51
|
Zhang Y, Chen H, Huang C. Optimizing health-span: advances in stem cell medicine and longevity research. MEDICAL REVIEW (2021) 2023; 3:351-355. [PMID: 38235402 PMCID: PMC10790209 DOI: 10.1515/mr-2023-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 01/19/2024]
Affiliation(s)
- Yue Zhang
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdon, China
- Hezhou (the City of Longevity) Dongrong Yao Medicine Research Institute, Joint Institute of Shenzhen University and Hezhou Hospital for Traditional Chinese Medicine, Hezhou, Guangxi, China
- Department of Rheumatology and Immunology, The First Clinical College of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hexin Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Cibo Huang
- Department of Rheumatology, Immunology and Gerontology, South-China Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, National Center of Gerontology, Beijing Hospital, Beijing, China
| |
Collapse
|
52
|
Liu B, Wang C, Weng Z, Yang Y, Zhao H, Zhang Y, Fei Q, Shi Y, Zhang C. Glycolytic enzyme PKM2 regulates cell senescence but not inflammation in the process of osteoarthritis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1425-1433. [PMID: 37525533 PMCID: PMC10520488 DOI: 10.3724/abbs.2023062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/19/2023] [Indexed: 04/05/2023] Open
Abstract
Chondrocyte senescence is an important mechanism underlying osteoarthritis in the senile population and is characterized by reduced expressions of the extracellular matrix proteins. The involvement of glycolysis and the tricarboxylic acid cycle in the development of osteoarthritis is inclusive. The present study aims to investigate the role of the glycolytic enzyme M2 isoform of pyruvate kinase (PKM2) in chondrocytes in senescence and inflammation. Primary chondrocytes are isolated from the knee joints of neonatal mice. Small interfering RNAs (siRNAs) against PKM2 are transfected using lipofectamine. RNA sequencing is conducted in primary chondrocytes with the PKM2 gene deleted. Cell apoptosis, autophagy, reactive oxygen species measurement, and senescent conditions are examined. The glycolytic rate in cells is measured by Seahorse examination. Interleukin 1-β (IL-1β) increases the protein expressions of matrix metallopeptidases (MMP)13 and PKM2 and reduces the protein expression of collagen type II (COL2A1) in primary chondrocytes. Silencing of PKM2 alters the protein expressions of MMP13, PKM2, and COL2A1 in the same pattern in quiescent and stimulated chondrocytes. RNA sequencing analysis reveals that PKM2 silencing reduces senescent biomarker p16 INK4a expression. Compared with low-passage chondrocytes, high-passage chondrocytes exhibit increased expression of p16 INK4a and reduced expression of COL2A1. Silencing of PKM2 reduces SA-β-Gal signals and increases COL2A1 expression in high-passage chondrocytes. Seahorse assay reveals that PKM2 deletion favors the tricarboxylic acid cycle in mitochondria in low- but not in high-passage chondrocytes. In summary, the glycolytic enzyme PMK2 modulates chondrocyte senescence but does not participate in the regulation of inflammation.
Collapse
Affiliation(s)
- Bo Liu
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Chenzhong Wang
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Ziyu Weng
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Yi Yang
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Hong Zhao
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Yueqi Zhang
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Qinming Fei
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Yi Shi
- Biomedical Research CentreZhongshan HospitalFudan UniversityShanghai200032China
| | - Chi Zhang
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
53
|
Xie Y, Lei X, Zhao G, Guo R, Cui N. mTOR in programmed cell death and its therapeutic implications. Cytokine Growth Factor Rev 2023; 71-72:66-81. [PMID: 37380596 DOI: 10.1016/j.cytogfr.2023.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Mechanistic target of rapamycin (mTOR), a highly conserved serine/threonine kinase, is involved in cellular metabolism, protein synthesis, and cell death. Programmed cell death (PCD) assists in eliminating aging, damaged, or neoplastic cells, and is indispensable for sustaining normal growth, fighting pathogenic microorganisms, and maintaining body homeostasis. mTOR has crucial functions in the intricate signaling pathway network of multiple forms of PCD. mTOR can inhibit autophagy, which is part of PCD regulation. Cell survival is affected by mTOR through autophagy to control reactive oxygen species production and the degradation of pertinent proteins. Additionally, mTOR can regulate PCD in an autophagy-independent manner by affecting the expression levels of related genes and phosphorylating proteins. Therefore, mTOR acts through both autophagy-dependent and -independent pathways to regulate PCD. It is conceivable that mTOR exerts bidirectional regulation of PCD, such as ferroptosis, according to the complexity of signaling pathway networks, but the underlying mechanisms have not been fully explained. This review summarizes the recent advances in understanding mTOR-mediated regulatory mechanisms in PCD. Rigorous investigations into PCD-related signaling pathways have provided prospective therapeutic targets that may be clinically beneficial for treating various diseases.
Collapse
Affiliation(s)
- Yawen Xie
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xianli Lei
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guoyu Zhao
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ran Guo
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
54
|
Zhao S, Liu Y, Wang J, Wen Y, Wu B, Yang D, Wang G, Xiu G, Ling B, Du D, Xu J. ADSCs increase the autophagy of chondrocytes through decreasing miR-7-5p in Osteoarthritis rats by targeting ATG4A. Int Immunopharmacol 2023; 120:110390. [PMID: 37262955 DOI: 10.1016/j.intimp.2023.110390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a highly degenerative joint disease, mainly companying with progressive destruction of articular cartilage. Adipose-derived stromal cells (ADSCs) therapy enhances articular cartilage repair, extracellular matrix (ECM) synthesis and attenuates joints inflammation, but specific mechanisms of therapeutic benefit remain poorly understood. This study aimed to clarify the therapeutic effects and mechanisms of ADSCs on cartilage damage in the keen joint of OA rat model. METHODS Destabilization of the medial meniscus (DMM) and anterior cruciate ligament transection (ACLT) surgery-induced OA rats were treated with allogeneic ADSCs by intra-articular injections for 6 weeks. The protective effect of ADSCs in vivo was measured using Safranin O and fast green staining, immunofluorescence and western blot analysis. Meanwhile, the miRNA-7-5p (miR-7-5p) expression was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The mechanism of increased autophagy with ADSCs addition through decreasing miR-7-5p was revealed using oligonucleotides, and adenovirus in rat chondrocytes. The luciferase reporter assay revealed the molecular role of miR-7-5p and autophagy related 4A (ATG4A). The substrate of mTORC1 pathway: (p-)p70S6 and (p-)S6 in OA models with ADSCs addition were detected by western blotting. RESULTS The ADSCs treatment repaired the articular cartilage and maintained chondrocytes ECM homeostasis through modulating chondrocytes autophagy in the OA model, indicators of the change of autophagic proteins expression and autophagic flux. Meanwhile, the increased autophagy induced by ADSCs treatment was closely related to the decreased expression of host-derived miR-7-5p, a negative modulator of OA progression. Functional genomics (overexpression of genes) in vitro studies demonstrate the inhibition of host-derived miR-7-5p in mediating the benefit of ADSCs administration in OA model. Then ATG4A was defined as a target gene of miR-7-5p, and the negative relation between miR-7-5p and ATG4A was investigated in the OA model treated with ADSCs. Furthermore, miR-7-5p mediated chondrocyte autophagy by targeting ATG4A in the OA model treated with ADSCs was confirmed with the rescue trial of ATG4A/miR-7-5p overexpression on rat chondrocyte. Finally, the mTORC1 signaling pathways mediated by host-derived miR-7-5p with ADSCs treatment were decreased in OA rats. CONCLUSIONS ADSCs promote the chondrocytes autophagy by decreasing miR-7-5p in articular cartilage by targeting ATG4A and a potential role for ADSCs based therapeutics for preventing of articular cartilage destruction and extracellular matrix (ECM) degradation in OA.
Collapse
Affiliation(s)
- Shu Zhao
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu'e Liu
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Wen
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Baitong Wu
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Danjing Yang
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangming Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guanghui Xiu
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province),Yunnan University, Kunming, China
| | - Bin Ling
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province),Yunnan University, Kunming, China
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Jun Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
55
|
Rizzo MG, Best TM, Huard J, Philippon M, Hornicek F, Duan Z, Griswold AJ, Kaplan LD, Hare JM, Kouroupis D. Therapeutic Perspectives for Inflammation and Senescence in Osteoarthritis Using Mesenchymal Stem Cells, Mesenchymal Stem Cell-Derived Extracellular Vesicles and Senolytic Agents. Cells 2023; 12:1421. [PMID: 37408255 PMCID: PMC10217382 DOI: 10.3390/cells12101421] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 07/07/2023] Open
Abstract
Osteoarthritis (OA) is the most common cause of disability worldwide among the elderly. Alarmingly, the incidence of OA in individuals less than 40 years of age is rising, likely due to the increase in obesity and post-traumatic osteoarthritis (PTOA). In recent years, due to a better understanding of the underlying pathophysiology of OA, several potential therapeutic approaches targeting specific molecular pathways have been identified. In particular, the role of inflammation and the immune system has been increasingly recognized as important in a variety of musculoskeletal diseases, including OA. Similarly, higher levels of host cellular senescence, characterized by cessation of cell division and the secretion of a senescence-associated secretory phenotype (SASP) within the local tissue microenvironments, have also been linked to OA and its progression. New advances in the field, including stem cell therapies and senolytics, are emerging with the goal of slowing disease progression. Mesenchymal stem/stromal cells (MSCs) are a subset of multipotent adult stem cells that have demonstrated the potential to modulate unchecked inflammation, reverse fibrosis, attenuate pain, and potentially treat patients with OA. Numerous studies have demonstrated the potential of MSC extracellular vesicles (EVs) as cell-free treatments that comply with FDA regulations. EVs, including exosomes and microvesicles, are released by numerous cell types and are increasingly recognized as playing a critical role in cell-cell communication in age-related diseases, including OA. Treatment strategies for OA are being developed that target senescent cells and the paracrine and autocrine secretions of SASP. This article highlights the encouraging potential for MSC or MSC-derived products alone or in combination with senolytics to control patient symptoms and potentially mitigate the progression of OA. We will also explore the application of genomic principles to the study of OA and the potential for the discovery of OA phenotypes that can motivate more precise patient-driven treatments.
Collapse
Affiliation(s)
- Michael G. Rizzo
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
| | - Thomas M. Best
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
| | - Johnny Huard
- Center for Regenerative and Personalized Medicine (CRPM), Steadman Philippon Research Institute, Vail, CO 81657, USA (M.P.)
| | - Marc Philippon
- Center for Regenerative and Personalized Medicine (CRPM), Steadman Philippon Research Institute, Vail, CO 81657, USA (M.P.)
| | - Francis Hornicek
- Department of Orthopedics, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.H.); (Z.D.)
| | - Zhenfeng Duan
- Department of Orthopedics, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.H.); (Z.D.)
| | - Anthony J. Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Lee D. Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
56
|
Yang L, Liu J, Yu Y, Liu S. A novel signature of autophagy-related immunophenotyping biomarkers in osteoarthritis. Life Sci 2023; 321:121599. [PMID: 36966915 DOI: 10.1016/j.lfs.2023.121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023]
Abstract
AIMS We aimed to provide an autophagy-related signature to seek immunophenotyping biomarkers in osteoarthritis (OA). MATERIALS AND METHODS Microarray expression profiling of OA subchondral bone samples and screening of an autophagy database for autophagy-related differentially expressed genes (au-DEGs) between OA and normal samples were performed. A weighted gene co-expression network analysis (WGCNA) was constructed using au-DEGs to identify key modules significantly associated with clinical information of OA samples. OA-related autophagy hub genes were identified based on the connectivity with the phenotypes of genes in key modules and the protein-protein interaction (PPI) network in which the genes in the modules are involved, followed by feasibility verification of autophagy hub genes by bioinformatics analysis and biological experiments. KEY FINDINGS We screened 754 au-DEGs between OA and control samples, and co-expression networks were constructed using au-DEGs. Three OA-related autophagy hub genes (HSPA5, HSP90AA1, and ITPKB) were identified. Based on the hub gene expression profiles, OA samples were divided into two clusters with significantly different expression profiles and distinct immunological features, and the three hub genes were significantly differentially expressed between the clusters. Differences in hub genes between OA and control samples regarding sex, age, and grades of OA were examined using external datasets and experimental validation. SIGNIFICANCE Three autophagy-related markers of OA were identified using bioinformatics methods, and these markers may be useful for the autophagy-related immunophenotyping of OA. The present data may facilitate the diagnosis of OA, as well as the design of immunotherapies and individualized medical treatments.
