieve F Oliver
- Eye & Vision Health, Flinders University College of Medicine and Public Health, Adelaide, Australia
| | - Jillian M Carr
- Eye & Vision Health, Flinders University College of Medicine and Public Health, Adelaide, Australia
| | - Justine R Smith
- Eye & Vision Health, Flinders University College of Medicine and Public Health, Adelaide, Australia
| |
Collapse
|
85
|
Carissimo G, Ng LFP. Understanding Molecular Pathogenesis with Chikungunya Virus Research Tools. Curr Top Microbiol Immunol 2019; 435:33-53. [PMID: 30888547 DOI: 10.1007/82_2019_158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Since its re-emergence in 2006, Chikungunya has been a major health concern in endemic areas. Transmitted by Aedes mosquitoes to mammalian hosts, Chikungunya leads to persistent debilitating symptoms in a high proportion of symptomatic human cases. In this review, we present several tools on the mosquito vector side as well as on the mammalian side that have been used to advance research on Chikungunya transmission and immunopathogenesis. These tools lead to key understandings of viral replication in both hosts, and innate and adaptive responses mediating virus clearance and pathology in mammals. This comprehension of viral mechanisms has allowed the development of promising treatment avenues in animal models that will need to be further explored. However, research efforts need to continue in order to develop better and unbiased tools to assess antiviral and treatment strategies as well as further understand immune mechanisms at play in human pathologies.
Collapse
Affiliation(s)
- Guillaume Carissimo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Lisa F P Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore. .,Institute of Infection and Global Health, University of Liverpool, Liverpool, UK. .,Laboratory of Microbial Immunity, Singapore Immunology Network, 8A Biomedical Grove, #04-06, Immunos, Biopolis, 138648, Singapore.
| |
Collapse
|
86
|
Liu JL, Shriver-Lake LC, Zabetakis D, Goldman ER, Anderson GP. Selection of Single-Domain Antibodies towards Western Equine Encephalitis Virus. Antibodies (Basel) 2018; 7:E44. [PMID: 31544894 PMCID: PMC6698954 DOI: 10.3390/antib7040044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022] Open
Abstract
In this work, we describe the selection and characterization of single-domain antibodies (sdAb) towards the E2/E3E2 envelope protein of the Western equine encephalitis virus (WEEV). Our purpose was to identify novel recognition elements which could be used for the detection, diagnosis, and perhaps treatment of western equine encephalitis (WEE). To achieve this goal, we prepared an immune phage display library derived from the peripheral blood lymphocytes of a llama that had been immunized with an equine vaccine that includes killed WEEV (West Nile Innovator + VEWT). This library was panned against recombinant envelope (E2/E3E2) protein from WEEV, and seven representative sdAb from the five identified sequence families were characterized. The specificity, affinity, and melting point of each sdAb was determined, and their ability to detect the recombinant protein in a MagPlex sandwich immunoassay was confirmed. Thus, these new binders represent novel recognition elements for the E2/E3E2 proteins of WEEV that are available to the research community for further investigation into their applicability for use in the diagnosis or treatment of WEE.
Collapse
Affiliation(s)
- Jinny L Liu
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Lisa C Shriver-Lake
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Dan Zabetakis
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Ellen R Goldman
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - George P Anderson
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| |
Collapse
|
87
|
Wiggins K, Eastmond B, Alto BW. Transmission potential of Mayaro virus in Florida Aedes aegypti and Aedes albopictus mosquitoes. MEDICAL AND VETERINARY ENTOMOLOGY 2018; 32:436-442. [PMID: 30006976 DOI: 10.1111/mve.12322] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/13/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
Mayaro virus (MAYV) is an emerging mosquito-borne arbovirus present in Central and South America that causes arthralgia and febrile illness. Domestic mosquitoes Aedes aegypti (Diptera: Culicidae) and Aedes albopictus are potential vectors of MAYV that may allow for transmission to humans in urban settings. The present paper assesses susceptibility to infection, disseminated infection and transmission potential in Florida Ae. aegypti and Ae. albopictus for MAYV. Oral infection was significantly higher in Ae. albopictus (85-100%) than in Ae. aegypti (67-82%). Viral dissemination to the haemocoel in Ae. aegypti and Ae. albopictus mosquitoes was rapid and co-occurred with infection of the salivary glands. Rates of disseminated infection were generally higher in Ae. aegypti (45-85%) than in Ae. albopictus (38-76%), although the difference was significant only at 9 days after feeding on MAYV-infected blood. Both mosquito species exhibited low rates of MAYV infection in saliva expectorates. Viral titres in the bodies of mosquitoes increased in line with the number of days post-blood feeding and were higher in Ae. aegypti than in Ae. albopictus. Although Florida mosquito vectors have the potential to transmit MAYV and thus to initiate an urban cycle after having fed on higher titres of MAYV-infected blood, lower viraemia in infected humans is likely to limit transmission potential.
