51
|
Dhupkar P, Zhao H, Mujoo K, An Z, Zhang N. Crk II silencing down-regulates IGF-IR and inhibits migration and invasion of prostate cancer cells. Biochem Biophys Rep 2016; 8:382-388. [PMID: 28955980 PMCID: PMC5614478 DOI: 10.1016/j.bbrep.2016.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 06/24/2016] [Accepted: 10/19/2016] [Indexed: 12/31/2022] Open
Abstract
Crk (C10 regulator of kinase) adaptor proteins are highly expressed in many types of human cancers and often contribute to aggressive cancer phenotypes. Crk II, a member of CRK family, has been reported to regulate cell migration and metastasis in breast cancer cells. However, its role in other cancer types has not been reported. In this study, we investigated the molecular function of Crk II in prostate cancer (PCa) cells (CWR-22rv1) in vitro and using a mouse tumor model. Results showed that Crk II knockdown by shRNA-mediated silencing (Crk II-shRNA) in the PCa cells significantly inhibited both cancer cell migration and invasion in cell culture study. Crk II-shRNA cancer cells also significantly decreased colony formation in vitro, but had no significant reduction of tumor volume after 4 weeks of cancer cell xenografting in vivo when compared to the scramble control. Interestingly, Crk II-shRNA cancer cells showed a greatly reduced level of insulin-like growth factor 1 receptor (IGF-1R) and decreased signaling of the IGF-1R/PI3K/Akt axis upon IGF-1 ligand stimulation. A close interaction between Crk II and IGF-1R was demonstrated upon co-immunoprecipitation of IGF-1R with Crk II protein. Further, treatment of cells with either proteosomal degradation or protein synthesis inhibitor showed higher proportion of ubiquitin-associated IGF-1R and faster degradation of IGF-1R in Crk II-shRNA cells in comparison with that in the control cancer cells. Taken together, these data suggest that Crk II plays an important role in the regulation of IGF-1R protein stability and affects downstream of IGF-1R signaling pathways. Therefore, targeting Crk-II can block IGF-1R growth signaling and suppress cancer cell invasion and progression. Blocking Crk II inhibited cancer cell migration, invasion, and colony formation. Knockdown Crk II decreased IGF-1R protein and its downstream signaling. Crk II knockdown increased ubiquitination and degradation of IGF-1R.
Collapse
Affiliation(s)
- Pooja Dhupkar
- Brown Foundation Institute of Molecular Medicine, University of Texas Medical School at Houston, TX, USA.,Experimental Therapeutics Academic Program, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Huang Zhao
- Brown Foundation Institute of Molecular Medicine, University of Texas Medical School at Houston, TX, USA
| | - Kalpana Mujoo
- Brown Foundation Institute of Molecular Medicine, University of Texas Medical School at Houston, TX, USA
| | - Zhiqiang An
- Brown Foundation Institute of Molecular Medicine, University of Texas Medical School at Houston, TX, USA.,Experimental Therapeutics Academic Program, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ningyan Zhang
- Brown Foundation Institute of Molecular Medicine, University of Texas Medical School at Houston, TX, USA
| |
Collapse
|
52
|
Warren KJ, Fang X, Gowda NM, Thompson JJ, Heller NM. The TORC1-activated Proteins, p70S6K and GRB10, Regulate IL-4 Signaling and M2 Macrophage Polarization by Modulating Phosphorylation of Insulin Receptor Substrate-2. J Biol Chem 2016; 291:24922-24930. [PMID: 27742835 DOI: 10.1074/jbc.m116.756791] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Indexed: 12/31/2022] Open
Abstract
Lung M2 macrophages are regulators of airway inflammation, associated with poor lung function in allergic asthma. Previously, we demonstrated that IL-4-induced M2 gene expression correlated with tyrosine phosphorylation of the insulin receptor substrate-2 (IRS-2) in macrophages. We hypothesized that negative regulation of IRS-2 activity after IL-4 stimulation is dependent upon serine phosphorylation of IRS-2. Herein, we describe an inverse relationship between tyrosine phosphorylation (Tyr(P)) and serine phosphorylation (Ser(P)) of IRS-2 after IL-4 stimulation. Inhibiting serine phosphatase activity increased Ser(P)-IRS-2 and decreased Tyr(P)-IRS-2 leading to reduced M2 gene expression (CD200R, CCL22, MMP12, and TGM2). We found that inhibition of p70S6K, downstream of TORC1, resulted in diminished Ser(P)-IRS-2 and prolonged Tyr(P)-IRS-2 as well. Inhibition of p70S6K increased expression of CD200R and CCL22 indicating that p70S6K negatively regulates some, but not all, human M2 genes. Knocking down GRB10, another negative regulatory protein downstream of TORC1, enhanced both Tyr(P)-IRS-2 and increased expression of all four M2 genes. Furthermore, GRB10 associated with IRS-2, NEDD4.2 (an E3-ubiquitin ligase), IL-4Rα, and γC after IL-4 stimulation. Both IL-4Rα and γC were ubiquitinated after 30 min of IL-4 treatment, suggesting that GRB10 may regulate degradation of the IL-4 receptor-signaling complex through interactions with NEDD4.2. Taken together, these data highlight two novel regulatory proteins that could be therapeutically manipulated to limit IL-4-induced IRS-2 signaling and polarization of M2 macrophages in allergic inflammation.
Collapse
Affiliation(s)
- Kristi J Warren
- From Johns Hopkins University, School of Medicine, Department of Anesthesiology and Critical Care Medicine, Baltimore, Maryland 21205
| | - Xi Fang
- From Johns Hopkins University, School of Medicine, Department of Anesthesiology and Critical Care Medicine, Baltimore, Maryland 21205
| | - Nagaraj M Gowda
- From Johns Hopkins University, School of Medicine, Department of Anesthesiology and Critical Care Medicine, Baltimore, Maryland 21205
| | - Joshua J Thompson
- From Johns Hopkins University, School of Medicine, Department of Anesthesiology and Critical Care Medicine, Baltimore, Maryland 21205
| | - Nicola M Heller
- From Johns Hopkins University, School of Medicine, Department of Anesthesiology and Critical Care Medicine, Baltimore, Maryland 21205
| |
Collapse
|
53
|
MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels. Nat Commun 2016; 7:12639. [PMID: 27577745 PMCID: PMC5013666 DOI: 10.1038/ncomms12639] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 07/20/2016] [Indexed: 12/16/2022] Open
Abstract
Insulin resistance is a key driver of type 2 diabetes (T2D) and is characterized by defective insulin receptor (INSR) signalling. Although surface INSR downregulation is a well-established contributor to insulin resistance, the underlying molecular mechanisms remain obscure. Here we show that the E3 ubiquitin ligase MARCH1 impairs cellular insulin action by degrading cell surface INSR. Using a large-scale RNA interference screen, we identify MARCH1 as a negative regulator of INSR signalling. March1 loss-of-function enhances, and March1 overexpression impairs, hepatic insulin sensitivity in mice. MARCH1 ubiquitinates INSR to decrease cell surface INSR levels, but unlike other INSR ubiquitin ligases, MARCH1 acts in the basal state rather than after insulin stimulation. Thus, MARCH1 may help set the basal gain of insulin signalling. MARCH1 expression is increased in white adipose tissue of obese humans, suggesting that MARCH1 contributes to the pathophysiology of T2D and could be a new therapeutic target.
Collapse
|
54
|
Le Clorennec C, Lazrek Y, Dubreuil O, Larbouret C, Poul MA, Mondon P, Melino G, Pèlegrin A, Chardès T. The anti-HER3 (ErbB3) therapeutic antibody 9F7-F11 induces HER3 ubiquitination and degradation in tumors through JNK1/2- dependent ITCH/AIP4 activation. Oncotarget 2016; 7:37013-37029. [PMID: 27203743 PMCID: PMC5095055 DOI: 10.18632/oncotarget.9455] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/16/2016] [Indexed: 01/28/2023] Open
Abstract
We characterized the mechanism of action of the neuregulin-non-competitive anti-HER3 therapeutic antibody 9F7-F11 that blocks the PI3K/AKT pathway, leading to cell cycle arrest and apoptosis in vitro and regression of pancreatic and breast cancer in vivo. We found that 9F7-F11 induces rapid HER3 down-regulation. Specifically, 9F7-F11-induced HER3 ubiquitination and degradation in pancreatic, breast and prostate cancer cell lines was driven mainly by the itchy E3 ubiquitin ligase (ITCH/AIP4). Overexpression of the ITCH/AIP4 inhibitor N4BP1 or small-interfering RNA-mediated knockdown of ITCH/AIP4 inhibited HER3 ubiquitination/degradation and PI3K/AKT signaling blockade induced by 9F7-F11. Moreover, 9F7-F11-mediated JNK1/2 phosphorylation led to ITCH/AIP4 activation and recruitment to HER3 for receptor ubiquitination and degradation. ITCH/AIP4 activity was activated by the deubiquitinases USP8 and USP9X, as demonstrated by RNA interference. Taken together, our results suggest that 9F7-F11-induced HER3 ubiquitination and degradation in cancer cells mainly occurs through JNK1/2-dependent ITCH/AIP4 activation.
Collapse
Affiliation(s)
- Christophe Le Clorennec
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
| | - Yassamine Lazrek
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
- Millegen SA, Labège, F-31670, France
- Institut Pasteur de Guyane, BP 6010, 97306, Cayenne Cedex, France
| | - Olivier Dubreuil
- Millegen SA, Labège, F-31670, France
- GamaMabs Pharma SA, Centre Pierre Potier, ONCOPOLE, BP 50624, France
| | - Christel Larbouret
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
| | - Marie-Alix Poul
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
| | - Philippe Mondon
- Millegen SA, Labège, F-31670, France
- LFB Biotechnologies, 59000, Lille, France
| | - Gerry Melino
- Biochemistry Laboratory, Instituto Dermopatico Dell'Immacolata, Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata,” 00133 Rome, Italy
- Toxicology Unit, Medical Research Council, Leicester University, Leicester LE1 9HN, United Kingdom
| | - André Pèlegrin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
| | - Thierry Chardès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
| |
Collapse
|
55
|
Vélez P, Schwartz AB, Iyer SR, Warrington A, Fadool DA. Ubiquitin ligase Nedd4-2 modulates Kv1.3 current amplitude and ion channel protein targeting. J Neurophysiol 2016; 116:671-85. [PMID: 27146988 DOI: 10.1152/jn.00874.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 05/04/2016] [Indexed: 11/22/2022] Open
Abstract
Voltage-dependent potassium channels (Kv) go beyond the stabilization of the resting potential and regulate biochemical pathways, regulate intracellular signaling, and detect energy homeostasis. Because targeted deletion and pharmacological block of the Kv1.3 channel protein produce marked changes in metabolism, resistance to diet-induced obesity, and changes in olfactory structure and function, this investigation explored Nedd4-2-mediated ubiquitination and degradation to regulate Kv1.3 channel density. Heterologous coexpression of Nedd4-2 ligase and Kv1.3 in HEK 293 cells reduced Kv1.3 current density without modulation of kinetic properties as measured by patch-clamp electrophysiology. Modulation of current density was dependent on ligase activity and was lost through point mutation of cysteine 938 in the catalytic site of the ligase (Nedd4-2CS). Incorporation of adaptor protein Grb10 relieved Nedd4-2-induced current suppression as did application of the proteasome inhibitor Mg-132. SDS-PAGE and immunoprecipitation strategies demonstrated a channel/adaptor/ligase signalplex. Pixel immunodensity was reduced for Kv1.3 in the presence of Nedd4-2, which was eliminated upon additional incorporation of Grb10. We confirmed Nedd4-2/Grb10 coimmunoprecipitation and observed an increased immunodensity for Nedd4-2 in the presence of Kv1.3 plus Grb10, regardless of whether the catalytic site was active. Kv1.3/Nedd4-2 were reciprocally coimmunoprecipated, whereby mutation of the COOH-terminal, SH3-recognition (493-498), or ubiquitination sites on Kv1.3 (lysines 467, 476, 498) retained coimmunoprecipitation, while the latter prevented the reduction in channel density. A model is presented for which an atypical interaction outside the canonical PY motif may permit channel/ligase interaction to lead to protein degradation and reduced current density, which can involve Nedd4-2/Grb10 interactions to disrupt Kv1.3 loss of current density.