Collapse
Affiliation(s)
- Liyu Yang
- Department of Orthopedics, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China.
| | - Jiamei Liu
- Department of Pathology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China.
| | - Yuanqi Yu
- Department of Clinical Medicine, Innovation Institute of China Medical University, Shenyang, Liaoning 110122, PR China.
| | - Shengye Liu
- Department of Orthopedics, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
57
|
Walsh C, Rajora MA, Ding L, Nakamura S, Endisha H, Rockel J, Chen J, Kapoor M, Zheng G. Protease-Activatable Porphyrin Molecular Beacon for Osteoarthritis Management. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:66-80. [PMID: 37122828 PMCID: PMC10131263 DOI: 10.1021/cbmi.3c00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 05/02/2023]
Abstract
Despite the substantial burden posed by osteoarthritis (OA) globally, difficult challenges remain in achieving early OA diagnosis and adopting effective disease-modifying treatments. In this study, we use a biomolecular approach to address these limitations by creating an inherently theranostic molecular beacon whose imaging and therapeutic capabilities are activated by early pathological changes in OA. This platform comprised (1) a peptide linker substrate for metalloproteinase-13 (MMP-13), a pathological protease upregulated in OA, which was conjugated to (2) a porphyrin moiety with inherent multimodal imaging, photodynamic therapy, and drug delivery capabilities, and (3) a quencher that silences the porphyrin's endogenous fluorescence and photoreactivity when the beacon is intact. In diseased OA tissue with upregulated MMP-13 expression, this porphyrin molecular beacon (PPMMP13B) was expected to undergo sequence-specific cleavage, yielding porphyrin fragments with restored fluorescence and photoreactivity that could, respectively, be used as a readout of MMP-13 activity within the joint for early OA imaging and disease-targeted photodynamic therapy. This study focused on the synthesis and characterization of PPMMP13B, followed by a proof-of-concept evaluation of its OA imaging and drug delivery potential. In solution, PPMMP13B demonstrated 90% photoactivity quenching in its intact form and robust MMP-13 activation, yielding a 13-fold increase in fluorescence post-cleavage. In vitro, PPMMP13B was readily uptaken and activated in an MMP-13 cell expression-dependent manner in primary OA synoviocytes without exuding significant cytotoxicity. This translated into effective intra-articular cartilage (to a 50 μm depth) and synovial uptake and activation of PPMMP13B in a destabilization of the medial meniscus OA mouse model, yielding strong fluorescence contrast (7-fold higher signal than background) at the diseased joint site. These results provide the foundation for further exploration of porphyrin molecular beacons for image-guided OA disease stratification, effective articular delivery of disease-modify agents, and OA photodynamic therapy.
Collapse
Affiliation(s)
- Connor Walsh
- Princess
Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, ON M5S 3G9, Canada
| | - Maneesha A. Rajora
- Princess
Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, ON M5S 3G9, Canada
| | - Lili Ding
- Princess
Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Sayaka Nakamura
- Schroeder
Arthritis Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Krembil
Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Helal Endisha
- Schroeder
Arthritis Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Krembil
Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Jason Rockel
- Schroeder
Arthritis Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Krembil
Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Juan Chen
- Princess
Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Mohit Kapoor
- Schroeder
Arthritis Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Krembil
Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Gang Zheng
- Princess
Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, ON M5S 3G9, Canada
- Department
of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
58
|
Patel J, Chen S, Katzmeyer T, Pei YA, Pei M. Sex-dependent variation in cartilage adaptation: from degeneration to regeneration. Biol Sex Differ 2023; 14:17. [PMID: 37024929 PMCID: PMC10077643 DOI: 10.1186/s13293-023-00500-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Despite acknowledgement in the scientific community of sex-based differences in cartilage biology, the implications for study design remain unclear, with many studies continuing to arbitrarily assign demographics. Clinically, it has been well-established that males and females differ in cartilage degeneration, and accumulating evidence points to the importance of sex differences in the field of cartilage repair. However, a comprehensive review of the mechanisms behind this trend and the influence of sex on cartilage regeneration has not yet been presented. This paper aims to summarize current findings regarding sex-dependent variation in knee anatomy, sex hormones' effect on cartilage, and cartilaginous degeneration and regeneration, with a focus on stem cell therapies. Findings suggest that the stem cells themselves, as well as their surrounding microenvironment, contribute to sex-based differences. Accordingly, this paper underscores the contribution of both stem cell donor and recipient sex to sex-related differences in treatment efficacy. Cartilage regeneration is a field that needs more research to optimize strategies for better clinical results; taking sex into account could be a big factor in developing more effective and personalized treatments. The compilation of this information emphasizes the importance of investing further research in sex differences in cartilage biology.
Collapse
Affiliation(s)
- Jhanvee Patel
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
| | - Song Chen
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Torey Katzmeyer
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
| | - Yixuan Amy Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA.
- WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
59
|
Sun K, Guo Z, Zhang J, Hou L, Liang S, Lu F, Wang G, Xu J, Zhang X, Guo F, Zhu W. Inhibition of TRADD ameliorates chondrocyte necroptosis and osteoarthritis by blocking RIPK1-TAK1 pathway and restoring autophagy. Cell Death Discov 2023; 9:109. [PMID: 37002200 PMCID: PMC10066284 DOI: 10.1038/s41420-023-01406-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Osteoarthritis (OA) is an age-related disease characterized by cartilage degeneration. TNFR1-associated death domain protein (TRADD) is a key upstream molecule of TNF-α signals but its role in OA pathogenesis is unknown. This study aimed to verify that whether inhibition of TRADD could protect against chondrocyte necroptosis and OA, and further elucidate the underlying mechanism. We demonstrated that TNF-α-related OA-like phenotypes including inflammation response, extracellular matrix degradation, apoptosis, and necroptosis in chondrocytes were inhibited by TRADD deficiency. Furthermore, TRADD interacted with TRAF2 and knockdown of TRADD suppressed the activation of RIPK1-TAK1-NF-κB signals and restored impaired autophagy. ICCB-19, the selective inhibitor of TRADD, also attenuated necroptosis in chondrocytes. Mechanismly, ICCB-19 blocked the phosphorylation of TAK1-NF-κB signals and restored impaired autophagy, whereas inhibiting autophagic process with 3-Methyladenine compromised these effects of ICCB-19. The in vivo study showed that the intra-articular injection of ICCB-19 rescued the expression of collagen alpha-1(II) chain and LC3, and mitigated the cartilage degeneration of OA mice. This study demonstrates that TRADD mediates TNF-α-induced necroptosis and OA-like phenotypes of chondrocytes and suggests that ICCB-19 suppresses chondrocyte damage and cartilage degeneration by inhibiting TNF-α-TRADD-mediated signals and dysregulation of autophagy in chondrocytes. ICCB-19 may serve as an important option for OA therapy.
Collapse
Affiliation(s)
- Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jinming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shuang Liang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Fan Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Genchun Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jingting Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Wentao Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
60
|
Liao J, Yu X, Chen J, Wu Z, He Q, Zhang Y, Song W, Luo J, Tao Q. Knowledge mapping of autophagy in osteoarthritis from 2004 to 2022: A bibliometric analysis. Front Immunol 2023; 14:1063018. [PMID: 36969240 PMCID: PMC10033547 DOI: 10.3389/fimmu.2023.1063018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundAutophagy in osteoarthritis (OA) has become an active area of research with substantial value and potential. Nevertheless, few bibliometric studies have systematically analyzed the available research in the field. The main goal of this study was to map the available literature on the role of autophagy in OA and identify global research hotspots and trends.MethodsThe Web of Science Core Collection and Scopus databases were interrogated for studies of autophagy in OA published between 2004 and 2022. Microsoft Excel, VOSviewer and CiteSpace software were used to analyze and visualize the number of publications and associated citations, and reveal global research hotspots and trends in the autophagy in OA field.Results732 outputs published by 329 institutions from 55 countries/regions were included in this study. From 2004 to 2022, the number of publications increased. China produced the most publications (n=456), prior to the USA (n=115), South Korea (n=33), and Japan (n=27). Scripps Research Institute (n=26) was the most productive institution. Martin Lotz (n=30) was the highest output author, while Caramés B (n=302) was the highest output author. Osteoarthritis and Cartilage was the most prolific and most co-cited journal. Currently, the autophagy in OA research hotspots include chondrocyte, transforming growth factor beta 1 (TGF-β1), inflammatory response, stress, and mitophagy. The emerging research trends in this field are AMPK, macrophage, senescence, apoptosis, tougu xiaotong capsule (TXC), green tea extract, rapamycin, and dexamethasone. Novel drugs targeting specific molecule such as TGF-β and AMPK have shown therapeutic potential but are still in the preclinical stage of development.ConclusionsResearch on the role of autophagy in OA is flourishing. Martin Lotz, Beatriz Caramés, and Osteoarthritis and Cartilage have made outstanding contributions to the field. Prior studies of OA autophagy mainly focused on mechanisms underlying OA and autophagy, including AMPK, macrophages, TGF-β1, inflammatory response, stress, and mitophagy. Emerging research trends, however, are centered around the relationship between autophagy, apoptosis, and senescence, as well as drug candidates such as TXC and green tea extract. The development of new targeted drugs that enhance or restore autophagic activity is a promising strategy for the treatment of OA.
Collapse
Affiliation(s)
- Jiahe Liao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Xinbo Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Jiaqi Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Zihua Wu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Qian He
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Yan Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Weijiang Song
- Traditional Chinese Medicine Department, Peking University Third Hospital, Beijing, China
| | - Jing Luo
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory of Immune Inflammatory Disease, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Jing Luo, ; Qingwen Tao,
| | - Qingwen Tao
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory of Immune Inflammatory Disease, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Jing Luo, ; Qingwen Tao,
| |
Collapse
|
61
|
Lorenzo-Gómez I, Nogueira-Recalde U, García-Domínguez C, Oreiro N, Lotz M, Pinto-Tasende JA, Blanco FJ, Caramés B. Defective chaperone-mediated autophagy is a hallmark of joint disease in patients with knee osteoarthritis. Osteoarthritis Cartilage 2023:S1063-4584(23)00700-8. [PMID: 36893980 DOI: 10.1016/j.joca.2023.02.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/11/2023]
Abstract
OBJECTIVE Defects in autophagy contribute to joint aging and Osteoarthritis (OA). Identifying specific autophagy types could be useful for developing novel treatments for OA. DESIGN An autophagy-related gene array was performed in blood from non-OA and knee OA subjects from the Prospective Cohort of A Coruña (PROCOAC). The differential expression of candidate genes was confirmed in blood and knee cartilage and a regression analysis was performed adjusting for age and BMI. HSP90A, a chaperone mediated autophagy (CMA) marker was validated in human knee joint tissues, as well as, in mice with aging-related and surgically-induced OA. The consequences of HSP90AA1 deficiency were evaluated on OA pathogenesis. Finally, the contribution of CMA to homeostasis was studied by assessing the capacity to restore proteostasis upon ATG5-mediated macroautophagy deficiency and genetic HSP90AA1 overexpression. RESULTS 16 autophagy-related genes were significantly down-regulated in blood from knee OA subjects. Validation studies showed that HSP90AA1 was down-regulated in blood and human OA cartilage and correlated with risk incidence of OA. Moreover, HSP90A was reduced in human OA joints tissues and with aging and OA in mice. HSP90AA1 knockdown was linked to defective macroautophagy, inflammation, oxidative stress, senescence and apoptosis. However, macroautophagy deficiency increased CMA, highlighting the CMA-macroautophagy crosstalk. Remarkably, CMA activation was sufficient to protect chondrocytes from damage. CONCLUSIONS We show that HSP90A is a key chaperone for chondrocyte homeostasis, while defective CMA contributes to joint damage. We propose that CMA deficiency is a relevant disease mechanism and could represent a therapeutic target for OA.
