51
|
Sharp PM, Hahn BH. The evolution of HIV-1 and the origin of AIDS. Philos Trans R Soc Lond B Biol Sci 2010; 365:2487-94. [PMID: 20643738 DOI: 10.1098/rstb.2010.0031] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The major cause of acquired immune deficiency syndrome (AIDS) is human immunodeficiency virus type 1 (HIV-1). We have been using evolutionary comparisons to trace (i) the origin(s) of HIV-1 and (ii) the origin(s) of AIDS. The closest relatives of HIV-1 are simian immunodeficiency viruses (SIVs) infecting wild-living chimpanzees (Pan troglodytes troglodytes) and gorillas (Gorilla gorilla gorilla) in west central Africa. Phylogenetic analyses have revealed the origins of HIV-1: chimpanzees were the original hosts of this clade of viruses; four lineages of HIV-1 have arisen by independent cross-species transmissions to humans and one or two of those transmissions may have been via gorillas. However, SIVs are primarily monkey viruses: more than 40 species of African monkeys are infected with their own, species-specific, SIV and in at least some host species, the infection seems non-pathogenic. Chimpanzees acquired from monkeys two distinct forms of SIVs that recombined to produce a virus with a unique genome structure. We have found that SIV infection causes CD4(+) T-cell depletion and increases mortality in wild chimpanzees, and so the origin of AIDS is more ancient than the origin of HIV-1. Tracing the genetic changes that occurred as monkey viruses adapted to infect first chimpanzees and then humans may provide insights into the causes of the pathogenicity of these viruses.
Collapse
Affiliation(s)
- Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JT, UK.
| | | |
Collapse
|
52
|
Rudicell RS, Holland Jones J, Wroblewski EE, Learn GH, Li Y, Robertson JD, Greengrass E, Grossmann F, Kamenya S, Pintea L, Mjungu DC, Lonsdorf EV, Mosser A, Lehman C, Collins DA, Keele BF, Goodall J, Hahn BH, Pusey AE, Wilson ML. Impact of simian immunodeficiency virus infection on chimpanzee population dynamics. PLoS Pathog 2010; 6:e1001116. [PMID: 20886099 PMCID: PMC2944804 DOI: 10.1371/journal.ppat.1001116] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 08/20/2010] [Indexed: 11/30/2022] Open
Abstract
Like human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus of chimpanzees (SIVcpz) can cause CD4+ T cell loss and premature death. Here, we used molecular surveillance tools and mathematical modeling to estimate the impact of SIVcpz infection on chimpanzee population dynamics. Habituated (Mitumba and Kasekela) and non-habituated (Kalande) chimpanzees were studied in Gombe National Park, Tanzania. Ape population sizes were determined from demographic records (Mitumba and Kasekela) or individual sightings and genotyping (Kalande), while SIVcpz prevalence rates were monitored using non-invasive methods. Between 2002-2009, the Mitumba and Kasekela communities experienced mean annual growth rates of 1.9% and 2.4%, respectively, while Kalande chimpanzees suffered a significant decline, with a mean growth rate of -6.5% to -7.4%, depending on population estimates. A rapid decline in Kalande was first noted in the 1990s and originally attributed to poaching and reduced food sources. However, between 2002-2009, we found a mean SIVcpz prevalence in Kalande of 46.1%, which was almost four times higher than the prevalence in Mitumba (12.7%) and Kasekela (12.1%). To explore whether SIVcpz contributed to the Kalande decline, we used empirically determined SIVcpz transmission probabilities as well as chimpanzee mortality, mating and migration data to model the effect of viral pathogenicity on chimpanzee population growth. Deterministic calculations indicated that a prevalence of greater than 3.4% would result in negative growth and eventual population extinction, even using conservative mortality estimates. However, stochastic models revealed that in representative populations, SIVcpz, and not its host species, frequently went extinct. High SIVcpz transmission probability and excess mortality reduced population persistence, while intercommunity migration often rescued infected communities, even when immigrating females had a chance of being SIVcpz infected. Together, these results suggest that the decline of the Kalande community was caused, at least in part, by high levels of SIVcpz infection. However, population extinction is not an inevitable consequence of SIVcpz infection, but depends on additional variables, such as migration, that promote survival. These findings are consistent with the uneven distribution of SIVcpz throughout central Africa and explain how chimpanzees in Gombe and elsewhere can be at equipoise with this pathogen.
Collapse
Affiliation(s)
- Rebecca S. Rudicell
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - James Holland Jones
- Department of Anthropology, Stanford University, Stanford, California, United States of America
- Woods Institute for the Environment, Stanford University, Stanford, California, United States of America
| | - Emily E. Wroblewski
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Gerald H. Learn
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yingying Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Joel D. Robertson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | | - Falk Grossmann
- Africa Program, Wildlife Conservation Society, Bronx, New York, United States of America
| | - Shadrack Kamenya
- Gombe Stream Research Centre, The Jane Goodall Institute, Kigoma, Tanzania
| | - Lilian Pintea
- The Jane Goodall Institute, Arlington, Virginia, United States of America
| | - Deus C. Mjungu
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Elizabeth V. Lonsdorf
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, Illinois, United States of America
| | - Anna Mosser
- Gombe Stream Research Centre, The Jane Goodall Institute, Kigoma, Tanzania
| | - Clarence Lehman
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - D. Anthony Collins
- Gombe Stream Research Centre, The Jane Goodall Institute, Kigoma, Tanzania
| | - Brandon F. Keele
- The AIDS and Cancer Virus Program, SAIC-Frederick Inc., National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Jane Goodall
- The Jane Goodall Institute, Arlington, Virginia, United States of America
| | - Beatrice H. Hahn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Anne E. Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
| | - Michael L. Wilson
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Anthropology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
53
|
Van Heuverswyn F, Peeters M. The origins of HIV and implications for the global epidemic. Curr Infect Dis Rep 2010; 9:338-46. [PMID: 17618555 DOI: 10.1007/s11908-007-0052-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
HIV type 1 (HIV-1) and type 2 (HIV-2) are the result of several cross-species transmissions from primates to humans. Recently, the ancestral strains of HIV-1 groups M and N were shown to still persist in today's wild chimpanzee populations (Pan troglodytes troglodytes) in south Cameroon. Lately, HIV-1 group O-related viruses have been identified in western gorillas (Gorilla gorilla), called SIVgor, but chimpanzees are most likely the original reservoir of this simian immunodeficiency virus (SIV) infection. HIV-2 is the result of at least eight distinct cross-species transmissions of SIV from sooty mangabeys (Cercocebus atys) in West Africa. Although the origin of HIV-1 and HIV-2 became clearer, some important questions concerning pathogenicity and epidemic spread of certain HIV/SIV variants need to be further elucidated. Because humans are still exposed to a plethora of primate lentiviruses through hunting and handling of primate bushmeat, the possibility of additional zoonotic transfers of primate lentiviruses from other primates must be considered.
Collapse
Affiliation(s)
- Fran Van Heuverswyn
- UMR145, 'Institut de Recherche pour le Développement (IRD)' and University of Montpellier 1, 911 Avenue Agropolis, BP64501, 34394 Montpellier Cdx5, France
| | | |
Collapse
|
54
|
Carr JK, Wolfe ND, Torimiro JN, Tamoufe U, Mpoudi-Ngole E, Eyzaguirre L, Birx DL, McCutchan FE, Burke DS. HIV-1 recombinants with multiple parental strains in low-prevalence, remote regions of Cameroon: evolutionary relics? Retrovirology 2010; 7:39. [PMID: 20426823 PMCID: PMC2879232 DOI: 10.1186/1742-4690-7-39] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 04/28/2010] [Indexed: 12/31/2022] Open
Abstract
Background The HIV pandemic disseminated globally from Central West Africa, beginning in the second half of the twentieth century. To elucidate the virologic origins of the pandemic, a cross-sectional study was conducted of the genetic diversity of HIV-1 strains in villagers in 14 remote locations in Cameroon and in hospitalized and STI patients. DNA extracted from PBMC was PCR amplified from HIV(+) subjects. Partial pol amplicons (N = 164) and nearly full virus genomes (N = 78) were sequenced. Among the 3956 rural villagers studied, the prevalence of HIV infection was 4.9%; among the hospitalized and clinic patients, it was 8.6%. Results Virus genotypes fell into two distinctive groups. A majority of the genotyped strains (109/164) were the circulating recombinant form (CRF) known to be endemic in West Africa and Central West Africa, CRF02_AG. The second most common genetic form (9/164) was the recently described CRF22_01A1, and the rest were a collection of 4 different subtypes (A2, D, F2, G) and 6 different CRFs (-01, -11, -13, -18, -25, -37). Remarkably, 10.4% of HIV-1 genomes detected (17/164) were heretofore undescribed unique recombinant forms (URF) present in only a single person. Nearly full genome sequencing was completed for 78 of the viruses of interest. HIV genetic diversity was commonplace in rural villages: 12 villages each had at least one newly detected URF, and 9 villages had two or more. Conclusions These results show that while CRF02_AG dominated the HIV strains in the rural villages, the remainder of the viruses had tremendous genetic diversity. Between the trans-species transmission of SIVcpz and the dispersal of pandemic HIV-1, there was a time when we hypothesize that nascent HIV-1 was spreading, but only to a limited extent, recombining with other local HIV-1, creating a large variety of recombinants. When one of those recombinants began to spread widely (i.e. became epidemic), it was recognized as a subtype. We hypothesize that the viruses in these remote Cameroon villages may represent that pre-epidemic stage of viral evolution.
Collapse
Affiliation(s)
- Jean K Carr
- Institute of Human Virology, Univ, of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Aghokeng AF, Ayouba A, Mpoudi-Ngole E, Loul S, Liegeois F, Delaporte E, Peeters M. Extensive survey on the prevalence and genetic diversity of SIVs in primate bushmeat provides insights into risks for potential new cross-species transmissions. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2010; 10:386-96. [PMID: 19393772 PMCID: PMC2844463 DOI: 10.1016/j.meegid.2009.04.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/14/2009] [Accepted: 04/15/2009] [Indexed: 01/31/2023]
Abstract
To evaluate the risk of cross-species transmissions of SIVs from non-human primates to humans at the primate/hunter interface, a total of 2586 samples, derived from primate bushmeat representing 11 different primate species, were collected at 6 distinct remote forest sites in southeastern Cameroon and in Yaoundé, the capital city. SIV prevalences were estimated with an updated SIV lineage specific gp41 peptide ELISA covering the major part of the SIV diversity. SIV positive samples were confirmed by PCR and sequence analysis of partial pol fragments. The updated SIV ELISA showed good performance with overall sensitivity and specificity of 96% and 97.5% respectively. The overall SIV seroprevalence was low, 2.93% (76/2586) and ranged between 0.0% and 5.7% at forest sites, and reached up to 10.3% in Yaoundé. SIV infection was documented in 8 of the 11 species with significantly different prevalence rates per species: 9/859 (1.0%) in Cercopithecus nictitans, 9/864 (1.0%) Cercopithecus cephus, 10/60 (16.7%) Miopithecus ogouensis, 14/78 (17.9%) Colobus guereza, 15/37 (40.5%) Cercopithecus neglectus, 10/27 (33.3%) Mandrillus sphinx, 6/12 (50%) Cercocebus torquatus, and 3/6 (50%) Chlorocebus tantalus. No SIV infection was identified in Cercopithecus pogonias (n=293), Lophocebus albigena (n=168) and Cercocebus agilis (n=182). The SIV prevalences also seem to vary within species according to the sampling site, but most importantly, the highest SIV prevalences are observed in the primate species which represent only 8.5% of the overall primate bushmeat. The phylogenetic tree of partial pol sequences illustrates the high genetic diversity of SIVs between and within different primate species. The tree also showed some interesting features within the SIVdeb lineage suggesting phylogeographic clusters. Overall, the risk for additional cross-species transmissions is not equal throughout southern Cameroon and depends on the hunted species and SIV prevalences in each species. However, humans are still exposed to a high diversity of SIVs as illustrated by the high inter and intra SIV lineage genetic diversity.
