51
|
Kim HJ, Kim CH, Ryu JH, Kim MJ, Park CY, Lee JM, Holtzman MJ, Yoon JH. Reactive oxygen species induce antiviral innate immune response through IFN-λ regulation in human nasal epithelial cells. Am J Respir Cell Mol Biol 2013; 49:855-65. [PMID: 23786562 DOI: 10.1165/rcmb.2013-0003oc] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study sought to explore the role of the IFN-related innate immune responses (IFN-β and IFN-λ) and of reactive oxygen species (ROS) after influenza A virus (IAV) infection for antiviral innate immune activity in normal human nasal epithelial (NHNE) cells that are highly exposed to IAV. Passage-2 NHNE cells were inoculated with the IAV WSN/33 for 1, 2, and 3 days to assess the capacity of IFN and the relationship between ROS generation and IFN-λ secretion for controlling IAV infection. Viral titers and IAV mRNA levels increased after infection. In concert with viral titers, we found that the generation of IFNs, such as IFN-β, IFN-λ1, and IFN-λ2/3, was induced after IAV infection until 3 days after infection. The induction of IFN-λ gene expression and protein secretion may be predominant after IAV infection. Similarly, we observed that intracellular ROS generation increased 60 minutes after IAV infection. Viral titers and mRNA levels of IAV were significantly higher in cases with scavenging ROS, in cases with an induced IFN-λ mRNA level, or where the secreted protein concentration of IFN-λ was attenuated after the suppression of ROS generation. Both mitochondrial and dual oxidase (Doux)2-generated ROS were correlated with IAV mRNA and viral titers. The inhibition of mitochondrial ROS generation and the knockdown of Duox2 gene expression highly increased IAV viral titers and decreased IFN-λ secretion. Our findings suggest that the production of ROS may be responsible for IFN-λ secretion to control IAV infection. Both mitochondria and Duox2 are possible sources of ROS generation, which is required to initiate an innate immune response in NHNE cells.
Collapse
Affiliation(s)
- Hyun Jik Kim
- 1 Department of Otolaryngology and Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Republic of South Korea
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Nousiainen L, Sillanpää M, Jiang M, Thompson J, Taipale J, Julkunen I. Human kinome analysis reveals novel kinases contributing to virus infection and retinoic-acid inducible gene I-induced type I and type III IFN gene expression. Innate Immun 2013; 19:516-30. [PMID: 23405030 DOI: 10.1177/1753425912473345] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Activation of host innate antiviral responses are mediated by retinoic-acid inducible gene I (RIG-I)-like receptors, RIG-I and melanoma differentiation-associated gene 5, and TLRs 3, 7, 8 and 9, recognising different types of viral nucleic acids. The major components of the RIG-I- and TLR pathways have putatively been identified, but previously unrecognised kinases may contribute to virus infection-induced activation of the IFN response. Here, we screened a human kinase cDNA library, termed the kinome, using an IFN-λ1 promoter-driven luciferase reporter assay in HEK293 cells during Sendai virus infection. Of the 568 kinases analysed, nearly 50 enhanced IFN-λ1 gene expression at least twofold in response to Sendai virus infection. The best activators were FYN (FYN oncogene related to SRC, FGR, YES), serine/threonine kinase 24, activin A receptor type 1 and SRPK1 (SFRS protein kinase 1). These kinases enhanced RIG-I-dependent IFN-λ1 promoter activation via IFN-stimulated response and NF-κB elements, as confirmed using mutant IFN-λ1 promoter constructs. FYN and SRPK1 enhanced IFN-λ1 and CXCL10 protein production via the RIG-I pathway, and stimulated RIG-I and MyD88-dependent phosphorylation of IRF3 and IRF7 transcription factors, respectively. We conclude that several previously unrecognised kinases, particularly FYN and SRPK1, positively regulate IFN-λ1 and similarly regulated cytokine and chemokine genes during viral infection.
Collapse
Affiliation(s)
- Laura Nousiainen
- 1Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
53
|
Srithayakumar V, Sribalachandran H, Rosatte R, Nadin-Davis SA, Kyle CJ. Innate immune responses in raccoons after raccoon rabies virus infection. J Gen Virol 2013; 95:16-25. [PMID: 24085257 DOI: 10.1099/vir.0.053942-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Zoonotic wildlife diseases pose significant health risks not only to their primary vectors but also to humans and domestic animals. Rabies is a lethal encephalitis caused by rabies virus (RV). This RNA virus can infect a range of terrestrial mammals but each viral variant persists in a particular reservoir host. Active management of these host vectors is needed to minimize the negative impacts of this disease, and an understanding of the immune response to RV infection aids strategies for host vaccination. Current knowledge of immune responses to RV infection comes primarily from rodent models in which an innate immune response triggers activation of several genes and signalling pathways. It is unclear, however, how well rodent models represent the immune response of natural hosts. This study investigates the innate immune response of a primary host, the raccoon, to a peripheral challenge using the raccoon rabies virus (RRV). The extent and temporal course of this response during RRV infection was analysed using genes predicted to be upregulated during infection (IFNs; IFN regulatory factors; IL-6; Toll like receptor-3; TNF receptor). We found that RRV activated components of the innate immune system, with changes in levels of transcripts correlated with presence of viral RNA. Our results suggest that natural reservoirs of rabies may not mimic the immune response triggered in rodent models, highlighting the need for further studies of infection in primary hosts.
Collapse
Affiliation(s)
- Vythegi Srithayakumar
- Natural Resources DNA Profiling and Forensics Centre, DNA Building, Trent University, 2140 East Bank Drive, Peterborough, ON, Canada.,Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive Peterborough, ON, Canada
| | | | - Rick Rosatte
- Ontario Ministry of Natural Resources, Wildlife Research and Development Section, Trent University, DNA Building, 2140 East Bank Drive, Peterborough, ON, Canada
| | - Susan A Nadin-Davis
- Centre of Expertise for Rabies, Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, ON, Canada
| | - Christopher J Kyle
- Forensic Science Department, Trent University, 2140 East Bank Drive, Peterborough, ON, Canada.,Natural Resources DNA Profiling and Forensics Centre, DNA Building, Trent University, 2140 East Bank Drive, Peterborough, ON, Canada
| |
Collapse
|
54
|
Lappalainen J, Rintahaka J, Kovanen PT, Matikainen S, Eklund KK. Intracellular RNA recognition pathway activates strong anti-viral response in human mast cells. Clin Exp Immunol 2013; 172:121-8. [PMID: 23480192 DOI: 10.1111/cei.12042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2012] [Indexed: 01/12/2023] Open
Abstract
Mast cells have been implicated in the first line of defence against parasites and bacteria, but less is known about their role in anti-viral responses. Allergic diseases often exacerbate during viral infection, suggesting an increased activation of mast cells in the process. In this study we investigated human mast cell response to double-stranded RNA and viral infection. Cultured human mast cells were incubated with poly(I:C), a synthetic RNA analogue and live Sendai virus as a model of RNA parainfluenza virus infection, and analysed for their anti-viral response. Mast cells responded to intracellular poly(I:C) by inducing type 1 and type 3 interferons and TNF-α. In contrast, extracellular Toll-like receptor 3 (TLR)-3-activating poly(I:C) failed to induce such response. Infection of mast cells with live Sendai virus induced an anti-viral response similar to that of intracellular poly(I:C). Type 1, but not type 3 interferons, up-regulated the expression of melanoma differentiation-associated gene 5 (MDA-5) and retinoic acid-inducible gene-1 (RIG-1), and TLR-3, demonstrating that human mast cells do not express functional receptors for type 3 interferons. Furthermore, virus infection induced the anti-viral proteins MxA and IFIT3 in human mast cells. In conclusion, our results support the notion that mast cells can recognize an invading virus through intracellular virus sensors and produce high amounts of type 1 and type 3 interferons and the anti-viral proteins human myxovirus resistance gene A (MxA) and interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) in response to the virus infection.
Collapse
|
55
|
Tayel SS, Helmy AA, Ahmed R, Esmat G, Hamdi N, Abdelaziz AI. Progesterone suppresses interferon signaling by repressing TLR-7 and MxA expression in peripheral blood mononuclear cells of patients infected with hepatitis C virus. Arch Virol 2013; 158:1755-64. [PMID: 23525700 DOI: 10.1007/s00705-013-1673-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/11/2013] [Indexed: 12/30/2022]
Abstract
This study aimed at investigating the effect of progesterone on interferon signaling pathways in peripheral blood mononuclear cells (PBMCs) of patients infected with hepatitis C virus (HCV). PBMCs were isolated from peripheral blood of 38 treatment-naïve HCV-infected patients, pooled, and stimulated with progesterone in the presence and absence of its receptor antagonist, mifepristone, along with interferon alpha (IFN-α) or imiquimod. Toll-like receptor (TLR) 7 and myxovirus resistance protein A (MxA) were quantified in PBMCs using RT-qPCR. Imiquimod alone or combined with progesterone did not change MxA expression in HCV-infected PBMCs. Progesterone decreased the inducing effect of IFN-α on TLR-7 expression in both males and females. Moreover, progesterone stimulation prior to IFN-α treatment attenuated the Jak/STAT pathway, which was reflected by decreased expression of MxA in females. Progesterone showed a negative impact on the IFN signaling pathway in HCV-infected PBMCs as it decreased the expression of TLR-7 in both genders, while MxA expression was decreased only in females.
Collapse
Affiliation(s)
- Sara S Tayel
- The Molecular Pathology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | | | | | | | | | | |
Collapse
|
56
|
Kuri T, Sörensen AS, Thomas S, Karlsson Hedestam GB, Normark S, Henriques-Normark B, McInerney GM, Plant L. Influenza A virus-mediated priming enhances cytokine secretion by human dendritic cells infected with Streptococcus pneumoniae. Cell Microbiol 2013; 15:1385-400. [PMID: 23421931 PMCID: PMC3798092 DOI: 10.1111/cmi.12122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 01/23/2013] [Accepted: 02/04/2013] [Indexed: 12/22/2022]
Abstract
Secondary infections with Streptococcus pneumoniae (SP) are frequently observed following influenza A virus (IAV) infection and have a substantial impact on global health. Despite this, the basis for the disease progression is incompletely understood. To investigate the effect of co-infection on human monocyte-derived dendritic cells (MDDCs) we analysed the expression of clinically important pro-inflammatory and immune-modulatory cytokines. IAV infection or treatment with supernatants from IAV-infected cell cultures resulted in priming of the DCs which subsequently influenced the production of IL-12p70, as well as IL-6, following SP infection. Co-infection of the same cell was not required but this effect was dependent on the time, dose and duration of the infections, as well as pathogen viability, bacterial uptake and endosome acidification. Bacterially infected cells were characterized as the main producers of IL-12p70. Finally, we showed that type I interferons were primarily responsible for the priming of IL-12p70 that was observed by infection with IAV. These results provide a probable mechanism for the elevated levels of particular cytokines observed in IAV and SP co-infected cell cultures with implications for the pathogenic outcome observed during in vivo infection.