Collapse
Affiliation(s)
- I Lorenzo-Gómez
- Unidad de Biología del Cartílago, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña (CHUAC), Sergas, A Coruña, Spain
| | - U Nogueira-Recalde
- Unidad de Biología del Cartílago, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña (CHUAC), Sergas, A Coruña, Spain
| | - C García-Domínguez
- Unidad de Biología del Cartílago, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña (CHUAC), Sergas, A Coruña, Spain
| | - N Oreiro
- Unidad de Reumatología Clínica, GIR, CHUAC, Sergas, A Coruña, Spain
| | - M Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | | | - F J Blanco
- Unidad de Biología del Cartílago, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña (CHUAC), Sergas, A Coruña, Spain; Unidad de Reumatología Clínica, GIR, CHUAC, Sergas, A Coruña, Spain
| | - B Caramés
- Unidad de Biología del Cartílago, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña (CHUAC), Sergas, A Coruña, Spain.
| |
Collapse
|
62
|
Fine N, Lively S, Séguin CA, Perruccio AV, Kapoor M, Rampersaud R. Intervertebral disc degeneration and osteoarthritis: a common molecular disease spectrum. Nat Rev Rheumatol 2023; 19:136-152. [PMID: 36702892 DOI: 10.1038/s41584-022-00888-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/27/2023]
Abstract
Intervertebral disc degeneration (IDD) and osteoarthritis (OA) affecting the facet joint of the spine are biomechanically interdependent, typically occur in tandem, and have considerable epidemiological and pathophysiological overlap. Historically, the distinctions between these degenerative diseases have been emphasized. Therefore, research in the two fields often occurs independently without adequate consideration of the co-dependence of the two sites, which reside within the same functional spinal unit. Emerging evidence from animal models of spine degeneration highlight the interdependence of IDD and facet joint OA, warranting a review of the parallels between these two degenerative phenomena for the benefit of both clinicians and research scientists. This Review discusses the pathophysiological aspects of IDD and OA, with an emphasis on tissue, cellular and molecular pathways of degeneration. Although the intervertebral disc and synovial facet joint are biologically distinct structures that are amenable to reductive scientific consideration, substantial overlap exists between the molecular pathways and processes of degeneration (including cartilage destruction, extracellular matrix degeneration and osteophyte formation) that occur at these sites. Thus, researchers, clinicians, advocates and policy-makers should consider viewing the burden and management of spinal degeneration holistically as part of the OA disease continuum.
Collapse
Affiliation(s)
- Noah Fine
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Cheryle Ann Séguin
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Bone and Joint Institute, University of Western Ontario London, London, Ontario, Canada
| | - Anthony V Perruccio
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Raja Rampersaud
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada. .,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
63
|
Liao S, Zheng Q, Shen H, Yang G, Xu Y, Zhang X, Ouyang H, Pan Z. HECTD1-Mediated Ubiquitination and Degradation of Rubicon Regulates Autophagy and Osteoarthritis Pathogenesis. Arthritis Rheumatol 2023; 75:387-400. [PMID: 36121967 DOI: 10.1002/art.42369] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 08/07/2022] [Accepted: 09/13/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is one of the most common degenerative joint diseases and is associated with autophagy suppression. However, the molecular mechanism of autophagy regulation in the context of OA is not fully understood. In this study, we sought to determine the role that HECTD1 plays in the pathogenesis of OA. METHODS We used RNA sequencing analysis to explore the differential expression of E3 ubiquitin ligase genes in healthy human cartilage and human cartilage affected by OA. Using surgery- and aging-induced OA mouse models, we comprehensively analyzed the function of the screened gene Hectd1 in the development of OA; furthermore, we dissected the mechanism by which HECTD1 regulates autophagy and OA progression using a combination of molecular biologic, cell biologic, and biochemical approaches. RESULTS HECTD1 was significantly down-regulated in human OA cartilage samples compared to healthy cartilage samples. Overexpression of HECTD1 in mouse joints alleviated OA pathogenesis, whereas conditional depletion of Hectd1 in cartilage samples aggravated surgery- and aging-induced OA pathogenesis. Mechanistically, HECTD1 bound to Rubicon and ubiquitinated Rubicon at lysine residue 534, which targets Rubicon for proteasomal degradation. More importantly, HECTD1-mediated Rubicon degradation regulated chondrocyte autophagy, leading to mitigation of stress-induced chondrocyte death and the subsequent progression of OA. CONCLUSION HECTD1 plays a crucial role in the pathogenesis of OA, in that HECTD1 regulates chondrocyte autophagy by ubiquitinating and targeting Rubicon for proteasomal degradation.
Collapse
Affiliation(s)
- Shiyao Liao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University, Zhejiang, China, and Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiangqiang Zheng
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Haotian Shen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University, Zhejiang China, and Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guang Yang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Yuzi Xu
- Department of Oral Implantology and Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolei Zhang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Zongyou Pan
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University, Zhejiang, China
| |
Collapse
|
64
|
Fan DD, Tan PY, Jin L, Qu Y, Yu QH. Bioinformatic identification and validation of autophagy-related genes in rheumatoid arthritis. Clin Rheumatol 2023; 42:741-750. [PMID: 36220923 DOI: 10.1007/s10067-022-06399-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/05/2022] [Accepted: 09/27/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder characterized by progressive synovial inflammation and joint destruction, with a largely unknown etiology. Studies have suggested that autophagy and its expression may be involved in the pathogenesis of RA; however, autophagy-related genes in RA are still largely unidentified. Therefore, in this study, we aimed to identify and validate autophagy-related genes in RA. METHODS We identified differentially expressed autophagy-related genes between patients with RA and healthy individuals using gene expression profiles in the GSE55235 dataset and R software. Subsequently, correlation analysis, protein-protein interaction, gene ontology enrichment, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were carried out using these differentially expressed autophagy-related genes. Finally, our results were validated by examining the expression of differentially expressed autophagy-related hub genes in clinical samples using qRT-PCR. RESULTS We identified 52 potential autophagy-related genes in RA based on bioinformatic analyses. Ten hub genes, CASP8, CTSB, TNFSF10, FADD, BAX, MYC, FOS, CDKN1A, GABARAPL1, and BNIP3, were validated to be differentially expressed and may serve as valuable prognostic markers and new potential therapeutic targets for RA via the regulation of autophagy. CONCLUSIONS Our results may help improve the understanding of RA pathogenesis. Autophagy-related genes in RA could be valuable biomarkers for diagnosis and prognosis and they might be exploited clinically as therapeutic targets in the future.
Collapse
Affiliation(s)
- Dan-Dan Fan
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510285, People's Republic of China
| | - Peng-Yu Tan
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510285, People's Republic of China
| | - Li Jin
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510285, People's Republic of China
| | - Yuan Qu
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510285, People's Republic of China
| | - Qing-Hong Yu
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510285, People's Republic of China.
| |
Collapse
|
65
|
Gerami MH, Khorram R, Rasoolzadegan S, Mardpour S, Nakhaei P, Hashemi S, Al-Naqeeb BZT, Aminian A, Samimi S. Emerging role of mesenchymal stem/stromal cells (MSCs) and MSCs-derived exosomes in bone- and joint-associated musculoskeletal disorders: a new frontier. Eur J Med Res 2023; 28:86. [PMID: 36803566 PMCID: PMC9939872 DOI: 10.1186/s40001-023-01034-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/26/2023] [Indexed: 02/22/2023] Open
Abstract
Exosomes are membranous vesicles with a 30 to 150 nm diameter secreted by mesenchymal stem/stromal cells (MSCs) and other cells, such as immune cells and cancer cells. Exosomes convey proteins, bioactive lipids, and genetic components to recipient cells, such as microRNAs (miRNAs). Consequently, they have been implicated in regulating intercellular communication mediators under physiological and pathological circumstances. Exosomes therapy as a cell-free approach bypasses many concerns regarding the therapeutic application of stem/stromal cells, including undesirable proliferation, heterogeneity, and immunogenic effects. Indeed, exosomes have become a promising strategy to treat human diseases, particularly bone- and joint-associated musculoskeletal disorders, because of their characteristics, such as potentiated stability in circulation, biocompatibility, low immunogenicity, and toxicity. In this light, a diversity of studies have indicated that inhibiting inflammation, inducing angiogenesis, provoking osteoblast and chondrocyte proliferation and migration, and negative regulation of matrix-degrading enzymes result in bone and cartilage recovery upon administration of MSCs-derived exosomes. Notwithstanding, insufficient quantity of isolated exosomes, lack of reliable potency test, and exosomes heterogeneity hurdle their application in clinics. Herein, we will deliver an outline respecting the advantages of MSCs-derived exosomes-based therapy in common bone- and joint-associated musculoskeletal disorders. Moreover, we will have a glimpse the underlying mechanism behind the MSCs-elicited therapeutic merits in these conditions.
Collapse
Affiliation(s)
- Mohammad Hadi Gerami
- grid.412571.40000 0000 8819 4698Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roya Khorram
- grid.412571.40000 0000 8819 4698Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheil Rasoolzadegan
- grid.411600.2Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Mardpour
- grid.411705.60000 0001 0166 0922Department of Radiology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooria Nakhaei
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheyla Hashemi
- grid.411036.10000 0001 1498 685XObstetrician, Gynaecology & Infertility Department, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Amir Aminian
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Sahar Samimi
- Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
66
|
Liu P, Xu Y, Ye J, Tan J, Hou J, Wang Y, Li J, Cui W, Wang S, Zhao Q. Qingre Huazhuo Jiangsuan Decoction promotes autophagy by inhibiting PI3K/AKT/mTOR signaling pathway to relieve acute gouty arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115875. [PMID: 36328206 DOI: 10.1016/j.jep.2022.115875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gout belongs to the category of "arthralgia syndrome" in traditional Chinese medicine. It is believed that gout is caused by stagnation of blood stasis, heat, and turbid toxin. Qingre Huazhuo Jiangsuan Decoction (QHJD) is a traditional Chinese medicine prescription developed from the classic Chinese medicine prescription Simiao powder to clear heat, remove turbidity, reduce acid, and reduce inflammation. Now Traditional Chinese Medicine (TCM) physicians often apply it to treat acute gouty arthritis (AGA). However, the mechanism of QHJD in relieving acute gouty arthritis is still unclear, and further research is needed. AIM OF THE STUDY Here, we aim to explore the potential mechanism of QHJD in relieving acute gouty arthritis. MATERIALS AND METHODS Acute gouty arthritis model was established by injecting monosodium urate (MSU) suspension into knee joint. The pathological state of synovial tissue in each group was evaluated by hematoxylin-eosin (HE) staining. The level of TNF-α, IL-6, and IL-1β were detected by enzyme-linked immunosorbent assay (ELISA). qRT-PCR was used to detect the mRNA expression of NLRP3, ATG5, ATG7, PI3K, AKT, and mTOR. The protein expression of LC3II/I, p62, ULK1, P-ULK1, Beclin-1, PI3K, AKT, mTOR, P-PI3K, P-AKT, and P-mTOR were detected by Western blot. RESULTS (1) The level of autophagy protein (mRNA) was significantly up-regulated in QHJD group and rapamycin, while the expression of autophagy protein (mRNA) was significantly downregulated in the 3-methyladenoenoic acid (3 MA) group; (2) QHJD and rapamycin significantly inhibited PI3K/AKT/mTOR pathway, while 3 MA group activated this pathway. (3) It was worth noting that after treatment with QHJD and rapamycin, the inflammatory pathological state of AGA synovial tissue was significantly reduced with the activation of the autophagy gene in knee synovial tissue, and the inhibition of PI3K/AKT/mTOR pathway. CONCLUSIONS This research revealed that QHJD activates autophagy by inhibiting PI3K/AKT/mTOR pathway, thereby relieving acute gouty arthritis.
