51
|
Horve PF, Dietz LG, Bowles G, MacCrone G, Olsen-Martinez A, Northcutt D, Moore V, Barnatan L, Parhizkar H, Van Den Wymelenberg KG. Longitudinal analysis of built environment and aerosol contamination associated with isolated COVID-19 positive individuals. Sci Rep 2022; 12:7395. [PMID: 35513399 PMCID: PMC9070971 DOI: 10.1038/s41598-022-11303-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
The indoor environment is the primary location for the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), largely driven by respiratory particle accumulation in the air and increased connectivity between the individuals occupying indoor spaces. In this study, we aimed to track a cohort of subjects as they occupied a COVID-19 isolation dormitory to better understand the impact of subject and environmental viral load over time, symptoms, and room ventilation on the detectable viral load within a single room. We find that subject samples demonstrate a decrease in overall viral load over time, symptoms significantly impact environmental viral load, and we provide the first real-world evidence for decreased aerosol SARS-CoV-2 load with increasing ventilation, both from mechanical and window sources. These results may guide environmental viral surveillance strategies and be used to better control the spread of SARS-CoV-2 within built environments and better protect those caring for individuals with COVID-19.
Collapse
Affiliation(s)
- Patrick F Horve
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Leslie G Dietz
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Garis Bowles
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Georgia MacCrone
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | | | - Dale Northcutt
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, 97403, USA
| | - Vincent Moore
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Liliana Barnatan
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Hooman Parhizkar
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, 97403, USA
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
| | - Kevin G Van Den Wymelenberg
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA.
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, 97403, USA.
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA.
| |
Collapse
|
52
|
Bangwal D, Suyal J, Kumar R. Hotel building design, occupants' health and performance in response to COVID 19. INTERNATIONAL JOURNAL OF HOSPITALITY MANAGEMENT 2022; 103:103212. [PMID: 35400787 PMCID: PMC8979788 DOI: 10.1016/j.ijhm.2022.103212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 05/13/2023]
Abstract
In the COVID-19 pandemic, the employee realized the importance of a healthy workplace. A healthy workplace provides natural protection against respiratory disease and reduces exposure to viruses. Therefore, the current COVID-19 pandemic should be a wake-up call to understand the importance of building design and a dress rehearsal for future challenges because building-based prevention and control measures have become one of the most significant ways of fighting against the epidemic. This study investigates the role of hotel building design in employee health and performance during the COVID-19 pandemic. The study covered the LEED-certified hotel building in India. The formulated Hypothesis was tested empirically by the structural equation modeling (SEM) for determining the potential of the hotel building design. It was obtained from the study that during the COVID-19 pandemic, the hotel building design of the hospitality industry had a more significant influence on employee performance, followed by employee health.
Collapse
Affiliation(s)
- Deepak Bangwal
- School of Business, University of Petroleum and Energy Studies, Energy acres, UPES, Kandoli, Dehradun, Uttarakhand 248007, India
| | - Jyotsana Suyal
- UIPS, Uttranchal University, Prem Nagar, Dehradun, Uttarakhand 248007, India
| | - Rupesh Kumar
- School of Business, University of Petroleum and Energy Studies, Energy acres, UPES, Kandoli, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
53
|
Ye J, Lin C, Liu J, Ai Z, Zhang G. Systematic summary and analysis of Chinese HVAC guidelines coping with COVID-19. INDOOR + BUILT ENVIRONMENT : THE JOURNAL OF THE INTERNATIONAL SOCIETY OF THE BUILT ENVIRONMENT 2022; 31:1176-1192. [PMID: 35645609 PMCID: PMC9124639 DOI: 10.1177/1420326x211061290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Heating, Ventilation, and Air-Conditioning (HVAC) system that is almost indispensable service system of modern buildings is recognized as the most important engineering control measure against pandemics. However, the effectiveness of HVAC systems has been questioned on their ability to control airborne transmission. After the outbreak of COVID-19, China has controlled the spread within a relatively short period. Considering the large population, high population density, busy transportation and the overall underdeveloped economy, China's control measures may have some implications to other countries, especially those with limited resources. This paper intends to provide a systematic summary of Chinese ventilation guidelines issued to cope with COVID-19 transmission. The following three aspects are the main focus of these guidelines: (1) general operation and management schemes of various types of HVAC systems, (2) operation and management schemes of HVAC system in typical types of buildings, and (3) design schemes of HVAC system of makeshift hospitals. In addition, some important differences in HVAC guidelines between China and other countries/institutions are identified and compared, and the possible reasons are discussed. Further discussions are made on the following topics, including the required fresh air supply, the extended operation time, the use of auxiliary equipment, the limited capacity of existing systems, and the use of personalized systems.
Collapse
Affiliation(s)
- Jinjun Ye
- Department of Building Environment and Energy, College of Civil Engineering, Hunan University, Changsha, Hunan, China
- National Center for International Research Collaboration in Building Safety and Environment, Hunan University, Changsha, Hunan, China
| | - Chen Lin
- Department of Building Environment and Energy, College of Civil Engineering, Hunan University, Changsha, Hunan, China
- National Center for International Research Collaboration in Building Safety and Environment, Hunan University, Changsha, Hunan, China
| | - Jing Liu
- Department of Building Environment and Energy, College of Civil Engineering, Hunan University, Changsha, Hunan, China
- National Center for International Research Collaboration in Building Safety and Environment, Hunan University, Changsha, Hunan, China
| | - Zhengtao Ai
- Department of Building Environment and Energy, College of Civil Engineering, Hunan University, Changsha, Hunan, China
- National Center for International Research Collaboration in Building Safety and Environment, Hunan University, Changsha, Hunan, China
| | - Guoqiang Zhang
- Department of Building Environment and Energy, College of Civil Engineering, Hunan University, Changsha, Hunan, China
- National Center for International Research Collaboration in Building Safety and Environment, Hunan University, Changsha, Hunan, China
| |
Collapse
|
54
|
Asiamah N, Opuni FF, Muhonja F, Danquah E, Agyemang SM, Agyemang I, Omisore A, Mensah HK, Hatsu S, Baffoe RS, Eku E, Manu CA. The relationship between job components, neighbourhood walkability and African academics' physical activity: a post-COVID-19 context. Health Promot Int 2022; 37:daab090. [PMID: 34279619 PMCID: PMC8411380 DOI: 10.1093/heapro/daab090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Research to date suggests that physical activity (PA) among academics is insufficient globally. Academics in many African countries were recently required to resume work while observing social distancing protocols. Physical inactivity (PI) was, therefore, expected to increase in such academics. Interestingly, walkable neighbourhoods are resources that could discourage excessive sitting and PI in this situation. This study, therefore, assessed the moderating role of neighbourhood walkability in the relationship between core job components (i.e. on-site teaching, online teaching, research and student assessment) and PA among academics. The study adopted a cross-sectional design that utilized an online survey hosted by Google Forms to gather data. Participants were volunteer full-time academics in Nigeria, Ghana, Kenya and Tanzania. A total of 1064 surveys were analysed, with a sensitivity analysis utilized to select covariates for the ultimate hierarchical linear regression model. After controlling for the ultimate covariates (e.g. gender, education and income), PA was found to be positively associated with the job component 'research work' but negatively associated with student assessment. Neighbourhood walkability increased the positive relationship of research work with PA and reduced the negative relationship of student assessment with PA. The non-significant negative relationship between 'teaching online' and PA was made positively significant by neighbourhood walkability. We conclude that research as a job component is positively associated with PA, but online teaching is negatively associated with PA among African academics in a post-COVID-19 context.
Collapse
Affiliation(s)
- Nestor Asiamah
- University of Portsmouth, School of Health and Care Professions, Winston Churchill Ave, Portsmouth PO1 2UP, UK
- Africa Centre for Epidemiology, Accra Ghana, P. O. Box AN 16284, Accra North, Ghana
| | | | - Faith Muhonja
- School of Public Health, Mount Kenya University, Kenya
| | - Emelia Danquah
- Logistics and Supply Chain Management, Koforidua Technical University, Koforidua, Ghana
| | - Simon Mawulorm Agyemang
- Department of Physical Education and Health, Abetifi Presbyterian College of Education, Ghana
| | - Irene Agyemang
- Student Affairs, West African Postgraduate College of Pharmacists, Accra, Ghana
| | - Akinlolu Omisore
- Department of Community Medicine, Osun State University, Nigeria
| | - Henry Kofi Mensah
- Human Resources and Organizational Development, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sylvester Hatsu
- Department of Computer Science, Accra Technical University, Accra, Ghana
| | | | - Eric Eku
- Department of Behavioural Epidemiology, University of Education, Winneba, Institute for Distance Education and E-learning, Winneba, Ghana
| | | |
Collapse
|
55
|
Figueiredo DLA, Ximenez JPB, Seiva FRF, Panis C, Bezerra RDS, Ferrasa A, Cecchini AL, de Medeiros AI, Almeida AMF, Ramão A, Boldt ABW, Moya CF, Chin CM, de Paula D, Rech D, Gradia DF, Malheiros D, Venturini D, Tavares ER, Carraro E, Ribeiro EMDSF, Pereira EM, Tuon FF, Follador FAC, Fernandes GSA, Volpato H, Cólus IMDS, de Oliveira JC, Rodrigues JHDS, dos Santos JL, Visentainer JEL, Brandi JC, Serpeloni JM, Bonini JS, de Oliveira KB, Fiorentin K, Lucio LC, Faccin-Galhardi LC, Ferreto LED, Lioni LMY, Consolaro MEL, Vicari MR, Arbex MA, Pileggi M, Watanabe MAE, Costa MAR, Giannini MJSM, Amarante MK, Khalil NM, de Lima QA, Herai RH, Guembarovski RL, Shinsato RN, Mainardes RM, Giuliatti S, Yamada-Ogatta SF, Gerber VKDQ, Pavanelli WR, da Silva WC, Petzl-Erler ML, Valente V, Soares CP, Cavalli LR, Silva WA. COVID-19: The question of genetic diversity and therapeutic intervention approaches. Genet Mol Biol 2022; 44:e20200452. [PMID: 35421211 PMCID: PMC9075701 DOI: 10.1590/1678-4685-gmb-2020-0452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/24/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), is the largest pandemic in modern history with very high infection rates and considerable mortality. The disease, which emerged in China's Wuhan province, had its first reported case on December 29, 2019, and spread rapidly worldwide. On March 11, 2020, the World Health Organization (WHO) declared the COVID-19 outbreak a pandemic and global health emergency. Since the outbreak, efforts to develop COVID-19 vaccines, engineer new drugs, and evaluate existing ones for drug repurposing have been intensively undertaken to find ways to control this pandemic. COVID-19 therapeutic strategies aim to impair molecular pathways involved in the virus entrance and replication or interfere in the patients' overreaction and immunopathology. Moreover, nanotechnology could be an approach to boost the activity of new drugs. Several COVID-19 vaccine candidates have received emergency-use or full authorization in one or more countries, and others are being developed and tested. This review assesses the different strategies currently proposed to control COVID-19 and the issues or limitations imposed on some approaches by the human and viral genetic variability.
