51
|
Ulluwishewa D, Nicholls G, Henderson H, Bernstein D, Fraser K, Barnett MPG, Barnes MJ. Effects of bovine whey protein on exercise-induced gut permeability in healthy adults: a randomised controlled trial. Eur J Appl Physiol 2024; 124:2045-2056. [PMID: 38386104 PMCID: PMC11199293 DOI: 10.1007/s00421-024-05423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE Intestinal permeability is a critical component of gut barrier function. Barrier dysfunction can be triggered by certain stressors such as exercise, and if left unmanaged can lead to local and systemic disorders. The aim of this study was to investigate the effects of a specific whey protein fraction in alleviating exercise-induced gut permeability as assessed by recovery of lactulose/rhamnose (L/R) and lactulose/mannitol (L/M) urinary probes. METHODS Eight males and eight females (aged 18-50) completed two arms of a double-blind, placebo-controlled, crossover study. For each arm participants performed two baseline intestinal permeability assessments, following which they consumed the treatment (2 g/day of milk powder containing 200 mg of whey protein) or placebo (2 g/day of milk powder) for 14 days, before performing a post-exercise permeability assessment. The exercise protocol involved a 20-min run at 80% of maximal oxygen uptake on a 1% incline. RESULTS Mixed model analysis revealed an increase in L/R (23%; P < 0.001) and L/M (20%; P < 0.01) recovery following exercise. However, there was no treatment or treatment × exercise effect. CONCLUSION The exercise protocol utilised in our study induces gut permeability. However, consuming whey protein, at the dose and timing prescribed, is not able to mitigate this effect.
Collapse
Affiliation(s)
| | - Grayson Nicholls
- School of Sport, Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| | | | | | - Karl Fraser
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Matthew P G Barnett
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| | - Matthew J Barnes
- School of Sport, Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| |
Collapse
|
52
|
Rasmussen TS, Mao X, Forster S, Larsen SB, Von Münchow A, Tranæs KD, Brunse A, Larsen F, Mejia JLC, Adamberg S, Hansen AK, Adamberg K, Hansen CHF, Nielsen DS. Overcoming donor variability and risks associated with fecal microbiota transplants through bacteriophage-mediated treatments. MICROBIOME 2024; 12:119. [PMID: 38951925 PMCID: PMC11218093 DOI: 10.1186/s40168-024-01820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/19/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) and fecal virome transplantation (FVT, sterile filtrated donor feces) have been effective in treating recurrent Clostridioides difficile infections, possibly through bacteriophage-mediated modulation of the gut microbiome. However, challenges like donor variability, costly screening, coupled with concerns over pathogen transfer (incl. eukaryotic viruses) with FMT or FVT hinder their wider clinical application in treating less acute diseases. METHODS To overcome these challenges, we developed methods to broaden FVT's clinical application while maintaining efficacy and increasing safety. Specifically, we employed the following approaches: (1) chemostat-fermentation to reproduce the bacteriophage FVT donor component and remove eukaryotic viruses (FVT-ChP), (2) solvent-detergent treatment to inactivate enveloped viruses (FVT-SDT), and (3) pyronin-Y treatment to inhibit RNA virus replication (FVT-PyT). We assessed the efficacy of these processed FVTs in a C. difficile infection mouse model and compared them with untreated FVT (FVT-UnT), FMT, and saline. RESULTS FVT-SDT, FVT-UnT, and FVT-ChP reduced the incidence of mice reaching the humane endpoint (0/8, 2/7, and 3/8, respectively) compared to FMT, FVT-PyT, and saline (5/8, 7/8, and 5/7, respectively) and significantly reduced the load of colonizing C. difficile cells and associated toxin A/B levels. There was a potential elimination of C. difficile colonization, with seven out of eight mice treated with FVT-SDT testing negative with qPCR. In contrast, all other treatments exhibited the continued presence of C. difficile. Moreover, the results were supported by changes in the gut microbiome profiles, cecal cytokine levels, and histopathological findings. Assessment of viral engraftment following FMT/FVT treatment and host-phage correlations analysis suggested that transfer of phages likely were an important contributing factor associated with treatment efficacy. CONCLUSIONS This proof-of-concept study shows that specific modifications of FVT hold promise in addressing challenges related to donor variability and infection risks. Two strategies lead to treatments significantly limiting C. difficile colonization in mice, with solvent/detergent treatment and chemostat propagation of donor phages emerging as promising approaches. Video Abstract.
