51
|
Wallander ML, Leibold EA, Eisenstein RS. Molecular control of vertebrate iron homeostasis by iron regulatory proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:668-89. [PMID: 16872694 PMCID: PMC2291536 DOI: 10.1016/j.bbamcr.2006.05.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 05/09/2006] [Accepted: 05/10/2006] [Indexed: 02/06/2023]
Abstract
Both deficiencies and excesses of iron represent major public health problems throughout the world. Understanding the cellular and organismal processes controlling iron homeostasis is critical for identifying iron-related diseases and in advancing the clinical treatments for such disorders of iron metabolism. Iron regulatory proteins (IRPs) 1 and 2 are key regulators of vertebrate iron metabolism. These RNA binding proteins post-transcriptionally control the stability or translation of mRNAs encoding proteins involved in iron homeostasis thereby controlling the uptake, utilization, storage or export of iron. Recent evidence provides insight into how IRPs selectively control the translation or stability of target mRNAs, how IRP RNA binding activity is controlled by iron-dependent and iron-independent effectors, and the pathological consequences of dysregulation of the IRP system.
Collapse
Affiliation(s)
- Michelle L. Wallander
- Department of Oncological Sciences, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
| | - Elizabeth A. Leibold
- Department of Medicine, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
| | - Richard S. Eisenstein
- Department of Nutritional Sciences, University of Wisconsin, 1415 Linden Drive, Madison, WI 53706, USA
- Corresponding author. Tel.: +1 608 262 5830. E-mail address: (R.S. Eisenstein)
| |
Collapse
|
52
|
Prophete C, Maciejczyk P, Salnikow K, Gould T, Larson T, Koenig J, Jaques P, Sioutas C, Lippmann M, Cohen M. Effects of select PM-associated metals on alveolar macrophage phosphorylated ERK1 and -2 and iNOS expression during ongoing alteration in iron homeostasis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2006; 69:935-51. [PMID: 16728372 DOI: 10.1080/15287390500362030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
It was hypothesized that relative mass relationships among select constituent metals and iron (Fe3+) govern the pulmonary immunotoxic potential of any PM(2.5) sample, as these determine the extent to which Fe3+ binding by transferrin is affected (resulting in altered alveolar macrophage [AM] Fe status and subsequent antibacterial function). Iron response protein (IRP) binding activity is a useful indirect measurement of changes in Fe status, as reductions in cell Fe levels lead to increases in IRP binding. However, AM IRP activity can be affected by an increased presence of nitric oxide generated by inducible nitric oxide synthase (iNOS). This study sought to determine if any changes in AM IRP activity induced by PM(2.5) constituents V, Mn, or Al were independent from effects of the metals on cell NO formation. NR8383 rat AM were exposed to Fe3+ alone or combined with V, Mn, or Al at metal:Fe ratios representative of those in PM(2.5) collected in New York City, Los Angeles, and Seattle during fall 2001. Cells were then assessed for changes in IRP activity and iNOS expression. Phosphorylated extracellular signal-regulated kinase (ERK) 1 and 2 levels were also measured since activated ERKs are involved in signaling pathways that lead to increased iNOS expression. The results indicate that V and Al, and to a lesser extent Mn, altered IRP activity, though the effects were not consistently concentration dependent. Furthermore, while V and Mn treatments did not induce iNOS expression, Al did. These results confirmed our hypothesis that certain metals associated with PM(2.5) might alter the pulmonary immunocompetence of exposed hosts by affecting the Fe status of AM, a major class of deep lung defense cells.
Collapse
Affiliation(s)
- Colette Prophete
- NYU-EPA Particulate Matter Health Research Center, Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Wang J, Fillebeen C, Chen G, Andriopoulos B, Pantopoulos K. Sodium nitroprusside promotes IRP2 degradation via an increase in intracellular iron and in the absence of S nitrosylation at C178. Mol Cell Biol 2006; 26:1948-54. [PMID: 16479012 PMCID: PMC1430246 DOI: 10.1128/mcb.26.5.1948-1954.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In iron-replete cells the posttranscriptional regulator IRP2 undergoes ubiquitination and proteasomal degradation. A similar response occurs in cells exposed to sodium nitroprusside (SNP), an NO-releasing drug. It has been proposed that nitroprusside ([Fe(CN)5NO]2-) fails to donate iron into cells and that it promotes IRP2 degradation via S nitrosylation at C178. This residue is located within a stretch of 73 amino acids, earlier proposed to define an iron-dependent degradation domain. Surprisingly, we show that IRP2 bearing a C178S mutation or a Delta73 deletion is sensitive to degradation not only by ferric ammonium citrate (FAC) but also by SNP. Moreover, FAC and SNP attenuate the RNA-binding activities of IRP2 and its homologue IRP1 with similar kinetics. Actinomycin D, cycloheximide, succinylacetone, and dimethyl-oxalylglycine antagonize IRP2 degradation in response to both FAC and SNP, suggesting a common mechanistic basis. IRP2 is not only sensitive to fresh, but also to photodegraded SNP and remains unaffected by S-nitrosoglutathione (GSNO), an established nitrosation agent. Importantly, both fresh and photodegraded SNP, but not GSNO, promote a >4-fold increase in the calcein-accessible labile iron pool. Collectively, these results suggest that IRP2 degradation by SNP does not require S nitrosylation but rather represents a response to iron loading.
Collapse
Affiliation(s)
- Jian Wang
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, 3755 Cote-Ste-Catherine Rd., Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | |
Collapse
|
54
|
Abstract
Iron-regulatory protein 2 (IRP2), a posttranscriptional regulator of iron metabolism, undergoes proteasomal degradation in iron-replete cells, while it is stabilized in iron deficiency or hypoxia. IRP2 also responds to nitric oxide (NO), as shown in various cell types exposed to pharmacological NO donors and in gamma interferon/lipopolysaccharide-stimulated macrophages. However, the diverse experimental systems have yielded conflicting results on whether NO activates or inhibits IRP2. We show here that a treatment of mouse B6 fibroblasts or human H1299 lung cancer cells with the NO-releasing drug S-nitroso-N-acetyl-penicillamine (SNAP) activates IRP2 expression. Moreover, the exposure of H1299 cells to SNAP leads to stabilization of hemagglutinin (HA)-tagged IRP2, with kinetics analogous to those elicited by the iron chelator desferrioxamine. Similar results were obtained with IRP2(Delta)(73), a mutant lacking a conserved, IRP2-specific proline- and cysteine-rich domain. Importantly, SNAP fails to stabilize HA-tagged p53, suggesting that under the above experimental conditions, NO does not impair the capacity of the proteasome for protein degradation. Finally, by employing a coculture system of B6 and H1299 cells expressing NO synthase II or IRP2-HA cDNAs, respectively, we demonstrate that NO generated in B6 cells stabilizes IRP2-HA in target H1299 cells by passive diffusion. Thus, biologically synthesized NO promotes IRP2 stabilization without compromising the overall proteasomal activity. These results are consistent with the idea that NO may negatively affect the labile iron pool and thereby trigger responses to iron deficiency.
Collapse
Affiliation(s)
- Jian Wang
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, 3755 Cote-Ste-Catherine Rd., Montreal, Quebec H3T 1E2, Canada
| | | | | |
Collapse
|
55
|
Papanikolaou G, Pantopoulos K. Iron metabolism and toxicity. Toxicol Appl Pharmacol 2005; 202:199-211. [PMID: 15629195 DOI: 10.1016/j.taap.2004.06.021] [Citation(s) in RCA: 579] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Accepted: 06/24/2004] [Indexed: 02/06/2023]
Abstract
Iron is an essential nutrient with limited bioavailability. When present in excess, iron poses a threat to cells and tissues, and therefore iron homeostasis has to be tightly controlled. Iron's toxicity is largely based on its ability to catalyze the generation of radicals, which attack and damage cellular macromolecules and promote cell death and tissue injury. This is lucidly illustrated in diseases of iron overload, such as hereditary hemochromatosis or transfusional siderosis, where excessive iron accumulation results in tissue damage and organ failure. Pathological iron accumulation in the liver has also been linked to the development of hepatocellular cancer. Here we provide a background on the biology and toxicity of iron and the basic concepts of iron homeostasis at the cellular and systemic level. In addition, we provide an overview of the various disorders of iron overload, which are directly linked to iron's toxicity. Finally, we discuss the potential role of iron in malignant transformation and cancer.
Collapse
Affiliation(s)
- G Papanikolaou
- First Department of Internal Medicine, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, Athens 11527, Greece
| | | |
Collapse
|
56
|
Lipinski P, Starzynski RR, Drapier JC, Bouton C, Bartlomiejczyk T, Sochanowicz B, Smuda E, Gajkowska A, Kruszewski M. Induction of iron regulatory protein 1 RNA-binding activity by nitric oxide is associated with a concomitant increase in the labile iron pool: implications for DNA damage. Biochem Biophys Res Commun 2005; 327:349-55. [PMID: 15629469 DOI: 10.1016/j.bbrc.2004.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Indexed: 11/17/2022]
Abstract
Iron regulatory protein 1 (IRP1) is a bifunctional [4Fe-4S] protein that controls iron homeostasis. Switching off its function from an aconitase to an apo-IRP1 interacting with iron-responsive element-containing mRNAs depends on the reduced availability of iron in labile iron pool (LIP). Although the modulation of IRP1 by nitric oxide has been characterized, its impact on LIP remains unknown. Here, we show that inhibition of IRP1 aconitase activity and induction of its IRE-binding activity during exposure of L5178Y mouse lymphoma cells to NO are associated with an increase in LIP levels. Removal of NO resulted in a reverse regulation of IRP1 activities accompanied by a decrease of LIP. The increased iron burden in LIP caused by NO exacerbated hydrogen peroxide-induced genotoxicity in L5178Y cells. We demonstrate that the increase in LIP levels in response to chronic but not burst exposure of L5178Y cells to NO is associated with alterations in the expression of proteins involved in iron metabolism.