Collapse
Affiliation(s)
- David Livingstone Alves Figueiredo
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Medicina, Guarapuava, PR, Brazil
- Instituto para Pesquisa do Câncer (IPEC), Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - João Paulo Bianchi Ximenez
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicologia e Ciência de Alimentos, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Universidade Estadual do Norte do Paraná (UENP), Centro de Ciências Biológicas, Bandeirantes, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Carolina Panis
- Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Rafael dos Santos Bezerra
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro Regional de Ribeirão Preto, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Adriano Ferrasa
- Universidade Estadual de Ponta Grossa, Ponta Grossa, Programa de Pós Graduação em Computação Aplicada, Ponta Grossa, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Alessandra Lourenço Cecchini
- Universidade Estadual de Londrina, Departamento de Patologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Alexandra Ivo de Medeiros
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Ana Marisa Fusco Almeida
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Anelisa Ramão
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Ciências Biológicas, Guarapuava, PR, Brazil
| | - Angelica Beate Winter Boldt
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Carla Fredrichsen Moya
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Medicina Veterinária, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Chung Man Chin
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Fármacos e Medicamentos, Araraquara, SP, Brazil
- União das Faculdades dos Grandes Lagos (UNILAGO), Centro de Pesquisa Avançada em Medicina, São José do Rio Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Daniel de Paula
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Daniel Rech
- Universidade Estadual do Oeste do Paraná (UNIOESTE), Hospital do Câncer Francisco Beltrão, Laboratório de Biologia de Tumores, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Daniela Fiori Gradia
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Danielle Malheiros
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Danielle Venturini
- Universidade Estadual de Londrina, Centro de Ciências da Saúde, Departamento de patologia, clínica e toxicologia, Laboratório de bioquímica clínica, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Eliandro Reis Tavares
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Emerson Carraro
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Laboratório de Virologia Clínica, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Enilze Maria de Souza Fonseca Ribeiro
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Evani Marques Pereira
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Enfermagem, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Felipe Francisco Tuon
- Universidade Católica do Paraná, Laboratório de Doenças Infecciosas Emergentes, Pontifícia Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Franciele Aní Caovilla Follador
- Universidade Estadual do Oeste do Paraná, Departamento de Ciências da Vida, Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Glaura Scantamburlo Alves Fernandes
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Hélito Volpato
- Universidade Estadual do Paraná (UNESPAR), Faculdade de Ciências Biológicas, Centro de Ciências Humanas e Educação, Paranavaí, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Ilce Mara de Syllos Cólus
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jaqueline Carvalho de Oliveira
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jean Henrique da Silva Rodrigues
- Universidade do Estado de São Paulo (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Fármacos e Medicamentos, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jean Leandro dos Santos
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Fármacos e Medicamentos, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jeane Eliete Laguila Visentainer
- Universidade Estadual de Maringá, Laboratório de Imunogenética, Maringá, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Juliana Cristina Brandi
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Juliana Mara Serpeloni
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Juliana Sartori Bonini
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Laboratório de Neuropsicofarmacologia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Karen Brajão de Oliveira
- Universidade Estadual de Londrina, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Laboratório de Genética Molecular e Imunologia, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Karine Fiorentin
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Léia Carolina Lucio
- Universidade Estadual do Oeste do Paraná, Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Centro de Ciências da Saúde, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Ligia Carla Faccin-Galhardi
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Lirane Elize Defante Ferreto
- Universidade Estadual do Oeste do Paraná, Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Centro de Ciências da Saúde, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Lucy Megumi Yamauchi Lioni
- Universidade Estadual do Norte do Paraná (UENP), Centro de Ciências Biológicas, Bandeirantes, PR, Brazil
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
| | - Marcia Edilaine Lopes Consolaro
- Universidade Estadual de Maringá, Departamento de Análises Clínicas e Biomedicina, Maringá, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marcelo Ricardo Vicari
- Universidade Estadual de Ponta Grossa, Departamento de Biologia e Genética Estrutural e Molecular, Ponta Grossa, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marcos Abdo Arbex
- Universidade de Araraquara, Faculdade de Medicina, Área temática de Pneumologia, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marcos Pileggi
- Universidade Estadual de Ponta Grossa, Departamento de Biologia e Genética Estrutural e Molecular, Ponta Grossa, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria Angelica Ehara Watanabe
- Universidade Estadual de Londrina, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Laboratório de Imunologia, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria Antônia Ramos Costa
- Universidade do Estado do Paraná, Colegiada de Enfermagem, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria José S. Mendes Giannini
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marla Karine Amarante
- Universidade Estadual de Londrina, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Laboratório de Imunologia, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Najeh Maissar Khalil
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Quirino Alves de Lima
- Universidade Estadual de Maringá, Laboratório de Imunogenética, Maringá, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Roberto H. Herai
- Universidade Católica do Paraná (PUCPR), Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Laboratório Experimental Multiusuário, Curitiba, PR, Brazil
- Universitário Católico Salesiano Auxilium (UNISALESIANO), Faculdade de Medicina, Centro Araçatuba, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Roberta Losi Guembarovski
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Rogério N. Shinsato
- Universidade Católica do Paraná (PUCPR), Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Laboratório Experimental Multiusuário, Curitiba, PR, Brazil
- Universitário Católico Salesiano Auxilium (UNISALESIANO), Faculdade de Medicina, Centro Araçatuba, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Rubiana Mara Mainardes
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Silvana Giuliatti
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro Regional de Ribeirão Preto, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Viviane Knuppel de Quadros Gerber
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Enfermagem, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Wander Rogério Pavanelli
- Universidade Estadual de Londrina, Laboratório de Imunoparasitologia de Doenças Negligenciadas e Câncer, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Weber Claudio da Silva
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Laboratório de Neuropsicofarmacologia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria Luiza Petzl-Erler
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Valeria Valente
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Faculdade de Medicina de Ribeirão Preto, Centro de Terapia Celular (CEPID/FAPESP), Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Christiane Pienna Soares
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Luciane Regina Cavalli
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Wilson Araujo Silva
- Instituto para Pesquisa do Câncer (IPEC), Guarapuava, PR, Brazil
- Faculdade de Medicina de Ribeirão Preto, Centro de Terapia Celular (CEPID/FAPESP), Ribeirão Preto, SP, Brazil
- Instituto Nacional de Ciência e Tecnologia em Células-Tronco e Terapia Celular (INCT/CNPq), Ribeirão Preto, SP, Brazil
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| |
Collapse
|
56
|
Giampieri A, Ma Z, Ling-Chin J, Roskilly AP, Smallbone AJ. An overview of solutions for airborne viral transmission reduction related to HVAC systems including liquid desiccant air-scrubbing. ENERGY (OXFORD, ENGLAND) 2022; 244:122709. [PMID: 34840405 PMCID: PMC8605622 DOI: 10.1016/j.energy.2021.122709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 05/31/2023]
Abstract
The spread of the coronavirus SARS-CoV-2 affects the health of people and the economy worldwide. As air transmits the virus, heating, ventilation and air-conditioning (HVAC) systems in buildings, enclosed spaces and public transport play a significant role in limiting the transmission of airborne pathogens at the expenses of increased energy consumption and possibly reduced thermal comfort. On the other hand, liquid desiccant technology could be adopted as an air scrubber to increase indoor air quality and inactivate pathogens through temperature and humidity control, making them less favourable to the growth, proliferation and infectivity of microorganisms. The objectives of this study are to review the role of HVAC in airborne viral transmission, estimate its energy penalty associated with the adoption of HVAC for transmission reduction and understand the potential of liquid desiccant technology. Factors affecting the inactivation of pathogens by liquid desiccant solutions and possible modifications to increase their heat and mass transfer and sanitising characteristics are also described, followed by an economic evaluation. It is concluded that the liquid desiccant technology could be beneficial in buildings (requiring humidity control or moisture removal in particular when viruses are likely to present) or in high-footfall enclosed spaces (during virus outbreaks).
Collapse
Key Words
- ASHRAE, American Society of Heating, Refrigerating and Air-Conditioning Engineers
- Airborne viral transmission
- CIBSE, Chartered Institution of Building Services Engineers
- COP, Coefficient of performance
- COVID-19
- COVID-19, Coronavirus disease 19
- CaCl2, Calcium chloride
- Economic analysis
- HCO2K, Potassium formate
- HEPA, High-efficiency particulate air filter
- HVAC energy consumption
- HVAC, Heating, ventilation and air-conditioning
- Humidity control
- IAQ, Indoor air quality
- IBV, Infectious bronchitis virus
- IL, Ionic liquid
- LiBr, Lithium bromide
- LiCl, Lithium chloride
- Liquid desiccant
- MERS-CoV, Middle East respiratory syndrome coronavirus
- MERV, Minimum efficiency reporting value
- PRRSV, Porcine reproductive and respiratory syndrome virus
- REHVA, Federation of European Heating, Ventilation and Air Conditioning Associations
- SARS-CoV-1, Severe acute respiratory syndrome coronavirus 1
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- TEG, Triethylene glycol
- TGEV, Transmissible gastroenteritis virus
- UVA, Long-wave ultraviolet light
- UVB, Middle-wave ultraviolet light
- UVC, Short-wave ultraviolet light
- UVGI, Ultraviolet germicidal irradiation
- WHO, World Health Organization
Collapse
Affiliation(s)
- A Giampieri
- Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom
| | - Z Ma
- Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom
| | - J Ling-Chin
- Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom
| | - A P Roskilly
- Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom
| | - A J Smallbone
- Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
57
|
Zhao C, Hu X, Xue Q, Chen L. Reduced Counts of Various Subsets of Peripheral Blood T Lymphocytes in Patients with Severe Course of COVID-19. Bull Exp Biol Med 2022; 172:721-724. [PMID: 35501642 PMCID: PMC9059903 DOI: 10.1007/s10517-022-05464-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 12/04/2022]
Abstract
This study was intended to define T lymphocyte subsets in different clinical groups of COVID-19-infected patients to explore the interaction between T cell-mediated immune response and the severity of COVID-19 course. Lymphopenia in patients with severe COVID-19 was found. In patients with severe COVID-19 course, the absolute counts of CD3+, CD4+, and CD8+ T lymphocytes at admission were lower than on day 14 after discharge. Further analysis showed that the older were the patients with COVID-19, the more likely they developed severe infection. The results confirmed the significance of T lymphocytes in the clearance of the COVID-19.
Collapse
Affiliation(s)
- C Zhao
- Infectious Hospital Area, the First Affiliated Hospital of University of Science and Technology of China, Hefei, China.
| | - X Hu
- Infectious Hospital Area, the First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Q Xue
- Infectious Hospital Area, the First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - L Chen
- Infectious Hospital Area, the First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| |
Collapse
|
58
|
Abedin MJ, Khandaker MU, Uddin MR, Karim MR, Ahamad MSU, Islam MA, Arif AM, Sulieman A, Idris AM. PPE pollution in the terrestrial and aquatic environment of the Chittagong city area associated with the COVID-19 pandemic and concomitant health implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27521-27533. [PMID: 34981371 PMCID: PMC8723821 DOI: 10.1007/s11356-021-17859-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/26/2021] [Indexed: 05/05/2023]
Abstract
The present study focuses on the indiscriminate disposal of personal protective equipment (PPEs) and resulting environmental contamination during the 3rd wave of COVID-19-driven global pandemic in the Chittagong metropolitan area, Bangladesh. Because of the very high rate of infection by the delta variant of this virus, the use of PPEs by the public is increased significantly to protect the ingestion/inhalation of respiratory droplets in the air. However, it is a matter of solicitude that general people throw away the PPEs to the dwelling environment unconsciously. With the increase of inappropriate disposal of PPEs (i.e., mostly the disposable face masks made from plastic microfibers), the possibility of transmission of the virus to the general public cannot be neglected completely. This is because this virus can survive for several days on the inanimate matter like plastics and fibers. At the same time, the result of environmental contamination by microplastic/microfiber has been widespread which eventually creates the worst impact on ecosystems and organisms. The present results may help to increase public perception of the use and subsequent disposal of PPEs, especially the face masks.
Collapse
Affiliation(s)
- Md Jainal Abedin
- Faculty of Public Health, Thammasat University, Bangkok, 10200, Thailand
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Md Ripaj Uddin
- Institute of National Analytical Research and Service (INARS), BCSIR, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Rezaul Karim
- Department of Chemistry, Chittagong University of Engineering and Technology, Chattogram, 4349, Bangladesh
| | | | - Md Ariful Islam
- Department of Chemistry, Chittagong University of Engineering and Technology, Chattogram, 4349, Bangladesh
| | - Abu Mohammad Arif
- One Health Institute, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Abdelmoneim Sulieman
- Department of Radiology and Medical Imaging, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, P.O. Box 422, Alkharj, 11942, Saudi Arabia
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
59
|
Rashid TU, Sharmeen S, Biswas S. Effectiveness of N95 Masks against SARS-CoV-2: Performance Efficiency, Concerns, and Future Directions. ACS CHEMICAL HEALTH & SAFETY 2022; 29:135-164. [PMID: 37556270 PMCID: PMC8768005 DOI: 10.1021/acs.chas.1c00016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 12/24/2022]
Abstract
The coronavirus disease 2019 (COVID-19) epidemic, which is caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has continued to spread around the world since December 2019. Healthcare workers and other medical first responders in particular need personal protective equipment to protect their respiratory system from airborne particulates, in addition to liquid splashes to the face. N95 respirator have become a critical component for reducing SARS-CoV-2 transmission and controlling the scale of the COVID-19 pandemic. However, a major dispute concerning the protective performance of N95 respirators has erupted, with a myriad of healthcare workers affected despite wearing N95 masks. This article reviews the most recent updates about the performance of N95 respirators in protecting against the SARS-CoV-2 virus in the present pandemic situation. A brief overview of the manufacturing methods, air filtration mechanisms, stability, and reusability of the mask is provided. A detailed performance evaluation of the mask is studied from an engineering point of view. This Review also reports on a comparative study about the protective performance of all commercially available surgical and respiratory masks used to combat the spread of COVID-19. With the aim of protecting healthcare providers more efficiently, we suggest some potential directions for the development of this respiratory mask that improve the performance efficiency of the mask.