Collapse
Affiliation(s)
- Torben Sølbeck Rasmussen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark.
| | - Xiaotian Mao
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark
| | - Sarah Forster
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark
| | - Sabina Birgitte Larsen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark
| | - Alexandra Von Münchow
- Section of Experimental Animal Models, Department, of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9 1, 1871, Frederiksberg, Denmark
| | - Kaare Dyekær Tranæs
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark
| | - Anders Brunse
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg, Denmark
| | - Frej Larsen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark
| | - Josue Leonardo Castro Mejia
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark
| | - Signe Adamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Axel Kornerup Hansen
- Section of Experimental Animal Models, Department, of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9 1, 1871, Frederiksberg, Denmark
| | - Kaarel Adamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Camilla Hartmann Friis Hansen
- Section of Experimental Animal Models, Department, of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9 1, 1871, Frederiksberg, Denmark
| | - Dennis Sandris Nielsen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark.
| |
Collapse
|
53
|
Yemula N, Sheikh R. Gut microbiota in axial spondyloarthritis : genetics, medications and future treatments. ARP RHEUMATOLOGY 2024; 3:216-225. [PMID: 39243363 DOI: 10.63032/wuii1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Axial spondyloarthritis, also referred to as ankylosing spondylitis, is a chronic inflammatory condition that predominantly affects the axial spine but may also present with peripheral arthritis. It falls within the umbrella of disorders known as spondyloarthropathies. In addition to axial spondyloarthritis, this group includes psoriatic arthritis, enteropathic arthritis, reactive arthritis, and undifferentiated spondyloarthropathy, with axial spondyloarthritis being one of the most common. The overall mechanisms underlying the development of axial spondyloarthritis are complex and multifactorial. There is a significant and well-recognized association between axial spondyloarthritis and the HLA-B27 gene, but there have also been non-HLA genes identified in the disease process, as well as certain inflammatory cytokines that play a role in the inflammatory process, such as tumor necrosis factor (TNF). More recently, there has been research and new evidence linking changes in the gut microbiota to the disease process of axial spondyloarthritis. Research into the role of the gut microbiota and gut dysbiosis is a large, ever-growing field. It has been associated with a multitude of conditions, including axial spondyloarthritis. This mini-review highlights the symbiotic relationship of the gut microbiota with the pathogenesis, therapeutic agents and future treatments of axial spondyloarthritis.
Collapse
|
54
|
Sun X, Zhang H, Zhang X, Gao W, Zhou C, Kou X, Deng J, Zhang J. The Cellular Microbiome of Visceral Organs: An Inherent Inhabitant of Parenchymal Cells. Microorganisms 2024; 12:1333. [PMID: 39065101 PMCID: PMC11279389 DOI: 10.3390/microorganisms12071333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The cell is the basic unit of life. It is composed of organelles and various organic and inorganic biomolecules. Recent 16S ribosomal ribonucleic acid (16S rRNA) gene sequencing studies have revealed the presence of tissue bacteria in both tumor and normal tissues. Recently, we found that the liver microbiome resided in hepatocytes. Here, we further report on the cellular microbiome in the parenchymal cells of visceral organs as inherent inhabitants. We performed 16S rRNA gene sequencing on visceral organs of male adult Sprague Dawley (SD) rats, pregnant rats, newborn rats, and fetuses and placentas; then, we performed fluorescence in situ hybridization and immunofluorescence in visceral organs. Furthermore, we performed Western blotting on nuclear and cytoplasmic extractions of visceral organs of SD rats and cell lines HepG2, Huh-7, Hepa1-6, and HSC-T6. A high abundance of 16S rRNA gene was detected in the visceral organs of male adult, pregnant, newborn, and fetal rats as well as their placentas. The number of operational taxonomic units (OTUs) of visceral bacteria was higher than that of the feces and ileum bacteria. Bacterial 16S rRNA, lipopolysaccharide (LPS), and lipoteichoic acid (LTA) were found in the parenchymal cells of visceral organs, as well as in HepG2, Huh-7, HSC-T6, and Hepa1-6 cells. LPS consistently appeared in the nucleus of cells, while LTA was mainly found in the cytoplasm. In conclusion, the cellular microbiome is an intrinsic component of cells. Gram-negative bacteria are located in the nucleus, and Gram-positive bacteria are located in the cytoplasm. This differs from the gut microbiome and may be inherited.