Collapse
Affiliation(s)
- Avelin F. Aghokeng
- Laboratoire Retrovirus, IRD - UMR 145 “VIH et Maladies Associées” and the Department of International Health, University of Montpellier I, Montpellier, France
| | - Ahidjo Ayouba
- Laboratoire Retrovirus, IRD - UMR 145 “VIH et Maladies Associées” and the Department of International Health, University of Montpellier I, Montpellier, France
| | - Eitel Mpoudi-Ngole
- Project PRESICA (Prévention du Sida au Cameroun), Military Hospital, Yaoundé, Cameroon
| | - Severin Loul
- Project PRESICA (Prévention du Sida au Cameroun), Military Hospital, Yaoundé, Cameroon
| | - Florian Liegeois
- Laboratoire Retrovirus, IRD - UMR 145 “VIH et Maladies Associées” and the Department of International Health, University of Montpellier I, Montpellier, France
| | - Eric Delaporte
- Laboratoire Retrovirus, IRD - UMR 145 “VIH et Maladies Associées” and the Department of International Health, University of Montpellier I, Montpellier, France
| | - Martine Peeters
- Laboratoire Retrovirus, IRD - UMR 145 “VIH et Maladies Associées” and the Department of International Health, University of Montpellier I, Montpellier, France
| |
Collapse
|
56
|
Soto PC, Stein LL, Hurtado-Ziola N, Hedrick SM, Varki A. Relative over-reactivity of human versus chimpanzee lymphocytes: implications for the human diseases associated with immune activation. THE JOURNAL OF IMMUNOLOGY 2010; 184:4185-95. [PMID: 20231688 DOI: 10.4049/jimmunol.0903420] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although humans and chimpanzees share >99% identity in alignable protein sequences, they differ surprisingly in the incidence and severity of some common diseases. In general, humans infected with various viruses, such as HIV and hepatitis C virus, appear to develop stronger reactions and long-term complications. Humans also appear to suffer more from other diseases associated with over-reactivity of the adaptive immune system, such as asthma, psoriasis, and rheumatoid arthritis. In this study, we show that human T cells are more reactive than chimpanzee T cells to a wide variety of stimuli, including anti-TCR Abs of multiple isotypes, l-phytohemagglutin, Staphylococcus aureus superantigen, a superagonist anti-CD28 Ab, and in MLRs. We also extend this observation to B cells, again showing a human propensity to react more strongly to stimuli. Finally, we show a relative increase in activation markers and cytokine production in human lymphocytes in response to uridine-rich (viral-like) ssRNA. Thus, humans manifest a generalized lymphocyte over-reactivity relative to chimpanzees, a finding that is correlated with decreased levels of inhibitory sialic acid-recognizing Ig-superfamily lectins (Siglecs; particularly Siglec-5) on human T and B cells. Furthermore, Siglec-5 levels are upregulated by activation in chimpanzee but not human lymphocytes, and human T cell reactivity can be downmodulated by forced expression of Siglec-5. Thus, a key difference in the immune reactivity of chimp and human lymphocytes appears to be related to the differential expression of Siglec-5. Taken together, these data may help explain human propensities for diseases associated with excessive activation of the adaptive immune system.
Collapse
Affiliation(s)
- Paula C Soto
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
57
|
Yang SJ, Lopez LA, Hauser H, Exline CM, Haworth KG, Cannon PM. Anti-tetherin activities in Vpu-expressing primate lentiviruses. Retrovirology 2010; 7:13. [PMID: 20167081 PMCID: PMC2831821 DOI: 10.1186/1742-4690-7-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 02/18/2010] [Indexed: 01/08/2023] Open
Abstract
Background The anti-viral activity of the cellular restriction factor, BST-2/tetherin, was first observed as an ability to block the release of Vpu-minus HIV-1 from the surface of infected cells. However, tetherin restriction is also counteracted by primate lentiviruses that do not express a Vpu protein, where anti-tetherin functions are provided by either the Env protein (HIV-2, SIVtan) or the Nef protein (SIVsm/mac and SIVagm). Within the primate lentiviruses, Vpu is also present in the genomes of SIVcpz and certain SIVsyk viruses. We asked whether, in these viruses, anti-tetherin activity was always a property of Vpu, or if it had selectively evolved in HIV-1 to perform this function. Results We found that despite the close relatedness of HIV-1 and SIVcpz, the chimpanzee viruses use Nef instead of Vpu to counteract tetherin. Furthermore, SIVcpz Nef proteins had activity against chimpanzee but not human tetherin. This specificity mapped to a short sequence that is present in the cytoplasmic tail of primate but not human tetherins, and this also accounts for the specificity of SIVsm/mac Nef for primate but not human tetherins. In contrast, Vpu proteins from four diverse members of the SIVsyk lineage all displayed an anti-tetherin activity that was active against macaque tetherin. Interestingly, Vpu from a SIVgsn isolate was also found to have activity against human tetherin. Conclusions Primate lentiviruses show a high degree of flexibility in their use of anti-tetherin factors, indicating a strong selective pressure to counteract tetherin restriction. The identification of an activity against human tetherin in SIVgsn Vpu suggests that the presence of Vpu in the ancestral SIVmus/mon/gsn virus believed to have contributed the 3' half of the HIV-1 genome may have played a role in the evolution of viruses that could counteract human tetherin and infect humans.
Collapse
Affiliation(s)
- Su Jung Yang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
58
|
Ghobrial L, Lankester F, Kiyang JA, Akih AE, de Vries S, Fotso R, Gadsby EL, Jenkins PD, Gonder MK. Tracing the origins of rescued chimpanzees reveals widespread chimpanzee hunting in Cameroon. BMC Ecol 2010; 10:2. [PMID: 20096098 PMCID: PMC2823610 DOI: 10.1186/1472-6785-10-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 01/22/2010] [Indexed: 11/24/2022] Open
Abstract
Background While wild chimpanzees are experiencing drastic population declines, their numbers at African rescue and rehabilitation projects are growing rapidly. Chimpanzees follow complex routes to these refuges; and their geographic origins are often unclear. Identifying areas where hunting occurs can help law enforcement authorities focus scarce resources for wildlife protection planning. Efficiently focusing these resources is particularly important in Cameroon because this country is a key transportation waypoint for international wildlife crime syndicates. Furthermore, Cameroon is home to two chimpanzee subspecies, which makes ascertaining the origins of these chimpanzees important for reintroduction planning and for scientific investigations involving these chimpanzees. Results We estimated geographic origins of 46 chimpanzees from the Limbe Wildlife Centre (LWC) in Cameroon. Using Bayesian approximation methods, we determined their origins using mtDNA sequences and microsatellite (STRP) genotypes compared to a spatial map of georeferenced chimpanzee samples from 10 locations spanning Cameroon and Nigeria. The LWC chimpanzees come from multiple regions of Cameroon or forested areas straddling the Cameroon-Nigeria border. The LWC chimpanzees were partitioned further as originating from one of three biogeographically important zones occurring in Cameroon, but we were unable to refine these origin estimates to more specific areas within these three zones. Conclusions Our findings suggest that chimpanzee hunting is widespread across Cameroon. Live animal smuggling appears to occur locally within Cameroon, despite the existence of local wildlife cartels that operate internationally. This pattern varies from the illegal wildlife trade patterns observed in other commercially valuable species, such as elephants, where specific populations are targeted for exploitation. A broader sample of rescued chimpanzees compared against a more comprehensive grid of georeferenced samples may reveal 'hotspots' of chimpanzee hunting and live animal transport routes in Cameroon. These results illustrate also that clarifying the origins of refuge chimpanzees is an important tool for designing reintroduction programs. Finally, chimpanzees at refuges are frequently used in scientific investigations, such as studies investigating the history of zoonotic diseases. Our results provide important new information for interpreting these studies within a precise geographical framework.
Collapse
Affiliation(s)
- Lora Ghobrial
- Department of Biological Sciences, University at Albany - State University of New York, Albany, NY 12222, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
PURPOSE OF REVIEW This review attempts to acquaint the reader with the molecular epidemiology of HIV-1 and to describe some of the more promising approaches to vaccine development in the light of this diversity. RECENT FINDINGS The primary genetic forms of HIV-1 in the world today are subtypes A, B, C, CRF01-AE and CRF02-AG. In sub-Saharan Africa, subtypes A and C and CRF02-AG account for most of the infections. In Asia, there are subtypes B, C and CRF01 AE. Europe, the Americas and the Caribbean are dominated by subtype B, and subtype A is in the former Soviet Union. While the genetic diversity of HIV-1 in the world can seem daunting, the vast majority of infections are actually caused by one of these five genetic forms. Approaches to dealing with this in the development of vaccines include targeting conserved regions of the genome, creating ancestral forms of the virus or putting many different forms together into a cocktail. Each of these approaches shows promise. To optimize the chances of initially showing efficacy in HIV vaccine trials, the genetic form of the vaccine strains will resemble those of the circulating strains in the target population. Once efficacy is demonstrated, however, it will be possible to determine whether genetic subtype is at all predictive of vaccine protection. SUMMARY Although the genetic diversity of HIV-1 is impressive, it is not limitless. Most of the infections worldwide are actually due to a handful of strains. It should be possible for a few vaccine strategies to conquer HIV-1 definitively.
Collapse
|
60
|
Barreiro LB, Quintana-Murci L. From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat Rev Genet 2009; 11:17-30. [PMID: 19953080 DOI: 10.1038/nrg2698] [Citation(s) in RCA: 370] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pathogens have always been a major cause of human mortality, so they impose strong selective pressure on the human genome. Data from population genetic studies, including genome-wide scans for selection, are providing important insights into how natural selection has shaped immunity and host defence genes in specific human populations and in the human species as a whole. These findings are helping to delineate genes that are important for host defence and to increase our understanding of how past selection has had an impact on disease susceptibility in modern populations. A tighter integration between population genetic studies and immunological phenotype studies is now necessary to reveal the mechanisms that have been crucial for our past and present survival against infection.
Collapse
Affiliation(s)
- Luis B Barreiro
- Human Evolutionary Genetics, Institut Pasteur, Centre National de la Recherche Scientifique URA3012, Paris 75015, France
| | | |
Collapse
|
61
|
Sodora DL, Allan JS, Apetrei C, Brenchley JM, Douek DC, Else JG, Estes JD, Hahn BH, Hirsch VM, Kaur A, Kirchhoff F, Muller-Trutwin M, Pandrea I, Schmitz JE, Silvestri G. Toward an AIDS vaccine: lessons from natural simian immunodeficiency virus infections of African nonhuman primate hosts. Nat Med 2009; 15:861-5. [PMID: 19661993 DOI: 10.1038/nm.2013] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The design of an effective AIDS vaccine has eluded the efforts of the scientific community to the point that alternative approaches to classic vaccine formulations have to be considered. We propose here that HIV vaccine research could greatly benefit from the study of natural simian immunodeficiency virus (SIV) infections of African nonhuman primates. Natural SIV hosts (for example, sooty mangabeys, African green monkeys and mandrills) share many features of HIV infection of humans; however, they usually do not develop immunodeficiency. These natural, nonprogressive SIV infections represent an evolutionary adaptation that allows a peaceful coexistence of primate lentiviruses and the host immune system. This adaptation does not result in reduced viral replication but, rather, involves phenotypic changes to CD4(+) T cell subsets, limited immune activation and preserved mucosal immunity, all of which contribute to the avoidance of disease progression and, possibly, to the reduction of vertical SIV transmission. Here we summarize the current understanding of SIV infection of African nonhuman primates and discuss how unraveling these evolutionary adaptations may provide clues for new vaccine designs that might induce effective immune responses without the harmful consequences of excessive immune activation.