Collapse
Affiliation(s)
- Thomas Kuri
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Learning from the messengers: innate sensing of viruses and cytokine regulation of immunity - clues for treatments and vaccines. Viruses 2013; 5:470-527. [PMID: 23435233 PMCID: PMC3640511 DOI: 10.3390/v5020470] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 12/14/2022] Open
Abstract
Virus infections are a major global public health concern, and only via substantial knowledge of virus pathogenesis and antiviral immune responses can we develop and improve medical treatments, and preventive and therapeutic vaccines. Innate immunity and the shaping of efficient early immune responses are essential for control of viral infections. In order to trigger an efficient antiviral defense, the host senses the invading microbe via pattern recognition receptors (PRRs), recognizing distinct conserved pathogen-associated molecular patterns (PAMPs). The innate sensing of the invading virus results in intracellular signal transduction and subsequent production of interferons (IFNs) and proinflammatory cytokines. Cytokines, including IFNs and chemokines, are vital molecules of antiviral defense regulating cell activation, differentiation of cells, and, not least, exerting direct antiviral effects. Cytokines shape and modulate the immune response and IFNs are principle antiviral mediators initiating antiviral response through induction of antiviral proteins. In the present review, I describe and discuss the current knowledge on early virus–host interactions, focusing on early recognition of virus infection and the resulting expression of type I and type III IFNs, proinflammatory cytokines, and intracellular antiviral mediators. In addition, the review elucidates how targeted stimulation of innate sensors, such as toll-like receptors (TLRs) and intracellular RNA and DNA sensors, may be used therapeutically. Moreover, I present and discuss data showing how current antimicrobial therapies, including antibiotics and antiviral medication, may interfere with, or improve, immune response.
Collapse
|
58
|
Characterization of HIV-1 infection and innate sensing in different types of primary human monocyte-derived macrophages. Mediators Inflamm 2013; 2013:208412. [PMID: 23431237 PMCID: PMC3569920 DOI: 10.1155/2013/208412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 02/06/2023] Open
Abstract
Macrophages play an important role in human immunodeficiency virus (HIV) pathogenesis and contribute to establishment of a viral reservoir responsible for continuous virus production and virus transmission to T cells. In this study, we investigated the differences between various monocyte-derived macrophages (MDMs) generated through different differentiation protocols and evaluated different cellular, immunological, and virological properties. We found that elevated and persistent HIV-1 pWT/BaL replication could be obtained only in MDMs grown in RPMI containing macrophage colony-stimulating factor (M-CSF). Interestingly, this MDM type was also most responsive to toll-like receptor stimulation. By contrast, all MDM types were activated to a comparable extent by intracellular DNA, and the macrophage serum-free medium-(Mac-SFM-)differentiated MDMs responded strongly to membrane fusion through expression of CXCL10. Finally, we found that HIV infection of RPMI/M-CSF-differentiated MDMs induced low-grade expression of two interferon-stimulated genes in some donors. In conclusion, our study demonstrates that the differentiation protocol used greatly influences the ability of MDMs to activate innate immune reactions and support HIV-1 replication. Paradoxically, the data show that the MDMs with the strongest innate immune response were also the most permissive for HIV-1 replication.
Collapse
|
59
|
Sugiyama M, Kimura T, Naito S, Mukaide M, Shinauchi T, Ueno M, Ito K, Murata K, Mizokami M. Development of specific and quantitative real-time detection PCR and immunoassays for λ3-interferon. Hepatol Res 2012; 42:1089-99. [PMID: 22672583 DOI: 10.1111/j.1872-034x.2012.01032.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIM Single nucleotide polymorphisms (SNP) around interferon (IFN)-λ3 have been associated with the response to pegylated IFN-α treatment for chronic hepatitis C. Specific quantification methods for IFN-λ3 are required to facilitate clinical and basic study. METHODS Gene-specific primers and probes for IFN-λ1, 2 and 3 were designed for real-time detection PCR (RTD-PCR). Dynamic range and specificity were examined using specific cDNA clones. Total RNA from hematopoietic and hepatocellular carcinoma cell lines was prepared for RTD-PCR. Monoclonal antibodies were developed for the IFN-λ3-specific immunoassays. The immunoassays were assessed by measuring IFN-λ3 in serum and plasma. RESULTS The RTD-PCR had a broad detection range (10-10(7) copies/assay) with high specificity (∼10(7) -fold specificity). Distinct expression profiles were observed in several cell lines. Hematopoietic cell lines expressed high levels of IFN-λ compared with hepatocellular carcinoma cells, and Sendai virus infection induced strong expression of IFN-λ. The developed chemiluminescence enzyme immunoassays (CLEIA) detected 0.1 pg/mL of IFN-λ3 and showed a wide detection range of 0.1-10 000 pg/mL with little or no cross-reactivity to IFN-λ1 or IFN-λ2. IFN-λ3 could be detected in all the serum and plasma samples by CLEIA, with median concentrations of 0.92 and 0.86 pg/mL, respectively. CONCLUSION Our newly developed RTD-PCR and CLEIA assays will be valuable tools for investigating the distribution and functions of IFN-λ3, which is predicted to be a marker for predicting outcome of therapy for hepatitis C or other virus diseases.
Collapse
Affiliation(s)
- Masaya Sugiyama
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa Institute of Immunology SRL, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Kaukinen P, Sillanpää M, Nousiainen L, Melén K, Julkunen I. Hepatitis C virus NS2 protease inhibits host cell antiviral response by inhibiting IKKε and TBK1 functions. J Med Virol 2012; 85:71-82. [PMID: 23096996 DOI: 10.1002/jmv.23442] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2012] [Indexed: 11/10/2022]
Abstract
Hepatitis C virus (HCV) encodes for several proteins that can interfere with host cell signaling and antiviral response. Previously, serine protease NS3/4A was shown to block host cell interferon (IFN) production by proteolytic cleavage of MAVS and TRIF, the adaptor molecules of the RIG-I and TLR3 signaling pathways, respectively. This study shows that another HCV protease, NS2 can interfere efficiently with cytokine gene expression. NS2 and its proteolytically inactive mutant forms were able to inhibit type I and type III IFN, CCL5 and CXCL10 gene promoters activated by Sendai virus infection. However, the CXCL8 gene promoter was not inhibited by NS2. In addition, constitutively active RIG-I (ΔRIG-I), MAVS, TRIF, IKKε, and TBK1-induced activation of IFN-β promoter was inhibited by NS2. Cotransfection experiments with IKKε or TBK1 together with interferon regulatory factor 3 (IRF3) and HCV expression constructs revealed that NS2 in a dose-dependent manner inhibited IKKε and especially TBK1-induced IRF3 phosphorylation. GST pull-down experiments with GST-NS2 and in vitro-translated and cell-expressed IKKε and TBK1 demonstrated direct physical interactions of the kinases with NS2. Further evidence that the IKKε/TBK1 kinase complex is the target for NS2 was obtained from the observation that the constitutively active form of IRF3 (IRF3-5D) activated readily IFN-β promoter in the presence of NS2. The present study identified HCV NS2 as a potent interferon antagonist, and describes an explanation of how NS2 downregulates the major signaling pathways involved in the development of host innate antiviral responses.
Collapse
Affiliation(s)
- Pasi Kaukinen
- Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), Helsinki, Finland.
| | | | | | | | | |
Collapse
|
61
|
Yin Z, Dai J, Deng J, Sheikh F, Natalia M, Shih T, Lewis-Antes A, Amrute SB, Garrigues U, Doyle S, Donnelly RP, Kotenko SV, Fitzgerald-Bocarsly P. Type III IFNs are produced by and stimulate human plasmacytoid dendritic cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:2735-45. [PMID: 22891284 PMCID: PMC3579503 DOI: 10.4049/jimmunol.1102038] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plasmacytoid dendritic cells (pDC) are rare cells found in peripheral blood and lymphoid tissues. pDC are considered to be "professional" type I IFN-producing cells and produce 10- to 100-fold more IFN-α than other cell types in response to enveloped viruses or synthetic TLR7 and TLR9 agonists. In this study, purified pDC were found to express high levels of IFN-λ receptor mRNA, as well as cell-surface IFN-λ receptor. We have developed intracellular flow cytometry assays using Abs to IFN-λ1/3 or -λ2 to assess the expression of IFN-λ proteins by pDC. We observed that a subset of human pDC expresses only intracellular IFN-α, whereas another subset produces both IFN-α and IFN-λ after stimulation with virus or the TLR9 agonist, CpG A; the cells that coexpressed IFN-α and IFN-λ were the cells with the highest levels of IFN-α expression. Ab cross-linking of CD4 or CD303 molecules on pDC inhibited both HSV-induced IFN-λ and IFN-α production. Like the production of IFN-α, the HSV-induced IFN-λ production in pDC was mediated through TLR9 and independent of virus replication. Exogenous IFN-λ treatment of pDC resulted in increased virus-induced expression of both IFN-α and IFN-λ. In addition, both exogenous IFN-λ and -α inhibited dexamethasone-induced apoptosis of pDC. We conclude that pDC are major producers of IFN-λ1 and -λ2 in response to viral stimulation and also express functional receptors for this cytokine. Thus, IFN-λ can serve as an autocrine signal to strengthen the antiviral response of pDC by increasing IFN-α and IFN-λ production, resulting in prolonged pDC survival.
Collapse
Affiliation(s)
- Zhiwei Yin
- Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Incoming influenza A virus evades early host recognition, while influenza B virus induces interferon expression directly upon entry. J Virol 2012; 86:11183-93. [PMID: 22855501 DOI: 10.1128/jvi.01050-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The activation of the interferon (IFN) system, which is triggered largely by the recognition of viral nucleic acids, is one of the most important host defense reactions against viral infections. Although influenza A and B viruses, which both have segmented negative-strand RNA genomes, share major structural similarities, they have evolutionarily diverged, with total genetic incompatibility. Here we compare antiviral-inducing mechanisms during infections with type A and B influenza viruses in human dendritic cells. We observed that IFN responses are induced significantly faster in cells infected with influenza B virus than in cells infected with type A influenza virus and that the early induction of antiviral gene expression is mediated by the activation of the transcription factor IFN regulatory factor 3 (IRF3). We further demonstrate that influenza A virus infection activates IFN responses only after viral RNA (vRNA) synthesis, whereas influenza B virus induces IFN responses even if its infectivity is destroyed by UV treatment. Thus, initial viral transcription, replication, and viral protein synthesis are dispensable for influenza B virus-induced antiviral responses. Moreover, vRNA molecules from both type A and B viruses are equally potent activators of IFN induction, but incoming influenza B virus structures are recognized directly in the cytosol, while influenza A virus is able to evade early recognition. Collectively, our data provide new evidence of a novel antiviral evasion strategy for influenza A virus without a contribution of the viral NS1 protein, and this opens up new insights into different influenza virus pathogenicities.