Collapse
Affiliation(s)
- Xiaowei Sun
- Correspondence: (X.S.); (J.Z.); Tel.: +86-13519316382 (X.S.); +86-15095387695 (J.Z.)
| | | | | | | | | | | | | | - Jiangang Zhang
- Pathology Institute, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (H.Z.); (X.Z.); (W.G.); (C.Z.); (X.K.); (J.D.)
| |
Collapse
|
55
|
Gawey BJ, Mars RA, Kashyap PC. The role of the gut microbiome in disorders of gut-brain interaction. FEBS J 2024. [PMID: 38922780 DOI: 10.1111/febs.17200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Disorders of Gut-Brain Interaction (DGBI) are widely prevalent and commonly encountered in gastroenterology practice. While several peripheral and central mechanisms have been implicated in the pathogenesis of DGBI, a recent body of work suggests an important role for the gut microbiome. In this review, we highlight how gut microbiota and their metabolites affect physiologic changes underlying symptoms in DGBI, with a particular focus on their mechanistic influence on GI transit, visceral sensitivity, intestinal barrier function and secretion, and CNS processing. This review emphasizes the complexity of local and distant effects of microbial metabolites on physiological function, influenced by factors such as metabolite concentration, duration of metabolite exposure, receptor location, host genetics, and underlying disease state. Large-scale in vitro work has elucidated interactions between host receptors and the microbial metabolome but there is a need for future research to integrate such preclinical findings with clinical studies. The development of novel, targeted therapeutic strategies for DGBI hinges on a deeper understanding of these metabolite-host interactions, offering exciting possibilities for the future of treatment of DGBI.
Collapse
Affiliation(s)
- Brent J Gawey
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ruben A Mars
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
56
|
Hammerhøj A, Chakravarti D, Sato T, Jensen KB, Nielsen OH. Organoids as regenerative medicine for inflammatory bowel disease. iScience 2024; 27:110118. [PMID: 38947526 PMCID: PMC11214415 DOI: 10.1016/j.isci.2024.110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder with an increasing global prevalence. Managing disease activity relies on various pharmacological options. However, the effectiveness of current therapeutics is limited and not universally applicable to all patients and circumstances. Consequently, developing new management strategies is necessary. Recent advances in endoscopically obtained intestinal biopsy specimens have highlighted the potential of intestinal epithelial organoid transplantation as a novel therapeutic approach. Experimental studies using murine and human organoid transplantations have shown promising outcomes, including tissue regeneration and functional recovery. Human trials with organoid therapy have commenced; thus, this article provides readers with insights into the necessity and potential of intestinal organoid transplantation as a new regenerative therapeutic option in clinical settings and explores its associated challenges.