Collapse
Affiliation(s)
- Taslim Ur Rashid
- Fiber and Polymer Science, Department of Textile
Engineering, Chemistry and Science, Wilson College of Textiles, North
Carolina State University, 1020 Main Campus Drive, Raleigh, North Carolina
27695, United States
- Department of Applied Chemistry and Chemical
Engineering, Faculty of Engineering and Technology, University of
Dhaka, Dhaka 1000, Bangladesh
| | - Sadia Sharmeen
- Department of Applied Chemistry and Chemical
Engineering, Faculty of Engineering and Technology, University of
Dhaka, Dhaka 1000, Bangladesh
- Chemistry Department, University of
Nebraska−Lincoln, Lincoln, Nebraska 68588, United
States
| | - Shanta Biswas
- Department of Applied Chemistry and Chemical
Engineering, Faculty of Engineering and Technology, University of
Dhaka, Dhaka 1000, Bangladesh
- Department of Chemistry, Louisiana State
University, Baton Rouge, Louisiana 70803, United
States
| |
Collapse
|
60
|
de Macedo PF, Ornstein SW, Elali GA. Privacy and housing: research perspectives based on a systematic literature review. JOURNAL OF HOUSING AND THE BUILT ENVIRONMENT : HBE 2022; 37:653-683. [PMID: 35317451 PMCID: PMC8931782 DOI: 10.1007/s10901-022-09939-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Grounded in psychological and social constructs, the need for privacy is reflected in human socio-spatial behaviour and in our own home. To discuss housing privacy, this article presents a systematic literature review (SLR) that identified theoretical and methodological aspects relevant to the topic. The research was based on consolidated protocols to identify, select and evaluate articles published between 2000 and 2021 in three databases (Web of Science, Google Scholar and Scielo), with 71 eligible articles identified for synthesis. The results showed a concentration of studies in the American, European and Islamic context, and the increase in this production since 2018. This was guided by the inadequacy of architectural and urban planning projects, by new forms of social interaction and, recently, by the COVID-19 pandemic. From a theoretical point of view, the SLR demonstrated the importance of investigating privacy in housing from a comprehensive perspective, observing its different dimensions (physical, social and psychological) and characterizing the issues involved and the context under analysis. Methodologically, the main instruments identified were: (i) to behavioural analysis, questionnaires, interviews and observations; (ii) to built environment evaluation, in addition to the previous ones, space syntax analysis, architectural design and photographs analysis; (iii) for the general characterization of users, the data collection regarding the socio-demographic and cultural context and the meanings attributed to spatial organizations; (iv) to characterize the participants of the investigations, the analysis of personality traits, the ways to personalize the space, user satisfaction/preferences and the influence of social interactions on these perceptions.
Collapse
|
61
|
Braidotti L, Bertagna S, Dodero M, Piu M, Marinò A, Bucci V. Identification of measures to contain the outbreaks on passenger ships using pedestrian simulations. PROCEDIA COMPUTER SCIENCE 2022; 200:1565-1574. [PMID: 35284027 PMCID: PMC8902520 DOI: 10.1016/j.procs.2022.01.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The SARS-CoV-2 pandemic, since the beginning of 2020, has had a strong effect on many industry sectors including maritime transport. In this context, the passenger transport industry was the most affected and it is still in a very critical situation. Starting from the "No Sail Order" issued in March 2020, cruise companies stopped their operations. Besides the international regulatory bodies issued several guidelines for the prevention and management of pandemics onboard in order to safely resume cruises. The present work addresses this topic, aiming to discuss procedures and best practices to reduce the risk of uncontrolled spreading of SARS-CoV-2 infection on large cruise vessels. Starting from the lessons learned from the representative case of Diamond Princess, here the tools developed in the framework of Industry 4.0 have been used to highlight and handle the criticalities risen on the internal layout of passenger vessels, opening new opportunities to operate existing vessels and improve the design new buildings for outbreaks prevention and control.
Collapse
Affiliation(s)
- Luca Braidotti
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6, Trieste 34127, Italy
- Faculty of Engineering, University of Rijeka, Vukovarska 58, Rijeka 51000, Croatia
| | - Serena Bertagna
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6, Trieste 34127, Italy
| | - Matteo Dodero
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6, Trieste 34127, Italy
| | - Michele Piu
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6, Trieste 34127, Italy
| | - Alberto Marinò
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6, Trieste 34127, Italy
| | - Vittorio Bucci
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6, Trieste 34127, Italy
| |
Collapse
|
62
|
Singh H, Sachdeva S, Srivastava D, Kapoor P, Sharma P, Kumar Maurya R, Roy P. Sailing through the COVID-19 Pandemic and Beyond: An Evidence-Based Analysis for Dental Healthcare and Practice. Front Dent 2022; 19:14. [PMID: 35937150 PMCID: PMC9293723 DOI: 10.18502/fid.v19i14.9217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
This integrative review aims to provide a consolidated evidence-based appraisal of the most up-to-date guidelines and recommendations of international public and professional health regulatory bodies in relation to preparedness framework for restructuring safe delivery of dental services amid and beyond the coronavirus disease-2019 (COVID-19) pandemic. Most recent updated guidelines for dental professionals from major international health regulatory bodies were reviewed. PubMed, Google Scholar, Cochrane Central Register of Controlled Trials, WHO COVID-19 and LILACS databases, along with relevant preprints were searched, and citations were checked up to January 23, 2021. The search was performed by one author. Shortlisted articles were read and brought to consensus to be included in the study by at least two co-authors. In case of any disagreement between the judgements, an independent co-author's decision was taken as final. Of 849 records searched, 61 articles were included in the study. Following content analysis of the global guidelines and the collected prevailing evidence, the common themes and recommendations of different guidance documents were collated and summarized into seven domains. Most guidelines have a consensus regarding implementation of rigorous administrative, engineering and environmental infection control strategies. However, variations do exist with regard to the use of respirators in non-aerosol-generating procedure (non-AGP) settings, employment of airborne precautions during non-AGPs, use of supplemental air-handling systems, and preoperative use of mouthwashes. This evidence-based analysis can serve as a useful reopening resource tool and facilitate effective restructuring for delivery of optimal, equitable and safe dental practices globally, during and while emerging from the pandemic.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Orthodontics and Dentofacial Orthopedics ESIC Dental College and Hospital, Sector 15, Rohini, Delhi, India
| | - Shabina Sachdeva
- Department of Prosthodontics, Faculty of Dentistry, Jamia Milia Islamia, Delhi, India
| | - Dhirendra Srivastava
- Department of Oral and Maxillofacial Surgery, ESIC Dental College and Hospital, Sector 15, Rohini, Delhi, India
| | - Pranav Kapoor
- Department of Orthodontics and Dentofacial Orthopedics, ESIC Dental College and Hospital, Sector 15, Rohini, Delhi, India
| | - Poonam Sharma
- Department of Orthodontics and Dentofacial Orthopedics, ESIC Dental College and Hospital, Sector 15, Rohini, Delhi, India
| | - Raj Kumar Maurya
- Dental Officer & Specialist (Orthodontics), Central Government Dental Unit, Nagaland, India
| | - Pinaki Roy
- Department of Orthodontics and Dentofacial Orthopedics, Dr. R. Ahmed Dental College and Hospital, Kolkata, India
| |
Collapse
|
63
|
Zhou SYD, Lin C, Yang K, Yang LY, Yang XR, Huang FY, Neilson R, Su JQ, Zhu YG. Discarded masks as hotspots of antibiotic resistance genes during COVID-19 pandemic. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127774. [PMID: 34801300 PMCID: PMC8659516 DOI: 10.1016/j.jhazmat.2021.127774] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/21/2021] [Accepted: 11/10/2021] [Indexed: 05/09/2023]
Abstract
The demand for facial masks remains high. However, little is known about discarded masks as a potential refuge for contaminants and to facilitate enrichment and spread of antibiotic resistance genes (ARG) in the environment. We address this issue by conducting an in-situ time-series experiment to investigate the dynamic changes of ARGs, bacteria and protozoa associated with discarded masks. Masks were incubated in an estuary for 30 days. The relative abundance of ARGs in masks increased after day 7 but levelled off after 14 days. The absolute abundance of ARGs at 30 days was 1.29 × 1012 and 1.07 × 1012 copies for carbon and surgical masks, respectively. According to normalized stochasticity ratio analysis, the assembly of bacterial and protistan communities was determined by stochastic (NST = 62%) and deterministic (NST = 40%) processes respectively. A network analysis highlighted potential interactions between bacteria and protozoa, which was further confirmed by culture-dependent assays, that showed masks shelter and enrich microbial communities. An antibiotic susceptibility test suggested that antibiotic resistant pathogens co-exist within protozoa. This study provides an insight into the spread of ARGs through discarded masks and highlights the importance of managing discarded masks with the potential ecological risk of mask contamination.
Collapse
Affiliation(s)
- Shu-Yi-Dan Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Chenshuo Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Kai Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Le-Yang Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Fu-Yi Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, Scotland, UK
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
64
|
Marco A, Solé C, Abdo IJ, Turu E. Low sensitivity of rapid antigenic tests as a screening method in an outbreak of SARS-CoV-2 infection in prison. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2022; 40:152-154. [PMID: 34955435 PMCID: PMC8699329 DOI: 10.1016/j.eimce.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Andrés Marco
- Programa de Salud Penitenciaria, Instituto Catalán de la Salud, Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.
| | - Concepció Solé
- Equipo de Atención Primaria Penitenciaria, Figueres, Girona, Spain
| | - Indiana J Abdo
- Equipo de Atención Primaria Penitenciaria, Figueres, Girona, Spain
| | - Elisabet Turu
- Programa de Salud Penitenciaria, Instituto Catalán de la Salud, Barcelona, Spain
| |
Collapse
|
65
|
Huang Y, Li R. The lockdown, mobility, and spatial health disparities in COVID-19 pandemic: A case study of New York City. CITIES (LONDON, ENGLAND) 2022; 122:103549. [PMID: 35125596 PMCID: PMC8806179 DOI: 10.1016/j.cities.2021.103549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 11/26/2021] [Accepted: 12/28/2021] [Indexed: 05/04/2023]
Abstract
The world has adopted unprecedented lockdown as the key method to mitigate COVID-19; yet its effect on pandemic outcomes and health disparities remains largely unknown. Adopting a multilevel conceptual framework, this research investigates how city-level lockdown policy and public transit system shape mobility and thus intra-city health disparities, using New York City as a case study. With a spatial method and multiple sources of data, this research demonstrates the uneven impact of the lockdown policy and public transit system in shaping local pandemic outcomes. Census tracts with people spending more time at home have lower infection and death rates, while those with a higher density of transit stations have higher infection and death rates. Residential profile matters and census tracts with a higher concentration of disadvantaged population, such as Blacks, Hispanics, poor and elderly people, and people with no health insurance, have higher infection and death rates. Spatial analyses identify clusters where the lockdown policy was not effective and census tracts that share similar pandemic characteristics. Through the lens of mobility, this research advances knowledge of health disparities by focusing on institutional causes for health disparities and the role of the government through intervention policy and public transit system.
Collapse
Affiliation(s)
- Youqin Huang
- Department of Geography and Planning, Center for Social and Demographic Analysis, University at Albany, SUNY, United States of America
| | - Rui Li
- Department of Geography and Planning, University at Albany, SUNY, United States of America
| |
Collapse
|
66
|
Mittal M, Mittal D, Aggarwal NK. Plastic accumulation during COVID-19: call for another pandemic; bioplastic a step towards this challenge? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11039-11053. [PMID: 35022970 PMCID: PMC8754557 DOI: 10.1007/s11356-021-17792-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/23/2021] [Indexed: 04/16/2023]
Abstract
Plastic pollution has become a serious transboundary challenge to nature and human health, with estimation of reports published - predicting a twofold increase in plastic waste by 2030. However, due to the COVID-19 pandemic, the excessive use of single-use plastics (including face masks, gloves and personal protective equipment) would possibly exacerbate such forecasts. The transition towards eco-friendly alternatives like bio-based plastics and new emerging sustainable technologies would be vital to deal with future pandemics, even though the use or consumption of plastics has greatly enhanced our quality of life; it is however critical to move towards bioplastics. We cannot deny the fact that bioplastics have some challenges and shortcomings, but still, it is an ideal option for opt. The circular economy is the need of the hour for waste management. Along with all these practices, individual accountability, corporate intervention and government policy are also needed to prevent us from moving from one crisis to the next. Only through cumulative efforts, we will be able to cope up with this problem. This article collected scattered information and data about accumulation of plastic during COVID-19 worldwide. Additionally, this paper illustrates the substitution of petroleum-based plastics with bio-based plastics. Different aspects are discussed, ranging from advantages to challenges in the way of bioplastics.
Collapse
Affiliation(s)
- Mahak Mittal
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Divya Mittal
- Maharishi Markandeshwar (Deemed To Be University), Mullana, 133207, Haryana, India
| | - Neeraj K Aggarwal
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| |
Collapse
|
67
|
Clemon LM. Rapid estimation of viral emission source location via genetic algorithm. COMPUTATIONAL MECHANICS 2022; 69:1213-1224. [PMID: 35095145 PMCID: PMC8787039 DOI: 10.1007/s00466-021-02138-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/23/2021] [Indexed: 05/16/2023]
Abstract
Indoor spread of infectious diseases is well-studied as a common transmission route. For highly infectious diseases, like Sars-CoV-2, considering poorly or semi ventilated areas outdoors is increasingly important. This is important in communities with high proportions of infected people, highly infectious variants, or where spread is difficult to manage. This work develops a simulation framework based on probabilistic distributions of viral particles, decay, and infection. The methodology reduces the computational cost of generating rapid estimations of a wide variety of scenarios compared to other simulation methods with high computational cost and more fidelity. Outdoor predictions are provided in example applications for a gathering of five people with oscillating wind and a public speaking event. The results indicate that infection is sensitive to population density and outdoor transmission is plausible and likely locations of a virtual super-spreader are identified. Outdoor gatherings should consider precautions to reduce infection spread.
