51
|
Genomically mined acoustic reporter genes for real-time in vivo monitoring of tumors and tumor-homing bacteria. Nat Biotechnol 2023:10.1038/s41587-022-01581-y. [PMID: 36593411 DOI: 10.1038/s41587-022-01581-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/20/2022] [Indexed: 01/03/2023]
Abstract
Ultrasound allows imaging at a much greater depth than optical methods, but existing genetically encoded acoustic reporters for in vivo cellular imaging have been limited by poor sensitivity, specificity and in vivo expression. Here we describe two acoustic reporter genes (ARGs)-one for use in bacteria and one for use in mammalian cells-identified through a phylogenetic screen of candidate gas vesicle gene clusters from diverse bacteria and archaea that provide stronger ultrasound contrast, produce non-linear signals distinguishable from background tissue and have stable long-term expression. Compared to their first-generation counterparts, these improved bacterial and mammalian ARGs produce 9-fold and 38-fold stronger non-linear contrast, respectively. Using these new ARGs, we non-invasively imaged in situ tumor colonization and gene expression in tumor-homing therapeutic bacteria, tracked the progression of tumor gene expression and growth in a mouse model of breast cancer, and performed gene-expression-guided needle biopsies of a genetically mosaic tumor, demonstrating non-invasive access to dynamic biological processes at centimeter depth.
Collapse
|
52
|
Qin Y, Geng X, Sun Y, Zhao Y, Chai W, Wang X, Wang P. Ultrasound nanotheranostics: Toward precision medicine. J Control Release 2023; 353:105-124. [PMID: 36400289 DOI: 10.1016/j.jconrel.2022.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022]
Abstract
Ultrasound (US) is a mechanical wave that can penetrate biological tissues and trigger complex bioeffects. The mechanisms of US in different diagnosis and treatment are different, and the functional application of commercial US is also expanding. In particular, recent developments in nanotechnology have led to a wider use of US in precision medicine. In this review, we focus on US in combination with versatile micro and nanoparticles (NPs)/nanovesicles for tumor theranostics. We first introduce US-assisted drug delivery as a stimulus-responsive approach that spatiotemporally regulates the deposit of nanomedicines in target tissues. Multiple functionalized NPs and their US-regulated drug-release curves are analyzed in detail. Moreover, as a typical representative of US therapy, sonodynamic antitumor strategy is attracting researchers' attention. The collaborative efficiency and mechanisms of US and various nano-sensitizers such as nano-porphyrins and organic/inorganic nanosized sensitizers are outlined in this paper. A series of physicochemical processes during ultrasonic cavitation and NPs activation are also discussed. Finally, the new applications of US and diagnostic NPs in tumor-monitoring and image-guided combined therapy are summarized. Diagnostic NPs contain substances with imaging properties that enhance US contrast and photoacoustic imaging. The development of such high-resolution, low-background US-based imaging methods has contributed to modern precision medicine. It is expected that the integration of non-invasive US and nanotechnology will lead to significant breakthroughs in future clinical applications.
Collapse
Affiliation(s)
- Yang Qin
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaorui Geng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yue Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yitong Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Wenyu Chai
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
53
|
Nie Z, Tang K, Wang W, Wang P, Guo Y, Wang Y, Kao SJ, Yin J, Wang X. Comparative genomic insights into habitat adaptation of coral-associated Prosthecochloris. Front Microbiol 2023; 14:1138751. [PMID: 37152757 PMCID: PMC10158934 DOI: 10.3389/fmicb.2023.1138751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Green sulfur bacteria (GSB) are a distinct group of anoxygenic phototrophic bacteria that are found in many ecological niches. Prosthecochloris, a marine representative genus of GSB, was found to be dominant in some coral skeletons. However, how coral-associated Prosthecochloris (CAP) adapts to diurnal changing microenvironments in coral skeletons is still poorly understood. In this study, three Prosthecochloris genomes were obtained through enrichment culture from the skeleton of the stony coral Galaxea fascicularis. These divergent three genomes belonged to Prosthecochloris marina and two genomes were circular. Comparative genomic analysis showed that between the CAP and non-CAP clades, CAP genomes possess specialized metabolic capacities (CO oxidation, CO2 hydration and sulfur oxidation), gas vesicles (vertical migration in coral skeletons), and cbb 3-type cytochrome c oxidases (oxygen tolerance and gene regulation) to adapt to the microenvironments of coral skeletons. Within the CAP clade, variable polysaccharide synthesis gene clusters and phage defense systems may endow bacteria with differential cell surface structures and phage susceptibility, driving strain-level evolution. Furthermore, mobile genetic elements (MGEs) or evidence of horizontal gene transfer (HGT) were found in most of the genomic loci containing the above genes, suggesting that MGEs play an important role in the evolutionary diversification between CAP and non-CAP strains and within CAP clade strains. Our results provide insight into the adaptive strategy and population evolution of endolithic Prosthecochloris strains in coral skeletons.
Collapse
Affiliation(s)
- Zhaolong Nie
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Kaihao Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- *Correspondence: Kaihao Tang,
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Jianping Yin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
54
|
Liu S, Glamore W, Tamburic B, Morrow A, Johnson F. Remote sensing to detect harmful algal blooms in inland waterbodies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158096. [PMID: 35987216 DOI: 10.1016/j.scitotenv.2022.158096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/25/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Harmful algal blooms (HABs) are an issue of concern for water management worldwide. As such, effective monitoring strategies of HAB spatio-temporal variability in waterbodies are needed. Remote sensing has become an increasingly important tool for HAB detection and monitoring in large lakes. However, accurate HAB detection in small-medium waterbodies via satellite data remains a challenge. Current barriers include the waterbody size, the limited freely available high resolution satellite data, and the lack of field calibration data. To test the applicability of remote sensing for detecting HABs in small-medium waterbodies, three satellites (Planetscope, Sentinel-2 and Landsat-8) were used to understand how spatial resolution, the availability of spectral bands, and the waterbody size itself effect HAB detection skill. Different algorithms and a non-parametric method, Self-Organizing Map (SOM), were tested. Curvature Around Red and NIR minus Red had the best HAB detection skill of the 20 existing algorithms that were tested. Landsat 8 and Sentinel 2 were the best satellites for HAB detection in small to medium waterbodies. The most critical attribute for detecting HABs were the available satellite bands, which determine the detection algorithms that can be used. Importantly, algorithm performance was mostly unrelated to waterbody size. However, there remain some barriers in utilizing satellite data for HAB detection, including algae dynamics, macrophyte cover within the waterbody, weather effects, and the correction models for satellite data. Moreover, it is important to consider the match time between satellite overpass and sampling activities for calibration. Given these challenges, integrating regular sampling activities and remote sensing is recommended for monitoring and managing small-medium waterbodies.
Collapse
Affiliation(s)
- S Liu
- Water Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
| | - W Glamore
- Water Research Laboratory, University of New South Wales, Sydney, NSW 2093, Australia
| | - B Tamburic
- Water Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - A Morrow
- Hunter Water Corporation, Newcastle, NSW 2300, Australia
| | - F Johnson
- Water Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
55
|
Onga EA, Vêncio RZN, Koide T. Low Salt Influences Archaellum-Based Motility, Glycerol Metabolism, and Gas Vesicles Biogenesis in Halobacterium salinarum. Microorganisms 2022; 10:2442. [PMID: 36557695 PMCID: PMC9786353 DOI: 10.3390/microorganisms10122442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Halobacterium salinarum NRC-1 is an extremophile that grows optimally at 4.3 M NaCl concentration. In spite of being an established model microorganism for the archaea domain, direct comparisons between its proteome and transcriptome during osmotic stress are still not available. Through RNA-seq-based transcriptomics, we compared a low salt (2.6 M NaCl) stress condition with 4.3 M of NaCl and found 283 differentially expressed loci. The more commonly found classes of genes were: ABC-type transporters and transcription factors. Similarities, and most importantly, differences between our findings and previously published datasets in similar experimental conditions are discussed. We validated three important biological processes differentially expressed: gas vesicles production (due to down-regulation of gvpA1b, gvpC1b, gvpN1b, and gvpO1b); archaellum formation (due to down-regulation of arlI, arlB1, arlB2, and arlB3); and glycerol metabolism (due to up-regulation of glpA1, glpB, and glpC). Direct comparison between transcriptomics and proteomics showed 58% agreement between mRNA and protein level changes, pointing to post-transcriptional regulation candidates. From those genes, we highlight rpl15e, encoding for the 50S ribosomal protein L15e, for which we hypothesize an ionic strength-dependent conformational change that guides post-transcriptional processing of its mRNA and, thus, possible salt-dependent regulation of the translation machinery.
Collapse
Affiliation(s)
- Evelyn Ayumi Onga
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Ricardo Z. N. Vêncio
- Department of Computation and Mathematics, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Tie Koide
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
56
|
Melkikh AV, Bondar VV. Mechanisms and models of movement of protocells and bacteria in the early stages of evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:3-13. [PMID: 35987420 DOI: 10.1016/j.pbiomolbio.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
A review of the physicochemical models of the movement of protocells and bacteria was performed. The mechanisms of gliding and movement based on flagella are considered. Based on the models, the average speed of movement of protocells and bacteria was calculated. A physicochemical model of bacterial gliding was constructed. The efficiency of the process of converting the energy of ATP into the energy of motion is estimated. A review of models of movement with the help of flagella was performed. A model has been constructed for converting ATP energy into proton and sodium motive forces, which, in turn, are converted into energy of rotor rotation. The problem of the accuracy of operation of nanomachines, on the basis of which the directed movement of bacteria occurs, is discussed. The considered models can be applied to create nanomotors for medical purposes.
Collapse
Affiliation(s)
- A V Melkikh
- Ural Federal University, Yekaterinburg, Russia.
| | - V V Bondar
- Ural Federal University, Yekaterinburg, Russia
| |
Collapse
|
57
|
Salahshoor H, Yao Y, Dutka P, Nyström NN, Jin Z, Min E, Malounda D, Jensen GJ, Ortiz M, Shapiro MG. Geometric effects in gas vesicle buckling under ultrasound. Biophys J 2022; 121:4221-4228. [PMID: 36081347 PMCID: PMC9674984 DOI: 10.1016/j.bpj.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/12/2022] [Accepted: 09/06/2022] [Indexed: 11/02/2022] Open
Abstract
Acoustic reporter genes based on gas vesicles (GVs) have enabled the use of ultrasound to noninvasively visualize cellular function in vivo. The specific detection of GV signals relative to background acoustic scattering in tissues is facilitated by nonlinear ultrasound imaging techniques taking advantage of the sonomechanical buckling of GVs. However, the effect of geometry on the buckling behavior of GVs under exposure to ultrasound has not been studied. To understand such geometric effects, we developed computational models of GVs of various lengths and diameters and used finite element simulations to predict their threshold buckling pressures and postbuckling deformations. We demonstrated that the GV diameter has an inverse cubic relation to the threshold buckling pressure, whereas length has no substantial effect. To complement these simulations, we experimentally probed the effect of geometry on the mechanical properties of GVs and the corresponding nonlinear ultrasound signals. The results of these experiments corroborate our computational predictions. This study provides fundamental insights into how geometry affects the sonomechanical properties of GVs, which, in turn, can inform further engineering of these nanostructures for high-contrast, nonlinear ultrasound imaging.