Collapse
Affiliation(s)
- Alexander Hammerhøj
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kim Bak Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| |
Collapse
|
57
|
Ludgate ME, Masetti G, Soares P. The relationship between the gut microbiota and thyroid disorders. Nat Rev Endocrinol 2024:10.1038/s41574-024-01003-w. [PMID: 38906998 DOI: 10.1038/s41574-024-01003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/23/2024]
Abstract
Disorders of the thyroid gland are common, more prevalent in women than in men, and range from inflammatory to neoplastic lesions. Autoimmune thyroid diseases (AITD) affect 2-5% of the population, while thyroid cancer is the most frequent endocrine malignancy. Treatment for AITD is still restricted to management rather than prevention or cure. Progress has been made in identifying genetic variants that predispose to AITD and thyroid cancer, but the increasing prevalence of all thyroid disorders indicates that factors other than genes are involved. The gut microbiota, which begins to develop before birth, is highly sensitive to diet and the environment, providing a potential mechanism for non-communicable diseases to become communicable. Its functions extend beyond maintenance of gut integrity: the gut microbiota regulates the immune system, contributes to thyroid hormone metabolism and can generate or catabolize carcinogens, all of which are relevant to AITD and thyroid cancer. Observational and interventional studies in animal models support a role for the gut microbiota in AITD, which has been confirmed in some reports from human cohorts, although considerable geographic variation is apparent. Reports of a role for the microbiota in thyroid cancer are more limited, but evidence supports a relationship between gut dysbiosis and thyroid cancer.
Collapse
Affiliation(s)
| | | | - Paula Soares
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S), Porto, Portugal
| |
Collapse
|
58
|
Kodani H, Aoi W, Hirata M, Takami M, Kobayashi Y, Kuwahata M. Skeletal muscle metabolic dysfunction with circulating carboxymethyl-lysine in dietary food additive-induced leaky gut. FASEB J 2024; 38:e23715. [PMID: 38837260 DOI: 10.1096/fj.202302473r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Impaired intestinal permeability induces systemic inflammation and metabolic disturbance. The effect of a leaky gut on metabolism in skeletal muscle, a major nutrient consumer, remains unclear. In this study, we aimed to investigate the glucose metabolic function of the whole body and skeletal muscles in a mouse model of diet-induced intestinal barrier dysfunction. At Week 2, we observed higher intestinal permeability in mice fed a titanium dioxide (TiO2)-containing diet than that of mice fed a normal control diet. Subsequently, systemic glucose and insulin tolerance were found to be impaired. In the skeletal muscle, glucose uptake and phosphorylation levels in insulin signaling were lower in the TiO2 group than those in the control group. Additionally, the levels of pro-inflammatory factors were higher in TiO2-fed mice than those in the control group. We observed higher carboxymethyl-lysin (CML) levels in the plasma and intestines of TiO2-fed mice and lower insulin-dependent glucose uptake in CML-treated cultured myotubes than those in the controls. Finally, soluble dietary fiber supplementation improved glucose and insulin intolerance, suppressed plasma CML, and improved intestinal barrier function. These results suggest that an impaired intestinal barrier leads to systemic glucose intolerance, which is associated with glucose metabolism dysfunction in the skeletal muscles due to circulating CML derived from the intestine. This study highlights that the intestinal condition regulates muscle and systemic metabolic health.
