51
|
White KM, Abreu P, Wang H, De Jesus PD, Manicassamy B, García-Sastre A, Chanda SK, DeVita RJ, Shaw ML. Broad Spectrum Inhibitor of Influenza A and B Viruses Targeting the Viral Nucleoprotein. ACS Infect Dis 2018; 4:146-157. [PMID: 29268608 PMCID: PMC6145453 DOI: 10.1021/acsinfecdis.7b00120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
S119 was a top hit from an ultrahigh throughput screen performed to identify novel inhibitors of influenza virus replication. It showed a potent antiviral effect (50% inhibitory concentration, IC50 = 20 nM) and no detectable cytotoxicity (50% cytotoxic concentration, CC50 > 500 μM) to yield a selectivity index greater than 25 000. Upon investigation, we found that S119 selected for resistant viruses carrying mutations in the viral nucleoprotein (NP). These resistance mutations highlight a likely S119 binding site overlapping with but not identical to that found for the compound nucleozin. Mechanism of action studies revealed that S119 affects both the oligomerization state and cellular localization of the NP protein which has an impact on viral transcription, replication, and protein expression. Through a hit-to-lead structure-activity relationship (SAR) study, we found an analog of S119, named S119-8, which had increased breadth of inhibition against influenza A and B viruses accompanied by only a small loss in potency. Finally, in vitro viral inhibition assays showed a synergistic relationship between S119-8 and oseltamivir when they were combined, indicating the potential for future drug cocktails.
Collapse
Affiliation(s)
- Kris M. White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Pablo Abreu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hui Wang
- Department of Pharmacological Sciences, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Paul D. De Jesus
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Balaji Manicassamy
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Sumit K. Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Robert J. DeVita
- Department of Pharmacological Sciences, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Megan L. Shaw
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
52
|
Abstract
Implementation of reverse genetics for influenza A virus, that is, the DNA-based generation of infectious viral particles in cell culture, opened new avenues to investigate the function of viral proteins and their interplay with host factors on a molecular level. This powerful technique allows the introduction, depletion, or manipulation of any given sequence in the viral genome, as long as it gives rise to replicating virus progeny. Reverse genetics can be used to generate targeted reassortant viruses by mixing segments of different viral strains, thus providing insight into phenotypes of potentially pandemic viruses arising from natural reassortment. It was further instrumental for the development of novel vaccine strategies, allowing rapid and targeted exchange of viral surface antigens on a well-replicating genetic backbone of cell culture-adapted or cold-adapted/attenuated viral strains. Establishment of reverse genetics and rescue of molecular clones of influenza A virus have been extensively described before. Here we give a detailed stand-alone protocol encompassing clinical sampling of influenza A virus specimens and subsequent plasmid-based genetics to rescue, manipulate, and confirm a fully infectious molecular clone. This protocol is based on the combined techniques and experience of a number of influenza laboratories, which are credited and referenced whenever appropriate.
Collapse
|
53
|
Clark AM, DeDiego ML, Anderson CS, Wang J, Yang H, Nogales A, Martinez-Sobrido L, Zand MS, Sangster MY, Topham DJ. Antigenicity of the 2015-2016 seasonal H1N1 human influenza virus HA and NA proteins. PLoS One 2017; 12:e0188267. [PMID: 29145498 PMCID: PMC5690631 DOI: 10.1371/journal.pone.0188267] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/05/2017] [Indexed: 11/18/2022] Open
Abstract
Antigenic drift of the hemagglutinin (HA) and neuraminidase (NA) influenza virus proteins contributes to reduced vaccine efficacy. To analyze antigenic drift in human seasonal H1N1 viruses derived from the 2009 pandemic H1N1 virus (pH1N1-like viruses) accounts for the limited effectiveness (around 40%) of vaccination against pH1N1-like viruses during the 2015-2016 season, nasal washes/swabs collected from adult subjects in the Rochester, NY area, were used to sequence and isolate the circulating viruses. The HA and NA proteins from viruses circulating during the 2015-2016 season encoded eighteen and fourteen amino acid differences, respectively, when compared to A/California/04/2009, a strain circulating at the origin of the 2009 pandemic. The circulating strains belonged to subclade 6B.1, defined by HA amino acid substitutions S101N, S179N, and I233T. Hemagglutination-inhibiting (HAI) and HA-specific neutralizing serum antibody (Ab) titers from around 50% of pH1N1-like virus-infected subjects and immune ferrets were 2-4 fold lower for the 2015-2016 circulating strains compared to the vaccine strain. In addition, using a luminex-based mPlex HA assay, the binding of human sera from subjects infected with pH1N1-like viruses to the HA proteins from circulating and vaccine strains was not identical, strongly suggesting antigenic differences in the HA protein. Additionally, NA inhibition (NAI) Ab titers in human sera from pH1N1-like virus-infected subjects increased after the infection and there were measurable antigenic differences between the NA protein of circulating strains and the vaccine strain using both ferret and human antisera. Despite having been vaccinated, infected subjects exhibited low HAI Ab titers against the vaccine and circulating strains. This suggests that poor responses to the H1N1 component of the vaccine as well as antigenic differences in the HA and NA proteins of currently circulating pH1N1-like viruses could be contributing to risk of infection even after vaccination.
Collapse
Affiliation(s)
- Amelia M. Clark
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Marta L. DeDiego
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail: (DT); (MD)
| | - Christopher S. Anderson
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jiong Wang
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hongmei Yang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Martin S. Zand
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Mark Y. Sangster
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - David J. Topham
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail: (DT); (MD)
| |
Collapse
|
54
|
Courtney DG, Kennedy EM, Dumm RE, Bogerd HP, Tsai K, Heaton NS, Cullen BR. Epitranscriptomic Enhancement of Influenza A Virus Gene Expression and Replication. Cell Host Microbe 2017; 22:377-386.e5. [PMID: 28910636 PMCID: PMC5615858 DOI: 10.1016/j.chom.2017.08.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/03/2017] [Accepted: 08/08/2017] [Indexed: 10/18/2022]
Abstract
Many viral RNAs are modified by methylation of the N6 position of adenosine (m6A). m6A is thought to regulate RNA splicing, stability, translation, and secondary structure. Influenza A virus (IAV) expresses m6A-modified RNAs, but the effects of m6A on this segmented RNA virus remain unclear. We demonstrate that global inhibition of m6A addition inhibits IAV gene expression and replication. In contrast, overexpression of the cellular m6A "reader" protein YTHDF2 increases IAV gene expression and replication. To address whether m6A residues modulate IAV RNA function in cis, we mapped m6A residues on the IAV plus (mRNA) and minus (vRNA) strands and used synonymous mutations to ablate m6A on both strands of the hemagglutinin (HA) segment. These mutations inhibited HA mRNA and protein expression while leaving other IAV mRNAs and proteins unaffected, and they also resulted in reduced IAV pathogenicity in mice. Thus, m6A residues in IAV transcripts enhance viral gene expression.
Collapse
Affiliation(s)
- David G Courtney
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, NC 27710, USA
| | - Edward M Kennedy
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, NC 27710, USA
| | - Rebekah E Dumm
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, NC 27710, USA
| | - Hal P Bogerd
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kevin Tsai
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nicholas S Heaton
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, NC 27710, USA
| | - Bryan R Cullen
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
55
|
Interplay of PA-X and NS1 Proteins in Replication and Pathogenesis of a Temperature-Sensitive 2009 Pandemic H1N1 Influenza A Virus. J Virol 2017. [PMID: 28637750 DOI: 10.1128/jvi.00720-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Influenza A viruses (IAVs) cause seasonal epidemics and occasional pandemics, representing a serious public health concern. It has been described that one mechanism used by some IAV strains to escape the host innate immune responses and modulate virus pathogenicity involves the ability of the PA-X and NS1 proteins to inhibit the host protein synthesis in infected cells. It was reported that for the 2009 pandemic H1N1 IAV (pH1N1) only the PA-X protein had this inhibiting capability, while the NS1 protein did not. In this work, we have evaluated, for the first time, the combined effect of PA-X- and NS1-mediated inhibition of general gene expression on virus pathogenesis, using a temperature-sensitive, live-attenuated 2009 pandemic H1N1 IAV (pH1N1 LAIV). We found that viruses containing PA-X and NS1 proteins that simultaneously have (PAWT+/NS1MUT+) or do not have (PAMUT-/NS1WT-) the ability to block host gene expression showed reduced pathogenicity in vivo However, a virus where the ability to inhibit host protein expression was switched between PA-X and NS1 (PAMUT-/NS1MUT+) presented pathogenicity similar to that of a virus containing both wild-type proteins (PAWT+/NS1WT-). Our findings suggest that inhibition of host protein expression is subject to a strict balance, which can determine the successful progression of IAV infection. Importantly, knowledge obtained from our studies could be used for the development of new and more effective vaccine approaches against IAV.IMPORTANCE Influenza A viruses (IAVs) are one of the most common causes of respiratory infections in humans, resulting in thousands of deaths annually. Furthermore, IAVs can cause unpredictable pandemics of great consequence when viruses not previously circulating in humans are introduced into humans. The defense machinery provided by the host innate immune system limits IAV replication; however, to counteract host antiviral activities, IAVs have developed different inhibition mechanisms, including prevention of host gene expression mediated by the viral PA-X and NS1 proteins. Here, we provide evidence demonstrating that optimal control of host protein synthesis by IAV PA-X and/or NS1 proteins is required for efficient IAV replication in the host. Moreover, we demonstrate the feasibility of genetically controlling the ability of IAV PA-X and NS1 proteins to inhibit host immune responses, providing an approach to develop more effective vaccines to combat disease caused by this important respiratory pathogen.
Collapse
|
56
|
Chen S, Zhu Y, Yang D, Yang Y, Shi S, Qin T, Peng D, Liu X. Efficacy of Live-Attenuated H9N2 Influenza Vaccine Candidates Containing NS1 Truncations against H9N2 Avian Influenza Viruses. Front Microbiol 2017; 8:1086. [PMID: 28659900 PMCID: PMC5469905 DOI: 10.3389/fmicb.2017.01086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/30/2017] [Indexed: 01/09/2023] Open
Abstract
H9N2 avian influenza virus is a zoonotic agent with a broad host range that can contribute genetic information to H5 or H7N9 subtype viruses, which are significant threats to both humans and birds. Thus, there is a great need for a vaccine to control H9N2 avian influenza. Three mutant viruses of an H9N2 virus A/chicken/Taixing/10/2010 (rTX-NS1-73, rTX-NS1-100, and rTX-NS1-128) were constructed with different NS1 gene truncations and confirmed by western blot analysis. The genetic stability, pathogenicity, transmissibility, and host immune responses toward these mutants were evaluated. The mutant virus rTX-NS1-128 exhibited the most attenuated phenotype and lost transmissibility. The expression levels of interleukin 12 in the nasal and tracheal tissues from chickens immunized with rTX-NS1-128 were significantly upregulated on day 3 post-immunization and the IgA and IgG antibody levels were significantly increased on days 7, 14, and 21 post-immunization when compared to chickens that received an inactivated vaccine. rTX-NS1-128 also protected chickens from challenge by homologous and heterologous H9N2 avian influenza viruses. The results indicate that rTX-NS1-128 can be used as a potential live-attenuated vaccine against H9N2 avian influenza.