Collapse
Affiliation(s)
- Patricio Vélez
- Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Austin B Schwartz
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida; and
| | - Subashini R Iyer
- Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Anthony Warrington
- Department of Biological Sciences, Florida State University, Tallahassee, Florida
| | - Debra Ann Fadool
- Program in Neuroscience, Florida State University, Tallahassee, Florida; Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida; and Department of Biological Sciences, Florida State University, Tallahassee, Florida
| |
Collapse
|
56
|
Malaguarnera R, Nicolosi ML, Sacco A, Morcavallo A, Vella V, Voci C, Spatuzza M, Xu SQ, Iozzo RV, Vigneri R, Morrione A, Belfiore A. Novel cross talk between IGF-IR and DDR1 regulates IGF-IR trafficking, signaling and biological responses. Oncotarget 2016; 6:16084-105. [PMID: 25840417 PMCID: PMC4599258 DOI: 10.18632/oncotarget.3177] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/25/2015] [Indexed: 12/31/2022] Open
Abstract
The insulin-like growth factor-I receptor (IGF-IR), plays a key role in regulating mammalian development and growth, and is frequently deregulated in cancer contributing to tumor initiation and progression. Discoidin domain receptor 1 (DDR1), a collagen receptor tyrosine-kinase, is as well frequently overexpressed in cancer and implicated in cancer progression. Thus, we investigated whether a functional cross-talk between the IGF-IR and DDR1 exists and plays any role in cancer progression. Using human breast cancer cells we found that DDR1 constitutively associated with the IGF-IR. However, this interaction was enhanced by IGF-I stimulation, which promoted rapid DDR1 tyrosine-phosphorylation and co-internalization with the IGF-IR. Significantly, DDR1 was critical for IGF-IR endocytosis and trafficking into early endosomes, IGF-IR protein expression and IGF-I intracellular signaling and biological effects, including cell proliferation, migration and colony formation. These biological responses were inhibited by DDR1 silencing and enhanced by DDR1 overexpression. Experiments in mouse fibroblasts co-transfected with the human IGF-IR and DDR1 gave similar results and indicated that, in the absence of IGF-IR, collagen-dependent phosphorylation of DDR1 is impaired. These results demonstrate a critical role of DDR1 in the regulation of IGF-IR action, and identify DDR1 as a novel important target for breast cancers that overexpress IGF-IR.
Collapse
Affiliation(s)
- Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Maria Luisa Nicolosi
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Antonella Sacco
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Alaide Morcavallo
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Veronica Vella
- Motor Sciences, School of Human and Social Sciences, Kore University of Enna, Enna, Italy
| | - Concetta Voci
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Michela Spatuzza
- Institute of Neurological Sciences, National Research Council, Catania, Italy
| | - Shi-Qiong Xu
- Department of Urology and Biology of Prostate Cancer Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Riccardo Vigneri
- Endocrinology, Department of Clinical and Sperimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Andrea Morrione
- Department of Urology and Biology of Prostate Cancer Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
57
|
Girnita L, Takahashi SI, Crudden C, Fukushima T, Worrall C, Furuta H, Yoshihara H, Hakuno F, Girnita A. Chapter Seven - When Phosphorylation Encounters Ubiquitination: A Balanced Perspective on IGF-1R Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:277-311. [PMID: 27378760 DOI: 10.1016/bs.pmbts.2016.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell-surface receptors govern the critical information passage from outside to inside the cell and hence control important cellular decisions such as survival, growth, and differentiation. These receptors, structurally grouped into different families, utilize common intracellular signaling-proteins and pathways, yet promote divergent biological consequences. In rapid processing of extracellular signals to biological outcomes, posttranslational modifications offer a repertoire of protein processing options. Protein ubiquitination was originally identified as a signal for protein degradation through the proteasome system. It is now becoming increasingly recognized that both ubiquitin and ubiquitin-like proteins, all evolved from a common ubiquitin structural superfold, are used extensively by the cell and encompass signal tags for many different cellular fates. In this chapter we examine the current understanding of the ubiquitin regulation surrounding the insulin-like growth factor and insulin signaling systems, major members of the larger family of receptor tyrosine kinases (RTKs) and key regulators of fundamental physiological and pathological states.
Collapse
Affiliation(s)
- L Girnita
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - S-I Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - C Crudden
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - T Fukushima
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan; Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
| | - C Worrall
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - H Furuta
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - H Yoshihara
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - F Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - A Girnita
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Dermatology Department, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
58
|
Li X, Jung JJ, Nie L, Razavian M, Zhang J, Samuel V, Sadeghi MM. The neuropilin-like protein ESDN regulates insulin signaling and sensitivity. Am J Physiol Heart Circ Physiol 2016; 310:H1184-93. [PMID: 26921437 DOI: 10.1152/ajpheart.00782.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/11/2016] [Indexed: 02/01/2023]
Abstract
Insulin effects on cell metabolism, growth, and survival are mediated by its binding to, and activation of, insulin receptor. With increasing prevalence of insulin resistance and diabetes there is considerable interest in identifying novel regulators of insulin signal transduction. The transmembrane protein endothelial and smooth muscle cell-derived neuropilin-like protein (ESDN) is a novel regulator of vascular remodeling and angiogenesis. Here, we investigate a potential role of ESDN in insulin signaling, demonstrating that Esdn gene deletion promotes insulin-induced vascular smooth muscle cell proliferation and migration. This is associated with enhanced protein kinase B and mitogen-activated protein kinase activation as well as insulin receptor phosphorylation. Likewise, insulin signaling in the liver, muscle, and adipose tissue is enhanced in Esdn(-/-) mice, and these animals exhibit improved insulin sensitivity and glucose homeostasis in vivo. The effect of ESDN on insulin signaling is traced back to its interaction with insulin receptor, which alters the receptor interaction with regulatory adaptor protein-E3 ubiquitin ligase pairs, adaptor protein with pleckstrin homology and Src homology 2 domain-c-Cbl and growth factor receptor bound protein 10-neuronal precursor cell-expressed developmentally downregulated 4. In conclusion, our findings establish ESDN as an inhibitor of insulin receptor signal transduction through a novel regulatory mechanism. Loss of ESDN potentiates insulin's metabolic and mitotic effects and provides insights into a novel therapeutic avenue.
Collapse
Affiliation(s)
- Xuan Li
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut; Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jae-Joon Jung
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut; Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Lei Nie
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut; Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China; and
| | - Mahmoud Razavian
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut; Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jiasheng Zhang
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut; Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Varman Samuel
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Mehran M Sadeghi
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut; Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut;
| |
Collapse
|
59
|
Camera D, Coleman HA, Parkington HC, Jenkins TA, Pow DV, Boase N, Kumar S, Poronnik P. Learning, memory and long-term potentiation are altered in Nedd4 heterozygous mice. Behav Brain Res 2016; 303:176-81. [PMID: 26821291 DOI: 10.1016/j.bbr.2016.01.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 11/29/2022]
Abstract
The consolidation of short-term memory into long-term memory involves changing protein level and activity for the synaptic plasticity required for long-term potentiation (LTP). AMPA receptor trafficking is a key determinant of LTP and recently ubiquitination by Nedd4 has been shown to play an important role via direct action on the GluA1 subunit, although the physiological relevance of these findings are yet to be determined. We therefore investigated learning and memory in Nedd4(+/-) mice that have a 50% reduction in levels of Nedd4. These mice showed decreased long-term spatial memory as evidenced by significant increases in the time taken to learn the location of and subsequently find a platform in the Morris water maze. In contrast, there were no significant differences between Nedd4(+/+) and Nedd4(+/-) mice in terms of short-term spatial memory in a Y-maze test. Nedd4(+/-) mice also displayed a significant reduction in post-synaptic LTP measured in hippocampal brain slices. Immunofluorescence of Nedd4 in the hippocampus confirmed its expression in hippocampal neurons of the CA1 region. These findings indicate that reducing Nedd4 protein by 50% significantly impairs LTP and long-term memory thereby demonstrating an important role for Nedd4 in these processes.
Collapse
Affiliation(s)
- Daria Camera
- Health Innovations Research Institute, School of Medical Science, RMIT University, P.O. Box 71, Bundoora, VIC 3083, Australia
| | - Harold A Coleman
- Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
| | | | - Trisha A Jenkins
- Health Innovations Research Institute, School of Medical Science, RMIT University, P.O. Box 71, Bundoora, VIC 3083, Australia
| | - David V Pow
- Health Innovations Research Institute, School of Medical Science, RMIT University, P.O. Box 71, Bundoora, VIC 3083, Australia
| | - Natasha Boase
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - Philip Poronnik
- Health Innovations Research Institute, School of Medical Science, RMIT University, P.O. Box 71, Bundoora, VIC 3083, Australia; Department of Physiology, School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
60
|
Zou X, Levy-Cohen G, Blank M. Molecular functions of NEDD4 E3 ubiquitin ligases in cancer. Biochim Biophys Acta Rev Cancer 2015; 1856:91-106. [DOI: 10.1016/j.bbcan.2015.06.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/12/2015] [Accepted: 06/23/2015] [Indexed: 02/08/2023]
|
61
|
Golan T, Messer AR, Amitai-Lange A, Melamed Z, Ohana R, Bell RE, Kapitansky O, Lerman G, Greenberger S, Khaled M, Amar N, Albrengues J, Gaggioli C, Gonen P, Tabach Y, Sprinzak D, Shalom-Feuerstein R, Levy C. Interactions of Melanoma Cells with Distal Keratinocytes Trigger Metastasis via Notch Signaling Inhibition of MITF. Mol Cell 2015; 59:664-76. [PMID: 26236014 DOI: 10.1016/j.molcel.2015.06.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/09/2015] [Accepted: 06/22/2015] [Indexed: 12/13/2022]
Abstract
The most critical stage in initiation of melanoma metastasis is the radial to vertical growth transition, yet the triggers of this transition remain elusive. We suggest that the microenvironment drives melanoma metastasis independently of mutation acquisition. Here we examined the changes in microenvironment that occur during melanoma radial growth. We show that direct contact of melanoma cells with the remote epidermal layer triggers vertical invasion via Notch signaling activation, the latter serving to inhibit MITF function. Briefly, within the native Notch ligand-free microenvironment, MITF, the melanocyte lineage master regulator, binds and represses miR-222/221 promoter in an RBPJK-dependent manner. However, when radial growth brings melanoma cells into contact with distal differentiated keratinocytes that express Notch ligands, the activated Notch intracellular domain impairs MITF binding to miR-222/221 promoter. This de-repression of miR-222/221 expression triggers initiation of invasion. Our findings may direct melanoma prevention opportunities via targeting specific microenvironments.