Collapse
Affiliation(s)
- Hinako Kodani
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Wataru Aoi
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Mikiko Hirata
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Maki Takami
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Yukiko Kobayashi
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Masashi Kuwahata
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
59
|
Álvarez-Herms J, Odriozola A. Microbiome and physical activity. ADVANCES IN GENETICS 2024; 111:409-450. [PMID: 38908903 DOI: 10.1016/bs.adgen.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Regular physical activity promotes health benefits and contributes to develop the individual biological potential. Chronical physical activity performed at moderate and high-intensity is the intensity more favorable to produce health development in athletes and improve the gut microbiota balance. The athletic microbiome is characterized by increased microbial diversity and abundance as well as greater phenotypic versatility. In addition, physical activity and microbiota composition have bidirectional effects, with regular physical activity improving microbial composition and microbial composition enhancing physical performance. The improvement of physical performance by a healthy microbiota is related to different phenotypes: i) efficient metabolic development, ii) improved regulation of intestinal permeability, iii) favourable modulation of local and systemic inflammatory and efficient immune responses, iv) efective regulation of systemic pH and, v) protection against acute stressful events such as environmental exposure to altitude or heat. The type of sport, both intensity or volume characteristics promote microbiota specialisation. Individual assessment of the state of the gut microbiota can be an effective biomarker for monitoring health in the medium to long term. The relationship between the microbiota and the rest of the body is bidirectional and symbiotic, with a full connection between the systemic functions of the nervous, musculoskeletal, endocrine, metabolic, acid-base and immune systems. In addition, circadian rhythms, including regular physical activity, directly influence the adaptive response of the microbiota. In conclusion, regular stimuli of moderate- and high-intensity physical activity promote greater diversity, abundance, resilience and versatility of the gut microbiota. This effect is highly beneficial for human health when healthy lifestyle habits including nutrition, hydration, rest, chronoregulation and physical activity.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain; Phymo® Lab, Physiology and Molecular Laboratory, Collado Hermoso, Segovia, Spain.
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
60
|
Dimba NR, Mzimela N, Khathi A. Improved Gut Health May Be a Potential Therapeutic Approach for Managing Prediabetes: A Literature Review. Biomedicines 2024; 12:1275. [PMID: 38927482 PMCID: PMC11201806 DOI: 10.3390/biomedicines12061275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Given the growing global threat and rising prevalence of type 2 diabetes mellitus (T2DM), addressing this metabolic disease is imperative. T2DM is preceded by prediabetes (PD), an intermediate hyperglycaemia that goes unnoticed for years in patients. Several studies have shown that gut microbial diversity and glucose homeostasis in PD or T2DM patients are affected. Therefore, this review aims to synthesize the existing literature to elucidate the association between high-calorie diets, intestinal permeability and their correlation with PD or T2DM. Moreover, it discusses the beneficial effects of different dietary interventions on improving gut health and glucose metabolism. The primary factor contributing to complications seen in PD or T2DM patients is the chronic consumption of high-calorie diets, which alters the gut microbial composition and increases the translocation of toxic substances from the intestinal lumen into the bloodstream. This causes an increase in inflammatory response that further impairs glucose regulation. Several dietary approaches or interventions have been implemented. However, only a few are currently in use and have shown promising results in improving beneficial microbiomes and glucose metabolism. Therefore, additional well-designed studies are still necessary to thoroughly investigate whether improving gut health using other types of dietary interventions can potentially manage or reverse PD, thereby preventing the onset of T2DM.
Collapse
Affiliation(s)
| | | | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville 4000, South Africa; (N.R.D.); (N.M.)
| |
Collapse
|
61
|
Chang H, Perkins MH, Novaes LS, Qian F, Han W, de Araujo IE. An Amygdalar-Vagal-Glandular Circuit Controls the Intestinal Microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.594027. [PMID: 38853855 PMCID: PMC11160750 DOI: 10.1101/2024.06.02.594027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Psychological states can regulate intestinal mucosal immunity by altering the gut microbiome. However, the link between the brain and microbiome composition remains elusive. We show that Brunner's glands in the duodenal submucosa couple brain activity to intestinal bacterial homeostasis. Brunner's glands mediated the enrichment of gut probiotic species in response to stimulation of abdominal vagal fibers. Cell-specific ablation of the glands triggered transmissible dysbiosis associated with an immunodeficiency syndrome that led to mortality upon gut infection with pathogens. The syndrome could be largely prevented by oral or intra-intestinal administration of probiotics. In the forebrain, we identified a vagally-mediated, polysynaptic circuit connecting the glands of Brunner to the central nucleus of the amygdala. Intra-vital imaging revealed that excitation of central amygdala neurons activated Brunner's glands and promoted the growth of probiotic populations. Our findings unveil a vagal-glandular neuroimmune circuitry that may be targeted for the modulation of the gut microbiome. The glands of Brunner may be the critical cells that regulate the levels of Lactobacilli species in the intestine.