Collapse
Affiliation(s)
- Hossein Salahshoor
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California
| | - Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Przemysław Dutka
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Nivin N Nyström
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Zhiyang Jin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Ellen Min
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Dina Malounda
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California; College of Physical and Mathematical Sciences, Brigham Young University, Provo, Utah
| | - Michael Ortiz
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California; Howard Hughes Medical Institute, Pasadena, California.
| |
Collapse
|
58
|
Graham J, Keten S. Bacterial flotation devices enhance ultrasound imaging. Biophys J 2022; 121:4019-4021. [PMID: 36257324 PMCID: PMC9675023 DOI: 10.1016/j.bpj.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Jacob Graham
- Northwestern University, Department of Mechanical Engineering, Evanston, Illinois
| | - Sinan Keten
- Northwestern University, Department of Mechanical Engineering, Evanston, Illinois; Northwestern University, Department of Civil and Environmental Engineering, Evanston, Illinois.
| |
Collapse
|
59
|
Nikitin AA, Ivanova AV, Semkina AS, Lazareva PA, Abakumov MA. Magneto-Mechanical Approach in Biomedicine: Benefits, Challenges, and Future Perspectives. Int J Mol Sci 2022; 23:11134. [PMID: 36232435 PMCID: PMC9569787 DOI: 10.3390/ijms231911134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
The magneto-mechanical approach is a powerful technique used in many different applications in biomedicine, including remote control enzyme activity, cell receptors, cancer-selective treatments, mechanically-activated drug releases, etc. This approach is based on the use of a combination of magnetic nanoparticles and external magnetic fields that have led to the movement of such nanoparticles with torques and forces (enough to change the conformation of biomolecules or even break weak chemical bonds). However, despite many theoretical and experimental works on this topic, it is difficult to predict the magneto-mechanical effects in each particular case, while the important results are scattered and often cannot be translated to other experiments. The main reason is that the magneto-mechanical effect is extremely sensitive to changes in any parameter of magnetic nanoparticles and the environment and changes in the parameters of the applied magnetic field. Thus, in this review, we (1) summarize and propose a simplified theoretical explanation of the main factors affecting the efficiency of the magneto-mechanical approach; (2) discuss the nature of the MNP-mediated mechanical forces and their order of magnitude; (3) show some of the main applications of the magneto-mechanical approach in the control over the properties of biological systems.
Collapse
Affiliation(s)
- Aleksey A. Nikitin
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), 119049 Moscow, Russia
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anna V. Ivanova
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alevtina S. Semkina
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Polina A. Lazareva
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Maxim A. Abakumov
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
60
|
Recent Advances in the Study of Gas Vesicle Proteins and Application of Gas Vesicles in Biomedical Research. Life (Basel) 2022; 12:life12091455. [PMID: 36143491 PMCID: PMC9501494 DOI: 10.3390/life12091455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 12/01/2022] Open
Abstract
The formation of gas vesicles has been investigated in bacteria and haloarchaea for more than 50 years. These air-filled nanostructures allow cells to stay at a certain height optimal for growth in their watery environment. Several gvp genes are involved and have been studied in Halobacterium salinarum, cyanobacteria, Bacillus megaterium, and Serratia sp. ATCC39006 in more detail. GvpA and GvpC form the gas vesicle shell, and additional Gvp are required as minor structural proteins, chaperones, an ATP-hydrolyzing enzyme, or as gene regulators. We analyzed the Gvp proteins of Hbt. salinarum with respect to their protein–protein interactions, and developed a model for the formation of these nanostructures. Gas vesicles are also used in biomedical research. Since they scatter waves and produce ultrasound contrast, they could serve as novel contrast agent for ultrasound or magnetic resonance imaging. Additionally, gas vesicles were engineered as acoustic biosensors to determine enzyme activities in cells. These applications are based on modifications of the surface protein GvpC that alter the mechanical properties of the gas vesicles. In addition, gas vesicles have been decorated with GvpC proteins fused to peptides of bacterial or viral pathogens and are used as tools for vaccine development.
Collapse
|
61
|
Reporter Genes for Brain Imaging Using MRI, SPECT and PET. Int J Mol Sci 2022; 23:ijms23158443. [PMID: 35955578 PMCID: PMC9368793 DOI: 10.3390/ijms23158443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023] Open
Abstract
The use of molecular imaging technologies for brain imaging can not only play an important supporting role in disease diagnosis and treatment but can also be used to deeply study brain functions. Recently, with the support of reporter gene technology, optical imaging has achieved a breakthrough in brain function studies at the molecular level. Reporter gene technology based on traditional clinical imaging modalities is also expanding. By benefiting from the deeper imaging depths and wider imaging ranges now possible, these methods have led to breakthroughs in preclinical and clinical research. This article focuses on the applications of magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET) reporter gene technologies for use in brain imaging. The tracking of cell therapies and gene therapies is the most successful and widely used application of these techniques. Meanwhile, breakthroughs have been achieved in the research and development of reporter genes and their imaging probe pairs with respect to brain function research. This paper introduces the imaging principles and classifications of the reporter gene technologies of these imaging modalities, lists the relevant brain imaging applications, reviews their characteristics, and discusses the opportunities and challenges faced by clinical imaging modalities based on reporter gene technology. The conclusion is provided in the last section.
Collapse
|
62
|
Du Y, An S, He H, Wen S, Xing P, Duan H. Production and transformation of organic matter driven by algal blooms in a shallow lake: Role of sediments. WATER RESEARCH 2022; 219:118560. [PMID: 35576761 DOI: 10.1016/j.watres.2022.118560] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
The generation of organic matter (OM) occurs synchronously with phytoplankton growth. Characterization of the generated particulate and dissolved OM during algal blooms in eutrophic lakes is crucial for better understanding the carbon cycle but remains limited. We speculate that sediments play a critical role in the biogeochemical transformation of OM derived from algal blooms in shallow lakes. In this study, changes in OM quantity and quality and the concentrations of biogenic elements (nutrients and metals) during algal blooms, were studied in situ in a shallow eutrophic lake (Lake Chaohu, China). Two enclosure treatments in the presence and absence of sediments were compared, and the cause-effect relationships among sediment, nutrients, metals, phytoplankton, particulate OM (POM), and dissolved OM (DOM) were revealed by a partial least square-path model (PLS-PM). The results showed that the changes in nutrients and metals concentrations over time were consistent with that of chlorophyll a (Chl a), and at the end of the treatment, the concentrations of Chl a, nutrients, and metals in Treatment S (with sediments) were approximately 3-5 times of those in Treatment N (without sediments). The high concentration of Chl a in Treatment S resulted in a high quantity of POM, which showed low molecular weight, low humification, and was enriched in protein-like components (∼ 70%). For DOM, the quantity increased after the decrease in POM, and DOM quality showed a significantly higher abundance of humic-like components and a higher molecular weight than POM did. The PLS-PM results showed that the significant positive effects of sediment on nutrients, metals, phytoplankton, POM, and DOM were 0.28, 0.37, 0.28, 0.25, and 0.25, respectively, suggesting that sediment had an important role in the biogeochemical cycles of these substances. The significant negative relationship between POM and DOM (-0.62) and the distinct difference in POM and DOM quality implied the efficient transformation of the freshly generated OM to those with a higher molecular weight, higher humification, and potentially refractory. Our results depicted the quick biogeochemical transformation of nutrients, metals, and the potential formation of refractory organic carbon in water column, as driven by the couple of the algae pump with the microbial carbon pump.
Collapse
Affiliation(s)
- YingXun Du
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - ShiLin An
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu He
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - ShuaiLong Wen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - HongTao Duan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
63
|
Baumgartner RJ, Hu S, Van Kranendonk MJ, Verrall M. Taphonomy of microorganisms and microbial microtextures at sulfidic hydrothermal vents: A case study from the Roman Ruins black smokers, Eastern Manus Basin. GEOBIOLOGY 2022; 20:479-497. [PMID: 35315208 PMCID: PMC9310909 DOI: 10.1111/gbi.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Biological activity at deep-sea hydrothermal chimneys is driven by chemotrophic microorganisms that metabolize chemicals from the venting high-temperature fluids. Understanding taphonomy and microbial microtextures in such environments is a necessity for micropaleontological and palaeoecological research. This study examines fossilized microorganisms and related microtextures in a recent black smoker from the Roman Ruins hydrothermal vent site, Eastern Manus Basin offshore of Papua New Guinea. Whereas the center of the examined sulfide chimney is dominated by high-temperature mineralogy (chalcopyrite and dendritic sphalerite), filamentous and coccoidal biomorphs occur in an outer, warm zone of mixing between hydrothermal fluids and seawater, which is indicated by their occurrence within colloform and botryoidal pyrite of barite-pyrite coprecipitates. Both morphotypes can be interpreted as thermophilic microorganisms based on their occurrence in a high-temperature habitat. Their separate (non-commensal) occurrence hints at sensitivities to microenvironmental conditions, which is expectable for strong temperature, pH, and redox gradients at the walls of deep-sea hydrothermal chimneys. Whereas both morphotypes experienced mild thermal overprint, taphonomic differences exist: (i) spaces left by cells in filamentous fossils are predominately filled by silica, whereas inter/extracellular features (crosswalls/septae and outer sheaths) are pyritized; (ii) coccoidal fossils show both silica- and pyrite-infilled interiors, and generally better preservation of cell walls. These different manifestations presumably relate to an interplay between microenvironmental and biological factors, potentially contrasting metabolisms, and differences in cell wall chemistries of distinct bacteria and/or archaea. A further hypothesis is that the coccoidal features represent biofilm-forming organisms, whose organic matter derivates contributed to the formation of intimately associated wavy and wrinkly carbonaceous laminations that are at least locally distinguishable from the texture of the surrounding pyrite. Hence, the presented data provide evidence that microtextures of microbiota from hydrothermal systems can have a similar significance for palaeobiological research as those from sedimentary environments.