Collapse
Affiliation(s)
- Peiyu Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Yang Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Jiaxue Ye
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Jingrui Tan
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Jie Hou
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Yazhuo Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Jianwei Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Weizhen Cui
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Shiyuan Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China.
| | - Qingyang Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China.
| |
Collapse
|
67
|
Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, Zhong Y, He T, Chen S, Xiao G. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 2023; 8:56. [PMID: 36737426 PMCID: PMC9898571 DOI: 10.1038/s41392-023-01330-w] [Citation(s) in RCA: 484] [Impact Index Per Article: 242.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disorder that leads to disability and affects more than 500 million population worldwide. OA was believed to be caused by the wearing and tearing of articular cartilage, but it is now more commonly referred to as a chronic whole-joint disorder that is initiated with biochemical and cellular alterations in the synovial joint tissues, which leads to the histological and structural changes of the joint and ends up with the whole tissue dysfunction. Currently, there is no cure for OA, partly due to a lack of comprehensive understanding of the pathological mechanism of the initiation and progression of the disease. Therefore, a better understanding of pathological signaling pathways and key molecules involved in OA pathogenesis is crucial for therapeutic target design and drug development. In this review, we first summarize the epidemiology of OA, including its prevalence, incidence and burdens, and OA risk factors. We then focus on the roles and regulation of the pathological signaling pathways, such as Wnt/β-catenin, NF-κB, focal adhesion, HIFs, TGFβ/ΒΜP and FGF signaling pathways, and key regulators AMPK, mTOR, and RUNX2 in the onset and development of OA. In addition, the roles of factors associated with OA, including MMPs, ADAMTS/ADAMs, and PRG4, are discussed in detail. Finally, we provide updates on the current clinical therapies and clinical trials of biological treatments and drugs for OA. Research advances in basic knowledge of articular cartilage biology and OA pathogenesis will have a significant impact and translational value in developing OA therapeutic strategies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chu Tao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minghao Qu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
68
|
Cardiovascular Protection with a Long-Acting GLP-1 Receptor Agonist Liraglutide: An Experimental Update. Molecules 2023; 28:molecules28031369. [PMID: 36771035 PMCID: PMC9921762 DOI: 10.3390/molecules28031369] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Angiotensin II (Ang II), a peptide hormone generated as part of the renin-angiotensin system, has been implicated in the pathophysiology of many cardiovascular diseases such as peripheral artery disease, heart failure, hypertension, coronary artery disease and other conditions. Liraglutide, known as an incretin mimetic, is one of the glucagon-like peptide-1 (GLP-1) receptor agonists, and has been proven to be effective in the treatment of cardiovascular disorders beyond adequate glycemic control. The objective of this review is to compile our recent experimental outcomes-based studies, and provide an overview the cardiovascular protection from liraglutide against Ang II- and pressure overload-mediated deleterious effects on the heart. In particular, the mechanisms of action underlying the inhibition of oxidative stress, vascular endothelial dysfunction, hypertension, cardiac fibrosis, left ventricular hypertrophy and heart failure with liraglutide are addressed. Thus, we support the notion that liraglutide continues to be a useful add-on therapy for the management of cardiovascular diseases.
Collapse
|
69
|
Qian Z, Gao X, Jin X, Kang X, Wu S. Cartilage-specific deficiency of clock gene Bmal1 accelerated articular cartilage degeneration in osteoarthritis by up-regulation of mTORC1 signaling. Int Immunopharmacol 2023; 115:109692. [PMID: 36628892 DOI: 10.1016/j.intimp.2023.109692] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/19/2022] [Accepted: 01/02/2023] [Indexed: 01/10/2023]
Abstract
Although a growing body of studies recently demonstrated that circadian clock gene Bmal1 plays an important role in cartilage development and homeostasis, evidence regarding the contribution of Bmal1 in articular cartilage of OA progression is still unclear. In the present study, we investigated the direct role of Bmal1 in articular cartilage homeostasis during OA progression using tamoxifen-induced cartilage-specific knockout mice. We found that the expression of BMAL1 was decreased in OA-damaged and aging cartilage tissues. Cartilage-specific deletion of Bmal1 promoted cartilage degradation and chondrocyte apoptosis, and inhibited chondrocyte anabolism in OA mice, leading to acceleration of articular cartilage degeneration and osteophyte formation during OA progression. Mechanistic study indicated that loss of Bmal1 resulted in hyperactivation of mammalian target of rapamycin complex 1(mTORC1) signaling in OA cartilage, and pharmacological inhibition of mTORC1 signaling pathway by rapamycin alleviated partially Bmal1 ablation-induced cartilage degradation and chondrocyte apoptosis in ex vivo OA model. Therefore, our results provide the evidence of a vital role for Bmal1 in cartilage degradation in post-traumatic OA by partially regulating the mTORC1 signaling.
Collapse
Affiliation(s)
- Zhuang Qian
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China; Institute of Regenerative Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan 453003, PR China; The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Xin Gao
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Xinxin Jin
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Xiaomin Kang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| | - Shufang Wu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
70
|
Gong Y, Li S, Wu J, Zhang T, Fang S, Feng D, Luo X, Yuan J, Wu Y, Yan X, Zhang Y, Zhu J, Wu J, Lian J, Xiang W, Ni Z. Autophagy in the pathogenesis and therapeutic potential of post-traumatic osteoarthritis. BURNS & TRAUMA 2023; 11:tkac060. [PMID: 36733467 PMCID: PMC9887948 DOI: 10.1093/burnst/tkac060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Indexed: 02/04/2023]
Abstract
Autophagy, as a fundamental mechanism for cellular homeostasis, is generally involved in the occurrence and progression of various diseases. Osteoarthritis (OA) is the most common musculoskeletal disease that often leads to pain, disability and economic loss in patients. Post-traumatic OA (PTOA) is a subtype of OA, accounting for >12% of the overall burden of OA. PTOA is often caused by joint injuries including anterior cruciate ligament rupture, meniscus tear and intra-articular fracture. Although a variety of methods have been developed to treat acute joint injury, the current measures have limited success in effectively reducing the incidence and delaying the progression of PTOA. Therefore, the pathogenesis and intervention strategy of PTOA need further study. In the past decade, the roles and mechanisms of autophagy in PTOA have aroused great interest in the field. It was revealed that autophagy could maintain the homeostasis of chondrocytes, reduce joint inflammatory level, prevent chondrocyte death and matrix degradation, which accordingly improved joint symptoms and delayed the progression of PTOA. Moreover, many strategies that target PTOA have been revealed to promote autophagy. In this review, we summarize the roles and mechanisms of autophagy in PTOA and the current strategies for PTOA treatment that depend on autophagy regulation, which may be beneficial for PTOA patients in the future.
Collapse
Affiliation(s)
| | | | | | - Tongyi Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Changjiang Street, Yuzhong District, Chongqing 400042, China,Department of General practice, Chinese PLA General Hospital of the Central Theater Command, Wuluo Street, Wuchang District, Wuhan 430000, China
| | - Shunzheng Fang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Changjiang Street, Yuzhong District, Chongqing 400042, China
| | - Daibo Feng
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Changjiang Street, Yuzhong District, Chongqing 400042, China
| | - Xiaoqing Luo
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Changjiang Street, Yuzhong District, Chongqing 400042, China
| | - Jing Yuan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing 400038, China
| | - Yaran Wu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing 400038, China
| | - Xiaojing Yan
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing 400038, China
| | - Yan Zhang
- Department of Pediatrics, People's Hospital Affiliated to Chongqing Three Gorges Medical College, Guoben Street, Wanzhou district, Chongqing 404000, China
| | - Jun Zhu
- Department of Cardiology, Shanghai Hospital, Shanghai Street, Wanzhou District, Chongqing 404000, China
| | - Jiangyi Wu
- Department of Sports Medicine and Rehabilitation, Shenzhen Hospital, Peking University, Lianhua Street, Futian District, Shenzhen 518034, China
| | - Jiqin Lian
- Correspondence. Zhenghong Ni, ; Wei Xiang, ; Jiqin Lian,
| | - Wei Xiang
- Correspondence. Zhenghong Ni, ; Wei Xiang, ; Jiqin Lian,
| | - Zhenhong Ni
- Correspondence. Zhenghong Ni, ; Wei Xiang, ; Jiqin Lian,
| |
Collapse
|
71
|
Du X, Cai L, Xie J, Zhou X. The role of TGF-beta3 in cartilage development and osteoarthritis. Bone Res 2023; 11:2. [PMID: 36588106 PMCID: PMC9806111 DOI: 10.1038/s41413-022-00239-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/25/2022] [Accepted: 11/03/2022] [Indexed: 01/03/2023] Open
Abstract
Articular cartilage serves as a low-friction, load-bearing tissue without the support with blood vessels, lymphatics and nerves, making its repair a big challenge. Transforming growth factor-beta 3 (TGF-β3), a vital member of the highly conserved TGF-β superfamily, plays a versatile role in cartilage physiology and pathology. TGF-β3 influences the whole life cycle of chondrocytes and mediates a series of cellular responses, including cell survival, proliferation, migration, and differentiation. Since TGF-β3 is involved in maintaining the balance between chondrogenic differentiation and chondrocyte hypertrophy, its regulatory role is especially important to cartilage development. Increased TGF-β3 plays a dual role: in healthy tissues, it can facilitate chondrocyte viability, but in osteoarthritic chondrocytes, it can accelerate the progression of disease. Recently, TGF-β3 has been recognized as a potential therapeutic target for osteoarthritis (OA) owing to its protective effect, which it confers by enhancing the recruitment of autologous mesenchymal stem cells (MSCs) to damaged cartilage. However, the biological mechanism of TGF-β3 action in cartilage development and OA is not well understood. In this review, we systematically summarize recent progress in the research on TGF-β3 in cartilage physiology and pathology, providing up-to-date strategies for cartilage repair and preventive treatment.
Collapse
Affiliation(s)
- Xinmei Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China.
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China.
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
72
|
Ishchenko A, Scriffignano S, Coates L. Women in rheumatology: major contributions and key discoveries of the twentieth century. Rheumatology (Oxford) 2022; 62:29-34. [PMID: 35894652 DOI: 10.1093/rheumatology/keac376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/21/2022] [Indexed: 12/27/2022] Open
Abstract
In the twentieth century, rheumatology saw an exponential growth. Discoveries in the pathophysiology of rheumatic diseases, progress in research methodology and novel treatments cardinally changed the natural course of rheumatic diseases and revolutionized patient management. Although underrepresented in this field, women have made considerable input in advancing our specialty towards the new era. In this article we acknowledge key scientific discoveries and major contributions made by 18 brilliant women scientists that shaped the field of rheumatology in the twentieth century. We hope that the achievements of these remarkable women will inspire young rheumatologists and researchers.
Collapse
Affiliation(s)
- Alla Ishchenko
- Department of Rheumatology, University Hospitals Gasthuisberg, Leuven, KU.,Department of Rheumatology, Ziekenhuis Netwerk Antwerpen, Antwerp, Belgium
| | - Silvia Scriffignano
- Department of Precision Medicine-Rheumatology, University of Campania Luigi Vanvitelli, Naples.,Academic Rheumatology Unit, University of Molise, Campobasso, Italy
| | - Laura Coates
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
73
|
Tong C, Wu Y, Zhang L, Yu Y. Insulin resistance, autophagy and apoptosis in patients with polycystic ovary syndrome: Association with PI3K signaling pathway. Front Endocrinol (Lausanne) 2022; 13:1091147. [PMID: 36589825 PMCID: PMC9800521 DOI: 10.3389/fendo.2022.1091147] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a disease in which endocrine metabolic abnormalities coexist with reproductive system abnormalities, with the main clinical manifestations including abnormal menstruation, hirsutism, acne, infertility, and obesity, and it is also a high risk for the development of many pregnancy complications, gynecological malignancies and other diseases. Therefore, timely intervention to prevent the progression of PCOS is of great significance for improving the quality of life of most female patients. Insulin resistance (IR) is one of the most common endocrine disorders in PCOS patients, with approximately 75% of PCOS patients experiencing varying degrees of IR. It is now believed that it is mainly related to the PI3K signaling pathway. The role of autophagy and apoptosis of ovarian granulosa cells (GCs) in the pathogenesis of PCOS has also been gradually verified in recent years. Coincidentally, it also seems to be associated with the PI3K signaling pathway. Our aim is to review these relevant studies, to explore the association between the IR, cellular autophagy and apoptosis in PCOS patients and the PI3K pathway. We summarize some of the drug studies that have improved PCOS as well. We have also found that proteomics holds great promise in exploring the pathogenesis of PCOS, and we have published our views on this.
Collapse
Affiliation(s)
- Cheng Tong
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yue Wu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lingling Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Ying Yu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
74
|
Lv X, Zhao T, Dai Y, Shi M, Huang X, Wei Y, Shen J, Zhang X, Xie Z, Wang Q, Li Z, Qin D. New insights into the interplay between autophagy and cartilage degeneration in osteoarthritis. Front Cell Dev Biol 2022; 10:1089668. [PMID: 36544901 PMCID: PMC9760856 DOI: 10.3389/fcell.2022.1089668] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an intracellular degradation system that maintains the stable state of cell energy metabolism. Some recent findings have indicated that autophagy dysfunction is an important driving factor for the occurrence and development of osteoarthritis (OA). The decrease of autophagy leads to the accumulation of damaged organelles and macromolecules in chondrocytes, which affects the survival of chondrocytes and ultimately leads to OA. An appropriate level of autophagic activation may be a new method to prevent articular cartilage degeneration in OA. This minireview discussed the mechanism of autophagy and OA, key autophagy targets regulating OA progression, and evaluated therapeutic applications of drugs targeting autophagy in preclinical and clinical research. Some critical issues worth paying attention to were also raised to guide future research efforts.
