51
|
Boasso A. Type I interferon in HIV treatment: from antiviral drug to therapeutic target. HIV THERAPY 2009; 3:269-282. [PMID: 32280376 PMCID: PMC7147345 DOI: 10.2217/hiv.09.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Type I interferons (IFNs) are soluble molecules that exert potent antiviral activity and are currently used for the treatment of a panel of viral infections. In the case of HIV, the use of type I IFN has had limited success, and has almost been abandoned. During the last decade, a series of studies has highlighted how HIV infection may cause overactivation of type I IFN production, which contributes to the exhaustion of the immune system and to disease progression. This review describes the transition from the proposed use of type I IFN as antiviral drugs in HIV infection, to the idea that blocking their activity or production may provide an immunologic benefit of much greater importance than their antiviral activity.
Collapse
Affiliation(s)
- Adriano Boasso
- >Department of Immunology, Division of Investigative Science, Faculty of Medicine, Imperial College, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK. Tel.: +44 208 746 5993; ;
| |
Collapse
|
52
|
Lederer S, Favre D, Walters KA, Proll S, Kanwar B, Kasakow Z, Baskin CR, Palermo R, McCune JM, Katze MG. Transcriptional profiling in pathogenic and non-pathogenic SIV infections reveals significant distinctions in kinetics and tissue compartmentalization. PLoS Pathog 2009; 5:e1000296. [PMID: 19214219 PMCID: PMC2633618 DOI: 10.1371/journal.ppat.1000296] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 01/13/2009] [Indexed: 11/26/2022] Open
Abstract
Simian immunodeficiency virus (SIV) infection leads to AIDS in experimentally infected macaques, whereas natural reservoir hosts exhibit limited disease and pathology. It is, however, unclear how natural hosts can sustain high viral loads, comparable to those observed in the pathogenic model, without developing severe disease. We performed transcriptional profiling on lymph node, blood, and colon samples from African green monkeys (natural host model) and Asian pigtailed macaques (pathogenic model) to directly compare gene expression patterns during acute pathogenic versus non-pathogenic SIV infection. The majority of gene expression changes that were unique to either model were detected in the lymph nodes at the time of peak viral load. Results suggest a shift toward cellular stress pathways and Th1 profiles during pathogenic infection, with strong and sustained type I and II interferon responses. In contrast, a strong type I interferon response was initially induced during non-pathogenic infection but resolved after peak viral load. The natural host also exhibited controlled Th1 profiles and better preservation of overall cell homeostasis. This study identified gene expression patterns that are specific to disease susceptibility, tissue compartmentalization, and infection duration. These patterns provide a unique view of how host responses differ depending upon lentiviral infection outcome. Simian immunodeficiency virus (SIV) does not cause disease in African green monkeys (a natural host for the virus), whereas experimentally infected Asian macaques (a non-natural host) develop a progressive disease that is similar to that which occurs in HIV-infected humans. Insight into how HIV causes disease and leads to development of AIDS may therefore be gained by comparing the response of natural and non-natural hosts to SIV infection. To this end, we examined changes that occurred in gene expression levels over time and in multiple tissues derived from African green monkeys and Asian macaques experimentally infected with SIV. Infection leads to host-specific gene expression patterns in lymph nodes, blood, and colon. The natural and non-natural hosts differed with respect to the timing, intensity, and duration of infection-induced gene expression changes associated with inflammation and response to stress.
Collapse
Affiliation(s)
- Sharon Lederer
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - David Favre
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, California, United States of America
| | - Kathie-Anne Walters
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Sean Proll
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Bittoo Kanwar
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, California, United States of America
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of California, San Francisco, California, United States of America
| | - Zeljka Kasakow
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, California, United States of America
| | - Carole R. Baskin
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Robert Palermo
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Joseph M. McCune
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, California, United States of America
| | - Michael G. Katze
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
53
|
Chung HK, Pise-Masison CA, Radonovich MF, Brady J, Lee JK, Cheon SY, Markham P, Cristillo A, Pal R. Cellular gene expression profiles in rhesus macaques challenged mucosally with a pathogenic R5 tropic simian human immunodeficiency virus isolate. Viral Immunol 2009; 21:411-23. [PMID: 19115930 DOI: 10.1089/vim.2008.0076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insights into the host factors that contribute to an effective antiviral immune response may be obtained by examining global gene expression in simian human immunodeficiency virus (SHIV)-infected nonhuman primates that exhibit different virological outcomes. Immune responses and gene expression profiles in peripheral blood mononuclear cells (PBMCs) were compared between animals that controlled or did not control viremia after infection. Rectal inoculation of eight rhesus macaques with R5-tropic SHIV(SF162P3) resulted in a high level of plasma viremia during the acute phase of infection. The viremia was controlled to below levels of detection in six of these animals at the set point (controllers), whereas two animals had persistent viremia throughout the 140 wk that the animals were monitored (non-controllers). CD4(+) T-cell counts declined slightly in both controllers and non-controllers in the acute phase of infection, but CD4(+) T-cell counts continued to decline only in the non-controllers. Neutralizing antibodies to the challenge virus were variable and could not account for the control of viremia. However, analysis of the cellular gene expression profiles in the PBMCs from both groups of animals revealed distinctive gene expression patterns between controllers and non-controllers. Using the paired LPE test, 59 genes with p values <0.01 were identified and specific differences in the gene expression profiles in PBMCs from controllers versus non-controllers were detected.