Collapse
Affiliation(s)
- Raphael J. Baumgartner
- CSIRO Mineral ResourcesAustralian Resources Research CentreKensingtonWestern AustraliaAustralia
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental SciencesThe University of New South WalesKensingtonNew South WalesAustralia
| | - Siyu Hu
- CSIRO Mineral ResourcesAustralian Resources Research CentreKensingtonWestern AustraliaAustralia
| | - Martin J. Van Kranendonk
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental SciencesThe University of New South WalesKensingtonNew South WalesAustralia
| | - Michael Verrall
- CSIRO Mineral ResourcesAustralian Resources Research CentreKensingtonWestern AustraliaAustralia
| |
Collapse
|
64
|
Fukui T, Tateno H, Nakamura T, Yamada Y, Sato Y, Iwasaki N, Harashima H, Kadoya K. Retrograde Axonal Transport of Liposomes from Peripheral Tissue to Spinal Cord and DRGs by Optimized Phospholipid and CTB Modification. Int J Mol Sci 2022; 23:6661. [PMID: 35743104 PMCID: PMC9223829 DOI: 10.3390/ijms23126661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Despite recent advancements in therapeutic options for disorders of the central nervous system (CNS), the lack of an efficient drug-delivery system (DDS) hampers their clinical application. We hypothesized that liposomes could be optimized for retrograde transport in axons as a DDS from peripheral tissues to the spinal cord and dorsal root ganglia (DRGs). Three types of liposomes consisting of DSPC, DSPC/POPC, or POPC in combination with cholesterol (Chol) and polyethylene glycol (PEG) lipid were administered to sciatic nerves or the tibialis anterior muscle of mature rats. Liposomes in cell bodies were detected with infrared fluorescence of DiD conjugated to liposomes. Three days later, all nerve-administered liposomes were retrogradely transported to the spinal cord and DRGs, whereas only muscle-administered liposomes consisting of DSPC reached the spinal cord and DRGs. Modification with Cholera toxin B subunit improved the transport efficiency of liposomes to the spinal cord and DRGs from 4.5% to 17.3% and from 3.9% to 14.3% via nerve administration, and from 2.6% to 4.8% and from 2.3% to 4.1% via muscle administration, respectively. Modification with octa-arginine (R8) improved the transport efficiency via nerve administration but abolished the transport capability via muscle administration. These findings provide the initial data for the development of a novel DDS targeting the spinal cord and DRGs via peripheral administration.
Collapse
Affiliation(s)
- Takafumi Fukui
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-8638, Japan; (T.F.); (N.I.)
| | - Hironao Tateno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (H.T.); (Y.Y.); (Y.S.); (H.H.)
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (H.T.); (Y.Y.); (Y.S.); (H.H.)
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (H.T.); (Y.Y.); (Y.S.); (H.H.)
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (H.T.); (Y.Y.); (Y.S.); (H.H.)
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-8638, Japan; (T.F.); (N.I.)
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (H.T.); (Y.Y.); (Y.S.); (H.H.)
| | - Ken Kadoya
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-8638, Japan; (T.F.); (N.I.)
| |
Collapse
|
65
|
Wei M, Lai M, Zhang J, Pei X, Yan F. Biosynthetic Gas Vesicles from Halobacteria NRC-1: A Potential Ultrasound Contrast Agent for Tumor Imaging. Pharmaceutics 2022; 14:pharmaceutics14061198. [PMID: 35745771 PMCID: PMC9229964 DOI: 10.3390/pharmaceutics14061198] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 01/01/2023] Open
Abstract
Ultrasound contrast agents are valuable for diagnostic imaging and drug delivery. Generally, chemically synthesized microbubbles (MBs) are micro-sized particles. Particle size is a limiting factor for the diagnosis and treatment of many extravascular diseases. Recently, gas vesicles (GVs) from some marine bacteria and archaea have been reported as novel nanoscale contrast agents, showing great potential for biomedical applications. However, most of the GVs reported in the literature show poor contrast imaging capabilities due to their small size, especially for the in vivo condition. In this study, we isolated the rugby-ball-shaped GVs from Halobacteria NRC-1 and characterized their contrast imaging properties in vitro and in vivo. Our results showed that GVs could produce stable and strong ultrasound contrast signals in murine liver tumors using clinical diagnostic ultrasound equipment at the optimized parameters. Interestingly, we found these GVs, after systemic administration, were able to perfuse the ischemic region of a tumor where conventional lipid MBs failed, producing a 6.84-fold stronger contrast signal intensity than MBs. Immunohistochemistry staining assays revealed that the nanoscale GVs, in contrast to the microscale MBs, could penetrate through blood vessels. Thus, our study proved these biosynthesized GVs from Halobacterium NRC-1 are useful for future molecular imaging and image-guided drug delivery.
Collapse
Affiliation(s)
- Mingjie Wei
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
| | - Manlin Lai
- Department of Ultrasound, The First Affiliated Hospital of Shenzhen University, Shenzhen 518061, China;
| | - Jiaqi Zhang
- Department of Ultrasound, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China;
| | - Xiaoqing Pei
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
- Correspondence: (X.P.); (F.Y.); Tel.: +86-755-8639-2284 (F.Y.)
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence: (X.P.); (F.Y.); Tel.: +86-755-8639-2284 (F.Y.)
| |
Collapse
|
66
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
67
|
Athanassiadis AG, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, Fischer P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem Rev 2022; 122:5165-5208. [PMID: 34767350 PMCID: PMC8915171 DOI: 10.1021/acs.chemrev.1c00622] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Smart materials can respond to stimuli and adapt their responses based on external cues from their environments. Such behavior requires a way to transport energy efficiently and then convert it for use in applications such as actuation, sensing, or signaling. Ultrasound can carry energy safely and with low losses through complex and opaque media. It can be localized to small regions of space and couple to systems over a wide range of time scales. However, the same characteristics that allow ultrasound to propagate efficiently through materials make it difficult to convert acoustic energy into other useful forms. Recent work across diverse fields has begun to address this challenge, demonstrating ultrasonic effects that provide control over physical and chemical systems with surprisingly high specificity. Here, we review recent progress in ultrasound-matter interactions, focusing on effects that can be incorporated as components in smart materials. These techniques build on fundamental phenomena such as cavitation, microstreaming, scattering, and acoustic radiation forces to enable capabilities such as actuation, sensing, payload delivery, and the initiation of chemical or biological processes. The diversity of emerging techniques holds great promise for a wide range of smart capabilities supported by ultrasound and poses interesting questions for further investigations.
Collapse
Affiliation(s)
- Athanasios G. Athanassiadis
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Zhichao Ma
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Nicolas Moreno-Gomez
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Kai Melde
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Eunjin Choi
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Rahul Goyal
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Peer Fischer
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
68
|
Kim JM, Kim YS, Kim YR, Choi MJ, DasSarma P, DasSarma S. Bioengineering of Halobacterium sp. NRC-1 gas vesicle nanoparticles with GvpC fusion protein produced in E. coli. Appl Microbiol Biotechnol 2022; 106:2043-2052. [PMID: 35230496 PMCID: PMC8885775 DOI: 10.1007/s00253-022-11841-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022]
Abstract
Abstract Gas vesicle nanoparticles (GVNPs) are hollow, buoyant prokaryotic organelles used for cell flotation. GVNPs are encoded by a large gas vesicle protein (gvp) gene cluster in the haloarchaeon, Halobacterium sp. NRC-1, including one gene, gvpC, specifying a protein bound to the surface of the nanoparticles. Genetically engineered GVNPs in the Halobacterium sp. have been produced by fusion of foreign sequences to gvpC. To improve the versatility of the GVNP platform, we developed a method for displaying exogenously produced GvpC fusion proteins on the haloarchaeal nanoparticles. The streptococcal IgG-binding protein domain was fused at or near the C-terminus of GvpC, expressed and purified from E. coli, and shown to bind to wild-type GVNPs. The two fusion proteins, GvpC3GB and GvpC4GB, without or with a highly acidic GvpC C-terminal region, were found to be able to bind nanoparticles equally well. The GVNP-bound GvpC-IgG-binding fusion protein was also capable of binding to an enzyme-linked IgG-HRP complex which retained enzyme activity, demonstrating the hybrid system capability for display and delivery of protein complexes. This is the first report demonstrating functional binding of exogenously produced GvpC fusion proteins to wild-type haloarchaeal GVNPs which significantly expands the capability of the platform to produce bioengineered nanoparticles for biomedical applications. Key points • Haloarchaeal gas vesicle nanoparticles (GVNPs) constitute a versatile display system. • GvpC-streptococcal IgG-binding fusion proteins expressed in E. coli bind to GVNPs. • IgG-binding proteins displayed on floating GVNPs bind and display IgG-HRP complex. Graphical abstract ![]()
Collapse
Affiliation(s)
- Jong-Myoung Kim
- Department of Fisheries Biology, PuKyong National University, Busan, 48513, Korea.
| | - Youn-Sook Kim
- Department of Fisheries Biology, PuKyong National University, Busan, 48513, Korea.,School of Medicine, Pusan National University, Yangsan, 50512, Korea
| | - Yeo-Reum Kim
- Department of Fisheries Biology, PuKyong National University, Busan, 48513, Korea
| | - Mi-Jin Choi
- Department of Fisheries Biology, PuKyong National University, Busan, 48513, Korea
| | - Priya DasSarma
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.,Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD, USA
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA. .,Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD, USA.
| |
Collapse
|
69
|
Evolution of Phytoplankton in Relation to Their Physiological Traits. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Defining the physiological traits that characterise phytoplankton involves comparison with related organisms in benthic habitats. Comparison of survival time in darkness under natural conditions requires more information. Gas vesicles and flagella as mechanisms of upward movement relative to surrounding water, allowing periodic vertical migration, are not confined to plankton, although buoyancy changes related to compositional changes of a large central vacuole may be restricted to plankton. Benthic microalgae have the same range of photosynthetic pigments as phytoplankton; it is not clear if there are differences in the rate of regulation and acclimation of photosynthetic machinery to variations in irradiance for phytoplankton and for microphytobenthos. There are inadequate data to determine if responses to variations in frequency or magnitude of changes in the supply of inorganic carbon, nitrogen or phosphorus differ between phytoplankton and benthic microalgae. Phagophotomixotrophy and osmophotomixotrophy occur in both phytoplankton and benthic microalgae. Further progress in identifying physiological traits specific to phytoplankton requires more experimentation on benthic microalgae that are closely related to planktonic microalgae, with attention to whether the benthic algae examined have, as far as can be determined, never been planktonic during their evolution or are derived from planktonic ancestors.