Collapse
|
62
|
Ishioh M, Nozu T, Miyagishi S, Igarashi S, Funayama T, Ueno N, Okumura T. Brain histamine improves colonic hyperpermeability through the basal forebrain cholinergic neurons, adenosine A2B receptors and vagus nerve in rats. Biochem Pharmacol 2024; 224:116201. [PMID: 38608783 DOI: 10.1016/j.bcp.2024.116201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/20/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Intestinal barrier dysfunction, leaky gut, is implicated in various diseases, including irritable bowel syndrome (IBS) and neurodegenerative conditions like Alzheimer's disease. Our recent investigation revealed that basal forebrain cholinergic neurons (BFCNs), critical for cognitive function, receive signals from butyrate and orexin, playing a role in regulating intestinal barrier function through adenosine A2B signaling and the vagus. This study explores the involvement and function of brain histamine, linked to BFCNs, in the regulation of intestinal barrier function. Colonic permeability, assessed by quantifying absorbed Evans blue in rat colonic tissue, showed that histamine did not affect increased colonic permeability induced by LPS when administered subcutaneously. However, intracisternal histamine administration improved colonic hyperpermeability. Elevating endogenous histamine levels in the brain with SKF91488, a histamine N-methyltransferase inhibitor, also improved colonic hyperpermeability. This effect was abolished by intracisternal chlorpheniramine, an histamine H1 receptor antagonist, not ranitidine, an H2 receptor antagonist. The SKF91488-induced improvement in colonic hyperpermeability was blocked by vagotomy, intracisternal pirenzepine (suppressing BFCNs activity), or alloxazine (an adenosine A2B receptor antagonist). Additionally, intracisternal chlorpheniramine injection eliminated butyrate-induced improvement in colonic hyperpermeability. These findings suggest that brain histamine, acting via the histamine H1 receptor, regulates intestinal barrier function involving BFCNs, adenosine A2B signaling, and the vagus. Brain histamine appears to centrally regulate intestinal barrier function influenced by butyrate, differentiating its actions from peripheral histamine in conditions like IBS, where mast cell-derived histamine induces leaky gut. Brain histamine emerges as a potential pharmacological target for diseases associated with leaky gut, such as dementia and IBS.
Collapse
Affiliation(s)
- Masatomo Ishioh
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan.
| | - Tsukasa Nozu
- Department of General Medicine, Asahikawa Medical University, Japan; Department of Regional Medicine and Education, Asahikawa Medical University, Japan; Center for Medical Education, Asahikawa Medical University, Japan
| | - Saori Miyagishi
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Sho Igarashi
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Takuya Funayama
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Nobuhiro Ueno
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan
| | - Toshikatsu Okumura
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan
| |
Collapse
|
63
|
Jaquez-Durán G, Arellano-Ortiz AL. Western diet components that increase intestinal permeability with implications on health. INT J VITAM NUTR RES 2024; 94:405-421. [PMID: 38009780 DOI: 10.1024/0300-9831/a000801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Intestinal permeability is a physiological property that allows necessary molecules to enter the organism. This property is regulated by tight junction proteins located between intestinal epithelial cells. However, various factors can increase intestinal permeability (IIP), including diet. Specific components in the Western diet (WD), such as monosaccharides, fat, gluten, salt, alcohol, and additives, can affect the tight junctions between enterocytes, leading to increased permeability. This review explains how these components promote IIP and outlines their potential implications for health. In addition, we describe how a reduction in WD consumption may help improve dietary treatment of diseases associated with IIP. Research has shown that some of these components can cause changes in the gut microbiota, leading to dysbiosis, which can promote greater intestinal permeability and displacement of endotoxins into the bloodstream. These endotoxins include lipopolysaccharides derived from gram-negative bacteria, and their presence has been associated with various diseases, such as autoimmune, neurological, and metabolic diseases like diabetes and cardiovascular disease. Therefore, nutrition professionals should promote the reduction of WD consumption and consider the inclusion of healthy diet components as part of the nutritional treatment for diseases associated with increased intestinal permeability.