Collapse
Affiliation(s)
- Donald L Sodora
- Seattle Biomedical Research Institute, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Keele BF, Jones JH, Terio KA, Estes JD, Rudicell RS, Wilson ML, Li Y, Learn GH, Beasley TM, Schumacher-Stankey J, Wroblewski E, Mosser A, Raphael J, Kamenya S, Lonsdorf EV, Travis DA, Mlengeya T, Kinsel MJ, Else JG, Silvestri G, Goodall J, Sharp PM, Shaw GM, Pusey AE, Hahn BH. Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature 2009; 460:515-9. [PMID: 19626114 DOI: 10.1038/nature08200] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 06/05/2009] [Indexed: 12/14/2022]
Abstract
African primates are naturally infected with over 40 different simian immunodeficiency viruses (SIVs), two of which have crossed the species barrier and generated human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2). Unlike the human viruses, however, SIVs do not generally cause acquired immunodeficiency syndrome (AIDS) in their natural hosts. Here we show that SIVcpz, the immediate precursor of HIV-1, is pathogenic in free-ranging chimpanzees. By following 94 members of two habituated chimpanzee communities in Gombe National Park, Tanzania, for over 9 years, we found a 10- to 16-fold higher age-corrected death hazard for SIVcpz-infected (n = 17) compared to uninfected (n = 77) chimpanzees. We also found that SIVcpz-infected females were less likely to give birth and had a higher infant mortality rate than uninfected females. Immunohistochemistry and in situ hybridization of post-mortem spleen and lymph node samples from three infected and two uninfected chimpanzees revealed significant CD4(+) T-cell depletion in all infected individuals, with evidence of high viral replication and extensive follicular dendritic cell virus trapping in one of them. One female, who died within 3 years of acquiring SIVcpz, had histopathological findings consistent with end-stage AIDS. These results indicate that SIVcpz, like HIV-1, is associated with progressive CD4(+) T-cell loss, lymphatic tissue destruction and premature death. These findings challenge the prevailing view that all natural SIV infections are non-pathogenic and suggest that SIVcpz has a substantial negative impact on the health, reproduction and lifespan of chimpanzees in the wild.
Collapse
Affiliation(s)
- Brandon F Keele
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Siegismund CS, Hohn O, Kurth R, Norley S. Enhanced T- and B-cell responses to simian immunodeficiency virus (SIV)agm, SIVmac and human immunodeficiency virus type 1 Gag DNA immunization and identification of novel T-cell epitopes in mice via codon optimization. J Gen Virol 2009; 90:2513-2518. [PMID: 19587137 DOI: 10.1099/vir.0.013730-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As a prelude to primate studies, the immunogenicity of wild-type and codon-optimized versions of simian immunodeficiency virus (SIV)agm Gag DNA, with and without co-administered granulocyte-macrophage colony-stimulating factor (GM-CSF) DNA, was directly compared in two strains of mice. Gag-specific T cells in the splenocytes of BALB/c and C57BL/6 mice immunized by gene gun were quantified by ELISpot using panels of overlapping synthetic peptides (15mers) spanning the entire capsid proteins of SIVagm, SIVmac and human immunodeficiency virus type 1. Specific antibodies were measured by ELISA. Codon optimization was shown to significantly increase the immune response to the DNA immunogens, reducing the amount of DNA necessary to induce cellular and antibody responses by one and two orders of magnitude, respectively. Co-administration of murine GM-CSF DNA was necessary for the induction of high level T- and B-cell responses. Finally, it was possible to identify both known and novel T-cell epitopes in the Gag proteins of the three viruses.
Collapse
Affiliation(s)
| | - Oliver Hohn
- Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | - Reinhard Kurth
- Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | - Stephen Norley
- Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| |
Collapse
|
64
|
Takehisa J, Kraus MH, Ayouba A, Bailes E, Van Heuverswyn F, Decker JM, Li Y, Rudicell RS, Learn GH, Neel C, Ngole EM, Shaw GM, Peeters M, Sharp PM, Hahn BH. Origin and biology of simian immunodeficiency virus in wild-living western gorillas. J Virol 2009; 83:1635-48. [PMID: 19073717 PMCID: PMC2643789 DOI: 10.1128/jvi.02311-08] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 12/02/2008] [Indexed: 01/17/2023] Open
Abstract
Western lowland gorillas (Gorilla gorilla gorilla) are infected with a simian immunodeficiency virus (SIVgor) that is closely related to chimpanzee and human immunodeficiency viruses (SIVcpz and HIV-1, respectively) in west central Africa. Although existing data suggest a chimpanzee origin for SIVgor, a paucity of available sequences has precluded definitive conclusions. Here, we report the molecular characterization of one partial (BQ664) and three full-length (CP684, CP2135, and CP2139) SIVgor genomes amplified from fecal RNAs of wild-living gorillas at two field sites in Cameroon. Phylogenetic analyses showed that all SIVgor strains clustered together, forming a monophyletic lineage throughout their genomes. Interestingly, the closest relatives of SIVgor were not SIVcpzPtt strains from west central African chimpanzees (Pan troglodytes troglodytes) but human viruses belonging to HIV-1 group O. In trees derived from most genomic regions, SIVgor and HIV-1 group O formed a sister clade to the SIVcpzPtt lineage. However, in a tree derived from 5' pol sequences ( approximately 900 bp), SIVgor and HIV-1 group O fell within the SIVcpzPtt radiation. The latter was due to two SIVcpzPtt strains that contained mosaic pol sequences, pointing to the existence of a divergent SIVcpzPtt lineage that gave rise to SIVgor and HIV-1 group O. Gorillas appear to have acquired this lineage at least 100 to 200 years ago. To examine the biological properties of SIVgor, we synthesized a full-length provirus from fecal consensus sequences. Transfection of the resulting clone (CP2139.287) into 293T cells yielded infectious virus that replicated efficiently in both human and chimpanzee CD4(+) T cells and used CCR5 as the coreceptor for viral entry. Together, these results provide strong evidence that P. t. troglodytes apes were the source of SIVgor. These same apes may also have spawned the group O epidemic; however, the possibility that gorillas served as an intermediary host cannot be excluded.
Collapse
Affiliation(s)
- Jun Takehisa
- Department of Medicine, University of Alabama at Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
A transitional endogenous lentivirus from the genome of a basal primate and implications for lentivirus evolution. Proc Natl Acad Sci U S A 2008; 105:20362-7. [PMID: 19075221 DOI: 10.1073/pnas.0807873105] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Lentiviruses chronically infect a broad range of mammalian species and have been transmitted from primates to humans, giving rise to multiple outbreaks of HIV infection over the past century. Although the circumstances surrounding these recent zoonoses are becoming clearer, the nature and timescale of interaction between lentiviruses and primates remains unknown. Here, we report the discovery of an endogenous lentivirus in the genome of the gray mouse lemur (Microcebus murinus), a strepsirrhine primate from Madagascar, demonstrating that lentiviruses are capable of invading the primate germ line. Phylogenetic analysis places gray mouse lemur prosimian immunodeficiency virus (pSIVgml) basal to all known primate lentiviruses and, consistent with this, its genomic organization is intermediate between the nonprimate lentiviruses and their more derived primate counterparts. Thus, pSIVgml represents the first unambiguous example of a viral transitional form, revealing the acquisition and loss of genomic features during lentiviral evolution. Furthermore, because terrestrial mammal populations in Madagascar and Africa are likely to have been isolated from one another for at least 14 million years, the presence of pSIVgml in the gray mouse lemur genome indicates that lentiviruses must have been infecting primates for at least this period of time, or have been transmitted between Malagasy and African primate populations by a vector species capable of traversing the Mozambique channel. The discovery of pSIVgml illustrates the utility of endogenous sequences for the study of contemporary retroviruses and indicates that primate lentiviruses may be considerably older and more broadly distributed than previously thought.
Collapse
|
66
|
Faure E. Could FIV zoonosis responsible of the breakdown of the pathocenosis which has reduced the European CCR5-Delta32 allele frequencies? Virol J 2008; 5:119. [PMID: 18925940 PMCID: PMC2575341 DOI: 10.1186/1743-422x-5-119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 10/16/2008] [Indexed: 02/04/2023] Open
Abstract
Background In Europe, the north-south downhill cline frequency of the chemokine receptor CCR5 allele with a 32-bp deletion (CCR5-Δ32) raises interesting questions for evolutionary biologists. We had suggested first that, in the past, the European colonizers, principally Romans, might have been instrumental of a progressively decrease of the frequencies southwards. Indeed, statistical analyses suggested strong negative correlations between the allele frequency and historical parameters including the colonization dates by Mediterranean civilisations. The gene flows from colonizers to native populations were extremely low but colonizers are responsible of the spread of several diseases suggesting that the dissemination of parasites in naive populations could have induced a breakdown rupture of the fragile pathocenosis changing the balance among diseases. The new equilibrium state has been reached through a negative selection of the null allele. Results Most of the human diseases are zoonoses and cat might have been instrumental in the decrease of the allele frequency, because its diffusion through Europe was a gradual process, due principally to Romans; and that several cat zoonoses could be transmitted to man. The possible implication of a feline lentivirus (FIV) which does not use CCR5 as co-receptor is discussed. This virus can infect primate cells in vitro and induces clinical signs in macaque. Moreover, most of the historical regions with null or low frequency of CCR5-Δ32 allele coincide with historical range of the wild felid species which harbor species-specific FIVs. Conclusion We proposed the hypothesis that the actual European CCR5 allelic frequencies are the result of a negative selection due to a disease spreading. A cat zoonosis, could be the most plausible hypothesis. Future studies could provide if CCR5 can play an antimicrobial role in FIV pathogenesis. Moreover, studies of ancient DNA could provide more evidences regarding the implications of zoonoses in the actual CCR5-Δ32 distribution.
Collapse
Affiliation(s)
- Eric Faure
- LATP, CNRS-UMR 6632, IFR48 Infectiopole, Evolution biologique et modélisation, Université de Provence, Marseille, France.
| |
Collapse
|
67
|
Peeters M, Chaix ML, Delaporte E. [Genetic diversity and phylogeographic distribution of SIV: how to understand the origin of HIV]. Med Sci (Paris) 2008; 24:621-8. [PMID: 18601880 DOI: 10.1051/medsci/20082467621] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Emergence of human immunodeficiency viruses HIV-1 and HIV-2 results from interspecies transmission from simian viruses SIV. SIVcpzPtt infecting chimpanzees, and from which the HIV-1 (subgroups M and N) is derived is still found in the Pan troglodytes troglodytes population of south Cameroon chimpanzees. The ancestor of HIV-1 group O, is found in the Gorilla residing in Western Africa, but chimpanzees are in fact the initial reservoir of the SIV viruses SIVgor, and it is still unclear whether the group O HIV-1 has been transmitted to humans by gorillas and/or chimpanzees. At least eight interspecies transmissions between and humans implicating SIVsmm (from sooty mangabey monkeys) have occurred, corresponding to the eight VIH-2 groups. Since habits of hunting and meat preparation in the bush still persistently expose humans in Africa to SIV infection, new interspecies transmission of these viruses remains a possibility.