Collapse
Affiliation(s)
- Hye-kyung Chung
- Advanced BioScience Laboratories, Inc., Kensington, Maryland 20895, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Primary infection with simian immunodeficiency virus: plasmacytoid dendritic cell homing to lymph nodes, type I interferon, and immune suppression. Blood 2008; 112:4598-608. [PMID: 18787223 DOI: 10.1182/blood-2008-06-162651] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are antigen-presenting cells that develop into type-I interferon (IFN-I)-producing cells in response to pathogens. Their role in human immunodeficiency virus (HIV) pathogenesis needs to be understood. We analyzed their dynamics in relation to innate and adaptive immunity very early during the acute phase of simian immunodeficiency virus (SIV) infection in 18 macaques. pDC counts decreased in blood and increased in peripheral lymph nodes, consistent with early recruitment in secondary lymphoid tissues. These changes correlated with the kinetic and intensity of viremia and were associated with a peak of plasma IFN-I. IFN-I and viremia were positively correlated with functional activity of the immune suppression associated enzyme indoleamine-2,3-dioxygenase (IDO) and FoxP3(+)CD8(+) T cells, which both negatively correlated with SIV-specific T-cell proliferation and CD4(+) T-cell activation. These data suggest that pDCs and IFN-I play a key role in shaping innate and adaptive immunity toward suppressive pathways during the acute phase of SIV/HIV primary infection.
Collapse
|
55
|
Increased Interferon Alpha Expression in Circulating Plasmacytoid Dendritic Cells of HIV-1-Infected Patients. J Acquir Immune Defic Syndr 2008; 48:522-30. [DOI: 10.1097/qai.0b013e31817f97cf] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
56
|
Boasso A, Hardy AW, Anderson SA, Dolan MJ, Shearer GM. HIV-induced type I interferon and tryptophan catabolism drive T cell dysfunction despite phenotypic activation. PLoS One 2008; 3:e2961. [PMID: 18698365 PMCID: PMC2491901 DOI: 10.1371/journal.pone.0002961] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 07/22/2008] [Indexed: 11/19/2022] Open
Abstract
Infection by the human immunodeficiency virus (HIV) is characterized by functional impairment and chronic activation of T lymphocytes, the causes of which are largely unexplained. We cultured peripheral blood mononuclear cells (PBMC) from HIV-uninfected donors in the presence or absence of HIV. HIV exposure increased expression of the activation markers CD69 and CD38 on CD4 and CD8 T cells. IFN-α/β, produced by HIV-activated plasmacytoid dendritic cells (pDC), was necessary and sufficient for CD69 and CD38 upregulation, as the HIV-induced effect was inhibited by blockade of IFN-α/β receptor and mimicked by recombinant IFN-α/β. T cells from HIV-exposed PBMC showed reduced proliferation after T cell receptor stimulation, partially prevented by 1-methyl tryptophan, a competitive inhibitor of the immunesuppressive enzyme indoleamine (2,3)-dioxygenase (IDO), expressed by HIV-activated pDC. HIV-induced IDO inhibited CD4 T cell proliferation by cell cycle arrest in G1/S, and prevented CD8 T cell from entering the cell cycle by downmodulating the costimulatory receptor CD28. Finally, the expression of CHOP, a marker of the stress response activated by IDO, was upregulated by HIV in T cells in vitro and is increased in T cells from HIV-infected patients. Our data provide an in vitro model for HIV-induced T cell dysregulation and support the hypothesis that activation of pDC concomitantly contribute to phenotypic T cell activation and inhibition of T cell proliferative capacity during HIV infection.
Collapse
Affiliation(s)
- Adriano Boasso
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | | | |
Collapse
|
57
|
Marcondes MCG, Watry D, Zandonatti M, Flynn C, Taffe MA, Fox H. Chronic alcohol consumption generates a vulnerable immune environment during early SIV infection in rhesus macaques. Alcohol Clin Exp Res 2008; 32:1583-92. [PMID: 18616669 DOI: 10.1111/j.1530-0277.2008.00730.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Alcohol consumption is a common problem in HIV-infected individuals, and the effects of alcohol may alter the efficiency of the immune response, potentially aggravating the disease as well as affecting end organs, such as the brain. However, the elements of the virus-host interaction that are modulated by ethanol are poorly dissected. METHODS Ethanol intake was conditioned in rhesus macaques prior to SIV infection, in order to mimic this common human behavior, and allow the evaluation of aspects of the virus-immune system interactions during acute time-points, when important facets of the infection are set up and when virus reproducibly enters the brain. RESULTS Although ethanol had a limited effect on the acute plasma viral load, it resulted in reduced circulating memory CD4(+) T cells and increased levels of monocytes expressing the viral coreceptor CCR5. In organs, ethanol consumption impacted immune cells in the liver as well as lymphoid and other nonlymphoid tissues, where CD4(+) T cells were predominantly affected. CONCLUSION Overall, the consumption of alcohol causes immune cell alterations that can contribute to the generation of a disease susceptible environment upon SIV infection.