Collapse
Affiliation(s)
- Xiaoman Lv
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Ting Zhao
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Youwu Dai
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyi Huang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiayan Shen
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyu Zhang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Qi Wang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
75
|
Abstract
Amino acid metabolism regulates essential cellular functions, not only by fueling protein synthesis, but also by supporting the biogenesis of nucleotides, redox factors and lipids. Amino acids are also involved in tricarboxylic acid cycle anaplerosis, epigenetic modifications, next to synthesis of neurotransmitters and hormones. As such, amino acids contribute to a broad range of cellular processes such as proliferation, matrix synthesis and intercellular communication, which are all critical for skeletal cell functioning. Here we summarize recent work elucidating how amino acid metabolism supports and regulates skeletal cell function during bone growth and homeostasis, as well as during skeletal disease. The most extensively studied amino acid is glutamine, and osteoblasts and chondrocytes rely heavily on this non-essential amino acid during for their functioning and differentiation. Regulated by lineage-specific transcription factors such as SOX9 and osteoanabolic agents such as parathyroid hormone or WNT, glutamine metabolism has a wide range of metabolic roles, as it fuels anabolic processes by producing nucleotides and non-essential amino acids, maintains redox balance by generating the antioxidant glutathione and regulates cell-specific gene expression via epigenetic mechanisms. We also describe how other amino acids affect skeletal cell functions, although further work is needed to fully understand their effect. The increasing number of studies using stable isotope labelling in several skeletal cell types at various stages of differentiation, together with conditional inactivation of amino acid transporters or enzymes in mouse models, will allow us to obtain a more complete picture of amino acid metabolism in skeletal cells.
Collapse
Affiliation(s)
| | | | - Steve Stegen
- Corresponding author at: Clinical and Experimental Endocrinology, KU Leuven, O&N1bis, Herestraat 49 box 902, 3000 Leuven, Belgium.
| |
Collapse
|
76
|
Alsaleh G, Richter FC, Simon AK. Age-related mechanisms in the context of rheumatic disease. Nat Rev Rheumatol 2022; 18:694-710. [PMID: 36329172 DOI: 10.1038/s41584-022-00863-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Ageing is characterized by a progressive loss of cellular function that leads to a decline in tissue homeostasis, increased vulnerability and adverse health outcomes. Important advances in ageing research have now identified a set of nine candidate hallmarks that are generally considered to contribute to the ageing process and that together determine the ageing phenotype, which is the clinical manifestation of age-related dysfunction in chronic diseases. Although most rheumatic diseases are not yet considered to be age related, available evidence increasingly emphasizes the prevalence of ageing hallmarks in these chronic diseases. On the basis of the current evidence relating to the molecular and cellular ageing pathways involved in rheumatic diseases, we propose that these diseases share a number of features that are observed in ageing, and that they can therefore be considered to be diseases of premature or accelerated ageing. Although more data are needed to clarify whether accelerated ageing drives the development of rheumatic diseases or whether it results from the chronic inflammatory environment, central components of age-related pathways are currently being targeted in clinical trials and may provide a new avenue of therapeutic intervention for patients with rheumatic diseases.
Collapse
Affiliation(s)
- Ghada Alsaleh
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK.
- Botnar Research Centre, NDORMS, University of Oxford, Oxford, UK.
| | - Felix C Richter
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Anna K Simon
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
77
|
Tang H, Qin K, Wang A, Li S, Fang S, Gao W, Lu M, Huang W, Zhang H, Yin Z. 3,3'-diindolylmethane inhibits LPS-induced human chondrocytes apoptosis and extracellular matrix degradation by activating PI3K-Akt-mTOR-mediated autophagy. Front Pharmacol 2022; 13:999851. [PMID: 36438802 PMCID: PMC9684728 DOI: 10.3389/fphar.2022.999851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/10/2022] [Indexed: 09/08/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by articular cartilage destruction. The pathological mechanisms are complex; in particular, inflammation, autophagy, and apoptosis are often involved. 3,3-Diindolylmethane (DIM), a phytoconstituent extracted from cruciferous vegetables, has various effects such as anti-inflammatory, antioxidant and anti-apoptotic. However, the effects of DIM on osteoarthritic chondrocytes remain undetermined. In this study, we simulated a lipopolysaccharide (LPS)-induced osteoarthritis model in human primary chondrocytes. We found that LPS stimulation significantly inhibited autophagy, induced chondrocyte apoptosis and extracellular matrix (ECM) degradation, which could be ameliorated by DIM. DIM inhibited the expression of a disintegrin and metalloproteinase with thrombospondin motif 5 (ADAMTS-5), matrix metalloproteinase 13 (MMP13), cleaved caspase-3, Bax, and p62, and increased the expression level of collagen II, aggrecan, Bcl-2, light chain 3 Ⅱ (LC3 Ⅱ), and beclin-1. Mechanistic studies showed that DIM increased chondrocyte autophagy levels by inhibiting the activation of PI3K/AKT/mTOR pathway. In mice destabilization of the medial meniscus (DMM) model, immunohistochemical analysis showed that DIM inhibited the expression of p-PI3K and cleaved caspase-3, increased the expression of LC3 Ⅱ. Furthermore, DIM relieved joint cartilage degeneration. In conclusion, our findings demonstrate for the first time that DIM inhibits LPS-induced chondrocyte apoptosis and ECM degradation by regulating the PI3K/AKT/mTOR-autophagy axis and delays OA progression in vivo.
Collapse
Affiliation(s)
- Hao Tang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, China
| | - Kunpeng Qin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Anquan Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuang Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Sheng Fang
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei, China
| | - Weilu Gao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming Lu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongsheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
78
|
Zhao C, Li X, Sun G, Liu P, Kong K, Chen X, Yang F, Wang X. CircFOXO3 protects against osteoarthritis by targeting its parental gene FOXO3 and activating PI3K/AKT-mediated autophagy. Cell Death Dis 2022; 13:932. [PMID: 36344492 PMCID: PMC9640610 DOI: 10.1038/s41419-022-05390-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disorder causing pain and functional disability. Emerging evidence reveals that circular RNAs (circRNAs) play essential roles in OA progression and development. This study aimed to investigate the role of a novel circRNA factor, circFOXO3, in the progression of OA and elucidate its underlying molecular mechanism. The function of circFOXO3 in OA and interaction between circFOXO3 and its downstream mRNA target, forkhead box O3 (FOXO3), were evaluated by western blot (WB), immunofluorescence (IF), RNA immunoprecipitation, reverse transcription-quantitative PCR (RT-qPCR), and fluorescence in situ hybridization (FISH). Upregulation of circFOXO3 and autophagic flux were detected both in vivo and in vitro by WB, transmission electron microscopy (TEM), IF, and immunohistochemistry (IHC). A mouse model of OA was also used to confirm the role of circFOXO3 in OA pathogenesis in vivo. Decreased expression of circFOXO3 in OA cartilage tissues was directly associated with excessive apoptosis and imbalance between anabolic and catabolic factors of the extracellular matrix (ECM). Mechanistically, circFOXO3 functioned in cartilage by targeting its parental gene FOXO3 and activating autophagy. Intra-articular injection of lentivirus-circFOXO3 alleviated OA in the mouse model. In conclusion, our results reveal the key role played by circFOXO3 in OA progression; circFOXO3 overexpression may alleviate apoptosis of chondrocytes and promote anabolism of the ECM via activation of FOXO3 and autophagy, providing a potentially effective novel therapeutic strategy for OA.
Collapse
Affiliation(s)
- Chen Zhao
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Xiaodong Li
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Guantong Sun
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Pengcheng Liu
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Keyu Kong
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Xuzhuo Chen
- grid.16821.3c0000 0004 0368 8293Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Fei Yang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Xiaoqing Wang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| |
Collapse
|
79
|
Cho KH, Na HS, Jhun J, Woo JS, Lee AR, Lee SY, Lee JS, Um IG, Kim SJ, Park SH, Cho ML. Lactobacillus (LA-1) and butyrate inhibit osteoarthritis by controlling autophagy and inflammatory cell death of chondrocytes. Front Immunol 2022; 13:930511. [PMID: 36325344 PMCID: PMC9619036 DOI: 10.3389/fimmu.2022.930511] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/21/2022] [Indexed: 11/14/2022] Open
Abstract
Osteoarthritis (OA) reduces the quality of life as a result of the pain caused by continuous joint destruction. Inactivated Lactobacillus (LA-1) ameliorated osteoarthritis and protected cartilage by modulating inflammation. In this study, we evaluated the mechanism by which live LA-1 ameliorated OA. To investigate the effect of live LA-1 on OA progression, we administered LA-1 into monosodium iodoacetate (MIA)-induced OA animals. The pain threshold, cartilage damage, and inflammation of the joint synovial membrane were improved by live LA-1. Furthermore, the analysis of intestinal tissues and feces in the disease model has been shown to affect the systems of the intestinal system and improve the microbiome environment. Interestingly, inflammation of the intestinal tissue was reduced, and the intestinal microbiome was altered by live LA-1. Live LA-1 administration led to an increase in the level of Faecalibacterium which is a short-chain fatty acid (SCFA) butyrate-producing bacteria. The daily supply of butyrate, a bacterial SCFA, showed a tendency to decrease necroptosis, a type of abnormal cell death, by inducing autophagy and reversing impaired autophagy by the inflammatory environment. These results suggest that OA is modulated by changes in the gut microbiome, suggesting that activation of autophagy can reduce aberrant cell death. In summary, live LA-1 or butyrate ameliorates OA progression by modulating the gut environment and autophagic flux. Our findings suggest the regulation of the gut microenvironment as a therapeutic target for OA.
Collapse
Affiliation(s)
- Keun-Hyung Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Hyun Sik Na
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - JooYeon Jhun
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Jin Seok Woo
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
| | - A Ram Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Seung Yoon Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Jeong Su Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - In Gyu Um
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Seok Jung Kim
- Department of Orthopedic Surgery, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
- Department of Medical Life Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
- *Correspondence: Mi-La Cho,
| |
Collapse
|
80
|
Zeng Z, Zhou X, Wang Y, Cao H, Guo J, Wang P, Yang Y, Wang Y. Mitophagy-A New Target of Bone Disease. Biomolecules 2022; 12:1420. [PMID: 36291629 PMCID: PMC9599755 DOI: 10.3390/biom12101420] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 01/17/2023] Open
Abstract
Bone diseases are usually caused by abnormal metabolism and death of cells in bones, including osteoblasts, osteoclasts, osteocytes, chondrocytes, and bone marrow mesenchymal stem cells. Mitochondrial dysfunction, as an important cause of abnormal cell metabolism, is widely involved in the occurrence and progression of multiple bone diseases, including osteoarthritis, intervertebral disc degeneration, osteoporosis, and osteosarcoma. As selective mitochondrial autophagy for damaged or dysfunctional mitochondria, mitophagy is closely related to mitochondrial quality control and homeostasis. Accumulating evidence suggests that mitophagy plays an important regulatory role in bone disease, indicating that regulating the level of mitophagy may be a new strategy for bone-related diseases. Therefore, by reviewing the relevant literature in recent years, this paper reviews the potential mechanism of mitophagy in bone-related diseases, including osteoarthritis, intervertebral disc degeneration, osteoporosis, and osteosarcoma, to provide a theoretical basis for the related research of mitophagy in bone diseases.
Collapse
Affiliation(s)
- Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Yan Wang
- Department of Rehabilitation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Hong Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ping Wang
- School of Physical Education and Sports Science, Lingnan Normal University, Zhanjiang 524048, China
| | - Yajing Yang
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Yan Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
81
|
Hu X, Li Z, Ji M, Lin Y, Chen Y, Lu J. Identification of cellular heterogeneity and immunogenicity of chondrocytes via single-cell RNA sequencing technique in human osteoarthritis. Front Pharmacol 2022; 13:1004766. [PMID: 36249797 PMCID: PMC9562112 DOI: 10.3389/fphar.2022.1004766] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Osteoarthritis (OA) has placed a heavy burden to the economy and humanistics. To explore the biological functions and markers of chondrocytes contributes significantly to the accurate diagnosis and targeted treatment of OA. Methods: We systematically analyzed the immunogenicity and biological function of varied chondrocytes at single cell resolution, and identified the chondrocyte subtypes and biomarkers involved in the development of OA, which are verified in the bulk sequencing cohort. Results: Based on previous study, we defined eight subtypes of chondrocytes with different biological functions, finding out that effector chondrocytes (ECs) and fibrocartilage chondrocytes (FCs) may promote the development of OA. Compared with other chondrocytes, ECs and FCs show stronger immunogenicity. FCs mainly affects the degeneration of cartilage caused by fibrous degeneration, while ECs mainly exerts immune function and causes tissues inflammation. In addition, the canonical gene markers of EC and FC assist with the prediction of OA, which has been verified in Bulk RNA sequencing data from two GEO datasets. Conclusion: In summary, this study provides a new perspective for the exploration of cellular heterogeneity and pathophysiology in OA and will make contribution to the accurate diagnosis and targeted treatment of OA.