Collapse
Affiliation(s)
- K Wiggins
- Entomology and Nematology Department, Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, U.S.A
- Indian River Stage College, Biology Department, Fort Pierce, FL, U.S.A
| | - B Eastmond
- Entomology and Nematology Department, Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, U.S.A
| | - B W Alto
- Entomology and Nematology Department, Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, U.S.A
| |
Collapse
|
88
|
Ruane NM, Swords D, Morrissey T, Geary M, Hickey C, Collins EM, Geoghegan F, Swords F. Isolation of salmonid alphavirus subtype 6 from wild-caught ballan wrasse, Labrus bergylta (Ascanius). JOURNAL OF FISH DISEASES 2018; 41:1643-1651. [PMID: 30051469 DOI: 10.1111/jfd.12870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
The use of cleaner fish as a biological control for sea lice in Atlantic salmon aquaculture has increased in recent years. Wild-caught wrasse are commonly used as cleaner fish in Europe. In Ireland, samples of wrasse from each fishing area are screened for potential pathogens prior to their deployment into sea cages. Salmonid alphavirus was isolated from a pooled sample of ballan wrasse, showing no signs of disease, caught from the NW of Ireland. Partial sequencing of the E2 and nsP3 genes showed that it was closely related to the previously reported SAV subtype 6. This represents only the second isolation of this subtype and the first from a wild fish species, namely ballan wrasse.
Collapse
Affiliation(s)
- Neil M Ruane
- Fish Health Unit, Marine Institute, County Galway, Ireland
| | - David Swords
- Fish Health Unit, Marine Institute, County Galway, Ireland
| | | | - Michelle Geary
- Fish Health Unit, Marine Institute, County Galway, Ireland
| | - Cathy Hickey
- Fish Health Unit, Marine Institute, County Galway, Ireland
| | | | | | - Fiona Swords
- Fish Health Unit, Marine Institute, County Galway, Ireland
| |
Collapse
|
89
|
Zanotto PMDA, Leite LCDC. The Challenges Imposed by Dengue, Zika, and Chikungunya to Brazil. Front Immunol 2018; 9:1964. [PMID: 30210503 PMCID: PMC6121005 DOI: 10.3389/fimmu.2018.01964] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Brazil has a well-established immunization program in which vaccines are provided through the Public Health System free of charge to the whole population, obtaining high coverage and reducing the incidence of important infectious diseases in children and adults. However, the environmental changes and high mobility rates of the population occurring in the last decades have triggered the sequential introduction of a series of vector-borne emerging infectious diseases, such as Dengue, Zika, and Chikungunya, that have imposed a considerable burden on the population, with yet unmet solutions. The first to be introduced in Brazil was the Dengue virus, reaching epidemic levels in 2010, with over 1 million cases annually, maintaining high infection rates until 2016. Brazil has invested in vaccine development. The Zika virus infection, initially assumed to have appeared during the World Cup in 2014, was later shown to have arrived earlier in 2013. Its emergence mobilized the Brazilian scientific community to define priorities and strategies, that rapidly investigated mechanisms of pathogenesis, differential diagnostics, and determined that Zika virus infection per se causes relatively mild symptoms, however, in pregnant women can cause microcephaly in the newborns. The diagnostics of Zika infection is confusing given its similar symptoms and cross-reactivity with Dengue, which also hindered the appraisal of the extent of the epidemics, which peaked in 2015 and finished in 2016. Another complicating factor was the overlap with Chikungunya virus infection, which arrived in Brazil in 2014, being prevalent in the same regions, with similar symptoms to both Dengue and Zika. Although Dengue infection can be fatal and Zika infection in pregnant woman can lead to newborns with microcephaly or an array of neurodegenerative manifestations, the Chikungunya infection is a debilitating disease leaving chronic sequelae, which unfortunately has received less attention. Precise differential diagnostics of Dengue, Zika, and Chikungunya will be necessary to evaluate the actual extent of each of these diseases during this overlapping period. Here we review the impact of these emerging infections on public health and how the scientific community was mobilized to deal with them in Brazil.