Collapse
Affiliation(s)
- Pawel Lipinski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, ul. Postepu 1, 05-552 Wolka Kosowska, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
Iron regulatory proteins (IRP1 and 2) function as translational regulators that coordinate the cellular iron metabolism of eukaryotes by binding to the mRNA of target genes such as the transferrin receptor or ferritin. In addition to IRP2, IRP1 serves as sensor of reactive oxygen species (ROS). As iron and oxygen are essential but potentially toxic constituents of most organisms, ROS-mediated modulation of IRP1 activity may be an important regulatory element in dissecting iron homeostasis and oxidative stress. The responses of IRP1 towards reactive oxygen species are compartment-specific and rather complex: H2O2 activates IRP1 via a signaling cascade that leads to upregulation of the transferrin receptor and cellular iron accumulation. Contrary, superoxide inactivates IRP1 by a direct chemical attack being limited to the intracellular compartment. In particular, activation of IRP1 by H2O2 has established a new regulatory link between inflammation and iron metabolism with new clinical implications. This mechanism seems to contribute to the anemia of chronic disease and inflammation-mediated iron accumulation in tissues. In addition, the cytotoxic side effects of redox-cycling anticancer drugs such as doxorubicin may involve H2O2-mediated IRP1 activation. These molecular insights open up new therapeutic strategies for the clinical management of chronic inflammation and drug-mediated cardiotoxicity.
Collapse
Affiliation(s)
- Sebastian Mueller
- Department of Internal Medicine, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
58
|
Li JY, Ram G, Gast K, Chen X, Barasch K, Mori K, Schmidt-Ott K, Wang J, Kuo HC, Savage-Dunn C, Garrick MD, Barasch J. Detection of intracellular iron by its regulatory effect. Am J Physiol Cell Physiol 2004; 287:C1547-59. [PMID: 15282194 DOI: 10.1152/ajpcell.00260.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Intracellular iron regulates gene expression by inhibiting the interaction of iron regulatory proteins (IRPs) with RNA motifs called iron-responsive elements (IREs). To assay this interaction in living cells we have developed two fluorescent IRE-based reporters that rapidly, reversibly, and specifically respond to changes in cellular iron status as well as signaling that modifies IRP activity. The reporters were also sufficiently sensitive to distinguish apo- from holotransferrin in the medium, to detect the effect of modifiers of the transferrin pathway such as HFE, and to detect the donation or chelation of iron by siderophores bound to the lipocalin neutrophil gelatinase-associated lipocalin (Ngal). In addition, alternative configurations of the IRE motif either enhanced or repressed fluorescence, permitting a ratio analysis of the iron-dependent response. These characteristics make it possible to visualize iron-IRP-IRE interactions in vivo.
Collapse
Affiliation(s)
- Jau-Yi Li
- College of Physicians and Surgeons, Columbia Univ., 630 W 168th St., New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Bonnah RA, Muckenthaler MU, Carlson H, Minana B, Enns CA, Hentze MW, So M. Expression of epithelial cell iron-related genes upon infection by Neisseria meningitidis. Cell Microbiol 2004; 6:473-84. [PMID: 15056217 DOI: 10.1111/j.1462-5822.2004.00376.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infection by the obligate human pathogens Neisseria meningitidis (MC) and Neisseria gonorrhoeae (GC) reduces the expression of host epithelial cell transferrin receptor 1 (TfR-1) (Bonnah et al., 2000, Cellular Microbiology 2: 207-218). In addition, the rate and pattern of TfR-1 cycling is altered, leading to diminished uptake of Tf-iron by infected host cells. As Tf-iron is important for maintaining iron homeostasis in the eukaryotic cell, these findings raised the possibility that Neisseria infection might affect further pathways of epithelial cell iron metabolism. We used a specialized cDNA microarray platform, the 'IronChip', to investigate the expression of genes involved in iron transport, storage and regulation. We show that mRNA expression of several host genes involved in iron homeostasis is altered. Surprisingly, the general mRNA expression profile of infected cells closely resembled that of uninfected cells grown in an iron-limited environment. An important exception to this profile is TfR-1, the mRNA level of which is strongly reduced. Low TfR-1 expression may be explained in part by decreased activity of the iron-regulatory proteins (IRPs) in MC-infected cells, which may result in the destabilization of TfR-1 mRNA. Intriguingly, low IRP activity contrasts with the decrease in H-ferritin protein levels in infected cells. This finding suggests that low IRP activity may be responsible in part for the decrease in TfR-1 mRNA levels. A discussion of these novel findings in relation to MC infection and virulence is provided.
Collapse
Affiliation(s)
- Robert A Bonnah
- Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Portland, OR, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Levenson CW, Tassabehji NM. Iron and ageing: an introduction to iron regulatory mechanisms. Ageing Res Rev 2004; 3:251-63. [PMID: 15231236 DOI: 10.1016/j.arr.2004.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Accepted: 03/29/2004] [Indexed: 01/21/2023]
Abstract
While there have been significant advances made in our understanding of the cellular and molecular mechanisms that regulate iron absorption, transport, storage, and utilization, the effect of ageing on these mechanisms and the role of iron in the ageing process is not fully understood. Thus, this review will provide an overview of the iron regulatory mechanisms that may be a factor in the ageing process. Additional reviews in this volume represent an attempt to explore the very latest information on the regulation of iron with a particular emphasis on age-related pathology including mitochondrial function, Parkinson's disease, Alzheimer's disease, stroke, and cardiovascular disease.
Collapse
Affiliation(s)
- Cathy W Levenson
- Program in Neuroscience and Department of Nutrition, Food and Exercise Sciences, 237 Biomedical Research Facility, Florida State University, Tallahassee, FL 32306-4340, USA.
| | | |
Collapse
|
61
|
Santamaria R, Irace C, Festa M, Maffettone C, Colonna A. Induction of ferritin expression by oxalomalate. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1691:151-9. [PMID: 15110995 DOI: 10.1016/j.bbamcr.2004.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2003] [Revised: 01/05/2004] [Accepted: 01/22/2004] [Indexed: 10/26/2022]
Abstract
Ferritin is a ubiquitous protein required for intracellular iron storage; its biosynthesis is mainly regulated by iron-regulatory proteins (IRP1 and IRP2) at post-transcriptional level. This regulation prevents iron excess from promoting the formation of reactive oxygen species (ROS). IRP1 is regulated by such factors as intracellular iron levels, the oxidants H(2)O(2) and NO. We recently demonstrated that oxalomalate (OMA, alpha-hydroxy-beta-oxalosuccinic acid), a competitive inhibitor of aconitase, which is an enzyme of the citric acid cycle, remarkably decreases the binding activity of IRP1. The aim of the present study was to investigate whether this molecule could affect the expression of ferritin. The RNA-binding activity of IRP1, evaluated by gel retardation assay, decreased after treatment of several cell lines with 5 mM OMA, with a maximal decrease of about 3-fold after 6 h. This effect remained almost constant up to 48 h after which it returned to basal levels. Intracellular ferritin levels, determined by Western blot analysis, increased in correlation with the OMA-induced decrease of IRP1 binding activity. Furthermore, treatment of cells with OMA caused a rise in ferritin mRNA levels. Interestingly, in cells exposed to iron challenge, OMA-induced overexpression of ferritin prevented formation of ROS and cellular lipid peroxidation. These data show that an inhibitor of aconitase, OMA, besides being involved in energetic metabolism, is able to control ferritin expression, probably through molecular mechanisms of either post-transcriptional regulation or transcriptional modulation, with advantageous consequences for the cell.
Collapse
Affiliation(s)
- Rita Santamaria
- Dipartimento di Farmacologia Sperimentale, Università di Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | | | | | | | | |
Collapse
|
62
|
Abstract
Cellular iron homeostasis is accomplished by the coordinated regulated expression of the transferrin receptor and ferritin, which mediate iron uptake and storage, respectively. The mechanism is posttranscriptional and involves two cytoplasmic iron regulatory proteins, IRP1 and IRP2. Under conditions of iron starvation, IRPs stabilize the transferrin receptor and inhibit the translation of ferritin mRNAs by binding to "iron responsive elements" (IREs) within their untranslated regions. The IRE/IRP system also controls the expression of additional IRE-containing mRNAs, encoding proteins of iron and energy metabolism. The activities of IRP1 and IRP2 are regulated by distinct posttranslational mechanisms in response to cellular iron levels. Thus, in iron-replete cells, IRP1 assembles a cubane iron-sulfur cluster, which prevents IRE binding, while IRP2 undergoes proteasomal degradation. IRP1 and IRP2 also respond, albeit differentially, to iron-independent signals, such as hydrogen peroxide, hypoxia, or nitric oxide. Basic principles of the IRE/IRP system and recent advances in understanding the regulation and the function of IRP1 and IRP2 are discussed.