Collapse
Affiliation(s)
- Tamar Golan
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Arielle R Messer
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Aya Amitai-Lange
- Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Ze'ev Melamed
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Reut Ohana
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rachel E Bell
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oxana Kapitansky
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Galya Lerman
- Department of Medicine, Center for Cancer Research, Tel Hashomer 52621, Israel
| | | | - Mehdi Khaled
- Institut Gustave Roussy, INSERM U753, Villejuif 94805, France
| | - Nira Amar
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jean Albrengues
- Nice Sophia Antipolis University, INSERM, U1081, CNRS, UMR7284, 06107 Nice, France
| | - Cedric Gaggioli
- Nice Sophia Antipolis University, INSERM, U1081, CNRS, UMR7284, 06107 Nice, France
| | - Pinchas Gonen
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, The Hebrew University, Hadassah Medical School, Jerusalem 91120, Israel
| | - David Sprinzak
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ruby Shalom-Feuerstein
- Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Carmit Levy
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
62
|
Zhang Y, Goodfellow R, Li Y, Yang S, Winters CJ, Thiel KW, Leslie KK, Yang B. NEDD4 ubiquitin ligase is a putative oncogene in endometrial cancer that activates IGF-1R/PI3K/Akt signaling. Gynecol Oncol 2015; 139:127-33. [PMID: 26193427 DOI: 10.1016/j.ygyno.2015.07.098] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/08/2015] [Accepted: 07/16/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The PI3K/Akt pathway is frequently dysregulated in endometrial cancer, the most common gynecologic malignancy. Emerging evidence identifies the ubiquitin ligase NEDD4 as a key regulator of the PI3K/Akt pathway via activation of insulin-like growth factor-1 receptor (IGF-1R). Our objective was to understand the role of NEDD4 in endometrial cancer. METHODS NEDD4 expression was assessed by immunohistochemistry in a tissue microarray with 77 endometrial lesions ranging from normal benign endometrium to tumor specimens of varying stage and grade. Studies were extended to a panel of eight endometrial cancer cell lines phenotypically representing the most common endometrial patient tumors. RESULTS Immunohistochemistry demonstrated robust staining of NEDD4 in endometrial tumor specimens, with greater NEDD4 expression in the most aggressive tumors. Expression of NEDD4 was detected in a majority of endometrial cancer cell lines surveyed. Exogenous overexpression of murine Nedd4 in endometrial cancer cell lines with modest endogenous NEDD4 expression resulted in a significant increase in the rate of proliferation. Nedd4 overexpression also promoted an increase in cell surface localization of IGF-1R and activation of Akt. Inhibition of PI3K/Akt signaling reversed the enhanced cell growth in Nedd4-overexpressing endometrial cancer cells. In addition, the expression of NEDD4 in endometrial tumors positively correlated with the Akt downstream effector FoxM1. CONCLUSIONS This study identifies NEDD4 as a putative oncogene in endometrial cancer that may augment activation of the IGF-1R/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yuping Zhang
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA.
| | - Renee Goodfellow
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA.
| | - Yujun Li
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA.
| | - Shujie Yang
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Christopher J Winters
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA.
| | - Kristina W Thiel
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA.
| | - Kimberly K Leslie
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Baoli Yang
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
63
|
Zhou W, Xu J, Zhao Y, Sun Y. SAG/RBX2 is a novel substrate of NEDD4-1 E3 ubiquitin ligase and mediates NEDD4-1 induced chemosensitization. Oncotarget 2015; 5:6746-55. [PMID: 25216516 PMCID: PMC4196160 DOI: 10.18632/oncotarget.2246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sensitive to apoptosis gene (SAG), also known as RBX2, ROC2, or RNF7, is a RING component of SCF E3 ubiquitin ligases, which regulates cellular functions through ubiquitylation and degradation of many protein substrates. Although our previous studies showed that SAG is transcriptionally induced by redox, mitogen and hypoxia via AP-1 and HIF-1, it is completely unknown whether and how SAG is ubiquitylated and degraded. Here we report that NEDD4-1, a HECT domain-containing E3 ubiquitin ligase, binds via its HECT domain directly with SAG's C-terminal RING domain and ubiquitylates SAG for proteasome-mediated degradation. Consistently, SAG protein half-life is shortened or extended by NEDD4-1 overexpression or silencing, respectively. We also found that SAG bridges NEDD4-1 via its C-terminus and CUL-5 via its N-terminus to form a NEDD4-1/SAG/CUL-5 tri-complex. Biologically, NEDD4-1 overexpression sensitizes cancer cells to etoposide-induced apoptosis by reducing SAG levels through targeted degradation. Thus, SAG is added to a growing list of NEDD4-1 substrates and mediates its biological function.
Collapse
Affiliation(s)
- Weihua Zhou
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Jie Xu
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Yongchao Zhao
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI. Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
64
|
Ye X, Wang L, Shang B, Wang Z, Wei W. NEDD4: a promising target for cancer therapy. Curr Cancer Drug Targets 2015; 14:549-56. [PMID: 25088038 DOI: 10.2174/1568009614666140725092430] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/11/2014] [Accepted: 07/11/2014] [Indexed: 11/22/2022]
Abstract
The Neuronally expressed developmentally downregulated 4 (NEDD4), functioning largely as an E3 ubiquitin ligase, has been demonstrated to play a critical role in the development and progression of human cancers. In this review, to understand the regulatory mechanism(s) of NEDD4 as well as the signaling pathways controlled by NEDD4, we briefly describe the NEDD4 upstream regulators and its downstream ubiquitin substrates. Moreover, we further discuss its oncogenic roles in human malignancies. Therefore, targeting NEDD4 could be a potential therapeutic strategy for treatment of human cancers.
Collapse
Affiliation(s)
| | | | | | | | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA.
| |
Collapse
|
65
|
Fukushima T, Yoshihara H, Furuta H, Kamei H, Hakuno F, Luan J, Duan C, Saeki Y, Tanaka K, Iemura SI, Natsume T, Chida K, Nakatsu Y, Kamata H, Asano T, Takahashi SI. Nedd4-induced monoubiquitination of IRS-2 enhances IGF signalling and mitogenic activity. Nat Commun 2015; 6:6780. [PMID: 25879670 DOI: 10.1038/ncomms7780] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 02/26/2015] [Indexed: 01/02/2023] Open
Abstract
Insulin-like growth factors (IGFs) induce proliferation of various cell types and play important roles in somatic growth and cancer development. Phosphorylation of insulin receptor substrate (IRS)-1/2 by IGF-I receptor tyrosine kinase is essential for IGF action. Here we identify Nedd4 as an IRS-2 ubiquitin ligase. Nedd4 monoubiquitinates IRS-2, which promotes its association with Epsin1, a ubiquitin-binding protein. Nedd4 recruits IRS-2 to the membrane, probably through promoting Epsin1 binding, and enhances IGF-I receptor-induced IRS-2 tyrosine phosphorylation. In thyroid FRTL-5 cells, activation of the cyclic AMP pathway increases the association of Nedd4 with IRS-2, thereby enhancing IRS-2-mediated signalling and cell proliferation induced by IGF-I. The Nedd4 and IRS-2 association is also required for maximal activation of IGF-I signalling and cell proliferation in prostate cancer PC-3 cells. Nedd4 overexpression accelerates zebrafish embryonic growth through IRS-2 in vivo. We conclude that Nedd4-induced monoubiquitination of IRS-2 enhances IGF signalling and mitogenic activity.
Collapse
Affiliation(s)
- Toshiaki Fukushima
- 1] Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan [2] Department of Medical Science, Graduate School of Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Hidehito Yoshihara
- 1] Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan [2] Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Haruka Furuta
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyasu Kamei
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Fumihiko Hakuno
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jing Luan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University, Ann Arbor, Michigan 48109, USA
| | - Yasushi Saeki
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Shun-Ichiro Iemura
- Translational Research Center, Fukushima Medical University, 11-25 Sakaemachi, Fukushima City, Fukushima 960-8031, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Kazuhiro Chida
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yusuke Nakatsu
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Hideaki Kamata
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Tomoichiro Asano
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
66
|
Li JJ, Ferry RJ, Diao S, Xue B, Bahouth SW, Liao FF. Nedd4 haploinsufficient mice display moderate insulin resistance, enhanced lipolysis, and protection against high-fat diet-induced obesity. Endocrinology 2015; 156:1283-91. [PMID: 25607895 PMCID: PMC4399314 DOI: 10.1210/en.2014-1909] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neural precursor cell expressed developmentally down-regulated protein 4 (Nedd4) is the prototypical protein in the Nedd4 ubiquitin ligase (E3) family, which governs ubiquitin-dependent endocytosis and/or degradation of plasma membrane proteins. Loss of Nedd4 results in embryonic or neonatal lethality in mice and reduced insulin/IGF-1 signaling in embryonic fibroblasts. To delineate the roles of Nedd4 in vivo, we examined the phenotypes of heterozygous knockout mice using a high-fat diet-induced obesity (HFDIO) model. We observed that Nedd4+/- mice are moderately insulin resistant but paradoxically protected against HFDIO. After high-fat diet feeding, Nedd4+/- mice showed less body weight gain, less fat mass, and smaller adipocytes vs the wild type. Despite ameliorated HFDIO, Nedd4+/- mice did not manifest improvement in glucose tolerance vs the wild type in both genders. Nedd4+/- male, but not female, mice displayed significantly lower fasting blood glucose levels and serum insulin levels. Under obesogenic conditions, Nedd4+/- mice displayed elevated stimulated lipolytic activity, primarily through a β2-adrenergic receptor. Combined, these data support novel complex roles for Nedd4 in metabolic regulation involving altered insulin and β-adrenergic signaling pathways.
Collapse
Affiliation(s)
- Jing Jing Li
- Departments of Pharmacology (J.J.L., S.D., S.W.B., F.-F.L.) and Pediatrics (R.J.F.), University of Tennessee Health Science Center, Memphis, Tennessee 38163; Department of Psychology (R.J.F), University of Memphis, Memphis, Tennessee 38152; and Department of Biology (B.X.), Georgia State University, Atlanta, Georgia 30302
| | | | | | | | | | | |
Collapse
|
67
|
Kennedy JE, Marchese A. Regulation of GPCR Trafficking by Ubiquitin. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:15-38. [PMID: 26055053 DOI: 10.1016/bs.pmbts.2015.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptor (GPCR)-promoted signaling mediates cellular responses to a variety of stimuli involved in diverse physiological processes. In addition, GPCRs are also the largest class of target for many drugs used to treat a variety of diseases. Despite the role of GPCR signaling in health and disease, the molecular mechanisms governing GPCR signaling remain poorly understanding. Classically, GPCR signaling is tightly regulated by GPCR kinases and β-arrestins, which act in a concerted fashion to govern GPCR desensitization and also GPCR trafficking. Ubiquitination has now emerged as an important posttranslational modification that has multiple roles, either directly or indirectly, in governing GPCR trafficking. Recent studies have revealed a mechanistic link between GPCR phosphorylation, β-arrestins, and ubiquitination. Here, we review recent developments in our understanding of how ubiquitin regulates GPCR trafficking within the endocytic pathway.