Collapse
Affiliation(s)
- Maria Cecilia G Marcondes
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
58
|
Capitanio JP, Abel K, Mendoza SP, Blozis SA, McChesney MB, Cole SW, Mason WA. Personality and serotonin transporter genotype interact with social context to affect immunity and viral set-point in simian immunodeficiency virus disease. Brain Behav Immun 2008; 22:676-89. [PMID: 17719201 PMCID: PMC2493468 DOI: 10.1016/j.bbi.2007.05.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 05/24/2007] [Accepted: 05/29/2007] [Indexed: 11/24/2022] Open
Abstract
From the beginning of the AIDS epidemic, stress has been a suspected contributor to the wide variation seen in disease progression, and some evidence supports this idea. Not all individuals respond to a stressor in the same way, however, and little is known about the biological mechanisms by which variations in individuals' responses to their environment affect disease-relevant immunologic processes. Using the simian immunodeficiency virus/rhesus macaque model of AIDS, we explored how personality (Sociability) and genotype (serotonin transporter promoter) independently interact with social context (Stable or Unstable social conditions) to influence behavioral expression, plasma cortisol concentrations, SIV-specific IgG, and expression of genes associated with Type I interferon early in infection. SIV viral RNA set-point was strongly and negatively correlated with survival as expected. Set-point was also associated with expression of interferon-stimulated genes, with CXCR3 expression, and with SIV-specific IgG titers. Poorer immune responses, in turn, were associated with display of sustained aggression and submission. Personality and genotype acted independently as well as in interaction with social condition to affect behavioral responses. Together, the data support an "interactionist" perspective [Eysenck, H.J., 1991. Personality, stress and disease: an interactionist perspective. Psychol. Inquiry 2, 221-232] on disease. Given that an important goal of HIV treatment is to maintain viral set-point as low as possible, our data suggest that supplementing anti-retroviral therapy with behavioral or pharmacologic modulation of other aspects of an organism's functioning might prolong survival, particularly among individuals living under conditions of threat or uncertainty.
Collapse
Affiliation(s)
- John P Capitanio
- California National Primate Research Center, Department of Psychology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
59
|
Asmuth DM, Abel K, George MD, Dandekar S, Pollard RB, Miller CJ. Pegylated interferon-alpha 2a treatment of chronic SIV-infected macaques. J Med Primatol 2008; 37:26-30. [PMID: 18199069 DOI: 10.1111/j.1600-0684.2007.00221.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND In vitro and clinical observations in HIV-infected patients receiving interferon alpha therapy have shown a reduction in HIV loads. Limited investigations have explored the innate or adaptive immune responses of IFN-alpha on SIV replication in vivo. METHODS Seven chronically infected rhesus macaques were given pegylated IFN-alpha 2a (n = four) or saline (n = three) injections once weekly for 14 weeks. Weekly peripheral blood samples were taken for safety parameters, viral load determinations, and measurements of innate and adaptive immune responses. RESULTS Pharmacokinetic measurements demonstrated therapeutic peg-IFN-alpha levels for the initial period of therapy and IFN-alpha inducible antiviral molecules were increased sporadically in the PBMC mRNA of the treatment group. Despite the demonstrable effect of the IFN-alpha injections, the treatment had no effect on plasma viral RNA levels. CONCLUSIONS This work demonstrates that while short term IFN-alpha therapy induces innate antiviral immunity, it does not dramatically enhance or suppress viral replication. However, studies in the SIV model to determine therapeutic potential of chronic IFN-alpha therapy for the treatment of HIV will require macaque specific cytokines.
Collapse
Affiliation(s)
- D M Asmuth
- Division of Infectious Diseases, Department of Internal Medicine, University of California-Davis Medical Center, 4150 V Street, Sacramento, CA 95817, USA.
| | | | | | | | | | | |
Collapse
|
60
|
Chronic innate immune activation as a cause of HIV-1 immunopathogenesis. Clin Immunol 2007; 126:235-42. [PMID: 17916442 DOI: 10.1016/j.clim.2007.08.015] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 08/16/2007] [Indexed: 11/23/2022]
Abstract
Human immunodeficiency virus (HIV)-1 infection causes progressive impairment of the immune system in humans, characterized by depletion of CD4 T cells and loss of T cell function. Increased markers of T cell activation and lymphoid hyperplasia suggest that chronic T cell activation persists in immunocompromised hosts, and contributes to the exhaustion of immune functions. Here we propose a revision of this hypothesis, in which we suggest that chronic activation of innate immunity may negatively affect adaptive T cell-mediated responses. We hypothesize that constant exposure of the effector cells of innate immunity to HIV results in their chronic hyperactivation, with deleterious effects on T cells. In particular, plasmacytoid dendritic cells (pDC) may be highly susceptible to HIV-induced activation due to its interaction with the cellular receptor CD4, expressed by pDC. Subsequent production of type I interferon and indoleamine 2,3-dioxygenase may exert suppressive and cytotoxic effects on T cells.
Collapse
|
61
|
Sariol CA, Muñoz-Jordán JL, Abel K, Rosado LC, Pantoja P, Giavedoni L, Rodriguez IV, White LJ, Martínez M, Arana T, Kraiselburd EN. Transcriptional activation of interferon-stimulated genes but not of cytokine genes after primary infection of rhesus macaques with dengue virus type 1. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:756-66. [PMID: 17428947 PMCID: PMC1951081 DOI: 10.1128/cvi.00052-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Macaques are the only animal model used to test dengue virus (DENV) vaccine candidates. Nevertheless, the pathogenesis of DENV in macaques is not well understood. In this work, by using Affymetrix oligonucleotide microarrays, we studied the broad transcriptional modifications and cytokine expression profile after infecting rhesus macaques with DENV serotype 1. Five days after infection, these animals produced a potent, innate antiviral immune response by inducing the transcription of signature genes from the interferon (IFN) pathway with demonstrated antiviral activity, such as myxoprotein, 2',5'-oligoadenylate synthetase, phospholipid scramblase 1, and viperin. Also, IFN regulatory element 7, IFN-stimulated gene 15, and protein ligases linked to the ISGylation process were up-regulated. Unexpectedly, no up-regulation of IFN-alpha, -beta, or -gamma genes was detected. Transcription of the genes of interleukin-10 (IL-10), IL-8, IL-6, and tumor necrosis factor alpha was neither up-regulated nor down-regulated. Results were confirmed by real-time PCR and by multiplex cytokine detection in serum samples.