Collapse
Affiliation(s)
- L. M. Clemon
- University of Technology Sydney, Ultimo, Australia
- Present Address: Ultimo, NSW Australia
| |
Collapse
|
68
|
D’Accolti M, Soffritti I, Bini F, Mazziga E, Mazzacane S, Caselli E. Pathogen Control in the Built Environment: A Probiotic-Based System as a Remedy for the Spread of Antibiotic Resistance. Microorganisms 2022; 10:microorganisms10020225. [PMID: 35208679 PMCID: PMC8876034 DOI: 10.3390/microorganisms10020225] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
The high and sometimes inappropriate use of disinfectants and antibiotics has led to alarming levels of Antimicrobial Resistance (AMR) and to high water and hearth pollution, which today represent major threats for public health. Furthermore, the current SARS-CoV-2 pandemic has deeply influenced our sanitization habits, imposing the massive use of chemical disinfectants potentially exacerbating both concerns. Moreover, super-sanitation can profoundly influence the environmental microbiome, potentially resulting counterproductive when trying to stably eliminate pathogens. Instead, environmentally friendly procedures based on microbiome balance principles, similar to what applied to living organisms, may be more effective, and probiotic-based eco-friendly sanitation has been consistently reported to provide stable reduction of both pathogens and AMR in treated-environments, compared to chemical disinfectants. Here, we summarize the results of the studies performed in healthcare settings, suggesting that such an approach may be applied successfully also to non-healthcare environments, including the domestic ones, based on its effectiveness, safety, and negligible environmental impact.
Collapse
Affiliation(s)
- Maria D’Accolti
- Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, Via Saragat 13, 44122 Ferrara, Italy;
| | - Irene Soffritti
- Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, Via Saragat 13, 44122 Ferrara, Italy;
| | - Francesca Bini
- Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.); (F.B.); (E.M.)
| | - Eleonora Mazziga
- Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.); (F.B.); (E.M.)
| | - Sante Mazzacane
- CIAS Research Center, University of Ferrara, Via Saragat 13, 44122 Ferrara, Italy;
| | - Elisabetta Caselli
- Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, Via Saragat 13, 44122 Ferrara, Italy;
- Correspondence:
| |
Collapse
|
69
|
Facial mask personalization encourages facial mask wearing in times of COVID-19. Sci Rep 2022; 12:891. [PMID: 35042911 PMCID: PMC8766589 DOI: 10.1038/s41598-021-04681-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 12/24/2021] [Indexed: 12/30/2022] Open
Abstract
One of the most cost-effective strategies for fighting the spread of COVID-19 is the use of facial masks. Despite health officials’ strong efforts to communicate the importance or wearing a mask, compliance has been low in many countries. In the present paper we propose a novel behavior-intervention strategy to encourage people to wear facial masks. Three studies show that the personalization of a mask, as a form of identity expression, increases mask wearing intentions and, by extension, the percentage of individuals who wear facial masks. Given that mask wearing remains a necessity after deployment of the first vaccines, novel approaches to encouraging mask wearing are essential. Linking facial mask wearing to an individual’s identity is a promising strategy.
Collapse
|
70
|
Social Cohesion and Neighbor Interactions within Multifamily Apartment Buildings: Challenges of COVID-19 and Directions of Action. SUSTAINABILITY 2022. [DOI: 10.3390/su14020738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Relations among neighbors are a key indicator of the strength of a local social community, contribute to social cohesion and are an important factor in achieving a higher level of social sustainability. On the other hand, the environment in which people live plays an important role in encouraging social contacts and developing relationships between people. In order to establish social interactions between neighbors within a multifamily apartment building (MFAB), it is necessary to provide adequate spaces for communication between residents. This was especially emphasized during the mobility restrictions caused by COVID-19, although this necessity is permanent. This paper analyzes the influence of the physical characteristics of common spaces in MFABs on the quality and intensity of contacts among residents of MFABs in the City of Niš, Serbia. In order to determine the current quality of these spaces as a physical framework for interactions among residents and to identify the wishes of users regarding interactions with neighbors in these spaces before and during COVID-19 pandemic restrictions, a survey was conducted. The analysis of the survey results and numerous examples of housing design led to (1) the formation of guidelines for future designs of MFABs and (2) recommendations for redefining the standards regulating the field of housing construction in the region, both applicable during the period of the pandemic and after it.
Collapse
|
71
|
Parhizkar H, Dietz L, Olsen-Martinez A, Horve PF, Barnatan L, Northcutt D, Van Den Wymelenberg KG. Quantifying environmental mitigation of aerosol viral load in a controlled chamber with participants diagnosed with COVID-19. Clin Infect Dis 2022; 75:e174-e184. [PMID: 34996097 PMCID: PMC8755398 DOI: 10.1093/cid/ciac006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 12/16/2022] Open
Abstract
Background Several studies indicate that COVID-19 is primarily transmitted within indoor spaces. Therefore, environmental characterization of SARS-CoV-2 viral load with respect to human activity, building parameters, and environmental mitigation strategies is critical to combat disease transmission. Methods We recruited 11 participants diagnosed with COVID-19 to individually occupy a controlled chamber and conduct specified physical activities under a range of environmental conditions; we collected human and environmental samples over a period of three days for each participant. Results Here we show that increased viral load, measured by lower RNA cycle threshold (CT) values, in nasal samples is associated with higher viral loads in environmental aerosols and on surfaces captured in both the near field (1.2 m) and far field (3.5 m). We also found that aerosol viral load in far field is correlated with the number of particles within the range of 1 µm -2.5 µm. Furthermore, we found that increased ventilation and filtration significantly reduced aerosol and surface viral loads, while higher relative humidity resulted in lower aerosol and higher surface viral load, consistent with an increased rate of particle deposition at higher relative humidity. Data from near field aerosol trials with high expiratory activities suggest that respiratory particles of smaller sizes (0.3 µm -1 µm) best characterize the variance of near field aerosol viral load. Conclusions Our findings indicate that building operation practices such as ventilation, filtration, and humidification substantially reduce the environmental aerosol viral load, and therefore inhalation dose, and should be prioritized to improve building health and safety.
Collapse
Affiliation(s)
- Hooman Parhizkar
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, United States
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, United States
| | - Leslie Dietz
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, United States
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States
| | - Andreas Olsen-Martinez
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, United States
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States
| | - Patrick F Horve
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, United States
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States
- Institute of Molecular Biology, University of Oregon, Eugene, OR, United States
| | - Liliana Barnatan
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States
| | - Dale Northcutt
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, United States
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, United States
| | - Kevin G Van Den Wymelenberg
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, United States
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, United States
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States
- Corresponding Author: Kevin G. Van Den Wymelenberg, , Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States, 97403, Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, United States, 97403, Institute for Health and the Built Environment, University of Oregon, Portland, OR, United States, 97209
| |
Collapse
|
72
|
Sondakh JJ, Warastuti W, Susatia B, Wildan M, Sunindya BR, Budiyanto MAK, Fauzi A. Indonesia medical students' knowledge, attitudes, and practices toward COVID-19. Heliyon 2022; 8:e08686. [PMID: 34977397 PMCID: PMC8711172 DOI: 10.1016/j.heliyon.2021.e08686] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 04/04/2021] [Accepted: 12/23/2021] [Indexed: 12/23/2022] Open
Abstract
Implementing health protocols and preventive measures are the only effective ways to suppress COVID-19 transmission before vaccines and antiviral drugs are developed. The implementation of health protocols and preventive measures are influenced by one's knowledge, attitudes, and practices (KAP) toward this pandemic. Medical students as candidates for healthcare workers and role models for the community should have a good KAP. This study intends 1) to explore the KAP of medical students in Indonesia toward COVID-19 and 2) to assess which demographic factors have a significant effect on their KAP scores. An online questionnaire consisting of 18 items of knowledge, six items of attitudes, and 12 items of practices were used as instruments in this study. After being distributed for two weeks in June 2020, 525 respondents whose data were worth analyzing were obtained. The respondents consisted of male and female students, from diploma to bachelor degree, and came from all four types of higher education institutions in Indonesia. The results, 48% of respondents had good knowledge, 81% had good attitudes, and 43.5% had good practices toward COVID-19. The location of students' residence has no significant effect on their KAP score. Gender has a significant effect on knowledge and practice scores. Age, institution type, and institution status have a significant effect on their three KAP domains. The KAP survey results can be used as a reflection of the importance of the curriculum that prepares medical students for the pandemic. Medical students are also expected to be able to actively participate in educating people around them on how to minimize the transmission of COVID-19 during the pandemic.
Collapse
Affiliation(s)
| | - Widya Warastuti
- Politeknik Kesehatan Kementerian Kesehatan Palangka Raya, Indonesia
| | - Budi Susatia
- Politeknik Kesehatan Kementerian Kesehatan Malang, Indonesia
| | - Moh. Wildan
- Politeknik Kesehatan Kementerian Kesehatan Malang, Indonesia
| | | | | | | |
Collapse
|
73
|
Park JY, Mistur E, Kim D, Mo Y, Hoefer R. Toward human-centric urban infrastructure: Text mining for social media data to identify the public perception of COVID-19 policy in transportation hubs. SUSTAINABLE CITIES AND SOCIETY 2022; 76:103524. [PMID: 34751239 PMCID: PMC8566222 DOI: 10.1016/j.scs.2021.103524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 05/29/2023]
Abstract
The COVID-19 pandemic has made transportation hubs vulnerable to public health risks. In response, policies using nonpharmaceutical interventions have been implemented, changing the way individuals interact within these facilities. However, the impact of building design and operation on policy efficacy is not fully discovered, making it critical to investigate how these policies are perceived and complied in different building spaces. Therefore, we investigate the spatial drivers of user perceptions and policy compliance in airports. Using text mining, we analyze 103,428 Google Maps reviews of 64 major hub airports in the US to identify representative topics of passenger concerns in airports (i.e., Staff, Shop, Space, and Service). Our results show that passengers express having positive experiences with Staff and Shop, but neutral or negative experiences with Service and Space, which indicates how building design has impacted policy compliance and the vulnerability of health crises. Furthermore, we discuss the actual review comments with respect to 1) spatial design and planning, 2) gate assignment and operation, 3) airport service policy, and 4) building maintenance, which will construct the foundational knowledge to improve the resilience of transportation hubs to future health crises.
Collapse
Affiliation(s)
- June Young Park
- Department of Civil Engineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Evan Mistur
- Department of Public Affairs and Planning, The University of Texas at Arlington, Arlington, TX, USA
| | - Donghwan Kim
- NBBJ, Architectural Design Firm, Washington, DC, USA
| | - Yunjeong Mo
- Department of Construction Management, University of North Florida, Jacksonville, FL, USA
| | - Richard Hoefer
- School of Social Work, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
74
|
Xu C, Liu W, Luo X, Huang X, Nielsen PV. Prediction and control of aerosol transmission of SARS-CoV-2 in ventilated context: from source to receptor. SUSTAINABLE CITIES AND SOCIETY 2022; 76:103416. [PMID: 34611508 PMCID: PMC8484231 DOI: 10.1016/j.scs.2021.103416] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 05/24/2023]
Abstract
Global spread of COVID-19 has seriously threatened human life and health. The aerosol transmission route of SARS-CoV-2 is observed often associated with infection clusters under poorly ventilated environment. In the context of COVID-19 pandemic, significant transformation and optimization of traditional ventilation systems are needed. This paper is aimed to offer better understanding and insights into effective ventilation design to maximize its ability in airborne risk control, for particularly the COVID-19. Comprehensive reviews of each phase of aerosol transmission of SARS-CoV-2 from source to receptor are conducted, so as to provide a theoretical basis for risk prediction and control. Infection risk models and their key parameters for risk assessment of SARS-CoV-2 are analyzed. Special focus is given on the efficacy of different ventilation strategies in mitigating airborne transmission. Ventilation interventions are found mainly impacting on the dispersion and inhalation phases of aerosol transmission. The airflow patterns become a key factor in controlling the aerosol diffusion and distribution. Novel and personalized ventilation design, effective integration with other environmental control techniques and resilient HVAC system design to adapt both common and epidemic conditions are still remaining challenging, which need to be solved with the aid of multidisciplinary research and intelligent technologies.