Collapse
Affiliation(s)
- Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, and Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
63
|
Schümann K, Brennan K, Weiss M, Pantopoulos K, Hentze MW. Rat duodenal IRP1 activity and iron absorption in iron deficiency and after HO perfusion. Eur J Clin Invest 2004; 34:275-82. [PMID: 15086359 DOI: 10.1111/j.1365-2362.2004.01335.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Iron regulatory protein 1 (IRP1), a post-transcriptional regulator of iron metabolism, is activated in the duodenum of iron-deficient animals, which is associated with increased iron absorption. In cell cultures IRP1 was also activated by iron-independent signals, such as H(2)O(2). Here we investigate whether luminal perfusion of rat duodenum with H(2)O(2) activates duodenal IRP1 and modulates duodenal iron absorption. METHODS Duodena from iron-adequate Sprague-Dawley rats were luminally perfused with H(2)O(2). Iron regulatory protein-1 activity was determined in duodenal mucosa or in villus and crypt preparations by an electrophoretic mobility shift assay. Duodenal (59)Fe absorption was measured in isolated, perfused duodenal segments ex vivo and in ligated loops in vivo. (59)Fe uptake from the blood side was assessed after i.v. injection of (59)Fe-nitrilotriacetic acid. RESULTS Similar to iron deficiency, the perfusion with 0-50 mM of H(2)O(2) increases duodenal IRP1 activity along the entire crypt villus-axis in a dose-dependent manner. After H(2)O(2) treatment, IRP1 remains activated for 12-24 h in the tips and for 72 h in the crypts. In iron-deficiency, IRP activation correlates with increased (59)Fe absorption. However, the H(2)O(2) treatment fails to stimulate any increase in (59)Fe uptake, without promoting damage of mucosal architecture or impairing glucose and water transport. CONCLUSION Duodenal (59)Fe uptake is not affected by the H(2)O(2)-mediated activation of IRP1.
Collapse
Affiliation(s)
- K Schümann
- Lehrstuhl für Ernährungsphysiologie der TUM, Weihenstephan, Germany.
| | | | | | | | | |
Collapse
|
64
|
Abstract
Iron is essential for oxidation-reduction catalysis and bioenergetics; however, unless appropriately shielded, this metal plays a crucial role in the formation of toxic oxygen radicals that can attack all biological molecules. Organisms are equipped with specific proteins designed for iron acquisition, export and transport, and storage, as well as with sophisticated mechanisms that maintain the intracellular labile iron pool at an appropriate level. Despite these homeostatic mechanisms, organisms often face the threat of either iron deficiency or iron overload. This review describes several hereditary iron-overloading conditions that are confined to the brain. Recently, a mutation in the L-subunit of ferritin has been described that causes the formation of aberrant L-ferritin with an altered C-terminus. Individuals with this mutation in one allele of L-ferritin have abnormal aggregates of ferritin and iron in the brain, primarily in the globus pallidus. Patients with this dominantly inherited late-onset disease present with symptoms of extrapyramidal dysfunction. Mice with a targeted disruption of a gene for iron regulatory protein 2 (IRP2), a translational repressor of ferritin, misregulate iron metabolism in the intestinal mucosa and the central nervous system. Significant amounts of ferritin and iron accumulate in white matter tracts and nuclei, and adult IRP2-deficient mice develop a movement disorder consisting of ataxia, bradykinesia, and tremor. Mutations in the frataxin gene are responsible for Friedreich's ataxia, the most common of the inherited ataxias. Frataxin appears to regulate mitochondrial iron-sulfur cluster formation, and the neurologic and cardiac manifestations of Friedreich's ataxia are due to iron-mediated mitochondrial toxicity. Patients with Hallervorden-Spatz syndrome, an autosomal recessive, progressive neurodegenerative disorder, have mutations in a novel pantothenate kinase gene (PANK2). The cardinal feature of this extrapyramidal disease is pathologic iron accumulation in the globus pallidus. The defect in PANK2 is predicted to cause the accumulation of cysteine, which binds iron and causes oxidative stress in the iron-rich globus pallidus. Finally, aceruloplasminemia is an autosomal recessive disorder of iron metabolism caused by loss-of-function mutations in ceruloplasmin gene that leads to misregulation of both systemic and central nervous system iron trafficking. Affected individuals suffer from extrapyramidal signs, cerebellar ataxia, progressive neurodegeneration of retina, and diabetes mellitus. Excessive iron depositions are found in the brain, liver, pancreas, and other parenchymal cells, but plasma iron concentrations are decreased. These conditions are not common, but awareness about them is important for differential diagnosis of various neurodegenerative disorders.
Collapse
Affiliation(s)
- Prem Ponka
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Department of Physiology and Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
65
|
Mori N, Hirayama K. Effect of Long-Term Excessive L-Methionine Consumption on Transferrin Receptor Abundance and Mitochondrial H2O2 Generation in Rat Liver. ACTA ACUST UNITED AC 2004. [DOI: 10.1248/jhs.50.277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Nobuko Mori
- School of Health Sciences, Kumamoto University
| | | |
Collapse
|
66
|
Fonseca AM, Pereira CF, Porto G, Arosa FA. Red blood cells upregulate cytoprotective proteins and the labile iron pool in dividing human T cells despite a reduction in oxidative stress. Free Radic Biol Med 2003; 35:1404-16. [PMID: 14642388 DOI: 10.1016/j.freeradbiomed.2003.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have recently reported that red blood cells (RBC) promote T cell growth and survival by inhibiting activation-induced T cell death. In the present study, we have examined parameters of oxidative stress and intracellular iron in activated T cells and correlated these data with the expression of ferritin, heme oxygenase-1 (HO-1), and the transferrin receptor CD71. T cells growing in the presence of RBC had reduced levels of reactive oxygen species (ROS) and oxidatively modified proteins, suggesting that RBC efficiently counteracted ROS production on the activated T cells. Flow cytometry and immunodetection demonstrated that T cells dividing in the presence of RBC had increased levels of intracellular ferritin rich in L-subunits and HO-1 along with a downmodulation in CD71 expression. Finally, using the fluorescent iron indicator calcein and flow cytometry analysis, we were able to show that a relative amount of the labile iron pool (LIP) was upregulated in T cells growing in the presence of RBC. These findings are consistent with a typical response to iron overload. However, neither heme compounds nor ferric iron reproduced the levels of expansion and survival of T cells induced by intact RBC. Altogether, these data suggest that RBC inhibit apoptosis of activated T cells by a combination of ROS scavenging and upregulation of cytoprotective proteins such as ferritin and HO-1, which may counteract a possible toxic effect of the increased intracellular free iron.
Collapse
Affiliation(s)
- Ana Mafalda Fonseca
- Laboratory of Molecular Immunology, Institute for Molecular and Cell Biology (IBMC), Porto, Portugal
| | | | | | | |
Collapse
|
67
|
Schneider BD, Leibold EA. Effects of iron regulatory protein regulation on iron homeostasis during hypoxia. Blood 2003; 102:3404-11. [PMID: 12855587 DOI: 10.1182/blood-2003-02-0433] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron regulatory proteins (IRP1 and IRP2) are RNA-binding proteins that affect the translation and stabilization of specific mRNAs by binding to stem-loop structures known as iron responsive elements (IREs). IREs are found in the 5'-untranslated region (UTR) of ferritin (Ft) and mitochondrial aconitase (m-Aco) mRNAs, and in the 3'-UTR of transferrin receptor (TfR) and divalent metal transporter-1 (DMT1) mRNAs. Our previous studies show that besides iron, IRPs are regulated by hypoxia. Here we describe the consequences of IRP regulation and show that iron homeostasis is regulated in 2 phases during hypoxia: an early phase where IRP1 RNA-binding activity decreases and iron uptake and Ft synthesis increase, and a late phase where IRP2 RNA-binding activity increases and iron uptake and Ft synthesis decrease. The increase in iron uptake is independent of DMT1 and TfR, suggesting an unknown transporter. Unlike Ft, m-Aco is not regulated during hypoxia. During the late phase of hypoxia, IRP2 RNA-binding activity increases, becoming the dominant regulator responsible for decreasing Ft synthesis. During reoxygenation (ReO2), Ft protein increases concomitant with a decrease in IRP2 RNA-binding activity. The data suggest that the differential regulation of IRPs during hypoxia may be important for cellular adaptation to low oxygen tension.
Collapse
Affiliation(s)
- Brian D Schneider
- Program in Human Molecular Biology and Genetics, and Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
68
|
|
69
|
Mütze S, Hebling U, Stremmel W, Wang J, Arnhold J, Pantopoulos K, Mueller S. Myeloperoxidase-derived hypochlorous acid antagonizes the oxidative stress-mediated activation of iron regulatory protein 1. J Biol Chem 2003; 278:40542-9. [PMID: 12888561 DOI: 10.1074/jbc.m307159200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypochlorous acid (HOCl) is a highly reactive product generated by the myeloperoxidase reaction during the oxidative burst of activated neutrophils, which is implicated in many bactericidal and cytotoxic responses. Recent evidence suggests that HOCl may also play a role in the modulation of redox sensitive signaling pathways. The short half-life of HOCl and the requirement for a continuous presence of H2O2 as a substrate for its myeloperoxidase-catalyzed generation make the study of HOCl-mediated responses very difficult. We describe here an enzymatic model consisting of glucose/glucose oxidase, catalase, and myeloperoxidase (GOX/CAT/MPO) that allows the controlled generation of both HOCl and H2O2 and thus, mimics the oxidative burst of activated neutrophils. By employing this model we show that HOCl prevents the H2O2-mediated activation of iron regulatory protein 1 (IRP1), a central post-transcriptional regulator of mammalian iron metabolism. Activated IRP1 binds to (R)iron-responsive elements" (IREs) within the mRNAs encoding proteins of iron metabolism and thereby controls their translation or stability. The inhibitory effect of HOCl is not a result of a direct modification of IRP1 by this oxidant. Kinetics experiments provide evidence that HOCl intervenes with the signaling cascade, which results in the activation of IRP1. We further demonstrate that HOCl antagonizes the H2O2-mediated increase in the levels of transferrin receptor, which is a downstream target of IRP1. Our findings suggest that HOCl can modulate signaling pathways in a concerted action with H2O2. The GOX/CAT/MPO system provides a valuable tool for studying the regulatory function of HOCl.