Collapse
Affiliation(s)
- Martine Peeters
- UMR 145, Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France.
| | | | | |
Collapse
|
68
|
Hvilsom C, Carlsen F, Siegismund HR, Corbet S, Nerrienet E, Fomsgaard A. Genetic subspecies diversity of the chimpanzee CD4 virus-receptor gene. Genomics 2008; 92:322-8. [PMID: 18718520 DOI: 10.1016/j.ygeno.2008.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 07/11/2008] [Accepted: 07/13/2008] [Indexed: 11/25/2022]
Abstract
Chimpanzees are naturally and asymptomatically infected by simian immunodeficiency virus (SIV). Pathogenic properties of SIV/HIV vary and differences in susceptibility and pathogenicity of SIV/HIV depend in part on host-specific factors such as virus-receptor/co-receptor interactions. Since CD4 plays a primary role in virus binding and since SIVcpz have been found only in two African chimpanzee subspecies, we characterized the genetic diversity of CD4 receptors in all four recognized subspecies of chimpanzees. We found noticeable variation in the first variable region V1 of CD4 and in intron six among the subspecies of chimpanzees. We found the CD4 receptor to be conserved in individuals belonging to the P. t. verus subspecies and divergent from the other three subspecies, which harbored highly variable CD4 receptors. The CD4 receptor of chimpanzees differed from that of humans. We question whether the observed diversity can explain the species-specific differences in susceptibility to and pathogenicity of SIV/HIV.
Collapse
|
69
|
Humans with chimpanzee-like major histocompatibility complex-specificities control HIV-1 infection. AIDS 2008; 22:1299-303. [PMID: 18580609 DOI: 10.1097/qad.0b013e328302f39f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Major histocompatibility complex (MHC) class I molecules allow immune surveillance by presenting a snapshot of the intracellular state of a cell to circulating cytotoxic T lymphocytes. The MHC class I alleles of an HIV-1 infected individual strongly influence the level of viremia and the progression rate to AIDS. Chimpanzees control HIV-1 viral replication and develop a chronic infection without progressing to AIDS. A similar course of disease is observed in human long-term non-progressors. OBJECTIVE To investigate if long-term non-progressors and chimpanzees have functional similarities in their MHC class I repertoire. METHODS We compared the specificity of groups of human MHC molecules associated with different levels of viremia in HIV-1 infected individuals with those of chimpanzee. RESULTS AND CONCLUSION We demonstrate that human MHC with control of HIV-1 viral load share binding motifs with chimpanzee MHC. Moreover, we find that chimpanzee and human MHC associated with low viral load are predicted to elicit broader Gag-specific immune responses than human MHC associated with high viral load, thus supporting earlier findings that Gag-specific immune responses are essential for HIV-1 control.
Collapse
|
70
|
Liu W, Worobey M, Li Y, Keele BF, Bibollet-Ruche F, Guo Y, Goepfert PA, Santiago ML, Ndjango JBN, Neel C, Clifford SL, Sanz C, Kamenya S, Wilson ML, Pusey AE, Gross-Camp N, Boesch C, Smith V, Zamma K, Huffman MA, Mitani JC, Watts DP, Peeters M, Shaw GM, Switzer WM, Sharp PM, Hahn BH. Molecular ecology and natural history of simian foamy virus infection in wild-living chimpanzees. PLoS Pathog 2008; 4:e1000097. [PMID: 18604273 PMCID: PMC2435277 DOI: 10.1371/journal.ppat.1000097] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 06/05/2008] [Indexed: 12/31/2022] Open
Abstract
Identifying microbial pathogens with zoonotic potential in wild-living primates can be important to human health, as evidenced by human immunodeficiency viruses types 1 and 2 (HIV-1 and HIV-2) and Ebola virus. Simian foamy viruses (SFVs) are ancient retroviruses that infect Old and New World monkeys and apes. Although not known to cause disease, these viruses are of public health interest because they have the potential to infect humans and thus provide a more general indication of zoonotic exposure risks. Surprisingly, no information exists concerning the prevalence, geographic distribution, and genetic diversity of SFVs in wild-living monkeys and apes. Here, we report the first comprehensive survey of SFVcpz infection in free-ranging chimpanzees (Pan troglodytes) using newly developed, fecal-based assays. Chimpanzee fecal samples (n = 724) were collected at 25 field sites throughout equatorial Africa and tested for SFVcpz-specific antibodies (n = 706) or viral nucleic acids (n = 392). SFVcpz infection was documented at all field sites, with prevalence rates ranging from 44% to 100%. In two habituated communities, adult chimpanzees had significantly higher SFVcpz infection rates than infants and juveniles, indicating predominantly horizontal rather than vertical transmission routes. Some chimpanzees were co-infected with simian immunodeficiency virus (SIVcpz); however, there was no evidence that SFVcpz and SIVcpz were epidemiologically linked. SFVcpz nucleic acids were recovered from 177 fecal samples, all of which contained SFVcpz RNA and not DNA. Phylogenetic analysis of partial gag (616 bp), pol-RT (717 bp), and pol-IN (425 bp) sequences identified a diverse group of viruses, which could be subdivided into four distinct SFVcpz lineages according to their chimpanzee subspecies of origin. Within these lineages, there was evidence of frequent superinfection and viral recombination. One chimpanzee was infected by a foamy virus from a Cercopithecus monkey species, indicating cross-species transmission of SFVs in the wild. These data indicate that SFVcpz (i) is widely distributed among all chimpanzee subspecies; (ii) is shed in fecal samples as viral RNA; (iii) is transmitted predominantly by horizontal routes; (iv) is prone to superinfection and recombination; (v) has co-evolved with its natural host; and (vi) represents a sensitive marker of population structure that may be useful for chimpanzee taxonomy and conservation strategies.
Collapse
Affiliation(s)
- Weimin Liu
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Michael Worobey
- University of Arizona, Tucson, Arizona, United States of America
| | - Yingying Li
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Brandon F. Keele
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Frederic Bibollet-Ruche
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yuanyuan Guo
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Paul A. Goepfert
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Mario L. Santiago
- Gladstone Institute for Virology and Immunology, University of California at San Francisco, San Francisco, California, United States of America
| | | | - Cecile Neel
- Institut de Recherche pour le Développement (IRD) and University of Montpellier 1, Montpellier, France
- Projet Prevention du Sida ou Cameroun (PRESICA), Yaoundé, Cameroun
| | - Stephen L. Clifford
- Centre International de Recherches Medicales de Franceville (CIRMF), Franceville, Gabon
| | - Crickette Sanz
- Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Shadrack Kamenya
- Gombe Stream Research Centre, The Jane Goodall Institute, Tanzania
| | - Michael L. Wilson
- Department of Anthropology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Anne E. Pusey
- Jane Goodall Institute's Center for Primate Studies, Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Nicole Gross-Camp
- Antioch New England Graduate School, Keene, New Hampshire, United States of America
| | - Christophe Boesch
- Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Koichiro Zamma
- Great Ape Research Institute, Hayashibara Biochemical Laboratories, Okayama, Japan
| | - Michael A. Huffman
- Section of Ecology, Primate Research Institute, Kyoto University, Aichi, Japan
| | - John C. Mitani
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David P. Watts
- Department of Anthropology, Yale University, New Haven, Connecticut, United States of America
| | - Martine Peeters
- Institut de Recherche pour le Développement (IRD) and University of Montpellier 1, Montpellier, France
| | - George M. Shaw
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - William M. Switzer
- Laboratory Branch, National Center for HIV/AIDS, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Paul M. Sharp
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
71
|
Pecon-Slattery J, Troyer JL, Johnson WE, O'Brien SJ. Evolution of feline immunodeficiency virus in Felidae: implications for human health and wildlife ecology. Vet Immunol Immunopathol 2008; 123:32-44. [PMID: 18359092 PMCID: PMC2774529 DOI: 10.1016/j.vetimm.2008.01.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genetic analyses of feline immunodeficiency viruses provide significant insights on the worldwide distribution and evolutionary history of this emerging pathogen. Large-scale screening of over 3000 samples from all species of Felidae indicates that at least some individuals from most species possess antibodies that cross react to FIV. Phylogenetic analyses of genetic variation in the pol-RT gene demonstrate that FIV lineages are species-specific and suggest that there has been a prolonged period of viral-host co-evolution. The clinical effects of FIV specific to species other than domestic cat are controversial. Comparative genomic analyses of all full-length FIV genomes confirmed that FIV is host specific. Recently sequenced lion subtype E is marginally more similar to Pallas cat FIV though env is more similar to that of domestic cat FIV, indicating a possible recombination between two divergent strains in the wild. Here we review global patterns of FIV seroprevalence and endemnicity, assess genetic differences within and between species-specific FIV strains, and interpret these with patterns of felid speciation to propose an ancestral origin of FIV in Africa followed by interspecies transmission and global dissemination to Eurasia and the Americas. Continued comparative genomic analyses of full-length FIV from all seropositive animals, along with whole genome sequence of host species, will greatly advance our understanding of the role of recombination, selection and adaptation in retroviral emergence.
Collapse
Affiliation(s)
- Jill Pecon-Slattery
- Laboratory of Genomic Diversity, National Cancer Institute-Frederick, Frederick, MD 21702, United States.
| | | | | | | |
Collapse
|
72
|
Soares AER, Soares MA, Schrago CG. Positive selection on HIV accessory proteins and the analysis of molecular adaptation after interspecies transmission. J Mol Evol 2008; 66:598-604. [PMID: 18465165 DOI: 10.1007/s00239-008-9112-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
Abstract
Studies examining positive selection on accessory proteins of HIV are rare, although these proteins play an important role in pathogenesis in vivo. Moreover, despite the biological relevance of analyses of molecular adaptation after viral transmission between species, the issue is still poorly studied. Here we present evidence that accessory proteins are subjected to positive selective forces exclusively in HIV. This scenario suggests that accessory protein genes are under adaptive evolution in HIV clades, while in SIVcpz such a phenomenon could not be detected. As a result, we show that comparative studies are critical to carry out functional investigation of positively selected protein sites, as they might help to achieve a better comprehension of the biology of HIV pathogenesis.
Collapse
Affiliation(s)
- André E R Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Rio de Janeiro, RJ CEP 21.941-590, Brazil
| | | | | |
Collapse
|
73
|
Silvestri G, Paiardini M, Pandrea I, Lederman MM, Sodora DL. Understanding the benign nature of SIV infection in natural hosts. J Clin Invest 2008; 117:3148-54. [PMID: 17975656 DOI: 10.1172/jci33034] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In striking contrast to HIV infection, natural SIV infection of African nonhuman primates is asymptomatic and usually does not induce significant CD4+ T cell depletion despite high levels of virus replication. Recently, significant progress has been made in understanding the mechanisms underlying the remarkable difference in infection outcome between natural and nonnatural HIV/SIV hosts. These advances include the identification of limited immune activation as a key factor protecting natural SIV hosts from AIDS and the discovery of low CC chemokine receptor 5 expression on CD4+ T cells as a specific and consistent immunologic feature in these animals. Further elucidation of the pathways by which the differences in immune activation between natural and nonnatural hosts are manifest holds promise for the design of novel therapeutic approaches to HIV infection.