Collapse
|
70
|
Wang J, Childers WS. The Future Potential of Biosensors to Investigate the Gut-Brain Axis. Front Bioeng Biotechnol 2022; 9:826479. [PMID: 35096802 PMCID: PMC8795891 DOI: 10.3389/fbioe.2021.826479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
The multifaceted and heterogeneous nature of depression presents challenges in pinpointing treatments. Among these contributions are the interconnections between the gut microbiome and neurological function termed the gut-brain axis. A diverse range of microbiome-produced metabolites interact with host signaling and metabolic pathways through this gut-brain axis relationship. Therefore, biosensor detection of gut metabolites offers the potential to quantify the microbiome's contributions to depression. Herein we review synthetic biology strategies to detect signals that indicate gut-brain axis dysregulation that may contribute to depression. We also highlight future challenges in developing living diagnostics of microbiome conditions influencing depression.
Collapse
Affiliation(s)
| | - W. Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
71
|
Long H, Qin X, Xu R, Mei C, Xiong Z, Deng X, Huang K, Liang H. Non-Modified Ultrasound-Responsive Gas Vesicles from Microcystis with Targeted Tumor Accumulation. Int J Nanomedicine 2022; 16:8405-8416. [PMID: 35002235 PMCID: PMC8721019 DOI: 10.2147/ijn.s342614] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Ultrasonic molecular imaging (UMI) technology has attracted increasing interest because of its low cost and capability to evaluate changes rapidly and noninvasively at the cellular and molecular levels. The key material of this technology is ultrasound-responsive gas vesicles (GVs). GVs synthesized by conventional chemical methods have several limitations, such as high costs, low yields, and complex production processes. In comparison, biosynthesized GVs have the advantages of high stability, a low risk of toxicity, genetic engineering characterization, easy post modification and drug loading potential. However, translational studies of their biosynthesis are still in their infancy; in particular, the duration of GVs in the circulatory system is essential for the usage of UMI in biomedicine and the clinic. Results Here, we report novel GVs biosynthesized by the cyanobacterium Microcystis, which have a moderate size, a negative zeta potential, a rod-like morphology, and a protein-shelled gas-contained structure. These GVs without any chemical modifications could be detected in the mice circulatory system for more than 10 hours by clinically used ultrasound scanners. In particular, GVs can accumulate in tumors via the enhanced permeation and retention (EPR) effect 11 hours post-injection, and lasting at least 2 hours, which might be a potential aid for tumor diagnosis. Furthermore, pathological and hematological study suggested that GVs are safe for the host. Conclusion We concluded that the GVs synthesized by Microcystis without any modifications have UMI potential for systemic evaluation as well as tumoral diagnosis after intravenous injection.
Collapse
Affiliation(s)
- Huan Long
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaojuan Qin
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Rui Xu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Chunlei Mei
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, People's Republic of China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| |
Collapse
|
72
|
Jost A, Knitsch R, Völkner K, Pfeifer F. Effect of Mutations in GvpJ and GvpM on Gas Vesicle Formation of Halobacterium salinarum. Front Microbiol 2022; 12:794240. [PMID: 34975818 PMCID: PMC8716928 DOI: 10.3389/fmicb.2021.794240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
The two haloarchaeal proteins, GvpM and GvpJ, are homologous to GvpA, the major gas vesicle structural protein. All three are hydrophobic and essential for gas vesicle formation. The effect of mutations in GvpJ and GvpM was studied in Haloferax volcanii transformants by complementing the respective mutated gene with the remaining gvp genes and inspecting the cells for the presence of gas vesicles (Vac+). In case of GvpJ, 56 of 66 substitutions analyzed yielded Vac– ΔJ + Jmut transformants, indicating that GvpJ is very sensitive to alterations, whereas ten of the 38 GvpM variants resulted in Vac– ΔM + Mmut transformants. The variants were also tested by split-GFP for their ability to interact with their partner protein GvpL. Some of the alterations leading to a Vac– phenotype affected the J/L or M/L interaction. Also, the interactions J/A and J/M were studied using fragments to exclude an unspecific aggregation of these hydrophobic proteins. Both fragments of GvpJ interacted with the M1–25 and M60–84 fragments of GvpM, and fragment J1–56 of GvpJ interacted with the N-terminal fragment A1–22 of GvpA. A comparison of the results on the three homologous proteins indicates that despite their relatedness, GvpA, GvpJ, and GvpM have unique features and cannot substitute each other.
Collapse
Affiliation(s)
- Alisa Jost
- Microbiology and Archaea, Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Regine Knitsch
- Microbiology and Archaea, Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Kerstin Völkner
- Microbiology and Archaea, Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Felicitas Pfeifer
- Microbiology and Archaea, Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| |
Collapse
|
73
|
Peng C, Chen M, Spicer JB, Jiang X. Acoustics at the nanoscale (nanoacoustics): A comprehensive literature review.: Part II: Nanoacoustics for biomedical imaging and therapy. SENSORS AND ACTUATORS. A, PHYSICAL 2021; 332:112925. [PMID: 34937992 PMCID: PMC8691754 DOI: 10.1016/j.sna.2021.112925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In the past decade, acoustics at the nanoscale (i.e., nanoacoustics) has evolved rapidly with continuous and substantial expansion of capabilities and refinement of techniques. Motivated by research innovations in the last decade, for the first time, recent advancements of acoustics-associated nanomaterials/nanostructures and nanodevices for different applications are outlined in this comprehensive review, which is written in two parts. As part II of this two-part review, this paper concentrates on nanoacoustics in biomedical imaging and therapy applications, including molecular ultrasound imaging, photoacoustic imaging, ultrasound-mediated drug delivery and therapy, and photoacoustic drug delivery and therapy. Firstly, the recent developments of nanosized ultrasound and photoacoustic contrast agents as well as their various imaging applications are examined. Secondly, different types of nanomaterials/nanostructures as nanocarriers for ultrasound and photoacoustic therapies are discussed. Finally, a discussion of challenges and future research directions are provided for nanoacoustics in medical imaging and therapy.
Collapse
Affiliation(s)
- Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - James B. Spicer
- Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
74
|
Zhang Y, Hu M, Shi K, Zhang M, Han T, Lai L, Zhan P. Sensitivity of phytoplankton to climatic factors in a large shallow lake revealed by column-integrated algal biomass from long-term satellite observations. WATER RESEARCH 2021; 207:117786. [PMID: 34731665 DOI: 10.1016/j.watres.2021.117786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
There are some uncertainties of using chlorophyll a (Chla) concentrations in water surface to address phytoplankton dynamics, especially in large shallow lakes, because of the dramatic vertical migration of phytoplankton. The column-integrated algal biomass (CAB) can reflect the whole water column information, so it is considered as a better indicator for phytoplankton total biomass. An algal biomass index (ABI) and an empirical algorithm were proposed previously to measure algal biomass inside and outside euphotic zone from the Moderate Resolution Imaging Spectrometer (MODIS) data. A long-term CAB time series was generated in this study to clarify the temporal and spatial changes in phytoplankton and address its sensitivity to climatic factors in Lake Chaohu, a shallow eutrophic lake in China, from 2000 to 2018. Overall, the CAB for Lake Chaohu showed significant temporal and spatial dynamics. Temporally, the annual average CAB (total CBA within the whole lake) was increased at rate of 0.569 t Chla/y, ranging from 62.06±8.89 t Chla to 76.03±10.01 t Chla during the 19-year period. Seasonal and periodic variations in total CAB presented a bimodal annual cycle every year, the total CAB was highest in summer, followed by that in autumn, and it was the lowest in winter. The pixel-based CAB (total CAB of a unit water column), ranging from 112.42 to 166.85 mg Chla, was the highest in the western segment, especially its northern part, and was the lowest in the central parts of eastern and central segments. The sensitivity of CAB dynamics to climatic conditions was found to vary by region and time scale. Specifically, the change of pixel-based algal biomass was more sensitive to the temperature change on the monthly and annual scales, while wind speed impacted directly on the short-term spatial-temporal redistribution of algal biomass. High temperature and low wind speed could prompt the growth of total CAB for the whole lake, and the hydrodynamic situations affected by wind and so on determined the spatial details. It also indicated that Lake Chaohu may face more severe challenges with the future climatic warming. This study may serve as a reference to support algal bloom forecasting and early warning management for other large eutrophic lakes with similar problems.
Collapse
Affiliation(s)
- Yuchao Zhang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P.R.China
| | - Minqi Hu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P.R.China; University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| | - Kun Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P.R.China.
| | - Min Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P.R.China
| | - Tao Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P.R.China
| | - Lai Lai
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P.R.China; University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| | - Pengfei Zhan
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P.R.China; University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| |
Collapse
|
75
|
Zhao Z, Bian Z, Chen Y, Xie Z, Kang C, Gao L, Zhu G. Self-assembly of chiral foldamers with alternating hydrophilic and hydrophobic side chains into acid-sensitive and solvent-exchangeable vesicular particles. SOFT MATTER 2021; 17:10073-10079. [PMID: 34714902 DOI: 10.1039/d1sm01321a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is difficult for the same molecule to self-assemble into stable vesicular particles in water and aliphatic hydrocarbon (oil), respectively. Here we demonstrated that chiral oligo(methylene-p-phenyleneethynylene)s with alternating hydrophilic and hydrophobic side chains were able to self-assemble into vesicular particles independent of solvent polarity. These particles were well dispersed in aliphatic hydrocarbon, alcohol or water for at least one month at room temperature, and readily transferred from organic to aqueous phases via dialysis. They displayed a noticeable response to the acidity of the aqueous phase, and could be used as simple cargos for loading hydrophilic or hydrophobic molecules in aqueous cores, which were different from loading in polymersomes. The vesicular particles loaded with hydrophobic paclitaxel exhibited comparable anti-HeLa cell activity to free paclitaxel in vitro.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- State Key Laboratory of Polymer and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China.
- University of Science and Technology of China, 230026, Hefei, China
| | - Zheng Bian
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024, Changchun, China.
| | - Yu Chen
- State Key Laboratory of Polymer and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China.
| | - Zhigang Xie
- State Key Laboratory of Polymer and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China.
- University of Science and Technology of China, 230026, Hefei, China
| | - Chuanqing Kang
- State Key Laboratory of Polymer and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China.
- University of Science and Technology of China, 230026, Hefei, China
| | - Lianxun Gao
- State Key Laboratory of Polymer and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China.