Collapse
Affiliation(s)
- Sebine Mütze
- Department of Internal Medicine IV, University of Heidelberg, Bergheimer Strasse 58, 69115 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
70
|
Kotamraju S, Tampo Y, Keszler A, Chitambar CR, Joseph J, Haas AL, Kalyanaraman B. Nitric oxide inhibits H2O2-induced transferrin receptor-dependent apoptosis in endothelial cells: Role of ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 2003; 100:10653-8. [PMID: 12958216 PMCID: PMC196859 DOI: 10.1073/pnas.1933581100] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We investigated here the mechanism of cytoprotection of nitric oxide (*NO) in bovine aortic endothelial cells treated with H2O2. NONOates were used as *NO donors that released *NO slowly at a well defined rate in the extracellular and intracellular milieus. H2O2-mediated intracellular dichlorofluorescein fluorescence and apoptosis were enhanced by the transferrin receptor (TfR)-mediated iron uptake. *NO inhibited the TfR-mediated iron uptake, dichlorofluorescein fluorescence, and apoptosis in H2O2-treated cells. *NO increased the proteasomal activity and degradation of nitrated TfR via ubiquitination. Nomega-nitro-L-arginine methyl ester, a nonspecific inhibitor of endogenous *NO biosynthesis, decreased the trypsin-like activity of 26S proteasome. *NO, by activating proteolysis, mitigates TfR-dependent iron uptake, dichlorodihydrofluorescein oxidation, and apoptosis in H2O2-treated bovine aortic endothelial cells. The relevance of biological nitration on redox signaling is discussed.
Collapse
Affiliation(s)
- Srigiridhar Kotamraju
- Biophysics Research Institute and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Kwik-Uribe CL, Reaney S, Zhu Z, Smith D. Alterations in cellular IRP-dependent iron regulation by in vitro manganese exposure in undifferentiated PC12 cells. Brain Res 2003; 973:1-15. [PMID: 12729948 DOI: 10.1016/s0006-8993(03)02457-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Manganese (Mn) may interfere with iron regulation by altering the binding of iron regulatory proteins (IRPs) to their response elements found on the mRNA encoding proteins critical to iron homeostasis. To explore this, the effects of 24-h in vitro manganese exposure (1, 10, 50, and 200 microM Mn) on: (i) total intracellular and labile iron concentrations; (ii) the cellular abundance of transferrin receptor (TfR), H- and L-ferritin, and mitochondrial aconitase proteins; and (iii) IRP binding to a [32P](-) labeled mRNA sequence of L-ferritin were evaluated in undifferentiated PC12 cells. In vitro manganese exposure altered the cellular abundance of TfR, H-/L-ferritin, and m-aconitase, resulting in an increase in labile iron. This latter effect led to a decrease in IRP binding activity at the lower (10 and 50 microM) manganese exposures. In contrast, 200 microM manganese exposure increased IRP binding, in spite of the significant increase in labile iron. These data indicate that at lower exposures, manganese directly interfered with IRP-dependent translational events, producing an increase in labile iron, which in turn signaled a decrease in IRP binding at 24 h. At higher exposures, the intracellular burden of manganese resulted in overt cytotoxicity and appeared to compromise the normal compensatory response to increased labile iron, producing increased IRP binding. We conclude that low to moderate manganese exposure interferes with cellular iron regulation, and thus may serve as a contributory mechanism underlying manganese neurotoxicity.
Collapse
Affiliation(s)
- Catherine L Kwik-Uribe
- Department of Environmental Toxicology, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
72
|
Muckenthaler M, Richter A, Gunkel N, Riedel D, Polycarpou-Schwarz M, Hentze S, Falkenhahn M, Stremmel W, Ansorge W, Hentze MW. Relationships and distinctions in iron-regulatory networks responding to interrelated signals. Blood 2003; 101:3690-8. [PMID: 12393473 DOI: 10.1182/blood-2002-07-2140] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Specialized cDNA-based microarrays (IronChips) were developed to investigate complex physiological gene-regulatory patterns in iron metabolism. Approximately 115 human cDNAs were strategically selected to represent genes involved either in iron metabolism or in interlinked pathways (eg, oxidative stress, nitric oxide [NO] metabolism, or copper metabolism), and were immobilized on glass slides. HeLa cells were treated with iron donors or iron chelators, or were subjected to oxidative stress (H(2)O(2)) or NO (sodium nitroprusside). In addition, we generated a stable transgenic HeLa cell line expressing the HFE gene under an inducible promoter. Gene-response patterns were recorded for all of these interrelated experimental stimuli, and analyzed for common and distinct responses that define signal-specific regulatory patterns. The resulting regulatory patterns reveal and define degrees of relationship between distinct signals. Remarkably, the gene responses elicited by the altered expression of the hemochromatosis protein HFE and by pharmacological iron chelation exhibit the highest degree of relatedness, both for iron-regulatory protein (IRP) and non-IRP target genes. This finding suggests that HFE expression directly affects the intracellular chelatable iron pool in the transgenic cell line. Furthermore, cells treated with the iron donors hemin or ferric ammonium citrate display response patterns that permit the identification of the iron-loaded state in both cases, and the discrimination between the sources of iron loading. These findings also demonstrate the broad utility of gene-expression profiling with the IronChip to study iron metabolism and related human diseases.
Collapse
|
73
|
Watts RN, Ponka P, Richardson DR. Effects of nitrogen monoxide and carbon monoxide on molecular and cellular iron metabolism: mirror-image effector molecules that target iron. Biochem J 2003; 369:429-40. [PMID: 12423201 PMCID: PMC1223127 DOI: 10.1042/bj20021302] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2002] [Revised: 11/05/2002] [Accepted: 11/07/2002] [Indexed: 01/08/2023]
Abstract
Many effector functions of nitrogen monoxide (NO) and carbon monoxide (CO) are mediated through their high-affinity for iron (Fe). In this review, the roles of NO and CO are examined in terms of their effects on the molecular and cellular mechanisms involved in Fe metabolism. Both NO and CO avidly form complexes with a plethora of Fe-containing molecules. The generation of NO and CO is mediated by the nitric oxide synthase and haem oxygenase (HO) families of enzymes respectively. The effects of NO on Fe metabolism have been well characterized, whereas knowledge of the effects of CO remains within its infancy. In terms of the role of NO in Fe metabolism, one of the best characterized interactions includes its effect on the iron regulatory proteins. These molecules are mRNA-binding proteins that control the expression of the transferrin receptor 1 and ferritin, molecules that are involved in Fe uptake and storage respectively. Apart from this, activated macrophages impart their cytotoxic activity by generating NO, which results in marked Fe mobilization from tumour-cell targets. This deprives the cell of the Fe that is required for DNA synthesis and energy production. Considering that HO degrades haem, resulting in the release of CO, Fe(II) and biliverdin, it is suggested that a CO-Fe complex will form. This may account for the rapid Fe mobilization observed from macrophages after haemoglobin catabolism. Intriguingly, overexpression of HO results in cellular Fe mobilization, suggesting that CO has a similar effect to NO on Fe trafficking. Preliminary evidence suggests that, like NO, CO plays important roles in Fe metabolism.
Collapse
Affiliation(s)
- Ralph N Watts
- Children's Cancer Institute Australia, Iron Metabolism and Chelation Program, P.O. Box 81, High Street, Randwick, Sydney, New South Wales, Australia 2031
| | | | | |
Collapse
|
74
|
Newton DC, Bevan SC, Choi S, Robb GB, Millar A, Wang Y, Marsden PA. Translational regulation of human neuronal nitric-oxide synthase by an alternatively spliced 5'-untranslated region leader exon. J Biol Chem 2003; 278:636-44. [PMID: 12403769 DOI: 10.1074/jbc.m209988200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the neuronal nitric-oxide synthase (nNOS) mRNA is subject to complex cell-specific transcriptional regulation, which is mediated by alternative promoters. Unexpectedly, we identified a 89-nucleotide alternatively spliced exon located in the 5'-untranslated region between exon 1 variants and a common exon 2 that contains the translational initiation codon. Alternative splicing events that do not affect the open reading frame are distinctly uncommon in mammals; therefore, we assessed its functional relevance. Transient transfection of reporter RNAs performed in a variety of cell types revealed that this alternatively spliced exon acts as a potent translational repressor. Stably transfected cell lines confirmed that the alternatively spliced exon inhibited translation of the native nNOS open reading frame. Reverse transcription-PCR and RNase protection assays indicated that nNOS mRNAs containing this exon are common and expressed in both a promoter-specific and tissue-restricted fashion. Mutational analysis identified the functional cis-element within this novel exon, and a secondary structure prediction revealed that it forms a putative stem-loop. RNA electrophoretic mobility shift assay techniques revealed that a specific cytoplasmic RNA-binding complex interacts with this motif. Hence, a unique splicing event within a 5'-untranslated region is demonstrated to introduce a translational control element. This represents a newer model for the translational control of a mammalian mRNA.