Collapse
Affiliation(s)
- Chunwen Xu
- College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China
| | - Wenbing Liu
- College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China
| | - Xilian Luo
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xingyu Huang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Peter V Nielsen
- Division of Sustainability, Energy and Indoor Environment, Aalborg University, Aalborg 9000, Denmark
| |
Collapse
|
75
|
Singer BC, Zhao H, Preble CV, Delp WW, Pantelic J, Sohn MD, Kirchstetter TW. Measured influence of overhead HVAC on exposure to airborne contaminants from simulated speaking in a meeting and a classroom. INDOOR AIR 2022; 32:e12917. [PMID: 34477251 DOI: 10.1111/ina.12917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Tracer gas experiments were conducted in a 158 m3 room with overhead supply diffusers to study dispersion of contaminants from simulated speaking in physically distanced meeting and classroom configurations. The room was contained within a 237 m3 cell with open plenum return to the HVAC system. Heated manikins at desks and a researcher operating the tracer release apparatus presented 8-9 thermal plumes. Experiments were conducted under conditions of no forced air and neutral, cooled, or heated air supplied at 980-1100 cmh, and with/out 20% outdoor air. CO2 was released at the head of one manikin in each experiment to simulate small (<5 µm diameter) respiratory aerosols. The metric of exposure relative to perfectly mixed (ERM) is introduced to quantify impacts, based on measurements at manikin heads and at three heights in the center and corners of the room. Chilled or neutral supply air provided good mixing with ERMs close to one. Thermal stratification during heating produced higher ERMs at most manikins: 25% were ≥2.5 and the highest were >5× perfectly mixed conditions. Operation of two within-zone air cleaners together moving ≥400 cmh vertically in the room provided enough mixing to mitigate elevated exposure variations.
Collapse
Affiliation(s)
- Brett C Singer
- Indoor Environment Group, Energy Analysis and Environmental Impacts Division, Building Technologies and Urban Systems Division, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Haoran Zhao
- Indoor Environment Group, Energy Analysis and Environmental Impacts Division, Building Technologies and Urban Systems Division, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Chelsea V Preble
- Indoor Environment Group, Energy Analysis and Environmental Impacts Division, Building Technologies and Urban Systems Division, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Civil & Environmental Engineering, University of California, Berkeley, California, USA
| | - William W Delp
- Indoor Environment Group, Energy Analysis and Environmental Impacts Division, Building Technologies and Urban Systems Division, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jovan Pantelic
- Indoor Environment Group, Energy Analysis and Environmental Impacts Division, Building Technologies and Urban Systems Division, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Center for the Built Environment, University of California, Berkeley, California, USA
| | - Michael D Sohn
- Indoor Environment Group, Energy Analysis and Environmental Impacts Division, Building Technologies and Urban Systems Division, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Thomas W Kirchstetter
- Indoor Environment Group, Energy Analysis and Environmental Impacts Division, Building Technologies and Urban Systems Division, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Civil & Environmental Engineering, University of California, Berkeley, California, USA
| |
Collapse
|
76
|
Lordan R, Prior S, Hennessy E, Naik A, Ghosh S, Paschos GK, Skarke C, Barekat K, Hollingsworth T, Juska S, Mazaleuskaya LL, Teegarden S, Glascock AL, Anderson S, Meng H, Tang SY, Weljie A, Bottalico L, Ricciotti E, Cherfane P, Mrcela A, Grant G, Poole K, Mayer N, Waring M, Adang L, Becker J, Fries S, FitzGerald GA, Grosser T. Considerations for the Safe Operation of Schools During the Coronavirus Pandemic. Front Public Health 2021; 9:751451. [PMID: 34976917 PMCID: PMC8716382 DOI: 10.3389/fpubh.2021.751451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/18/2021] [Indexed: 12/25/2022] Open
Abstract
During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, providing safe in-person schooling has been a dynamic process balancing evolving community disease burden, scientific information, and local regulatory requirements with the mandate for education. Considerations include the health risks of SARS-CoV-2 infection and its post-acute sequelae, the impact of remote learning or periods of quarantine on education and well-being of children, and the contribution of schools to viral circulation in the community. The risk for infections that may occur within schools is related to the incidence of SARS-CoV-2 infections within the local community. Thus, persistent suppression of viral circulation in the community through effective public health measures including vaccination is critical to in-person schooling. Evidence suggests that the likelihood of transmission of SARS-CoV-2 within schools can be minimized if mitigation strategies are rationally combined. This article reviews evidence-based approaches and practices for the continual operation of in-person schooling.
Collapse
Affiliation(s)
- Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Samantha Prior
- Faculty of Science & Engineering, University of Limerick, Limerick, Ireland
| | - Elizabeth Hennessy
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Amruta Naik
- Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Soumita Ghosh
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Georgios K. Paschos
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Carsten Skarke
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kayla Barekat
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Taylor Hollingsworth
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sydney Juska
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Liudmila L. Mazaleuskaya
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sarah Teegarden
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Abigail L. Glascock
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sean Anderson
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hu Meng
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Soon-Yew Tang
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Aalim Weljie
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lisa Bottalico
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Emanuela Ricciotti
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Perla Cherfane
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Antonijo Mrcela
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gregory Grant
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kristen Poole
- Department of English, University of Delaware, Newark, DE, United States
| | - Natalie Mayer
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael Waring
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, United States
| | - Laura Adang
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Julie Becker
- Division of Public Health, University of the Sciences, Philadelphia, PA, United States
| | - Susanne Fries
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Garret A. FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tilo Grosser
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
77
|
Abstract
Since the outbreak in late December 2019, the coronavirus disease 2019 (COVID-19) pandemic has spread across the globe, causing great damage to human life and property. A lot of researchers around the world have devoted themselves to the study of its origin, pathogenic mechanism, and transmission route, and this article gives a summary. First, both humans and animals can act as the host of coronavirus. In indoor environments, the virus may exist in aerosols, droplets, saliva, etc., from the nose and mouth connected to the respiratory system, as well as feces, urine, etc., from the digestive and urinary systems. In addition, other substances, such as breast milk, eye feces, and blood, released from the host can carry viruses. The virus transmitted indoors is affected by indoor machinery, natural forces, and human activities, and spreads in different distances. Second, the virus spreads outdoors through three kinds of media: solid, liquid, and gas, and is affected by their survival time, the temperature, and humidity in the environment.
Collapse
|
78
|
Kashem SB, Baker DM, González SR, Lee CA. Exploring the nexus between social vulnerability, built environment, and the prevalence of COVID-19: A case study of Chicago. SUSTAINABLE CITIES AND SOCIETY 2021; 75:103261. [PMID: 34580620 PMCID: PMC8459204 DOI: 10.1016/j.scs.2021.103261] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/31/2021] [Accepted: 08/10/2021] [Indexed: 05/18/2023]
Abstract
COVID-19 has significantly and unevenly impacted the United States, disproportionately affecting socially vulnerable communities. While epidemiologists and public health officials have suggested social distancing and shelter-in-place orders to halt the spread of this virus, the ability to comply with these guidelines is dependent on neighborhood, household, and individual characteristics related to social vulnerability. We use structural equation modeling and multiple data sources, including anonymized mobile phone location data from SafeGraph, to examine the effects of different social vulnerability and built environment factors on COVID-19 prevalence over two overlapping time periods (March to May and March to November of 2020). We use Chicago, Illinois as a case study and find that zip codes with low educational attainment consistently experienced higher case rates over both periods. Though population density was not significantly related to the prevalence in any period, movement of people made a significant contribution only during the longer time period. This finding highlights the significance of analyzing different timeframes for understanding social vulnerability. Our results suggest social vulnerability played an influential role in COVID-19 prevalence, highlighting the needs to address socioeconomic barriers to pandemic recovery and future pandemic response.
Collapse
Affiliation(s)
- Shakil Bin Kashem
- Department of Landscape Architecture and Regional & Community Planning, Kansas State University, 3002 Seaton Hall, 920 N 17th St., Manhattan, KS 66506, USA
| | - Dwayne M Baker
- Urban Studies Department, Queens College, CUNY, 65-30 Kissena Blvd., Queens, NY 11367-1597, USA
| | - Silvia R González
- UCLA Luskin Center for Innovation, The University of California, Los Angeles, 3323 Public Affairs Building, Box 951656, Los Angeles, CA 90095-1656, USA
| | - C Aujean Lee
- Regional and City Planning, The University of Oklahoma, 830 Van Vleet Oval, Norman, OK 73019, USA
| |
Collapse
|
79
|
Evaluating heating, ventilation, and air-conditioning systems toward minimizing the airborne transmission risk of Mucormycosis and COVID-19 infections in built environment. CASE STUDIES IN THERMAL ENGINEERING 2021; 28. [PMCID: PMC8527735 DOI: 10.1016/j.csite.2021.101567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This ongoing global pandemic of the COVID-19 has generated a significant international concern for our respiratory health. For instance, the breakout of the COVID-19 pandemic was directly linked to the spread of infectious particles in indoor environments between humans, underlining the significance of rigorous and effective actions to limit the transmission of diseases. Recently, Mucormycosis infections in COVID-19 patients have been identified. This investigation aims to investigate potential infection control HVAC solutions for indoor environments, as well as their core mechanisms for reducing infectious disease risk through simulation models of a valid building in a hot climatic region. Considering recent international recommendations, the investigation relies on a methodology of testing a validated building energy model to several systems in the light of infectious diseases prevention. All proposed models are exposed to cost analysis in line with carbon emissions, and indoor thermal conditions. The analysis outlined through parametric simulations, the effectiveness of the proposed DOAS in supplying 100% fresh ventilation air and enhancing the control of the indoor relative humidity simultaneously. Finally, through an enviro-economic assessment, the study concluded that the DOAS model reduced the CO2 emissions to 691 tons, with a potential of reducing HVAC and whole-building energy use by 37% and 16%, respectively in the hot arid climate, with a return on investment of about 6%.
Collapse
|
80
|
Senerat AM, Pope ZC, Rydell SA, Mullan AF, Roger VL, Pereira MA. Psychosocial and Behavioral Outcomes and Transmission Prevention Behaviors: Working During the Coronavirus Disease 2019 Pandemic. Mayo Clin Proc Innov Qual Outcomes 2021; 5:1089-1099. [PMID: 34485827 PMCID: PMC8397528 DOI: 10.1016/j.mayocpiqo.2021.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE To investigate the impact of coronavirus disease 2019 (COVID-19) on psychosocial and behavioral responses of the non-health care workforce and to evaluate transmission prevention behavior implementation in the workplace. PARTICIPANTS AND METHODS We deployed the baseline questionnaire of a prospective online survey from November 20, 2020, through February 8, 2021 to US-based employees. The survey included questions on psychosocial and behavioral responses in addition to transmission prevention behaviors (e.g., mask wearing). Select questions asked employees to report perceptions and behaviors before and during the COVID-19 pandemic. Data were analyzed descriptively and stratified by work from home (WFH) percentage. RESULTS In total, 3607 employees from 8 companies completed the survey. Most participants (70.0%) averaged 90% or more of their time WFH during the pandemic. Employees reported increases in stress (54.0%), anxiety (57.4%), fatigue (51.6%), feeling unsafe (50.4%), lack of companionship (60.5%), and feeling isolated from others (69.3%) from before to during the pandemic. Productivity was perceived to decrease for 42.9% of employees and non-work-related screen time and alcohol consumption to increase for 50.7% and 25.1% of employees, respectively, from before to during the pandemic. Adverse changes were worse among those with lower WFH percentages. Most employees reported wearing a mask (98.2%), washing hands regularly (95.7%), and physically distancing (93.6%) in the workplace. CONCLUSION These results suggest worsened psychosocial and behavioral outcomes from before to during the COVID-19 pandemic and higher transmission prevention behavior implementation among non-health care employees. These observations provide novel insight into how the COVID-19 pandemic has impacted non-health care employees.
Collapse
Affiliation(s)
| | - Zachary C. Pope
- Well Living Lab, Rochester, MN
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Sarah A. Rydell
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | - Aidan F. Mullan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Véronique L. Roger
- Department of Cardiovascular Diseases Medicine, Mayo Clinic College of Medicine, Rochester, MN
- Now with the Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Mark A. Pereira
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| |
Collapse
|
81
|
Tokazhanov G, Tleuken A, Durdyev S, Otesh N, Guney M, Turkyilmaz A, Karaca F. Stakeholder based weights of new sustainability indicators providing pandemic resilience for residential buildings. SUSTAINABLE CITIES AND SOCIETY 2021; 75:103300. [PMID: 34545318 PMCID: PMC8443464 DOI: 10.1016/j.scs.2021.103300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 06/01/2023]
Abstract
During COVID-19, the building and service characteristics of residential buildings turned out to be more critical due to lockdowns. The present research assesses the importance of new sustainability indicators for residential buildings in three categories (e.g., Health and Safety, Environmental Resources Consumption, and Comfort) that provide resilience for pandemic periods. The opinions of stakeholders on the identified indicators were collected and then analyzed. 'Health and Safety' category is found to be the most critical among the others. The prevention of virus propagation, mental health, and building air quality are three crucial indicators playing essential roles in the health and safety category. In more detail, innovative smart technologies, including touchless technologies, are identified as a priority in preventing virus propagation. Outdoor spaces and safe indoor places for socialization are weighted as essential in supporting the well-being and mental health of the resident. Finally, air filtration and segregation of medical waste indicators are considered critical in preventing the spread of viruses. There was a consensus among the local and international experts since they did not significantly report differing opinions for the majority of the indicators. However, there was a shift in experts' opinions towards pandemic-oriented indicators compared to conventional sustainability indicators.