Collapse
|
63
|
[Genome-wide prediction of interferon family members of tree shrew and their molecular characteristics analysis]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2012; 33:67-74. [PMID: 22345011 DOI: 10.3724/sp.j.1141.2012.01067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Interferons (IFNs) represent proteins with antiviral activities that are secreted from cells in response to a variety of stimuli. In addition to antiviral, antibacterial and anti-parasitic host-defense functions they are now also recognized as crucial regulators of cell proliferation, differentiation, survival and death as well as activators of specialized cell functions particularly in the immune system and play important roles in infectious and inflammatory diseases, autoimmunity and cancer. Tree shrews (Tupaia belangeri) were found to be susceptible to several human viruses and therefore are widely regarded as good models for analyzing mechanism of human diseases. In this report, we have forecasted the interferon family members of tree shrew from its genome mainly using the methods like Blast (whole genome shotgun sequence) and gene prediction. Our data show that tree shrew interferon system includes: type I IFN: α (five subtypes), β, ω, κ, epsilon, δ; type II IFN: γ; type III IFN: λ1, λ2/3. Furthermore, the predicted structures of α and λ have similar character with those of other mammals. However, there are some differences in cysteine position and N-glycosylation numbers between human and Tree shrew IFNs. These results provide fundamental basis for further molecular cloning and function analysis of tree shrew IFNs in future.
Collapse
|
64
|
Tian RR, Guo HX, Wei JF, Yang CK, He SH, Wang JH. IFN-λ inhibits HIV-1 integration and post-transcriptional events in vitro, but there is only limited in vivo repression of viral production. Antiviral Res 2012; 95:57-65. [PMID: 22584351 DOI: 10.1016/j.antiviral.2012.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/12/2012] [Accepted: 04/30/2012] [Indexed: 01/31/2023]
Abstract
The lambda interferons (IL-28a, 28b, and IL-29) inhibit the replication of many viruses, but their role in the inhibition of HIV-1 infection remains unclear. During this study, we monitored IL-29 production in HIV-1 infected individuals and analyzed the in vitro and in vivo inhibition of HIV-1 production. Prior treatment with IL-28a or IL-29 induced an antiviral state in cultured primary T-cells, which suppressed HIV-1 integration and post-transcriptional events. The antiviral factors MxA, OAS, and PKR were up-regulated. In HIV-1 infected patients, IL-29 level was increased along with the depletion of CD4⁺ T-cells in peripheral blood, while the elevated IL-29 did not show a significantly negative correlation with viral load. Further analysis of HIV-1 infected individuals showed that IL-29 was positively correlated with IFN-β and anti-inflammatory cytokine IL-10, and was negatively correlated with IFN-γ, which might suggest that IFN-λ participates in modulating antiviral immune responses during HIV-1 infection in vivo. Together, although IFN-λ impeded HIV-1 infection of T-cells in vitro, IFN-λ showed only limited in vivo repression of viral production. The modulation of IFN-λ on inflammatory factors might be worthy for further concentrating on for better understanding the host immune response during HIV-1 infection.
Collapse
Affiliation(s)
- Ren-Rong Tian
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | |
Collapse
|
65
|
Forbes RL, Wark PAB, Murphy VE, Gibson PG. Pregnant women have attenuated innate interferon responses to 2009 pandemic influenza A virus subtype H1N1. J Infect Dis 2012; 206:646-53. [PMID: 22693225 DOI: 10.1093/infdis/jis377] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Pregnant women are considered to have a high risk for influenza virus infection, although little is known about the biological reasons for this risk. Antiviral immunity is critical during influenza virus infection, and understanding the changes that occur during pregnancy and the effect of vaccination is essential for improving health outcomes for mother and baby. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from 26 healthy, nonpregnant women and 28 healthy pregnant women and cultured with 2009 pandemic influenza A virus subtype H1N1 (H1N1/09). Protein concentrations of interferon α (IFN-α), IFN-λ, and IFN-γ were measured from culture supernatant. Messenger RNA expression of protein kinase R (PKR) and Toll-like receptors 3, 7, and 9 was also measured from cell lysates. RESULTS PBMCs from pregnant women produced significantly less IFN-α (median level, 114.06 pg/mL [range, 51.48-394.9]) and IFN-λ (median level, 30.65 pg/mL [range, 0-260]), compared with PBMCs from nonpregnant women (median level, 800.38 pg/mL [range, 259-1458] and 479.87 pg/mL [257.1-1113], respectively; P < .01). PKR expression was also significantly reduced in PBMCs from pregnant women (P < .05). Vaccination significantly improved innate and adaptive immunity in pregnancy (P < .01). CONCLUSION PBMCs from nonvaccinated pregnant women have attenuated antiviral immunity following H1N1/09 stimulation, but vaccination improves this response. These novel findings help improve understanding of the increased susceptibility and disease severity to influenza virus infection during pregnancy and the importance of influenza vaccination.
Collapse
Affiliation(s)
- Rebecca L Forbes
- Centre for Asthma and Respiratory Diseases, School of Medicine and Public Health, The University of Newcastle, Australia
| | | | | | | |
Collapse
|
66
|
Wang C, Zhuang Y, Zhang Y, Luo Z, Gao N, Li P, Pan H, Cai L, Ma Y. Toll-like receptor 3 agonist complexed with cationic liposome augments vaccine-elicited antitumor immunity by enhancing TLR3-IRF3 signaling and type I interferons in dendritic cells. Vaccine 2012; 30:4790-9. [PMID: 22634298 DOI: 10.1016/j.vaccine.2012.05.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 05/08/2012] [Accepted: 05/13/2012] [Indexed: 01/21/2023]
Abstract
Cancer vaccine-based immunotherapy is emerging as a novel therapeutic strategy for cancer treatment. However, its antitumor effect remains unsatisfied due to the poor immunogenicity of tumor antigens (Ags). Although polyriboinosinic: polyribocytidylic acid (PIC), a TLR3 agonist, has been reported as a promising adjuvant for cancer vaccines, its immunopotency may be limited by insufficient cellular penetration. In the present study, we incorporated PIC into DOTAP cationic liposome to generate PIC-DOTAP Liposome Complex (PDLC) nanoparticles. The results showed that PDLC was more potent than DOTAP or PIC to enhance vaccine-induced tumor-specific cytotoxic T lymphocyte (CTL) response and IFN-γ production. Moreover, two doses of PDLC vaccines remarkably suppressed tumor growth in mice, which involved the participance of CD8(+) T cells and depended on the presence of Ag. The superior antitumor effect of PDLC vaccines could be attributable to enhanced maturation of mouse bone-marrow dendritic cells (BMDCs) and increased production of type I IFNs. More importantly, PDLC strengthened the TLR3 signaling in BMDCs by enhancing the interaction of PIC with TLR3 and augmenting downstream IRF-3 phosphorylation, as well as elevating IRF-3/IRF-7 mRNA transcription. Taking together, the complex of PIC and DOTAP liposomes enhanced PIC uptake and consequential TLR3 signaling in BMDCs, which in turn promoted DC maturation and type I IFN production, thereby augmenting the antitumor effect of cancer vaccines.
Collapse
Affiliation(s)
- Ce Wang
- Key Lab of Health Informatics of Chinese Academy of Sciences, Shenzhen Key Laboratory of Cancer Nanotechnology, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advance Technology, Chinese Academy of Science, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Hüsser L, Ruggli N, Summerfield A. Nproof Classical Swine Fever Virus Prevents Type I Interferon-Mediated Priming of Conventional Dendritic Cells for Enhanced Interferon-α Response. J Interferon Cytokine Res 2012; 32:221-9. [DOI: 10.1089/jir.2011.0068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Linda Hüsser
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland
| | - Nicolas Ruggli
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland
| |
Collapse
|
68
|
Kamihira S, Usui T, Ichikawa T, Uno N, Morinaga Y, Mori S, Nagai K, Sasaki D, Hasegawa H, Yanagihara K, Honda T, Yamada Y, Iwanaga M, Kanematu T, Nakao K. Paradoxical expression of IL-28B mRNA in peripheral blood in human T-cell leukemia virus type-1 mono-infection and co-infection with hepatitis C virus. Virol J 2012; 9:40. [PMID: 22336134 PMCID: PMC3308917 DOI: 10.1186/1743-422x-9-40] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 02/15/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Human T-cell leukemia virus type-1 (HTLV-1) carriers co-infected with and hepatitis C virus (HCV) have been known to be at higher risk of their related diseases than mono-infected individuals. The recent studies clarified that IL-28B polymorphism rs8099917 is associated with not only the HCV therapeutic response by IFN, but also innate immunity and antiviral activity. The aim of our research was to clarify study whether IL-28B gene polymorphism (rs8099917) is associated with HTLV-1/HCV co-infection. RESULTS The genotyping and viral-serological analysis for 340 individuals showed that IL-28B genotype distribution of rs8099917 SNP did not differ significantly by respective viral infection status. However, the IL-28B mRNA expression level was 3.8 fold higher in HTLV-1 mono-infection than HTLV-1/HCV co-infection. The high expression level was associated with TT (OR, 6.25), whiles the low expression was associated with co-infection of the two viruses (OR, 9.5). However, there was no association between down-regulation and ATL development (OR, 0.8). CONCLUSION HTLV-1 mono-infection up-regulates the expression of IL-28B transcripts in genotype-dependent manner, whiles HTLV-1/HCV co-infection down-regulates regardless of ATL development.