Collapse
Affiliation(s)
- Sujuan Chen
- College of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Research Center of Engineering and Technology for Prevention and Control of Poultry DiseaseYangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou, China
| | - Yinbiao Zhu
- College of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Research Center of Engineering and Technology for Prevention and Control of Poultry DiseaseYangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou, China.,Yangzhou Vac Biological Engineering Co., Ltd.Yangzhou, China
| | - Da Yang
- College of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Research Center of Engineering and Technology for Prevention and Control of Poultry DiseaseYangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou, China
| | - Yang Yang
- College of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Research Center of Engineering and Technology for Prevention and Control of Poultry DiseaseYangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou, China
| | - Shaohua Shi
- College of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Research Center of Engineering and Technology for Prevention and Control of Poultry DiseaseYangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Research Center of Engineering and Technology for Prevention and Control of Poultry DiseaseYangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Research Center of Engineering and Technology for Prevention and Control of Poultry DiseaseYangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Research Center of Engineering and Technology for Prevention and Control of Poultry DiseaseYangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou, China
| |
Collapse
|
57
|
A Conserved Residue, Tyrosine (Y) 84, in H5N1 Influenza A Virus NS1 Regulates IFN Signaling Responses to Enhance Viral Infection. Viruses 2017; 9:v9050107. [PMID: 28498306 PMCID: PMC5454420 DOI: 10.3390/v9050107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 01/24/2023] Open
Abstract
The non-structural protein, NS1, is a virulence factor encoded by influenza A viruses (IAVs). In this report, we provide evidence that the conserved residue, tyrosine (Y) 84, in a conserved putative SH2-binding domain in A/Duck/Hubei/2004/L-1 [H5N1] NS1 is critical for limiting an interferon (IFN) response to infection. A phenylalanine (F) substitution of this Y84 residue abolishes NS1-mediated downregulation of IFN-inducible STAT phosphorylation, and surface IFNAR1 expression. Recombinant IAV (rIAV) [H1N1] expressing A/Grey Heron/Hong Kong/837/2004 [H5N1] NS1-Y84F (rWSN-GH-NS1-Y84F) replicates to lower titers in human lung epithelial cells and is more susceptible to the antiviral effects of IFN-β treatment compared with rIAV expressing the intact H5N1 NS1 (rWSN-GH-NS1-wt). Cells infected with rWSN-GH-NS1-Y84F express higher levels of IFN stimulated genes (ISGs) associated with an antiviral response compared with cells infected with rWSN-GH-NS1-wt. In mice, intranasal infection with rWSN-GH-NS1-Y84F resulted in a delay in onset of weight loss, reduced lung pathology, lower lung viral titers and higher ISG expression, compared with mice infected with rWSN-GH-NS1-wt. IFN-β treatment of mice infected with rWSN-GH-NS1-Y84F reduced lung viral titers and increased lung ISG expression, but did not alter viral titers and ISG expression in mice infected with rWSN-GH-NS1-wt. Viewed altogether, these data suggest that the virulence associated with this conserved Y84 residue in NS1 is, in part, due to its role in regulating the host IFN response.
Collapse
|
58
|
Rodriguez L, Nogales A, Reilly EC, Topham DJ, Murcia PR, Parrish CR, Martinez Sobrido L. A live-attenuated influenza vaccine for H3N2 canine influenza virus. Virology 2017; 504:96-106. [PMID: 28167384 DOI: 10.1016/j.virol.2017.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 11/24/2022]
Abstract
Canine influenza is a contagious respiratory disease in dogs caused by two subtypes (H3N2 and H3N8) of canine influenza virus (CIV). Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIVs. Historically, live-attenuated influenza vaccines (LAIVs) have been shown to produce better immunogenicity and protection efficacy than IIVs. Here, we have engineered a CIV H3N2 LAIV by using the internal genes of a previously described CIV H3N8 LAIV as a master donor virus (MDV) and the surface HA and NA genes of a circulating CIV H3N2 strain. Our findings show that CIV H3N2 LAIV replicates efficiently at low temperature but its replication is impaired at higher temperatures. The CIV H3N2 LAIV was attenuated in vivo but induced better protection efficacy in mice against challenge with wild-type CIV H3N2 than a commercial CIV H3N2 IIV. This is the first description of a LAIV for the prevention of CIV H3N2 in dogs.
Collapse
Affiliation(s)
- Laura Rodriguez
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US
| | - Emma C Reilly
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US; David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, US
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US; David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, US
| | - Pablo R Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, US
| | - Luis Martinez Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US.
| |
Collapse
|
59
|
Temperature-Sensitive Live-Attenuated Canine Influenza Virus H3N8 Vaccine. J Virol 2017; 91:JVI.02211-16. [PMID: 27928017 DOI: 10.1128/jvi.02211-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022] Open
Abstract
Canine influenza is a respiratory disease of dogs caused by canine influenza virus (CIV). CIV subtypes responsible for influenza in dogs include H3N8, which originated from the transfer of H3N8 equine influenza virus to dogs; and the H3N2 CIV, which is an avian-origin virus that adapted to infect dogs. Influenza infections are most effectively prevented through vaccination to reduce transmission and future infection. Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIV in dogs. However, the efficacy of IIVs is suboptimal, and novel approaches are necessary for the prevention of disease caused by this canine respiratory pathogen. Using reverse genetics techniques, we have developed a live-attenuated CIV vaccine (LACIV) for the prevention of H3N8 CIV. The H3N8 LACIV replicates efficiently in canine cells at 33°C but is impaired at temperatures of 37 to 39°C and was attenuated compared to wild-type H3N8 CIV in vivo and ex vivo The LACIV was able to induce protection against H3N8 CIV challenge with a single intranasal inoculation in mice. Immunogenicity and protection efficacy were better than that observed with a commercial CIV H3N8 IIV but provided limited cross-reactive immunity and heterologous protection against H3N2 CIV. These results demonstrate the feasibility of implementing a LAIV approach for the prevention and control of H3N8 CIV in dogs and suggest the need for a new LAIV for the control of H3N2 CIV. IMPORTANCE Two influenza A virus subtypes has been reported in dogs in the last 16 years: the canine influenza viruses (CIV) H3N8 and H3N2 of equine and avian origins, respectively. To date, only inactivated influenza vaccines (IIVs) are available to prevent CIV infections. Here, we report the generation of a recombinant, temperature-sensitive H3N8 CIV as a live-attenuated influenza vaccine (LAIV), which was attenuated in mice and dog tracheal, explants compared to CIV H3N8 wild type. A single dose of H3N8 LACIV showed immunogenicity and protection against a homologous challenge that was better than that conferred with an H3N8 IIV, demonstrating the feasibility of implementing a LAIV approach for the improved control of H3N8 CIV infections in dogs.
Collapse
|
60
|
Abstract
Annual influenza epidemics are caused not only by influenza A viruses but also by influenza B viruses. Initially established for the generation of recombinant influenza A viruses, plasmid-based reverse genetics techniques have allowed researchers the generation of wild type and mutant viruses from full-length cDNA copies of the influenza viral genome. These reverse genetics approaches have allowed researchers to answer important questions on the biology of influenza viruses by genetically engineering infectious recombinant viruses. This has resulted in a better understanding of the molecular biology of influenza viruses, including both viral and host factors required for genome replication and transcription. With the ability to generate recombinant viruses containing specific mutations in the viral genome, these reverse genetics tools have also allowed the identification of viral and host factors involved in influenza pathogenesis, transmissibility, host-range interactions and restrictions, and virulence. Likewise, reverse genetics techniques have been used for the implementation of inactivated or live-attenuated influenza vaccines and the identification of anti-influenza drugs and their mechanism of antiviral activity. In 2002, these reverse genetics approaches allowed also the recovery of recombinant influenza B viruses entirely from plasmid DNA. In this chapter we describe the cloning of influenza B/Brisbane/60/2008 viral RNAs into the ambisense pDP-2002 plasmid and the experimental procedures for the successful generation of recombinant influenza B viruses.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Daniel R Perez
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA, 30602, USA
| | - Jefferson Santos
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA, 30602, USA
| | - Courtney Finch
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
61
|
Nogales A, Martínez-Sobrido L. Reverse Genetics Approaches for the Development of Influenza Vaccines. Int J Mol Sci 2016; 18:E20. [PMID: 28025504 PMCID: PMC5297655 DOI: 10.3390/ijms18010020] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
62
|
Induction and suppression of antiviral RNA interference by influenza A virus in mammalian cells. Nat Microbiol 2016; 2:16250. [PMID: 27918527 DOI: 10.1038/nmicrobiol.2016.250] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/08/2016] [Indexed: 12/20/2022]
Abstract
Influenza A virus (IAV) causes annual epidemics and occasional pandemics, and is one of the best-characterized human RNA viral pathogens1. However, a physiologically relevant role for the RNA interference (RNAi) suppressor activity of the IAV non-structural protein 1 (NS1), reported over a decade ago2, remains unknown3. Plant and insect viruses have evolved diverse virulence proteins to suppress RNAi as their hosts produce virus-derived small interfering RNAs (siRNAs) that direct specific antiviral defence4-7 by an RNAi mechanism dependent on the slicing activity of Argonaute proteins (AGOs)8,9. Recent studies have documented induction and suppression of antiviral RNAi in mouse embryonic stem cells and suckling mice10,11. However, it is still under debate whether infection by IAV or any other RNA virus that infects humans induces and/or suppresses antiviral RNAi in mature mammalian somatic cells12-21. Here, we demonstrate that mature human somatic cells produce abundant virus-derived siRNAs co-immunoprecipitated with AGOs in response to IAV infection. We show that the biogenesis of viral siRNAs from IAV double-stranded RNA (dsRNA) precursors in infected cells is mediated by wild-type human Dicer and potently suppressed by both NS1 of IAV as well as virion protein 35 (VP35) of Ebola and Marburg filoviruses. We further demonstrate that the slicing catalytic activity of AGO2 inhibits IAV and other RNA viruses in mature mammalian cells, in an interferon-independent fashion. Altogether, our work shows that IAV infection induces and suppresses antiviral RNAi in differentiated mammalian somatic cells.