- University of Science and Technology of China, 230026, Hefei, China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024, Changchun, China.
| |
Collapse
|
76
|
Hou X, Qiu Z, Xian Q, Kala S, Jing J, Wong KF, Zhu J, Guo J, Zhu T, Yang M, Sun L. Precise Ultrasound Neuromodulation in a Deep Brain Region Using Nano Gas Vesicles as Actuators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101934. [PMID: 34546652 PMCID: PMC8564444 DOI: 10.1002/advs.202101934] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/12/2021] [Indexed: 05/02/2023]
Abstract
Ultrasound is a promising new modality for non-invasive neuromodulation. Applied transcranially, it can be focused down to the millimeter or centimeter range. The ability to improve the treatment's spatial resolution to a targeted brain region could help to improve its effectiveness, depending upon the application. The present paper details a neurostimulation scheme using gas-filled nanostructures, gas vesicles (GVs), as actuators for improving the efficacy and precision of ultrasound stimuli. Sonicated primary neurons display dose-dependent, repeatable Ca2+ responses, closely synced to stimuli, and increased nuclear expression of the activation marker c-Fos in the presence of GVs. GV-mediated ultrasound triggered rapid and reversible Ca2+ responses in vivo and could selectively evoke neuronal activation in a deep-seated brain region. Further investigation indicate that mechanosensitive ion channels are important mediators of this effect. GVs themselves and the treatment scheme are also found not to induce significant cytotoxicity, apoptosis, or membrane poration in treated cells. Altogether, this study demonstrates a simple and effective method to achieve enhanced and better-targeted neurostimulation with non-invasive low-intensity ultrasound.
Collapse
Affiliation(s)
- Xuandi Hou
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR999077P. R. China
| | - Zhihai Qiu
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR999077P. R. China
| | - Quanxiang Xian
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR999077P. R. China
| | - Shashwati Kala
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR999077P. R. China
| | - Jianing Jing
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR999077P. R. China
| | - Kin Fung Wong
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR999077P. R. China
| | - Jiejun Zhu
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR999077P. R. China
| | - Jinghui Guo
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR999077P. R. China
| | - Ting Zhu
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR999077P. R. China
| | - Minyi Yang
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR999077P. R. China
| | - Lei Sun
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR999077P. R. China
| |
Collapse
|
77
|
Xia B, Sebesta C, Lee S, Nair V, Zhao X, Coffler S, Robinson JT, Szablowski JO. Biohybrid approaches to interface with the nervous system: the best of both worlds. Curr Opin Biotechnol 2021; 72:86-94. [PMID: 34735989 DOI: 10.1016/j.copbio.2021.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/27/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Synthetic materials and devices that interact with light, ultrasound, or magnetic fields can be used to modulate neural activity with high spatial and temporal precision; however, these approaches often lack the ability to target genetically defined cell types and signaling pathways. Genetically encoded proteins can be expressed to modify the host tissue and provide cellular and molecular specificity, but compared to synthetic materials, these proteins often interact weakly with externally applied energy sources. Synthetic materials can respond to optical, acoustic, and magnetic stimuli to focus, convert, and amplify forms of energy to ones that are more accessible to engineered cells and proteins. By combining the devices, synthetic materials, and genetically encoded proteins or cells, researchers can gain the ability to interface with the nervous system with improved spatiotemporal, cell-type and molecular precision. Here we review recent advances in these 'biohybrid' approaches that use optical, acoustic, and magnetic energy sources.
Collapse
Affiliation(s)
- Boao Xia
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX, 77005, USA; Rice Neuroengineering Initiative, George R. Brown School of Engineering, Rice University, Houston, TX, 77030, USA
| | - Charles Sebesta
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX, 77005, USA; Rice Neuroengineering Initiative, George R. Brown School of Engineering, Rice University, Houston, TX, 77030, USA
| | - Sangsin Lee
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX, 77005, USA; Rice Neuroengineering Initiative, George R. Brown School of Engineering, Rice University, Houston, TX, 77030, USA
| | - Vishnu Nair
- Department of Electrical and Computer Engineering, George R. Brown School of Engineering, Rice University, Houston, TX, 77251, USA; Rice Neuroengineering Initiative, George R. Brown School of Engineering, Rice University, Houston, TX, 77030, USA
| | - Xuan Zhao
- Department of Electrical and Computer Engineering, George R. Brown School of Engineering, Rice University, Houston, TX, 77251, USA; Rice Neuroengineering Initiative, George R. Brown School of Engineering, Rice University, Houston, TX, 77030, USA; Applied Physics Graduate Program, Smalley-Curl Institute, Rice University 77251, Houston, TX, USA
| | - Samantha Coffler
- Department of Electrical and Computer Engineering, George R. Brown School of Engineering, Rice University, Houston, TX, 77251, USA; Rice Neuroengineering Initiative, George R. Brown School of Engineering, Rice University, Houston, TX, 77030, USA; Systems, Synthetic, and Physical Biology PhD Program, Rice University, Houston, TX, 77251, USA
| | - Jacob T Robinson
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX, 77005, USA; Department of Electrical and Computer Engineering, George R. Brown School of Engineering, Rice University, Houston, TX, 77251, USA; Rice Neuroengineering Initiative, George R. Brown School of Engineering, Rice University, Houston, TX, 77030, USA.
| | - Jerzy O Szablowski
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX, 77005, USA; Rice Neuroengineering Initiative, George R. Brown School of Engineering, Rice University, Houston, TX, 77030, USA; Applied Physics Graduate Program, Smalley-Curl Institute, Rice University 77251, Houston, TX, USA; Systems, Synthetic, and Physical Biology PhD Program, Rice University, Houston, TX, 77251, USA.
| |
Collapse
|
78
|
Abstract
Increasing efficiency is an important driving force behind cellular organization and often achieved through compartmentalization. Long recognized as a core principle of eukaryotic cell organization, its widespread occurrence in prokaryotes has only recently come to light. Despite the early discovery of a few microcompartments such as gas vesicles and carboxysomes, the vast majority of these structures in prokaryotes are less than 100 nm in diameter - too small for conventional light microscopy and electron microscopic thin sectioning. Consequently, these smaller-sized nanocompartments have therefore been discovered serendipitously and then through bioinformatics shown to be broadly distributed. Their small uniform size, robust self-assembly, high stability, excellent biocompatibility, and large cargo capacity make them excellent candidates for biotechnology applications. This review will highlight our current knowledge of nanocompartments, the prospects for applications as well as open question and challenges that need to be addressed to fully understand these important structures.
Collapse
|
79
|
Chen YH, Chiang PW, Rogozin DY, Degermendzhy AG, Chiu HH, Tang SL. Salvaging high-quality genomes of microbial species from a meromictic lake using a hybrid sequencing approach. Commun Biol 2021; 4:996. [PMID: 34426638 PMCID: PMC8382752 DOI: 10.1038/s42003-021-02510-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/01/2021] [Indexed: 11/08/2022] Open
Abstract
Most of Earth's bacteria have yet to be cultivated. The metabolic and functional potentials of these uncultivated microorganisms thus remain mysterious, and the metagenome-assembled genome (MAG) approach is the most robust method for uncovering these potentials. However, MAGs discovered by conventional metagenomic assembly and binning are usually highly fragmented genomes with heterogeneous sequence contamination. In this study, we combined Illumina and Nanopore data to develop a new workflow to reconstruct 233 MAGs-six novel bacterial orders, 20 families, 66 genera, and 154 species-from Lake Shunet, a secluded meromictic lake in Siberia. With our workflow, the average N50 of reconstructed MAGs greatly increased 10-40-fold compared to when the conventional Illumina assembly and binning method were used. More importantly, six complete MAGs were recovered from our datasets. The recovery of 154 novel species MAGs from a rarely explored lake greatly expands the current bacterial genome encyclopedia.
Collapse
Affiliation(s)
- Yu-Hsiang Chen
- Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei, Taiwan
- Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Pei-Wen Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Denis Yu Rogozin
- Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russia
- Siberian Federal University, Krasnoyarsk, Russia
| | - Andrey G Degermendzhy
- Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Hsiu-Hui Chiu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Sen-Lin Tang
- Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
80
|
Tian H, Jin J, Chen B, Lefebvre DD, Lougheed SC, Wang Y. Depth-Dependent Spatiotemporal Dynamics of Overwintering Pelagic Microcystis in a Temperate Water Body. Microorganisms 2021; 9:microorganisms9081718. [PMID: 34442797 PMCID: PMC8399979 DOI: 10.3390/microorganisms9081718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/03/2022] Open
Abstract
Cyanobacteria in the genus Microcystis are dominant components of many harmful algal blooms worldwide. Their pelagic–benthic life cycle helps them survive periods of adverse conditions and contributes greatly to their ecological success. Many studies on Microcystis overwintering have focused on benthic colonies and suggest that sediment serves as the major inoculum for subsequent summer blooms. However, the contemporaneous overwintering pelagic population may be important as well but is understudied. In this study, we investigated near-surface and near-bottom pelagic population dynamics of both microcystin-producing Microcystis and total Microcystis over six weeks in winter at Dog Lake (South Frontenac, ON, Canada). We quantified relative Microcystis concentrations using real-time PCR. Our results showed that the spatiotemporal distribution of overwintering pelagic Microcystis was depth dependent. The abundance of near-bottom pelagic Microcystis declined with increased depth with no influence of depth on near-surface Microcystis abundance. In the shallow region of the lake (<10 m), most pelagic Microcystis was found near the lake bottom (>90%). However, the proportion of near-surface Microcystis rose sharply to over 60% as the depth increased to approximately 18 m. The depth-dependent distribution pattern was found to be similar in both microcystin-producing Microcystis and total Microcystis. Our results suggest the top of the water column may be a more significant contributor of Microcystis recruitment inoculum than previously thought and merits more attention in early CHAB characterization and remediation.
Collapse
Affiliation(s)
- Haolun Tian
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (H.T.); (J.J.); (D.D.L.); (S.C.L.)
| | - Junjie Jin
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (H.T.); (J.J.); (D.D.L.); (S.C.L.)
| | - Bojian Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
| | - Daniel D. Lefebvre
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (H.T.); (J.J.); (D.D.L.); (S.C.L.)
| | - Stephen C. Lougheed
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (H.T.); (J.J.); (D.D.L.); (S.C.L.)
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
| | - Yuxiang Wang
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (H.T.); (J.J.); (D.D.L.); (S.C.L.)