Collapse
Affiliation(s)
- Shimeru Kamihira
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Tetsuya Usui
- Central Diagnostic Laboratory of Nagasaki University Hospital, Nagasaki, 852-8501, Japan
| | - Tatsuki Ichikawa
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Naoki Uno
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
- Central Diagnostic Laboratory of Nagasaki University Hospital, Nagasaki, 852-8501, Japan
| | - Yoshitomo Morinaga
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
- Central Diagnostic Laboratory of Nagasaki University Hospital, Nagasaki, 852-8501, Japan
| | - Sayaka Mori
- Central Diagnostic Laboratory of Nagasaki University Hospital, Nagasaki, 852-8501, Japan
| | - Kazuhiro Nagai
- Central Diagnostic Laboratory of Nagasaki University Hospital, Nagasaki, 852-8501, Japan
| | - Daisuke Sasaki
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
- Central Diagnostic Laboratory of Nagasaki University Hospital, Nagasaki, 852-8501, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
- Central Diagnostic Laboratory of Nagasaki University Hospital, Nagasaki, 852-8501, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
- Central Diagnostic Laboratory of Nagasaki University Hospital, Nagasaki, 852-8501, Japan
| | - Takuya Honda
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Yasuaki Yamada
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
- Central Diagnostic Laboratory of Nagasaki University Hospital, Nagasaki, 852-8501, Japan
| | - Masako Iwanaga
- Faculty of Wellness Studies, Kwassui Women's University, Nagasaki, 850-8515, Japan
| | - Takashi Kanematu
- Division of Surgical Oncology, Department of Translational Medical Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| |
Collapse
|
69
|
Gondois-Rey F, Granjeaud S, Kieu SLT, Herrera D, Hirsch I, Olive D. Multiparametric cytometry for exploration of complex cellular dynamics. Cytometry A 2012; 81:332-42. [PMID: 22278900 DOI: 10.1002/cyto.a.22016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 11/14/2011] [Accepted: 01/01/2012] [Indexed: 12/15/2022]
Abstract
The development of polychromatic cytometry has contributed to significant progress in the field of human immunology. Although numerous functional studies of rare cell populations have been performed using this technology, here we used polychromatic cytometry to explore the dynamics of complex cellular systems implicated in innate immunity. We used PBMC stimulated with live influenza virus as an experimental model. We studied the time course of activation of PBMC, which contain DC, monocytes, and NK cells, all of which are, in addition to their innate immune properties, susceptible to Flu infection. We developed 12 color panels to investigate intracellular expression of IFN-α, TNF-α, IL-12, IL-6, IFN-γ, CD107, and influenza virus nucleoprotein simultaneously in these cell populations. These panels allowed reproducible determination of activation markers induced in DC after their direct exposure to various stimulations or in NK cells by indirect DC-mediated activation within the complex cellular environment. The ability to use a low number of cells and reduced quantities of reagents permitted us to perform kinetic experiments. The power of polychromatic cytometry associated with bioinformatic tools allowed us to analyze the multiple functional data generated as dynamic clustering maps. These maps present a readily understandable view of activation events induced in different populations of PBMC. In addition, it reveals new information on the coordination of the complex pathways induced and on the cellular interactions that sustained indirect DC-mediated NK cell activation. Our work shows that polychromatic cytometry is a tool for discoveries in unexplored complex cell systems, at the crossroads of immunology and virology. © 2012 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Françoise Gondois-Rey
- Institut National de la Santé et de la Recherche Médicale, Unité 891, Centre de Recherche en Cancérologie de Marseille, France.
| | | | | | | | | | | |
Collapse
|
70
|
Fang J, Hao Q, Liu L, Li Y, Wu J, Huo X, Zhu Y. Epigenetic changes mediated by microRNA miR29 activate cyclooxygenase 2 and lambda-1 interferon production during viral infection. J Virol 2012; 86:1010-20. [PMID: 22072783 PMCID: PMC3255816 DOI: 10.1128/jvi.06169-11] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/31/2011] [Indexed: 12/24/2022] Open
Abstract
Lambda-1 interferon (IFN-λ1) and cyclooxygenase-2 (COX-2) were reported to play an important role in host antiviral defense. However, the mechanism by which IFN-λ1 and COX2 are activated and modulated during viral infection remains unclear. In this study, we found that expression of both circulating IFN-λ1 and COX2-derived prostaglandin E2 (PGE2) was coordinately elevated in a cohort of influenza patients compared to healthy individuals. Expression of IFN-λ1 was blocked by a selective COX2 inhibitor during influenza A virus infection in A549 human lung epithelial cells but enhanced by overexpression of COX2, indicating that the production of IFN-λ1 is COX2 dependent. COX2 was able to increase IFN-λ1 expression by promoting NF-κB binding to the enhancer in the IFN-λ1 promoter. We found that epigenetic changes activate COX2 expression and PGE2 accumulation during viral infection. The expression of DNA methyltransferase 3a (DNMT3a) and DNMT3b, but not that of DNMT1, was downregulated following influenza A virus infection in both A549 cells and peripheral blood mononuclear cells (PBMCs). We showed that microRNA miR29 suppresses DNMT activity and thus induces expression of COX2 and PGE2. Furthermore, miR29 expression was elevated 50-fold in virally infected A549 cells and 10-fold in PBMCs from influenza patients, compared to expression after mock infection of A549 cells or in healthy individuals, respectively. Activation of the protein kinase A signaling pathway and phosphorylation of CREB1 also contributed to COX2 expression. Collectively, our work defines a novel proinflammatory cascade in the control of influenza A virus infection.
Collapse
Affiliation(s)
- Jiali Fang
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Qian Hao
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Li Liu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yongkui Li
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianguo Wu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xixiang Huo
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Ying Zhu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
71
|
Moltedo B, Li W, Yount JS, Moran TM. Unique type I interferon responses determine the functional fate of migratory lung dendritic cells during influenza virus infection. PLoS Pathog 2011; 7:e1002345. [PMID: 22072965 PMCID: PMC3207893 DOI: 10.1371/journal.ppat.1002345] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 09/15/2011] [Indexed: 12/24/2022] Open
Abstract
Migratory lung dendritic cells (DCs) transport viral antigen from the lungs to the draining mediastinal lymph nodes (MLNs) during influenza virus infection to initiate the adaptive immune response. Two major migratory DC subsets, CD103+ DCs and CD11bhigh DCs participate in this function and it is not clear if these antigen presenting cell (APC) populations become directly infected and if so whether their activity is influenced by the infection. In these experiments we show that both subpopulations can become infected and migrate to the draining MLN but a difference in their response to type I interferon (I-IFN) signaling dictates the capacity of the virus to replicate. CD103+ DCs allow the virus to replicate to significantly higher levels than do the CD11bhigh DCs, and they release infectious virus in the MLNs and when cultured ex-vivo. Virus replication in CD11bhigh DCs is inhibited by I-IFNs, since ablation of the I-IFN receptor (IFNAR) signaling permits virus to replicate vigorously and productively in this subset. Interestingly, CD103+ DCs are less sensitive to I-IFNs upregulating interferon-induced genes to a lesser extent than CD11bhigh DCs. The attenuated IFNAR signaling by CD103+ DCs correlates with their described superior antigen presentation capacity for naïve CD8+ T cells when compared to CD11bhigh DCs. Indeed ablation of IFNAR signaling equalizes the competency of the antigen presenting function for the two subpopulations. Thus, antigen presentation by lung DCs is proportional to virus replication and this is tightly constrained by I-IFN. The “interferon-resistant” CD103+ DCs may have evolved to ensure the presentation of viral antigens to T cells in I-IFN rich environments. Conversely, this trait may be exploitable by viral pathogens as a mechanism for systemic dissemination. Migratory lung dendritic cells (DCs) control the initiation of the adaptive immune responses to influenza virus by expanding virus-specific T cells in draining lymph nodes (MLNs) that will subsequently clear the pathogen from the respiratory tract. Here we demonstrate that both subsets of lung DCs, CD103+ DCs and CD11bhigh DCs become infected by influenza virus in vivo and migrate to the MLNs, but only CD103+ DCs support productive virus replication. Enhanced virus replication in CD103+ DCs compared to CD11bhigh DCs was responsible for their superior antigen presentation efficacy for naïve CD8+ T cells and originated from a difference in sensitivity of the two DC populations to type I interferon (I-IFN). These data show that in contrast to most other immune cell types, DCs can become productively infected with influenza virus and I-IFN operates as a master regulator controlling which DC subset will present antigen during a viral infection. A deeper understanding of basic innate and adaptive immune response mechanisms regulated by I-FN may lead to the development of cutting edge therapies and improve vaccine efficacy against influenza and other viruses.
Collapse
Affiliation(s)
- Bruno Moltedo
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Immunology Institute, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail: (TMM); (BM)
| | - Wenjing Li
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Immunology Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Jacob S. Yount
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Immunology Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Thomas M. Moran
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Immunology Institute, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail: (TMM); (BM)
| |
Collapse
|
72
|
Frasca L, Lande R. Overlapping, additive and counterregulatory effects of type II and I interferons on myeloid dendritic cell functions. ScientificWorldJournal 2011; 11:2071-90. [PMID: 22125457 PMCID: PMC3221594 DOI: 10.1100/2011/873895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 09/27/2011] [Indexed: 12/19/2022] Open
Abstract
Dendritic cells (DCs) are central player in immunity by bridging the innate and adaptive arms of the immune system (IS). Interferons (IFNs) are one of the most important factors that regulate both innate and adaptive immunity too. Thus, the understanding of how type II and I IFNs modulate the immune-regulatory properties of DCs is a central issue in immunology. In this paper, we will address this point in the light of the most recent literature, also highlighting the controversial data reported in the field. According to the wide literature available, type II as well as type I IFNs appear, at the same time, to collaborate, to induce additive effects or overlapping functions, as well as to counterregulate each one's effects on DC biology and, in general, the immune response. The knowledge of these effects has important therapeutic implications in the treatment of infectious/autoimmune diseases and cancer and indicates strategies for using IFNs as vaccine adjuvants and in DC-based immune therapeutic approaches.
Collapse
Affiliation(s)
- Loredana Frasca
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | | |
Collapse
|
73
|
Yu Y, Gong R, Mu Y, Chen Y, Zhu C, Sun Z, Chen M, Liu Y, Zhu Y, Wu J. Hepatitis B virus induces a novel inflammation network involving three inflammatory factors, IL-29, IL-8, and cyclooxygenase-2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:4844-60. [PMID: 21957142 DOI: 10.4049/jimmunol.1100998] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic inflammation induced by hepatitis B virus (HBV) is a major causative factor associated with the development of cirrhosis and hepatocellular carcinoma. In this study, we investigated the roles of three inflammatory factors, IL-8, IL-29 (or IFN-λ1), and cyclooxygenase-2 (COX-2), in HBV infection. We showed that the expression of IL-29, IL-8, and COX-2 genes was enhanced in HBV-infected patients or in HBV-expressing cells. In HBV-transfected human lymphocytes and hepatocytes, IL-29 activates the production of IL-8, which in turn enhances the expression of COX-2. In addition, COX-2 decreases the production of IL-8, which in turn attenuates the expression of IL-29. Thus, we proposed that HBV infection induces a novel inflammation cytokine network involving three inflammatory factors that regulate each other in the order IL-29/IL-8/COX-2, which involves positive regulation and negative feedback. In addition, we also demonstrated that COX-2 expression activated by IL-8 was mediated through CREB and C/EBP, which maintains the inflammatory environment associated with HBV infection. Finally, we showed that the ERK and the JNK signaling pathways were cooperatively involved in the regulation of COX-2. We also demonstrated that IL-29 inhibits HBV replication and that IL-8 attenuates the expression of IL-10R2 and the anti-HBV activity of IL-29, which favors the establishment of persistent viral infection. These new findings provide insights for our understanding of the mechanism by which inflammatory factors regulate each other in response to HBV infection.