Collapse
Affiliation(s)
- Justine E Kennedy
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Health Sciences Division, Maywood, Illinois, USA
| | - Adriano Marchese
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Health Sciences Division, Maywood, Illinois, USA.
| |
Collapse
|
68
|
Liu J, Wan L, Liu P, Inuzuka H, Liu J, Wang Z, Wei W. SCF(β-TRCP)-mediated degradation of NEDD4 inhibits tumorigenesis through modulating the PTEN/Akt signaling pathway. Oncotarget 2015; 5:1026-37. [PMID: 24657926 PMCID: PMC4011580 DOI: 10.18632/oncotarget.1675] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The HECT domain-containing ubiquitin E3 ligase NEDD4 is widely expressed in mammalian tissues and plays a crucial role in governing a wide spectrum of cellular processes including cell growth, tissue development and homeostasis. Recent reports have indicated that NEDD4 might facilitate tumorigenesis through targeted degradation of multiple tumor suppressor proteins including PTEN. However, the molecular mechanism by which NEDD4 stability is regulated has not been fully elucidated. Here we report that SCF(β-TRCP) governs NEDD4 protein stability by targeting it for ubiquitination and subsequent degradation in a Casein Kinase-I (CKI) phosphorylation-dependent manner. Specifically, depletion of β-TRCP, or inactivation of CKI, stabilized NEDD4, leading to down-regulation of its ubiquitin target PTEN and subsequent activation of the mTOR/Akt oncogenic pathway. Furthermore, we found that CKIδ-mediated phosphorylation of Ser347 and Ser348 on NEDD4 promoted its interaction with SCF(β-TRCP) for subsequent ubiquitination and degradation. As a result, compared to ectopic expression of wild-type NEDD4, introducing a non-degradable NEDD4 (S347A/S348A-NEDD4) promoted cancer cell growth and migration. Hence, our findings revealed the CKI/SCF(β-TRCP) signaling axis as the upstream negative regulator of NEDD4, and further suggested that enhancing NEDD4 degradation, presumably with CKI or SCF(β-TRCP) agonists, could be a promising strategy for treating human cancers.
Collapse
Affiliation(s)
- Jia Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
69
|
Tanimoto R, Morcavallo A, Terracciano M, Xu SQ, Stefanello M, Buraschi S, Lu KG, Bagley DH, Gomella LG, Scotlandi K, Belfiore A, Iozzo RV, Morrione A. Sortilin regulates progranulin action in castration-resistant prostate cancer cells. Endocrinology 2015; 156:58-70. [PMID: 25365768 PMCID: PMC4272403 DOI: 10.1210/en.2014-1590] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The growth factor progranulin is as an important regulator of transformation in several cellular systems. We have previously demonstrated that progranulin acts as an autocrine growth factor and stimulates motility, proliferation, and anchorage-independent growth of castration-resistant prostate cancer cells, supporting the hypothesis that progranulin may play a critical role in prostate cancer progression. However, the mechanisms regulating progranulin action in castration-resistant prostate cancer cells have not been characterized. Sortilin, a single-pass type I transmembrane protein of the vacuolar protein sorting 10 family, binds progranulin in neurons and negatively regulates progranulin signaling by mediating progranulin targeting for lysosomal degradation. However, whether sortilin is expressed in prostate cancer cells and plays any role in regulating progranulin action has not been established. Here, we show that sortilin is expressed at very low levels in castration-resistant PC3 and DU145 cells. Significantly, enhancing sortilin expression in PC3 and DU145 cells severely diminishes progranulin levels and inhibits motility, invasion, proliferation, and anchorage-independent growth. In addition, sortilin overexpression negatively modulates Akt (protein kinase B, PKB) stability. These results are recapitulated by depleting endogenous progranulin in PC3 and DU145 cells. On the contrary, targeting sortilin by short hairpin RNA approaches enhances progranulin levels and promotes motility, invasion, and anchorage-independent growth. We dissected the mechanisms of sortilin action and demonstrated that sortilin promotes progranulin endocytosis through a clathrin-dependent pathway, sorting into early endosomes and subsequent lysosomal degradation. Collectively, these results point out a critical role for sortilin in regulating progranulin action in castration-resistant prostate cancer cells, suggesting that sortilin loss may contribute to prostate cancer progression.
Collapse
Affiliation(s)
- Ryuta Tanimoto
- Departments of Urology (R.T., A.Morc., M.T., S.-Q.X., M.S., K.G.L., D.H.B., L.G.G., A.Morr.), Biology of Prostate Cancer Program (L.G.G., A.Morr.), and Pathology, Anatomy, and Cell Biology (S.B., R.V.I.) and Cancer Cell Biology and Signaling Program (R.V.I.), Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107; Department of Health Sciences (A.Morc., M.S., A.B.), Endocrinology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; and CRS Development of Biomolecular Therapies (M.T., K.S.), Experimental Oncology Laboratory, Rizzoli Orthopedic Institute, 40136 Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Boase NA, Kumar S. NEDD4: The founding member of a family of ubiquitin-protein ligases. Gene 2014; 557:113-22. [PMID: 25527121 DOI: 10.1016/j.gene.2014.12.020] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/01/2014] [Accepted: 12/10/2014] [Indexed: 01/31/2023]
Abstract
Ubiquitination plays a crucial role in regulating proteins post-translationally. The focus of this review is on NEDD4, the founding member of the NEDD4 family of ubiquitin ligases that is evolutionarily conserved in eukaryotes. Many potential substrates of NEDD4 have been identified and NEDD4 has been shown to play a critical role in the regulation of a number of membrane receptors, endocytic machinery components and the tumour suppressor PTEN. In this review we will discuss the diverse pathways in which NEDD4 is involved, and the patho-physiological significance of this important ubiquitin ligase.
Collapse
Affiliation(s)
- Natasha Anne Boase
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
71
|
Liu J, Shaik S, Dai X, Wu Q, Zhou X, Wang Z, Wei W. Targeting the ubiquitin pathway for cancer treatment. Biochim Biophys Acta Rev Cancer 2014; 1855:50-60. [PMID: 25481052 DOI: 10.1016/j.bbcan.2014.11.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 12/15/2022]
Abstract
Proteasome-mediated degradation is a common mechanism by which cells renew their intracellular proteins and maintain protein homeostasis. In this process, the E3 ubiquitin ligases are responsible for targeting specific substrates (proteins) for ubiquitin-mediated degradation. However, in cancer cells, the stability and the balance between oncoproteins and tumor suppressor proteins are disturbed in part due to deregulated proteasome-mediated degradation. This ultimately leads to either stabilization of oncoprotein(s) or increased degradation of tumor suppressor(s), contributing to tumorigenesis and cancer progression. Therefore, E3 ubiquitin ligases including the SCF types of ubiquitin ligases have recently evolved as promising therapeutic targets for the development of novel anti-cancer drugs. In this review, we highlighted the critical components along the ubiquitin pathway including E1, E2, various E3 enzymes and DUBs that could serve as potential drug targets and also described the available bioactive compounds that target the ubiquitin pathway to control various cancers.
Collapse
Affiliation(s)
- Jia Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shavali Shaik
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xiangpeng Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Qiong Wu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Xiuxia Zhou
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
72
|
Tissue-specific regulation and function of Grb10 during growth and neuronal commitment. Proc Natl Acad Sci U S A 2014; 112:6841-7. [PMID: 25368187 DOI: 10.1073/pnas.1411254111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growth-factor receptor bound protein 10 (Grb10) is a signal adapter protein encoded by an imprinted gene that has roles in growth control, cellular proliferation, and insulin signaling. Additionally, Grb10 is critical for the normal behavior of the adult mouse. These functions are paralleled by Grb10's unique tissue-specific imprinted expression; the paternal copy of Grb10 is expressed in a subset of neurons whereas the maternal copy is expressed in most other adult tissues in the mouse. The mechanism that underlies this switch between maternal and paternal expression is still unclear, as is the role for paternally expressed Grb10 in neurons. Here, we review recent work and present complementary data that contribute to the understanding of Grb10 gene regulation and function, with specific emphasis on growth and neuronal development. Additionally, we show that in vitro differentiation of mouse embryonic stem cells into alpha motor neurons recapitulates the switch from maternal to paternal expression observed during neuronal development in vivo. We postulate that this switch in allele-specific expression is related to the functional role of Grb10 in motor neurons and other neuronal tissues.
Collapse
|
73
|
Xie J, Wei Q, Deng H, Li G, Ma L, Zeng H. Negative regulation of Grb10 Interacting GYF Protein 2 on insulin-like growth factor-1 receptor signaling pathway caused diabetic mice cognitive impairment. PLoS One 2014; 9:e108559. [PMID: 25268761 PMCID: PMC4182477 DOI: 10.1371/journal.pone.0108559] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/25/2014] [Indexed: 12/28/2022] Open
Abstract
Heterozygous Gigyf2⁺/⁻ mice exhibits histopathological evidence of neurodegeneration such as motor dysfunction. Several lines of evidence have demonstrated the important role of insulin-like growth factor-1 receptor (IGF1R) signaling pathway in the neuropathogenic process of cognitive impairment, while decreased Grb10-Interacting GYF Protein 2 (GIGYF2) expression can alter IGF1R trafficking and its downstream signaling pathways. Growth factor receptor-bound protein 10 (Grb10), a suppressor of IGF1R pathway, has been shown to play a critical role in regulating diabetes-associated cognitive impairment. It remains unknown whether endogenous GIGYF2 expression contributes to the development of diabetes-associated cognitive impairment. Using streptozotocin (STZ)-induced diabetic mice model, we first demonstrated that a significantly increased level of GIGYF2 expression was correlated with a significant decrease in the expression of phosphorylated IGF1R as well as the phosphorylation of AKT and ERK1/2, two signaling pathways downstream of IGF1R, in the hippocampus of diabetic mice. On the contrary, in situ knockdown of GIGYF2 expression in hippocampus resulted in increased expression of phosphorylated IGF1R expression and correspondingly reversed the down-regulation of ERK1/2 phsophorylation but had no obvious effect on Grb10 expression. Functionally, knockdown of GIGYF2 expression markedly ameliorated diabetes-associated cognitive dysfunction as well as the ultrastructural pathology and abnormal neurobehavioral changes. These results suggest that increased expression of GIGYF2 might contribute to the development of diabetes-associated cognitive disorder via negatively regulating IGF1R signaling pathway. Therefore, down-regulation of GIGYF2 expression may provide a potential novel approach to treat diabetes-associated cognitive impairment caused by aberrant IGF1R signaling pathway.
Collapse
MESH Headings
- Animals
- Carrier Proteins/agonists
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cognition
- Cognition Disorders/complications
- Cognition Disorders/genetics
- Cognition Disorders/physiopathology
- Cognition Disorders/therapy
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/physiopathology
- GRB10 Adaptor Protein/genetics
- GRB10 Adaptor Protein/metabolism
- Gene Expression Regulation
- Genetic Therapy
- Hippocampus/metabolism
- Hippocampus/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Somatomedin/genetics
- Receptors, Somatomedin/metabolism
- Signal Transduction
- Streptozocin
Collapse
Affiliation(s)
- Jing Xie
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianping Wei
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huacong Deng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Li
- Department of Mental Health, The Mental Health Center of Jiulongpo District, Chongqing, China
| | - Lingli Ma
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Zeng
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
74
|
NEDD4 ubiquitinates TRAF3 to promote CD40-mediated AKT activation. Nat Commun 2014; 5:4513. [PMID: 25072696 DOI: 10.1038/ncomms5513] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 06/25/2014] [Indexed: 01/16/2023] Open
Abstract
CD40, a member of tumour necrosis factor receptor (TNFR) superfamily, has a pivotal role in B-cell-mediated immunity through various effector pathways including AKT kinase, but the signal transduction of CD40-meidated AKT activation is poorly understood. Here we report that the neural precursor cell expressed developmentally downregulated protein 4 (NEDD4), homologous to E6-AP Carboxyl Terminus family E3 ubiquitin ligase, is a novel component of the CD40 signalling complex. It has a key role in CD40-mediated AKT activation and is involved in modulating immunoglobulin class switch through regulating the expression of activation-induced cytidine deaminase. NEDD4 constitutively interacts with CD40 and mediates K63-linked ubiquitination of TNFR-associated factor3 (TRAF3). The ubiquitination of TRAF3 by NEDD4 is critical for CD40-mediated AKT activation. Thus, NEDD4 is a previously unknown component of the CD40 signalling complex necessary for AKT activation.