Collapse
|
63
|
Nogales A, Huang K, Chauché C, DeDiego ML, Murcia PR, Parrish CR, Martínez-Sobrido L. Canine influenza viruses with modified NS1 proteins for the development of live-attenuated vaccines. Virology 2016; 500:1-10. [PMID: 27750071 DOI: 10.1016/j.virol.2016.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/06/2016] [Accepted: 10/08/2016] [Indexed: 12/24/2022]
Abstract
Canine Influenza Virus (CIV) H3N8 is the causative agent of canine influenza, a common and contagious respiratory disease of dogs. Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIV H3N8. However, live-attenuated influenza vaccines (LAIVs) are known to provide better immunogenicity and protection efficacy than IIVs. Influenza NS1 is a virulence factor that offers an attractive target for the preparation of attenuated viruses as LAIVs. Here we generated recombinant H3N8 CIVs containing truncated or a deleted NS1 protein to test their potential as LAIVs. All recombinant viruses were attenuated in mice and showed reduced replication in cultured canine tracheal explants, but were able to confer complete protection against challenge with wild-type CIV H3N8 after a single intranasal immunization. Immunogenicity and protection efficacy was better than that observed with an IIV. This is the first description of a LAIV for the prevention of H3N8 CIV in dogs.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Kai Huang
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Caroline Chauché
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Marta L DeDiego
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA; Center for Vaccine Biology and Immunology (CVBI), University of Rochester, Rochester, NY, USA
| | - Pablo R Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
64
|
Barba M, Daly JM. The Influenza NS1 Protein: What Do We Know in Equine Influenza Virus Pathogenesis? Pathogens 2016; 5:pathogens5030057. [PMID: 27589809 PMCID: PMC5039437 DOI: 10.3390/pathogens5030057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/24/2016] [Accepted: 08/27/2016] [Indexed: 12/22/2022] Open
Abstract
Equine influenza virus remains a serious health and potential economic problem throughout most parts of the world, despite intensive vaccination programs in some horse populations. The influenza non-structural protein 1 (NS1) has multiple functions involved in the regulation of several cellular and viral processes during influenza infection. We review the strategies that NS1 uses to facilitate virus replication and inhibit antiviral responses in the host, including sequestering of double-stranded RNA, direct modulation of protein kinase R activity and inhibition of transcription and translation of host antiviral response genes such as type I interferon. Details are provided regarding what it is known about NS1 in equine influenza, especially concerning C-terminal truncation. Further research is needed to determine the role of NS1 in equine influenza infection, which will help to understand the pathophysiology of complicated cases related to cytokine imbalance and secondary bacterial infection, and to investigate new therapeutic and vaccination strategies.
Collapse
Affiliation(s)
- Marta Barba
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | - Janet M Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK.
| |
Collapse
|
65
|
Fleming SB. Viral Inhibition of the IFN-Induced JAK/STAT Signalling Pathway: Development of Live Attenuated Vaccines by Mutation of Viral-Encoded IFN-Antagonists. Vaccines (Basel) 2016; 4:vaccines4030023. [PMID: 27367734 PMCID: PMC5041017 DOI: 10.3390/vaccines4030023] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 12/27/2022] Open
Abstract
The interferon (IFN) induced anti-viral response is amongst the earliest and most potent of the innate responses to fight viral infection. The induction of the Janus kinase/signal transducer and activation of transcription (JAK/STAT) signalling pathway by IFNs leads to the upregulation of hundreds of interferon stimulated genes (ISGs) for which, many have the ability to rapidly kill viruses within infected cells. During the long course of evolution, viruses have evolved an extraordinary range of strategies to counteract the host immune responses in particular by targeting the JAK/STAT signalling pathway. Understanding how the IFN system is inhibited has provided critical insights into viral virulence and pathogenesis. Moreover, identification of factors encoded by viruses that modulate the JAK/STAT pathway has opened up opportunities to create new anti-viral drugs and rationally attenuated new generation vaccines, particularly for RNA viruses, by reverse genetics.
Collapse
Affiliation(s)
- Stephen B Fleming
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland St, Dunedin 9016, New Zealand.
| |
Collapse
|
66
|
Role of N Terminus-Truncated NS1 Proteins of Influenza A Virus in Inhibiting IRF3 Activation. J Virol 2016; 90:4696-4705. [PMID: 26912617 DOI: 10.1128/jvi.02843-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/19/2016] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED The NS1 protein encoded by influenza A virus antagonizes the interferon response through various mechanisms, including blocking cellular mRNA maturation by binding the cellular CPSF30 3' end processing factor and/or suppressing the activation of interferon regulatory factor 3 (IRF3). In the present study, we identified two truncated NS1 proteins that are translated from internal AUGs at positions 235 and 241 of the NS1 open reading frame. We analyzed the cellular localization and function of the N-truncated NS1 proteins encoded by two influenza A virus strains, Udorn/72/H3N2 (Ud) and Puerto Rico/8/34/H1N1 (PR8). The NS1 protein of PR8, but not Ud, inhibits the activation of IRF3, whereas the NS1 protein of Ud, but not PR8, binds CPSF30. The truncated PR8 NS1 proteins are localized in the cytoplasm, whereas the full-length PR8 NS1 protein is localized in the nucleus. The infection of cells with a PR8 virus expressing an NS1 protein containing mutations of the two in-frame AUGs results in both the absence of truncated NS1 proteins and the reduced inhibition of activation of IRF3 and beta interferon (IFN-β) transcription. The expression of the truncated PR8 NS1 protein by itself enhances the inhibition of the activation of IRF3 and IFN-β transcription in Ud virus-infected cells. These results demonstrate that truncated PR8 NS1 proteins contribute to the inhibition of activation of this innate immune response. In contrast, the N-truncated NS1 proteins of the Ud strain, like the full-length NS1 protein, are localized in the nucleus, and mutation of the two in-frame AUGs has no effect on the activation of IRF3 and IFN-β transcription. IMPORTANCE Influenza A virus causes pandemics and annual epidemics in the human population. The viral NS1 protein plays a critical role in suppressing type I interferon expression. In the present study, we identified two novel truncated NS1 proteins that are translated from the second and third in-frame AUG codons in the NS1 open reading frame. The N-terminally truncated NS1 encoded by the H1N1 PR8 strain of influenza virus that suppresses IRF3 activation is localized primarily in the cytoplasm. We demonstrate that this truncated NS1 protein by itself enhances this suppression, demonstrating that some strains of influenza A virus express truncated forms of the NS1 protein that function in the inhibition of cytoplasmic antiviral events.
Collapse
|
67
|
Hasan NH, Ignjatovic J, Peaston A, Hemmatzadeh F. Avian Influenza Virus and DIVA Strategies. Viral Immunol 2016; 29:198-211. [PMID: 26900835 DOI: 10.1089/vim.2015.0127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vaccination is becoming a more acceptable option in the effort to eradicate avian influenza viruses (AIV) from commercial poultry, especially in countries where AIV is endemic. The main concern surrounding this option has been the inability of the conventional serological tests to differentiate antibodies produced due to vaccination from antibodies produced in response to virus infection. In attempts to address this issue, at least six strategies have been formulated, aiming to differentiate infected from vaccinated animals (DIVA), namely (i) sentinel birds, (ii) subunit vaccine, (iii) heterologous neuraminidase (NA), (iv) nonstructural 1 (NS1) protein, (v) matrix 2 ectodomain (M2e) protein, and (vi) haemagglutinin subunit 2 (HA2) glycoprotein. This short review briefly discusses the strengths and limitations of these DIVA strategies, together with the feasibility and practicality of the options as a part of the surveillance program directed toward the eventual eradication of AIV from poultry in countries where highly pathogenic avian influenza is endemic.
Collapse
Affiliation(s)
- Noor Haliza Hasan
- 1 School of Animal and Veterinary Sciences, The University of Adelaide , Adelaide, Australia .,2 Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah , Sabah, Malaysia
| | - Jagoda Ignjatovic
- 3 School of Veterinary and Agricultural Sciences, The University of Melbourne , Melbourne, Australia
| | - Anne Peaston
- 1 School of Animal and Veterinary Sciences, The University of Adelaide , Adelaide, Australia
| | - Farhid Hemmatzadeh
- 1 School of Animal and Veterinary Sciences, The University of Adelaide , Adelaide, Australia
| |
Collapse
|
68
|
Replication-Competent Influenza A and B Viruses Expressing a Fluorescent Dynamic Timer Protein for In Vitro and In Vivo Studies. PLoS One 2016; 11:e0147723. [PMID: 26809059 PMCID: PMC4725730 DOI: 10.1371/journal.pone.0147723] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/07/2016] [Indexed: 01/13/2023] Open
Abstract
Influenza A and B viruses (IAV and IBV, respectively) cause annual seasonal human respiratory disease epidemics. In addition, IAVs have been implicated in occasional pandemics with inordinate health and economic consequences. Studying influenza viruses in vitro or in vivo requires the use of laborious secondary methodologies to identify infected cells. To circumvent this requirement, replication-competent infectious influenza viruses expressing an easily traceable fluorescent reporter protein can be used. Timer is a fluorescent protein that undergoes a time-dependent color emission conversion from green to red. The rate of spectral change is independent of Timer protein concentration and can be used to chronologically measure the duration of its expression. Here, we describe the generation of replication-competent IAV and IBV where the viral non-structural protein 1 (NS1) was fused to the fluorescent dynamic Timer protein. Timer-expressing IAV and IBV displayed similar plaque phenotypes and growth kinetics to wild-type viruses in tissue culture. Within infected cells, Timer’s spectral shift can be used to measure the rate and cell-to-cell spread of infection using fluorescent microscopy, plate readers, or flow cytometry. The progression of Timer-expressing IAV infection was also evaluated in a mouse model, demonstrating the feasibility to characterize IAV cell-to-cell infections in vivo. By providing the ability to chronologically track viral spread, Timer-expressing influenza viruses are an excellent option to evaluate the in vitro and in vivo dynamics of viral infection.