Collapse
Affiliation(s)
- Yi Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Larangé A, Antonios D, Pallardy M, Kerdine-Römer S. Glucocorticoids inhibit dendritic cell maturation induced by Toll-like receptor 7 and Toll-like receptor 8. J Leukoc Biol 2011; 91:105-17. [DOI: 10.1189/jlb.1110615] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
75
|
TLR7 and TLR8 gene variations and susceptibility to hepatitis C virus infection. PLoS One 2011; 6:e26235. [PMID: 22022576 PMCID: PMC3192790 DOI: 10.1371/journal.pone.0026235] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 09/22/2011] [Indexed: 01/29/2023] Open
Abstract
Toll-like receptors (TLRs) play pivotal roles in the innate immune system and control inflammatory responses and adaptive immunity. We previously evaluated associations between TLR7 and TLR8 gene SNPs and susceptibility to hepatitis C virus (HCV) infection. Our results suggested that TLR7IVS2-151G and TLR8-129G alleles were present at higher frequency in males of an HCV-infected group as compared to a control group (24.1% vs. 14.4%, p = 0.028; 17.6% vs. 6.8%, p = 0.004, respectively). Based upon their recognition of single stranded viral RNA, this suggested that TLR7 and TLR8 played a significant role in anti-HCV immune responses. Here, we studied the functional effects of these polymorphisms by analyzing the mRNA expressions of TLR7 and TLR8 and cytokine production induced ex vivo by TLR7- and TLR8-specific agonists using whole blood of subjects with different genotypes. The percentage of CD14+ cells from those with an AG haplotype that expressed TLR7 and TLR8 was significantly lower, but higher in intensity compared to cells from those with GG and AC haplotypes. Cells from those with an AG haplotype produced more IFN-α and less amounts of pro-inflammatory cytokines upon stimulation. This suggests that variations in TLR7 and TLR8 genes might impair immune responses during HCV infection.
Collapse
|
76
|
Abstract
For decades, type I IFNs have been considered indispensable and unique antiviral mediators for the activation of rapid innate antiviral protection. However, the recent discovery of type III IFNs is challenging this paradigm. Since their identification in 2002/2003 by two independent groups, type III IFNs or IFN-λs, also known as IL-28/29, have been the subject of increased study with consequent recognition of their importance in virology and immunology. Initial reports suggested that IFN-λs functionally resemble type I IFNs. Although IFN-λs and classical type I IFNs (IFN-α/β) utilize distinct receptor complexes for signaling, both types of IFNs activate similar intracellular signaling pathways and biological activities, including the ability to induce antiviral state in cells, and both type I and type III IFNs are induced by viral infection. However, different antiviral potency, pattern of their induction and differential tissue expression of their corresponding receptor subunits suggest that the type I and type III IFN antiviral systems do not merely duplicate each other. Recent studies have started to reveal unique biological activities of IFN-λs in and beyond innate antiviral immunity.
Collapse
Affiliation(s)
- Sergei V Kotenko
- Department of Biochemistry and Molecular Biology, University Hospital Cancer Center, New Jersey Medical School, University of Medicine and Dentistry, USA.
| |
Collapse
|
77
|
Donnelly RP, Dickensheets H, O'Brien TR. Interferon-lambda and therapy for chronic hepatitis C virus infection. Trends Immunol 2011; 32:443-50. [PMID: 21820962 PMCID: PMC3163738 DOI: 10.1016/j.it.2011.07.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/29/2011] [Accepted: 07/05/2011] [Indexed: 02/06/2023]
Abstract
Interferon (IFN)-α, a type-I IFN, is widely used to treat chronic hepatitis C virus infection, but the broad expression of IFN-α receptors often leads to adverse reactions in many organs. Here, we examine IFN-λ, a type-III IFN, as a therapeutic alternative to IFN-α. Like IFN-α, IFN-λ also induces antiviral activity in hepatocytes, but might induce fewer adverse reactions because its receptor is largely restricted to cells of epithelial origin. We also discuss the recent discovery of single nucleotide polymorphisms (SNPs) near the human IFN-λ3 gene, IL28B, that correlate strongly with the ability to achieve a sustained virological response to therapy with pegylated IFN-α plus ribavirin in patients with chronic hepatitis C.
Collapse
MESH Headings
- Animals
- Antiviral Agents/administration & dosage
- Antiviral Agents/therapeutic use
- Chromosomes, Human, Pair 19/chemistry
- Chromosomes, Human, Pair 19/genetics
- Chromosomes, Human, Pair 19/immunology
- Drug Therapy, Combination
- Gene Expression Regulation/immunology
- Hepacivirus/drug effects
- Hepacivirus/immunology
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/therapy
- Hepatitis C, Chronic/virology
- Humans
- Immunotherapy/methods
- Interferon alpha-2
- Interferon-alpha/administration & dosage
- Interferon-alpha/therapeutic use
- Interferons
- Interleukins/chemistry
- Interleukins/genetics
- Interleukins/immunology
- Interleukins/pharmacology
- Mice
- Polyethylene Glycols/administration & dosage
- Polyethylene Glycols/therapeutic use
- Polymorphism, Single Nucleotide
- Promoter Regions, Genetic/immunology
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/therapeutic use
- Ribavirin/administration & dosage
- Ribavirin/therapeutic use
- Transcription Factors/immunology
- Transcription Factors/metabolism
- Treatment Outcome
- Viral Load/drug effects
Collapse
Affiliation(s)
- Raymond P Donnelly
- Division of Therapeutic Proteins, Center for Drug Evaluation & Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
78
|
Abstract
The RIG-I-like receptors (RLRs) RIG-I, MDA5, and LGP2 play a major role in pathogen sensing of RNA virus infection to initiate and modulate antiviral immunity. The RLRs detect viral RNA ligands or processed self RNA in the cytoplasm to trigger innate immunity and inflammation and to impart gene expression that serves to control infection. Importantly, RLRs cooperate in signaling crosstalk networks with Toll-like receptors and other factors to impart innate immunity and to modulate the adaptive immune response. RLR regulation occurs at a variety of levels ranging from autoregulation to ligand and cofactor interactions and posttranslational modifications. Abberant RLR signaling or dysregulation of RLR expression is now implicated in the development of autoimmune diseases. Understanding the processes of RLR signaling and response will provide insights to guide RLR-targeted therapeutics for antiviral and immune-modifying applications.
Collapse
Affiliation(s)
- Yueh-Ming Loo
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195-7650, USA
| | | |
Collapse
|
79
|
López CB, Hermesh T. Systemic responses during local viral infections: type I IFNs sound the alarm. Curr Opin Immunol 2011; 23:495-9. [PMID: 21752617 DOI: 10.1016/j.coi.2011.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 12/24/2022]
Abstract
Type I IFNs are well known for their role in controlling virus replication and spread. Type I IFNs produced by the infected tissue also signal beyond the boundaries of the infection to regulate different elements of the anti-viral immune response. Recent reports show that type I IFNs directly condition naive monocytes residing in the distal bone marrow (BM) and induce the expression of effector molecules in memory T cells, before their recruitment to the infected site. In addition, hematopoietic stem cells (HSCs) were shown to enter the cell cycle in response to systemically distributed type I IFNs. These discoveries expand our understanding of the pleiotropic effects of type I IFNs during infection and highlight the critical role of systemic signals in the development of an effective response to a localized viral infection.
Collapse
Affiliation(s)
- Carolina B López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
80
|
Jiang M, Osterlund P, Sarin LP, Poranen MM, Bamford DH, Guo D, Julkunen I. Innate immune responses in human monocyte-derived dendritic cells are highly dependent on the size and the 5' phosphorylation of RNA molecules. THE JOURNAL OF IMMUNOLOGY 2011; 187:1713-21. [PMID: 21742966 DOI: 10.4049/jimmunol.1100361] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recognition of viral genetic material takes place via several different receptor systems, such as retinoic acid-inducible gene I-like receptors and TLRs 3, 7, 8, and 9. At present, systematic comparison of the ability of different types of RNAs to induce innate immune responses in human immune cells has been limited. In this study, we generated bacteriophage 6 and influenza A virus-specific ssRNA and dsRNA molecules ranging from 58 to 2956 nt. In human monocyte-derived dendritic cells (moDCs), short dsRNAs efficiently upregulated the expression of IFN (IFN-α, IFN-β, and IFN-λ1) and proinflammatory (TNF-α, IL-6, IL-12, and CXCL10) cytokine genes. These genes were also induced by ssRNA molecules, but size-specific differences were not as pronounced as with dsRNA molecules. Dephosphorylation of short ssRNA and dsRNA molecules led to a dramatic reduction in their ability to stimulate innate immune responses. Such a difference was not detected for long ssRNAs. RNA-induced cytokine responses correlated well with IFN regulatory factor 3 phosphorylation, suggesting that IFN regulatory factor 3 plays a major role in both ssRNA- and dsRNA-activated responses in human moDCs. We also found that IFN gene expression was efficiently stimulated following recognition of short dsRNAs by retinoic acid-inducible gene I and TLR3 in human embryonic kidney 293 cells, whereas ssRNA-induced responses were less dependent on the size of the RNA molecule. Our data suggest that human moDCs are extremely sensitive in recognizing foreign RNA, and the responses depend on RNA size, form (ssRNA versus dsRNA), and the level of 5' phosphorylation.
Collapse
Affiliation(s)
- Miao Jiang
- National Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | |
Collapse
|
81
|
Pinto R, Herold S, Cakarova L, Hoegner K, Lohmeyer J, Planz O, Pleschka S. Inhibition of influenza virus-induced NF-kappaB and Raf/MEK/ERK activation can reduce both virus titers and cytokine expression simultaneously in vitro and in vivo. Antiviral Res 2011; 92:45-56. [PMID: 21641936 DOI: 10.1016/j.antiviral.2011.05.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/06/2011] [Accepted: 05/20/2011] [Indexed: 01/04/2023]
Abstract
Influenza virus (IV) infection can cause severe pneumonia and death. Therapeutic actions are limited to vaccines and a few anti-viral drugs. These target viral functions thereby selecting resistant variants. During replication IV activates the Raf/MEK/ERK-cascade and the transcription factor NF-kappaB. Both result in virus supportive and anti-viral effects by promoting viral genome transport for virus assembly and by inducing expression of pro-inflammatory host factors. Apart from tissue damage caused by the virus lytic replication, an imbalanced overproduction of anti-viral cytokines can cause severe lung damage as observed in human H5-type IV infections. Recently we showed that inhibition of NF-kappaB activity reduces the virus titer in vitro and in vivo. We have now analyzed whether inhibition of these pathways, allows simultaneous reduction of virus titers and virus-induced cytokines. The results show that inhibition of either pathway indeed leads to decreased virus titers and cytokine expression. This was not only true for infected permanent cells or primary mouse alveolar epithelial cells, but also in infected mice. Hereby we demonstrate for the first time in vitro and in vivo that virus titers and pro-inflammatory cytokine expression can be modulated simultaneously. This could provide a new rationale of future therapeutic strategies to treat IV pneumonia.