Collapse
Affiliation(s)
- Guido Silvestri
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | |
Collapse
|
74
|
Cohen MS, Hellmann N, Levy JA, DeCock K, Lange J. The spread, treatment, and prevention of HIV-1: evolution of a global pandemic. J Clin Invest 2008; 118:1244-54. [PMID: 18382737 PMCID: PMC2276790 DOI: 10.1172/jci34706] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The most up-to-date estimates demonstrate very heterogeneous spread of HIV-1, and more than 30 million people are now living with HIV-1 infection, most of them in sub-Saharan Africa. The efficiency of transmission of HIV-1 depends primarily on the concentration of the virus in the infectious host. Although treatment with antiviral agents has proven a very effective way to improve the health and survival of infected individuals, as we discuss here, the epidemic will continue to grow unless greatly improved prevention strategies can be developed and implemented. No prophylactic vaccine is on the horizon. However, several behavioral and structural strategies have made a difference--male circumcision provides substantial protection from sexually transmitted diseases, including HIV-1, and the application of antiretroviral agents for prevention holds great promise.
Collapse
Affiliation(s)
- Myron S Cohen
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA.
| | | | | | | | | |
Collapse
|
75
|
|
76
|
Pecon-Slattery J, McCracken CL, Troyer JL, VandeWoude S, Roelke M, Sondgeroth K, Winterbach C, Winterbach H, O'Brien SJ. Genomic organization, sequence divergence, and recombination of feline immunodeficiency virus from lions in the wild. BMC Genomics 2008; 9:66. [PMID: 18251995 PMCID: PMC2270836 DOI: 10.1186/1471-2164-9-66] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 02/05/2008] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Feline immunodeficiency virus (FIV) naturally infects multiple species of cat and is related to human immunodeficiency virus in humans. FIV infection causes AIDS-like disease and mortality in the domestic cat (Felis catus) and serves as a natural model for HIV infection in humans. In African lions (Panthera leo) and other exotic felid species, disease etiology introduced by FIV infection are less clear, but recent studies indicate that FIV causes moderate to severe CD4 depletion. RESULTS In this study, comparative genomic methods are used to evaluate the full proviral genome of two geographically distinct FIV subtypes isolated from free-ranging lions. Genome organization of FIVPle subtype B (9891 bp) from lions in the Serengeti National Park in Tanzania and FIVPle subtype E (9899 bp) isolated from lions in the Okavango Delta in Botswana, both resemble FIV genome sequence from puma, Pallas cat and domestic cat across 5' LTR, gag, pol, vif, orfA, env, rev and 3'LTR regions. Comparative analyses of available full-length FIV consisting of subtypes A, B and C from FIVFca, Pallas cat FIVOma and two puma FIVPco subtypes A and B recapitulate the species-specific monophyly of FIV marked by high levels of genetic diversity both within and between species. Across all FIVPle gene regions except env, lion subtypes B and E are monophyletic, and marginally more similar to Pallas cat FIVOma than to other FIV. Sequence analyses indicate the SU and TM regions of env vary substantially between subtypes, with FIVPle subtype E more related to domestic cat FIVFca than to FIVPle subtype B and FIVOma likely reflecting recombination between strains in the wild. CONCLUSION This study demonstrates the necessity of whole-genome analysis to complement population/gene-based studies, which are of limited utility in uncovering complex events such as recombination that may lead to functional differences in virulence and pathogenicity. These full-length lion lentiviruses are integral to the advancement of comparative genomics of human pathogens, as well as emerging disease in wild populations of endangered species.
Collapse
Affiliation(s)
- Jill Pecon-Slattery
- Laboratory of Genomic Diversity, National Cancer Institute-Frederick, Frederick MD 21702 USA
| | - Carrie L McCracken
- Laboratory of Genomic Diversity, Basic Research Program-SAIC Frederick – National Cancer Institute, Frederick, MD 21702 USA
| | - Jennifer L Troyer
- Laboratory of Genomic Diversity, Basic Research Program-SAIC Frederick – National Cancer Institute, Frederick, MD 21702 USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO 80532 USA
| | - Melody Roelke
- Laboratory of Genomic Diversity, Basic Research Program-SAIC Frederick – National Cancer Institute, Frederick, MD 21702 USA
| | - Kerry Sondgeroth
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman WA 99164 USA
| | | | | | - Stephen J O'Brien
- Laboratory of Genomic Diversity, National Cancer Institute-Frederick, Frederick MD 21702 USA
| |
Collapse
|
77
|
Global molecular epidemiology of HIV: understanding the genesis of AIDS pandemic. ADVANCES IN PHARMACOLOGY 2008; 56:1-25. [PMID: 18086407 DOI: 10.1016/s1054-3589(07)56001-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
78
|
|
79
|
Nef-mediated enhancement of virion infectivity and stimulation of viral replication are fundamental properties of primate lentiviruses. J Virol 2007; 81:13852-64. [PMID: 17928336 DOI: 10.1128/jvi.00904-07] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nef is a multifunctional accessory protein of primate lentiviruses. Recently, it has been shown that the ability of Nef to downmodulate CD4, CD28, and class I major histocompatibility complex is highly conserved between most or all primate lentiviruses, whereas Nef-mediated downregulation of T-cell receptor-CD3 was lost in the lineage that gave rise to human immunodeficiency virus type 1 (HIV-1). Whether or not other Nef activities are preserved between different groups of primate lentiviruses remained to be determined. Here, we show that nef genes from a large variety of HIVs and simian immunodeficiency viruses (SIVs) enhance virion infectivity and stimulate viral replication in human cells and/or in ex vivo infected human lymphoid tissue (HLT). Notably, nef alleles from unpassaged SIVcpz and SIVsmm enhanced viral infectivity, replication, and cytopathicity in cell culture and in ex vivo infected HLT as efficiently as those from HIV-1 and HIV-2, their human counterparts. Furthermore, nef genes from several highly divergent SIVs that have not been found in humans were also highly active in human cells and/or tissues. Thus, most primate lentiviral Nefs enhance virion infectivity and stimulate viral replication. Moreover, our data show that SIVcpz and SIVsmm Nefs do not require adaptive changes to perform these functions in human cells or tissues and support the idea that nef alleles from other primate lentiviruses would also be capable of promoting efficient virus spread in humans.
Collapse
|
80
|
Locatelli S, Liegeois F, Lafay B, Roeder AD, Bruford MW, Formenty P, Noë R, Delaporte E, Peeters M. Prevalence and genetic diversity of simian immunodeficiency virus infection in wild-living red colobus monkeys (Piliocolobus badius badius) from the Taï forest, Côte d'Ivoire SIVwrc in wild-living western red colobus monkeys. INFECTION GENETICS AND EVOLUTION 2007; 8:1-14. [PMID: 17916449 DOI: 10.1016/j.meegid.2007.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 08/29/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
Abstract
Numerous African primates are infected with simian immunodeficiency viruses (SIVs). It is now well established that the clade of SIVs infecting west-central African chimpanzees (Pan troglodytes troglodytes) and western gorillas (Gorilla gorilla gorilla) represent the progenitors of human immunodeficiency virus type 1 (HIV-1), whereas HIV-2 results from different cross-species transmissions of SIVsmm from sooty mangabeys (Cercocebus atys atys). We present here the first molecular epidemiological survey of simian immunodeficiency virus (SIVwrc) in wild-living western red colobus monkeys (Piliocolobus badius badius) which are frequently hunted by the human population and represent a favourite prey of western chimpanzees (Pan troglodytes verus). We collected faecal samples (n=88) and we assessed individual discrimination by microsatellite analyses and visual observation. We tested the inferred 53 adult individuals belonging to two neighbouring habituated groups for presence of SIVwrc infection by viral RNA (vRNA) detection. We amplified viral polymerase (pol) (650 bp) and/or envelope (env) (570 bp) sequences in 14 individuals, resulting in a minimal prevalence of 26% among the individuals sampled, possibly reaching 50% when considering the relatively low sensitivity of viral RNA detection in faecal samples. With a few exceptions, phylogenetic analysis of pol and env sequences revealed a low degree of intragroup genetic diversity and a general viral clustering related to the social group of origin. However, we found a higher intergroup diversity. Behavioural and demographic data collected previously from these communities indicate that red colobus monkeys live in promiscuous multi-male societies, where females leave their natal group at the sub-adult stage of their lives and where extra-group copulations or male immigration have been rarely observed. The phylogenetic data we obtained seem to reflect these behavioural characteristics. Overall, our results indicate that wild-living red colobus represent a substantial reservoir of SIVwrc. Moreover, because of their frequent association with other monkey species, the predation pressure exerted by chimpanzees (Pan troglodytes verus) and by poachers around and inside the park, simian to simian and simian to human SIVwrc cross-species transmission cannot be excluded.
Collapse
Affiliation(s)
- Sabrina Locatelli
- UMR 145, Institut de Recherche pour le Développement, and University of Montpellier 1, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Leitner T, Dazza MC, Ekwalanga M, Apetrei C, Saragosti S. Sequence diversity among chimpanzee simian immunodeficiency viruses (SIVcpz) suggests that SIVcpzPts was derived from SIVcpzPtt through additional recombination events. AIDS Res Hum Retroviruses 2007; 23:1114-8. [PMID: 17919106 DOI: 10.1089/aid.2007.0071] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Only two of four chimpanzee subspecies (Pan troglodytes), P. troglodytes troglodytes (P.t.t.) and P. troglodytes schweinfurthii (P.t.s.), appear to carry specific simian immunodeficiency viruses (SIVs). We identified genomic features indicating that SIVcpzPtt and SIVcpzPts may have partly different evolutionary histories. A maximum likelihood test to discriminate between hypotheses of a common versus separate origin of SIVcpzPtt and SIVcpzPts revealed three putative regions of separate histories. Thus, after the P.t.t. and P.t.s. split, SIV superinfection led to further recombination resulting in the emergence of SIVcpzPts. This shows that there have been multiple SIV transfers to chimpanzees at different times in their evolution.
Collapse
Affiliation(s)
- Thomas Leitner
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico
| | | | - Michel Ekwalanga
- IMEA-INSERM U552, Hôpital Bichat, Paris, France
- Université de Lubumbashi, Katanga, Democratic Republic of Congo
| | - Cristian Apetrei
- Tulane National Primate Research Center, Covington, Louisiana
- Tulane University Health Center, New Orleans, Louisiana
| | | |
Collapse
|
82
|
Van Heuverswyn F, Li Y, Bailes E, Neel C, Lafay B, Keele BF, Shaw KS, Takehisa J, Kraus MH, Loul S, Butel C, Liegeois F, Yangda B, Sharp PM, Mpoudi-Ngole E, Delaporte E, Hahn BH, Peeters M. Genetic diversity and phylogeographic clustering of SIVcpzPtt in wild chimpanzees in Cameroon. Virology 2007; 368:155-71. [PMID: 17651775 DOI: 10.1016/j.virol.2007.06.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/07/2007] [Accepted: 06/13/2007] [Indexed: 11/19/2022]
Abstract
It is now well established that the clade of simian immunodeficiency viruses (SIVs) infecting west central African chimpanzees (Pan troglodytes troglodytes) and western gorillas (Gorilla gorilla gorilla) comprises the progenitors of human immunodeficiency virus type 1 (HIV-1). In this study, we have greatly expanded our previous molecular epidemiological survey of SIVcpz in wild chimpanzees in Cameroon. The new results confirm a wide but uneven distribution of SIVcpzPtt in P. t. troglodytes throughout southern Cameroon and indicate the absence of SIVcpz infection in Pan troglodytes vellerosus. Analyzing 725 fecal samples from 15 field sites, we obtained partial nucleotide sequences from 16 new SIVcpzPtt strains and determined full-length sequences for two of these. Phylogenetic analyses of these new viruses confirmed the previously reported phylogeographic clustering of SIVcpzPtt lineages, with viruses related to the ancestors of HIV-1 groups M and N circulating exclusively in southeastern and south central P. t. troglodytes communities, respectively. Importantly, the SIVcpzPtt strains from the southeastern corner of Cameroon represent a relatively isolated clade indicating a defined geographic origin of the chimpanzee precursor of HIV-1 group M. Since contacts between humans and apes continue, the possibility of ongoing transmissions of SIV from chimpanzees (or gorillas) to humans has to be considered. In this context, our finding of distinct SIVcpzPtt envelope V3 sequence clades suggests that these peptides may be useful for the serological differentiation of SIVcpzPtt and HIV-1 infections, and thus the diagnosis of new cross-species transmissions if they occurred.