Collapse
|
69
|
Shi S, Chen S, Han W, Wu B, Zhang X, Tang Y, Wang X, Zhu Y, Peng D, Liu X. Cross-clade protective immune responses of NS1-truncated live attenuated H5N1 avian influenza vaccines. Vaccine 2015; 34:350-7. [PMID: 26638027 DOI: 10.1016/j.vaccine.2015.11.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/14/2015] [Accepted: 11/17/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND H5N1 highly pathogenic avian influenza (HPAI) has raised global concern for causing huge economic losses in poultry industry, and an effective vaccine against HPAI is highly desirable. Live attenuated influenza vaccine with trunctated NS1 protein as a potential strategy will be extremely useful for improving immune efficacy. METHODS A series of H5N1 avian influenza virus reassortants harboring amino-terminal 48, 70, 73, and 99 aa in NS1 proteins, along with a modified low pathogenic HA protein was generated, and named as S-HALo/NS48, S-HALo/NS70, S-HALo/NS73, and S-HALo/NS99, respectively. In addition, their biological and immunological characteristics were further analyzed. RESULTS The viruses S-HALo/NS70, S-HALo/NS73, and S-HALo/NS99, but not S-HALo/NS48, had a comparable growth property with the full-length NS1 virus, S-HALo/NSFu. Mice and chickens studies demonstrated that the viruses with truncated NS1 protein were further attenuated when compared to the virus S-HALo/NSFu. Vaccination with the virus S-HALo/NS73 in chickens induced significant cross-protection against homologous clade 2.3.4 H5 virus and heterologous clade 7.2, 2.3.2.1, and 2.3.4.4 H5 viruses. CONCLUSION A 70-aa amino-terminal fragment of NS1 protein may be long enough for viral replication. The recombinant virus S-HALo/NS73 is a broad-spectrum live attenuated H5N1 avian influenza vaccine candidate in chickens.
Collapse
Affiliation(s)
- Shaohua Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China; Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, PR China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Weizhou Han
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Bai Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Xiaojian Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Ying Tang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Xiao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Yinbiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China.
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| |
Collapse
|
70
|
Kwasnik M, Gora IM, Rola J, Zmudzinski JF, Rozek W. NS-gene based phylogenetic analysis of equine influenza viruses isolated in Poland. Vet Microbiol 2015; 182:95-101. [PMID: 26711034 DOI: 10.1016/j.vetmic.2015.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/13/2015] [Accepted: 10/27/2015] [Indexed: 11/26/2022]
Abstract
The phylogenetic analysis of influenza virus is based mainly on the variable hemagglutinin or neuraminidase genes. However, some discrete evolutionary trends might be revealed when more conservative genes are considered. We compared all available in GenBank database full length NS sequences of equine influenza virus including Polish isolates. Four nucleotides at positions A202, A237, T672 and A714 and three amino acids at positions H59, K71 and S216 which are also present in A/eq/Pulawy/2006 and A/eq/Pulawy/2008 may be discriminating for the Florida sublineage. Threonine at position 83 seems to be characteristic for EIV strains of Florida 2 isolated after 2007. There are nine common substitutions in the NS sequences of A/eq/Pulawy/2005, A/eq/Aboyne/1/2005 and A/eq/Lincolnshire/1/2006 in relation to the reference strain A/eq/Miami/63, resulting in four amino acid changes in NS1 protein (I56, E76, K140, E179) and one in NEP (R22). We grouped these strains as "Aboyne-like". Some of the listed changes were also observed in H7N7 strains isolated between 1956 and 1966, in A/eq/Jilin/89 or in pre-divergent H3N8 strains. Two hypotheses regarding the origin of this group were postulated: three independent transfers of avian influenza viruses into the equine population or reassortation between H7N7 and H3N8 EIV. Similarities of the NS sequences of "Aboyne like" viruses to viruses isolated in the fifties or seventies can reflect a phenomenon of "frozen evolution".
Collapse
Affiliation(s)
- Malgorzata Kwasnik
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, Pulawy 24-100, Poland.
| | - Ilona M Gora
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, Pulawy 24-100, Poland
| | - Jerzy Rola
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, Pulawy 24-100, Poland
| | - Jan F Zmudzinski
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, Pulawy 24-100, Poland
| | - Wojciech Rozek
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, Pulawy 24-100, Poland
| |
Collapse
|
71
|
Boukharta M, Azlmat S, Elharrak M, Ennaji MM. Multiple alignment comparison of the non-structural genes of three strains of equine influenza viruses (H3N8) isolated in Morocco. BMC Res Notes 2015; 8:471. [PMID: 26404167 PMCID: PMC4581100 DOI: 10.1186/s13104-015-1441-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/11/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Three equine influenza viruses, A/equine/Nador/1/1997(H3N8), A/equine/Essaouira/2/2004(H3N8), and A/equine/Essaouira/3/2004(H3N8), were isolated from different Equidae during local respiratory disease outbreaks in Morocco in 1997 and 2004. Their non-structural (NS) genes were amplified and sequenced. RESULTS The results show high homology of NS nucleotide sequences of A/equine/Nador/1/1997 with European strains (i.e., A/equine/newmarket/2/93 and A/equine/Grobois/1/1998) and clustered into the European lineage. However, NS gene of A/equine/Essaouira/2/2004(H3N8) and A/equine/Essaouira/3/2004(H3N8) strains indicated high homology with equine influenza strains that had circulated before 1990 (A/equine/Fontainbleu/1/1979(H3N8), which belonged to a pre-divergent phase Amino acid sequence comparison of the NS1 protein with reference strain A/equine/Miami/1963(H3N8) shows that the A/equine/Nador/1/1997(H3N8) strain has 12 substitutions at the residues D/24/N, R/44/K, S/48/I, R/67/Q, A/86/V, E/139/K, A/112/T, E/186/K, L/185/F, A/223/E, S/213/T and S/228/P. In both A/equine/Essaouira/2/2004(H3N8) and A/equine/Essaouira/3/2004(H3N8) strains, the NS1 sequences present one common mutation at the residue: S/228/P. CONCLUSION It seems that all of these substitutions are not produced at the key residues of the RNA-binding domain (RBD) and the effector domain (ED). Consequently, we can suppose that they will not affect the potency of inhibition of cellular defences, and the virulence of the Moroccan equine strains will be maintained.
Collapse
Affiliation(s)
- Mohamed Boukharta
- Laboratory of Virology, Microbiology and Quality/ETB, Faculty of Sciences and Techniques, Mohammedia, University Hassan II Mohammedia-Casablanca, PO BOX 146, Quartier Yasmina, Mohammedia, 20650, Morocco.
| | - Souad Azlmat
- Department of Biology, Instruction Military Hospital Med V Rabat, University Mohammed V Souissi, Rabat, Morocco.
| | - Mehdi Elharrak
- Society of Pharmaceutical and Veterinary Products, Virology Laboratory, Av Hassan II, BP 4569, Rabat, Morocco.
| | - My Mustapha Ennaji
- Laboratory of Virology, Microbiology and Quality/ETB, Faculty of Sciences and Techniques, Mohammedia, University Hassan II Mohammedia-Casablanca, PO BOX 146, Quartier Yasmina, Mohammedia, 20650, Morocco.
| |
Collapse
|
72
|
Using epidemics to map H3 equine influenza virus determinants of antigenicity. Virology 2015; 481:187-98. [DOI: 10.1016/j.virol.2015.02.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/08/2014] [Accepted: 02/14/2015] [Indexed: 01/25/2023]
|
73
|
Ngunjiri JM, Ali A, Boyaka P, Marcus PI, Lee CW. In vivo assessment of NS1-truncated influenza virus with a novel SLSYSINWRH motif as a self-adjuvanting live attenuated vaccine. PLoS One 2015; 10:e0118934. [PMID: 25790187 PMCID: PMC4366013 DOI: 10.1371/journal.pone.0118934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/07/2015] [Indexed: 12/12/2022] Open
Abstract
Mutants of influenza virus that encode C-terminally truncated NS1 proteins (NS1-truncated mutants) characteristically induce high interferon responses. The dual activity of interferon in blocking virus replication and enhancing the development of adaptive immune responses makes these mutants promising as self-adjuvanting live-attenuated influenza vaccine (LAIV) candidates. Yet, among the NS1-truncated mutants, the length of NS1 is not directly correlated with the interferon-inducing efficiency, the level of attenuation, or effectiveness as LAIV. Using quantitative in vitro biologically active particle subpopulation analysis as a tool to identify potential LAIV candidates from a pool of NS1-truncated mutants, we previously predicted that a NS1-truncated mutant pc2, which was less effective as a LAIV in chickens, would be sufficiently effective as a LAIV in mammalian hosts. In this study, we confirmed that pc2 protected mice and pigs against heterologous virus challenge in terms of preventing clinical signs and reducing virus shedding. pc2 expresses a unique SLSYSINWRH motif at the C-terminus of its truncated NS1. Deletion of the SLSYSINWRH motif led to ~821-fold reduction in the peak yield of type I interferon induced in murine cells. Furthermore, replacement of the SLSYSINWRH motif with the wildtype MVKMDQAIMD sequence did not restore the interferon-inducing efficiency. The diminished interferon induction capacity in the absence of the SLSYSINWRH motif was similar to that observed in other mutants which are less effective LAIV candidates. Remarkably, pc2 induced 16-fold or more interferon in human lung and monkey kidney cells compared to the temperature-sensitive, cold-adapted Ann Arbor virus that is currently used as a master backbone for LAIVs such as FluMist. Although the mechanism by which the SLSYSINWRH motif regulates the vaccine properties of pc2 has not been elucidated, this motif has potential use in engineering self-adjuvanting NS1-truncated-based LAIVs.