Collapse
Affiliation(s)
- Ruth Pinto
- Institute of Medical Virology, Justus-Liebig-University Giessen, Frankfurter Strasse 107, 35392 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
82
|
Langhans B, Kupfer B, Braunschweiger I, Arndt S, Schulte W, Nischalke HD, Nattermann J, Oldenburg J, Sauerbruch T, Spengler U. Interferon-lambda serum levels in hepatitis C. J Hepatol 2011; 54:859-65. [PMID: 21145813 DOI: 10.1016/j.jhep.2010.08.020] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 07/29/2010] [Accepted: 08/04/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Dendritic cells (DCs) trigger adaptive immune responses and are an important source of antiviral cytokines. In hepatitis C virus (HCV) infection DC function is markedly impaired. Thus far, studies have focused on types I and II interferon (IFN). We studied IFN-lambda1 (IL-29) and IFN-lambda2/3 (IL-28A/B) serum levels in patients with different outcomes of HCV infection. METHODS IFN-lambdas were measured by ELISAs detecting IL-29 or IL-28A and IL-28B, respectively. Results were stratified with respect to the recently discovered rs12979860 T/C polymorphism upstream of the IL-28B gene. RESULTS In general IL-29 serum levels exceeded IL-28A/B at least twofold, with IL-29 and IL-28A/B levels being significantly higher in carriers of the rs12979860 C allele than in TT homozygous individuals (p<0.02). IL-29 levels were substantially lower in patients with chronic hepatitis C than in healthy controls (p=0.005) and patients with spontaneously resolved hepatitis (p=0.001). Patients with acute hepatitis C showed IL-29 levels intermediate between chronic hepatitis C and normal controls; and IL-29 serum levels were higher in patients who spontaneously resolved hepatitis C than in those who became chronic. In vitro HCV proteins NS3 and E2 directly inhibited IL-29 production in poly I:C-stimulated purified DCs. CONCLUSIONS Our data suggest that HCV proteins modify IFN-lambda production in DCs. Carriers of the rs12979860 C allele associated with resolution of HCV infection exhibited increased IFN-lambda levels. Moreover, high IFN-lambda levels predisposed to spontaneous resolution of HCV infection. Thus, IFN-lambdas seem to play an important role in the control of hepatitis C.
Collapse
Affiliation(s)
- Bettina Langhans
- Department of Internal Medicine I, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Karpala AJ, Bingham J, Schat KA, Chen LM, Donis RO, Lowenthal JW, Bean AG. Highly Pathogenic (H5N1) Avian Influenza Induces an Inflammatory T Helper Type 1 Cytokine Response in the Chicken. J Interferon Cytokine Res 2011; 31:393-400. [DOI: 10.1089/jir.2010.0069] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Adam J. Karpala
- CSIRO, Livestock Industries, Australian Animal Health Laboratory, Geelong, Australia
- Cooperative Research Centre for the Australian Poultry Industry, Armidale, Australia
| | - John Bingham
- CSIRO, Livestock Industries, Australian Animal Health Laboratory, Geelong, Australia
| | - Karel A. Schat
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Li-Mei Chen
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ruben O. Donis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - John W. Lowenthal
- CSIRO, Livestock Industries, Australian Animal Health Laboratory, Geelong, Australia
| | - Andrew G.D. Bean
- CSIRO, Livestock Industries, Australian Animal Health Laboratory, Geelong, Australia
| |
Collapse
|
84
|
Donnelly RP, Kotenko SV. Interferon-lambda: a new addition to an old family. J Interferon Cytokine Res 2011; 30:555-64. [PMID: 20712453 DOI: 10.1089/jir.2010.0078] [Citation(s) in RCA: 313] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The discovery and initial description of the interferon-lambda (IFN-lambda) family in early 2003 opened an exciting new chapter in the field of IFN research. There are 3 IFN-lambda genes that encode 3 distinct but highly related proteins denoted IFN-lambda1, -lambda2, and -lambda3. These proteins are also known as interleukin-29 (IL-29), IL-28A, and IL-28B, respectively. Collectively, these 3 cytokines comprise the type III subset of IFNs. They are distinct from both type I and type II IFNs for a number of reasons, including the fact that they signal through a heterodimeric receptor complex that is different from the receptors used by type I or type II IFNs. Although type I IFNs (IFN-alpha/beta) and type III IFNs (IFN-lambda) signal via distinct receptor complexes, they activate the same intracellular signaling pathway and many of the same biological activities, including antiviral activity, in a wide variety of target cells. Consistent with their antiviral activity, expression of the IFN-lambda genes and their corresponding proteins is inducible by infection with many types of viruses. Therefore, expression of the type III IFNs (IFN-lambdas) and their primary biological activity are very similar to the type I IFNs. However, unlike IFN-alpha receptors which are broadly expressed on most cell types, including leukocytes, IFN-lambda receptors are largely restricted to cells of epithelial origin. The potential clinical importance of IFN-lambda as a novel antiviral therapeutic agent is already apparent. In addition, preclinical studies by several groups indicate that IFN-lambda may also be useful as a potential therapeutic agent for other clinical indications, including certain types of cancer.
Collapse
Affiliation(s)
- Raymond P Donnelly
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research , Food and Drug Administration, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
85
|
Mäkelä SM, Osterlund P, Julkunen I. TLR ligands induce synergistic interferon-β and interferon-λ1 gene expression in human monocyte-derived dendritic cells. Mol Immunol 2011; 48:505-15. [PMID: 21040977 DOI: 10.1016/j.molimm.2010.10.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 08/26/2010] [Accepted: 10/13/2010] [Indexed: 12/24/2022]
Abstract
Toll-like receptors (TLRs) are pattern-recognition receptors of the innate immune system that recognize various pathogen-associated molecules. TLR ligands are potent activators of immune cells and certain TLR ligands have a synergistic ability to induce the production of pro-inflammatory cytokines. In the present study we have analyzed the potential synergy between TLR3, TLR4 and TLR7/8 ligands in type I and type III interferon (IFN) gene expression in human monocyte-derived dendritic cells (moDCs). We show that stimulation of moDCs with TLR7/8 ligand R848 together with TLR3 or TLR4 ligands, polyI:C or LPS, respectively, leads to a synergistic expression of IFN-β and IFN-λ1 mRNAs. Neutralization of type I IFNs as well as IFN priming prior to stimulation suggest that IFN-dependent positive feedback loop is at least partly responsible for the mechanism of synergy. Enhanced expression of TLR3 and especially TLR7, which are both under the regulation of type I IFNs, correlated to synergistic TLR ligand-dependent induction of IFN-β and IFN-λ1 genes. NF-κB, PI3 kinase and MAP kinase pathways were involved in TLR ligand-induced IFN gene expression as evidenced by pharmacological signaling inhibitors. The data indicates that IFNs contribute to TLR-dependent gene activation in human DCs stimulated with multiple TLR ligands.
Collapse
Affiliation(s)
- Sanna M Mäkelä
- Department of Vaccination and Immune Protection, National Institute for Heath and Welfare, PO Box 30, FI-00271 Helsinki, Finland.
| | | | | |
Collapse
|
86
|
Bowles R, Patil S, Pincas H, Sealfon SC. Validation of efficient high-throughput plasmid and siRNA transfection of human monocyte-derived dendritic cells without cell maturation. J Immunol Methods 2010; 363:21-8. [PMID: 20875421 PMCID: PMC3964480 DOI: 10.1016/j.jim.2010.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 09/17/2010] [Indexed: 12/25/2022]
Abstract
Transfection of primary immune cells is difficult to achieve at high efficiency and without cell activation and maturation. Dendritic cells (DCs) represent a key link between the innate and adaptive immune systems. Delineating the signaling pathways involved in the activation of human primary DCs and reverse engineering cellular inflammatory pathways have been challenging tasks. We optimized and validated an effective high-throughput transfection protocol, allowing us to transiently express DNA in naïve primary DCs, as well as investigate the effect of gene silencing by RNA interference. Using a high-throughput nucleofection system, monocyte-derived DCs were nucleoporated with a plasmid expressing green fluorescent protein (GFP), and transfection efficiency was determined by flow cytometry, based on GFP expression. To evaluate the effect of nucleoporation on DC maturation, the expression of cell surface markers CD86 and MHCII in GFP-positive cells was analyzed by flow cytometry. We established optimal assay conditions with a cell viability reaching 70%, a transfection efficiency of over 50%, and unchanged CD86 and MHCII expression. We examined the impact of small interfering RNA (siRNA)-mediated knockdown of RIG-I, a key viral recognition receptor, on the induction of the interferon (IFN) response in DCs infected with Newcastle disease virus. RIG-I protein was undetectable by Western blot in siRNA-treated cells. RIG-I knockdown caused a 75% reduction in the induction of IFNβ mRNA compared with the negative control siRNA. This protocol should be a valuable tool for probing the immune response pathways activated in human DCs.
Collapse
Affiliation(s)
| | | | - Hanna Pincas
- Center for Translational Systems Biology and Department of Neurology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Stuart C. Sealfon
- Center for Translational Systems Biology and Department of Neurology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
87
|
Diegelmann J, Beigel F, Zitzmann K, Kaul A, Göke B, Auernhammer CJ, Bartenschlager R, Diepolder HM, Brand S. Comparative analysis of the lambda-interferons IL-28A and IL-29 regarding their transcriptome and their antiviral properties against hepatitis C virus. PLoS One 2010; 5:e15200. [PMID: 21170333 PMCID: PMC2999541 DOI: 10.1371/journal.pone.0015200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/31/2010] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Specific differences in signaling and antiviral properties between the different Lambda-interferons, a novel group of interferons composed of IL-28A, IL-28B and IL-29, are currently unknown. This is the first study comparatively investigating the transcriptome and the antiviral properties of the Lambda-interferons IL-28A and IL-29. METHODOLOGY/PRINCIPAL FINDINGS Expression studies were performed by microarray analysis, quantitative PCR (qPCR), reporter gene assays and immunoluminometric assays. Signaling was analyzed by Western blot. HCV replication was measured in Huh-7 cells expressing subgenomic HCV replicon. All hepatic cell lines investigated as well as primary hepatocytes expressed both IFN-λ receptor subunits IL-10R2 and IFN-λR1. Both, IL-28A and IL-29 activated STAT1 signaling. As revealed by microarray analysis, similar genes were induced by both cytokines in Huh-7 cells (IL-28A: 117 genes; IL-29: 111 genes), many of them playing a role in antiviral immunity. However, only IL-28A was able to significantly down-regulate gene expression (n = 272 down-regulated genes). Both cytokines significantly decreased HCV replication in Huh-7 cells. In comparison to liver biopsies of patients with non-viral liver disease, liver biopsies of patients with HCV showed significantly increased mRNA expression of IL-28A and IL-29. Moreover, IL-28A serum protein levels were elevated in HCV patients. In a murine model of viral hepatitis, IL-28 expression was significantly increased. CONCLUSIONS/SIGNIFICANCE IL-28A and IL-29 are up-regulated in HCV patients and are similarly effective in inducing antiviral genes and inhibiting HCV replication. In contrast to IL-29, IL-28A is a potent gene repressor. Both IFN-λs may have therapeutic potential in the treatment of chronic HCV.