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
- Correspondence:
| |
Collapse
|
81
|
Ultrasensitive ultrasound imaging of gene expression with signal unmixing. Nat Methods 2021; 18:945-952. [PMID: 34354290 PMCID: PMC8363212 DOI: 10.1038/s41592-021-01229-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 06/30/2021] [Indexed: 12/28/2022]
Abstract
Acoustic reporter genes (ARGs) encoding air-filled gas vesicles enable ultrasound-based imaging of gene expression in genetically modified bacteria and mammalian cells, facilitating the study of cellular function in deep tissues. Despite the promise of this technology for biological research and potential clinical applications, the sensitivity with which ARG-expressing cells can be visualized is currently limited. Here we present BURST – an ARG imaging paradigm that improves the cellular detection limit by more than 1000-fold compared to conventional methods. BURST takes advantage of the unique temporal signal pattern produced by gas vesicles as they collapse under acoustic pressure above a threshold defined by the ARG. By extracting the unique pattern of this signal from total scattering, BURST boosts the sensitivity of ultrasound to image ARG-expressing cells, as demonstrated in vitro and in vivo in the mouse gastrointestinal tract and liver. Furthermore, in dilute cell suspensions, BURST imaging enables the detection of gene expression in individual bacteria and mammalian cells. The resulting capabilities expand the potential utility of ultrasound for non-invasive imaging of cellular function.
Collapse
|
82
|
Sukenik A, Kaplan A. Cyanobacterial Harmful Algal Blooms in Aquatic Ecosystems: A Comprehensive Outlook on Current and Emerging Mitigation and Control Approaches. Microorganisms 2021; 9:1472. [PMID: 34361909 PMCID: PMC8306311 DOI: 10.3390/microorganisms9071472] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/31/2022] Open
Abstract
An intensification of toxic cyanobacteria blooms has occurred over the last three decades, severely affecting coastal and lake water quality in many parts of the world. Extensive research is being conducted in an attempt to gain a better understanding of the driving forces that alter the ecological balance in water bodies and of the biological role of the secondary metabolites, toxins included, produced by the cyanobacteria. In the long-term, such knowledge may help to develop the needed procedures to restore the phytoplankton community to the pre-toxic blooms era. In the short-term, the mission of the scientific community is to develop novel approaches to mitigate the blooms and thereby restore the ability of affected communities to enjoy coastal and lake waters. Here, we critically review some of the recently proposed, currently leading, and potentially emerging mitigation approaches in-lake novel methodologies and applications relevant to drinking-water treatment.
Collapse
Affiliation(s)
- Assaf Sukenik
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, P.O. Box 447, Migdal 14950, Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel;
| |
Collapse
|
83
|
Wang R, Zhang L, Xie M, Wang L, Jin Q, Chen Y, Xie Y, He M, Zhu Y, Xu L, Han Z, Chen D. Biogenic Gas Vesicles for Ultrasound Imaging and Targeted Therapeutics. Curr Med Chem 2021; 29:1316-1330. [PMID: 34225604 DOI: 10.2174/0929867328666210705145642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/01/2021] [Accepted: 05/15/2021] [Indexed: 11/22/2022]
Abstract
Ultrasound is not only the most widely used medical imaging mode for diagnostics owing to its real-time, non-radiation, portable, and low-cost merits, but also a promising targeted drug/gene delivery technique by exhibiting a series of powerful bioeffects. The development of micron-sized or nanometer-sized ultrasound agents or delivery carriers further makes ultrasound a distinctive modality in accurate diagnosis and effective treatment. In this review, we introduce one kind of unique biogenic gas-filled protein nanostructures called gas vesicles, presenting some unique characteristics than the conventional microbubbles. Gas vesicles can not only serve as ultrasound contrast agents with innovative imaging methods such as cross-amplitude modulation harmonic imaging but also can further be adjusted and optimized via genetic engineering techniques. Moreover, they could not only serve as acoustic gene reporters, acoustic biosensors to monitor the cell metabolism, but also serve as cavitation nuclei and drug carriers for therapeutic purposes. In this study, we focus on the latest development and applications in the area of ultrasound imaging and targeted therapeutics, and also provide a brief introduction of the corresponding mechanisms. In summary, these biogenic gas vesicles show some advantages over conventional MBs that deserve more efforts to promote their development.
Collapse
Affiliation(s)
- Rui Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lufang Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiaofeng Jin
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihan Chen
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuji Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengrong He
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Zhu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Xu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyang Han
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Chen
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
84
|
Maeda K, Okuda Y, Enomoto G, Watanabe S, Ikeuchi M. Biosynthesis of a sulfated exopolysaccharide, synechan, and bloom formation in the model cyanobacterium Synechocystis sp. strain PCC 6803. eLife 2021; 10:66538. [PMID: 34127188 PMCID: PMC8205485 DOI: 10.7554/elife.66538] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/07/2021] [Indexed: 01/10/2023] Open
Abstract
Extracellularpolysaccharides of bacteria contribute to biofilm formation, stress tolerance, and infectivity. Cyanobacteria, the oxygenic photoautotrophic bacteria, uniquely produce sulfated extracellular polysaccharides among bacteria to support phototrophic biofilms. In addition, sulfated polysaccharides of cyanobacteria and other organisms have been focused as beneficial biomaterial. However, very little is known about their biosynthesis machinery and function in cyanobacteria. Here, we found that the model cyanobacterium, Synechocystis sp. strain PCC 6803, formed bloom-like cell aggregates embedded in sulfated extracellular polysaccharides (designated as synechan) and identified whole set of genes responsible for synechan biosynthesis and its transcriptional regulation, thereby suggesting a model for the synechan biosynthesis apparatus. Because similar genes are found in many cyanobacterial genomes with wide variation, our findings may lead elucidation of various sulfated polysaccharides, their functions, and their potential application in biotechnology. Bacteria are single-cell microorganisms that can form communities called biofilms, which stick to surfaces such as rocks, plants or animals. Biofilms confer protection to bacteria and allow them to colonize new environments. The physical scaffold of biofilms is a viscous matrix made of several molecules, the main one being polysaccharides, complex carbohydrates formed by many monosaccharides (single sugar molecules) joined together. Cyanobacteria, also known as blue-green algae, are a type of bacteria that produce oxygen and use sunlight as an energy source, just as plants and algae do. Cyanobacteria produce extracellular polysaccharides that contain sulfate groups. These sulfated polysaccharides are also produced by animals and algae but are not common in other bacteria or plants. One possible role of sulfated, extracellular polysaccharides in cyanobacteria is keeping cells together in the floating aggregates found in cyanobacterial blooms. These are visible discolorations of the water caused by an overgrowth of cyanobacteria that occur in lakes, estuaries and coastal waters. However, little is known about how these polysaccharides are synthesized in cyanobacteria and what their natural role is. Maeda et al. found a strain of cyanobacteria that formed bloom-like aggregates that were embedded in sulfated extracellular polysaccharides. Using genetic engineering techniques, the researchers identified a set of genes responsible for producing a sulfated extracellular polysaccharide and regulating its levels. They also found that cell aggregates of cyanobacteria can float without having intracellular gas vesicles, which was previously thought to enable blooms to float. The results of the present study could have applications for human health, since many sulfated polysaccharides have antiviral, antitumor or anti-inflammatory properties, and similar genes are found in many cyanobacteria. In addition, these findings could be useful for controlling toxic cyanobacterial blooms, which are becoming increasingly problematic for society.
Collapse
Affiliation(s)
- Kaisei Maeda
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Yukiko Okuda
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Gen Enomoto
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.,Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
| |
Collapse
|
85
|
Self-assembly of protein superstructures by physical interactions under cytoplasm-like conditions. Biophys J 2021; 120:2701-2709. [PMID: 34022233 DOI: 10.1016/j.bpj.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/20/2021] [Accepted: 05/13/2021] [Indexed: 11/21/2022] Open
Abstract
The structure-driven assembly of multimeric protein complexes and the formation of intracellular phase-like protein condensates have been the subject of intense research. However, the assembly of larger superstructures comprising cellular components, such as protein nanoparticles driven by general physical rather than specific biochemical interactions, remains relatively uncharacterized. Here, we use gas vesicles (GVs)-genetically encoded protein nanoparticles that form ordered intracellular clusters-as a model system to study the forces driving multiparticle assembly under cytoplasm-like conditions. Our calculations and experimental results show that the ordered assembly of GVs can be achieved by screening their mutual electrostatic repulsion with electrolytes and creating a crowding force with dissolved macromolecules. The precise balance of these forces results in different packing configurations. Biomacromolecules such as polylysine and DNA are capable of driving GV clustering. These results provide basic insights into how physically driven interactions affect the formation of protein superstructures, offer guidance for manipulating nanoparticle assembly in cellular environments through synthetic biology methods, and inform research on the biotechnology applications of GVs.
Collapse
|
86
|
Izert MA, Klimecka MM, Górna MW. Applications of Bacterial Degrons and Degraders - Toward Targeted Protein Degradation in Bacteria. Front Mol Biosci 2021; 8:669762. [PMID: 34026843 PMCID: PMC8138137 DOI: 10.3389/fmolb.2021.669762] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/15/2021] [Indexed: 12/28/2022] Open
Abstract
A repertoire of proteolysis-targeting signals known as degrons is a necessary component of protein homeostasis in every living cell. In bacteria, degrons can be used in place of chemical genetics approaches to interrogate and control protein function. Here, we provide a comprehensive review of synthetic applications of degrons in targeted proteolysis in bacteria. We describe recent advances ranging from large screens employing tunable degradation systems and orthogonal degrons, to sophisticated tools and sensors for imaging. Based on the success of proteolysis-targeting chimeras as an emerging paradigm in cancer drug discovery, we discuss perspectives on using bacterial degraders for studying protein function and as novel antimicrobials.
Collapse
Affiliation(s)
| | | | - Maria Wiktoria Górna
- Structural Biology Group, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
87
|
Dutka P, Malounda D, Metskas LA, Chen S, Hurt RC, Lu GJ, Jensen GJ, Shapiro MG. Measuring gas vesicle dimensions by electron microscopy. Protein Sci 2021; 30:1081-1086. [PMID: 33641210 PMCID: PMC8040859 DOI: 10.1002/pro.4056] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/22/2021] [Indexed: 11/08/2022]
Abstract
Gas vesicles (GVs) are cylindrical or spindle-shaped protein nanostructures filled with air and used for flotation by various cyanobacteria, heterotrophic bacteria, and Archaea. Recently, GVs have gained interest in biotechnology applications due to their ability to serve as imaging agents and actuators for ultrasound, magnetic resonance and several optical techniques. The diameter of GVs is a crucial parameter contributing to their mechanical stability, buoyancy function and evolution in host cells, as well as their properties in imaging applications. Despite its importance, reported diameters for the same types of GV differ depending on the method used for its assessment. Here, we provide an explanation for these discrepancies and utilize electron microscopy (EM) techniques to accurately estimate the diameter of the most commonly studied types of GVs. We show that during air drying on the EM grid, GVs flatten, leading to a ~1.5-fold increase in their apparent diameter. We demonstrate that GVs' diameter can be accurately determined by direct measurements from cryo-EM samples or alternatively indirectly derived from widths of flat collapsed and negatively stained GVs. Our findings help explain the inconsistency in previously reported data and provide accurate methods to measure GVs dimensions.