Collapse
Affiliation(s)
- Carlos A Sariol
- Unit of Comparative Medicine, Primate Research Center, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936-5067.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Milush JM, Stefano-Cole K, Schmidt K, Durudas A, Pandrea I, Sodora DL. Mucosal innate immune response associated with a timely humoral immune response and slower disease progression after oral transmission of simian immunodeficiency virus to rhesus macaques. J Virol 2007; 81:6175-86. [PMID: 17428863 PMCID: PMC1900075 DOI: 10.1128/jvi.00042-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mucosal transmission is the predominant mode of human immunodeficiency virus (HIV) infection worldwide, and the mucosal innate interferon response represents an important component of the earliest host response to the infection. Our goal here was to assess the changes in mRNA expression of innate mucosal genes after oral simian immunodeficiency virus (SIV) inoculation of rhesus macaques (Macaca mulatta) that were followed throughout their course of disease progression. The SIV plasma viral load was highest in the macaque that progressed rapidly to simian AIDS (99 days) and lowest in the macaque that progressed more slowly (>700 days). The mRNA levels of six innate/effector genes in the oral mucosa indicated that slower disease progression was associated with increased expression of these genes. This distinction was most evident when comparing the slowest-progressing macaque to the intermediate and rapid progressors. Expression levels of alpha and gamma interferons, the antiviral interferon-stimulated gene product 2'-5' oligoadenylate synthetase (OAS), and the chemokines CXCL9 and CXCL10 in the slow progressor were elevated at each of the three oral mucosal biopsy time points examined (day 2 to 4, 14 to 21, and day 70 postinfection). In contrast, the more rapidly progressing macaques demonstrated elevated levels of these cytokine/chemokine mRNA at lymph nodes, coincident with decreased levels at the mucosal sites, and a decreased ability to elicit an effective anti-SIV antibody response. These data provide evidence that a robust mucosal innate/effector immune response is beneficial following lentiviral exposure; however, it is likely that the anatomical location and timing of the response need to be coordinated to permit an effective immune response able to delay progression to simian AIDS.
Collapse
Affiliation(s)
- Jeffrey M Milush
- Department of Internal Medicine, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9113, USA
| | | | | | | | | | | |
Collapse
|
63
|
Audigé A, Urosevic M, Schlaepfer E, Walker R, Powell D, Hallenberger S, Joller H, Simon HU, Dummer R, Speck RF. Anti-HIV state but not apoptosis depends on IFN signature in CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:6227-37. [PMID: 17056552 DOI: 10.4049/jimmunol.177.9.6227] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To gain insights into the molecular mechanisms underlying early host responses to HIV in the CD4(+) T cell target population, we examined gene expression in CD4(+) T cells isolated 24 h after ex vivo HIV infection of lymphocyte aggregate cultures derived from human tonsils. Gene profiling showed a distinct up-regulation of genes related to immune response and response to virus, notably of IFN-stimulated genes (ISGs), irrespective of the coreceptor tropism of the virus. This mostly IFN-alpha-dependent gene signature suggested the involvement of plasmacytoid dendritic cells, a principal component of the antiviral immune response. Indeed, depletion of plasmacytoid dendritic cells before HIV inoculation abrogated transcriptional up-regulation of several ISGs and resulted in increased levels of HIV replication. Treatment with a blocking anti-IFN-alphaR Ab yielded increased HIV replication; conversely, HIV replication was decreased in pDC-depleted cultures treated with IFN-alpha. Among up-regulated ISGs was also TRAIL, indicating a potential role of the IFN signature in apoptosis. However, a blocking anti-TRAIL Ab did not abrogate apoptosis of CD4(+) T cells in CXCR4-tropic HIV-infected cultures, suggesting the involvement of pathways other than TRAIL mediated. We conclude that acute HIV infection of lymphoid tissue results in up-regulation of ISGs in CD4(+) T cells, which induces an anti-HIV state but not apoptosis.
Collapse
Affiliation(s)
- Annette Audigé
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Schaefer TM, Fuller CL, Basu S, Fallert BA, Poveda SL, Sanghavi SK, Choi YK, Kirschner DE, Feingold E, Reinhart TA. Increased expression of interferon-inducible genes in macaque lung tissues during simian immunodeficiency virus infection. Microbes Infect 2006; 8:1839-50. [PMID: 16822691 DOI: 10.1016/j.micinf.2006.02.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 02/17/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
Pulmonary infections and dysfunction are frequent outcomes during the development of immunodeficiency associated with human immunodeficiency virus type 1 (HIV-1) infection, and obtaining a better understanding of the immunologic changes that occur in lungs following HIV-1 infection will provide a foundation for the development of further intervention strategies. We sought here to identify changes in the pulmonary immune environment that arise during simian immunodeficiency virus (SIV) infection of rhesus macaques, which serves as an excellent model system for HIV-1 infection and disease. To examine the gene expression profiles of macaque lung tissues following infection with the pathogenic SIV/DeltaB670 isolate, we performed cDNA microarray hybridizations with lung total RNAs using two commercially available cDNA arrays and a custom-fabricated, immunologically focused macaque cDNA microarray. In situ hybridization and real-time RT-PCR were performed to provide additional analyses of gene expression. Among the genes exhibiting the highest level of induction in lung tissues were the IFN-gamma-inducible chemokines, CXCL10/IP-10 and CXCL9/Mig. In situ hybridization and real-time RT-PCR strongly supported these findings. Correlation analyses revealed that the levels of expression of IFN-gamma, CXCL9/Mig, and CXCL10/IP-10 mRNAs were all strongly positively correlated, and that CXCL10/IP-10 mRNA and Pneumocystis carinii rRNA were positively correlated. Taken together, these findings demonstrate that inflammatory chemokines are among the most differentially expressed mRNAs in macaque lung tissues during systemic SIV infection of rhesus macaques, and provide insight into the complicated events occurring in the lung tissues during HIV-1 infection in humans.