Collapse
Affiliation(s)
- Julia Diegelmann
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Florian Beigel
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Kathrin Zitzmann
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Artur Kaul
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Burkhard Göke
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Christoph J. Auernhammer
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Ralf Bartenschlager
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Helmut M. Diepolder
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Stephan Brand
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| |
Collapse
|
88
|
Svetlikova D, Kabat P, Ohradanova A, Pastorek J, Betakova T. Influenza A virus replication is inhibited in IFN-λ2 and IFN-λ3 transfected or stimulated cells. Antiviral Res 2010; 88:329-33. [PMID: 20969894 DOI: 10.1016/j.antiviral.2010.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/11/2010] [Accepted: 10/13/2010] [Indexed: 10/18/2022]
Abstract
Interferons lambda (IFN-λ) are the most recently defined members of the class III cytokine family. To investigate whether IFN-λ2 and IFN-λ3 displayed antiviral activity against influenza A virus (IAV), a number of cell lines induced with IFNs - as well as two established cell lines (A549-IFN-λ2 and A549-IFN-λ3) - were infected with IAV. Our results indicate that IFN-λ2 has statistically significant antiviral activity in A549-IFN-λ2 (P=0.0028) although less so than IFN-λ3, which reduced viral titer to 10% (P<0.0001). The reverse was observed for cells treated with IFNs, with IFN-λ2-treated A549 cells inhibiting IAV infection more efficiently than IFN-λ3-treated A549 cells. The antiviral effect on IFN-stimulated cells was most apparent on Vero cells (compared with MDCK and HeLa). Both IFNs significantly inhibited IAV replication and inhibition was observed in a dose-dependent manner, with an optimal IFN concentration of 20 ng/ml. IFN-λ2 was more potent than IFN-λ3 on Vero cells while IFN-λ3 appeared more efficient than IFN-λ2 on MDCK and HeLa cells.
Collapse
Affiliation(s)
- Darina Svetlikova
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
89
|
Lauterbach H, Bathke B, Gilles S, Traidl-Hoffmann C, Luber CA, Fejer G, Freudenberg MA, Davey GM, Vremec D, Kallies A, Wu L, Shortman K, Chaplin P, Suter M, O’Keeffe M, Hochrein H. Mouse CD8alpha+ DCs and human BDCA3+ DCs are major producers of IFN-lambda in response to poly IC. J Exp Med 2010; 207:2703-17. [PMID: 20975040 PMCID: PMC2989774 DOI: 10.1084/jem.20092720] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 09/30/2010] [Indexed: 12/12/2022] Open
Abstract
Polyinosinic:polycytidylic acid (poly IC), a double-stranded RNA, is an effective adjuvant in vivo. IFN-λs (also termed IL-28/29) are potent immunomodulatory and antiviral cytokines. We demonstrate that poly IC injection in vivo induces large amounts of IFN-λ, which depended on hematopoietic cells and the presence of TLR3 (Toll-like receptor 3), IRF3 (IFN regulatory factor 3), IRF7, IFN-I receptor, Fms-related tyrosine kinase 3 ligand (FL), and IRF8 but not on MyD88 (myeloid differentiation factor 88), Rig-like helicases, or lymphocytes. Upon poly IC injection in vivo, the IFN-λ production by splenocytes segregated with cells phenotypically resembling CD8α(+) conventional dendritic cells (DCs [cDCs]). In vitro experiments revealed that CD8α(+) cDCs were the major producers of IFN-λ in response to poly IC, whereas both CD8α(+) cDCs and plasmacytoid DCs produced large amounts of IFN-λ in response to HSV-1 or parapoxvirus. The nature of the stimulus and the cytokine milieu determined whether CD8α(+) cDCs produced IFN-λ or IL-12p70. Human DCs expressing BDCA3 (CD141), which is considered to be the human counterpart of murine CD8α(+) DCs, also produced large amounts of IFN-λ upon poly IC stimulation. Thus, IFN-λ production in response to poly IC is a novel function of mouse CD8α(+) cDCs and their human equivalents.
Collapse
Affiliation(s)
- Henning Lauterbach
- Department of Research Immunology, Bavarian Nordic GmbH, 82152 Martinsried, Germany
| | - Barbara Bathke
- Department of Research Immunology, Bavarian Nordic GmbH, 82152 Martinsried, Germany
| | - Stefanie Gilles
- Center of Allergy and Environment, Technical University Munich and Helmholtz Center Munich, 80802 Munich, Germany
| | - Claudia Traidl-Hoffmann
- Center of Allergy and Environment, Technical University Munich and Helmholtz Center Munich, 80802 Munich, Germany
| | - Christian A. Luber
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - György Fejer
- Max Planck Institute of Immunobiology, 79108 Freiburg, Germany
| | | | - Gayle M. Davey
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - David Vremec
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Axel Kallies
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Li Wu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Ken Shortman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Paul Chaplin
- Department of Research Immunology, Bavarian Nordic GmbH, 82152 Martinsried, Germany
| | - Mark Suter
- Department of Research Immunology, Bavarian Nordic GmbH, 82152 Martinsried, Germany
- University of Zurich, 8006 Zurich, Switzerland
| | - Meredith O’Keeffe
- Department of Research Immunology, Bavarian Nordic GmbH, 82152 Martinsried, Germany
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia
- Department of Immunology, Monash University, Melbourne, Victoria 3004, Australia
| | - Hubertus Hochrein
- Department of Research Immunology, Bavarian Nordic GmbH, 82152 Martinsried, Germany
| |
Collapse
|
90
|
Hermesh T, Moltedo B, López CB, Moran TM. Buying time-the immune system determinants of the incubation period to respiratory viruses. Viruses 2010; 2:2541-58. [PMID: 21994630 PMCID: PMC3185581 DOI: 10.3390/v2112541] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 12/20/2022] Open
Abstract
Respiratory viruses cause disease in humans characterized by an abrupt onset of symptoms. Studies in humans and animal models have shown that symptoms are not immediate and appear days or even weeks after infection. Since the initial symptoms are a manifestation of virus recognition by elements of the innate immune response, early virus replication must go largely undetected. The interval between infection and the emergence of symptoms is called the incubation period and is widely used as a clinical score. While incubation periods have been described for many virus infections the underlying mechanism for this asymptomatic phase has not been comprehensively documented. Here we review studies of the interaction between human pathogenic respiratory RNA viruses and the host with a particular emphasis on the mechanisms used by viruses to inhibit immunity. We discuss the concept of the "stealth phase", defined as the time between infection and the earliest detectable inflammatory response. We propose that the "stealth phase" phenomenon is primarily responsible for the suppression of symptoms during the incubation period and results from viral antagonism that inhibits major pathways of the innate immune system allowing an extended time of unhindered virus replication.
Collapse
Affiliation(s)
- Tamar Hermesh
- Department of Microbiology and Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA; E-Mails: (T.H.); (B.M.); (C.B.L.)
| | - Bruno Moltedo
- Department of Microbiology and Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA; E-Mails: (T.H.); (B.M.); (C.B.L.)
| | - Carolina B. López
- Department of Microbiology and Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA; E-Mails: (T.H.); (B.M.); (C.B.L.)
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas M. Moran
- Department of Microbiology and Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA; E-Mails: (T.H.); (B.M.); (C.B.L.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-212-241-7963; Fax: +1-212-987-3653
| |
Collapse
|
91
|
Horvath KM, Brighton LE, Zhang W, Carson JL, Jaspers I. Epithelial cells from smokers modify dendritic cell responses in the context of influenza infection. Am J Respir Cell Mol Biol 2010; 45:237-45. [PMID: 20935192 DOI: 10.1165/rcmb.2010-0190oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Epidemiologic evidence suggests that cigarette smoking is a risk factor for infection with influenza, but the mechanisms underlying this susceptibility remain unknown. To ascertain if airway epithelial cells from smokers demonstrate a decreased ability to orchestrate an influenza-induced immune response, we established a model using differentiated nasal epithelial cells (NECs) from nonsmokers and smokers, co-cultured with peripheral blood monocyte-derived dendritic cells (mono-DCs) from nonsmokers. NEC/mono-DC co-cultures were infected with influenza A virus and analyzed for influenza-induced immune responses 24 hours after infection. We observed that NECs from smokers, as well as mono-DCs co-cultured with NECs from smokers, exhibited suppressed influenza-induced, interferon-related proteins interferon regulatory factor-7, Toll-like receptor-3, and retinoic acid inducible gene-1, likely because of the suppressed production of IFNα from the NECs of smokers. Furthermore, NEC/mono-DC co-cultures using NECs from smokers exhibited suppressed concentrations of T-cell/natural killer cell chemokine interferon gamma-induced protein 10 (IP-10) after infection with influenza, indicating that NECs from smokers may skew early influenza-induced Th1 responses. In contrast, NEC/mono-DC co-cultures using NEC from smokers contained increased influenza-induced concentrations of the Th2 chemokine thymic stromal lymphopoeitin (TSLP). In addition, NECs from smokers cultured alone had increased influenza-induced concentrations of the Th2 chemokine thymus and activation-regulated chemokine (TARC). Using this model, we demonstrated that in the context of infection with influenza, NECs obtained from smokers create an overall cytokine microenvironment that suppresses the interferon-mediated Th1 response and enhances the TSLP-TARC-mediated Th2 response, with the potential to modify the responses of DCs. Smoking-induced alterations in the Th1/Th2 balance may play a role in developing underlying susceptibilities to respiratory viral infections, and may also promote the likelihood of acquiring Th2 proallergic diseases.
Collapse
|
92
|
Pietilä TE, Latvala S, Osterlund P, Julkunen I. Inhibition of dynamin-dependent endocytosis interferes with type III IFN expression in bacteria-infected human monocyte-derived DCs. J Leukoc Biol 2010; 88:665-74. [PMID: 20610797 DOI: 10.1189/jlb.1009651] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Type I IFNs (IFN-α/βs) and type III IFNs (IFN-λ1-3) play an important role in host defense against viral infections. The induction of type I IFNs has recently been found to take place also in bacterial infections, and therefore, this study focuses on analyzing the regulation of type III IFNs in response to bacterial stimulation. We found by quantitative RT-PCR that the expression of IFN-λ1 and IFN-λ2/3 mRNAs, as well as that of IFN-β, was similarly up-regulated in response to stimulation with live Salmonella typhimurium or TLR4 agonist LPS in human moDCs. The induction of IFN-λ mRNAs did not require ongoing protein synthesis, and only IFN-λ1 was detected at the protein level. The induction of IFN-λ mRNAs was sensitive to SB202190, Ly294002, and PDTC, which inhibit p38 MAPK, PI3K, and NF-κB activation, respectively. Furthermore, we observed that blocking dynamin-dependent endocytosis pathways with dynasore led to decreased cell surface expression of CD86 and HLA class II molecules and reduced production of IFN-λ1, CXCL10, and IL-6 when the cells were infected with S. typhimurium. Cytokine production was also impaired in dynasore-treated, Streptococcus thermophilus-stimulated cells. Further, inhibition of dynamin prevented S. typhimurium-induced phosphorylation of IRF3 and the internalization of the bacteria. In summary, induction of type III IFNs in bacteria-infected human moDCs requires multiple signaling pathways and involves bacterial phagocytosis.