Collapse
Affiliation(s)
- Derek C Newton
- Renal Division and the Department of Medicine, St. Michael's Hospital and University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | |
Collapse
|
75
|
Kim S, Ponka P. Nitric oxide-mediated modulation of iron regulatory proteins: implication for cellular iron homeostasis. Blood Cells Mol Dis 2002; 29:400-10. [PMID: 12547230 DOI: 10.1006/bcmd.2002.0579] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Iron regulatory proteins (IRP1 and IRP2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements (IREs) that are located in the 3' untranslated region (UTR) and the 5' UTR of their respective mRNAs. Cellular iron levels affect binding of IRPs to IREs and consequently expression of TfR and ferritin. Moreover, NO(.), a redox species of nitric oxide that interacts primarily with iron, can activate IRP1 RNA-binding activity resulting in an increase in TfR mRNA levels and a decrease in ferritin synthesis. We have shown that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO(+) (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA-binding of IRP2, followed by IRP2 degradation, and these changes were associated with a decrease in TfR mRNA levels and a dramatic increase in ferritin synthesis. Moreover, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP1 binding activity, whereas RNA-binding of IRP2 decreased and was followed by a degradation of this protein. Furthermore, the decrease of IRP2 binding/protein levels was associated with a decrease in TfR mRNA levels and an increase in ferritin synthesis in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. These results suggest that NO(+)-mediated degradation of IRP2 plays a major role in iron metabolism during inflammation.
Collapse
Affiliation(s)
- Sangwon Kim
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Department of Physiology, McGill University, 3755 Cote Ste-Catherine Road, Montreal, Quebec, Canada H3T 1E2
| | | |
Collapse
|
76
|
Abstract
Iron regulatory proteins, IRP1 and IRP2, are cytoplasmic proteins of the iron-sulfur cluster isomerase family and serve as major post-transcriptional regulators of cellular iron metabolism. They bind to 'iron responsive elements' (IREs) of several mRNAs and thereby control their translation or stability. IRP1 and IRP2 respond to alterations in intracellular iron levels, but also to other signals such as nitric oxide (NO) and reactive oxygen species (ROS). The redox regulation of IRP1 and IRP2 provides direct links between the control of iron homeostasis and oxidative stress.
Collapse
Affiliation(s)
- Carine Fillebeen
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada
| | | |
Collapse
|
77
|
Wang J, Buss JL, Chen G, Ponka P, Pantopoulos K. The prolyl 4-hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate generates effective iron deficiency in cultured cells. FEBS Lett 2002; 529:309-12. [PMID: 12372619 DOI: 10.1016/s0014-5793(02)03389-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ethyl-3,4-dihydroxybenzoate (EDHB) is commonly utilized as a substrate analog and competitive inhibitor of prolyl 4-hydroxylases. These iron-dependent enzymes have received a lot of attention for their involvement in crucial biochemical pathways such as collagen maturation and oxygen sensing. Since EDHB is also capable of chelating the enzyme-bound iron, we study here its function as a chelator. We show that the affinity of EDHB for ferric iron is significantly lower than that of desferrioxamine. Nevertheless, EDHB is sufficient to promote effective iron deficiency in cells, reflected in the activation of the iron-responsive element/iron regulatory protein regulatory network. Thus, treatment of B6 fibroblasts with EDHB results in slow activation of iron regulatory protein 1 accompanied by an increase in transferrin receptor levels and reduction of the ferritin pool.
Collapse
Affiliation(s)
- Jian Wang
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, 3755 Cote-Ste-Catherine Road, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | |
Collapse
|
78
|
Kirsch JD, Yi AK, Spitz DR, Krieg AM. Accumulation of glutathione disulfide mediates NF-kappaB activation during immune stimulation with CpG DNA. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2002; 12:327-40. [PMID: 12477282 DOI: 10.1089/108729002761381302] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Innate immune cells recognize pathogens by detecting molecular patterns that are distinct from those of the host. One such pattern is unmethylated CpG dinucleotides, which are common in bacterial DNA but not in vertebrate genomes. Macrophages respond to such CpG motifs in bacterial DNA or synthetic oligodeoxynucleotides (ODN) by inducing NF-kappaB and secreting proinflammatory cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha), but the mechanisms regulating this have been unclear. CpG ODN-stimulated cells produce reactive oxygen species (ROS) and have a decreased ratio of intracellular glutathione/glutathione disulfide (GSH/GSSG), indicating a shift to a more oxidized intracellular redox state. To determine whether this may play a role in mediating the CpG-induced macrophage activation, the GSH/GSSG redox state was manipulated in the murine macrophagelike cell line RAW264.7. Treatment of cells with BCNU to inhibit glutathione reductase (GR) enhanced the CpG-induced intracellular oxidation and decreased the GSH/GSSG, with increased activation of NF-kappaB and a doubling in the CpG-induced production of IL-6 and TNF-alpha. Experimental manipulation of the intracellular GSSG concentration during inhibition of cellular prooxidant production demonstrated that increased intracellular GSSG is a primary signal that is directly or indirectly required for CpG-induced NF-kappaB activation but is not in itself sufficient to trigger this in the absence of CpG ODN. These data suggest the existence of a second CpG-induced intracellular signal, independent of GSSG, mediating the activation of innate immunity by bacterial DNA.
Collapse
Affiliation(s)
- Jeffrey D Kirsch
- Department of Internal Medicine, University of Iowa, Iowa City 52242, USA
| | | | | | | |
Collapse
|
79
|
Affiliation(s)
- Sebastian Mueller
- Department of Internal Medicine IV, University of Heidelberg, 69115 Heidelberg, Germany
| | | |
Collapse
|
80
|
Mulero V, Wei XQ, Liew FY, Brock JH. Regulation of phagosomal iron release from murine macrophages by nitric oxide. Biochem J 2002; 365:127-32. [PMID: 12071846 PMCID: PMC1222663 DOI: 10.1042/bj20011875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The role of NO in macrophage iron turnover was studied in macrophages from inducible nitric oxide synthase (iNOS)-deficient mice. Interferon gamma/lipopolysaccharide (IFNgamma/LPS)-activated bone marrow-derived macrophages from iNOS-deficient mice, following phagocytosis of 59Fe-labelled transferrin-anti-transferrin immune complexes, showed reduced iron release compared with cells from wild-type iNOS littermates. Uptake of the complexes by macrophages was similar in iNOS-deficient and wild-type mice. Ferritin was up-regulated by IFNgamma/LPS treatment, but NO exercised a modest opposing down-regulatory effect. No effect of iNOS deficiency was seen when iron was taken up from iron citrate, which enters via a non-phagocytic route. These results suggest that NO plays a key role in regulating iron turnover in macrophages acquiring iron by phagocytosis of erythrocytes or cell debris, and thus the supply to peripheral tissues, such as to the bone marrow for erythropoiesis.
Collapse
Affiliation(s)
- Victoriano Mulero
- Department of Immunology and Bacteriology, Western Infirmary, University of Glasgow, Glasgow, UK.
| | | | | | | |
Collapse
|
81
|
Watts RN, Richardson DR. The mechanism of nitrogen monoxide (NO)-mediated iron mobilization from cells. NO intercepts iron before incorporation into ferritin and indirectly mobilizes iron from ferritin in a glutathione-dependent manner. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3383-92. [PMID: 12135476 DOI: 10.1046/j.1432-1033.2002.02987.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitrogen monoxide (NO) is a cytotoxic effector molecule produced by macrophages that results in Fe mobilization from tumour target cells which inhibits DNA synthesis and mitochondrial respiration. It is well known that NO has a high affinity for Fe, and we showed that NO-mediated Fe mobilization is markedly potentiated by glutathione (GSH) generated by the hexose monophosphate shunt [Watts, R.N. & Richardson, D.R. (2001) J. Biol. Chem. 276, 4724-4732]. We hypothesized that GSH completes the coordination shell of an NO[bond]Fe complex that is released from the cell. In this report we have extended our studies to further characterize the mechanism of NO-mediated Fe mobilization. Native PAGE 59Fe-autoradiography shows that NO decreased ferritin-59Fe levels in cells prelabelled with [59Fe]transferrin. In prelabelled cells, ferritin-59Fe levels increased 3.5-fold when cells were reincubated with control media between 30 and 240 min. In contrast, when cells were reincubated with NO, ferritin-59Fe levels decreased 10-fold compared with control cells after a 240-min reincubation. However, NO could not remove Fe from ferritin in cell lysates. Our data suggest that NO intercepts 59Fe on route to ferritin, and indirectly facilitates removal of 59Fe from the protein. Studies using the GSH-depleting agent, L-buthionine-(S,R)-sulphoximine, indicated that the reduction in ferritin-59Fe levels via NO was GSH-dependent. Competition experiments with NO and permeable chelators demonstrated that both bind a similar Fe pool. We suggest that NO requires cellular metabolism in order to effect Fe mobilization and this does not occur via passive diffusion down a concentration gradient. Based on our results, we propose a model of glucose-dependent NO-mediated Fe mobilization.