Collapse
Affiliation(s)
- John M Ngunjiri
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States of America; Food Animal Health Research Program, The Ohio State University, Wooster, OH, United States of America
| | - Ahmed Ali
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt; Department of Preventive Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Prosper Boyaka
- Department of Veterinary Bioscience, The Ohio State University, Columbus, OH, United States of America
| | - Philip I Marcus
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States of America
| | - Chang-Won Lee
- Food Animal Health Research Program, The Ohio State University, Wooster, OH, United States of America; Department of Preventive Medicine, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
74
|
Henry Dunand CJ, Leon PE, Kaur K, Tan GS, Zheng NY, Andrews S, Huang M, Qu X, Huang Y, Salgado-Ferrer M, Ho IY, Taylor W, Hai R, Wrammert J, Ahmed R, García-Sastre A, Palese P, Krammer F, Wilson PC. Preexisting human antibodies neutralize recently emerged H7N9 influenza strains. J Clin Invest 2015; 125:1255-68. [PMID: 25689254 DOI: 10.1172/jci74374] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/06/2015] [Indexed: 01/08/2023] Open
Abstract
The emergence and seasonal persistence of pathogenic H7N9 influenza viruses in China have raised concerns about the pandemic potential of this strain, which, if realized, would have a substantial effect on global health and economies. H7N9 viruses are able to bind to human sialic acid receptors and are also able to develop resistance to neuraminidase inhibitors without a loss in fitness. It is not clear whether prior exposure to circulating human influenza viruses or influenza vaccination confers immunity to H7N9 strains. Here, we demonstrate that 3 of 83 H3 HA-reactive monoclonal antibodies generated by individuals that had previously undergone influenza A virus vaccination were able to neutralize H7N9 viruses and protect mice against homologous challenge. The H7N9-neutralizing antibodies bound to the HA stalk domain but exhibited a difference in their breadth of reactivity to different H7 influenza subtypes. Mapping viral escape mutations suggested that these antibodies bind at least two different epitopes on the stalk region. Together, these results indicate that these broadly neutralizing antibodies may contribute to the development of therapies against H7N9 strains and may also be effective against pathogenic H7 strains that emerge in the future.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/physiology
- Antibodies, Neutralizing/physiology
- Antibodies, Viral/physiology
- Cross Reactions
- Dogs
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza Vaccines
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Madin Darby Canine Kidney Cells
- Mice, Inbred BALB C
- Neutralization Tests
- Point Mutation
- Vaccination
Collapse
|
75
|
Sun H, Cui P, Song Y, Qi Y, Li X, Qi W, Xu C, Jiao P, Liao M. PB2 segment promotes high-pathogenicity of H5N1 avian influenza viruses in mice. Front Microbiol 2015; 6:73. [PMID: 25713566 PMCID: PMC4322641 DOI: 10.3389/fmicb.2015.00073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/21/2015] [Indexed: 11/23/2022] Open
Abstract
H5N1 influenza viruses with high lethality are a continuing threat to humans and poultry. Recently, H5N1 high-pathogenicity avian influenza virus (HPAIV) has been shown to transmit through aerosols between ferrets in lab experiments by acquiring some mutation. This is another deeply aggravated threat of H5N1 HPAIV to humans. To further explore the molecular determinant of H5N1 HPAIV virulence in a mammalian model, we compared the virulence of A/Duck/Guangdong/212/2004 (DK212) and A/Quail/Guangdong/90/2004 (QL90). Though they were genetically similar, they had different pathogenicity in mice, as well as their 16 reassortants. The results indicated that a swap of the PB2 gene could dramatically decrease the virulence of rgDK212 in mice (1896-fold) but increase the virulence of rgQL90 in mice (60-fold). Furthermore, the polymerase activity assays showed that swapping PB2 genes between these two viruses significantly changed the activity of polymerase complexes in 293T cells. The mutation Ser715Asn in PB2 sharply attenuated the virulence of rgDK212 in mice (2710-fold). PB2 segment promotes high-pathogenicity of H5N1 avian influenza viruses in mice and 715 Ser in PB2 plays an important role in determining high virulence of DK212 in mice.
Collapse
Affiliation(s)
- Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Pengfei Cui
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Yafen Song
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Yan Qi
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Xiaokang Li
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Wenbao Qi
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Chenggang Xu
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Peirong Jiao
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| |
Collapse
|
76
|
Nogales A, Baker SF, Martínez-Sobrido L. Replication-competent influenza A viruses expressing a red fluorescent protein. Virology 2015; 476:206-216. [PMID: 25553516 PMCID: PMC4323957 DOI: 10.1016/j.virol.2014.12.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/25/2014] [Accepted: 12/02/2014] [Indexed: 11/16/2022]
Abstract
Like most animal viruses, studying influenza A in model systems requires secondary methodologies to identify infected cells. To circumvent this requirement, we describe the generation of replication-competent influenza A red fluorescent viruses. These influenza A viruses encode mCherry fused to the viral non-structural 1 (NS1) protein and display comparable growth kinetics to wild-type viruses in vitro. Infection of cells with influenza A mCherry viruses was neutralized with monoclonal antibodies and inhibited with antivirals to levels similar to wild-type virus. Influenza A mCherry viruses were also able to lethally infect mice, and strikingly, dose- and time-dependent kinetics of viral replication were monitored in whole excised mouse lungs using an in vivo imaging system (IVIS). By eliminating the need for secondary labeling of infected cells, influenza A mCherry viruses provide an ideal tool in the ongoing struggle to better characterize the virus and identify new therapeutics against influenza A viral infections.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Steven F Baker
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States.
| |
Collapse
|
77
|
Abstract
Equine influenza viruses are cultured in embryonated hen eggs, or in mammalian cells, generally Madin-Darby canine kidney (MDCK) cells, using methods much the same as for other influenza A viruses. Mutations associated with host adaptation occur in both eggs and MDCK cells, but the latter show greater heterogeneity and eggs are the generally preferred host. Both equine-1 H7N7 and equine-2 H3N8 viruses replicate efficiently in 11-day-old eggs, but we find that equine-1 viruses kill the embryos whereas equine-2 viruses do not.
Collapse
Affiliation(s)
- Thomas M Chambers
- Department of Veterinary Science, OIE Reference Laboratory for Equine Influenza, Maxwell H. Gluck Equine Research Center, University of Kentucky, 1400 Nicholasville Road, Lexington, KY, 40546-0099, USA,
| | | |
Collapse
|
78
|
Abstract
The non-structural protein 1 of influenza virus (NS1) is a relatively small polypeptide with an outstanding number of ascribed functions. NS1 is the main viral antagonist of the innate immune response during influenza virus infection, chiefly by inhibiting the type I interferon system at multiple steps. As such, its role is critical to overcome the first barrier the host presents to halt the viral infection. However, the pro-viral activities of this well-studied protein go far beyond and include regulation of viral RNA and protein synthesis, and disruption of the host cell homeostasis by dramatically affecting general gene expression while tweaking the PI3K signaling network. Because of all of this, NS1 is a key virulence factor that impacts influenza pathogenesis, and adaptation to new hosts, making it an attractive target for control strategies. Here, we will overview the many roles that have been ascribed to the NS1 protein, and give insights into the sequence features and structural properties that make them possible, highlighting the need to understand how NS1 can actually perform all of these functions during viral infection.
Collapse
Affiliation(s)
- Juan Ayllon
- Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | |
Collapse
|
79
|
The nucleoprotein of newly emerged H7N9 influenza A virus harbors a unique motif conferring resistance to antiviral human MxA. J Virol 2014; 89:2241-52. [PMID: 25505067 DOI: 10.1128/jvi.02406-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Interferon-induced Mx proteins show strong antiviral activity against influenza A viruses (IAVs). We recently demonstrated that the viral nucleoprotein (NP) determines resistance of seasonal and pandemic human influenza viruses to Mx, while avian isolates retain Mx sensitivity. We identified a surface-exposed cluster of amino acids in NP of pandemic A/BM/1/1918 (H1N1), comprising isoleucine-100, proline-283, and tyrosine-313, that is essential for reduced Mx sensitivity in cell culture and in vivo. This cluster has been maintained in all descendant seasonal strains, including A/PR/8/34 (PR/8). Accordingly, two substitutions in the NP of PR/8 [PR/8(mut)] to the Mx-sensitive amino acids (P283L and Y313F) led to attenuation in Mx1-positive mice. Serial lung passages of PR/8(mut) in Mx1 mice resulted in a single exchange of tyrosine to asparagine at position 52 in NP (in close proximity to the amino acid cluster at positions 100, 283, and 313), which partially compensates loss of Mx resistance in PR/8(mut). Intriguingly, the NP of the newly emerged avian-origin H7N9 virus also contains an asparagine at position 52 and shows reduced Mx sensitivity. N52Y substitution in NP results in increased sensitivity of the H7N9 virus to human Mx, indicating that this residue is a determinant of Mx resistance in mammals. Our data strengthen the hypothesis that the human Mx protein represents a potent barrier against zoonotic transmission of avian influenza viruses. However, the H7N9 viruses overcome this restriction by harboring an NP that is less sensitive to Mx-mediated host defense. This might contribute to zoonotic transmission of H7N9 and to the severe to fatal outcome of H7N9 infections in humans. IMPORTANCE The natural host of influenza A viruses (IAVs) are aquatic birds. Occasionally, these viruses cross the species barrier, as in early 2013 when an avian H7N9 virus infected humans in China. Since then, multiple transmissions of H7N9 viruses to humans have occurred, leaving experts puzzled about molecular causes for such efficient crossing of the species barrier compared to other avian influenza viruses. Mx proteins are known restriction factors preventing influenza virus replication. Unfortunately, some viruses (e.g., human IAV) have developed some resistance, which is associated with specific amino acids in their nucleoproteins, the target of Mx function. Here, we demonstrate that the novel H7N9 bird IAV already carries a nucleoprotein that overcomes the inhibition of viral replication by human MxA. This is the first example of an avian IAV that is naturally less sensitive to Mx-mediated inhibition and might explain why H7N9 viruses transmitted efficiently to humans.
Collapse
|
80
|
A Systematic Review of Recent Advances in Equine Influenza Vaccination. Vaccines (Basel) 2014; 2:797-831. [PMID: 26344892 PMCID: PMC4494246 DOI: 10.3390/vaccines2040797] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 01/28/2023] Open
Abstract
Equine influenza (EI) is a major respiratory disease of horses, which is still causing substantial outbreaks worldwide despite several decades of surveillance and prevention. Alongside quarantine procedures, vaccination is widely used to prevent or limit spread of the disease. The panel of EI vaccines commercially available is probably one of the most varied, including whole inactivated virus vaccines, Immuno-Stimulating Complex adjuvanted vaccines (ISCOM and ISCOM-Matrix), a live attenuated equine influenza virus (EIV) vaccine and a recombinant poxvirus-vectored vaccine. Several other strategies of vaccination are also evaluated. This systematic review reports the advances of EI vaccines during the last few years as well as some of the mechanisms behind the inefficient or sub-optimal response of horses to vaccination.
Collapse
|
81
|
Filament-producing mutants of influenza A/Puerto Rico/8/1934 (H1N1) virus have higher neuraminidase activities than the spherical wild-type. PLoS One 2014; 9:e112462. [PMID: 25383873 PMCID: PMC4226562 DOI: 10.1371/journal.pone.0112462] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/10/2014] [Indexed: 11/19/2022] Open
Abstract
Influenza virus exhibits two morphologies - spherical and filamentous. Strains that have been grown extensively in laboratory substrates are comprised predominantly of spherical virions while clinical or low passage isolates produce a mixture of spheres and filamentous virions of varying lengths. The filamentous morphology can be lost upon continued passage in embryonated chicken eggs, a common laboratory substrate for influenza viruses. The fact that the filamentous morphology is maintained in nature but lost in favor of a spherical morphology in ovo suggests that filaments confer a selective advantage within the infected host that is not necessary for growth in laboratory substrates. Indeed, we have recently shown that filament-producing variant viruses are selected upon passage of the spherical laboratory strain A/Puerto Rico/8/1934 (H1N1) [PR8] in guinea pigs. Toward determining the nature of the selective advantage conferred by filaments, we sought to identify functional differences between spherical and filamentous particles. We compared the wild-type PR8 virus to two previously characterized recombinant PR8 viruses in which single point mutations within M1 confer a filamentous morphology. Our results indicate that these filamentous PR8 mutants have higher neuraminidase activities than the spherical PR8 virus. Conversely, no differences were observed in HAU:PFU or HAU:RNA ratios, binding avidity, sensitivity to immune serum in hemagglutination inhibition assays, or virion stability at elevated temperatures. Based on these results, we propose that the pleomorphic nature of influenza virus particles is important for the optimization of neuraminidase functions in vivo.