Collapse
Affiliation(s)
- Fran Van Heuverswyn
- UMR145, Institut de Recherche pour le Développement, Department of International Health, University of Montpellier 1, 911, Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Wain LV, Bailes E, Bibollet-Ruche F, Decker JM, Keele BF, Van Heuverswyn F, Li Y, Takehisa J, Ngole EM, Shaw GM, Peeters M, Hahn BH, Sharp PM. Adaptation of HIV-1 to its human host. Mol Biol Evol 2007; 24:1853-60. [PMID: 17545188 PMCID: PMC4053193 DOI: 10.1093/molbev/msm110] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) originated from three independent cross-species transmissions of simian immunodeficiency virus (SIVcpzPtt) infecting chimpanzees (Pan troglodytes troglodytes) in west central Africa, giving rise to pandemic (group M) and non-pandemic (groups N and O) clades of HIV-1. To identify host-specific adaptations in HIV-1 we compared the inferred ancestral sequences of HIV-1 groups M, N and O to 12 full length genome sequences of SIVcpzPtt and four of the outlying but closely related SIVcpzPts (from P. t. schweinfurthii). This analysis revealed a single site that was completely conserved among SIVcpzPtt strains but different (due to the same change) in all three groups of HIV-1. This site, Gag-30, lies within p17, the gag-encoded matrix protein. It is Met in SIVcpzPtt, underwent a conservative replacement by Leu in one lineage of SIVcpzPts but changed radically to Arg on all three lineages leading to HIV-1. During subsequent diversification this site has been conserved as a basic residue (Arg or Lys) in most lineages of HIV-1. Retrospective analysis revealed that Gag-30 had reverted to Met in a previous experiment in which HIV-1 was passaged through chimpanzees. To examine whether this substitution conferred a species specific growth advantage, we used site-directed mutagenesis to generate variants of these chimpanzee-adapted HIV-1 strains with Lys at Gag-30, and tested their replication in both human and chimpanzee CD4+ T lymphocytes. Remarkably, viruses encoding Met replicated to higher titers than viruses encoding Lys in chimpanzee T cells, but the opposite was found in human T cells. Taken together, these observations provide compelling evidence for host-specific adaptation during the emergence of HIV-1 and identify the viral matrix protein as a modulator of viral fitness following transmission to the new human host.
Collapse
Affiliation(s)
- Louise V Wain
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Takehisa J, Kraus MH, Decker JM, Li Y, Keele BF, Bibollet-Ruche F, Zammit KP, Weng Z, Santiago ML, Kamenya S, Wilson ML, Pusey AE, Bailes E, Sharp PM, Shaw GM, Hahn BH. Generation of infectious molecular clones of simian immunodeficiency virus from fecal consensus sequences of wild chimpanzees. J Virol 2007; 81:7463-75. [PMID: 17494082 PMCID: PMC1933379 DOI: 10.1128/jvi.00551-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Studies of simian immunodeficiency viruses (SIVs) in their endangered primate hosts are of obvious medical and public health importance, but technically challenging. Although SIV-specific antibodies and nucleic acids have been detected in primate fecal samples, recovery of replication-competent virus from such samples has not been achieved. Here, we report the construction of infectious molecular clones of SIVcpz from fecal viral consensus sequences. Subgenomic fragments comprising a complete provirus were amplified from fecal RNA of three wild-living chimpanzees and sequenced directly. One set of amplicons was concatenated using overlap extension PCR. The resulting clone (TAN1.24) contained intact genes and regulatory regions but was replication defective. It also differed from the fecal consensus sequence by 76 nucleotides. Stepwise elimination of all missense mutations generated several constructs with restored replication potential. The clone that yielded the most infectious virus (TAN1.910) was identical to the consensus sequence in both protein and long terminal repeat sequences. Two additional SIVcpz clones were constructed by direct synthesis of fecal consensus sequences. One of these (TAN3.1) yielded fully infectious virus, while the second one (TAN2.69) required modification at one ambiguous site in the viral pol gene for biological activity. All three reconstructed proviruses produced infectious virions that replicated in human and chimpanzee CD4(+) T cells, were CCR5 tropic, and resembled primary human immunodeficiency virus type 1 isolates in their neutralization phenotype. These results provide the first direct evidence that naturally occurring SIVcpz strains already have many of the biological properties required for persistent infection of humans, including CD4 and CCR5 dependence and neutralization resistance. Moreover, they outline a new strategy for obtaining medically important "SIV isolates" that have thus far eluded investigation. Such isolates are needed to identify viral determinants that contribute to cross-species transmission and host adaptation.
Collapse
Affiliation(s)
- Jun Takehisa
- Department of Medicine, University of Alabama at Birmingham, 720 20th Street South, Kaul 816, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
Recent experimental observations suggest approaches to immunization that might finally result in at least a partially effective vaccine against infection with HIV-1. In particular, advances in our understanding of the contribution of vaccine-elicited cellular immunity to protecting memory CD4(+) T cells from virus-mediated destruction provide rational strategies for the development of this vaccine. This is therefore an ideal time to review our current understanding of HIV-1 and its control by the immune system, as well as the remaining problems that must be solved to facilitate the development of an effective vaccine against AIDS.
Collapse
Affiliation(s)
- Norman L Letvin
- Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA.
| |
Collapse
|
86
|
Van Heuverswyn F, Li Y, Neel C, Bailes E, Keele BF, Liu W, Loul S, Butel C, Liegeois F, Bienvenue Y, Ngolle EM, Sharp PM, Shaw GM, Delaporte E, Hahn BH, Peeters M. Human immunodeficiency viruses: SIV infection in wild gorillas. Nature 2006; 444:164. [PMID: 17093443 DOI: 10.1038/444164a] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 10/24/2006] [Indexed: 11/09/2022]
Abstract
Chimpanzees (Pan troglodytes troglodytes) from west central Africa are recognized as the reservoir of simian immunodeficiency viruses (SIVcpzPtt) that have crossed at least twice to humans: this resulted in the AIDS pandemic (from human immunodeficiency virus HIV-1 group M) in one instance and infection of just a few individuals in Cameroon (by HIV-1 group N) in another. A third HIV-1 lineage (group O) from west central Africa also falls within the SIVcpzPtt radiation, but the primate reservoir of this virus has not been identified. Here we report the discovery of HIV-1 group O-like viruses in wild gorillas.
Collapse
Affiliation(s)
- Fran Van Heuverswyn
- UMR145, Institut de Recherche pour le Développement and Department of International Health, University of Montpellier 1, 34394 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Aghokeng AF, Bailes E, Loul S, Courgnaud V, Mpoudi-Ngolle E, Sharp PM, Delaporte E, Peeters. M. Full-length sequence analysis of SIVmus in wild populations of mustached monkeys (Cercopithecus cephus) from Cameroon provides evidence for two co-circulating SIVmus lineages. Virology 2006; 360:407-18. [PMID: 17156809 PMCID: PMC1900428 DOI: 10.1016/j.virol.2006.10.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 10/03/2006] [Accepted: 10/28/2006] [Indexed: 11/29/2022]
Abstract
Mustached monkeys (Cercopithecus cephus), which form a significant component of primate bushmeat in west central Africa, are infected with simian immunodeficiency virus (SIVmus). We identified and genetically characterized five new SIVmus strains infecting wild living mustached monkeys from Cameroon. Phylogenetic analysis of partial pol sequences revealed that SIVmus strains form two distinct groups within the clade comprised of lentiviruses isolated from Cercopithecus nictitans (SIVgsn), Cercopithecus mona (SIVmon) and C. cephus (SIVmus). Characterisation of three full-length SIVmus genomes confirmed the presence of two distinct lineages infecting mustached monkeys. These two variants of SIVmus, here designated SIVmus-1 and SIVmus-2, were isolated from animals sharing habitats within the same geographic region. Phylogenetic analyses showed that the diversification of SIVmus, SIVgsn and SIVmon involved inter-lineage recombination, and suggested that one of the SIVmus lineages likely resulted from cross-species transmission and recombination involving SIVmus and an as yet uncharacterized SIV. These results indicate that cross-species transmission and recombination play a major role in the evolution of primate lentiviruses among sympatric primate species.
Collapse
Affiliation(s)
- Avelin F. Aghokeng
- Laboratoire Retrovirus, UMR 145, IRD and the Department of International Health, University of Montpellier I, Montpellier, France
| | - Elizabeth Bailes
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Severin Loul
- Project PRESICA (Prévention du Sida au Cameroun), Military Hospital, Yaoundé, Cameroon
| | - Valerie Courgnaud
- Laboratoire Retrovirus, UMR 145, IRD and the Department of International Health, University of Montpellier I, Montpellier, France
| | - Eitel Mpoudi-Ngolle
- Project PRESICA (Prévention du Sida au Cameroun), Military Hospital, Yaoundé, Cameroon
| | - Paul M. Sharp
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Eric Delaporte
- Laboratoire Retrovirus, UMR 145, IRD and the Department of International Health, University of Montpellier I, Montpellier, France
| | - Martine Peeters.
- Laboratoire Retrovirus, UMR 145, IRD and the Department of International Health, University of Montpellier I, Montpellier, France
- * Corresponding author and address: UMR 145 – Laboratoire Retrovirus, IRD, 911 Ave. Agropolis, BP 64501, 34394 Montpellier cedex 5, France. Phone: +33 4 67 41 62 97. Fax: +33 4 67 41 61 46. E-mail:
| |
Collapse
|
88
|
Cervasi B, Paiardini M, Serafini S, Fraternale A, Menotta M, Engram J, Lawson B, Staprans SI, Piedimonte G, Perno CF, Silvestri G, Magnani M. Administration of fludarabine-loaded autologous red blood cells in simian immunodeficiency virus-infected sooty mangabeys depletes pSTAT-1-expressing macrophages and delays the rebound of viremia after suspension of antiretroviral therapy. J Virol 2006; 80:10335-45. [PMID: 17041214 PMCID: PMC1641773 DOI: 10.1128/jvi.00472-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major limitation of highly active antiretroviral therapy is that it fails to eradicate human immunodeficiency virus (HIV) infection due to its limited effects on viral reservoirs carrying replication-competent HIV, including monocytes/macrophages (M/M). Therefore, therapeutic approaches aimed at targeting HIV-infected M/M may prove useful in the clinical management of HIV-infected patients. In previous studies, we have shown that administration of fludarabine-loaded red blood cells (RBC) in vitro selectively induces cell death in HIV-infected M/M via a pSTAT1-dependent pathway. To determine the in vivo efficacy of this novel therapeutic strategy, we treated six naturally simian immunodeficiency virus (SIV)-infected sooty mangabeys (SMs) with either 9-[2-(R)-(phosphonomethoxy)propyl]adenine (PMPA) only, fludarabine-loaded RBC only, or PMPA in association with fludarabine-loaded RBC. The rationale of this treatment was to target infected M/M with fludarabine-loaded RBC at a time when PMPA is suppressing viral replication taking place in activated CD4+ T cells. In vivo administration of fludarabine-loaded RBC was well tolerated and did not induce any discernible side effect. Importantly, addition of fludarabine-loaded RBC to PMPA delayed the rebound of viral replication after suspension of therapy, thus suggesting a reduction in the size of SIV reservoirs. While administrations of fludarabine-loaded RBC did not induce any change in the CD4+ or CD8+ T-cell compartments, we observed, in chronically SIV-infected SMs, a selective depletion of M/M expressing pSTAT1. This study suggests that therapeutic strategies based on the administration of fludarabine-loaded RBC may be further explored as interventions aimed at reducing the size of the M/M reservoirs during chronic HIV infection.