Collapse
|
75
|
Huo X, Liu S, Shao T, Hua H, Kong Q, Wang J, Luo T, Jiang Y. GSK3 protein positively regulates type I insulin-like growth factor receptor through forkhead transcription factors FOXO1/3/4. J Biol Chem 2014; 289:24759-70. [PMID: 25053419 DOI: 10.1074/jbc.m114.580738] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK3) has either tumor-suppressive roles or pro-tumor roles in different types of human tumors. A number of GSK3 targets in diverse signaling pathways have been uncovered, such as tuberous sclerosis complex subunit 2 and β-catenin. The O subfamily of forkhead/winged helix transcription factors (FOXO) is known as tumor suppressors that induce apoptosis. In this study, we find that FOXO binds to type I insulin-like growth factor receptor (IGF-IR) promoter and stimulates its transcription. GSK3 positively regulates the transactivation activity of FOXO and stimulates IGF-IR expression. Although kinase-dead GSK3β cannot up-regulate IGF-IR, the constitutively active GSK3β induces IGF-IR expression in a FOXO-dependent manner. Serum starvation or Akt inhibition leads to an increase in IGF-IR expression, which could be blunted by GSK3 inhibition. GSK3β knockdown or GSK3 inhibitor suppresses IGF-I-induced IGF-IR, Akt, and ERK1/2 phosphorylation. Moreover, knockdown of GSK3β or FOXO1/3/4 leads to a decrease in cellular proliferation and abrogates IGF-I-induced hepatoma cell proliferation. These results suggest that GSK3 and FOXO may positively regulate IGF-I signaling and hepatoma cell proliferation.
Collapse
Affiliation(s)
- Xiaodong Huo
- From the State Key Laboratory of Biotherapy, Section of Oncogene, West China Hospital, Sichuan University, Chengdu 610041
| | - Shu Liu
- From the State Key Laboratory of Biotherapy, Section of Oncogene, West China Hospital, Sichuan University, Chengdu 610041
| | - Ting Shao
- From the State Key Laboratory of Biotherapy, Section of Oncogene, West China Hospital, Sichuan University, Chengdu 610041
| | - Hui Hua
- the Laboratory of Stem Cell Biology, West China Hospital, Chengdu 610041
| | - Qingbin Kong
- From the State Key Laboratory of Biotherapy, Section of Oncogene, West China Hospital, Sichuan University, Chengdu 610041
| | - Jiao Wang
- the School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, and
| | - Ting Luo
- the Cancer Center, West China Hospital, Chengdu 610041, China
| | - Yangfu Jiang
- From the State Key Laboratory of Biotherapy, Section of Oncogene, West China Hospital, Sichuan University, Chengdu 610041,
| |
Collapse
|
76
|
Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD, Horng T. The TSC-mTOR pathway regulates macrophage polarization. Nat Commun 2014; 4:2834. [PMID: 24280772 PMCID: PMC3876736 DOI: 10.1038/ncomms3834] [Citation(s) in RCA: 436] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/29/2013] [Indexed: 12/27/2022] Open
Abstract
Macrophages are able to polarize to proinflammatory M1 or alternative M2 states with distinct phenotypes and physiological functions. How metabolic status regulates macrophage polarization remains not well understood, and here we examine the role of mTOR (Mechanistic Target of Rapamycin), a central metabolic pathway that couples nutrient sensing to regulation of metabolic processes. Using a mouse model in which myeloid lineage specific deletion of Tsc1 (Tsc1Δ/Δ) leads to constitutive mTOR Complex 1 (mTORC1) activation, we find that Tsc1Δ/Δ macrophages are refractory to IL-4 induced M2 polarization, but produce increased inflammatory responses to proinflammatory stimuli. Moreover, mTORC1-mediated downregulation of Akt signaling critically contributes to defective polarization. These findings highlight a key role for the mTOR pathway in regulating macrophage polarization, and suggest how nutrient sensing and metabolic status could be “hard-wired” to control of macrophage function, with broad implications for regulation of Type 2 immunity, inflammation, and allergy.
Collapse
Affiliation(s)
- Vanessa Byles
- 1] Department of Genetics & Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA [2]
| | | | | | | | | | | | | |
Collapse
|
77
|
Zhang D, Cui Y, Niu L, Xu X, Tian K, Young CYF, Lou H, Yuan H. Regulation of SOD2 and β-arrestin1 by interleukin-6 contributes to the increase of IGF-1R expression in docetaxel resistant prostate cancer cells. Eur J Cell Biol 2014; 93:289-98. [PMID: 24939178 DOI: 10.1016/j.ejcb.2014.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/29/2014] [Accepted: 05/21/2014] [Indexed: 01/07/2023] Open
Abstract
Although several mechanisms behind resistance to docetaxel in castration-refractory prostate cancer (CRPC) have been investigated, molecular determinants of evolved resistance are still not entirely understood. Proteomics-based analysis in this study revealed that SOD2, associated with downregulation of reactive oxygen species (ROS), was significantly up-regulated in docetaxel-resistant (PC3/Doc) cells if compared to sensitive cells, and the expression of redox-regulated genes such as IGF-1R, CXCR4, and BCL2 was increased as well. Forced expression of SOD2 in sensitive cells led to the increase of IGF-1R and association with drug resistance, whereas silencing of SOD2 resulted in the decrease of IGF-1R at the protein level in resistant cells. Further study revealed that SOD2 acted as a negative regulator of β-arrestin1 that is an important adaptor responsible for degradation of IGF-1R via the changes in ROS, as evidenced by observations that an antioxidant agent substantially attenuated β-arrestin1 expression in vitro and in vivo. Finally, we found that blocking of IL6 that was up-regulated in resistant cells resulted in attenuation of SOD2 and STAT3, and simultaneously in increased expression of β-arrestin1. The modulation consequently led to the decreased IGF-1R at both protein and transcription levels. Together, our data provide a novel explanation that high level of IL6 stimulated SOD2 expression that, at least partially, contributed to the low level of ROS that would likely result in a sustained increase in the expression of IGF-1R through abolishment of β-arrestin1 in docetaxel resistant cells.
Collapse
Affiliation(s)
- Denglu Zhang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China; Department of Natural Product Chemistry, Shandong University School of Pharmaceutical Sciences, Jinan 250012, China
| | - Yazhou Cui
- Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Academy of Medical Sciences, Jinan 250012, China
| | - Leilei Niu
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China
| | - Xia Xu
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China
| | - Keli Tian
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China
| | - Charles Y F Young
- Department of Urology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Shandong University School of Pharmaceutical Sciences, Jinan 250012, China
| | - Huiqing Yuan
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China.
| |
Collapse
|
78
|
The E3 ubiquitin ligase NEDD4 negatively regulates HER3/ErbB3 level and signaling. Oncogene 2014; 34:1105-15. [PMID: 24662824 DOI: 10.1038/onc.2014.56] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/06/2014] [Accepted: 01/12/2014] [Indexed: 01/07/2023]
Abstract
HER3/ErbB3, a member of the epidermal growth factor receptor (EGFR) family, has a pivotal role in cancer and is emerging as a therapeutic antibody target. In this study, we identified NEDD4 (neural precursor cell expressed, developmentally downregulated 4) as a novel interaction partner and ubiquitin E3 ligase of human HER3. Using molecular and biochemical approaches, we demonstrated that the C-terminal tail of HER3 interacted with the WW domains of NEDD4 and the interaction was independent of neuregulin-1. Short hairpin RNA knockdown of NEDD4 elevated HER3 levels and resulted in increased HER3 signaling and cancer cell proliferation in vitro and in vivo. A similar inverse relationship between HER3 and NEDD4 levels was observed in prostate cancer tumor tissues. More importantly, the upregulated HER3 expression by NEDD4 knockdown sensitized cancer cells for growth inhibition by an anti-HER3 antibody. Taken together, our results suggest that low NEDD4 levels may predict activation of HER3 signaling and efficacies of anti-HER3 antibody therapies.
Collapse
|
79
|
Kabir NN, Kazi JU. Grb10 is a dual regulator of receptor tyrosine kinase signaling. Mol Biol Rep 2014; 41:1985-92. [PMID: 24420853 DOI: 10.1007/s11033-014-3046-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022]
Abstract
The adaptor protein Grb10 is a close homolog of Grb7 and Grb14. These proteins are characterized by an N-terminal proline-rich region, a Ras-GTPase binding domain, a PH domain, an SH2 domain and a BPS domain in between the PH and SH2 domains. Human Grb10 gene encodes three splice variants. These variants show differences in functionality. Grb10 associates with multiple proteins including tyrosine kinases in a tyrosine phosphorylation dependent or independent manner. Association with multiple proteins allows Grb10 to regulate different signaling pathways resulting in different biological consequences.
Collapse
Affiliation(s)
- Nuzhat N Kabir
- Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Bagura Road, Barisal, Bangladesh
| | | |
Collapse
|
80
|
Morcavallo A, Stefanello M, Iozzo RV, Belfiore A, Morrione A. Ligand-mediated endocytosis and trafficking of the insulin-like growth factor receptor I and insulin receptor modulate receptor function. Front Endocrinol (Lausanne) 2014; 5:220. [PMID: 25566192 PMCID: PMC4269189 DOI: 10.3389/fendo.2014.00220] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/02/2014] [Indexed: 12/20/2022] Open
Abstract
The insulin-like growth factor system and its two major receptors, the IGF receptor I (IGF-IR) and IR, plays a central role in a variety of physiological cellular processes including growth, differentiation, motility, and glucose homeostasis. The IGF-IR is also essential for tumorigenesis through its capacity to protect cancer cells from apoptosis. The IR is expressed in two isoforms: the IR isoform A (IR-A) and isoform B (IR-B). While the role of the IR-B in the regulation of metabolic effects has been known for several years, more recent evidence suggests that the IR, and in particular the IR-A, may be involved in the pathogenesis of cancer. Ligand-mediated endocytosis of tyrosine-kinases receptors plays a critical role in modulating the duration and intensity of receptors action but while the signaling pathways induced by the IGF-IR and IR are quite characterized, very little is still known about the mechanisms and proteins that regulate ligand-induced IGF-IR and IR endocytosis and trafficking. In addition, how these processes affect receptor downstream signaling has not been fully characterized. Here, we discuss the current understanding of the mechanisms and proteins regulating IGF-IR and IR endocytosis and sorting and their implications in modulating ligand-induced biological responses.