Collapse
|
82
|
Venezuelan equine encephalitis virus variants lacking transcription inhibitory functions demonstrate highly attenuated phenotype. J Virol 2014; 89:71-82. [PMID: 25320296 DOI: 10.1128/jvi.02252-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Alphaviruses represent a significant public health threat worldwide. They are transmitted by mosquitoes and cause a variety of human diseases ranging from severe meningoencephalitis to polyarthritis. To date, no efficient and safe vaccines have been developed against any alphavirus infection. However, in recent years, significant progress has been made in understanding the mechanism of alphavirus replication and virus-host interactions. These data have provided the possibility for the development of new rationally designed alphavirus vaccine candidates that combine efficient immunogenicity, high safety, and inability to revert to pathogenic phenotype. New attenuated variants of Venezuelan equine encephalitis virus (VEEV) designed in this study combine a variety of characteristics that independently contribute to a reduction in virulence. These constructs encode a noncytopathic VEEV capsid protein that is incapable of interfering with the innate immune response. The capsid-specific mutations strongly affect neurovirulence of the virus. In other constructs, they were combined with changes in control of capsid translation and an extensively mutated packaging signal. These modifications also affected the residual neurovirulence of the virus, but it remained immunogenic, and a single immunization protected mice against subsequent infection with epizootic VEEV. Similar approaches of attenuation can be applied to other encephalitogenic New World alphaviruses. IMPORTANCE Venezuelan equine encephalitis virus (VEEV) is an important human and animal pathogen, which causes periodic outbreaks of highly debilitating disease. Despite a continuous public health threat, no safe and efficient vaccine candidates have been developed to date. In this study, we applied accumulated knowledge about the mechanism of VEEV replication, RNA packaging, and interaction with the host to design new VEEV vaccine candidates that demonstrate exceptionally high levels of safety due to a combination of extensive modifications in the viral genome. The introduced mutations did not affect RNA replication or structural protein synthesis but had deleterious effects on VEEV neuroinvasion and virulence. In spite of dramatically reduced virulence, the designed mutants remained highly immunogenic and protected mice against subsequent infection with epizootic VEEV. Similar methodologies can be applied for attenuation of other encephalitogenic New World alphaviruses.
Collapse
|
83
|
Hai R, Schmolke M, Leyva-Grado VH, Thangavel RR, Margine I, Jaffe EL, Krammer F, Solórzano A, García-Sastre A, Palese P, Bouvier NM. Influenza A(H7N9) virus gains neuraminidase inhibitor resistance without loss of in vivo virulence or transmissibility. Nat Commun 2014; 4:2854. [PMID: 24326875 PMCID: PMC3863970 DOI: 10.1038/ncomms3854] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 11/01/2013] [Indexed: 12/17/2022] Open
Abstract
Without baseline human immunity to the emergent avian influenza A(H7N9) virus, neuraminidase inhibitors are vital for controlling viral replication in severe infections. An amino acid change in the viral neuraminidase associated with drug resistance, NA-R292K (N2 numbering), has been found in some H7N9 clinical isolates. Here we assess the impact of the NA-R292K substitution on antiviral sensitivity and viral replication, pathogenicity and transmissibility of H7N9 viruses. Our data indicate that an H7N9 isolate encoding the NA-R292K substitution is highly resistant to oseltamivir and peramivir and partially resistant to zanamivir. Furthermore, H7N9 reassortants with and without the resistance mutation demonstrate comparable viral replication in primary human respiratory cells, virulence in mice and transmissibility in guinea pigs. Thus, in stark contrast to oseltamivir-resistant seasonal influenza A(H3N2) viruses, H7N9 virus replication and pathogenicity in these models are not substantially altered by the acquisition of high-level oseltamivir resistance due to the NA-R292K mutation. Some clinical isolates of influenza A(H7N9) virus encode a mutation within neuraminidase that could confer resistance to the only class of drugs active against H7N9. Here, the authors show that this mutation does not affect viral replication and pathogenicity while mediating resistance to antivirals in vivo.
Collapse
Affiliation(s)
- Rong Hai
- 1] Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1124, New York, New York 10029, USA [2]
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Zhou B, Ma J, Liu Q, Bawa B, Wang W, Shabman RS, Duff M, Lee J, Lang Y, Cao N, Nagy A, Lin X, Stockwell TB, Richt JA, Wentworth DE, Ma W. Characterization of uncultivable bat influenza virus using a replicative synthetic virus. PLoS Pathog 2014; 10:e1004420. [PMID: 25275541 PMCID: PMC4183581 DOI: 10.1371/journal.ppat.1004420] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/24/2014] [Indexed: 12/20/2022] Open
Abstract
Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARS-CoV). Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1). This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2) showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn't attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses. The identification of influenza virus-like sequences in two different bat species has generated great interest in understanding their biology, ability to mix with other influenza viruses, and their public health threat. Unfortunately, bat-influenza viruses couldn't be cultured from the samples containing the influenza-like nucleic acids. We used synthetic genomics strategies to create wild type bat-influenza, or bat-influenza modified by substituting the surface glycoproteins with those of model influenza A viruses. Although influenza virus-like particles were produced from both synthetic genomes, only the modified bat-influenza viruses could be cultured. The modified bat-influenza viruses replicated efficiently in vitro and an H1N1 modified version caused severe disease in mice. Collectively our data show: (1) the two bat-flu genomes identified in other studies are replication competent, suggesting that host cell specificity is the major limitation for propagation of bat-influenza, (2) bat-influenza NS1 antagonizes host interferon response more efficiently than that of a model influenza A virus, (3) bat-influenza has both genetic and protein incompatibility with influenza A or B viruses, and (4) that these bat-influenza lineages pose little pandemic threat.
Collapse
Affiliation(s)
- Bin Zhou
- Virology, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Jingjiao Ma
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Qinfang Liu
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Bhupinder Bawa
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Wei Wang
- Virology, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Reed S Shabman
- Virology, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Michael Duff
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Jinhwa Lee
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Yuekun Lang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Nan Cao
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Abdou Nagy
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Xudong Lin
- Virology, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Timothy B Stockwell
- Virology, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Juergen A Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - David E Wentworth
- Virology, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
85
|
Mutations to PB2 and NP proteins of an avian influenza virus combine to confer efficient growth in primary human respiratory cells. J Virol 2014; 88:13436-46. [PMID: 25210184 DOI: 10.1128/jvi.01093-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Influenza pandemics occur when influenza A viruses (IAV) adapted to other host species enter humans and spread through the population. Pandemics are relatively rare due to host restriction of IAV: strains adapted to nonhuman species do not readily infect, replicate in, or transmit among humans. IAV can overcome host restriction through reassortment or adaptive evolution, and these are mechanisms by which pandemic strains arise in nature. To identify mutations that facilitate growth of avian IAV in humans, we have adapted influenza A/duck/Alberta/35/1976 (H1N1) (dk/AB/76) virus to a high-growth phenotype in differentiated human tracheo-bronchial epithelial (HTBE) cells. Following 10 serial passages of three independent lineages, the bulk populations showed similar growth in HTBE cells to that of a human seasonal virus. The coding changes present in six clonal isolates were determined. The majority of changes were located in the polymerase complex and nucleoprotein (NP), and all isolates carried mutations in the PB2 627 domain and regions of NP thought to interact with PB2. Using reverse genetics, the impact on growth and polymerase activity of individual and paired mutations in PB2 and NP was evaluated. The results indicate that coupling of the mammalian-adaptive mutation PB2 E627K or Q591K to selected mutations in NP further augments the growth of the corresponding viruses. In addition, minimal combinations of three (PB2 Q236H, E627K, and NP N309K) or two (PB2 Q591K and NP S50G) mutations were sufficient to recapitulate the efficient growth in HTBE cells of dk/AB/76 viruses isolated after 10 passages in this substrate. IMPORTANCE Influenza A viruses adapted to birds do not typically grow well in humans. However, as has been seen recently with H5N1 and H7N9 subtype viruses, productive and virulent infection of humans with avian influenza viruses can occur. The ability of avian influenza viruses to adapt to new host species is a consequence of their high mutation rate that supports their zoonotic potential. Understanding of the adaptation of avian viruses to mammals strengthens public health efforts aimed at controlling influenza. In particular, it is critical to know how readily and through mutation to which functional components avian influenza viruses gain the ability to grow efficiently in humans. Our data show that as few as three mutations, in the PB2 and NP proteins, support robust growth of a low-pathogenic, H1N1 duck isolate in primary human respiratory cells.
Collapse
|
86
|
Slater J, Borchers K, Chambers T, Cullinane A, Duggan V, Elton D, Legrand L, Paillot R, Fortier G. Report of the International Equine Influenza Roundtable Expert Meeting at Le Touquet, Normandy, February 2013. Equine Vet J 2014; 46:645-50. [PMID: 25146166 DOI: 10.1111/evj.12302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J Slater
- Royal Veterinary College, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Influenza A virus attenuation by codon deoptimization of the NS gene for vaccine development. J Virol 2014; 88:10525-40. [PMID: 24965472 DOI: 10.1128/jvi.01565-14] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Influenza viral infection represents a serious public health problem that causes contagious respiratory disease, which is most effectively prevented through vaccination to reduce transmission and future infection. The nonstructural (NS) gene of influenza A virus encodes an mRNA transcript that is alternatively spliced to express two viral proteins, the nonstructural protein 1 (NS1) and the nuclear export protein (NEP). The importance of the NS gene of influenza A virus for viral replication and virulence has been well described and represents an attractive target to generate live attenuated influenza viruses with vaccine potential. Considering that most amino acids can be synthesized from several synonymous codons, this study employed the use of misrepresented mammalian codons (codon deoptimization) for the de novo synthesis of a viral NS RNA segment based on influenza A/Puerto Rico/8/1934 (H1N1) (PR8) virus. We generated three different recombinant influenza PR8 viruses containing codon-deoptimized synonymous mutations in coding regions comprising the entire NS gene or the mRNA corresponding to the individual viral protein NS1 or NEP, without modifying the respective splicing and packaging signals of the viral segment. The fitness of these synthetic viruses was attenuated in vivo, while they retained immunogenicity, conferring both homologous and heterologous protection against influenza A virus challenges. These results indicate that influenza viruses can be effectively attenuated by synonymous codon deoptimization of the NS gene and open the possibility of their use as a safe vaccine to prevent infections with these important human pathogens. IMPORTANCE Vaccination serves as the best therapeutic option to protect humans against influenza viral infections. However, the efficacy of current influenza vaccines is suboptimal, and novel approaches are necessary for the prevention of disease cause by this important human respiratory pathogen. The nonstructural (NS) gene of influenza virus encodes both the multifunctional nonstructural protein 1 (NS1), essential for innate immune evasion, and the nuclear export protein (NEP), required for the nuclear export of viral ribonucleoproteins and for timing of the virus life cycle. Here, we have generated a recombinant influenza A/Puerto Rico/8/1934 (H1N1) (PR8) virus containing a codon-deoptimized NS segment that is attenuated in vivo yet retains immunogenicity and protection efficacy against homologous and heterologous influenza virus challenges. These results open the exciting possibility of using this NS codon deoptimization methodology alone or in combination with other approaches for the future development of vaccine candidates to prevent influenza viral infections.