Collapse
Affiliation(s)
- B Cervasi
- Institute of Biochemistry, University of Urbino, Urbino, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Chen J, Powell D, Hu WS. High frequency of genetic recombination is a common feature of primate lentivirus replication. J Virol 2006; 80:9651-8. [PMID: 16973569 PMCID: PMC1617242 DOI: 10.1128/jvi.00936-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies indicate that human immunodeficiency virus type 1 (HIV-1) recombines at exceedingly high rates, approximately 1 order of magnitude more frequently than simple gammaretroviruses such as murine leukemia virus and spleen necrosis virus. We hypothesize that this high frequency of genetic recombination is a common feature of primate lentiviruses. Alternatively, it is possible that HIV-1 is unique among primate lentiviruses in possessing high recombination rates. Among other primate lentiviruses, only the molecular mechanisms of HIV-2 replication have been extensively studied. There are reported differences between the replication mechanisms of HIV-1 and those of HIV-2, such as preferences for RNA packaging in cis and properties of reverse transcriptase and RNase H activities. These biological disparities could lead to differences in recombination rates between the two viruses. Currently, HIV-1 is the only primate lentivirus in which recombination rates have been measured. To test our hypothesis, we established recombination systems to measure the recombination rates of two other primate lentiviruses, HIV-2 and simian immunodeficiency virus from African green monkeys (SIVagm), in one round of viral replication. We determined that, for markers separated by 588, 288, and 90 bp, HIV-2 recombined at rates of 7.4%, 5.5%, and 2.4%, respectively, whereas SIVagm recombined at rates of 7.8%, 5.6%, and 2.7%, respectively. These high recombination rates are within the same range as the previously measured HIV-1 recombination rates. Taken together, our results indicate that HIV-1, HIV-2, and SIVagm all possess high recombination frequencies; hence, the high recombination potential is most likely a common feature of primate lentivirus replication.
Collapse
Affiliation(s)
- Jianbo Chen
- HIV Drug Resistance Program, NCI-Frederick, P.O. Box B, Building 535, Room 336, Frederick, MD 21702, USA
| | | | | |
Collapse
|
90
|
Abstract
Genomics is now a core element in the effort to develop a vaccine against HIV-1. Thanks to unprecedented progress in high-throughput genotyping and sequencing, in knowledge about genetic variation in humans, and in evolutionary genomics, it is finally possible to systematically search the genome for common genetic variants that influence the human response to HIV-1. The identification of such variants would help to determine which aspects of the response to the virus are the most promising targets for intervention. However, a key obstacle to progress remains the scarcity of appropriate human cohorts available for genomic research.
Collapse
Affiliation(s)
- Amalio Telenti
- Institute of Microbiology, University Hospital, University of Lausanne, 1011 Lausanne, Switzerland.
| | | |
Collapse
|
91
|
VandeWoude S, Apetrei C. Going wild: lessons from naturally occurring T-lymphotropic lentiviruses. Clin Microbiol Rev 2006; 19:728-62. [PMID: 17041142 PMCID: PMC1592692 DOI: 10.1128/cmr.00009-06] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Over 40 nonhuman primate (NHP) species harbor species-specific simian immunodeficiency viruses (SIVs). Similarly, more than 20 species of nondomestic felids and African hyenids demonstrate seroreactivity against feline immunodeficiency virus (FIV) antigens. While it has been challenging to study the biological implications of nonfatal infections in natural populations, epidemiologic and clinical studies performed thus far have only rarely detected increased morbidity or impaired fecundity/survival of naturally infected SIV- or FIV-seropositive versus -seronegative animals. Cross-species transmissions of these agents are rare in nature but have been used to develop experimental systems to evaluate mechanisms of pathogenicity and to develop animal models of HIV/AIDS. Given that felids and primates are substantially evolutionarily removed yet demonstrate the same pattern of apparently nonpathogenic lentiviral infections, comparison of the biological behaviors of these viruses can yield important implications for host-lentiviral adaptation which are relevant to human HIV/AIDS infection. This review therefore evaluates similarities in epidemiology, lentiviral genotyping, pathogenicity, host immune responses, and cross-species transmission of FIVs and factors associated with the establishment of lentiviral infections in new species. This comparison of consistent patterns in lentivirus biology will expose new directions for scientific inquiry for understanding the basis for virulence versus avirulence.
Collapse
Affiliation(s)
- Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, College of Veterinary and Biomedical Sciences, Colorado State University, Fort Collins, CO 80538-1619, USA
| | | |
Collapse
|
92
|
Pandrea I, Apetrei C, Gordon S, Barbercheck J, Dufour J, Bohm R, Sumpter B, Roques P, Marx PA, Hirsch VM, Kaur A, Lackner AA, Veazey RS, Silvestri G. Paucity of CD4+CCR5+ T cells is a typical feature of natural SIV hosts. Blood 2006; 109:1069-76. [PMID: 17003371 PMCID: PMC1785133 DOI: 10.1182/blood-2006-05-024364] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In contrast to lentiviral infections of humans and macaques, simian immunodeficiency virus (SIV) infection of natural hosts is nonpathogenic despite high levels of viral replication. However, the mechanisms underlying this absence of disease are unknown. Here we report that natural hosts for SIV infection express remarkably low levels of CCR5 on CD4+ T cells isolated from blood, lymph nodes, and mucosal tissues. Given that this immunologic feature is found in 5 different species of natural SIV hosts (sooty mangabeys, African green monkeys, mandrills, sun-tailed monkeys, and chimpanzees) but is absent in 5 nonnatural/recent hosts (humans, rhesus, pigtail, cynomolgus macaques, and baboons), it may represent a key feature of the coevolution between the virus and its natural hosts that led to a nonpathogenic infection. Beneficial effects of low CCR5 expression on CD4+ T cells may include the reduction of target cells for viral replication and a decreased homing of activated CD4+ T cells to inflamed tissue.
Collapse
Affiliation(s)
- Ivona Pandrea
- Tulane National Primate Research Center, Covington, LA 70433, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Pandrea I, Silvestri G, Onanga R, Veazey RS, Marx PA, Hirsch V, Apetrei C. Simian immunodeficiency viruses replication dynamics in African non-human primate hosts: common patterns and species-specific differences. J Med Primatol 2006; 35:194-201. [PMID: 16872282 DOI: 10.1111/j.1600-0684.2006.00168.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
METHODS To define potential common features of simian immunodeficiency virus (SIV) infections in different naturally infected host species, we compared the dynamics of viral replication in 31 African green monkeys (10 sabeus, 15 vervets and seven Caribbean AGMs), 14 mandrills and three sooty mangabeys (SMs) that were experimentally infected with their species-specific viruses. RESULTS After infection, these SIVs replicated rapidly reaching viral loads (VLs) of 10(5)-10(9) copies/ml of plasma between days 9-14 post-infection (p.i). Set point viremia was established between days 42 and 60 p.i., with levels of approximately 10(5)-10(6) copies/ml in SM and mandrills, and lower levels (10(3)-10(5) copies/ml) in AGMs. VL during the chronic phase did not correlate with viral genome structure: SIVmnd-2 (a vpx-containing virus) and SIVmnd-1 (which does not contain vpu or vpx) replicated to similar levels in mandrills. VL was dependent on virus strain: vervets infected with three different viral strains showed different patterns of viral replication. The pattern of viral replication of SIVagm.sab, which uses both CCR5 and CXCR4 co-receptors was similar to those of the other viruses. CONCLUSIONS Our results show a common pattern of SIV replication in naturally and experimentally infected hosts. This is similar overall to that observed in pathogenic SIV infection of macaques. This result indicates that differences in clinical outcome between pathogenic and non-pathogenic infections rely on host responses rather than the characteristics of the virus itself.
Collapse
Affiliation(s)
- Ivona Pandrea
- Tulane National Primate Research Center, Covington, LA 70433, USA.
| | | | | | | | | | | | | |
Collapse
|
94
|
O’Brien SJ, Troyer JL, Roelke M, Marker L, Pecon-Slattery J. Plagues and adaptation: Lessons from the Felidae models for SARS and AIDS. BIOLOGICAL CONSERVATION 2006; 131:255-267. [PMID: 32226081 PMCID: PMC7096731 DOI: 10.1016/j.biocon.2006.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Research studies of infectious disease outbreaks in wild species of the cat family Felidae have revealed unusual details regarding forces that shape population survival and genetic resistance in these species. A highly virulent feline coronavirus epidemic in African cheetahs, a disease model for human SARS, illustrates the critical role of ancestral population genetic variation. Widespread prevalence of species specific feline immunodeficiency virus (FIV), a relative of HIV-AIDS, occurs with little pathogenesis in felid species, except in domestic cats, suggesting immunological adaptation in species where FIV is endemic. Resolving the interaction of host and pathogen genomes can shed new light on the process of disease outbreak in wildlife and in humankind. The role of disease in endangered populations and species is difficult to access as opportunities to monitor outbreaks in natural populations are limited. Conservation management may benefit greatly from advances in molecular genetic tools developed for human biomedical research to assay the biodiversity of both host species and emerging pathogen. As these examples illustrate, strong parallels exist between disease in human and endangered wildlife and argue for an integration of the research fields of comparative genomics, infectious disease, epidemiology, molecular genetics and population biology for an effective proactive conservation approach.
Collapse
Affiliation(s)
- Stephen J. O’Brien
- Laboratory of Genomic Diversity, National Cancer Institute, Building 560, Room 21-105, Frederick, MD 21702, USA
| | - Jennifer L. Troyer
- Laboratory of Genomic Diversity, SAIC-Frederick, NCI-Frederick, Frederick MD USA
| | - Melody Roelke
- Laboratory of Genomic Diversity, SAIC-Frederick, NCI-Frederick, Frederick MD USA
| | - Laurie Marker
- Cheetah Conservation Fund, Namibia, Southwest Africa
| | - Jill Pecon-Slattery
- Laboratory of Genomic Diversity, National Cancer Institute, Building 560, Room 21-105, Frederick, MD 21702, USA
| |
Collapse
|
95
|
Sokolskaja E, Luban J. Cyclophilin, TRIM5, and innate immunity to HIV-1. Curr Opin Microbiol 2006; 9:404-8. [PMID: 16815734 DOI: 10.1016/j.mib.2006.06.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 06/20/2006] [Indexed: 10/24/2022]
Abstract
The peptidyl-prolyl isomerase cyclophilin A (CypA) binds a proline-rich loop on the surface of HIV-1 capsid (CA). This interaction increases HIV-1 infectivity in humans but promotes an anti-HIV-1 restriction activity in non-human primates. Efforts to understand these paradoxical effects of cyclophilin, along with more targeted approaches to uncover the genetic basis for HIV-1 restriction, led to the discovery of TRIM5 (tripartite motif protein 5), a CA-specific receptor for the retroviral core. The ensuing TRIM5 publication flurry established a paradigm of innate immunity in which the protein lattice of an invading retroviral core, rather than double-stranded RNA or lipopolysaccharide, is recognized by a multimeric, cytoplasmic receptor. CypA modulates HIV-1 virion core detection by this class of innate pattern recognition molecule, apparently by inducing subtle shifts in CA conformation.