Collapse
Affiliation(s)
- Galym Tokazhanov
- Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Kabanbay Batyr Ave. 53, Nur-Sultan 010000 Kazakhstan
| | - Aidana Tleuken
- Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Kabanbay Batyr Ave. 53, Nur-Sultan 010000 Kazakhstan
| | - Serdar Durdyev
- Department of Architectural and Engineering Studies, Ara Institute of Canterbury, Christchurch, New Zealand
| | - Nurlan Otesh
- Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Kabanbay Batyr Ave. 53, Nur-Sultan 010000 Kazakhstan
| | - Mert Guney
- Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Kabanbay Batyr Ave. 53, Nur-Sultan 010000 Kazakhstan
| | - Ali Turkyilmaz
- Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Kabanbay Batyr Ave. 53, Nur-Sultan 010000 Kazakhstan
- Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, Master of Engineering Management Program, Nazarbayev University, Kabanbay Batyr Ave. 53, Nur-Sultan 010000 Kazakhstan
| | - Ferhat Karaca
- Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Kabanbay Batyr Ave. 53, Nur-Sultan 010000 Kazakhstan
| |
Collapse
|
82
|
Kan Z, Kwan M, Huang J, Wong M, Liu D. Comparing the space-time patterns of high-risk areas in different waves of COVID-19 in Hong Kong. TRANSACTIONS IN GIS : TG 2021; 25:2982-3001. [PMID: 34512106 PMCID: PMC8420231 DOI: 10.1111/tgis.12800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This study compares the space-time patterns and characteristics of high-risk areas of COVID-19 transmission in Hong Kong between January 23 and April 14 (the first and second waves) and between July 6 and August 29 (the third wave). Using space-time scan statistics and the contact tracing data of individual confirmed cases, we detect the clusters of residences of, and places visited by, both imported and local cases. We also identify the built-environment and demographic characteristics of the high-risk areas during different waves of COVID-19. We find considerable differences in the space-time patterns and characteristics of high-risk residential areas between waves. However, venues and buildings visited by the confirmed cases in different waves have similar characteristics. The results can inform policymakers to target mitigation measures in high-risk areas and at vulnerable groups, and provide guidance to the public to avoid visiting and conducting activities at high-risk places.
Collapse
Affiliation(s)
- Zihan Kan
- Institute of Space and Earth Information ScienceThe Chinese University of Hong KongShatinHong KongChina
| | - Mei‐Po Kwan
- Institute of Space and Earth Information ScienceThe Chinese University of Hong KongShatinHong KongChina
- Department of Geography and Resource ManagementThe Chinese University of Hong KongShatinHong KongChina
- Department of Human Geography and Spatial PlanningUtrecht UniversityUtrechtThe Netherlands
| | - Jianwei Huang
- Institute of Space and Earth Information ScienceThe Chinese University of Hong KongShatinHong KongChina
| | - Man Sing Wong
- Department of Land Surveying and Geo‐Informatics and Research Institute for Sustainable Urban DevelopmentThe Hong Kong Polytechnic UniversityHung HomHong KongChina
| | - Dong Liu
- Department of Geography and Geographic Information ScienceUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Human Environments Analysis LaboratoryThe University of Western OntarioLondonONCanada
- Department of Geography and EnvironmentThe University of Western OntarioLondonONCanada
| |
Collapse
|
83
|
Hassan W, Kazmi SK, Tahir MJ, Ullah I, Royan HA, Fahriani M, Nainu F, Rosa SGV. Global acceptance and hesitancy of COVID-19 vaccination: A narrative review. NARRA J 2021; 1:e57. [PMID: 38450215 PMCID: PMC10914054 DOI: 10.52225/narra.v1i3.57] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 02/05/2023]
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major global health threat to human civilization and has disrupted many aspects of the community around the globe. Vaccination is one of the prominent measures to control the COVID-19 pandemic. More than 120 vaccines have entered human clinical trials and at least 8 vaccines have been fully approved. However, the success of the COVID-19 vaccination programs depends on how the community accepts the vaccines. Despite COVID-19 vaccination having been initiated for a while now, more than 50% of the global population have not been vaccinated. In some low- and middle-income countries (LMICs), the vaccine coverage is less than 20%. Since the decision to accept the new vaccine is complex, understanding the factors underpinning vaccine acceptance is critical. This review aimed to summarize the COVID-19 vaccine acceptance rate around the globe as well as its associated determinants. Information from this study might be important to formulate effective strategies to increase the COVID-19 vaccine coverage, and to be able to achieve herd immunity.
Collapse
Affiliation(s)
- Wardah Hassan
- Dow University of Health Sciences, Karachi, Pakistan
| | - Syeda K Kazmi
- Dow University of Health Sciences, Karachi, Pakistan
| | - Muhammad J Tahir
- Lahore General Hospital, Lahore, Pakistan
- Ameer-ud-Din Medical College, Affiliated with University of Health and Sciences, Lahore, Pakistan
| | - Irfan Ullah
- Kabir Medical College, Gandhara University, Peshawar, Pakistan
- Naseer Teaching Hospital, Peshawar, Pakistan
| | - Hibban A Royan
- Center for Indonesian Medical Students' Activities (CIMSA), Banda Aceh, Indonesia
| | - Marhami Fahriani
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, Sulawesi Selatan, Indonesia
| | - Sandro G V Rosa
- Diretoria de Patentes, Divisão de Farmácia - Instituto Nacional da Propriedade Industrial, Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para Saúde, Faculdade de Farmácia, Universidade Federal Fluminense, Brasil
| |
Collapse
|
84
|
Chaudhary NK, Guragain B, Rai S, Chaudhary N, Chaudhary R, Sachin KM, Lamichhane-Khadka R, Bhattarai A. Alcohol-Based Sanitizers: An Effective Means for Preventing the Spread of Contagious Viral Diseases Including COVID-19. TENSIDE SURFACT DET 2021. [DOI: 10.1515/tsd-2020-2314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The global community is struggling with the highly contagious COVID-19. Returning to \normal life" now poses risks, and the use of appropriate protective measures has become necessary to continue daily life and protect public health. The main protective measures to prevent transmission of COVID-19 are masks, soaps and disinfectants. Because coronavirus is a \lipid-enveloped virus", it is very sensitive to lipid-dissolving chemicals and can therefore be effectively removed by washing hands sufficiently with soap and water. However, using an alcohol-based disinfectant is a more viable option for outdoor use. Alcohol-based disinfectants are inexpensive, immediately effective, easy to use and better tolerated by the skin compared to other disinfectants. WHO recommends disinfectants containing 75% isopropanol or 80% ethanol as highly effective in inactivating the SARS-CoV-2-virus. The current review discusses the role of alcohol-based hand sanitizers (ABHS) in preventing the spread of viruses, their side effects on human health, and suggests the use of alcohol-based sanitizers as potentially effective in combating the current epidemic.
Collapse
Affiliation(s)
- Narendra Kumar Chaudhary
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus (Tribhuvan University) , Biratnagar , Nepal
| | - Biswash Guragain
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus (Tribhuvan University) , Biratnagar , Nepal
| | - Summi Rai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus (Tribhuvan University) , Biratnagar , Nepal
| | - Nabina Chaudhary
- Dhaka Central International Medical College, Dhaka University , Dhaka Bangladesh
| | - Rahul Chaudhary
- Dhaka Central International Medical College, Dhaka University , Dhaka Bangladesh
| | - KM Sachin
- School of Chemical Sciences, Central University of Gujarat , Gandhinagar , Gujarat India
- Swarrnim Science College, Swarnim Startup and Innovation University , Gandhinagar , Gujarat , India
| | | | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus (Tribhuvan University) , Biratnagar , Nepal
| |
Collapse
|
85
|
Capasso L, D’Alessandro D. Housing and Health: Here We Go Again. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12060. [PMID: 34831815 PMCID: PMC8624624 DOI: 10.3390/ijerph182212060] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022]
Abstract
Housing is one of the major determinants of human health and the current COVID-19 pandemic has highlighted its relevance. The authors summarize the main issues, including dimensional standards, indoor air quality, safety, accessibility, neighborhoods, and area characteristics. The authors propose an operating scheme in order to implement actions to improve residential wellbeing on a local, national, and international level.
Collapse
Affiliation(s)
- Lorenzo Capasso
- Italian Ministry of Education, USR Abruzzo (Regional Office of Abruzzi), 66100 Chieti, Italy
| | - Daniela D’Alessandro
- Department of Civil Building and Environmental Engineering, “Sapienza” University of Rome, 00100 Rome, Italy;
| |
Collapse
|
86
|
Horve PF, Dietz L, Northcutt D, Stenson J, Van Den Wymelenberg K. Evaluation of a bioaerosol sampler for indoor environmental surveillance of Severe Acute Respiratory Syndrome Coronavirus 2. PLoS One 2021; 16:e0257689. [PMID: 34780482 PMCID: PMC8592464 DOI: 10.1371/journal.pone.0257689] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
The worldwide spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has ubiquitously impacted many aspects of life. As vaccines continue to be manufactured and administered, limiting the spread of SARS-CoV-2 will rely more heavily on the early identification of contagious individuals occupying reopened and increasingly populated indoor environments. In this study, we investigated the utility of an impaction-based bioaerosol sampling system with multiple nucleic acid collection media. Heat-inactivated SARS-CoV-2 was utilized to perform bench-scale, short-range aerosol, and room-scale aerosol experiments. Through bench-scale experiments, AerosolSense Capture Media (ACM) and nylon flocked swabs were identified as the highest utility media. In room-scale aerosol experiments, consistent detection of aerosol SARS-CoV-2 was achieved at an estimated aerosol concentration equal to or greater than 0.089 genome copies per liter of room air (gc/L) when air was sampled for eight hours or more at less than one air change per hour (ACH). Shorter sampling periods (75 minutes) yielded consistent detection at ~31.8 gc/L of room air and intermittent detection down to ~0.318 gc/L at (at both 1 and 6 ACH). These results support further exploration in real-world testing scenarios and suggest the utility of indoor aerosol surveillance as an effective risk mitigation strategy in occupied buildings.
Collapse
Affiliation(s)
- Patrick Finn Horve
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States of America
| | - Leslie Dietz
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States of America
| | - Dale Northcutt
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States of America
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, United States of America
| | - Jason Stenson
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States of America
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, United States of America
| | - Kevin Van Den Wymelenberg
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States of America
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, United States of America
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, United States of America
| |
Collapse
|
87
|
O’Callahan B, Qafoku O, Balema V, Negrete OA, Passian A, Engelhard MH, Waters KM. Atomic Force Microscopy and Infrared Nanospectroscopy of COVID-19 Spike Protein for the Quantification of Adhesion to Common Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12089-12097. [PMID: 34609882 PMCID: PMC8507151 DOI: 10.1021/acs.langmuir.1c01910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The COVID-19 pandemic has claimed millions of lives worldwide, sickened many more, and has resulted in severe socioeconomic consequences. As society returns to normal, understanding the spread and persistence of SARS CoV-2 on commonplace surfaces can help to mitigate future outbreaks of coronaviruses and other pathogens. We hypothesize that such an understanding can be aided by studying the binding and interaction of viral proteins with nonbiological surfaces. Here, we propose a methodology for investigating the adhesion of the SARS CoV-2 spike glycoprotein on common inorganic surfaces such as aluminum, copper, iron, silica, and ceria oxides as well as metallic gold. Quantitative adhesion was obtained from the analysis of measured forces at the nanoscale using an atomic force microscope operated under ambient conditions. Without imposing further constraints on the measurement conditions, our preliminary findings suggest that spike glycoproteins interact with similar adhesion forces across the majority of the metal oxides tested with the exception to gold, for which attraction forces ∼10 times stronger than all other materials studied were observed. Ferritin, which was used as a reference protein, was found to exhibit similar adhesion forces as SARS CoV-2 spike protein. This study results show that glycoprotein adhesion forces for similar ambient humidity, tip shape, and contact surface are nonspecific to the properties of metal oxide surfaces, which are expected to be covered by a thin water film. The findings suggest that under ambient conditions, glycoprotein adhesion to metal oxides is primarily controlled by the water capillary forces, and they depend on the surface tension of the liquid water. We discuss further strategies warranted to decipher the intricate nanoscale forces for improved quantification of the adhesion.