Collapse
Affiliation(s)
- Ralph N Watts
- The Iron Metabolism and Chelation Group, The Heart Research Institute, Camperdown, Sydney, New South Wales, Australia
| | | |
Collapse
|
82
|
Abstract
Since transferrin was discovered more than half a century ago, a considerable effort has been made towards understanding tranferrin-mediated iron uptake. However, it was not until recently with the identification and characterization of several new genes related to iron homeostasis, such as the hemochromatosis protein HFE and the iron transporter DMT1, that our knowledge has been advanced dramatically. A major pathway for cellular iron uptake is through internalization of the complex of iron-bound transferrin and the transferrin receptor, which is negatively modulated by HFE, a protein related to hereditary hemochromatosis. Iron is released from transferrin as the result of the acidic pH in endosome and then is transported to the cytosol by DMT1. The iron is then utilized as a cofactor by heme and ribonucleotide reductase or stored in ferritin. Apart from iron, many other metal ions of therapeutic and diagnostic interests can also bind to transferrin at the iron sites and their transferrin complexes can be recognized by many cells. Therefore, transferrin has been thought as a "delivery system" for many beneficial and harmful metal ions into the cells. Transferrin has also be widely applied as a targeting ligand in the active targeting of anticancer agents, proteins, and genes to primary proliferating malignant cells that overexpress transferrin receptors. This is achieved by conjugation of transferrin with drugs, proteins, hybride systems with marcomolecules and as liposomal-coated systems. Conjugates of anticancer drugs with transferrin can significantly improve the selectivity and toxicity and overcome drug resistance, thereby leading to a better treatment. The coupling of DNA to transferrin via a polycation such as polylysine or via cationic liposomes can target and transfer of the extrogenous DNA particularly into proliferating cells through receptor-mediated endocytosis. These kinds of non-viral vectors are potential alternatives to viral vectors for gene therapy, if the transfection efficiency can be improved. Moreover, transferrin receptors have shown potentials in delivery of therapeutic drugs or genes into the brain across blood-brain barrier.
Collapse
Affiliation(s)
- Hongyan Li
- Laboratory of Iron Metabolism, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | | |
Collapse
|
83
|
Zhang D, Dimopoulos G, Wolf A, Miñana B, Kafatos FC, Winzerling JJ. Cloning and molecular characterization of two mosquito iron regulatory proteins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:579-589. [PMID: 11891134 DOI: 10.1016/s0965-1748(01)00138-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Iron regulatory proteins (IRPs) control the synthesis of various proteins at the translational level by binding to iron responsive elements (IREs) in the mRNAs. Iron, infection, and stress can alter IRP/IRE binding activity. Insect messenger RNAs for ferritin and succinate dehydrogenase subunit b have IREs that are active translational control sites. We have cloned and sequenced cDNAs encoding proteins from the IRP1 family for the mosquitoes, Aedes aegypti and Anopheles gambiae. Both deduced amino acid sequences show substantial similarity to human IRP1 and Drosophila IRP1A and IRP1B, and all of the residues thought to be involved in aconitase activity and iron-sulfur cluster formation are conserved. Recombinant A. aegypti IRP1 binds to transcripts of the IREs of mosquito or human ferritin subunit mRNAs. No significant change in A. gambiae IRP1 messenger RNA could be detected during the various developmental stages of the life cycle, following iron loading by blood feeding, or after bacterial or parasitic infections. These data suggest that there is no change in gene transcription. Furthermore, bacterial challenge of A. gambiae cells did not change IRP1 protein levels. In contrast, IRP1 binding activity for the IRE was elevated following immune induction. These data show that changes in IRP1/IRE binding activity occur as part of the insect immune response.
Collapse
Affiliation(s)
- D Zhang
- Department of Nutritional Sciences, University of Arizona, Shantz 309, P.O. Box 210038, Tucson, AZ 85721-0038, USA
| | | | | | | | | | | |
Collapse
|
84
|
Walker BL, Tiong JW, Jefferies WA. Iron metabolism in mammalian cells. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 211:241-78. [PMID: 11597005 DOI: 10.1016/s0074-7696(01)11020-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Most living things require iron to exist. Iron has many functions within cells but is rarely found unbound because of its propensity to catalyze the formation of toxic free radicals. Thus the regulation of iron requirements by cells and the acquisition and uptake of iron into tissues in multicellular organisms is tightly regulated. In humans, understanding iron transport and utility has recently been advanced by a "great conjunction" of molecular genetics in simple organisms, identifying genes involved in genetic diseases of metal metabolism and by the application of traditional cell physiology approaches. We are now able to approach a rudimentary understanding of the "iron cycle" within mammals. In the future, this information will be applied toward modulating the outcome of therapies designed to overcome diseases involving metals.
Collapse
Affiliation(s)
- B L Walker
- Biomedical Research Centre, and Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
85
|
Huang HL, Shaw NS. Role of hypolipidemic drug clofibrate in altering iron regulatory proteins IRP1 and IRP2 activities and hepatic iron metabolism in rats fed a low-iron diet. Toxicol Appl Pharmacol 2002; 180:118-28. [PMID: 11969379 DOI: 10.1006/taap.2002.9378] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to reducing the expression of transferrin and ceruloplasmin genes, hypolipidemic peroxisome proliferators may alter iron homeostasis in the liver. Therefore, this study investigates the effects of clofibrate on proteins related to liver iron metabolism in a rat model using a 2 x 2 experimental design: two dose levels of clofibrate in diet (0 and 0.5%) and two dietary iron levels (35 ppm as normal level and 15 ppm as low-iron diet). Twenty-four Wistar rats were assigned to the four diets and fed for 6 weeks. Subsequent measurements of iron parameters in the blood and the liver indicated that, in addition to mild anemia and the reduction in serum iron and total iron-binding capacity, clofibrate treatment altered IRP1 and IRP2 activities differentially and increased mitochondrial aconitase both at activity and protein levels. At both normal and low-iron intakes, clofibrate caused a 50% reduction in serum iron and TIBC with a corresponding reduction in transferrin mRNA. The RNA-binding activities of IRP1 were selectively activated by clofibrate treatment even though liver iron concentration was not depleted. The RNA-binding activity of IRP2 was selectively activated by the low iron intake and correlated with an increase of transferrin receptor mRNA, while clofibrate treatment offset the effects of the low iron intake.
Collapse
Affiliation(s)
- Hui-Ling Huang
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
86
|
Brazzolotto X, Timmins P, Dupont Y, Moulis JM. Structural changes associated with switching activities of human iron regulatory protein 1. J Biol Chem 2002; 277:11995-2000. [PMID: 11812787 DOI: 10.1074/jbc.m110938200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metazoan iron regulatory protein 1 is a dual activity protein, being either an aconitase or a regulatory factor binding to messenger RNA involved in iron homeostasis. Sequence comparisons and site-directed mutagenesis experiments have supported a structural relationship between mitochondrial aconitase and iron regulatory protein 1. The structural properties of human recombinant iron regulatory protein 1 have been probed in the present work. Although iron-free iron regulatory protein 1 displays a significantly larger radius of gyration measured by small-angle neutron scattering than calculated for mitochondrial aconitase, binding of either the [4Fe-4S] cluster needed for aconitase activity or of a RNA substrate turns iron regulatory protein 1 into a more compact molecule. These conformational changes are associated with the gain of secondary structural elements as indicated by circular dichroism studies. They likely involve alpha-helices covering the substrate binding cleft of cytosolic aconitase, and they suggest an induced fit mechanism of iron-responsive element recognition. These studies refine previously proposed models of the "iron-sulfur switch" driving the biological function of human iron regulatory protein 1, and they provide a structural framework to probe the relevance of the numerous cellular molecules proposed to affect its function.
Collapse
Affiliation(s)
- Xavier Brazzolotto
- Commissariat à l'Energie Atomique-Grenoble, Département de Biologie Moléculaire et Structurale, 38054 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
87
|
Brown NM, Kennedy MC, Antholine WE, Eisenstein RS, Walden WE. Detection of a [3Fe-4S] cluster intermediate of cytosolic aconitase in yeast expressing iron regulatory protein 1. Insights into the mechanism of Fe-S cluster cycling. J Biol Chem 2002; 277:7246-54. [PMID: 11744706 DOI: 10.1074/jbc.m110282200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Interconversion of iron regulatory protein 1 (IRP1) with cytosolic aconitase (c-aconitase) occurs via assembly/disassembly of a [4Fe-4S] cluster. Recent evidence implicates oxidants in cluster disassembly. We investigated H(2)O(2)-initiated Fe-S cluster disassembly in c-aconitase expressed in Saccharomyces cerevisiae. A signal for [3Fe-4S] c-aconitase was detected by whole-cell EPR of aerobically grown, aco1 yeast expressing wild-type IRP1 or a S138A-IRP1 mutant (IRP1(S138A)), providing the first direct evidence of a 3Fe intermediate in vivo. Exposure of yeast to H(2)O(2) increased this 3Fe c-aconitase signal up to 5-fold, coincident with inhibition of c-aconitase activity. Untreated yeast expressing IRP1(S138D) or IRP1(S138E), which mimic phosphorylated IRP1, failed to give a 3Fe signal. H(2)O(2) produced a weak 3Fe signal in yeast expressing IRP1(S138D). Yeast expressing IRP1(S138D) or IRP1(S138E) were the most sensitive to inhibition of aconitase-dependent growth by H(2)O(2) and were more responsive to changes in media iron status. Ferricyanide oxidation of anaerobically reconstituted c-aconitase yielded a strong 3Fe EPR signal with wild-type and S138A c-aconitases. Only a weak 3Fe signal was obtained with S138D c-aconitase, and no signal was obtained with S138E c-aconitase. This, paired with loss of c-aconitase activity, strongly argues that the Fe-S clusters of these phosphomimetic c-aconitase mutants undergo more complete disassembly upon oxidation. Our results demonstrate that 3Fe c-aconitase is an intermediate in H(2)O(2)-initiated Fe-S cluster disassembly in vivo and suggest that cluster assembly/disassembly in IRP1 is a dynamic process in aerobically growing yeast. Further, our results support the view that phosphorylation of IRP1 can modulate its response to iron through effects on Fe-S cluster stability and turnover.