Collapse
Affiliation(s)
- Alaide Morcavallo
- Departments of Urology, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Health Sciences and Endocrinology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Manuela Stefanello
- Departments of Urology, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Health Sciences and Endocrinology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Cancer Cell Biology and Signaling Program, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Antonino Belfiore
- Department of Health Sciences and Endocrinology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Andrea Morrione
- Departments of Urology, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Biology of Prostate Cancer Program, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- *Correspondence: Andrea Morrione, Biology of Prostate Cancer Program, Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, BLSB Room 620, Philadelphia, PA 19107, USA e-mail:
| |
Collapse
|
81
|
Kolychev AP, Ternovskaya EE. Peculiarities of distribution of 125I-insulin and 125I-insulin-like growth factor-I (IGF-I) at internalization in isolated rat hepatocytes. J EVOL BIOCHEM PHYS+ 2014. [DOI: 10.1134/s0022093014010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
82
|
Something old, something new and something borrowed: emerging paradigm of insulin-like growth factor type 1 receptor (IGF-1R) signaling regulation. Cell Mol Life Sci 2013; 71:2403-27. [PMID: 24276851 PMCID: PMC4055838 DOI: 10.1007/s00018-013-1514-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 10/17/2013] [Accepted: 11/07/2013] [Indexed: 12/14/2022]
Abstract
The insulin-like growth factor type 1 receptor (IGF-1R) plays a key role in the development and progression of cancer; however, therapeutics targeting it have had disappointing results in the clinic. As a receptor tyrosine kinase (RTK), IGF-1R is traditionally described as an ON/OFF system, with ligand stabilizing the ON state and exclusive kinase-dependent signaling activation. Newly added to the traditional model, ubiquitin-mediated receptor downregulation and degradation was originally described as a response to ligand/receptor interaction and thus inseparable from kinase signaling activation. Yet, the classical model has proven over-simplified and insufficient to explain experimental evidence accumulated over the last decade, including kinase-independent signaling, unbalanced signaling, or dissociation between signaling and receptor downregulation. Based on the recent findings that IGF-1R “borrows” components of G-protein coupled receptor (GPCR) signaling, including β-arrestins and G-protein-related kinases, we discuss the emerging paradigm for the IGF-1R as a functional RTK/GPCR hybrid, which integrates the kinase signaling with the IGF-1R canonical GPCR characteristics. The contradictions to the classical IGF-1R signaling concept as well as the design of anti-IGF-1R therapeutics treatment are considered in the light of this paradigm shift and we advocate recognition of IGF-1R as a valid target for cancer treatment.
Collapse
|
83
|
Camera D, Boase NA, Kumar S, Pow DV, Poronnik P. Subtle gait abnormalities in Nedd4 heterozygous mice. Behav Brain Res 2013; 260:15-24. [PMID: 24280120 DOI: 10.1016/j.bbr.2013.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 11/15/2022]
Abstract
Nedd4 is a widely expressed ubiquitin ligase that is necessary for normal neuronal development and function. However, largely due to the lethality of Nedd4 homozygous knockout mice, little is known about the physiological roles of Nedd4 in the adult brain. In this study we used Nedd4 heterozygous mice, which are viable and live to maturity, to assess for motor function and gait. Global motor function was not altered in these mice, a result consistent with the low level of Nedd4 expression observed in motor neurons of the spinal cord. However, Nedd4 heterozygous mice showed significant age-dependent changes in gait. The gait abnormalities included an overall extension of gait that was only evident in the 6 month old mice. We also observed distinct expression patterns of Nedd4, with pronounced staining in the Purkinje neurons of the cerebellum that are crucial for normal gait, and lower levels in other motor areas of the CNS. It has been recently shown that Nedd4 directly interacts with GluR1 containing AMPA receptors in an activity dependent manner to modulate receptor levels at the post-synaptic membrane. Using confocal immunohistochemistry, we found that there were subtle changes in GluR1 expression in 6 month old Nedd4 heterozygous mice. There appeared to be a redistribution of GluR1 into larger puncta in the molecular layer and in the membrane of the soma of the Purkinje neurons. This study is the first to show that a 50% reduction in Nedd4 levels is sufficient to produce significant gait defects in 6 month old mice. These defects may arise in part, from altered distribution of GluR1 in cerebellar neurons.
Collapse
Affiliation(s)
- Daria Camera
- Health Innovations Research Institute, School of Medical Science, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia
| | - Natasha A Boase
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, SA 5000, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, SA 5000, Australia; Department of Medicine, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia; Division of Health Science, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - David V Pow
- Health Innovations Research Institute, School of Medical Science, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia
| | - Philip Poronnik
- Health Innovations Research Institute, School of Medical Science, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia; School of Medical Sciences and The Bosch Institute, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
84
|
Mulet JM, Llopis-Torregrosa V, Primo C, Marqués MC, Yenush L. Endocytic regulation of alkali metal transport proteins in mammals, yeast and plants. Curr Genet 2013; 59:207-30. [PMID: 23974285 DOI: 10.1007/s00294-013-0401-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 12/30/2022]
Abstract
The relative concentrations of ions and solutes inside cells are actively maintained by several classes of transport proteins, in many cases against their concentration gradient. These transport processes, which consume a large portion of cellular energy, must be constantly regulated. Many structurally distinct families of channels, carriers, and pumps have been characterized in considerable detail during the past decades and defects in the function of some of these proteins have been linked to a growing list of human diseases. The dynamic regulation of the transport proteins present at the cell surface is vital for both normal cellular function and for the successful adaptation to changing environments. The composition of proteins present at the cell surface is controlled on both the transcriptional and post-translational level. Post-translational regulation involves highly conserved mechanisms of phosphorylation- and ubiquitylation-dependent signal transduction routes used to modify the cohort of receptors and transport proteins present under any given circumstances. In this review, we will summarize what is currently known about one facet of this regulatory process: the endocytic regulation of alkali metal transport proteins. The physiological relevance, major contributors, parallels and missing pieces of the puzzle in mammals, yeast and plants will be discussed.
Collapse
Affiliation(s)
- José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avd. de los Naranjos s/n, 46022, Valencia, Spain
| | | | | | | | | |
Collapse
|
85
|
Association study confirmed susceptibility loci with keloid in the Chinese Han population. PLoS One 2013; 8:e62377. [PMID: 23667473 PMCID: PMC3646817 DOI: 10.1371/journal.pone.0062377] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 03/21/2013] [Indexed: 11/19/2022] Open
Abstract
Keloid is benign fibroproliferative dermal tumors with unknown etiology. Recently, a genome-wide association study (GWAS) in Japanese population has identified 3 susceptibility loci (rs873549 at 1q41, rs940187 and rs1511412 at 3q22.3, rs8032158 at 15p21.3) for keloid. In order to examine whether these susceptibility loci are associated with keloid in the Chinese Han population, twelve previously reported SNPs were selected for replication in 714 cases and 2,944 controls by using Sequenom MassArray system. We found three SNPs in two regions showed significant association with keloid in the Chinese Han population: 1q41 (rs873549, P = 3.03×10−33, OR = 2.05, 95% CI: 1.82–2.31 and rs1442440, P = 9.85×10−18, OR = 0.56, 95% CI: 0.49–0.64, respectively) and 15q21.3 (rs2271289 located in NEDD4, P = 1.02×10−11, OR = 0.66, 95% CI: 0.58–0.74). We also detected one risk haplotype AG (P = 1.36×10−31, OR = 2.02) and two protective haplotypes of GA and AA (GA, P = 1.94×10−19, OR = 0.53, AA, P = 0.00043, OR = 0.78, respectively) from the two SNPs (rs873549 and rs1442440). Our study confirmed two previously reported loci 1q41 and 15q21.3 for keloid in the Chinese Han population, which suggested the common genetic factor predisposing to the development of keloid shared by the Chinese Han and Japanese populations.
Collapse
|
86
|
Abstract
Endocytosis is the major regulator of signaling from receptor tyrosine kinases (RTKs). The canonical model of RTK endocytosis involves rapid internalization of an RTK activated by ligand binding at the cell surface and subsequent sorting of internalized ligand-RTK complexes to lysosomes for degradation. Activation of the intrinsic tyrosine kinase activity of RTKs results in autophosphorylation, which is mechanistically coupled to the recruitment of adaptor proteins and conjugation of ubiquitin to RTKs. Ubiquitination serves to mediate interactions of RTKs with sorting machineries both at the cell surface and on endosomes. The pathways and kinetics of RTK endocytic trafficking, molecular mechanisms underlying sorting processes, and examples of deviations from the standard trafficking itinerary in the RTK family are discussed in this work.
Collapse
Affiliation(s)
- Lai Kuan Goh
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
87
|
Sarfstein R, Werner H. Minireview: nuclear insulin and insulin-like growth factor-1 receptors: a novel paradigm in signal transduction. Endocrinology 2013; 154:1672-9. [PMID: 23507573 DOI: 10.1210/en.2012-2165] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The specificity of the insulin receptor (InsR) and insulin-like growth factor-1 receptor (IGF1R) signaling pathways has been the focus of significant debate over the past few years. Recent evidence showing nuclear import and a direct transcriptional role for both InsR and IGF1R adds a new layer of complexity to this dialog. Hence, in addition to the classical roles associated with cell-surface receptors (eg, ligand binding, autophosphorylation of the tyrosine kinase domain, activation of insulin receptor substrate 1 (IRS-1) and additional substrates, protein-protein interactions with membrane and cytoplasm components), new data are consistent with nuclear (genomic) role(s) for both InsR and IGF1R. The present review provides a brief overview of the physical and functional similarities and differences between InsR and IGF1R and describes data from a number of laboratories providing evidence for a new layer of signaling regulation (ie, the ability of InsR and IGF1R to translocate to the cell nucleus and to elicit genomic activities usually associated with transcription factors). The ability of InsR and IGF1R to function as transcription factors, although poorly understood, constitutes a new paradigm in signal transduction. Although research on the role of nuclear InsR/IGF1R is still in its infancy, we believe that this rapidly developing area may have a major basic and translational impact on the fields of metabolism, diabetes, and cancer.
Collapse
Affiliation(s)
- Rive Sarfstein
- PhD, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
88
|
Haglund K, Dikic I. The role of ubiquitylation in receptor endocytosis and endosomal sorting. J Cell Sci 2013; 125:265-75. [PMID: 22357968 DOI: 10.1242/jcs.091280] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ligand-induced activation of transmembrane receptors activates intracellular signaling cascades that control vital cellular processes, such as cell proliferation, differentiation, migration and survival. Receptor signaling is modulated by several mechanisms to ensure that the correct biological outcome is achieved. One such mechanism, which negatively regulates receptor signaling, involves the modification of receptors with ubiquitin. This post-translational modification can promote receptor endocytosis and targets receptors for lysosomal degradation, thereby ensuring termination of receptor signaling. In this Commentary, we review the roles of ubiquitylation in receptor endocytosis and degradative endosomal sorting by drawing on the epidermal growth factor receptor (EGFR) as a well-studied example. Furthermore, we elaborate on the molecular basis of ubiquitin recognition along the endocytic pathway through compartment-specific ubiquitin-binding proteins and highlight how endocytic sorting machineries control these processes. In addition, we discuss the importance of ubiquitin-dependent receptor endocytosis for the maintenance of cellular homeostasis and in the prevention of diseases such as cancer.
Collapse
Affiliation(s)
- Kaisa Haglund
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0310 Oslo, Norway.
| | | |
Collapse
|
89
|
Rejon CA, Ho CC, Wang Y, Zhou X, Bernard DJ, Hébert TE. Cycloheximide inhibits follicle-stimulating hormone β subunit transcription by blocking de novo synthesis of the labile activin type II receptor in gonadotrope cells. Cell Signal 2013; 25:1403-12. [PMID: 23499904 DOI: 10.1016/j.cellsig.2013.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/04/2013] [Indexed: 01/08/2023]
Abstract
The pituitary gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), play essential roles in the regulation of vertebrate reproduction. Activins and inhibins have opposing actions on FSH (but not LH) synthesis, either inducing or inhibiting transcription of the FSHβ subunit gene (Fshb). The translational inhibitor cycloheximide (CHX) produces inhibin-like effects in cultured pituitary cells, selectively suppressing FSH production. Using the murine gonadotrope-like cell line, LβT2, as a model, we tested the hypothesis that a component of the activin pathway is highly labile in gonadotrope cells and that its rapid loss following CHX treatment impairs activin-stimulated Fshb transcription. Treatment of cells with CHX for 6h, but not 1h, blocked activin A-stimulated Fshb transcription. Pre-treatment of LβT2 cells with CHX for as few as 2-3h inhibited activin A-stimulated SMAD2/3 phosphorylation without altering total SMAD2/3 protein levels. These data indicated that CHX affects activin signalling upstream of SMAD proteins, most likely at the receptor level. Indeed, CHX rapidly reduced activin A binding to LβT2 cells. We went on to show that activin A signals via the type II receptor ACVR2, rather than ACVR2B, to regulate Fshb transcription and that the receptor has a half life of ~2h in LβT2 cells. The mechanism of ACVR2 turnover remains undefined, but appears to be ligand-, proteasome-, and lysosome-independent. Collectively, these data indicate that CHX produces inhibin-like effects in gonadotropes by preventing de novo synthesis of the highly labile ACVR2, thereby blocking activin signaling to the Fshb promoter.