Collapse
|
90
|
Fumagalli MJ, de Souza WM, Espósito DLA, Silva A, Romeiro MF, Martinez EZ, da Fonseca BAL, Figueiredo LTM. Enzyme-linked immunosorbent assay using recombinant envelope protein 2 antigen for diagnosis of Chikungunya virus. Virol J 2018; 15:112. [PMID: 30041676 PMCID: PMC6056935 DOI: 10.1186/s12985-018-1028-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022] Open
Abstract
Background Chikungunya (CHIKV) virus is an important mosquito-borne virus causing outbreaks of acute febrile illness with arthropathy. The detection of specific antibodies against CHIKV is used for diagnosis after the acute viremic phase of the disease. However, a major challenge for serologic diagnosis of CHIKV and other alphaviruses is the cross-reactivity of antibodies to common antigens among these viruses. In the present study, we have developed an enzyme-linked immunosorbend assay using a recombinant envelope protein 2 of CHIKV produced in Escherichia coli system, as a capture antigen. Results High titers (1600 to 12,800) of anti-CHIKV antibodies were detected in human sera analyzed by the CHIKV assay, suggesting it may detect low levels of the antibodies presence. On the other side, cross-reactivity was not observed in mouse hyperimmune sera to Mayaro virus and other alphaviruses analyzed by the CHIKV immunosorbend assay, suggesting it is a CHIKV-specific test. Fifty-nine human serum samples of CHIKV infection suspected cases were tested for immunoglobulin G (IgG) and M (IgM) antibodies detection using the CHIKV immunosorbend assay. A total of 44% (26/59) of samples were positive for IgG to CHIKV, determining 89.66% sensitivity and 100% specificity when the assay is compared to a CHIKV-specific neutralization assay. In addition, 40.6% (24/59) of samples were positive for IgM, determining 92.48% sensitivity and 79.04% specificity by a Bayesian method in the absence of a gold standard. Moreover, CHIKV immunosorbend assay showed similar sensibilities to a commercial immunochromatography assay (Lumiquick, USA) for CHIKV IgG and IgM detection. Conclusion In short, we have developed a rapid, simple, specific and sensitive CHIKV immunosorbend assay for IgG and IgM detection and our results showed potential applicability on the diagnosis of infections by this virus. Electronic supplementary material The online version of this article (10.1186/s12985-018-1028-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcílio Jorge Fumagalli
- Virology Research Center, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - William Marciel de Souza
- Virology Research Center, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Danillo Lucas Alves Espósito
- Virology Research Center, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Angélica Silva
- Virology Research Center, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marilia Farignoli Romeiro
- Virology Research Center, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Edson Zangiacomi Martinez
- Social Medicine, Ribeirão Preto Medical School of University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | | | - Luiz Tadeu Moraes Figueiredo
- Virology Research Center, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
91
|
Carissimo G, Pain A, Belda E, Vernick KD. Highly focused transcriptional response of Anopheles coluzzii to O'nyong nyong arbovirus during the primary midgut infection. BMC Genomics 2018; 19:526. [PMID: 29986645 PMCID: PMC6038350 DOI: 10.1186/s12864-018-4918-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022] Open
Abstract
Background Anopheles mosquitoes are efficient vectors of human malaria, but it is unknown why they do not transmit viruses as well as Aedes and Culex mosquitoes. The only arbovirus known to be consistently transmitted by Anopheles mosquitoes is O’nyong nyong virus (ONNV, genus Alphavirus, family Togaviridae). The interaction of Anopheles mosquitoes with RNA viruses has been relatively unexamined. Results We transcriptionally profiled the African malaria vector, Anopheles coluzzii, infected with ONNV. Mosquitoes were fed on an infectious bloodmeal and were analyzed by Illumina RNAseq at 3 days post-bloodmeal during the primary virus infection of the midgut epithelium, before systemic dissemination. Virus infection