Collapse
Affiliation(s)
- Przemysław Dutka
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Dina Malounda
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Lauren Ann Metskas
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Songye Chen
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
- Beckman InstituteCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Robert C. Hurt
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - George J. Lu
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
- Present address:
Department of BioengineeringRice UniversityHoustonTX77030USA
| | - Grant J. Jensen
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
- Department of Chemistry and BiochemistryBrigham Young UniversityProvoUtahUSA
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| |
Collapse
|
88
|
Wu H, Wu X, Yang T, Wang C, Tian C, Xiao B, Lorke A. Feedback regulation of surface scum formation and persistence by self-shading of Microcystis colonies: Numerical simulations and laboratory experiments. WATER RESEARCH 2021; 194:116908. [PMID: 33596491 DOI: 10.1016/j.watres.2021.116908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Light availability is an important driver of algal growth and for the formation of surface blooms. The formation of Microcystis surface scum decreases the transparency of the water column and influences the vertical distribution of light intensity. Only few studies analysed the interactions between the dynamics of surface blooms and the light distribution in the water column. Particularly the effect of light attenuation caused by Microcystis colonies (self-shading) on the formation of surface scum has not been explored. In the present study, we simulate the effect of variable cell concentration of Microcystis colonies on the vertical distribution of light in the water column based on experimental estimates of the extinction coefficient of Microcystis colonies. The laboratory observations indicated that higher cell concentration of Microcystis enhance the light attenuation in water column and promotes surface scum formation. We extended an existing model for the light-driven migration of Microcystis by introducing the effect of self-shading and simulated the dynamics of vertical migration for different cell concentrations and different colonial morphologies. The simulation results show that high cell concentrations of Microcystis promote surface scum formation, as well as its persistence throughout diel photoperiods. Large and tight Microcystis colonies facilitate scum formation, while small and loose colonies increase scum stability and persistence. This study reveals a positive feedback regulation of Microcystis surface scum formation and stability by self-shading and provides novel insights into the underlying mechanisms.
Collapse
Affiliation(s)
- Huaming Wu
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingqiang Wu
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Tiantian Yang
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunbo Wang
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Cuicui Tian
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bangding Xiao
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Andreas Lorke
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau 76829, Germany
| |
Collapse
|
89
|
Heiles B, Terwiel D, Maresca D. The Advent of Biomolecular Ultrasound Imaging. Neuroscience 2021; 474:122-133. [PMID: 33727074 DOI: 10.1016/j.neuroscience.2021.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/23/2022]
Abstract
Ultrasound imaging is one of the most widely used modalities in clinical practice, revealing human prenatal development but also arterial function in the adult brain. Ultrasound waves travel deep within soft biological tissues and provide information about the motion and mechanical properties of internal organs. A drawback of ultrasound imaging is its limited ability to detect molecular targets due to a lack of cell-type specific acoustic contrast. To date, this limitation has been addressed by targeting synthetic ultrasound contrast agents to molecular targets. This molecular ultrasound imaging approach has proved to be successful but is restricted to the vascular space. Here, we introduce the nascent field of biomolecular ultrasound imaging, a molecular imaging approach that relies on genetically encoded acoustic biomolecules to interface ultrasound waves with cellular processes. We review ultrasound imaging applications bridging wave physics and chemical engineering with potential for deep brain imaging.
Collapse
Affiliation(s)
- Baptiste Heiles
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Dion Terwiel
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - David Maresca
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
90
|
He H, Miao R, Huang L, Jiang H, Cheng Y. Vegetative cells may perform nitrogen fixation function under nitrogen deprivation in Anabaena sp. strain PCC 7120 based on genome-wide differential expression analysis. PLoS One 2021; 16:e0248155. [PMID: 33662009 PMCID: PMC7932525 DOI: 10.1371/journal.pone.0248155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/20/2021] [Indexed: 11/25/2022] Open
Abstract
Nitrogen assimilation is strictly regulated in cyanobacteria. In an inorganic nitrogen-deficient environment, some vegetative cells of the cyanobacterium Anabaena differentiate into heterocysts. We assessed the photosynthesis and nitrogen-fixing capacities of heterocysts and vegetative cells, respectively, at the transcriptome level. RNA extracted from nitrogen-replete vegetative cells (NVs), nitrogen-deprived vegetative cells (NDVs), and nitrogen-deprived heterocysts (NDHs) in Anabaena sp. strain PCC 7120 was evaluated by transcriptome sequencing. Paired comparisons of NVs vs. NDHs, NVs vs. NDVs, and NDVs vs. NDHs revealed 2,044 differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genomes enrichment analysis of the DEGs showed that carbon fixation in photosynthetic organisms and several nitrogen metabolism-related pathways were significantly enriched. Synthesis of Gvp (Gas vesicle synthesis protein gene) in NVs was blocked by nitrogen deprivation, which may cause Anabaena cells to sink and promote nitrogen fixation under anaerobic conditions; in contrast, heterocysts may perform photosynthesis under nitrogen deprivation conditions, whereas the nitrogen fixation capability of vegetative cells was promoted by nitrogen deprivation. Immunofluorescence analysis of nitrogenase iron protein suggested that the nitrogen fixation capability of vegetative cells was promoted by nitrogen deprivation. Our findings provide insight into the molecular mechanisms underlying nitrogen fixation and photosynthesis in vegetative cells and heterocysts at the transcriptome level. This study provides a foundation for further functional verification of heterocyst growth, differentiation, and water bloom control.
Collapse
Affiliation(s)
- Hongli He
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, China
| | - Runyu Miao
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, China
| | - Lilong Huang
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, China
| | - Hongshan Jiang
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, China
| | - Yunqing Cheng
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, China
| |
Collapse
|
91
|
Zhao Z, Bian Z, Chen Y, Kang C, Gao L, Zhu G. Self-assembly of chiral oligo(methylene-p-phenylene-ethynylene)s into vesicle-like particles independent of hydrophobicity/hydrophilicity of side chains and solvents. SOFT MATTER 2021; 17:637-644. [PMID: 33210672 DOI: 10.1039/d0sm01648a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is difficult for the same molecule to form vesicular assemblies in water and alipatic hydrocarbon (oil), respectively. Here, we report that chiral oligo(methylene-p-phenyleneethynylene)s bearing hydrophobic or hydrophilic side chains can take extended conformations to self-assemble into vesicle-like particles in a hydrophobic or hydrophilic solvent system. The self-assembly processes are highly independent of molecular design and chemical environments. Based on the analyses of TEM, UV, CD and PXRD data, it is plausible to expect that the vesicular membranes could be stabilized together by π-π stacking interactions between foldamer backbones and collective van der Waals interactions between side chains.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China and University of Science and Technology of China, 230026, Hefei, China
| | - Zheng Bian
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, 130024, Changchun, China.
| | - Yu Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Chuanqing Kang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China and University of Science and Technology of China, 230026, Hefei, China
| | - Lianxun Gao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China and University of Science and Technology of China, 230026, Hefei, China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, 130024, Changchun, China.
| |
Collapse
|
92
|
Han Y, Aziz TN, Del Giudice D, Hall NS, Obenour DR. Exploring nutrient and light limitation of algal production in a shallow turbid reservoir. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116210. [PMID: 33316498 DOI: 10.1016/j.envpol.2020.116210] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Harmful algal blooms are increasingly recognized as a threat to the integrity of freshwater reservoirs, which serve as water supplies, wildlife habitats, and recreational attractions. While algal growth and accumulation is controlled by many environmental factors, the relative importance of these factors is unclear, particularly for turbid eutrophic systems. Here we develop and compare two models that test the relative importance of vertical mixing, light, and nutrients for explaining chlorophyll-a variability in shallow (2-3 m) embayments of a eutrophic reservoir, Jordan Lake, North Carolina. One is a multiple linear regression (statistical) model and the other is a process-based (mechanistic) model. Both models are calibrated using a 15-year data record of chlorophyll-a concentration (2003-2018) for the seasonal period of cyanobacteria dominance (June-October). The mechanistic model includes a novel representation of vertical mixing and is calibrated in a Bayesian framework, which allows for data-driven inference of important process rates. Both models show that chlorophyll-a concentration is much more responsive to nutrient variability than mixing, light, or temperature. While both models explain approximately 60% of the variability in chlorophyll-a, the mechanistic model is more robust in cross-validation and provides a more comprehensive assessment of algal drivers. Overall, these models indicate that nutrient reductions, rather than changes in mixing or background turbidity, are critical to controlling cyanobacteria in a shallow eutrophic freshwater system.
Collapse
Affiliation(s)
- Yue Han
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA.
| | - Tarek N Aziz
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA
| | - Dario Del Giudice
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA
| | - Nathan S Hall
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, USA
| | - Daniel R Obenour
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
93
|
Shapiro MG. Reporter Genes for Ultrasound and MRI. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
94
|
Verma DK, Chaudhary C, Singh L, Sidhu C, Siddhardha B, Prasad SE, Thakur KG. Isolation and Taxonomic Characterization of Novel Haloarchaeal Isolates From Indian Solar Saltern: A Brief Review on Distribution of Bacteriorhodopsins and V-Type ATPases in Haloarchaea. Front Microbiol 2020; 11:554927. [PMID: 33362726 PMCID: PMC7755889 DOI: 10.3389/fmicb.2020.554927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/17/2020] [Indexed: 01/10/2023] Open
Abstract
Haloarchaea inhabit high salinity environments worldwide. They are a potentially rich source of crucial biomolecules like carotenoids and industrially useful proteins. However, diversity in haloarchaea present in Indian high salinity environments is poorly studied. In the present study, we isolated 12 haloarchaeal strains from hypersaline Kottakuppam, Tamil Nadu solar saltern in India. 16S rRNA based taxonomic characterization of these isolates suggested that nine of them are novel strains that belong to genera Haloarcula, Halomicrobium, and Haloferax. Transmission electron microscopy suggests the polymorphic nature of these haloarchaeal isolates. Most of the haloarchaeal species are known to be high producers of carotenoids. We were able to isolate carotenoids from all these 12 isolates. The UV-Vis spectroscopy-based analysis suggests that bacterioruberin and lycopene are the major carotenoids produced by these isolates. Based on the visual inspection of the purified carotenoids, the isolates were classified into two broad categories i.e., yellow and orange, attributed to the differences in the ratio of bacterioruberin and lycopene as confirmed by the UV-Vis spectral analysis. Using a PCR-based screening assay, we were able to detect the presence of the bacteriorhodopsin gene (bop) in 11 isolates. We performed whole-genome sequencing for three bop positive and one bop negative haloarchaeal isolates. Whole-genome sequencing, followed by pan-genome analysis identified multiple unique genes involved in various biological functions. We also successfully cloned, expressed, and purified functional recombinant bacteriorhodopsin (BR) from one of the isolates using Escherichia coli as an expression host. BR has light-driven proton pumping activity resulting in the proton gradient across the membrane, which is utilized by V-Type ATPases to produce ATP. We analyzed the distribution of bop and other accessory genes involved in functional BR expression and ATP synthesis in all the representative haloarchaeal species. Our bioinformatics-based analysis of all the sequenced members of genus Haloarcula suggests that bop, if present, is usually inserted between the genes coding for B and D subunits of the V-type ATPases operon. This study provides new insights into the genomic variations in haloarchaea and reports expression of new BR variant having good expression in functional form in E. coli.