Collapse
Affiliation(s)
- Todd M Schaefer
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Wang Y, Abel K, Lantz K, Krieg AM, McChesney MB, Miller CJ. The Toll-like receptor 7 (TLR7) agonist, imiquimod, and the TLR9 agonist, CpG ODN, induce antiviral cytokines and chemokines but do not prevent vaginal transmission of simian immunodeficiency virus when applied intravaginally to rhesus macaques. J Virol 2006; 79:14355-70. [PMID: 16254370 PMCID: PMC1280235 DOI: 10.1128/jvi.79.22.14355-14370.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The initial host response to viral infection occurs after Toll-like receptors (TLRs) on dendritic cells (DC) are stimulated by viral nucleic acids (double-stranded RNA, single-stranded RNA) and alpha interferon (IFN-alpha) and IFN-beta are produced. We hypothesized that pharmacologic induction of innate antiviral responses in the cervicovaginal mucosa by topical application of TLR agonists prior to viral exposure could prevent or blunt vaginal transmission of simian immunodeficiency virus (SIV). To test this hypothesis, we treated rhesus monkeys intravaginally with either the TLR9 agonist, CpG oligodeoxynucleotides (ODN), or the TLR7 agonist, imiquimod. Both immune modifiers rapidly induced IFN-alpha and other antiviral effector molecules in the cervicovaginal mucosa of treated animals. However, both CpG ODN and imiquimod also induced proinflammatory cytokine expression in the cervicovaginal mucosa. In the vaginal mucosa of imiquimod-treated monkeys, we documented a massive mononuclear cell infiltrate consisting of activated CD4(+) T cells, DC, and beta-chemokine-secreting cells. After vaginal SIV inoculation, all TLR agonist-treated animals became infected and had plasma vRNA levels that were higher than those of control monkeys. We conclude that induction of mucosal innate immunity including an IFN-alpha response is not sufficient to prevent sexual transmission of human immunodeficiency virus.
Collapse
Affiliation(s)
- Yichuan Wang
- California National Primate Research Center, University of California-Davis, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
66
|
Sanghavi SK, Reinhart TA. Increased expression of TLR3 in lymph nodes during simian immunodeficiency virus infection: implications for inflammation and immunodeficiency. THE JOURNAL OF IMMUNOLOGY 2005; 175:5314-23. [PMID: 16210637 DOI: 10.4049/jimmunol.175.8.5314] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
As pattern recognition receptors, TLRs signal and induce expression of multiple host defense genes including proinflammatory cytokines and chemokines. To investigate the mechanisms of up-regulation of proinflammatory cytokines and chemokines during SIV infection in rhesus macaques, we measured the relative levels of expression of TLRs 1-10 in lymphoid tissues during different stages of SIV infection. By real-time RT-PCR, TLR3 was determined to be up-regulated in macaque lymph nodes (LN) throughout the course of infection, whereas TLR9 was down-regulated during early stages of infection. CXCL9/Mig, CXCL10/IP-10, IFN-gamma, and IFN-alpha mRNAs were also increased during acute SIV infection and AIDS. Treatment of macaque spleen and LN cells with TLR3 and TLR9 ligands led to the induction of these same genes. TLR3 stimulation had disparate effects on viral transcription and viral replication, because poly(I:C), a model TLR3 ligand, stimulated the viral promoter but potently inhibited SIV replication in primary cultures of macaque spleen and LN cells. These findings identify roles for TLR3 inflammation in lymphoid tissues and in the immunopathogenesis of HIV-1/SIV, and suggest that TLR3 ligands could potentially be used to flush out latently infected cells that persist during antiretroviral therapies.