Collapse
Affiliation(s)
- Carlis A Rejon
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
90
|
Desbuquois B, Carré N, Burnol AF. Regulation of insulin and type 1 insulin-like growth factor signaling and action by the Grb10/14 and SH2B1/B2 adaptor proteins. FEBS J 2013. [PMID: 23190452 DOI: 10.1111/febs.12080] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The effects of insulin and type 1 insulin-like growth factor (IGF-1) on metabolism, growth and survival are mediated by their association with specific receptor tyrosine kinases, which results in both receptor and substrate phosphorylation. Phosphotyrosine residues on receptors and substrates provide docking sites for signaling proteins containing SH2 (Src homology 2) domains, including molecular adaptors. This review focuses on the regulation of insulin/IGF-1 signaling and action by two adaptor families with a similar domain organization: the growth factor receptor-bound proteins Grb7/10/14 and the SH2B proteins. Both Grb10/14 and SH2B1/B2 associate with the activation loop of insulin/IGF-1 receptors through their SH2 domains, but association of Grb10/14 also involves their unique BPS domain. Consistent with Grb14 binding as a pseudosubstrate to the kinase active site, insulin/IGF-induced activation of receptors and downstream signaling pathways in cultured cells is inhibited by Grb10/14 adaptors, but is potentiated by SH2B1/B2 adaptors. Accordingly, Grb10 and Grb14 knockout mice show improved insulin/IGF sensitivity in vivo, and, for Grb10, overgrowth and increased skeketal muscle and pancreatic β-cell mass. Conversely, SH2B1-depleted mice display insulin and IGF-1 resistance, with peripheral depletion leading to reduced adiposity and neuronal depletion leading to obesity through associated leptin resistance. Grb10/14 and SH2B1 adaptors also modulate insulin/IGF-1 action by interacting with signaling components downstream of receptors and exert several tissue-specific effects. The identification of Grb10/14 and SH2B1 as physiological regulators of insulin signaling and action, together with observations that variants at their gene loci are associated with obesity and/or insulin resistance, highlight them as potential therapeutic targets for these conditions.
Collapse
Affiliation(s)
- Bernard Desbuquois
- Institut Cochin, Départment d'Endocrinologie, Métabolisme et Cancer, Université Paris-Descartes, Institut National de la Santé et de la Recherche Médicale, Unité 1016, et Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Paris, France
| | | | | |
Collapse
|
91
|
Grau-Bové X, Sebé-Pedrós A, Ruiz-Trillo I. A genomic survey of HECT ubiquitin ligases in eukaryotes reveals independent expansions of the HECT system in several lineages. Genome Biol Evol 2013; 5:833-47. [PMID: 23563970 PMCID: PMC3673628 DOI: 10.1093/gbe/evt052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2013] [Indexed: 12/19/2022] Open
Abstract
The posttranslational modification of proteins by the ubiquitination pathway is an important regulatory mechanism in eukaryotes. To date, however, studies on the evolutionary history of the proteins involved in this pathway have been restricted to E1 and E2 enzymes, whereas E3 studies have been focused mainly in metazoans and plants. To have a wider perspective, here we perform a genomic survey of the HECT family of E3 ubiquitin-protein ligases, an important part of this posttranslational pathway, in genomes from representatives of all major eukaryotic lineages. We classify eukaryotic HECTs and reconstruct, by phylogenetic analysis, the putative repertoire of these proteins in the last eukaryotic common ancestor (LECA). Furthermore, we analyze the diversity and complexity of protein domain architectures of HECTs along the different extant eukaryotic lineages. Our data show that LECA had six different HECTs and that protein expansion and N-terminal domain diversification shaped HECT evolution. Our data reveal that the genomes of animals and unicellular holozoans considerably increased the molecular and functional diversity of their HECT system compared with other eukaryotes. Other eukaryotes, such as the Apusozoa Thecanomas trahens or the Heterokonta Phytophthora infestans, independently expanded their HECT repertoire. In contrast, plant, excavate, rhodophyte, chlorophyte, and fungal genomes have a more limited enzymatic repertoire. Our genomic survey and phylogenetic analysis clarifies the origin and evolution of different HECT families among eukaryotes and provides a useful phylogenetic framework for future evolutionary studies of this regulatory pathway.
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Arnau Sebé-Pedrós
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
- Departament de Genètica, Universitat de Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
92
|
FLT3 signals via the adapter protein Grb10 and overexpression of Grb10 leads to aberrant cell proliferation in acute myeloid leukemia. Mol Oncol 2012; 7:402-18. [PMID: 23246379 DOI: 10.1016/j.molonc.2012.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/22/2012] [Indexed: 01/17/2023] Open
Abstract
The adaptor protein Grb10 plays important roles in mitogenic signaling. However, its roles in acute myeloid leukemia (AML) are predominantly unknown. Here we describe the role of Grb10 in FLT3-ITD-mediated AML. We observed that Grb10 physically associates with FLT3 in response to FLT3-ligand (FL) stimulation through FLT3 phospho-tyrosine 572 and 793 residues and constitutively associates with oncogenic FLT3-ITD. Furthermore endogenous Grb10-FLT3 association was observed in OCI-AML-5 cells. Grb10 expression did not alter FLT3 receptor activation or stability in Ba/F3-FLT3 cells. However, expression of Grb10 enhanced FL-induced Akt phosphorylation without affecting Erk or p38 phosphorylation in Ba/F3-FLT3-WT and Ba/F3-FLT3-ITD. Selective Grb10 depletion reduced Akt phosphorylation in Ba/F3-FLT3-WT and OCI-AML-5 cells. Grb10 transduces signal from FLT3 by direct interaction with p85 and Ba/F3-FLT3-ITD cells expressing Grb10 exhibits higher STAT5 activation. Grb10 regulates the cell cycle by increasing cell population in S-phase. Expression of Grb10 furthermore resulted in an increased proliferation and survival of Ba/F3-FLT3-ITD cells as well as increased colony formation in semisolid culture. Grb10 expression was significantly increased in AML patients compared to healthy controls and was also elevated in patients carrying FLT3-ITD mutants. The elevated Grb10 expression partially correlated to relapse as well as to poor prognosis. These results suggest that Grb10 binds to both normal and oncogenic FLT3 and induces PI3K-Akt and STAT5 signaling pathways resulting in an enhanced proliferation, survival and colony formation of hematopoietic cells.
Collapse
|
93
|
Fan CD, Lum MA, Xu C, Black JD, Wang X. Ubiquitin-dependent regulation of phospho-AKT dynamics by the ubiquitin E3 ligase, NEDD4-1, in the insulin-like growth factor-1 response. J Biol Chem 2012. [PMID: 23195959 DOI: 10.1074/jbc.m112.416339] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AKT is a critical effector kinase downstream of the PI3K pathway that regulates a plethora of cellular processes including cell growth, death, differentiation, and migration. Mechanisms underlying activated phospho-AKT (pAKT) translocation to its action sites remain unclear. Here we show that NEDD4-1 is a novel E3 ligase that specifically regulates ubiquitin-dependent trafficking of pAKT in insulin-like growth factor (IGF)-1 signaling. NEDD4-1 physically interacts with AKT and promotes HECT domain-dependent ubiquitination of exogenous and endogenous AKT. NEDD4-1 catalyzes K63-type polyubiquitin chain formation on AKT in vitro. Plasma membrane binding is the key step for AKT ubiquitination by NEDD4-1 in vivo. Ubiquitinated pAKT translocates to perinuclear regions, where it is released into the cytoplasm, imported into the nucleus, or coupled with proteasomal degradation. IGF-1 signaling specifically stimulates NEDD4-1-mediated ubiquitination of pAKT, without altering total AKT ubiquitination. A cancer-derived plasma membrane-philic mutant AKT(E17K) is more effectively ubiquitinated by NEDD4-1 and more efficiently trafficked into the nucleus compared with wild type AKT. This study reveals a novel mechanism by which a specific E3 ligase is required for ubiquitin-dependent control of pAKT dynamics in a ligand-specific manner.
Collapse
Affiliation(s)
- Chuan-Dong Fan
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | |
Collapse
|
94
|
β-Arrestin-biased agonism as the central mechanism of action for insulin-like growth factor 1 receptor-targeting antibodies in Ewing's sarcoma. Proc Natl Acad Sci U S A 2012. [PMID: 23188799 DOI: 10.1073/pnas.1216348110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Owing to its essential role in cancer, insulin-like growth factor type 1 receptor (IGF-1R)-targeted therapy is an exciting approach for cancer treatment. However, when translated into clinical trials, IGF-1R-specific antibodies did not fulfill expectations. Despite promising clinical responses in Ewing's sarcoma (ES) phase I/II trials, phase III trials were discouraging, requiring bedside-to-bench translation and functional reevaluation of the drugs. The anti-IGF-1R antibody figitumumab (CP-751,871; CP) was designed as an antagonist to prevent ligand-receptor interaction but, as with all anti-IGF-1R antibodies, it induces agonist-like receptor down-regulation. We explored this paradox in a panel of ES cell lines and found their sensitivity to CP was unaffected by presence of IGF-1, countering a ligand blocking mechanism. CP induced IGF-1R/β-arrestin1 association with dual functional outcome: receptor ubiquitination and degradation and decrease in cell viability and β-arrestin1-dependent ERK signaling activation. Controlled β-arrestin1 suppression initially enhanced CP resistance. This effect was mitigated on further β-arrestin1 decrease, due to loss of CP-induced ERK activation. Confirming this, the ERK1/2 inhibitor U0126 increased sensitivity to CP. Combined, these results reveal the mechanism of CP-induced receptor down-regulation and characteristics that functionally qualify a prototypical antagonist as an IGF-1R-biased agonist: β-arrestin1 recruitment to IGF-1R as the underlying mechanism for ERK signaling activation and receptor down-regulation. We further confirmed the consequences of β-arrestin1 regulation on cell sensitivity to CP and demonstrated a therapeutic strategy to enhance response. Defining and suppressing such biased signaling represents a practical therapeutic strategy to enhance response to anti-IGF-1R therapies.