Collapse
|
88
|
Duck MDA5 functions in innate immunity against H5N1 highly pathogenic avian influenza virus infections. Vet Res 2014; 45:66. [PMID: 24939427 PMCID: PMC4079828 DOI: 10.1186/1297-9716-45-66] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 05/27/2014] [Indexed: 02/08/2023] Open
Abstract
Melanoma differentiation-associated gene 5 (MDA5) is an important intracellular receptor that recognizes long molecules of viral double-stranded RNA in innate immunity. To understand the mechanism of duck MDA5-mediated innate immunity, we cloned the MDA5 cDNA from the Muscovy duck (Cairina moschata). Quantitative real-time PCR analysis indicates that duck MDA5 mRNA was constitutively expressed in all sampled tissues. A significant increase of MDA5 mRNA was detected in the brain, spleen and lungs of ducks after infection with an H5N1 highly pathogenic avian influenza virus (HPAIV). We investigated the role of the predicted functional domains of MDA5. The results indicate the caspase activation and recruitment domain (CARD) of duck MDA5 had a signal transmission function through IRF-7-dependent signaling pathway. Overexpression of the CARD strongly activated the chicken IFN-β promoter and upregulated the mRNA expression of antiviral molecules (such as OAS, PKR and Mx), proinflammatory cytokines (such as IL-2, IL-6, IFN-α and IFN-γ, but not IL-1β and IL-8) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLR) (RIG-I and LGP2) without exogenous stimulation. We also demonstrate the NS1 of the H5N1 HPAIV inhibited the duck MDA5-mediated signaling pathway in vitro. These results suggest that duck MDA5 is an important receptor for inducing antiviral activity in the host immune response of ducks.
Collapse
|
89
|
Residue 41 of the Eurasian avian-like swine influenza a virus matrix protein modulates virion filament length and efficiency of contact transmission. J Virol 2014; 88:7569-77. [PMID: 24760887 DOI: 10.1128/jvi.00119-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Position 41 of the influenza A virus matrix protein encodes a highly conserved alanine in human and avian lineages. Nonetheless, strains of the Eurasian avian-like swine (Easw) lineage contain a change at this position: position 41 of A/swine/Spain/53207/04 (H1N1) (SPN04) encodes a proline. To assess the impact of this naturally occurring polymorphism on viral fitness, we utilized reverse genetics to produce recombinant viruses encoding wild-type M1 41P (rSPN04-P) and consensus 41A (rSPN04-A) residues. Relative to rSPN04-A, rSPN04-P virus displayed reduced growth in vitro. In the guinea pig model, rSPN04-P was transmitted to fewer contact animals than rSPN04-A and failed to infect guinea pigs that received a low-dose inoculum. Moreover, the P41A change altered virion morphology, reducing the number and length of filamentous virions, as well as reducing the neuraminidase activity of virions. The lab-adapted human isolate, A/PR/8/34 (H1N1) (PR8), is nontransmissible in the guinea pig model, making it a useful background in which to identify certain viral factors that enhance transmissibility. We assessed transmission in the context of single-, double-, and triple-reassortant viruses between PR8 and SPN04; PR8/SPN04 M, PR8/SPN04 M+NA, and PR8/SPN04 M+NA+HA, encoding either matrix 41 A or P, were generated. In each case, the virus possessing 41P transmitted less well than the corresponding 41A-encoding virus. In summary, we have identified a naturally occurring mutation in the influenza A virus matrix protein that impacts transmission efficiency and can alter virion morphology and neuraminidase activity. IMPORTANCE We have developed a practical model for examining the genetics underlying transmissibility of the Eurasian avian-like swine lineage viruses, which contributed M and NA segments to the 2009 pandemic strain. Here, we use our system to investigate the impact on viral fitness of a naturally occurring polymorphism at matrix (M1) position 41 in an Easw isolate. Position 41 has been implicated previously in adaptation to laboratory substrates and to mice. Here we show that the polymorphism at M1 41 has a limited effect on growth in vitro but changes the morphology of the virus and impacts growth and transmission in the guinea pig model.
Collapse
|
90
|
Universal influenza B virus genomic amplification facilitates sequencing, diagnostics, and reverse genetics. J Clin Microbiol 2014; 52:1330-7. [PMID: 24501036 DOI: 10.1128/jcm.03265-13] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although human influenza B virus (IBV) is a significant human pathogen, its great genetic diversity has limited our ability to universally amplify the entire genome for subsequent sequencing or vaccine production. The generation of sequence data via next-generation approaches and the rapid cloning of viral genes are critical for basic research, diagnostics, antiviral drugs, and vaccines to combat IBV. To overcome the difficulty of amplifying the diverse and ever-changing IBV genome, we developed and optimized techniques that amplify the complete segmented negative-sense RNA genome from any IBV strain in a single tube/well (IBV genomic amplification [IBV-GA]). Amplicons for >1,000 diverse IBV genomes from different sample types (e.g., clinical specimens) were generated and sequenced using this robust technology. These approaches are sensitive, robust, and sequence independent (i.e., universally amplify past, present, and future IBVs), which facilitates next-generation sequencing and advanced genomic diagnostics. Importantly, special terminal sequences engineered into the optimized IBV-GA2 products also enable ligation-free cloning to rapidly generate reverse-genetics plasmids, which can be used for the rescue of recombinant viruses and/or the creation of vaccine seed stock.
Collapse
|
91
|
Vergara-Alert J, Busquets N, Ballester M, Chaves AJ, Rivas R, Dolz R, Wang Z, Pleschka S, Majó N, Rodríguez F, Darji A. The NS segment of H5N1 avian influenza viruses (AIV) enhances the virulence of an H7N1 AIV in chickens. Vet Res 2014; 45:7. [PMID: 24460592 PMCID: PMC3922795 DOI: 10.1186/1297-9716-45-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/17/2014] [Indexed: 12/25/2022] Open
Abstract
Some outbreaks involving highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 were caused by avian-to-human transmissions. In nature, different influenza A viruses can reassort leading to new viruses with new characteristics. We decided to investigate the impact that the NS-segment of H5 HPAIV would have on viral pathogenicity of a classical avian H7 HPAIV in poultry, a natural host. We focussed this study based on our previous work that demonstrated that single reassortment of the NS-segment from an H5 HPAIV into an H7 HPAIV changes the ability of the virus to replicate in mammalian hosts. Our present data show that two different H7-viruses containing an NS-segment from H5–types (FPV NS GD or FPV NS VN) show an overall highly pathogenic phenotype compared with the wild type H7–virus (FPV), as characterized by higher viral shedding and earlier manifestation of clinical signs. Correlating with the latter, higher amounts of IFN-β mRNA were detected in the blood of NS-reassortant infected birds, 48 h post-infection (pi). Although lymphopenia was detected in chickens from all AIV-infected groups, also 48 h pi those animals challenged with NS-reassortant viruses showed an increase of peripheral monocyte/macrophage-like cells expressing high levels of IL-1β, as determined by flow cytometry. Taken together, these findings highlight the importance of the NS-segment in viral pathogenicity which is directly involved in triggering antiviral and pro-inflammatory cytokines found during HPAIV pathogenesis in chickens.
Collapse
Affiliation(s)
- Júlia Vergara-Alert
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès 08193, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Medina RA, Stertz S, Manicassamy B, Zimmermann P, Sun X, Albrecht RA, Uusi-Kerttula H, Zagordi O, Belshe RB, Frey SE, Tumpey TM, García-Sastre A. Glycosylations in the globular head of the hemagglutinin protein modulate the virulence and antigenic properties of the H1N1 influenza viruses. Sci Transl Med 2013; 5:187ra70. [PMID: 23720581 DOI: 10.1126/scitranslmed.3005996] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
With the global spread of the 2009 pandemic H1N1 (pH1N1) influenza virus, there are increasing worries about evolution through antigenic drift. One way previous seasonal H1N1 and H3N2 influenza strains have evolved over time is by acquiring additional glycosylations in the globular head of their hemagglutinin (HA) proteins; these glycosylations have been believed to shield antigenically relevant regions from antibody immune responses. We added additional HA glycosylation sites to influenza A/Netherlands/602/2009 recombinant (rpH1N1) viruses, reflecting their temporal appearance in previous seasonal H1N1 viruses. Additional glycosylations resulted in substantially attenuated infection in mice and ferrets, whereas deleting HA glycosylation sites from a pre-pandemic virus resulted in increased pathogenicity in mice. We then more directly investigated the interactions of HA glycosylations and antibody responses through mutational analysis. We found that the polyclonal antibody response elicited by wild-type rpH1N1 HA was likely directed against an immunodominant region, which could be shielded by glycosylation at position 144. However, rpH1N1 HA glycosylated at position 144 elicited a broader polyclonal response able to cross-neutralize all wild-type and glycosylation mutant pH1N1 viruses. Moreover, mice infected with a recent seasonal virus in which glycosylation sites were removed elicited antibodies that protected against challenge with the antigenically distant pH1N1 virus. Thus, acquisition of glycosylation sites in the HA of H1N1 human influenza viruses affected not only their pathogenicity and ability to escape from polyclonal antibodies elicited by previous influenza virus strains but also their ability to induce cross-reactive antibodies against drifted antigenic variants.
Collapse
Affiliation(s)
- Rafael A Medina
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Perez JT, García-Sastre A, Manicassamy B. Insertion of a GFP reporter gene in influenza virus. ACTA ACUST UNITED AC 2013; Chapter 15:15G.4.1-15G.4.16. [PMID: 23686828 DOI: 10.1002/9780471729259.mc15g04s29] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The incorporation of a fluorescent reporter gene into a replication-competent influenza A virus (IAV) has made it possible to trace IAV infection in vivo. This protocol describes the process of inserting a green fluorescent protein (GFP) reporter into the IAV genome using the established reverse genetics system. The strategy begins with the reorganization of segment eight of the IAV genome, during which the open reading frames of nonstructural protein 1 (NS1) and the nuclear export protein (NEP) are separated to allow for GFP fusion to the NS1 protein. The NS1, GFP, and NEP open reading frames (ORF) are then cloned into the IAV rescue system backbone. Upon construction of the GFP-encoding segment eight rescue plasmid, recombinant NS1-GFP influenza virus can be rescued via co-transfection with the remaining seven rescue plasmids. The generated NS1-GFP IAV can subsequently be used to visualize infected cells, both in vitro and in vivo.