triggers transcriptional regulation of just 30 host candidate genes. Most of the regulated candidate genes are novel, without known function. Of the known genes, a significant cluster includes candidates with predicted involvement in carbohydrate metabolism. Two candidate genes encoding leucine-rich repeat immune (LRIM) factors point to possible involvement of immune protein complexes in the mosquito antiviral response. The primary ONNV infection by bloodmeal shares little transcriptional response in common with ONNV infection by intrathoracic injection, nor with midgut infection by the malaria parasites, Plasmodium falciparum or P. berghei. Profiling of A. coluzzii microRNA (miRNA) identified 118 known miRNAs and 182 potential novel miRNA candidates, with just one miRNA regulated by ONNV infection. This miRNA was not regulated by other previously reported treatments, and may be virus specific. Coexpression analysis of miRNA abundance and messenger RNA expression revealed discrete clusters of genes regulated by Imd and JAK/STAT, immune signaling pathways that are protective against ONNV in the primary infection. Conclusions ONNV infection of the A. coluzzii midgut triggers a remarkably limited gene regulation program of mostly novel candidate genes, which likely includes host genes deployed for antiviral defense, as well as genes manipulated by the virus to facilitate infection. Functional dissection of the ONNV-response candidate genes is expected to generate novel insight into the mechanisms of virus-vector interaction. Electronic supplementary material The online version of this article (10.1186/s12864-018-4918-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guillaume Carissimo
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France.,Laboratory of Microbial Immunity, Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Adrien Pain
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France.,Bioinformatics and Biostatistics Hub (C3BI), USR 3756 IP CNRS, Institut Pasteur, 75017, Paris, France
| | - Eugeni Belda
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France.,Integromics Unit, Institute of Cardiometabolism and Nutrition, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France
| | - Kenneth D Vernick
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France. .,CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France.
| |
Collapse
|
92
|
Lundberg L, Brahms A, Hooper I, Carey B, Lin SC, Dahal B, Narayanan A, Kehn-Hall K. Repurposed FDA-Approved drug sorafenib reduces replication of Venezuelan equine encephalitis virus and other alphaviruses. Antiviral Res 2018; 157:57-67. [PMID: 29981794 DOI: 10.1016/j.antiviral.2018.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/30/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022]
Abstract
The New World alphaviruses -Venezuelan, eastern, and western equine encephalitis viruses (VEEV, EEEV, and WEEV respectively) - cause a febrile disease that is often lethal in equines and children and leads to long-term neurological sequelae in survivors. Endemic to the Americas, epizootic outbreaks of the three viruses occur sporadically in the continental United States. All three viruses aerosolize readily, replicate to high titers in cell culture, and have low infectious doses. Additionally, there are no FDA-approved vaccines or therapeutics for human use. To address the therapeutic gap, a high throughput assay utilizing a luciferase reporter virus, TC83-luc, was performed to screen a library of commercially available, FDA-approved drugs for antiviral activity. From a group of twenty compounds found to significantly decrease luminescence, the carcinoma therapeutic sorafenib inhibited replication of VEEV-TC83 and TrD in vitro. Additionally, sorafenib inhibited replication of EEEV and two Old World alphaviruses, Sindbis virus and chikungunya virus, at 8 and 16 h post-infection. Sorafenib caused no toxicity in Vero cells, and coupled with a low EC50 value, yielded a selectivity index of >19. Mechanism of actions studies suggest that sorafenib inhibited viral translation through dephosphorylation of several key proteins, including eIF4E and p70S6K, leading to a reduction in viral protein production and overall viral replication.