Collapse
Affiliation(s)
- Nina M Brown
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
88
|
Roy CN, Blemings KP, Deck KM, Davies PS, Anderson EL, Eisenstein RS, Enns CA. Increased IRP1 and IRP2 RNA binding activity accompanies a reduction of the labile iron pool in HFE-expressing cells. J Cell Physiol 2002; 190:218-26. [PMID: 11807826 DOI: 10.1002/jcp.10056] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Iron regulatory proteins (IRPs), the cytosolic proteins involved in the maintenance of cellular iron homeostasis, bind to stem loop structures found in the mRNA of key proteins involved iron uptake, storage, and metabolism and regulate the expression of these proteins in response to changes in cellular iron needs. We have shown previously that HFE-expressing fWTHFE/tTA HeLa cells have slightly increased transferrin receptor levels and dramatically reduced ferritin levels when compared to the same clonal cell line without HFE (Gross et al., 1998, J Biol Chem 273:22068-22074). While HFE does not alter transferrin receptor trafficking or non-transferrin mediated iron uptake, it does specifically reduce (55)Fe uptake from transferrin (Roy et al., 1999, J Biol Chem 274:9022-9028). In this report, we show that IRP RNA binding activity is increased by up to 5-fold in HFE-expressing cells through the activation of both IRP isoforms. Calcein measurements show a 45% decrease in the intracellular labile iron pool in HFE-expressing cells, which is in keeping with the IRP activation. These results all point to the direct effect of the interaction of HFE with transferrin receptor in lowering the intracellular labile iron pool and establishing a new set point for iron regulation within the cell.
Collapse
Affiliation(s)
- Cindy N Roy
- Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
Atamna H, Walter PB, Ames BN. The role of heme and iron-sulfur clusters in mitochondrial biogenesis, maintenance, and decay with age. Arch Biochem Biophys 2002; 397:345-53. [PMID: 11795893 DOI: 10.1006/abbi.2001.2671] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondria decay with age from oxidative damage and loss of protective mechanisms. Resistance, repair, and replacement mechanisms are essential for mitochondrial preservation and maintenance. Iron plays an essential role in the maintenance of mitochondria, through its two major functional forms: heme and iron-sulfur clusters. Both iron-based cofactors are formed and utilized in the mitochondria and then distributed throughout the cell. This is an important function of mitochondria that is not directly related to the production of ATP. Heme and iron-sulfur clusters are important for the normal assembly and for the optimal activity of the electron transfer complexes. Loss of mitochondrial cytochrome c oxidase (complex IV), integrity of mtDNA, and function can result from abnormal homeostasis of iron. We review the physiological role of iron-sulfur clusters and heme in the integrity of the mitochondria and the generation of oxidants.
Collapse
Affiliation(s)
- Hani Atamna
- Department of Molecular and Cell Biology, University of California, Berkeley/CHORI, 5700 Martin Luther King Jr. Way, Oakland, California 94609, USA
| | | | | |
Collapse
|
90
|
Laer AV, Dallalio G, McKenzie SW, Means RT. Thioredoxin and Protein Nitrotyrosine in Bone Marrow Supernatant From Patients With Human Immunodeficiency Virus Infection. J Investig Med 2002. [DOI: 10.2310/6650.2002.33512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
91
|
Reid D, Snell G, Ward C, Krishnaswamy R, Ward R, Zheng L, Williams T, Walters H. Iron overload and nitric oxide-derived oxidative stress following lung transplantation. J Heart Lung Transplant 2001; 20:840-9. [PMID: 11502406 DOI: 10.1016/s1053-2498(01)00282-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) may contribute to airway injury and the development of the bronchiolitis obliterans syndrome (BOS) following lung transplantation (LT). Chemically active iron released from ferritin stores and nitric oxide (NO)-derived radicals may add to the oxidative burden. METHODS We determined the concentrations of ferritin and the aqueous NO derivative nitrite (NO2(-)) within bronchoalveolar lavage fluid (BALF) of 14 stable LT recipients (ST) and 7 subjects with BOS and 21 normal controls. We also assessed the relationship between BALF ferritin and hemosiderin-laden macrophages (HLMs) using a hemosiderin score (HS) and determined BALF albumin concentration as a marker of microvascular leakage. RESULTS BALF ferritin concentrations and HSs were significantly elevated in LT recipients overall compared with normal controls (p < 0.05). BALF NO2(-) levels were elevated in BOS subjects and STs compared with normal controls (p = 0.002 and p = 0.09, respectively), but there was no difference between transplant groups. BALF albumin concentrations were elevated in BOS patients compared with normal controls (p = 0.02) and ST (p = 0.05), but there was no difference between STs and controls. There was a significant relationship between BALF ferritin concentration and HS in LT recipients overall (r(s) = 0.7, p < 0.001). In BOS subjects, but not ST, BALF ferritin was significantly related to BALF albumin (r(s) = 0.8, p = 0.05) and there was a weak relationship with NO2(-) concentration (r(s) = 0.6, p = 0.1). BALF NO2(-) was strongly related to BALF % neutrophils in BOS subjects (r(s) = 0.9, p < 0.01), but there was no such relationship in STs. CONCLUSIONS Our findings suggest that the allograft could be subject to significant iron-generated oxidative stress, which may be exacerbated by NO and neutrophil-derived ROS, particularly in BOS. Microvascular leakage may be a feature of established chronic rejection, which potentiates the iron overload and contributes to further airway damage and remodeling.
Collapse
Affiliation(s)
- D Reid
- Department of Respiratory Medicine, Alfred Hospital, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
A report from the World Health Organization estimates that 46% of the world's 5- to 14-year-old children are anemic. In addition, 48% of the world's pregnant women are anemic. A majority of these cases of anemia are due to iron deficiency. Our aim here is to review the latest data on iron regulatory mechanisms, iron sources and requirements. Human and animal studies have shown that amino acids and peptides influence iron absorption from the intestinal lumen. Inter-organ transport and uptake of nonheme iron is largely performed by the complex transferring-transferring receptor system. Moreover, the discovery of cytoplasmic iron regulatory proteins (IRPs) has provided a molecular framework from which we understand the coordination of cellular iron homeostasis in mammals. IRPs and the iron responsive elements (IREs) to which they bind allow mammals to make use of the essential properties of iron while reducing its potentially toxic effect. Physiologic iron requirements are three times higher in pregnancy than they are in menstruating women (approximately 1200 mg must be acquired from the body's iron store or from the diet by the end of pregnancy). The administration of iron supplements weekly instead of daily in humans has been proposed and is being actively investigated as a viable means of controlling iron deficiency in populations, including pregnant women.
Collapse
Affiliation(s)
- H Tapiero
- Laboratoire de Pharmacologie Cellulaire & Moléculaire, Université de Paris Sud, Faculté de Pharmacie, Chatenay Malabry, France.
| | | | | |
Collapse
|
93
|
Mueller S, Pantopoulos K, Hübner CA, Stremmel W, Hentze MW. IRP1 activation by extracellular oxidative stress in the perfused rat liver. J Biol Chem 2001; 276:23192-6. [PMID: 11297549 DOI: 10.1074/jbc.m100654200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of several proteins with critical functions in iron metabolism is regulated post-transcriptionally by the binding of iron regulatory proteins, IRP1 and IRP2, to mRNA iron responsive elements (IREs). In iron-deficient tissues and cultured cells, both IRP1 and IRP2 are activated for high affinity IRE binding. Previous work showed that IRP1 is also activated when cultured cells are exposed to H(2)O(2). The well established role of iron and H(2)O(2) in tissue injury (based on Fenton chemistry) suggests that this response may have important pathophysiological implications. This is particularly relevant in inflammation, where cytotoxic immune cells release large amounts of reactive oxygen species. Here, we describe a rat liver perfusion model to study IRP1 activation under H(2)O(2) generation conditions that mimic a physiological inflammatory response, using steady-state concentrations of H(2)O(2) produced by a glucose/ glucose oxidase/catalase system. We show first that stimulated neutrophils are able to increase serum levels of H(2)O(2) by a factor of 10, even in the presence of H(2)O(2)-degrading erythrocytes. We further show that perfusion of rat liver with glucose oxidase leads to a rapid activation of IRE binding activity in the intact organ. Mobility shift assays with liver extracts and IRP1 or IRP2-specific probes indicate that only IRP1 responds to H(2)O(2). Our study demonstrates a principal existence of iron regulation by oxidative stress at the intact organ level. It also provides a link between iron metabolism and the inflammatory response, as H(2)O(2) is a major product of the oxidative burst of neutrophils and macrophages.