Collapse
Affiliation(s)
- Elena Sokolskaja
- Department of Microbiology, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
96
|
Zhang M, Schultz AK, Calef C, Kuiken C, Leitner T, Korber B, Morgenstern B, Stanke M. jpHMM at GOBICS: a web server to detect genomic recombinations in HIV-1. Nucleic Acids Res 2006; 34:W463-5. [PMID: 16845050 PMCID: PMC1538796 DOI: 10.1093/nar/gkl255] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 03/02/2006] [Accepted: 03/30/2006] [Indexed: 11/12/2022] Open
Abstract
Detecting recombinations in the genome sequence of human immunodeficiency virus (HIV-1) is crucial for epidemiological studies and for vaccine development. Herein, we present a web server for subtyping and localization of phylogenetic breakpoints in HIV-1. Our software is based on a jumping profile Hidden Markov Model (jpHMM), a probabilistic generalization of the jumping-alignment approach proposed by Spang et al. The input data for our server is a partial or complete genome sequence from HIV-1; our tool assigns regions of the input sequence to known subtypes of HIV-1 and predicts phylogenetic breakpoints. jpHMM is available online at http://jphmm.gobics.de/.
Collapse
Affiliation(s)
- Ming Zhang
- Institut für Mikrobiologie und Genetik, Abteilung Bioinformatik, Goldschmidtstrasse 1, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Heeney JL, Rutjens E, Verschoor EJ, Niphuis H, ten Haaft P, Rouse S, McClure H, Balla-Jhagjhoorsingh S, Bogers W, Salas M, Cobb K, Kestens L, Davis D, van der Groen G, Courgnaud V, Peeters M, Murthy KK. Transmission of simian immunodeficiency virus SIVcpz and the evolution of infection in the presence and absence of concurrent human immunodeficiency virus type 1 infection in chimpanzees. J Virol 2006; 80:7208-18. [PMID: 16809326 PMCID: PMC1489021 DOI: 10.1128/jvi.00382-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 04/24/2006] [Indexed: 11/20/2022] Open
Abstract
Current data suggest that the human immunodeficiency virus type 1 (HIV-1) epidemic arose by transmission of simian immunodeficiency virus (SIV) SIVcpz from a subspecies of common chimpanzees (Pan troglodytes troglodytes) to humans. SIVcpz of chimpanzees is itself a molecular chimera of SIVs from two or more different monkey species, suggesting that recombination was made possible by coinfection of one individual animal with different lentiviruses. However, very little is known about SIVcpz transmission and the susceptibility to lentivirus coinfection of its natural host, the chimpanzee. Here, it is revealed that either infected plasma or peripheral blood mononuclear cells readily confer infection when exposure occurs by the intravenous or mucosal route. Importantly, the presence of preexisting HIV-1 infection did not modify the kinetics of SIVcpz infection once it was established by different routes. Although humoral responses appeared as early as 4 weeks postinfection, neutralization to SIVcpz-ANT varied markedly between animals. Analysis of the SIVcpz env sequence over time revealed the emergence of genetic viral variants and persistent SIVcpz RNA levels of between 10(4) and 10(5) copies/ml plasma regardless of the presence or absence of concurrent HIV-1 infection. These unique data provide important insight into possible routes of transmission, the kinetics of acute SIVcpz infection, and how readily coinfection with SIVcpz and other lentiviruses may be established as necessary preconditions for potential recombination.
Collapse
Affiliation(s)
- Jonathan L Heeney
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 139, P.O. Box 3306, 2280 GH Rijswijk, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Schindler M, Münch J, Kutsch O, Li H, Santiago ML, Bibollet-Ruche F, Müller-Trutwin MC, Novembre FJ, Peeters M, Courgnaud V, Bailes E, Roques P, Sodora DL, Silvestri G, Sharp PM, Hahn BH, Kirchhoff F. Nef-Mediated Suppression of T Cell Activation Was Lost in a Lentiviral Lineage that Gave Rise to HIV-1. Cell 2006; 125:1055-67. [PMID: 16777597 DOI: 10.1016/j.cell.2006.04.033] [Citation(s) in RCA: 303] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 02/22/2006] [Accepted: 04/11/2006] [Indexed: 01/29/2023]
Abstract
High-level immune activation and T cell apoptosis represent a hallmark of HIV-1 infection that is absent from nonpathogenic SIV infections in natural primate hosts. The mechanisms causing these varying levels of immune activation are not understood. Here, we report that nef alleles from the great majority of primate lentiviruses, including HIV-2, downmodulate TCR-CD3 from infected T cells, thereby blocking their responsiveness to activation. In contrast, nef alleles from HIV-1 and a subset of closely related SIVs fail to downregulate TCR-CD3 and to inhibit cell death. Thus, Nef-mediated suppression of T cell activation is a fundamental property of primate lentiviruses that likely evolved to maintain viral persistence in the context of an intact host immune system. This function was lost during viral evolution in a lineage that gave rise to HIV-1 and may have predisposed the simian precursor of HIV-1 for greater pathogenicity in humans.
Collapse
MESH Headings
- Animals
- Apoptosis
- CD4 Antigens/immunology
- Cells, Cultured
- Cercocebus atys
- Down-Regulation
- Evolution, Molecular
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- HIV-1/immunology
- HIV-1/pathogenicity
- HIV-1/physiology
- HIV-2/immunology
- HIV-2/physiology
- Humans
- Lentiviruses, Primate/immunology
- Lentiviruses, Primate/physiology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/virology
- Lymphocyte Activation
- Molecular Sequence Data
- Phylogeny
- Receptor-CD3 Complex, Antigen, T-Cell/immunology
- Simian Acquired Immunodeficiency Syndrome/immunology
- Simian Immunodeficiency Virus/immunology
- Simian Immunodeficiency Virus/physiology
- T-Lymphocytes/immunology
- T-Lymphocytes/virology
- nef Gene Products, Human Immunodeficiency Virus
Collapse
|
99
|
Keele BF, Van Heuverswyn F, Li Y, Bailes E, Takehisa J, Santiago ML, Bibollet-Ruche F, Chen Y, Wain LV, Liegeois F, Loul S, Ngole EM, Bienvenue Y, Delaporte E, Brookfield JFY, Sharp PM, Shaw GM, Peeters M, Hahn BH. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science 2006; 313:523-6. [PMID: 16728595 PMCID: PMC2442710 DOI: 10.1126/science.1126531] [Citation(s) in RCA: 537] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1), the cause of human acquired immunodeficiency syndrome (AIDS), is a zoonotic infection of staggering proportions and social impact. Yet uncertainty persists regarding its natural reservoir. The virus most closely related to HIV-1 is a simian immunodeficiency virus (SIV) thus far identified only in captive members of the chimpanzee subspecies Pan troglodytes troglodytes. Here we report the detection of SIVcpz antibodies and nucleic acids in fecal samples from wild-living P. t. troglodytes apes in southern Cameroon, where prevalence rates in some communities reached 29 to 35%. By sequence analysis of endemic SIVcpz strains, we could trace the origins of pandemic (group M) and nonpandemic (group N) HIV-1 to distinct, geographically isolated chimpanzee communities. These findings establish P. t. troglodytes as a natural reservoir of HIV-1.
Collapse
Affiliation(s)
- Brandon F. Keele
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fran Van Heuverswyn
- Laboratoire Retrovirus, UMR145, Institut de Recherche pour le Développement and Department of International Health, University of Montpellier I, 911 Avenue Agropolis, Boite Postale 64501, 34394 Montpellier Cedex 5, France
| | - Yingying Li
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elizabeth Bailes
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Jun Takehisa
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mario L. Santiago
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Frederic Bibollet-Ruche
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yalu Chen
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Louise V. Wain
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Florian Liegeois
- Laboratoire Retrovirus, UMR145, Institut de Recherche pour le Développement and Department of International Health, University of Montpellier I, 911 Avenue Agropolis, Boite Postale 64501, 34394 Montpellier Cedex 5, France
| | - Severin Loul
- Projet Prevention du Sida au Cameroun (PRESICA), Boite Postale 1857, Yaoundé, Cameroun
| | - Eitel Mpoudi Ngole
- Projet Prevention du Sida au Cameroun (PRESICA), Boite Postale 1857, Yaoundé, Cameroun
| | - Yanga Bienvenue
- Projet Prevention du Sida au Cameroun (PRESICA), Boite Postale 1857, Yaoundé, Cameroun
| | - Eric Delaporte
- Laboratoire Retrovirus, UMR145, Institut de Recherche pour le Développement and Department of International Health, University of Montpellier I, 911 Avenue Agropolis, Boite Postale 64501, 34394 Montpellier Cedex 5, France
| | - John F. Y. Brookfield
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Paul M. Sharp
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - George M. Shaw
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Howard Hughes Medical Institute, 720 South 20th Street, KAUL 816, Birmingham, AL 35294, USA
| | - Martine Peeters
- Laboratoire Retrovirus, UMR145, Institut de Recherche pour le Développement and Department of International Health, University of Montpellier I, 911 Avenue Agropolis, Boite Postale 64501, 34394 Montpellier Cedex 5, France
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- †To whom correspondence should be addressed. E-mail:
| |
Collapse
|
100
|
Schultz AK, Zhang M, Leitner T, Kuiken C, Korber B, Morgenstern B, Stanke M. A jumping profile Hidden Markov Model and applications to recombination sites in HIV and HCV genomes. BMC Bioinformatics 2006; 7:265. [PMID: 16716226 PMCID: PMC1525204 DOI: 10.1186/1471-2105-7-265] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 05/22/2006] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Jumping alignments have recently been proposed as a strategy to search a given multiple sequence alignment A against a database. Instead of comparing a database sequence S to the multiple alignment or profile as a whole, S is compared and aligned to individual sequences from A. Within this alignment, S can jump between different sequences from A, so different parts of S can be aligned to different sequences from the input multiple alignment. This approach is particularly useful for dealing with recombination events. RESULTS We developed a jumping profile Hidden Markov Model (jpHMM), a probabilistic generalization of the jumping-alignment approach. Given a partition of the aligned input sequence family into known sequence subtypes, our model can jump between states corresponding to these different subtypes, depending on which subtype is locally most similar to a database sequence. Jumps between different subtypes are indicative of intersubtype recombinations. We applied our method to a large set of genome sequences from human immunodeficiency virus (HIV) and hepatitis C virus (HCV) as well as to simulated recombined genome sequences. CONCLUSION Our results demonstrate that jumps in our jumping profile HMM often correspond to recombination breakpoints; our approach can therefore be used to detect recombinations in genomic sequences. The recombination breakpoints identified by jpHMM were found to be significantly more accurate than breakpoints defined by traditional methods based on comparing single representative sequences.
Collapse
Affiliation(s)
- Anne-Kathrin Schultz
- Institute of Microbiology and Genetics, University of Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany
| | - Ming Zhang
- Institute of Microbiology and Genetics, University of Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Thomas Leitner
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Carla Kuiken
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Bette Korber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- The Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Burkhard Morgenstern
- Institute of Microbiology and Genetics, University of Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany
| | - Mario Stanke
- Institute of Microbiology and Genetics, University of Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany
| |
Collapse
|