Collapse
Affiliation(s)
- Lindsay Lundberg
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Ashwini Brahms
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Idris Hooper
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Brian Carey
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Shih-Chao Lin
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Bibha Dahal
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA.
| |
Collapse
|
93
|
Ching KC, F P Ng L, Chai CLL. A compendium of small molecule direct-acting and host-targeting inhibitors as therapies against alphaviruses. J Antimicrob Chemother 2018; 72:2973-2989. [PMID: 28981632 PMCID: PMC7110243 DOI: 10.1093/jac/dkx224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses were amongst the first arboviruses to be isolated, characterized and assigned a taxonomic status. They are globally widespread, infecting a large variety of terrestrial animals, birds, insects and even fish. Moreover, they are capable of surviving and circulating in both sylvatic and urban environments, causing considerable human morbidity and mortality. The re-emergence of Chikungunya virus (CHIKV) in almost every part of the world has caused alarm to many health agencies throughout the world. The mosquito vector for this virus, Aedes, is globally distributed in tropical and temperate regions and capable of thriving in both rural and urban landscapes, giving the opportunity for CHIKV to continue expanding into new geographical regions. Despite the importance of alphaviruses as human pathogens, there is currently no targeted antiviral treatment available for alphavirus infection. This mini-review discusses some of the major features in the replication cycle of alphaviruses, highlighting the key viral targets and host components that participate in alphavirus replication and the molecular functions that were used in drug design. Together with describing the importance of these targets, we review the various direct-acting and host-targeting inhibitors, specifically small molecules that have been discovered and developed as potential therapeutics as well as their reported in vitro and in vivo efficacies.
Collapse
Affiliation(s)
- Kuan-Chieh Ching
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore 117456.,Department of Pharmacy, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, Singapore 117543
| | - Lisa F P Ng
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos Building, #04-06, Singapore 138648.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Block MD6, Centre for Translational Medicine, 14 Medical Drive, #14-01T, Singapore 117599.,Institute of Infection and Global Health, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool L697BE, UK
| | - Christina L L Chai
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore 117456.,Department of Pharmacy, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, Singapore 117543
| |
Collapse
|
94
|
Large-Scale Complete-Genome Sequencing and Phylodynamic Analysis of Eastern Equine Encephalitis Virus Reveals Source-Sink Transmission Dynamics in the United States. J Virol 2018; 92:JVI.00074-18. [PMID: 29618651 DOI: 10.1128/jvi.00074-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/30/2018] [Indexed: 11/20/2022] Open
Abstract
Eastern equine encephalitis virus (EEEV) has a high case-fatality rate in horses and humans, and Florida has been hypothesized to be the source of EEEV epidemics for the northeastern United States. To test this hypothesis, we sequenced complete genomes of 433 EEEV strains collected within the United States from 1934 to 2014. Phylogenetic analysis suggested EEEV evolves relatively slowly and that transmission is enzootic in Florida, characterized by higher genetic diversity and long-term local persistence. In contrast, EEEV strains in New York and Massachusetts were characterized by lower genetic diversity, multiple introductions, and shorter local persistence. Our phylogeographic analysis supported a source-sink model in which Florida is the major source of EEEV compared to the other localities sampled. In sum, this study revealed the complex epidemiological dynamics of EEEV in different geographic regions in the United States and provided general insights into the evolution and transmission of other avian mosquito-borne viruses in this region.IMPORTANCE Eastern equine encephalitis virus (EEEV) infections are severe in horses and humans on the east coast of the United States with a >90% mortality rate in horses, an ∼33% mortality rate in humans, and significant brain damage in most human survivors. However, little is known about the evolutionary characteristics of EEEV due to the lack of genome sequences. By generating large collection of publicly available complete genome sequences, this study comprehensively determined the evolution of the virus, described the epidemiological dynamics of EEEV in different states in the United States, and identified Florida as one of the major sources. These results may have important implications for the control and prevention of other mosquito-borne viruses in the Americas.
Collapse
|
95
|
A Systematic Review of the Natural Virome of Anopheles Mosquitoes. Viruses 2018; 10:v10050222. [PMID: 29695682 PMCID: PMC5977215 DOI: 10.3390/v10050222] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/15/2022] Open
Abstract
Anopheles mosquitoes are vectors of human malaria, but they also harbor viruses, collectively termed the virome. The Anopheles virome is relatively poorly studied, and the number and function of viruses are unknown. Only the o’nyong-nyong arbovirus (ONNV) is known to be consistently transmitted to vertebrates by Anopheles mosquitoes. A systematic literature review searched four databases: PubMed, Web of Science, Scopus, and Lissa. In addition, online and print resources were searched manually. The searches yielded 259 records. After screening for eligibility criteria, we found at least 51 viruses reported in Anopheles, including viruses with potential to cause febrile disease if transmitted to humans or other vertebrates. Studies to date have not provided evidence that Anopheles consistently transmit and maintain arboviruses other than ONNV. However, anthropophilic Anopheles vectors of malaria are constantly exposed to arboviruses in human bloodmeals. It is possible that in malaria-endemic zones, febrile symptoms may be commonly misdiagnosed. It is also possible that anophelines may be inherently less competent arbovirus vectors than culicines, but if true, the biological basis would warrant further study. This systematic review contributes a context to characterize the biology, knowledge gaps, and potential public health risk of Anopheles viruses.