Collapse
Affiliation(s)
- S Mueller
- Department of Internal Medicine IV, University of Heidelberg, Bergheimer Str. 58, 69115, Germany.
| | | | | | | | | |
Collapse
|
94
|
Caltagirone A, Weiss G, Pantopoulos K. Modulation of cellular iron metabolism by hydrogen peroxide. Effects of H2O2 on the expression and function of iron-responsive element-containing mRNAs in B6 fibroblasts. J Biol Chem 2001; 276:19738-45. [PMID: 11264285 DOI: 10.1074/jbc.m100245200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cellular iron uptake and storage are coordinately controlled by binding of iron-regulatory proteins (IRP), IRP1 and IRP2, to iron-responsive elements (IREs) within the mRNAs encoding transferrin receptor (TfR) and ferritin. Under conditions of iron starvation, both IRP1 and IRP2 bind with high affinity to cognate IREs, thus stabilizing TfR and inhibiting translation of ferritin mRNAs. The IRE/IRP regulatory system receives additional input by oxidative stress in the form of H(2)O(2) that leads to rapid activation of IRP1. Here we show that treating murine B6 fibroblasts with a pulse of 100 microm H(2)O(2) for 1 h is sufficient to alter critical parameters of iron homeostasis in a time-dependent manner. First, this stimulus inhibits ferritin synthesis for at least 8 h, leading to a significant (50%) reduction of cellular ferritin content. Second, treatment with H(2)O(2) induces a approximately 4-fold increase in TfR mRNA levels within 2-6 h, and subsequent accumulation of newly synthesized protein after 4 h. This is associated with a profound increase in the cell surface expression of TfR, enhanced binding to fluorescein-tagged transferrin, and stimulation of transferrin-mediated iron uptake into cells. Under these conditions, no significant alterations are observed in the levels of mitochondrial aconitase and the Divalent Metal Transporter DMT1, although both are encoded by two as yet lesser characterized IRE-containing mRNAs. Finally, H(2)O(2)-treated cells display an increased capacity to sequester (59)Fe in ferritin, despite a reduction in the ferritin pool, which results in a rearrangement of (59)Fe intracellular distribution. Our data suggest that H(2)O(2) regulates cellular iron acquisition and intracellular iron distribution by both IRP1-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- A Caltagirone
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, 3755 Cote-Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada
| | | | | |
Collapse
|
95
|
Fonseca AM, Porto G, Uchida K, Arosa FA. Red blood cells inhibit activation-induced cell death and oxidative stress in human peripheral blood T lymphocytes. Blood 2001; 97:3152-60. [PMID: 11342443 DOI: 10.1182/blood.v97.10.3152] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Red blood cells (RBCs) are known to perform one prominent function: to carry and deliver oxygen to the tissues. Earlier studies, however, suggested a role for RBCs in potentiating T-cell proliferation in vitro. Here it is shown that the presence of RBCs in cultures of stimulated human peripheral blood lymphocytes strengthens T-cell proliferation and survival. Analysis of phosphatidylserine externalization and DNA fragmentation showed that RBCs inhibit T-cell apoptosis. This inhibition correlated with a reduction in CD71 but not CD95 expression. RBCs enhanced T-cell proliferation and survival upon activation with phytohemagglutinin and with OKT3 antibodies. Studies aimed at characterizing the cellular and molecular basis of the protection afforded to T cells by RBCs showed that (1) optimal protection required intact RBCs and red cell/T-cell contact but not monocytes; (2) RBCs markedly reduced the level of intracellular reactive oxygen species; and (3) RBCs inhibited the formation of protein-bound acrolein, a peroxidation adduct in biologic systems. Overall, these data indicate that human RBCs protect T cells from activation-induced cell death, at least in part by reducing the pro-oxidant state, and suggest a role for RBCs as conceivable modulators of T-cell homeostasis.
Collapse
Affiliation(s)
- A M Fonseca
- Laboratory of Molecular Immunology, Institute for Molecular and Cell Biology, University of Porto, Portugal
| | | | | | | |
Collapse
|
96
|
Kagan VE, Laskin JD. Direct and indirect antioxidant effects of nitric oxide: radically unsettled issues. Antioxid Redox Signal 2001; 3:173-5. [PMID: 11396473 DOI: 10.1089/152308601300185142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
97
|
Abstract
Mammalian iron homeostasis is maintained through the concerted action of sensory and regulatory networks that modulate the expression of proteins of iron metabolism at the transcriptional and/or post-transcriptional levels. Regulation of gene transcription provides critical developmental, cell cycle, and cell-type-specific controls on iron metabolism. Post-transcriptional control through the action of iron regulatory protein 1 (IRP1) and IRP2 coordinate the use of messenger RNA-encoding proteins that are involved in the uptake, storage, and use of iron in all cells of the body. IRPs may also provide a link between iron availability and cellular citrate use. Multiple factors, including iron, nitric oxide, oxidative stress, phosphorylation, and hypoxia/reoxygenation, influence IRP function. Recent evidence indicates that there is diversity in the function of the IRP system with respect to the response of specific IRPs to the same effector, as well as the selectivity with which IRPs modulate the use of specific messenger RNA.
Collapse
Affiliation(s)
- R S Eisenstein
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA.
| |
Collapse
|
98
|
Watts RN, Richardson DR. Nitrogen monoxide (no) and glucose: unexpected links between energy metabolism and no-mediated iron mobilization from cells. J Biol Chem 2001; 276:4724-32. [PMID: 11078730 DOI: 10.1074/jbc.m006318200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nitrogen monoxide (NO) affects cellular iron metabolism due to its high affinity for this metal ion. Indeed, NO has been shown to increase the mRNA binding activity of the iron-regulatory protein 1, which is a major regulator of iron homeostasis. Recently, we have shown that NO generators increase (59)Fe efflux from cells prelabeled with (59)Fe-transferrin (Wardrop, S. L., Watts, R. N., and Richardson, D. R. (2000) Biochemistry 39, 2748-2758). The mechanism involved in this process remains unknown, and in this investigation we demonstrate that it is potentiated upon adding d-glucose (d-Glc) to the reincubation medium. In d-Glc-free or d-Glc-containing media, 5.6 and 16.5% of cellular (59)Fe was released, respectively, in the presence of S-nitrosoglutathione. This difference in (59)Fe release was observed with a variety of NO generators and cell types and was not due to a change in cell viability. Kinetic studies showed that d-Glc had no effect on the rate of NO production by NO generators. Moreover, only the metabolizable monosaccharides d-Glc and d-mannose could stimulate NO-mediated (59)Fe mobilization, whereas other sugars not easily metabolized by fibroblasts had no effect. Hence, metabolism of the monosaccharides was essential to increase NO-mediated (59)Fe release. Incubation of cells with the citric acid cycle intermediates, citrate and pyruvate, did not enhance NO-mediated (59)Fe release. Significantly, preincubation with the GSH-depleting agents, l-buthionine-[S,R]-sulfoximine or diethyl maleate, prevented NO-mediated (59)Fe mobilization. This effect was reversed by incubating cells with N-acetyl-l-cysteine that reconstitutes GSH. These results indicate that GSH levels are essential for NO-mediated (59)Fe efflux. Hence, d-Glc metabolism via the hexose monophosphate shunt resulting in the generation of GSH may be essential for NO-mediated (59)Fe release. These results have important implications for intracellular signaling by NO and also NO-mediated cytotoxicity of activated macrophages that is due, in part, to iron release from tumor target cells.
Collapse
Affiliation(s)
- R N Watts
- Iron Metabolism and Chelation Group, the Heart Research Institute, 145 Missenden Rd, Camperdown, Sydney, New South Wales 2050, Australia
| | | |
Collapse
|
99
|
Abstract
AbstractThe enterocyte is a highly specialized cell of the duodenal epithelium that coordinates iron uptake and transport into the body. Until recently, the molecular mechanisms underlying iron absorption and iron homeostasis have remained a mystery. This review focuses on the proteins and regulatory mechanisms known to be present in the enterocyte precursor cell and in the mature enterocyte. The recent cloning of a basolateral iron transporter and investigations into its regulation provide new insights into possible mechanisms for iron transport and homeostasis. The roles of proteins such as iron regulatory proteins, the hereditary hemochromatosis protein (HFE)–transferrin receptor complex, and hephaestin in regulating this transporter and in regulating iron transport across the intestinal epithelium are discussed. A speculative, but testable, model for the maintenance of iron homeostasis, which incorporates the changes in the iron-related proteins associated with the life cycle of the enterocyte as it journeys from the crypt to the tip of the villous is proposed.
Collapse
|
100
|
Abstract
The enterocyte is a highly specialized cell of the duodenal epithelium that coordinates iron uptake and transport into the body. Until recently, the molecular mechanisms underlying iron absorption and iron homeostasis have remained a mystery. This review focuses on the proteins and regulatory mechanisms known to be present in the enterocyte precursor cell and in the mature enterocyte. The recent cloning of a basolateral iron transporter and investigations into its regulation provide new insights into possible mechanisms for iron transport and homeostasis. The roles of proteins such as iron regulatory proteins, the hereditary hemochromatosis protein (HFE)–transferrin receptor complex, and hephaestin in regulating this transporter and in regulating iron transport across the intestinal epithelium are discussed. A speculative, but testable, model for the maintenance of iron homeostasis, which incorporates the changes in the iron-related proteins associated with the life cycle of the enterocyte as it journeys from the crypt to the tip of the villous is proposed.
Collapse
|