Collapse
Affiliation(s)
- Sonali K Sanghavi
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
67
|
Abel K, Wang Y, Fritts L, Sanchez E, Chung E, Fitzgerald-Bocarsly P, Krieg AM, Miller CJ. Deoxycytidyl-deoxyguanosine oligonucleotide classes A, B, and C induce distinct cytokine gene expression patterns in rhesus monkey peripheral blood mononuclear cells and distinct alpha interferon responses in TLR9-expressing rhesus monkey plasmacytoid dendritic cells. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 12:606-21. [PMID: 15879022 PMCID: PMC1112080 DOI: 10.1128/cdli.12.5.606-621.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To determine if deoxycytidyl-deoxyguanosine oligonucleotides (CpG ODN) can be used effectively as nonspecific inducers of innate immune defenses for preventative or therapeutic interventions in infectious disease models for nonhuman primates, the present study evaluated the response of rhesus monkey peripheral blood mononuclear cells to three different synthetic CpG ODN classes by defining the cytokine gene expression patterns and by characterizing IFN-alpha/beta responses. Depending on the type and dose of CpG ODN used for stimulation, distinct gene expression patterns were induced. CpG ODN class A (CpG-A ODN) and CpG-C ODN, but not CpG-B ODN, were potent inducers of alpha interferon (IFN-alpha), and this response was due to IFN-alpha production by TLR9-positive plasmacytoid dendritic cells. Importantly, there was a dose-dependent increase in IFN-alpha responses to CpG-A ODN but a dose-dependent decrease in IFN-alpha responses by CpG-B ODN. The most sustained IFN-alpha response was induced by CpG-A ODN and was associated with a stronger induction of interferon regulatory factor 7 and the induction of several interferon-stimulated genes. In contrast, and independent of the dose, CpG-B ODN were the weakest inducers of IFN-alpha but the most potent inducers of proinflammatory cytokines. CpG-C ODN induced cytokine gene expression patterns that were intermediate between those of CpG-A and CpG-B ODN. Thus, the different types of CpG ODN induce different post-TLR9 signaling pathways that result in distinct cytokine gene expression patterns. Based on these findings, A and C class CpG ODN, but not B class CpG ODN, may be particularly suited for use as therapeutic or prophylactic antiviral interventions.
Collapse
Affiliation(s)
- Kristina Abel
- Center for Comparative Medicine, University of California--Davis, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Herbeuval JP, Hardy AW, Boasso A, Anderson SA, Dolan MJ, Dy M, Shearer GM. Regulation of TNF-related apoptosis-inducing ligand on primary CD4+ T cells by HIV-1: role of type I IFN-producing plasmacytoid dendritic cells. Proc Natl Acad Sci U S A 2005; 102:13974-9. [PMID: 16174727 PMCID: PMC1224361 DOI: 10.1073/pnas.0505251102] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily, was suggested to contribute to HIV-1 pathogenesis by inducing CD4+ T cell death characteristic of AIDS. We previously reported HIV-1-mediated, TRAIL-induced apoptosis in primary CD4+ T cells in vitro and observed elevated levels of plasma TRAIL in HIV-1-infected patients. The present study elucidates the unresolved mechanism by which HIV-1 induces TRAIL expression on primary CD4+ T cells. We demonstrate that the expression of TRAIL by primary CD4+ T cells is regulated by IFN-alpha that is produced by HIV-1-stimulated plasmacytoid dendritic cells (pDCs). We also found that IFN-induced TRAIL is mediated by signal transducers and activators of transcription 1 and 2. We show that IFN-alpha production by HIV-1-activated pDCs is blocked by an early viral entry inhibitor of CD4-gp120 binding, but not by inhibitors of viral coreceptor binding. Our in vitro data are supported by the demonstration that anti-IFN-alpha and -beta Abs inhibit apoptosis and TRAIL expression in CD4+ T cells from HIV-1-infected patients. Our findings suggest a potential unique role of pDCs in the immunopathogenesis of HIV-1 infection by inducing the death molecule TRAIL.
Collapse
Affiliation(s)
- Jean-Philippe Herbeuval
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Herbeuval JP, Grivel JC, Boasso A, Hardy AW, Chougnet C, Dolan MJ, Yagita H, Lifson JD, Shearer GM. CD4+ T-cell death induced by infectious and noninfectious HIV-1: role of type 1 interferon-dependent, TRAIL/DR5-mediated apoptosis. Blood 2005; 106:3524-31. [PMID: 16046522 PMCID: PMC1895067 DOI: 10.1182/blood-2005-03-1243] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
It has been proposed that direct and indirect mechanisms contribute to the unresolved issue of CD4(+) T-cell depletion that results from HIV-1 infection. We recently reported that plasma levels of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) are elevated in HIV-1-infected patients and that they correlate with viral load. The present study investigates the expression of TRAIL death receptor 5 (DR5) in the peripheral-blood mononuclear cells (PBMCs) of HIV-1-infected patients and its role in CD4(+) T-cell death. DR5 expression was elevated and associated with the apoptotic marker annexin V. Apoptosis was reduced in CD4(+) T cells when cultured with anti-DR5 antibody. CD4(+), but not CD8(+), T cells from uninfected donors expressed TRAIL, DR5, and activated caspase-3 when cultured with infectious or noninfectious HIV-1, resulting in preferential apoptosis of CD4(+) T cells. TRAIL, caspase-3 expression, and apoptosis were type 1 interferon (IFN) dependent. Induction of apoptosis and DR5 expression required glycoprotein 120 (gp120)-CD4 interaction. Finally, we analyzed DR5 expression by CD4(+) T cells in highly active antiretroviral therapy (HAART)-treated patients. The decreased viral loads and increased CD4 counts of HAART-responsive patients were associated with a decrease in DR5 mRNA expression by CD4(+) T lymphocytes. We propose a novel model in which a type 1 IFN-regulated TRAIL /DR5 mechanism induces apoptosis of HIV-1-exposed CD4(+) T cells.