Collapse
|
96
|
Torii S, Orba Y, Hang'ombe BM, Mweene AS, Wada Y, Anindita PD, Phongphaew W, Qiu Y, Kajihara M, Mori-Kajihara A, Eto Y, Harima H, Sasaki M, Carr M, Hall WW, Eshita Y, Abe T, Sawa H. Discovery of Mwinilunga alphavirus: A novel alphavirus in Culex mosquitoes in Zambia. Virus Res 2018; 250:31-36. [PMID: 29630910 DOI: 10.1016/j.virusres.2018.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 12/24/2022]
Abstract
Mosquito-borne alphaviruses are disseminated globally and cause febrile illness in humans and animals. Since the prevalence and diversity of alphaviruses has not been previously investigated in Zambia, reverse transcription PCR was employed as a broad-spectrum approach for the detection of alphaviruses in mosquitoes. From 552 mosquito pools, a novel alphavirus, tentatively named Mwinilunga alphavirus (MWAV), was discovered from a single Culex quinquefasciatus mosquito pool. The full genome of MWAV was subsequently determined, and pairwise comparisons demonstrated that MWAV represented a new alphavirus species. Phylogenetic analyses and a linear discriminant analysis based on the dinucleotide ratios in various virus sequences indicated that MWAV is related to a mosquito-specific alphavirus distinct from other known mosquito-borne alphaviruses due to its inability to replicate in vertebrate cell lines. Further analyses of these novel alphaviruses will help to facilitate a greater understanding of the molecular determinants of host range restriction and the evolutionary relationships of alphaviruses.
Collapse
Affiliation(s)
- Shiho Torii
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| | - Bernard M Hang'ombe
- Department of Para-Clinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia; Africa Center of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka, Zambia
| | - Aaron S Mweene
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia; Global Virus Network, Baltimore, MD, USA; Africa Center of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka, Zambia
| | - Yuji Wada
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Paulina D Anindita
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Wallaya Phongphaew
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yongjin Qiu
- Hokudai Center for Zoonosis Control in Zambia, Lusaka, Zambia
| | - Masahiro Kajihara
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Akina Mori-Kajihara
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yoshiki Eto
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hayato Harima
- Hokudai Center for Zoonosis Control in Zambia, Lusaka, Zambia
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Michael Carr
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin, Ireland; Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - William W Hall
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan; Centre for Research in Infectious Diseases, University College Dublin, Dublin, Ireland; Global Virus Network, Baltimore, MD, USA; Africa Center of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka, Zambia
| | - Yuki Eshita
- Hokudai Center for Zoonosis Control in Zambia, Lusaka, Zambia
| | - Takashi Abe
- Department of Computer Science, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan; Global Virus Network, Baltimore, MD, USA; Africa Center of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka, Zambia.
| |
Collapse
|
97
|
Kumar S, Kumar A, Mamidi P, Tiwari A, Kumar S, Mayavannan A, Mudulli S, Singh AK, Subudhi BB, Chattopadhyay S. Chikungunya virus nsP1 interacts directly with nsP2 and modulates its ATPase activity. Sci Rep 2018; 8:1045. [PMID: 29348627 PMCID: PMC5773547 DOI: 10.1038/s41598-018-19295-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 12/27/2017] [Indexed: 01/29/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne virus, which has created an alarming threat in the world due to unavailability of vaccine and antiviral compounds. The CHIKV nsP2 contains ATPase, RTPase, helicase and protease activities, whereas, nsP1 is a viral capping enzyme. In alphaviruses, the four non-structural proteins form the replication complex in the cytoplasm and this study characterizes the interaction between CHIKV nsP1 and nsP2. It was observed that, both the proteins co-localize in the cytoplasm and interact in the CHIKV infected cells by confocal microscopy and immunoprecipitation assay. Further, it was demonstrated through mutational analysis that, the amino acids 1-95 of nsP2 and 170-288 of nsP1 are responsible for their direct interaction. Additionally, it was noticed that, the ATPase activity of nsP2 is enhanced in the presence of nsP1, indicating the functional significance of this interaction. In silico analysis showed close (≤1.7 Å) polar interaction (hydrogen bond) between Glu4, Arg7, 96, 225 of nsP2 with Lys256, 206, Val367 and Phe312 of nsP1 respectively. Hence, this investigation provides molecular characterization of CHIKV nsP1-nsP2 interaction which might be a useful target for rational designing of antiviral drugs.