Collapse
Affiliation(s)
- Xinyue Hu
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Zhuang Li
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Mingliang Ji
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yucheng Lin
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yuzhi Chen
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jun Lu
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
- *Correspondence: Jun Lu,
| |
Collapse
|
82
|
He M, Lu B, Opoku M, Zhang L, Xie W, Jin H, Chen S, Li Y, Deng Z. Metformin Prevents or Delays the Development and Progression of Osteoarthritis: New Insight and Mechanism of Action. Cells 2022; 11:3012. [PMID: 36230974 PMCID: PMC9563728 DOI: 10.3390/cells11193012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
For over 60 years, metformin has been widely prescribed by physicians to treat type 2 diabetes. Along with more in-depth research on metformin and its molecular mechanism in recent decades, metformin has also been proposed as an effective drug to prevent or delay musculoskeletal disorders, including osteoarthritis (OA). The occurrence and development of OA are deemed to be associated with the impaired mitochondrial functions of articular chondrocytes. Metformin can activate the pathways and expressions of both AMPK and SIRT1 so as to protect the mitochondrial function of chondrocytes, thereby promoting osteoblast production. Moreover, the clinical significance of the metformin combination therapy in preventing OA has also been demonstrated. This review aimed to comprehensively summarize the current research progress on metformin as a proposed drug for OA prevention or treatment.
Collapse
Affiliation(s)
- Miao He
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bangbao Lu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Michael Opoku
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Liang Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenqing Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hongfu Jin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Siyu Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| |
Collapse
|
83
|
Kao WC, Chen JC, Liu PC, Lu CC, Lin SY, Chuang SC, Wu SC, Chang LH, Lee MJ, Yang CD, Lee TC, Wang YC, Li JY, Wei CW, Chen CH. The Role of Autophagy in Osteoarthritic Cartilage. Biomolecules 2022; 12:biom12101357. [PMID: 36291565 PMCID: PMC9599131 DOI: 10.3390/biom12101357] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common diseases leading to physical disability, with age being the main risk factor, and degeneration of articular cartilage is the main focus for the pathogenesis of OA. Autophagy is a crucial intracellular homeostasis system recycling flawed macromolecules and cellular organelles to sustain the metabolism of cells. Growing evidences have revealed that autophagy is chondroprotective by regulating apoptosis and repairing the function of damaged chondrocytes. Then, OA is related to autophagy depending on different stages and models. In this review, we discuss the character of autophagy in OA and the process of the autophagy pathway, which can be modulated by some drugs, key molecules and non-coding RNAs (microRNAs, long non-coding RNAs and circular RNAs). More in-depth investigations of autophagy are needed to find therapeutic targets or diagnostic biomarkers through in vitro and in vivo situations, making autophagy a more effective way for OA treatment in the future. The aim of this review is to introduce the concept of autophagy and make readers realize its impact on OA. The database we searched in is PubMed and we used the keywords listed below to find appropriate article resources.
Collapse
Affiliation(s)
- Wei-Chun Kao
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Jian-Chih Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ping-Cheng Liu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheng-Chang Lu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Chun Chuang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shun-Cheng Wu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ling-hua Chang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Mon-Juan Lee
- Department of Medical Science Industries, Chang Jung Christian University, Tainan 71101, Taiwan
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan
| | - Chung-Da Yang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Tien-Ching Lee
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ying-Chun Wang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Jhong-You Li
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Chun-Wang Wei
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (C.-W.W.); (C.-H.C.); Tel.: +886-7-3121101 (ext. 2648#19) (C-W.W.); +886-7-3209209 (C.-H.C.)
| | - Chung-Hwan Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Ph.D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80420, Taiwan
- Graduate Institute of Materials Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Correspondence: (C.-W.W.); (C.-H.C.); Tel.: +886-7-3121101 (ext. 2648#19) (C-W.W.); +886-7-3209209 (C.-H.C.)
| |
Collapse
|
84
|
Tong L, Yu H, Huang X, Shen J, Xiao G, Chen L, Wang H, Xing L, Chen D. Current understanding of osteoarthritis pathogenesis and relevant new approaches. Bone Res 2022; 10:60. [PMID: 36127328 PMCID: PMC9489702 DOI: 10.1038/s41413-022-00226-9] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 06/19/2022] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease that causes painful swelling and permanent damage to the joints in the body. The molecular mechanisms of OA are currently unknown. OA is a heterogeneous disease that affects the entire joint, and multiple tissues are altered during OA development. To better understand the pathological mechanisms of OA, new approaches, methods, and techniques need to be used to understand OA pathogenesis. In this review, we first focus on the epigenetic regulation of OA, with a particular focus on DNA methylation, histone modification, and microRNA regulation, followed by a summary of several key mediators in OA-associated pain. We then introduce several innovative techniques that have been and will continue to be used in the fields of OA and OA-associated pain, such as CRISPR, scRNA sequencing, and lineage tracing. Next, we discuss the timely updates concerning cell death regulation in OA pathology, including pyroptosis, ferroptosis, and autophagy, as well as their individual roles in OA and potential molecular targets in treating OA. Finally, our review highlights new directions on the role of the synovial lymphatic system in OA. An improved understanding of OA pathogenesis will aid in the development of more specific and effective therapeutic interventions for OA.
Collapse
Affiliation(s)
- Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China
| | - Huan Yu
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xingyun Huang
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jie Shen
- Department of Orthopedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Guozhi Xiao
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Huaiyu Wang
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lianping Xing
- Department of Pathology and Laboratory of Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China.
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
85
|
Gems D, Kern CC. Is "cellular senescence" a misnomer? GeroScience 2022; 44:2461-2469. [PMID: 36068483 PMCID: PMC9768054 DOI: 10.1007/s11357-022-00652-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/25/2022] [Indexed: 01/06/2023] Open
Abstract
One of the most striking findings in biogerontology in the 2010s was the demonstration that elimination of senescent cells delays many late-life diseases and extends lifespan in mice. This implied that accumulation of senescent cells promotes late-life diseases, particularly through action of senescent cell secretions (the senescence-associated secretory phenotype, or SASP). But what exactly is a senescent cell? Subsequent to the initial characterization of cellular senescence, it became clear that, prior to aging, this phenomenon is in fact adaptive. It supports tissue remodeling functions in a variety of contexts, including embryogenesis, parturition, and acute inflammatory processes that restore normal tissue architecture and function, such as wound healing, tissue repair after infection, and amphibian limb regeneration. In these contexts, such cells are normal and healthy and not in any way senescent in the true sense of the word, as originally meant by Hayflick. Thus, it is misleading to refer to them as "senescent." Similarly, the common assertion that senescent cells accumulate with age due to stress and DNA damage is no longer safe, particularly given their role in inflammation-a process that becomes persistent in later life. We therefore suggest that it would be useful to update some terminology, to bring it into line with contemporary understanding, and to avoid future confusion. To open a discussion of this issue, we propose replacing the term cellular senescence with remodeling activation, and SASP with RASP (remodeling-associated secretory phenotype).
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT UK
| | - Carina C. Kern
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT UK
| |
Collapse
|
86
|
Zhu H, Liu H, Chen X, Xu X, Zhang S, Xie D. Enhancing autophagy and energy metabolism in the meniscus can delay the occurrence of PTOA in ACLT rat. Front Cell Dev Biol 2022; 10:971736. [PMID: 36120586 PMCID: PMC9479128 DOI: 10.3389/fcell.2022.971736] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative joint disease characterized by the destruction of the articular cartilage, meniscus and the like. Autophagy and cellular energy metabolism are the mechanisms by which cells maintain homeostasis. However, little is known about the effects of autophagy and cellular energy metabolism on meniscus degeneration, and the pathogenesis of posttraumatic osteoarthritis (PTOA) after the meniscal injury is rarely reported. Therefore, this study aimed to investigate the relationship between changes in autophagy and cellular energy metabolism in the meniscus following anterior cruciate ligament transection (ACLT) and PTOA induced by subsequent articular cartilage injury. In this study, we use a combination of cell experiments in vitro and animal experiments in vivo. On the one hand, cell experiment results show that inhibiting the mTORC1 signaling pathway by inhibiting the phosphorylation of S6K and AKT proteins in meniscal cells will lead to the increase of Beclin1, LC-3B, ATG12, ULK1, P62, and activate autophagy-related signaling pathways, which in turn protects the extracellular matrix component COL1 of meniscal cells from degradation by catabolic factor MMP13. In addition, it increased the generation of mitochondrial membrane potential in meniscal cells, increased the expression of anti-apoptotic factor BCL-XL, decreased the expression of pro-apoptotic factors BAD and BAX, and reduced the apoptosis of meniscal cells. More importantly, under the stimulation of inflammatory factor IL-1β, the secretion of meniscus cells can reduce the elevated levels of MMP13 and Adamts5 caused by chondrocytes affected by IL-1β. On the other hand, the results of animal experiments in vivo further proved the validity of the results of the cell experiments, and also proved that the meniscus injury did prior to the articular cartilage degeneration after ACLT. In conclusion, this study suggests that the meniscus prior to articular cartilage damage during the development of PTOA after ACLT, and that promoting autophagy and energy metabolism of meniscal cells may be a potential therapeutic target for delaying PTOA.
Collapse
Affiliation(s)
- Huangrong Zhu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics), Guangzhou, China
- Orthopedic Hospital of Guangdong, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hai Liu
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics), Guangzhou, China
- Orthopedic Hospital of Guangdong, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xizhong Chen
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics), Guangzhou, China
- Orthopedic Hospital of Guangdong, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xin Xu
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics), Guangzhou, China
- Orthopedic Hospital of Guangdong, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Shuqin Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Denghui Xie
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics), Guangzhou, China
- Orthopedic Hospital of Guangdong, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Denghui Xie,
| |
Collapse
|
87
|
Song Y, Wu Z, Zhao P. The effects of metformin in the treatment of osteoarthritis: Current perspectives. Front Pharmacol 2022; 13:952560. [PMID: 36081941 PMCID: PMC9445495 DOI: 10.3389/fphar.2022.952560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoarthritis is a chronic and irreversible disease of the locomotor system which is closely associated with advancing age. Pain and limited mobility frequently affect the quality of life in middle-aged and older adults. With a global population of more than 350 million, osteoarthritis is becoming a health threat alongside cancer and cardiovascular disease. It is challenging to find effective treatments to promote cartilage repair and slow down disease progression. Metformin is the first-line drug for patients with type 2 diabetes, and current perspectives suggest that it cannot only lower glucose but also has anti-inflammatory and anti-aging properties. Experimental studies applying metformin for the treatment of osteoarthritis have received much attention in recent years. In our review, we first presented the history of metformin and the current status of osteoarthritis, followed by a brief review of the mechanism that metformin acts, involving AMPK-dependent and non-dependent pathways. Moreover, we concluded that metformin may be beneficial in the treatment of osteoarthritis by inhibiting inflammation, modulating autophagy, antagonizing oxidative stress, and reducing pain levels. Finally, we analyzed the relevant evidence from animal and human studies. The potential of metformin for the treatment of osteoarthritis deserves to be further explored.