Collapse
Affiliation(s)
- Jean-Philippe Herbeuval
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Gurney KB, Colantonio AD, Blom B, Spits H, Uittenbogaart CH. Endogenous IFN-alpha production by plasmacytoid dendritic cells exerts an antiviral effect on thymic HIV-1 infection. THE JOURNAL OF IMMUNOLOGY 2005; 173:7269-76. [PMID: 15585849 DOI: 10.4049/jimmunol.173.12.7269] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasmacytoid dendritic cells (pDC) are the principal producers of IFN-alpha in response to viral infection. Because pDC are present in the thymus, we investigated the consequences of HIV-1-induced IFN-alpha production by thymic pDC. We observed that thymic pDC as well as thymocytes express intracellular IFN-alpha upon infection with HIV-1. However, only the pDC could suppress HIV-1 replication, because depletion of pDC resulted in enhancement of HIV-1 replication in thymocytes. Thymic pDC could also produce IFN-alpha in response to CpG oligonucleotides, consistent with the observations of others that peripheral pDC produce IFN-alpha upon engagement of TLR-9. Importantly, CpG considerably increased IFN-alpha production induced by HIV-1, and addition of CpG during HIV-1 infection enhanced expression of the IFN response protein MxA in thymocytes and strongly reduced HIV-replication. Our data indicate that thymic pDC modulate HIV-1 replication through secretion of IFN-alpha. The degree of inhibition depends on the level of IFN-alpha produced by the thymic pDC.
Collapse
Affiliation(s)
- Kevin B Gurney
- Department of Microbiology, Immunology, and Molecular Genetics, David E. Geffen School of Medicine, University of California, Los Angeles CA 90095, USA
| | | | | | | | | |
Collapse
|
71
|
Bosinger SE, Hosiawa KA, Cameron MJ, Persad D, Ran L, Xu L, Boulassel MR, Parenteau M, Fournier J, Rud EW, Kelvin DJ. Gene expression profiling of host response in models of acute HIV infection. THE JOURNAL OF IMMUNOLOGY 2005; 173:6858-63. [PMID: 15557180 DOI: 10.4049/jimmunol.173.11.6858] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
HIV infection is characterized by a host response composed of adaptive and innate immunity that partially limits viral replication; however, it ultimately fails in eradicating the virus. To model host gene expression during acute HIV infection, we infected cynomolgus macaques with the SIV/HIV-1 chimeric virus, SHIV89.6P, and profiled gene expression in peripheral blood over a 5-wk period using a high density cDNA microarray. We demonstrate that viral challenge induced a widespread suppression of genes regulating innate immunity, including the LPS receptors, CD14 and TLR4. An overexpression of 16 IFN-stimulated genes was also observed in response to infection; however, it did not correlate with control over viral titers. A statistical analysis of the dataset identified 10 genes regulating apoptosis with differential expression during the first 2 wk of infection (p < 0.004). Quantitative real-time PCR verified transcriptional increases in IFN-alpha-inducible genes and decreases in genes regulating innate immunity. Therefore, the persistence of high viral loads despite an extensive IFN response suggests that HIV can resist in vivo IFN treatment despite published reports of in vitro efficacy. The transcriptional suppression of genes regulating innate immunity may allow HIV to evade acute host responses and establish a chronic infection and may reduce innate host defense against opportunistic infections.
Collapse
Affiliation(s)
- Steven E Bosinger
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Asmuth DM, Nguyen HH, Melcher GP, Cohen SH, Pollard RB. Treatments for hepatitis B. Clin Infect Dis 2004; 39:1353-62. [PMID: 15494913 DOI: 10.1086/425010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 06/29/2004] [Indexed: 12/13/2022] Open
Abstract
New optimism surrounds treatments for chronic hepatitis B (CHB). Interferon- alpha , lamivudine, and adefovir dipivoxil are currently approved by the United States Food and Drug Administration for the treatment of CHB. All 3 treatments possess unique characteristics with respect to their side effect profiles, potencies, and treatment niches within the spectrum of CHB. New agents, which are in various stages of clinical development, represent potential improvements within existing, as well as novel, classes of antiviral therapy, and they offer significant promise of a cure for the many patients with chronic and progressive hepatitis B. However, there remain many challenges in understanding the implications of drug resistance, the role of combination therapy, and how to define the response to therapy within subsets of patients with hepatitis B.
Collapse
Affiliation(s)
- David M Asmuth
- Division of Infectious Diseases, Dept. of Internal Medicine, UC Davis Medical Center, 4150 V St., PSSB G500, Sacramento, CA 95817 , USA.
| | | | | | | | | |
Collapse
|
73
|
Barber SA, Herbst DS, Bullock BT, Gama L, Clements JE. Innate immune responses and control of acute simian immunodeficiency virus replication in the central nervous system. J Neurovirol 2004; 10 Suppl 1:15-20. [PMID: 14982734 DOI: 10.1080/753312747] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) can invade the central nervous system (CNS) during acute infection but virus replication is apparently controlled because clinical and pathological manifestations of CNS disease in HIV/SIV-infected individuals usually present later in infection, coincident with immunosuppression and acquired immuno-deficiency syndrome (AIDS). Using an established SIV/macaque model of HIV dementia, the authors recently demonstrated that acute virus replication is down-regulated (to undetectable viral RNA levels) in the brain, but not the periphery, as early as 21 days post inoculation (p.i.). Viral DNA levels in the brain remain constant, suggesting that infected cells persist in the CNS and that replication is inhibited largely at a transcriptional level. In vitro, active replication of HIV in macrophages can be inhibited by treatment with interferon (IFN)beta via a mechanism involving induction of a dominant-negative form of the transcription factor C/EBP (CCAAT/enhancer-binding protein)beta. Because macrophages are the primary cell types infected with HIV/SIV in the CNS and HIV replication in macrophages requires C/EBP sites within the viral long terminal repeat (LTR), the authors considered the possibility that suppression of C/EBP-dependent transcription contributes to the mechanism by which acute HIV/SIV replication is inhibited in the CNS. Here, the authors report that IFNbeta can also inhibit ongoing SIV replication in macaque macrophages in vitro. Further, the authors demonstrate that IFNbeta levels in the brain increase between 7 and 21 days p.i. in parallel with increased expression of the dominant-negative isoform of C/EBPbeta. These results suggest that innate immune responses involving IFNbeta may contribute to the mechanism(s) controlling acute SIV replication in the CNS.