Collapse
Affiliation(s)
| | | | | | - Atul Tiwari
- Banaras Hindu University, Varanasi, U.P., India
| | | | | | | | | | - Bharat Bhusan Subudhi
- School of Pharmaceutical Sciences, Siksha O Anusandhan University, Bhubaneswar, India
| | | |
Collapse
|
98
|
Lednicky J, De Rochars VMB, Elbadry M, Loeb J, Telisma T, Chavannes S, Anilis G, Cella E, Ciccozzi M, Okech B, Salemi M, Morris JG. Mayaro Virus in Child with Acute Febrile Illness, Haiti, 2015. Emerg Infect Dis 2018; 22:2000-2002. [PMID: 27767924 PMCID: PMC5088037 DOI: 10.3201/eid2211.161015] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mayaro virus has been associated with small outbreaks in northern South America. We isolated this virus from a child with acute febrile illness in rural Haiti, confirming its role as a cause of mosquitoborne illness in the Caribbean region. The clinical presentation can mimic that of chikungunya, dengue, and Zika virus infections.
Collapse
|
99
|
Aubry M, Laughhunn A, Santa Maria F, Lanteri MC, Stassinopoulos A, Musso D. Amustaline (S-303) treatment inactivates high levels of Chikungunya virus in red-blood-cell components. Vox Sang 2018; 113:232-241. [PMID: 29314033 DOI: 10.1111/vox.12626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Chikungunya virus (CHIKV) infections have been reported in all continents, and the potential risk for CHIKV transfusion-transmitted infections (TTIs) was demonstrated by the detection of CHIKV RNA-positive donations in several countries. TTIs can be reduced by pathogen inactivation (PI) of blood products. In this study, we evaluated the efficacy of amustaline and glutathione (S-303/GSH) to inactivate CHIKV in red-blood-cell concentrates (RBCs). MATERIAL AND METHODS Red-blood-cells were spiked with high level of CHIKV. Infectious titres and RNA loads were measured before and after PI treatment. Residual CHIKV infectivity was also assessed after five successive cell culture passages. RESULTS The mean CHIKV titres in RBCs before inactivation was 5·81 ± 0·18 log10 50% tissue culture infectious dose (TCID50 )/mL, and the mean viral RNA load was 10·49 ± 0·15 log10 genome equivalent (GEq)/mL. No CHIKV TCID was detected after S-303 treatment nor was replicative CHIKV particles and viral RNA present after five cell culture passages of samples obtained immediately after S-303 treatment. CONCLUSION Chikungunya virus was previously shown to be inactivated by the PI technology using amotosalen and ultraviolet A light for the treatment of plasma and platelets. This new study demonstrates that S-303/GSH can inactivate high titres of CHIKV in RBCs.