Collapse
|
88
|
Varela-Eirín M, Carpintero-Fernández P, Guitián-Caamaño A, Varela-Vázquez A, García-Yuste A, Sánchez-Temprano A, Bravo-López SB, Yañez-Cabanas J, Fonseca E, Largo R, Mobasheri A, Caeiro JR, Mayán MD. Extracellular vesicles enriched in connexin 43 promote a senescent phenotype in bone and synovial cells contributing to osteoarthritis progression. Cell Death Dis 2022; 13:681. [PMID: 35931686 PMCID: PMC9355945 DOI: 10.1038/s41419-022-05089-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/05/2022] [Accepted: 07/08/2022] [Indexed: 01/21/2023]
Abstract
The accumulation of senescent cells is a key characteristic of aging, leading to the progression of age-related diseases such as osteoarthritis (OA). Previous data from our laboratory has demonstrated that high levels of the transmembrane protein connexin 43 (Cx43) are associated with a senescent phenotype in chondrocytes from osteoarthritic cartilage. OA has been reclassified as a musculoskeletal disease characterized by the breakdown of the articular cartilage affecting the whole joint, subchondral bone, synovium, ligaments, tendons and muscles. However, the mechanisms that contribute to the spread of pathogenic factors throughout the joint tissues are still unknown. Here, we show for the first time that small extracellular vesicles (sEVs) released by human OA-derived chondrocytes contain high levels of Cx43 and induce a senescent phenotype in targeted chondrocytes, synovial and bone cells contributing to the formation of an inflammatory and degenerative joint environment by the secretion of senescence-associated secretory associated phenotype (SASP) molecules, including IL-1ß and IL-6 and MMPs. The enrichment of Cx43 changes the protein profile and activity of the secreted sEVs. Our results indicate a dual role for sEVs containing Cx43 inducing senescence and activating cellular plasticity in target cells mediated by NF-kß and the extracellular signal-regulated kinase 1/2 (ERK1/2), inducing epithelial-to-mesenchymal transition (EMT) signalling programme and contributing to the loss of the fully differentiated phenotype. Our results demonstrated that Cx43-sEVs released by OA-derived chondrocytes spread senescence, inflammation and reprogramming factors involved in wound healing failure to neighbouring tissues, contributing to the progression of the disease among cartilage, synovium, and bone and probably from one joint to another. These results highlight the importance for future studies to consider sEVs positive for Cx43 as a new biomarker of disease progression and new target to treat OA.
Collapse
Affiliation(s)
- Marta Varela-Eirín
- grid.8073.c0000 0001 2176 8535CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain ,grid.4494.d0000 0000 9558 4598European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Paula Carpintero-Fernández
- grid.8073.c0000 0001 2176 8535CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| | - Amanda Guitián-Caamaño
- grid.8073.c0000 0001 2176 8535CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| | - Adrián Varela-Vázquez
- grid.8073.c0000 0001 2176 8535CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| | - Alejandro García-Yuste
- grid.8073.c0000 0001 2176 8535CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| | - Agustín Sánchez-Temprano
- grid.8073.c0000 0001 2176 8535CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| | - Susana B. Bravo-López
- grid.11794.3a0000000109410645Proteomics Laboratory, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - José Yañez-Cabanas
- grid.11794.3a0000000109410645Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Eduardo Fonseca
- grid.8073.c0000 0001 2176 8535CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| | - Raquel Largo
- grid.419651.e0000 0000 9538 1950Bone and Joint Research Unit, Rheumatology Department, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Ali Mobasheri
- grid.10858.340000 0001 0941 4873Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland ,grid.493509.2Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania ,grid.7692.a0000000090126352Departments of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.412615.50000 0004 1803 6239Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China ,grid.4861.b0000 0001 0805 7253World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, University of Liège, Liège, Belgium
| | - José Ramón Caeiro
- grid.11794.3a0000000109410645Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - María D. Mayán
- grid.8073.c0000 0001 2176 8535CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| |
Collapse
|
89
|
Sun T, Wang F, Hu G, Li Z. Salvianolic acid B activates chondrocytes autophagy and reduces chondrocyte apoptosis in obese mice via the KCNQ1OT1/miR-128-3p/SIRT1 signaling pathways. Nutr Metab (Lond) 2022; 19:53. [PMID: 35922815 PMCID: PMC9351265 DOI: 10.1186/s12986-022-00686-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose Salvianolic acid B (Sal B) possesses strong anti-inflammatory and antioxidant activity. This study aims to explore the underlying mechanism of Sal B to improve the obesity-related osteoarthritis (OA). Methods C57BL/6 J male mice were fed with a normal control diet (NCD), a high fat diet (HFD), or HFD with Sal B (25 mg/kg), and mouse body weights and osteoarticular inflammatory factor levels were examined. Mouse chondrogenic cell line ATDC5 were transfected with lncRNA KCNQ1 overlapping transcript 1 small hairpin RNA (KCNQ1OT1 shRNA), miR-128-3p mimic or Sirtuin-1 small interfering RNA (SIRT1 siRNA), then stimulated with Palmitic acid (PA) followed by the treatment of Sal B. Then, inflammatory response, apoptosis, and autophagy of ATDC5 cells in different groups were detected. Results Sal B reduced the body weight, decreased the levels of inflammatory markers, and improved cartilage damage in OA mice fed with HFD. KCNQ1OT1 was downregulated in OA mice fed with HFD, and PA-stimulated ATDC5 cells. Sal B protected ATDC5 cells against PA-mediated inflammation, apoptosis, and the inhibition of autophagy, while knockdown of KCNQ1OT1 reversed these results. KCNQ1OT1 was found to be functioned as a ceRNA to bind and downregulate the expression of miR-128-3p that was upregulated in PA-induced cells. Furthermore, SIRT1 was verified as a target of miR-128-3p. MiR-128-3p overexpression reversed the effects of Sal B on inflammatory response, apoptosis, and autophagy in PA-stimulated cells, and knockdown of SIRT1 displayed the similar results. Conclusion Sal B exerted a chondroprotective effect by upregulating KCNQ1OT1, which indicates Sal B can used for a therapeutic agent in obesity-related OA. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-022-00686-0.
Collapse
Affiliation(s)
- Tianwen Sun
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, No. 126 of Xiantai Street, Changchun, 130021, Jilin Province, China
| | - Fei Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, No. 126 of Xiantai Street, Changchun, 130021, Jilin Province, China
| | - Gaojian Hu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, No. 126 of Xiantai Street, Changchun, 130021, Jilin Province, China
| | - Zhizhou Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, No. 126 of Xiantai Street, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
90
|
Vlashi R, Zhang X, Wu M, Chen G. Wnt signaling: essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
91
|
Xiong H, Zhao Y, Xu Q, Xie X, Wu J, Hu B, Chen S, Cai X, Zheng Y, Fan C. Biodegradable Hollow-Structured Nanozymes Modulate Phenotypic Polarization of Macrophages and Relieve Hypoxia for Treatment of Osteoarthritis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203240. [PMID: 35843877 DOI: 10.1002/smll.202203240] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Nanozymes are widely applied for treating various major diseases, including neurological diseases and tumors. However, the biodegradability of nanozymes remains a great challenge, which hinders their further clinical translation. Based on the microenvironment of osteoarthritis (OA), a representative pH-responsive biodegradable hollow-structured manganese Prussian blue nanozyme (HMPBzyme) is designed and applied for treatment of OA. HMPBzyme with good pH-responsive biodegradability, biocompatibility, and multi-enzyme activities is constructed by bovine serum albumin bubbles as a template-mediated biomineralization strategy. HMPBzyme suppresses hypoxia-inducible factor-1α (HIF-1α) expression and decreases reactive oxygen species (ROS) level in the in vitro experiment. Furthermore, HMPBzyme markedly suppresses the expression of ROS and alleviates the degeneration of cartilage in OA rat models. The results indicate that the biodegradable HMPBzyme inhibits oxidative damage and relieves hypoxia synergistically to suppress inflammation and promote the anabolism of cartilage extracellular matrix by protecting mitochondrial function and down-regulating the expression of HIF-1α, which modulates the phenotypic conversion of macrophages from pro-inflammatory M1 subtype to anti-inflammatory M2 subtype for OA treatment. This research lays a solid foundation for the design, construction, and biomedical application of biodegradable nanozymes and promotes the application of nanozymes in biomedicine.
Collapse
Affiliation(s)
- Hao Xiong
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, 201306, China
| | - Yongzheng Zhao
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Qinyuan Xu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Xue Xie
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Jianrong Wu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Bing Hu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Shuai Chen
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, 201306, China
| | - Xiaojun Cai
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yuanyi Zheng
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Cunyi Fan
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, 201306, China
| |
Collapse
|
92
|
Circular RNA MELK Promotes Chondrocyte Apoptosis and Inhibits Autophagy in Osteoarthritis by Regulating MYD88/NF-κB Signaling Axis through MicroRNA-497-5p. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:7614497. [PMID: 35992546 PMCID: PMC9356867 DOI: 10.1155/2022/7614497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 12/25/2022]
Abstract
Osteoarthritis (OA) is a rheumatic disease and its pathogenesis involves the dysregulation of noncoding RNAs. Therefore, the regulatory mechanism of circular RNA MELK (circMELK) was specified in this work. OA human cartilage tissue was collected, and circMELK, miR-497-5p, and myeloid differentiation factor 88 (MYD88) expression were examined. Human chondrocytes were stimulated with interleukin- (IL-) 1β and interfered with vectors altering circMELK, miR-497-5p, and MyD88 expression to observe their effects on cell viability, cell cycle and apoptosis, autophagy, and inflammation. The binding relationship between RNAs was verified. The data presented that OA cartilage tissues presented raised circMELK and MYD88 and inhibited miR-497-5p expression. IL-1β suppressed cell viability, prevented cell cycle, and induced apoptosis, autophagy, and inflammation of chondrocytes. Functionally, IL-1β-induced changes of chondrocytes could be attenuated by suppressing circMELK or overexpressing miR-497-5p. circMELK acted as a sponge of miR-497-5p while miR-497-5p was a regulator of MYD88. MYD88 restricted the effect of overexpressing miR-497-5p on IL-1β-stimulated chondrocytes. MYD88 triggered nuclear factor-kappaB (NF-κB) pathway activation. Shortly, CircMELK promotes chondrocyte apoptosis and inhibits autophagy in OA by regulating MYD88/NF-κB signaling axis through miR-497-5p. Our study proposes a new molecular mechanism for the development of OA.
Collapse
|
93
|
Sun P, Xu W, Zhao X, Zhang C, Lin X, Gong M, Fu Z. Ozone induces autophagy by activating PPARγ/mTOR in rat chondrocytes treated with IL-1β. J Orthop Surg Res 2022; 17:351. [PMID: 35842709 PMCID: PMC9287877 DOI: 10.1186/s13018-022-03233-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Background Osteoarthritis (OA) is the main cause of older pain and disability. Intra-articular injections of ozone (O3) commonly have been found to have antioxidative and anti-inflammatory effects to reduce pain and improve function in knee osteoarthritis. It has been reported that reduced autophagy in chondrocytes plays an important role in the development of OA. This study aimed to probe the role of O3 on the autophagy in chondrocytes treated with IL-1β. Methods Primary chondrocytes were isolated from Wistar rats cartilage within 3 days. The OA chondrocytes model was induced via treatment with IL-1β for 24 h. Then the cells were treated with O3 and GW9662, the inhibitor of PPARγ. Cell viability was assessed by CCK-8. Further, the cells subjected to Western blot analysis, qRT-PCR and immunofluorescence assay. The numbers of autophagosomes were observed via transmission electron microscopy. Results 30 μg/ml O3 improved the viability of chondrocytes treated with IL-1β. The decreased level of autophagy proteins and the numbers of autophagosomes improved in IL-1β-treated chondrocytes with O3 via activating PPARγ/mTOR. In addition, the qRT-PCR results showed that O3 decreased the levels of IL-6, TNF-α and MMP-3, MMP-13 in chondrocytes treated with IL-1β. Conclusions 30 μg/ml O3 improved autophagy via activating PPARγ/mTOR signaling and suppressing inflammation in chondrocytes treated with IL-1β.
Collapse
Affiliation(s)
- Panpan Sun
- Department of Pain Management, The Second Hospital of Shandong University, Jinan, 250033, People's Republic of China.,Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, People's Republic of China
| | - Weicheng Xu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Xu Zhao
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Cong Zhang
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, People's Republic of China
| | - Xiaowen Lin
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Moxuan Gong
- Department of Anesthesiology, The Second Hospital of Shandong University, Jinan, 250033, People's Republic of China
| | - Zhijian Fu
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, People's Republic of China. .,Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China.
| |
Collapse
|
94
|
Zhang H, Li X, Li Y, Yang X, Liao R, Wang H, Yang J. CREB Ameliorates Osteoarthritis Progression Through Regulating Chondrocytes Autophagy via the miR-373/METTL3/TFEB Axis. Front Cell Dev Biol 2022; 9:778941. [PMID: 35756079 PMCID: PMC9218638 DOI: 10.3389/fcell.2021.778941] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation. Dysregulated autophagy is a major cause of OA. However, the underlying mechanism is unclear. Here, we found that the expression of element-binding protein (CREB) was downregulated in both cartilage tissues of OA patients and mouse OA model. In tert-butyl hydroperoxide solution-treated chondrocytes, increased apoptosis and autophagic blockage were attenuated by CREB overexpression. Mechanically, MiR-373 directly targeted the 3′UTR of methyltransferase-like 3 (METTL3) and led to its downregulation. METTL3 epigenetically suppressed TFEB. The upregulation of miR-373 by CREB overexpression induced the release of TFEB from METTL3 and restored the autophagy activity of chondrocytes. Taken together, our study showed that CREB alleviates OA injury through regulating the expression of miR-373, which directly targeted METTL3, and finally relieved TFEB from METTL3-mediated epigenetic suppression. The CREB/miR-373/METTL3/TFEB axis may be used as a potential target for the treatment of OA.