Collapse
Affiliation(s)
- Sheila A Barber
- Department of Comparative Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
74
|
Abel K, La Franco-Scheuch L, Rourke T, Ma ZM, De Silva V, Fallert B, Beckett L, Reinhart TA, Miller CJ. Gamma interferon-mediated inflammation is associated with lack of protection from intravaginal simian immunodeficiency virus SIVmac239 challenge in simian-human immunodeficiency virus 89.6-immunized rhesus macaques. J Virol 2004; 78:841-54. [PMID: 14694116 PMCID: PMC368742 DOI: 10.1128/jvi.78.2.841-854.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although gamma interferon (IFN-gamma) is a key mediator of antiviral defenses, it is also a mediator of inflammation. As inflammation can drive lentiviral replication, we sought to determine the relationship between IFN-gamma-related host immune responses and challenge virus replication in lymphoid tissues of simian-human immunodeficiency virus 89.6 (SHIV89.6)-vaccinated and unvaccinated rhesus macaques 6 months after challenge with simian immunodeficiency virus SIVmac239. Vaccinated-protected monkeys had low tissue viral RNA (vRNA) levels, vaccinated-unprotected animals had moderate tissue vRNA levels, and unvaccinated animals had high tissue vRNA levels. The long-term challenge outcome in vaccinated monkeys was correlated with the relative balance between SIV-specific IFN-gamma T-cell responses and nonspecific IFN-gamma-driven inflammation. Vaccinated-protected monkeys had slightly increased tissue IFN-gamma mRNA levels and a high frequency of IFN-gamma-secreting T cells responding to in vitro SIVgag peptide stimulation; thus, it is likely that they could develop effective anti-SIV cytotoxic T lymphocytes in vivo. In contrast, both high tissue IFN-gamma mRNA levels and strong in vitro SIV-specific IFN-gamma T-cell responses were detected in lymphoid tissues of vaccinated-unprotected monkeys. Unvaccinated monkeys had increased tissue IFN-gamma mRNA levels but weak in vitro anti-SIV IFN-gamma T-cell responses. In addition, in lymphoid tissues of vaccinated-unprotected and unvaccinated monkeys, the increased IFN-gamma mRNA levels were associated with increased Mig/CXCL9, IP-10/CXCL10, and CXCR3 mRNA levels, suggesting that increased Mig/CXCL9 and IP-10/CXCL10 expression resulted in recruitment of CXCR3(+) activated T cells. Thus, IFN-gamma-driven inflammation promotes SIV replication in vaccinated-unprotected and unvaccinated monkeys. Unlike all unvaccinated monkeys, most monkeys vaccinated with SHIV89.6 did not develop IFN-gamma-driven inflammation, but they did develop effective antiviral CD8(+)-T-cell responses.
Collapse
Affiliation(s)
- Kristina Abel
- Center for Comparative Medicine, California National Primate Research Center, University of California-Davis, Davis, California 95616, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Abel K, Compton L, Rourke T, Montefiori D, Lu D, Rothaeusler K, Fritts L, Bost K, Miller CJ. Simian-human immunodeficiency virus SHIV89.6-induced protection against intravaginal challenge with pathogenic SIVmac239 is independent of the route of immunization and is associated with a combination of cytotoxic T-lymphocyte and alpha interferon responses. J Virol 2003; 77:3099-118. [PMID: 12584336 PMCID: PMC149756 DOI: 10.1128/jvi.77.5.3099-3118.2003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Attenuated primate lentivirus vaccines provide the most consistent protection against challenge with pathogenic simian immunodeficiency virus (SIV). Thus, they provide an excellent model to examine the influence of the route of immunization on challenge outcome and to study vaccine-induced protective anti-SIV immune responses. In the present study, rhesus macaques were immunized with live nonpathogenic simian-human immunodeficiency virus (SHIV) 89.6 either intravenously or mucosally (intranasally or intravaginally) and then challenged intravaginally with pathogenic SIVmac239. The route of immunization did not affect mucosal challenge outcome after a prolonged period of systemic infection with the nonpathogenic vaccine virus. Further, protection from the SIV challenge was associated with the induction of multiple host immune effector mechanisms. A comparison of immune responses in vaccinated-protected and vaccinated-unprotected animals revealed that vaccinated-protected animals had higher frequencies of SIV Gag-specific cytotoxic T lymphocytes and gamma interferon (IFN-gamma)-secreting cells during the acute phase postchallenge. Vaccinated-protected animals also had a more pronounced increase in peripheral blood mononuclear cell IFN-alpha mRNA levels than did the vaccinated-unprotected animals in the first few weeks after challenge. Thus, innate as well as cellular anti-SIV immune responses appeared to contribute to the SHIV89.6-induced protection against intravaginal challenge with pathogenic SIVmac239.
Collapse
Affiliation(s)
- Kristina Abel
- Center for Comparative Medicine, California National Primate Research Center, School of Veterinary Medicine, University of California-Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|