Collapse
Affiliation(s)
- M Aubry
- Pôle de recherche et de veille sur les maladies infectieuses émergentes, Institut Louis Malardé, Tahiti, French Polynesia.,Aix Marseille Univ, IRD (Dakar, Marseille, Papeete), AP-HM, IHU-Méditerranée Infection, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | | | | | | | | | - D Musso
- Pôle de recherche et de veille sur les maladies infectieuses émergentes, Institut Louis Malardé, Tahiti, French Polynesia.,Aix Marseille Univ, IRD (Dakar, Marseille, Papeete), AP-HM, IHU-Méditerranée Infection, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| |
Collapse
|
100
|
Sow A, Faye O, Diallo M, Diallo D, Chen R, Faye O, Diagne CT, Guerbois M, Weidmann M, Ndiaye Y, Senghor CS, Faye A, Diop OM, Sadio B, Ndiaye O, Watts D, Hanley KA, Dia AT, Malvy D, Weaver SC, Sall AA. Chikungunya Outbreak in Kedougou, Southeastern Senegal in 2009-2010. Open Forum Infect Dis 2017; 5:ofx259. [PMID: 29354659 PMCID: PMC5767945 DOI: 10.1093/ofid/ofx259] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/27/2017] [Indexed: 12/03/2022] Open
Abstract
Background In Senegal, Chikungunya virus (CHIKV), which is an emerging mosquito-borne alphavirus, circulates in a sylvatic and urban/domestic cycle and has caused sporadic human cases and epidemics since 1960s. However, the real impact of the CHIKV sylvatic cycle in humans and mechanisms underlying its emergence still remains unknown. Methodology One thousand four hundred nine suspect cases of CHIKV infection, recruited from 5 health facilities located in Kedougou region, south-eastern Senegal, between May 2009 to March 2010, together with 866 serum samples collected from schoolchildren from 4 elementary schools in May and November 2009 from Kedougou were screened for anti-CHIKV immunoglobulin (Ig)M antibodies and, when appropriate, for viral nucleic acid by real-time polymerase chain reaction (rPCR) and virus isolation. In addition, mosquitoes collected in the same area from May 2009 to January 2010 were tested for CHIKV by rPCR and by virus isolation, and 116 monkeys sera collected from March 2010 to May 2010 were tested for anti-CHIKV IgM and neutralizing antibodies. Results The main clinical manifestations of the CHIKV suspect cases were headache, myalgia, and arthralgia. Evidence for CHIKV infection was observed in 1.4% (20 of 1409) of patients among suspect cases. No significant difference was observed among age or sex groups. In addition, 25 (2.9%) students had evidence of CHIKV infection in November 2009. Chikungunya virus was detected in 42 pools of mosquitoes, mainly from Aedes furcifer, and 83% of monkeys sampled were seropositive. Conclusions Our findings further documented that CHIKV is maintained in a sylvatic transmission cycle among monkeys and Aedes mosquitoes in Kedougou, and humans become infected by exposure to the virus in the forest.
Collapse
Affiliation(s)
- Abdourahmane Sow
- Institut Pasteur Dakar, Arbovirus and Viral Hemorrhagic Fevers Unit, Senegal.,Institut Santé et Développement, Université Cheikh Anta Diop, Dakar, Senegal.,INSERM 1219, University of Bordeaux, France
| | - Oumar Faye
- Institut Pasteur Dakar, Arbovirus and Viral Hemorrhagic Fevers Unit, Senegal
| | | | - Diawo Diallo
- Institut Pasteur Dakar, Medical Entomology Unit, Senegal
| | - Rubing Chen
- Institute for Human Infections and Immunity, Center for Tropical Diseases and Department of Pathology, University of Texas Medical Branch, Galveston
| | - Ousmane Faye
- Institut Pasteur Dakar, Arbovirus and Viral Hemorrhagic Fevers Unit, Senegal
| | | | - Mathilde Guerbois
- Institute for Human Infections and Immunity, Center for Tropical Diseases and Department of Pathology, University of Texas Medical Branch, Galveston
| | - Manfred Weidmann
- Department of Virology, University Medical Center Göttingen, Germany
| | | | | | | | | | - Bakary Sadio
- Institut Pasteur Dakar, Arbovirus and Viral Hemorrhagic Fevers Unit, Senegal
| | - Oumar Ndiaye
- Institut Pasteur Dakar, Arbovirus and Viral Hemorrhagic Fevers Unit, Senegal
| | | | | | - Anta T Dia
- Institut Santé et Développement, Université Cheikh Anta Diop, Dakar, Senegal
| | | | - Scott C Weaver
- Institute for Human Infections and Immunity, Center for Tropical Diseases and Department of Pathology, University of Texas Medical Branch, Galveston
| | - Amadou Alpha Sall
- Institut Pasteur Dakar, Arbovirus and Viral Hemorrhagic Fevers Unit, Senegal
| |
Collapse
|