Collapse
Affiliation(s)
- Dipesh Kumar Verma
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Chetna Chaudhary
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Latika Singh
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Chandni Sidhu
- MTCC-Microbial Type Culture Collection & Gene Bank, Council of Scientific and Industrial Research Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Busi Siddhardha
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Senthil E Prasad
- Biochemical Engineering Research and Process Development Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| |
Collapse
|
95
|
Völkner K, Jost A, Pfeifer F. Accessory Gvp Proteins Form a Complex During Gas Vesicle Formation of Haloarchaea. Front Microbiol 2020; 11:610179. [PMID: 33281806 PMCID: PMC7688916 DOI: 10.3389/fmicb.2020.610179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
Halobacterium salinarum forms gas vesicles consisting of a protein wall surrounding a gas-filled space. The hydrophobic 8-kDa protein GvpA is the major constituent of the ribbed wall, stabilized by GvpC at the exterior surface. In addition, eight accessory Gvp proteins are involved, encoded by gvpFGHIJKLM that are co-transcribed in early stages of growth. Most of these proteins are essential, but their functions are not yet clear. Here we investigate whether GvpF through GvpM interact. Pull-down experiments performed in Haloferax volcanii with the cellulose-binding-domain as tag suggested many interactions, and most of these were supported by the split-GFP analyses. The latter study indicated that GvpL attracted all other accessory Gvp, and the related GvpF bound besides GvpL also GvpG, GvpH and GvpI. A strong interaction was found between GvpH and GvpI. GvpG showed affinity to GvpF and GvpL, whereas GvpJ, GvpK and GvpM bound GvpL only. Using GvpA for similar analyses yielded GvpF as the only interaction partner. The contact site of GvpF was confined to the N-terminal half of GvpA and subsequently mapped to certain amino acids. Taken together, our results support the idea that the accessory Gvp form a complex early in gas-vesicle assembly attracting GvpA via GvpF.
Collapse
Affiliation(s)
- Kerstin Völkner
- Microbiology and Archaea, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Alisa Jost
- Microbiology and Archaea, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Felicitas Pfeifer
- Microbiology and Archaea, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
96
|
Wang Y, Li Z, Shmidov Y, Carrazzone RJ, Bitton R, Matson JB. Crescent-Shaped Supramolecular Tetrapeptide Nanostructures. J Am Chem Soc 2020; 142:20058-20065. [PMID: 33186019 PMCID: PMC7702297 DOI: 10.1021/jacs.0c09399] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Self-assembly of amphiphilic peptide-based building blocks gives rise to a plethora of interesting nanostructures such as ribbons, fibers, and tubes. However, it remains a great challenge to employ peptide self-assembly to directly produce nanostructures with lower symmetry than these highly symmetric motifs. We report here our discovery that persistent and regular crescent nanostructures with a diameter of 28 ± 3 nm formed from a series of tetrapeptides with the general structure AdKSKSEX (Ad = adamantyl group, KS = lysine residue functionalized with an S-aroylthiooxime (SATO) group, E = glutamic acid residue, and X = variable amino acid residue). In the presence of cysteine, the biological signaling gas hydrogen sulfide (H2S) was released from the SATO units of the crescent nanostructures, termed peptide-H2S donor conjugates (PHDCs), reducing levels of reactive oxygen species (ROS) in macrophage cells. Additional in vitro studies showed that the crescent nanostructures alleviated cytotoxicity induced by phorbol 12-myristate-13-acetate more effectively than common H2S donors and a PHDC of a similar chemical structure, AdKSKSE, that formed short nanoworms instead of nanocrescents. Cell internalization studies indicated that nanocrescent-forming PHDCs were more effective in reducing ROS levels in macrophages because they entered into and remained in cells better than nanoworms, highlighting how nanostructure morphology can affect bioactivity in drug delivery.
Collapse
Affiliation(s)
- Yin Wang
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Zhao Li
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Yulia Shmidov
- Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ryan J. Carrazzone
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Ronit Bitton
- Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - John B. Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
97
|
Farhadi A, Bedrossian M, Lee J, Ho GH, Shapiro MG, Nadeau JL. Genetically Encoded Phase Contrast Agents for Digital Holographic Microscopy. NANO LETTERS 2020; 20:8127-8134. [PMID: 33118828 DOI: 10.1101/833830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Quantitative phase imaging and digital holographic microscopy have shown great promise for visualizing the motion, structure, and physiology of microorganisms and mammalian cells in three dimensions. However, these imaging techniques currently lack molecular contrast agents analogous to the fluorescent dyes and proteins that have revolutionized fluorescence microscopy. Here we introduce the first genetically encodable phase contrast agents based on gas vesicles. The relatively low index of refraction of the air-filled core of gas vesicles results in optical phase advancement relative to aqueous media, making them a "positive" phase contrast agent easily distinguished from organelles, dyes, or microminerals. We demonstrate this capability by identifying and tracking the motion of gas vesicles and gas vesicle-expressing bacteria using digital holographic microscopy, and by imaging the uptake of engineered gas vesicles by mammalian cells. These results give phase imaging a biomolecular contrast agent, expanding the capabilities of this powerful technology for three-dimensional biological imaging.
Collapse
Affiliation(s)
- Arash Farhadi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Manuel Bedrossian
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Justin Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Gabrielle H Ho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jay L Nadeau
- Department of Physics, Portland State University, Portland, Oregon 97207, United States
| |
Collapse
|
98
|
Farhadi A, Bedrossian M, Lee J, Ho GH, Shapiro MG, Nadeau JL. Genetically Encoded Phase Contrast Agents for Digital Holographic Microscopy. NANO LETTERS 2020; 20:8127-8134. [PMID: 33118828 PMCID: PMC7685204 DOI: 10.1021/acs.nanolett.0c03159] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Quantitative phase imaging and digital holographic microscopy have shown great promise for visualizing the motion, structure, and physiology of microorganisms and mammalian cells in three dimensions. However, these imaging techniques currently lack molecular contrast agents analogous to the fluorescent dyes and proteins that have revolutionized fluorescence microscopy. Here we introduce the first genetically encodable phase contrast agents based on gas vesicles. The relatively low index of refraction of the air-filled core of gas vesicles results in optical phase advancement relative to aqueous media, making them a "positive" phase contrast agent easily distinguished from organelles, dyes, or microminerals. We demonstrate this capability by identifying and tracking the motion of gas vesicles and gas vesicle-expressing bacteria using digital holographic microscopy, and by imaging the uptake of engineered gas vesicles by mammalian cells. These results give phase imaging a biomolecular contrast agent, expanding the capabilities of this powerful technology for three-dimensional biological imaging.
Collapse
Affiliation(s)
- Arash Farhadi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Manuel Bedrossian
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Justin Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Gabrielle H Ho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jay L Nadeau
- Department of Physics, Portland State University, Portland, Oregon 97207, United States
| |
Collapse
|
99
|
Rabut C, Yoo S, Hurt RC, Jin Z, Li H, Guo H, Ling B, Shapiro MG. Ultrasound Technologies for Imaging and Modulating Neural Activity. Neuron 2020; 108:93-110. [PMID: 33058769 PMCID: PMC7577369 DOI: 10.1016/j.neuron.2020.09.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Visualizing and perturbing neural activity on a brain-wide scale in model animals and humans is a major goal of neuroscience technology development. Established electrical and optical techniques typically break down at this scale due to inherent physical limitations. In contrast, ultrasound readily permeates the brain, and in some cases the skull, and interacts with tissue with a fundamental resolution on the order of 100 μm and 1 ms. This basic ability has motivated major efforts to harness ultrasound as a modality for large-scale brain imaging and modulation. These efforts have resulted in already-useful neuroscience tools, including high-resolution hemodynamic functional imaging, focused ultrasound neuromodulation, and local drug delivery. Furthermore, recent breakthroughs promise to connect ultrasound to neurons at the genetic level for biomolecular imaging and sonogenetic control. In this article, we review the state of the art and ongoing developments in ultrasonic neurotechnology, building from fundamental principles to current utility, open questions, and future potential.
Collapse
Affiliation(s)
- Claire Rabut
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sangjin Yoo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robert C Hurt
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Zhiyang Jin
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Hongyi Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hongsun Guo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bill Ling
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
100
|
Jayapaul J, Schröder L. Molecular Sensing with Host Systems for Hyperpolarized 129Xe. Molecules 2020; 25:E4627. [PMID: 33050669 PMCID: PMC7587211 DOI: 10.3390/molecules25204627] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Hyperpolarized noble gases have been used early on in applications for sensitivity enhanced NMR. 129Xe has been explored for various applications because it can be used beyond the gas-driven examination of void spaces. Its solubility in aqueous solutions and its affinity for hydrophobic binding pockets allows "functionalization" through combination with host structures that bind one or multiple gas atoms. Moreover, the transient nature of gas binding in such hosts allows the combination with another signal enhancement technique, namely chemical exchange saturation transfer (CEST). Different systems have been investigated for implementing various types of so-called Xe biosensors where the gas binds to a targeted host to address molecular markers or to sense biophysical parameters. This review summarizes developments in biosensor design and synthesis for achieving molecular sensing with NMR at unprecedented sensitivity. Aspects regarding Xe exchange kinetics and chemical engineering of various classes of hosts for an efficient build-up of the CEST effect will also be discussed as well as the cavity design of host molecules to identify a pool of bound Xe. The concept is presented in the broader context of reporter design with insights from other modalities that are helpful for advancing the field of Xe biosensors.
Collapse
Affiliation(s)
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany;
| |
Collapse
|