Collapse
Affiliation(s)
- Haibin Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Xilei Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Xucheng Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Runzhi Liao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Haoyi Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Junxiao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
95
|
Katsoula G, Steinberg J, Tuerlings M, Coutinho de Almeida R, Southam L, Swift D, Meulenbelt I, Wilkinson JM, Zeggini E. A molecular map of long non-coding RNA expression, isoform switching and alternative splicing in osteoarthritis. Hum Mol Genet 2022; 31:2090-2105. [PMID: 35088088 PMCID: PMC9239745 DOI: 10.1093/hmg/ddac017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Osteoarthritis is a prevalent joint disease and a major cause of disability worldwide with no curative therapy. Development of disease-modifying therapies requires a better understanding of the molecular mechanisms underpinning disease. A hallmark of osteoarthritis is cartilage degradation. To define molecular events characterizing osteoarthritis at the whole transcriptome level, we performed deep RNA sequencing in paired samples of low- and high-osteoarthritis grade knee cartilage derived from 124 patients undergoing total joint replacement. We detected differential expression between low- and high-osteoarthritis grade articular cartilage for 365 genes and identified a 38-gene signature in osteoarthritis cartilage by replicating our findings in an independent dataset. We also found differential expression for 25 novel long non-coding RNA genes (lncRNAs) and identified potential lncRNA interactions with RNA-binding proteins in osteoarthritis. We assessed alterations in the relative usage of individual gene transcripts and identified differential transcript usage for 82 genes, including ABI3BP, coding for an extracellular matrix protein, AKT1S1, a negative regulator of the mTOR pathway and TPRM4, coding for a transient receptor potential channel. We further assessed genome-wide differential splicing, for the first time in osteoarthritis, and detected differential splicing for 209 genes, which were enriched for extracellular matrix, proteoglycans and integrin surface interactions terms. In the largest study of its kind in osteoarthritis, we find that isoform and splicing changes, in addition to extensive differences in both coding and non-coding sequence expression, are associated with disease and demonstrate a novel layer of genomic complexity to osteoarthritis pathogenesis.
Collapse
Affiliation(s)
- Georgia Katsoula
- Technical University of Munich (TUM), School of Medicine, Munich 81675, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Julia Steinberg
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
- Daffodil Centre, University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW 1340, Australia
| | - Margo Tuerlings
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Diane Swift
- Department of Oncology and Metabolism, University of Sheffield, Metabolic Bone Unit, Sorby Wing Northern General Hospital Sheffield, Sheffield, S5 7AU, UK
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - J Mark Wilkinson
- Department of Oncology and Metabolism, University of Sheffield, Metabolic Bone Unit, Sorby Wing Northern General Hospital Sheffield, Sheffield, S5 7AU, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine, Munich 81675, Germany
| |
Collapse
|
96
|
Ren C, Jin J, Li C, Xiang J, Wu Y, Zhou Y, Sun L, Zhang X, Tian N. Metformin inactivates the cGAS-STING pathway through autophagy and suppresses senescence in nucleus pulposus cells. J Cell Sci 2022; 135:276176. [PMID: 35722742 DOI: 10.1242/jcs.259738] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/13/2022] [Indexed: 12/09/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a complex process involving many factors, among which excessive senescence of nucleus pulposus cells (NPCs) is considered to be the main factor. Our previous study found that metformin may inhibit senescence in nucleus pulposus cells; however, its working mechanism is still largely unknown. In the current study, we found that metformin may inactivate cGAS-STING pathway during oxidative stress. Knock-down of STING may further suppress senescence, indicating metformin may exert its effect through cGAS-STING pathway. Damaged DNA is a major inducer of the activation of cGAS-STING pathway. Mechanistically, our study showed that DNA damage was reduced during metformin treatment; however, suppression of autophagy by 3-methyladenine (3MA) may compromise the effect of metformin on DNA damage. The in vivo study also showed that 3MA may recede the therapeutic effect of metformin on IVDD. Taken together, our results reveal that metformin may suppress senescence via inactivating the cGAS-STING pathway through autophagy, implying the new application of metformin in cGAS-STING pathway related diseases.
Collapse
Affiliation(s)
- Chenghao Ren
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Jie Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Chenchao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Jianwei Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Liaojun Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang Province, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| |
Collapse
|
97
|
Li M, Peng Z, Wang X, Wang Y. Monoamine oxidase A attenuates chondrocyte loss and extracellular matrix degradation in osteoarthritis by inducing autophagy. Int Immunopharmacol 2022; 109:108772. [PMID: 35461155 DOI: 10.1016/j.intimp.2022.108772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Osteoarthritis (OA) is a prevalent degenerative joint disorder characterized by cartilage destruction and extracellular matrix (ECM) degeneration. Here, we studied the potential function of monoamine oxidase A (MAOA) in OA pathogenesis. METHODS Cartilage tissue samples were collected from 33 patients with knee OA and nine normal healthy controls. Sprague-Dawley rats with anterior cruciate ligament transection (ACLT) and primary chondrocytes treated with interleukin (IL)-1β were used as OA animal and cell models, respectively. The effects of adenovirus-mediated MAOA overexpression in OA models were studied using Safranin-O staining, immunohistochemistry, CCK-8 assay, EdU assay, flow cytometry, qRT-PCR, western blotting, and immunofluorescence. RESULTS MAOA was identified as an overlapping downregulating gene in the GSE82107, GSE1919, GSE169077, and GSE29746 datasets. MAOA expression was negatively correlated with OA severity. MAOA downregulation was confirmed in ACLT rats and IL-1β-treated chondrocytes. Notably, MAOA overexpression significantly inhibited ACLT-induced OA pathogenesis in rats, as was evidenced by the reduced Osteoarthritis Research Society International (OARSI) score and serum crosslinked C-telopeptides of type II collagen (CTX-II) and cartilage oligomeric matrix protein (COMP) levels. These findings show that MAOA overexpression inhibits extracellular matrix (ECM) degradation and promotes ACLT-induced autophagy. The effects of MAOA on ECM degradation and autophagy were also confirmed in IL-1β-treated primary chondrocytes. Additionally, MAOA protects chondrocytes against IL-1β-induced apoptosis. Furthermore, treating chondrocytes with 3-MA significantly attenuated the protective effects of MAOA. CONCLUSION MAOA was identified as a downregulated gene in OA. Restoring MAOA expression protects against chondrocyte loss and ECM degradation through autophagy regulation.
Collapse
Affiliation(s)
- Ming Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, PR China
| | - Zhibin Peng
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin 150070, Heilongjiang, PR China
| | - Xiaokun Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, PR China
| | - Yansong Wang
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin 150070, Heilongjiang, PR China.
| |
Collapse
|
98
|
Autophagy guards tendon homeostasis. Cell Death Dis 2022; 13:402. [PMID: 35461310 PMCID: PMC9035152 DOI: 10.1038/s41419-022-04824-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023]
Abstract
Tendons are vital collagen-dense specialized connective tissues transducing the force from skeletal muscle to the bone, thus enabling movement of the human body. Tendon cells adjust matrix turnover in response to physiological tissue loading and pathological overloading (tendinopathy). Nevertheless, the regulation of tendon matrix quality control is still poorly understood and the pathogenesis of tendinopathy is presently unsolved. Autophagy, the major mechanism of degradation and recycling of cellular components, plays a fundamental role in the homeostasis of several tissues. Here, we investigate the contribution of autophagy to human tendons’ physiology, and we provide in vivo evidence that it is an active process in human tendon tissue. We show that selective autophagy of the endoplasmic reticulum (ER-phagy), regulates the secretion of type I procollagen (PC1), the major component of tendon extracellular matrix. Pharmacological activation of autophagy by inhibition of mTOR pathway alters the ultrastructural morphology of three-dimensional tissue-engineered tendons, shifting collagen fibrils size distribution. Moreover, autophagy induction negatively affects the biomechanical properties of the tissue-engineered tendons, causing a reduction in mechanical strength under tensile force. Overall, our results provide the first evidence that autophagy regulates tendon homeostasis by controlling PC1 quality control, thus potentially playing a role in the development of injured tendons.
Collapse
|
99
|
Zhu J, Yang S, Qi Y, Gong Z, Zhang H, Liang K, Shen P, Huang YY, Zhang Z, Ye W, Yue L, Fan S, Shen S, Mikos AG, Wang X, Fang X. Stem cell-homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model. SCIENCE ADVANCES 2022; 8:eabk0011. [PMID: 35353555 PMCID: PMC8967232 DOI: 10.1126/sciadv.abk0011] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Osteoarthritis (OA) is a common joint disease characterized by progressive loss of cartilage and reduction in lubricating synovial fluid, which lacks effective treatments currently. Here, we propose a hydrogel-based miRNA delivery strategy to rejuvenate impaired cartilage by creating a regenerative microenvironment to mitigate chondrocyte senescence that mainly contributes to cartilage breakdown during OA development. An aging-related miRNA, miR-29b-5p, was first found to be markedly down-regulated in OA cartilage, and their up-regulation suppressed the expression of matrix metalloproteinases and senescence-associated genes (P16INK4a/P21) via ten-eleven-translocation enzyme 1 (TET1). An injectable bioactive self-assembling peptide nanofiber hydrogel was applied to deliver agomir-29b-5p, which was functionalized by conjugating a stem cell-homing peptide SKPPGTSS for endogenous synovial stem cell recruitment simultaneously. Sustained miR-29b-5p delivery and recruitment of synovial stem cells and their subsequent differentiation into chondrocytes led to successful cartilage repair and chondrocyte rejuvenation. This strategy enables miRNA-based therapeutic modality to become a viable alternative for surgery in OA treatment.
Collapse
Affiliation(s)
- Jinjin Zhu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Shuhui Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yadong Qi
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Zhe Gong
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
| | - Haitao Zhang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
| | - Kaiyu Liang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
| | - Panyang Shen
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
| | - Yin-Yuan Huang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhe Zhang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Weilong Ye
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Yue
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Shunwu Fan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
| | - Shuying Shen
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Corresponding author. (X.F.); (X.W.)
| | - Xiangqian Fang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
- Corresponding author. (X.F.); (X.W.)
| |
Collapse
|
100
|
Arnadi A, Afriwardi A, Ali H, Sahputra RE. The Association between Modifiable Risk Factor with Inflammatory Marker in Knee Osteoarthritis Women. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: IL-1β and TNF-α are vital inflammatory cytokines in the pathophysiological process of Osteoarthritis (OA). Several risk factors can increase the expression of these cytokines, such as BMI, physical activity, and menopausal status.
Aims: This study aims to determine the relationship of modifiable factors with synovial fluid IL-1β and TNF-α levels in knee OA women.
Methods: The cross-sectional study was conducted at the orthopedic poly hospital Arifin Achmad Riau Province and Ibnu Sina Hospital in Pekanbaru City. A total of 93 women with knee OA were taken as samples by consecutive sampling. Data were obtained directly from respondents by conducting interviews using a questionnaire, measuring weight and height, examining levels of IL-1β and TNF-α from the synovial fluid using the enzyme-linked immunosorbent assay (ELISA) method. The data were processed computerized using the Person correlation test, One Way Anova, and t-Test. The statistical analysis results were considered significant if the p-value was 0<05.
Results: the average age of subjects was 60.67 + 9.99 years, 87.8% aged > 40 years, 84.9% had menopause, and at most had moderate physical activity degrees (51.6%). The mean BMI was 27.18+4.17, the average of IL-1β 424.73+188.01 pg/mL, and TNF-α 105,17+48.98 ng/L. There was a significant positive correlation with moderate strength between BMI and levels of IL-1β and TNF-α synovial fluid (p=0.037, r=0.217, and p=0.047, r=0.207).
Conclusion: BMI is a risk factor for IL-1β and TNF-α levels in synovial fluid of knee joints in women with OA, but physical activity and menopausal status are not risk factors.
Collapse
|