Collapse
Affiliation(s)
- Taija E Pietilä
- Department of Vaccination and Immune Protection, National Institute for Health and Welfare, Helsinki, Finland.
| | | | | | | |
Collapse
|
93
|
Lambda interferon is the predominant interferon induced by influenza A virus infection in vivo. J Virol 2010; 84:11515-22. [PMID: 20739515 DOI: 10.1128/jvi.01703-09] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The type I alpha/beta interferons (IFN-α/β) are known to play an important role in host defense against influenza A virus infection, but we have now discovered that the recently identified type III IFNs (IFN-λ) constitute the major response to intranasal infection with this virus. Type III IFNs were present at much higher levels than type I IFNs in the lungs of infected mice, and the enhanced susceptibility of STAT2-/- animals demonstrated that only signaling through the IFN-α/β or IFN-λ pathways was sufficient to mediate protection. This finding offers a possible explanation for the similar levels of antiviral protection found in wild-type (WT) mice and in animals lacking a functional type I IFN receptor (IFNAR-/-) but also argues that our current understanding of type III IFN induction is incomplete. While murine IFN-λ production is thought to depend on signaling through the type I IFN receptor, we demonstrate that intranasal influenza A virus infection leads to the robust type III IFN induction in the lungs of both WT and IFNAR-/- mice. This is consistent with previous studies showing that IFNAR-mediated protection is redundant for mucosal influenza virus infection and with data showing that the type III IFN receptor is expressed primarily by epithelial cells. However, the overlapping effects of these two cytokine families are limited by their differential receptor expression, with a requirement for IFN-α/β signaling in combating systemic disease.
Collapse
|
94
|
Bandi P, Pagliaccetti NE, Robek MD. Inhibition of type III interferon activity by orthopoxvirus immunomodulatory proteins. J Interferon Cytokine Res 2010; 30:123-34. [PMID: 20038204 DOI: 10.1089/jir.2009.0049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The type III interferon (IFN) family elicits an antiviral response that is nearly identical to that evoked by IFN-alpha/beta. However, these cytokines (known as IFN-lambda1, 2, and 3) signal through a distinct receptor, and thus may be resistant to the evasion strategies used by some viruses to avoid the IFN-alpha/beta response. Orthopoxviruses are highly resistant to IFN-alpha/beta because they encode well-characterized immunomodulatory proteins that inhibit IFN activity. These include a secreted receptor (B18R) that neutralizes IFN-alpha/beta, and a cytoplasmic protein (E3L) that blocks IFN-alpha/beta effector functions in infected cells. We therefore determined the ability of these immunomodulators to abrogate the IFN-lambda-induced antiviral response. We found that (i) vaccinia virus (VACV) replication is resistant to IFN-lambda antiviral activity; (ii) neither VACV B18R nor the variola virus homolog B20R neutralizes IFN-lambda; (iii) VACV E3L inhibits the IFN-lambda-mediated antiviral response through a PKR-dependent pathway; (iv) VACV infection inhibits IFN-lambdaR-mediated signal transduction and gene expression. These results demonstrate differential sensitivity of IFN-lambda to multiple distinct evasion mechanisms employed by a single virus.
Collapse
Affiliation(s)
- Prasanthi Bandi
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520-8023, USA
| | | | | |
Collapse
|
95
|
Pagliaccetti NE, Robek MD. Interferon-λ in HCV Infection and Therapy. Viruses 2010; 2:1589-1602. [PMID: 21994696 PMCID: PMC3185739 DOI: 10.3390/v2081589] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 07/28/2010] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with hepatitis C virus (HCV) is associated with significant liver disease and is therefore an important public health problem. The current standard-of-care therapy for chronic HCV infection consists of a combination of pegylated (PEG) interferon (IFN)-α and ribavirin. Although this therapy effectively generates a sustained viral response in approximately half of treated individuals, it is associated with significant hematological and neurological side effects. A new family of IFN-related proteins (IFN-λ1, 2, and 3; or alternately, IL-29, 28A, 28B, respectively) possesses properties that may make these cytokines superior to PEG-IFN-α for HCV therapy. Genetic studies have also implicated these proteins in both the natural and therapy-induced resolution of HCV infection. This review summarizes the basic aspects of IFN-λ biology, the potential role of these cytokines in HCV infection, and the outlook for their therapeutic application.
Collapse
Affiliation(s)
| | - Michael D. Robek
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-203-785-6174; Fax: +1-203-785-6127
| |
Collapse
|
96
|
Witte K, Witte E, Sabat R, Wolk K. IL-28A, IL-28B, and IL-29: promising cytokines with type I interferon-like properties. Cytokine Growth Factor Rev 2010; 21:237-51. [PMID: 20655797 DOI: 10.1016/j.cytogfr.2010.04.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
IL-28A, IL-28B and IL-29 (also designated type III interferons) constitute a new subfamily within the IL-10-interferon family. They are produced by virtually any nucleated cell type, particularly dendritic cells, following viral infection or activation with bacterial components, and mediate their effects via the IL-28R1/IL-10R2 receptor complex. Although IL-28/IL-29 are closer to the IL-10-related cytokines in terms of gene structure, protein structure, and receptor usage, they display type I interferon-like anti-viral and cytostatic activities. Unlike type I interferons, the target cell populations of IL-28/IL-29 are restricted and mainly include epithelial cells and hepatocytes. These properties suggest that IL-28/IL-29 are potential therapeutic alternatives to type I interferons in terms of viral infections and tumors. This review describes the current knowledge about these cytokines.
Collapse
Affiliation(s)
- Katrin Witte
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, University Hospital Charité, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | |
Collapse
|
97
|
Gallagher G, Megjugorac NJ, Yu RY, Eskdale J, Gallagher GE, Siegel R, Tollar E. The lambda interferons: guardians of the immune-epithelial interface and the T-helper 2 response. J Interferon Cytokine Res 2010; 30:603-15. [PMID: 20712455 DOI: 10.1089/jir.2010.0081] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The type-III interferons (IFNs) are the most recently discovered IFNs in the human immune system and have important, but as yet poorly characterized, functions in innate and adaptive immunity that complement their antiviral functions. It is now becoming clear that these type-III IFNs have a functional niche where epithelial surfaces interact with the adaptive immune system, that their antiviral capability is not as highly developed as that of the type-I IFNs, and that they have their own profile of immunomodulatory functions; specifically, they are key modulators of the T-helper (Th)2 response.
Collapse
Affiliation(s)
- Grant Gallagher
- Genetic Immunology Laboratory, HUMIGEN LLC, The Institute for Genetic Immunology, Hamilton, New Jersey 08690, USA.
| | | | | | | | | | | | | |
Collapse
|
98
|
Lukacs NW, Smit JJ, Mukherjee S, Morris SB, Nunez G, Lindell DM. Respiratory virus-induced TLR7 activation controls IL-17-associated increased mucus via IL-23 regulation. THE JOURNAL OF IMMUNOLOGY 2010; 185:2231-9. [PMID: 20624950 DOI: 10.4049/jimmunol.1000733] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The response to respiratory syncytial virus (RSV), negative strand ssRNA virus, depends upon the ability to recognize specific pathogen-associated targets. In the current study, the role of TLR7 that recognizes ssRNA was examined. Using TLR7(-/-) mice, we found that the response to RSV infection in the lung was more pathogenic as assessed by significant increases in inflammation and mucus production. Although there appeared to be no effect of TLR7 deficiency on type I IFN, the pathology was associated with an alteration in T cell responses with increases in mucogenic cytokines IL-4, IL-13, and IL-17. Examination of dendritic cells from TLR7(-/-) animals indicated a preferential activation of IL-23 (a Th17-promoting cytokine) and a decrease in IL-12 production. Neutralization of IL-17 in the TLR7(-/-) mice resulted in a significant decrease in the mucogenic response in the lungs of the RSV-infected mice. Thus, without TLR7-mediated responses, an altered immune environment ensued with a significant effect on airway epithelial cell remodeling and goblet cell hyper/metaplasia, leading to increased mucus production.
Collapse
Affiliation(s)
- Nicholas W Lukacs
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
99
|
Megjugorac NJ, Gallagher GE, Gallagher G. IL-4 enhances IFN-lambda1 (IL-29) production by plasmacytoid DCs via monocyte secretion of IL-1Ra. Blood 2010; 115:4185-90. [PMID: 20233967 DOI: 10.1182/blood-2009-09-246157] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The type-III interferon (IFN) family is composed of 3 molecules in humans: IFN-lambda1 (interleukin-29 [IL-29]), IFN-lambda2 (IL-28A), and IFN-lambda3 (IL-28B), each of which signals through the same receptor complex. Plasmacytoid dendritic cells (pDCs) are major IFN-lambda producers among peripheral lymphocytes. Recently, it has been shown that IFN-lambda1 exerts a powerful inhibitory effect over the T-helper 2 (Th2) response by antagonizing the effect of IL-4 on CD4(+) T cells and inhibiting the production of Th2-associated cytokines. Here, we asked whether Th2 cytokines exert reciprocal control over IFN-lambda production. IL-4 treatment during stimulation of human peripheral lymphocytes significantly elevated IFN-lambda1 transcription and secretion. However, pDCs were not directly responsive to IL-4. Using depletion and reconstitution experiments, we showed that IL-4-responsive monocytes are an intermediary cell, responding to IL-4 by elevating their secretion of IL-1 receptor antagonist (IL-Ra); this IL-1Ra acts on pDCs to elevate their IFN-lambda1 output. Thus, our experiments revealed a novel mechanism for regulation of both IFN-lambda1 production and pDC function, and suggests an expanded immunomodulatory role for Th2-associated cytokines.
Collapse
|
100
|
Hermesh T, Moltedo B, Moran TM, López CB. Antiviral instruction of bone marrow leukocytes during respiratory viral infections. Cell Host Microbe 2010; 7:343-53. [PMID: 20478536 PMCID: PMC2874206 DOI: 10.1016/j.chom.2010.04.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 02/04/2010] [Accepted: 03/26/2010] [Indexed: 12/19/2022]
Abstract
Respiratory viral infections trigger a robust inflammatory response in the lung, producing cytokines, chemokines, and growth factors that promote infiltration of effector leukocytes. Whereas the role of chemokines and infiltrating leukocytes in antiviral immunity is well studied, the effect that lung cytokines have on leukocytes in distal hematopoietic and lymphoid tissues and their role in antiviral immunity is unknown. We show that, during infection with influenza or Sendai virus, the lung communicates with the sterile bone marrow, the primary site of hematopoiesis, through type I interferons. While in the bone marrow, leukocytes exposed to type I interferons activate an antiviral transcriptional program and become resistant to infection with different viruses. The protected bone marrow leukocytes are capable of migrating to the infected lung and contribute to virus clearance. These findings show that appropriate instruction of cells during their development in the bone marrow is needed for effective control of infection.
Collapse
Affiliation(s)
- Tamar Hermesh
- Department of Microbiology and Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029
| | - Bruno Moltedo
- Department of Microbiology and Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029
| | - Thomas M. Moran
- Department of Microbiology and Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029
| | - Carolina B. López
- Department of Microbiology and Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|