Collapse
Affiliation(s)
- Jasmine T Perez
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
94
|
Detournay O, Morrison DA, Wagner B, Zarnegar B, Wattrang E. Genomic analysis and mRNA expression of equine type I interferon genes. J Interferon Cytokine Res 2013; 33:746-59. [PMID: 23772953 DOI: 10.1089/jir.2012.0130] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
This study aimed at identifying all of the type I interferon (IFN) genes of the horse and at monitoring their expression in equine cells on in vitro induction. We identified 32 putative type I IFN loci on horse chromosome 23 and an unplaced genomic scaffold. A phylogentic analysis characterized these into 8 different type I IFN classes, that is, putative functional genes for 6 IFN-α, 4 IFN-β, 8 IFN-ω (plus 4 pseudogenes), 3 IFN-δ (plus 1 pseudogene), 1 IFN-κ and 1 IFN-ε, plus 1 IFN-ν pseudogene, and 3 loci belonging to what has previously been called IFN-αω. Our analyses indicate that the IFN-αω genes are quite distinct from both IFN-α and IFN-ω, and we refer to this type I IFN as IFN-μ. Results from cell cultures showed that leukocytes readily expressed IFN-α, IFN-β, IFN-δ, IFN-μ, and IFN-ω mRNA on induction with, for example, live virus; while fibroblasts only expressed IFN-β mRNA on stimulation. IFN-κ or IFN-ε expression was not consistently induced in these cell cultures. Thus, the equine type I IFN family comprised 8 classes, 7 of which had putative functional genes, and mRNA expression of 5 was induced in vitro. Moreover, a relatively low number of IFN-α subtypes was found in the horse compared with other eutherian mammals.
Collapse
Affiliation(s)
- Olivier Detournay
- 1 Department of Virology, Immunobiology and Parasitology, National Veterinary Institute , Uppsala, Sweden
| | | | | | | | | |
Collapse
|
95
|
Zhou B, Pearce MB, Li Y, Wang J, Mason RJ, Tumpey TM, Wentworth DE. Asparagine substitution at PB2 residue 701 enhances the replication, pathogenicity, and transmission of the 2009 pandemic H1N1 influenza A virus. PLoS One 2013; 8:e67616. [PMID: 23799150 PMCID: PMC3683066 DOI: 10.1371/journal.pone.0067616] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/10/2013] [Indexed: 12/15/2022] Open
Abstract
The 2009/2010 pandemic influenza virus (H1N1pdm) contains an avian-lineage PB2 gene that lacks E627K and D701N substitutions important in the pathogenesis and transmission of avian-origin viruses in humans or other mammals. Previous studies have shown that PB2-627K is not necessary because of a compensatory Q591R substitution. The role that PB2-701N plays in the H1N1pdm phenotype is not well understood. Therefore, PB2-D701N was introduced into an H1N1pdm virus (A/New York/1682/2009 (NY1682)) and analyzed in vitro and in vivo. Mini-genome replication assay, in vitro replication characteristics in cell lines, and analysis in the mouse and ferret models demonstrated that PB2-D701N increased virus replication rates and resulted in more severe pathogenicity in mice and more efficient transmission in ferrets. In addition, compared to the NY1682-WT virus, the NY1682-D701N mutant virus induced less IFN-λ and replicated to a higher titer in primary human alveolar epithelial cells. These findings suggest that the acquisition of the PB2-701N substitution by H1N1pdm viruses may result in more severe disease or increase transmission in humans.
Collapse
Affiliation(s)
- Bin Zhou
- J. Craig Venter Institute, Rockville, Maryland, United States of America
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York, United States of America
| | - Melissa B. Pearce
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Yan Li
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Jieru Wang
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Robert J. Mason
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Terrence M. Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - David E. Wentworth
- J. Craig Venter Institute, Rockville, Maryland, United States of America
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
96
|
Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. J Virol 2013; 87:6542-50. [PMID: 23576508 DOI: 10.1128/jvi.00641-13] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current influenza virus vaccine strategies stimulate immune responses toward the globular head domain of the hemagglutinin protein in order to inhibit key steps of the virus life cycle. Because this domain is highly variable across strains, new vaccine formulations are required in most years. Here we demonstrate a novel vaccine strategy that generates immunity to the highly conserved stalk domain by using chimeric hemagglutinin constructs that express unique head and stalk combinations. By repeatedly immunizing mice with constructs that expressed the same stalk but an irrelevant head, we specifically stimulated a stalk-directed response that provided broad-based heterologous and heterosubtypic immunity in mice. Notably, our vaccination scheme provides a universal vaccine approach that protects against challenge with an H5 subtype virus. Furthermore, through in vivo studies using passively transferred antibodies or depletion of CD8(+) T cells, we demonstrated the critical role that humoral mechanisms of immunity play in the protection observed. The present data suggest that a vaccine strategy based on the stalk domain of the hemagglutinin protein could be used in humans to broadly protect against a variety of influenza virus subtypes.
Collapse
|
97
|
Cullinane A, Newton JR. Equine influenza--a global perspective. Vet Microbiol 2013; 167:205-14. [PMID: 23680107 DOI: 10.1016/j.vetmic.2013.03.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 10/27/2022]
Abstract
To date, equine influenza outbreaks have been reported all over the world with the exception of a small number of island nations including New Zealand and Iceland. Influenza is endemic in Europe and North America and is considered to be of potentially major economic significance to the equine industry worldwide. The importation of subclinically infected vaccinated horses, and inadequate quarantine procedures have resulted in several major outbreaks in susceptible populations for example, in Australia (2007) when more than 76,000 horses on over 10,000 properties were reported as infected. This review summarises the current understanding of, and recent research on, equine influenza, including epidemiology, pathogenesis, clinical characteristics, laboratory diagnosis, management and prevention. Recent advances in diagnostic techniques are discussed as are the merits of different vaccination regimes.
Collapse
Affiliation(s)
- A Cullinane
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare, Ireland.
| | | |
Collapse
|
98
|
Das SR, Hensley SE, Ince WL, Brooke CB, Subba A, Delboy MG, Russ G, Gibbs JS, Bennink JR, Yewdell JW. Defining influenza A virus hemagglutinin antigenic drift by sequential monoclonal antibody selection. Cell Host Microbe 2013; 13:314-23. [PMID: 23498956 PMCID: PMC3747226 DOI: 10.1016/j.chom.2013.02.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 12/04/2012] [Accepted: 02/20/2013] [Indexed: 12/21/2022]
Abstract
Human influenza A virus (IAV) vaccination is limited by "antigenic drift," rapid antibody-driven escape reflecting amino acid substitutions in the globular domain of hemagglutinin (HA), the viral attachment protein. To better understand drift, we used anti-hemagglutinin monoclonal Abs (mAbs) to sequentially select IAV escape mutants. Twelve selection steps, each resulting in a single amino acid substitution in the hemagglutinin globular domain, were required to eliminate antigenicity defined by monoclonal or polyclonal Abs. Sequential mutants grow robustly, showing the structural plasticity of HA, although several hemagglutinin substitutions required an epistatic substitution in the neuraminidase glycoprotein to maximize growth. Selecting escape mutants from parental versus sequential variants with the same mAb revealed distinct escape repertoires, attributed to contextual changes in antigenicity and the mutation landscape. Since each hemagglutinin mutation potentially sculpts future mutation space, drift can follow many stochastic paths, undermining its unpredictability and underscoring the need for drift-insensitive vaccines.
Collapse
Affiliation(s)
- Suman R. Das
- Laboratory of Viral Diseases, NIAID, Bethesda, MD 20892, USA
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD 20850, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | | | - William L. Ince
- Laboratory of Viral Diseases, NIAID, Bethesda, MD 20892, USA
| | | | - Anju Subba
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Mark G. Delboy
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Gustav Russ
- Institute of Virology, Slovak Academy of Sciences, 84505 Bratislava, Slovak Republic
| | - James S. Gibbs
- Laboratory of Viral Diseases, NIAID, Bethesda, MD 20892, USA
| | - Jack R. Bennink
- Laboratory of Viral Diseases, NIAID, Bethesda, MD 20892, USA
| | | |
Collapse
|
99
|
Ortiz-Riaño E, Cheng BYH, Carlos de la Torre J, Martínez-Sobrido L. Arenavirus reverse genetics for vaccine development. J Gen Virol 2013; 94:1175-1188. [PMID: 23364194 DOI: 10.1099/vir.0.051102-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Arenaviruses are important human pathogens with no Food and Drug Administration (FDA)-licensed vaccines available and current antiviral therapy being limited to an off-label use of the nucleoside analogue ribavirin of limited prophylactic efficacy. The development of reverse genetics systems represented a major breakthrough in arenavirus research. However, rescue of recombinant arenaviruses using current reverse genetics systems has been restricted to rodent cells. In this study, we describe the rescue of recombinant arenaviruses from human 293T cells and Vero cells, an FDA-approved line for vaccine development. We also describe the generation of novel vectors that mediate synthesis of both negative-sense genome RNA and positive-sense mRNA species of lymphocytic choriomeningitis virus (LCMV) directed by the human RNA polymerases I and II, respectively, within the same plasmid. This approach reduces by half the number of vectors required for arenavirus rescue, which could facilitate virus rescue in cell lines approved for human vaccine production but that cannot be transfected at high efficiencies. We have shown the feasibility of this approach by rescuing both the Old World prototypic arenavirus LCMV and the live-attenuated vaccine Candid#1 strain of the New World arenavirus Junín. Moreover, we show the feasibility of using these novel strategies for efficient rescue of recombinant tri-segmented both LCMV and Candid#1.
Collapse
Affiliation(s)
- Emilio Ortiz-Riaño
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Benson Yee Hin Cheng
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
100
|
Rajsbaum R, Albrecht RA, Wang MK, Maharaj NP, Versteeg GA, Nistal-Villán E, García-Sastre A, Gack MU. Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. PLoS Pathog 2012; 8:e1003059. [PMID: 23209422 PMCID: PMC3510253 DOI: 10.1371/journal.ppat.1003059] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 10/13/2012] [Indexed: 12/24/2022] Open
Abstract
Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.
Collapse
Affiliation(s)
- Ricardo Rajsbaum
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Randy A. Albrecht
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - May K. Wang
- Department of Microbiology and Immunobiology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Natalya P. Maharaj
- Department of Microbiology and Immunobiology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Gijs A. Versteeg
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Estanislao Nistal-Villán
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Michaela U. Gack
- Department of Microbiology and Immunobiology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| |
Collapse
|