Collapse
Affiliation(s)
- Brian O’Callahan
- Earth
and Biological Sciences Division, Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
| | - Odeta Qafoku
- Earth
and Biological Sciences Division, Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
| | - Viktor Balema
- Ames
Laboratory, U.S. Department of Energy, Iowa
State University, Ames, Iowa 50011, United States
| | - Oscar A. Negrete
- Biotechnology
and Bioengineering Department, Sandia National
Laboratories, Livermore, California 94550, United States
| | - Ali Passian
- Quantum
Information Science Group, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Mark H. Engelhard
- Earth
and Biological Sciences Division, Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
| | - Katrina M. Waters
- Earth
and Biological Sciences Division, Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
88
|
Cortiços ND, Duarte CC. COVID-19: The impact in US high-rise office buildings energy efficiency. ENERGY AND BUILDINGS 2021; 249:111180. [PMID: 34149152 PMCID: PMC8205289 DOI: 10.1016/j.enbuild.2021.111180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 06/10/2021] [Indexed: 05/02/2023]
Abstract
The COVID-19 pandemic, through stay-at-home orders, forced rapid changes to social human behavior and interrelations, targeting the work environments to protect workers and users. Rapidly, global organizations, US associations, and professionals stepped in to mitigate the virus's spread in buildings' living and work environments. The institutions proposed new HVAC settings without efficiency concerns, as improved flow rates and filtering for irradiation, humidity, and temperature. Current literature consensually predicted an increase in energy consumption due to new measures to control the SARS-CoV-2 spread. The research team assumed the effort of validating the prior published outcomes, applied to US standardized high-rise office buildings, as defined and set by the key entities in the field, by resorting to a methodology based on software energy analysis. The study compares a standard high-rise office building energy consumption, CO2 emissions and operations costs in nine US climate zones - from 0 to 8, south to north latitudes, respectively -, assessed in the most populated cities, between the previous and post COVID-19 scenarios. The outcomes clarify the gathered knowledge, explaining that climate zones above mixed-humid type tend to increase relative energy use intensity by 21.72%, but below that threshold the zones decrease relative energy use intensity by 11.92%.
Collapse
Affiliation(s)
- Nuno D Cortiços
- Building Science, Technology and Sustainability Lab, Research Centre for Architecture, Urbanism and Design, Lisbon School of Architecture, University of Lisbon, Rua Sá Nogueira, Pólo Universitário, Alto da Ajuda, 1349-063 Lisboa, Portugal
| | - Carlos C Duarte
- Building Science, Technology and Sustainability Lab, Research Centre for Architecture, Urbanism and Design, Lisbon School of Architecture, University of Lisbon, Rua Sá Nogueira, Pólo Universitário, Alto da Ajuda, 1349-063 Lisboa, Portugal
| |
Collapse
|
89
|
Hassan AM, Megahed NA. COVID-19 and urban spaces: A new integrated CFD approach for public health opportunities. BUILDING AND ENVIRONMENT 2021; 204:108131. [PMID: 34305269 PMCID: PMC8273043 DOI: 10.1016/j.buildenv.2021.108131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 05/30/2023]
Abstract
Safe urban public spaces are vital owing to their impacts on public health, especially during pandemics such as the ongoing COVID-19 pandemic. Urban public spaces and urbanscape elements must be designed with the risk of viral transmission in mind. This work therefore examines how the design of urbanscape elements can be revisited to control COVID-19 transmission dynamics. Nine proposed models of urban public seating were thus presented and assessed using a transient three-dimensional computational fluid dynamics (CFD) model, with the Eulerian-Lagrangian method and discrete phase model (DPM). The proposed seating models were evaluated by their impact on the normalized air velocity, the diameter of coughing droplets, and deposition fraction. Each of the proposed models demonstrated an increase in the normalized velocity, and a decrease in the deposition fraction by >29%. Diagonal cross linear and curved triangle configurations demonstrated an improved airflow momentum and turbulent flow, which decreased the droplets deposition fraction by 68%, thus providing an improved, healthier urban public seating option.
Collapse
Affiliation(s)
- Asmaa M Hassan
- Architectural Engineering and Urban Planning Department, Faculty of Engineering, Port Said University, Port Said, Egypt
| | - Naglaa A Megahed
- Architectural Engineering and Urban Planning Department, Faculty of Engineering, Port Said University, Port Said, Egypt
| |
Collapse
|
90
|
Cunningham L, Nicholson PJ, O’Connor J, McFadden JP. Cold working environments as an occupational risk factor for COVID-19. Occup Med (Lond) 2021; 71:245-247. [PMID: 33247303 PMCID: PMC7798832 DOI: 10.1093/occmed/kqaa195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Louise Cunningham
- St Johns Institute of Dermatology, Guy’s Hospital, Great Maze Pond, London, UK
| | | | - Jane O’Connor
- St Johns Institute of Dermatology, Guy’s Hospital, Great Maze Pond, London, UK
| | - John P McFadden
- St Johns Institute of Dermatology, Guy’s Hospital, Great Maze Pond, London, UK
| |
Collapse
|
91
|
Yazdani S, Heydari M, Foroughi Z, Jabali H. Factors Affecting COVID-19 Transmission and Modelling of Close Contact Tracing Strategies. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:2121-2131. [PMID: 35223580 PMCID: PMC8819214 DOI: 10.18502/ijph.v50i10.7516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Close contact tracing is an essential measure that countries are applying to combat the epidemic of COVID-19. The purpose of contact tracing is to rapidly identify potentially infected individuals and prevent further spread of the disease. In this study, based on the factors affecting the COVID-19 transmission, a scoring protocol is provided for close contact tracing. METHODS First, the factors affecting the COVID-19 transmission in close contacts were identified by a rapid review of the literature. Data were gathered by searching the Embase, PubMed, Google Scholar, and Scopus databases. Then, by formulating and scoring the identified factors with two sessions of the expert panel, close contact transmission risk score determined, and a protocol for contacts tracing was designed. RESULTS Close contact transmission risk depends on the contact environment characteristics, the infectivity (virus shedding) of the sentinel case, and contact characteristics. Based on these factors, the close contact transmission risk score and contact tracing protocol were prepared. CONCLUSION The close contact transmission risk scores will provide the ability to contact classifications and developing specific tracing strategies for them. Given that there are not any specific treatments for COVID-19 and lack of universal vaccination, applying nonpharmaceutical measures such as contact tracing along with physical distancing is very crucial. Therefore, we recommended this model to the evaluation of exposure risk and contact tracing.
Collapse
Affiliation(s)
- Shahram Yazdani
- National Agency for Strategic Research in Medical Education, Tehran, Iran
| | - Majid Heydari
- National Agency for Strategic Research in Medical Education, Tehran, Iran
| | - Zeynab Foroughi
- Department of Health Services Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Jabali
- Department of Health Services Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
92
|
Saw LH, Leo BF, Nor NSM, Yip CW, Ibrahim N, Hamid HHA, Latif MT, Lin CY, Nadzir MSM. Modeling aerosol transmission of SARS-CoV-2 from human-exhaled particles in a hospital ward. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53478-53492. [PMID: 34036501 PMCID: PMC8148403 DOI: 10.1007/s11356-021-14519-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/17/2021] [Indexed: 06/04/2023]
Abstract
The COVID-19 pandemic has plunged the world into uncharted territory, leaving people feeling helpless in the face of an invisible threat of unknown duration that could adversely impact the national economic growths. According to the World Health Organization (WHO), the SARS-CoV-2 spreads primarily through droplets of saliva or discharge from the mouth or nose when an infected person coughs or sneezes. However, the transmission of the SARS-CoV-2 through aerosols remains unclear. In this study, computational fluid dynamic (CFD) is used to complement the investigation of the SARS-CoV-2 transmission through aerosol. The Lagrangian particle tracking method was used to analyze the dispersion of the exhaled particles from a SARS-CoV-2-positive patient under different exhale activities and different flow rates of chilled (cooling) air supply. Air sampling of the SARS-CoV-2 patient ward was conducted for 48-h measurement intervals to collect the indoor air sample for particulate with diameter less than 2.5 μm. Then, the reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was conducted to analyze the collected air sample. The simulation demonstrated that the aerosol transmission of the SARS-CoV-2 virus in an enclosed room (such as a hospital ward) is highly possible.
Collapse
Affiliation(s)
- Lip Huat Saw
- Lee Kong Chian, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
| | - Bey Fen Leo
- Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Norefrina Shafinaz Md Nor
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Chee Wai Yip
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Nazlina Ibrahim
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Haris Hafizal Abd Hamid
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mohd Talib Latif
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Chin Yik Lin
- Department of Geology, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohd Shahrul Mohd Nadzir
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
93
|
Morrow JB, Packman AI, Martinez KF, Van Den Wymelenberg K, Goeres D, Farmer DK, Mitchell J, Ng L, Hazi Y, Schoch-Spana M, Quinn S, Bahnfleth W, Olsiewski P. Critical Capability Needs for Reduction of Transmission of SARS-CoV-2 Indoors. Front Bioeng Biotechnol 2021; 9:641599. [PMID: 34660544 PMCID: PMC8513777 DOI: 10.3389/fbioe.2021.641599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Coordination of efforts to assess the challenges and pain points felt by industries from around the globe working to reduce COVID-19 transmission in the indoor environment as well as innovative solutions applied to meet these challenges is mandatory. Indoor infectious viral disease transmission (such as coronavirus, norovirus, influenza) is a complex problem that needs better integration of our current knowledge and intervention strategies. Critical to providing a reduction in transmission is to map the four core technical areas of environmental microbiology, transmission science, building science, and social science. To that end a three-stage science and innovation Summit was held to gather information on current standards, policies and procedures applied to reduce transmission in built spaces, as well as the technical challenges, science needs, and research priorities. The Summit elucidated steps than can be taken to reduce transmission of SARS-CoV-2 indoors and calls for significant investments in research to enhance our knowledge of viral pathogen persistence and transport in the built environment, risk assessment and mitigation strategy such as processes and procedures to reduce the risk of exposure and infection through building systems operations, biosurveillance capacity, communication form leadership, and stakeholder engagement for optimal response. These findings reflect the effective application of existing knowledge and standards, emerging science, and lessons-learned from current efforts to confront SARS-CoV-2.
Collapse
Affiliation(s)
- Jayne B. Morrow
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Integrated Bioscience and Built Environment Consortium (IBEC), Sanford, FL, United States
| | - Aaron I. Packman
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States
| | - Kenneth F. Martinez
- Integrated Bioscience and Built Environment Consortium (IBEC), Sanford, FL, United States
- HWC Inc., Washington, DC, United States
| | - Kevin Van Den Wymelenberg
- Biology and the Built Environment Center, College of Design, Institute for Health in the Built Environment, University of Oregon, Eugene, OR, United States
| | - Darla Goeres
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Delphine K. Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, United States
| | - Jade Mitchell
- Department of Biosystems Engineering, Michigan State University, East Lansing, MI, United States
| | - Lisa Ng
- Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - Yair Hazi
- HWC Inc., Washington, DC, United States
| | - Monica Schoch-Spana
- Johns Hopkins Center for Health Security, John Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Sandra Quinn
- Department of Family Science and Center for Health Equity, School of Public Health, University of Maryland, College Park, MD, United States
| | - William Bahnfleth
- Department of Architectural Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Paula Olsiewski
- Johns Hopkins Center for Health Security, John Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
- Alfred P. Sloan Foundation, New York, NY, United States
| |
Collapse
|
94
|
Akter S, Zakia MA, Mofijur M, Ahmed SF, Vo DVN, Khandaker G, Mahlia TMI. SARS-CoV-2 variants and environmental effects of lockdowns, masks and vaccination: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 20:141-152. [PMID: 34602923 PMCID: PMC8475459 DOI: 10.1007/s10311-021-01323-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/07/2021] [Indexed: 05/04/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously evolving and four variants of concern have been identified so far, including Alpha, Beta, Gamma and Delta variants. Here we review the indirect effect of preventive measures such as the implementation of lockdowns, mandatory face masks, and vaccination programs, to control the spread of the different variants of this infectious virus on the environment. We found that all these measures have a considerable environmental impact, notably on waste generation and air pollution. Waste generation is increased due to the implementation of all these preventive measures. While lockdowns decrease air pollution, unsustainable management of face mask waste and temperature-controlled supply chains of vaccination potentially increases air pollution.