Collapse
|
95
|
Upregulation of the E3 ligase NEDD4-1 by oxidative stress degrades IGF-1 receptor protein in neurodegeneration. J Neurosci 2012; 32:10971-81. [PMID: 22875931 DOI: 10.1523/jneurosci.1836-12.2012] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The importance of ubiquitin E3 ligases in neurodegeneration is being increasingly recognized. The crucial role of NEDD4-1 in neural development is well appreciated; however, its role in neurodegeneration remains unexplored. Herein, we report increased NEDD4-1 expression in the degenerated tissues of several major neurodegenerative diseases. Moreover, its expression is upregulated in cultured neurons in response to various neurotoxins, including zinc and hydrogen superoxide, via transcriptional activation likely mediated by the reactive oxygen species (ROS)-responsive FOXM1B. Reduced protein levels of the insulin-like growth factor receptor (IGF-1Rβ) were observed as a consequence of upregulated NEDD4-1 via the ubiquitin-proteasome system. Overexpression of a familial mutant form of superoxide dismutase 1 (SOD1) (G93A) in neuroblastoma cells resulted in a similar reduction of IGF-1Rβ protein. This inverse correlation between NEDD4-1 and IGF-1Rβ was also observed in the cortex and spinal cords of mutant (G93A) SOD1 transgenic mice at a presymptomatic age, which was similarly induced by in vivo-administered zinc in wild-type C57BL/6 mice. Furthermore, histochemistry reveals markedly increased NEDD4-1 immunoreactivity in the degenerating/degenerated motor neurons in the lumbar anterior horn of the spinal cord, suggesting a direct causative role for NEDD4-1 in neurodegeneration. Indeed, downregulation of NEDD4-1 by shRNA or overexpression of a catalytically inactive form rescued neurons from zinc-induced cell death. Similarly, neurons with a NEDD4-1 haplotype are more resistant to apoptosis, largely due to expression of higher levels of IGF-1Rβ.Together, our work identifies a novel molecular mechanism for ROS-upregulated NEDD4-1 and the subsequently reduced IGF-1Rβ signaling in neurodegeneration.
Collapse
|
96
|
Brisson BK, Barton ER. Insulin-like growth factor-I E-peptide activity is dependent on the IGF-I receptor. PLoS One 2012; 7:e45588. [PMID: 23029120 PMCID: PMC3448668 DOI: 10.1371/journal.pone.0045588] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/23/2012] [Indexed: 11/19/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) is an essential growth factor that regulates the processes necessary for cell proliferation, differentiation, and survival. The Igf1 gene encodes mature IGF-I and a carboxy-terminal extension called the E-peptide. In rodents, alternative splicing and post-translational processing produce two E-peptides (EA and EB). EB has been studied extensively and has been reported to promote cell proliferation and migration independently of IGF-I and its receptor (IGF-IR), but the mechanism by which EB causes these actions has not been identified. Further, the properties of EA have not been evaluated. Therefore, the goals of this study were to determine if EA and EB possessed similar activity and if these actions were IGF-IR independent. We utilized synthetic peptides for EA, EB, and a scrambled control to examine cellular responses. Both E-peptides increased MAPK signaling, which was blocked by pharmacologic IGF-IR inhibition. Although the E-peptides did not directly induce IGF-IR phosphorylation, the presence of either E-peptide increased IGF-IR activation by IGF-I, and this was achieved through enhanced cell surface bioavailability of the receptor. To determine if E-peptide biological actions required the IGF-IR, we took advantage of the murine C2C12 cell line as a platform to examine the key steps of skeletal muscle proliferation, migration and differentiation. EB increased myoblast proliferation and migration while EA delayed differentiation. The proliferation and migration effects were inhibited by MAPK or IGF-IR signaling blockade. Thus, in contrast to previous studies, we find that E-peptide signaling, mitogenic, and motogenic effects are dependent upon IGF-IR. We propose that the E-peptides have little independent activity, but instead affect growth via modulating IGF-I signaling, thereby increasing the complexity of IGF-I biological activity.
Collapse
Affiliation(s)
- Becky K. Brisson
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, and Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elisabeth R. Barton
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, and Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
97
|
Voutsadakis IA. The ubiquitin-proteasome system and signal transduction pathways regulating Epithelial Mesenchymal transition of cancer. J Biomed Sci 2012; 19:67. [PMID: 22827778 PMCID: PMC3418218 DOI: 10.1186/1423-0127-19-67] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 07/09/2012] [Indexed: 02/08/2023] Open
Abstract
Epithelial to Mesenchymal transition (EMT) in cancer, a process permitting cancer cells to become mobile and metastatic, has a signaling hardwire forged from development. Multiple signaling pathways that regulate carcinogenesis enabling characteristics in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis are also the main players in EMT. These pathways, as almost all cellular processes, are in their turn regulated by ubiquitination and the Ubiquitin-Proteasome System (UPS). Ubiquitination is the covalent link of target proteins with the small protein ubiquitin and serves as a signal to target protein degradation by the proteasome or to other outcomes such as endocytosis, degradation by the lysosome or specification of cellular localization. This paper reviews signal transduction pathways regulating EMT and being regulated by ubiquitination.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Centre Pluridisciplinaire d'Oncologie, BH06, Centre Hospitalier Universitaire Vaudois, Bugnon 46, Lausanne, 1011, Switzerland.
| |
Collapse
|
98
|
Cortés-Sempere M, de Miguel MP, Pernía O, Rodriguez C, de Castro Carpeño J, Nistal M, Conde E, López-Ríos F, Belda-Iniesta C, Perona R, Ibanez de Caceres I. IGFBP-3 methylation-derived deficiency mediates the resistance to cisplatin through the activation of the IGFIR/Akt pathway in non-small cell lung cancer. Oncogene 2012; 32:1274-83. [PMID: 22543588 DOI: 10.1038/onc.2012.146] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although many cancers initially respond to cisplatin (CDDP)-based chemotherapy, resistance frequently develops. Insulin-like growth factor-binding protein-3 (IGFBP-3) silencing by promoter methylation is involved in the CDDP-acquired resistance process in non-small cell lung cancer (NSCLC) patients. Our purpose is to design a translational-based profile to predict resistance in NSCLC by studying the role of IGFBP-3 in the phosphatidyl inositol 3-kinase (PI3K) signaling pathway. We have first examined the relationship between IGFBP-3 expression regulated by promoter methylation and activation of the epidermal growth factor receptor (EGFR), insulin-like growth factor-I receptor (IGFIR) and PI3K/AKT pathways in 10 human cancer cell lines and 25 NSCLC patients with known IGFBP-3 methylation status and response to CDDP. Then, to provide a helpful tool that enables clinicians to identify patients with a potential response to CDDP, we have calculated the association between our diagnostic test and the true outcome of analyzed samples in terms of cisplatin IC50; the inhibitory concentration that kills 50% of the cell population. Our results suggest that loss of IGFBP-3 expression by promoter methylation in tumor cells treated with CDDP may activate the PI3K/AKT pathway through the specific derepression of IGFIR signaling, inducing resistance to CDDP. This study also provides a predictive test for clinical practice with an accuracy and precision of 0.84 and 0.9, respectively, (P=0.0062). We present a biomarker test that could provide clinicians with a robust tool with which to decide on the use of CDDP, improving patient clinical outcomes.
Collapse
Affiliation(s)
- M Cortés-Sempere
- Instituto de Investigaciones Biomedicas CSIC/UAM, CIBER de Enfermedades Raras CIBERER, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Skouloudaki K, Walz G. YAP1 recruits c-Abl to protect angiomotin-like 1 from Nedd4-mediated degradation. PLoS One 2012; 7:e35735. [PMID: 22558212 PMCID: PMC3338797 DOI: 10.1371/journal.pone.0035735] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 03/21/2012] [Indexed: 11/29/2022] Open
Abstract
Background Tissue development and organ growth require constant remodeling of cell-cell contacts formed between epithelial cells. The Hippo signaling cascade curtails organ growth by excluding the transcriptional co-activator Yes Associated Protein 1 (YAP1) from the nucleus. Angiomotin family members recruit YAP1 to tight junctions [1], but whether YAP1 plays a specific role outside of the nucleus is currently unknown. Methodology/Principal Findings The present study demonstrates that the E3 ubiquitin ligase Nedd4.2 targets Angiomotin-like 1 (AMOTL1), a family member that promotes the formation of epithelial tight junctions, for ubiquitin-dependent degradation. Unexpectedly, YAP1 antagonizes the function of Nedd4.2, and protects AMOTL1 against Nedd4.2-mediated degradation. YAP1 recruits c-Abl, a tyrosine kinase that binds and phosphorylates Nedd4.2 on tyrosine residues, thereby modifying its ubiquitin-ligase activity. Conclusions/Significance Our results uncover a novel function for cytoplasmic YAP1. YAP1 recruits c-Abl to protect AMOTL1 against Nedd4.2-mediated degradation. Thus, YAP1, excluded from the nucleus, contributes to the maintenance of tight junctions.
Collapse
Affiliation(s)
| | - Gerd Walz
- Renal Division, University Hospital Freiburg, Freiburg, Germany
- Center for Biological Signaling Studies (bioss), Freiburg, Germany
- * E-mail:
| |
Collapse
|
100
|
Hoa N, Tsui S, Afifiyan NF, Sinha Hikim A, Li B, Douglas RS, Smith TJ. Nuclear targeting of IGF-1 receptor in orbital fibroblasts from Graves' disease: apparent role of ADAM17. PLoS One 2012; 7:e34173. [PMID: 22506015 PMCID: PMC3323600 DOI: 10.1371/journal.pone.0034173] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/28/2012] [Indexed: 12/23/2022] Open
Abstract
Insulin-like growth factor-1 receptor (IGF-1R) comprises two subunits, including a ligand binding domain on extra- cellular IGF-1Rα and a tyrosine phosphorylation site located on IGF-1Rβ. IGF-1R is over-expressed by orbital fibroblasts in the autoimmune syndrome, Graves' disease (GD). When activated by IGF-1 or GD-derived IgG (GD-IgG), these fibroblasts produce RANTES and IL-16, while those from healthy donors do not. We now report that IGF-1 and GD-IgG provoke IGF-1R accumulation in the cell nucleus of GD fibroblasts where it co-localizes with chromatin. Nuclear IGF-1R is detected with anti-IGF-1Rα-specific mAb and migrates to approximately 110 kDa, consistent with its identity as an IGF-1R fragment. Nuclear IGF-1R migrating as a 200 kDa protein and consistent with an intact receptor was undetectable when probed with either anti-IGF-1Rα or anti-IGF-1Rβ mAbs. Nuclear redistribution of IGF-1R is absent in control orbital fibroblasts. In GD fibroblasts, it can be abolished by an IGF-1R-blocking mAb, 1H7 and by physiological concentrations of glucocorticoids. When cell-surface IGF-1R is cross-linked with 125I IGF-1, 125I-IGF-1/IGF-1R complexes accumulate in the nuclei of GD fibroblasts. This requires active ADAM17, a membrane associated metalloproteinase, and the phosphorylation of IGF-1R. In contrast, virally encoded IGF-1Rα/GFP fusion protein localizes equivalently in nuclei in both control and GD fibroblasts. This result suggests that generation of IGF-1R fragments may limit the accumulation of nuclear IGF-1R. We thus identify a heretofore-unrecognized behavior of IGF-1R that appears limited to GD-derived fibroblasts. Nuclear IGF-1R may play a role in disease pathogenesis.
Collapse
Affiliation(s)
- Neil Hoa
- Divisions of Molecular Medicine and Endocrinology, Department of Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Veterans Affairs Medical Center, Long Beach, California, United States of America
| | - Shanli Tsui
- Divisions of Molecular Medicine and Endocrinology, Department of Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Nikoo F. Afifiyan
- Divisions of Molecular Medicine and Endocrinology, Department of Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Amiya Sinha Hikim
- Divisions of Molecular Medicine and Endocrinology, Department of Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Bin Li
- Departments of Ophthalmology and Visual Sciences and Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Raymond S. Douglas
- Divisions of Molecular Medicine and Endocrinology, Department of Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Departments of Ophthalmology and Visual Sciences and Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Terry J. Smith
- Divisions of Molecular Medicine and Endocrinology, Department of Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Veterans Affairs Medical Center, Long Beach, California, United States of America
- Departments of Ophthalmology and Visual Sciences and Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|