Collapse
Affiliation(s)
- Shirin Akter
- Technical and Further Education (TAFE), Sydney, NSW 2135 Australia
| | - Marzuka Ahmed Zakia
- Central Queensland Public Health Unit, Central Queensland Hospital and Health Service, Rockhampton, QLD 4700 Australia
| | - M. Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007 Australia
- Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952 Saudi Arabia
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000 Bangladesh
| | - Dai-Viet N. Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, 755414 Vietnam
| | - Gulam Khandaker
- Central Queensland Public Health Unit, Central Queensland Hospital and Health Service, Rockhampton, QLD 4700 Australia
- Division of Research, Central Queensland University, Rockhampton, QLD 4701 Australia
| | - T. M. I. Mahlia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007 Australia
| |
Collapse
|
95
|
Asiamah N, Vieira ER, Kouveliotis K, Gasana J, Awuviry-Newton K, Eduafo R. Associations between older African academics' physical activity, walkability and mental health: a social distancing perspective. Health Promot Int 2021; 37:6372832. [PMID: 34543431 PMCID: PMC8500010 DOI: 10.1093/heapro/daab093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study aimed to assess the moderating influence of neighborhood walkability on the association between physical activity (PA) and mental health among older African academics aged 50 years or more in cities with social distancing protocols in response to the Coronavirus disease 2019 (COVID-19). A total of 905 volunteer academics participated in the study. A hierarchical linear regression analysis was employed to conduct sensitivity analyses and test the study hypotheses. After controlling for sex, education and age, there was a positive association between PA and mental health. Neighborhood walkability moderated the relationship between PA and mental health, which suggests that during the pandemic PA was associated with higher mental health scores in more walkable neighborhoods. The study concludes that PA was beneficial to mental health in the social distancing context and was associated with higher mental health in more walkable neighborhoods, particularly in a social distancing context.
Collapse
Affiliation(s)
- Nestor Asiamah
- School of Health and Care Professions, University of Portsmouth, Winston Churchill Ave, Portsmouth PO1 2UP, UK
| | - Edgar Ramos Vieira
- Department of Physical Therapy, Nicole Wertheim College of Nursing & Health Sciences, Florida International University, USA
| | - Kyriakos Kouveliotis
- Department of Health Management, Berlin School of Business and Innovation, Berlin, Germany
| | - Janvier Gasana
- Faculty of Public Health, Department of Environmental and Occupational Health, Kuwait University, Kuwait
| | - Kofi Awuviry-Newton
- Faculty of Health and Medicine, Priority Research Centre for Generational Health and Ageing, University of Newcastle, Australia
| | - Richard Eduafo
- Africa Centre for Epidemiology, Gerontology and Geriatric Care, Accra North, Ghana
| |
Collapse
|
96
|
Cui J, Shao Y, Zhang H, Zhang H, Zhu J. Development of a novel silver ions-nanosilver complementary composite as antimicrobial additive for powder coating. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 420:127633. [PMID: 33173406 PMCID: PMC7644439 DOI: 10.1016/j.cej.2020.127633] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/24/2020] [Accepted: 10/31/2020] [Indexed: 05/27/2023]
Abstract
Applying silver into coatings has become a prevalent method in fabricating antimicrobial surfaces. However, the concerns about durability always exist and limit its applications. Here, a highly inhibitory, active, durable, and easy-to-use silver ions-nanosilver antimicrobial additive for powder coatings was fabricated in this study. Silver nanoparticles were chemically bonded to the Ag, Cu, and Zn-ternary ion-exchanged zeolite by α -lipoic acid, which was then encapsulated by hydrophilic polymers. The fabricated silver ions and silver nanoparticles (Ag+-AgNPs) complementary structure provides a synergistic effect. Ag+ is the main antimicrobial agent, while AgNPs act as a supplementary reservoir of Ag+. As well, the formed thin layer of silver nanoparticles and hydrophilic film prolongs the release of active Ag+ from zeolite, and Ag+ facilitates the activation of AgNPs. The results show that this additive indicates excellent antimicrobial activity to E. coli, S. aureus, P. aeruginosa, and C. albicans, and that the coatings with the additive exhibit over 99.99% reduction rate for the tested bacteria and fungi. The coating film is able to maintain over 99% antimicrobial reduction even after 1200 repeated solution wipings, or over 30 wash cycles of artificial sweat solution, indicating high durability. Furthermore, the yellowness of the coating is not evident (Δb < 2) despite the high loading of silver, and the silver nanoparticles have little impact on gloss, haze, and distinctness of the coating film image.
Collapse
Affiliation(s)
- Jixing Cui
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yuanyuan Shao
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Haiping Zhang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hui Zhang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Jesse Zhu
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| |
Collapse
|
97
|
Ahmad IA, Osei E. Occupational Health and Safety Measures in Healthcare Settings during COVID-19: Strategies for Protecting Staff, Patients and Visitors. Disaster Med Public Health Prep 2021; 17:e48. [PMID: 34517932 PMCID: PMC8523969 DOI: 10.1017/dmp.2021.294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/21/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 (SARS-CoV-2) pandemic has profoundly impacted almost every aspect of healthcare systems worldwide, placing the health and safety of frontline healthcare workers at risk, and it still continues to remain an important public health challenge. Several hospitals have put in place strategies to manage space, staff, and supplies in order to continue to deliver optimum care to patients while at the same time protecting the health and safety of staff and patients. However, the emergence of the second and third waves of the virus with the influx of new cases continue to add an additional level of complexity to the already challenging situation of containing the spread and lowering the rate of transmission, thus pushing healthcare systems to the limit. In this narrative review paper, we describe various strategies including administrative controls, environmental controls, and use of personal protective equipment, implemented by occupational health and safety departments for the protection of healthcare workers, patients, and visitors from SARS-CoV-2 virus infection. The protection and safeguard of the health and safety of healthcare workers and patients through the implementation of effective infection control measures, adequate management of possible outbreaks and minimization of the risk of nosocomial transmission is an important and effective strategy of SARS-CoV-2 pandemic management in any healthcare facility. High quality patient care hinges on ensuring that the care providers are well protected and supported so they can provide the best quality of care to their patients.
Collapse
Affiliation(s)
- Isra Asma Ahmad
- Department of Public Health and Health Systems, University of Waterloo, Waterloo, ON, Canada
| | - Ernest Osei
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, ON, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ONCanada
| |
Collapse
|
98
|
Gür M. Post-pandemic lifestyle changes and their interaction with resident behavior in housing and neighborhoods: Bursa, Turkey. JOURNAL OF HOUSING AND THE BUILT ENVIRONMENT : HBE 2021; 37:823-862. [PMID: 34512216 PMCID: PMC8418294 DOI: 10.1007/s10901-021-09897-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
COVID-19 pandemic has re-raised questions about healthy housing and residential environments. The aim of this study is to examine lifestyle changes during the pandemic and their reflections in the use of housing. The study also compares households on different socioeconomic levels in Bursa, the study area. Bursa is a Turkish metropolis that was affected by the spread of COVID-19. Data were collected from 500 residents of 30 neighborhoods in the city's three most populous districts, Osmangazi, Nilüfer and Yildirim. The participants were selected using stratified sampling and interviewed face-to-face using questionnaires. Reliability analysis, frequency distributions, descriptive statistics, ANOVA and the chi-squared test were used to evaluate the data. The results indicate that the participants' hygiene habits, shopping behaviors, transportation habits and frequency of their contact with neighbors and friends have changed. Most of the participants live in apartments, and they need flexible designs that can be used for different purposes. They need toilets and ventilation spaces at the entrances of their homes. The use of balconies has increased. During the pandemic, the use of urban green spaces decreased in general, and the use of open areas around homes increased. High-income residents have advantages in terms of lifestyle, housing and residential environments, so their awareness about and observance of pandemic rules were higher. Lifestyles, housing, residential environments and urban opportunities differ as a result of socioeconomic segregation, and lower-income residents are more vulnerable to disease. Future studies should consider potential risks to humanity in order to address the housing-related problems of disadvantaged groups.
Collapse
Affiliation(s)
- Miray Gür
- Department of Architecture, Bursa Uludağ University, Görükle Campus 16059, Nilüfer, Bursa, Turkey
| |
Collapse
|
99
|
Adelodun B, Ajibade FO, Tiamiyu AO, Nwogwu NA, Ibrahim RG, Kumar P, Kumar V, Odey G, Yadav KK, Khan AH, Cabral-Pinto MMS, Kareem KY, Bakare HO, Ajibade TF, Naveed QN, Islam S, Fadare OO, Choi KS. Monitoring the presence and persistence of SARS-CoV-2 in water-food-environmental compartments: State of the knowledge and research needs. ENVIRONMENTAL RESEARCH 2021; 200:111373. [PMID: 34033834 PMCID: PMC8142028 DOI: 10.1016/j.envres.2021.111373] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 05/18/2023]
Abstract
The recent spread of severe acute respiratory syndrome coronavirus (SAR-CoV-2) and the accompanied coronavirus disease 2019 (COVID-19) has continued ceaselessly despite the implementations of popular measures, which include social distancing and outdoor face masking as recommended by the World Health Organization. Due to the unstable nature of the virus, leading to the emergence of new variants that are claimed to be more and rapidly transmissible, there is a need for further consideration of the alternative potential pathways of the virus transmissions to provide the needed and effective control measures. This review aims to address this important issue by examining the transmission pathways of SARS-CoV-2 via indirect contacts such as fomites and aerosols, extending to water, food, and other environmental compartments. This is essentially required to shed more light regarding the speculation of the virus spread through these media as the available information regarding this is fragmented in the literature. The existing state of the information on the presence and persistence of SARS-CoV-2 in water-food-environmental compartments is essential for cause-and-effect relationships of human interactions and environmental samples to safeguard the possible transmission and associated risks through these media. Furthermore, the integration of effective remedial measures previously used to tackle the viral outbreaks and pandemics, and the development of new sustainable measures targeting at monitoring and curbing the spread of SARS-CoV-2 were emphasized. This study concluded that alternative transmission pathways via human interactions with environmental samples should not be ignored due to the evolving of more infectious and transmissible SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Bashir Adelodun
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, 41566, South Korea; Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, 240103, Nigeria.
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria; Key Laboratory of Environmental Biotechnology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | | | - Nathaniel Azubuike Nwogwu
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Department of Agricultural and Bioresources Engineering, Federal University of Technology Owerri, PMB 1526, Nigeria; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | | | - Pankaj Kumar
- Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar, 249404, Uttarakhand, India
| | - Vinod Kumar
- Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar, 249404, Uttarakhand, India
| | - Golden Odey
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, 41566, South Korea
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India
| | - Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, 114, Jazan, Saudi Arabia
| | - Marina M S Cabral-Pinto
- Geobiotec Research Centre, Department of Geoscience, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Kola Yusuff Kareem
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, 240103, Nigeria
| | | | - Temitope Fausat Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | | | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha, 61413, Asir, Saudi Arabia
| | - Oluniyi Olatunji Fadare
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Division of Environmental and Earth Sciences, Centre for Energy Research and Development, Obafemi Awolowo University, Ile Ife, 220001, Nigeria
| | - Kyung Sook Choi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, 41566, South Korea; Institute of Agricultural Science & Technology, Kyungpook, National University, Daegu, 41566, South Korea.
| |
Collapse
|
100
|
Wamai RG, Hirsch JL, Van Damme W, Alnwick D, Bailey RC, Hodgins S, Alam U, Anyona M. What Could Explain the Lower COVID-19 Burden in Africa despite Considerable Circulation of the SARS-CoV-2 Virus? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8638. [PMID: 34444386 PMCID: PMC8391172 DOI: 10.3390/ijerph18168638] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 01/12/2023]
Abstract
The differential spread and impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing Coronavirus Disease 2019 (COVID-19), across regions is a major focus for researchers and policy makers. Africa has attracted tremendous attention, due to predictions of catastrophic impacts that have not yet materialized. Early in the pandemic, the seemingly low African case count was largely attributed to low testing and case reporting. However, there is reason to consider that many African countries attenuated the spread and impacts early on. Factors explaining low spread include early government community-wide actions, population distribution, social contacts, and ecology of human habitation. While recent data from seroprevalence studies posit more extensive circulation of the virus, continuing low COVID-19 burden may be explained by the demographic pyramid, prevalence of pre-existing conditions, trained immunity, genetics, and broader sociocultural dynamics. Though all these prongs contribute to the observed profile of COVID-19 in Africa, some provide stronger evidence than others. This review is important to expand what is known about the differential impacts of pandemics, enhancing scientific understanding and gearing appropriate public health responses. Furthermore, it highlights potential lessons to draw from Africa for global health on assumptions regarding deadly viral pandemics, given its long experience with infectious diseases.
Collapse
Affiliation(s)
- Richard G. Wamai
- Department of Cultures, Societies, and Global Studies, Northeastern University, 201 Renaissance Park, 360 Huntington Ave., Boston, MA 02115, USA;
| | - Jason L. Hirsch
- Department of Cultures, Societies, and Global Studies, Northeastern University, 201 Renaissance Park, 360 Huntington Ave., Boston, MA 02115, USA;
| | - Wim Van Damme
- Department of Public Health, Institute of Tropical Medicine, B-2000 Antwerp, Belgium;
| | - David Alnwick
- DUNDEX (Deployable U.N.-Experienced Development Experts), FX68 Belturbet, Ireland;
| | - Robert C. Bailey
- School of Public Health, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Stephen Hodgins
- School of Public Health, University of Alberta, Edmonton, AB T6G 1C9, Canada;
| | - Uzma Alam
- Researcher Africa Institute for Health Policy Foundation, Nairobi 020, Kenya;
| | - Mamka Anyona
- T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA;
| |
Collapse
|