Collapse
Affiliation(s)
- Gilberto Jaquez-Durán
- Departamento de Ciencias de la Salud, División Multidisciplinaria de Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez, México
| | - Ana Lidia Arellano-Ortiz
- Departamento de Ciencias de la Salud, División Multidisciplinaria de Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez, México
| |
Collapse
|
64
|
Ye Q, Huang S, Wang Y, Chen S, Yang H, Tan W, Wu Z, Wang A, Chen Y. Wogonin improves colitis by activating the AhR pathway to regulate the plasticity of ILC3/ILC1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155425. [PMID: 38518634 DOI: 10.1016/j.phymed.2024.155425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Intestinal barrier dysfunction caused by the disrupted balance of group 3 innate lymphoid cells (ILC3)/group 1 innate lymphoid cells (ILC1) is a significant feature in the pathogenesis of inflammatory bowel disease (IBD). Activation of aryl hydrocarbon receptor (AhR) signaling contributes to the maintenance of ILC3/ILC1 balance. Wogonin, a natural flavonoid from Scutellaria baicalensis Georgi, can repair intestinal mucosal damage of IBD. However, it remains unclear if wogonin can exert a therapeutic effect by activating the AhR pathway to regulate the plasticity of ILC3/ILC1. PURPOSE In this study, we investigated the immunomodulatory effects of wogonin on IBD and its potential mechanisms in vitro and in vivo. STUDY DESIGN AND METHODS Chronic colitis was induced by four cycles of 2 % DSS treatment in mice. 20 mg kg-1/day wogonin was administrated by oral gavage and mice were treated intraperitoneally with 10 mg kg-1/2 days CH223191 to block the AhR pathway. Colon tissues were processed for histopathological examination and evaluation of the epithelial barrier function by immunohistochemistry. The activation of the AhR pathway and the plasticity of ILC3/ILC1 were determined by western blot and flow cytometry. Then, we also detected the intestinal microflora and their metabolites by 16 s sequencing and non-targeted Metabolomics analysis. Furthermore, an in vitro culture system consisting of MNK3 cells and NCM460 cells, and a CETSA assay were performed to confirm the molecular mechanism. RESULTS Wogonin ameliorated histological severity of the colon, decreased the secretion of inflammatory factors, and increased tight junction proteins in colitis mice. These effects are associated with the tendency of conversion from ILC3 to ILC1 prevented by wogonin, which was offset by AhR antagonist CH223191. In addition, wogonin exerted the curative effect by altering gut microbiota to produce metabolites such as Kynurenic acid, and 1H-Indole-3-carboxaldehyde as AhR endogenous ligands. In vitro data further verified that wogonin as an exogenous ligand directly binds to the structural domain of AhR by CETSA. Also, the supernatant of MNK-3 cells stimulated with wogonin enhanced expression of Occludin and Claudin1 in NCM460 cells induced by LPS. CONCLUSION Cumulatively, our study illustrated that wogonin improved the outcomes of DSS-induced chronic colitis via regulating the plasticity of ILC3/ILC1. Its specific mechanism is to binding to AhR directly, and to activate the AhR pathway indirectly by altering the tryptophan metabolisms of gut microbiota.
Collapse
Affiliation(s)
- Qiujuan Ye
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Shaowei Huang
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China
| | - Ying Wang
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China
| | - Shuze Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Huiping Yang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Weihao Tan
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Zaoxuan Wu
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Anjiang Wang
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China
| | - Ye Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China.
| |
Collapse
|
65
|
Yao S, Yagi S, Sugimoto T, Asahara T, Uemoto S, Hatano E. Occult bacteremia in living donor liver transplantation: a prospective observational study of recipients and donors. Surg Today 2024; 54:596-605. [PMID: 38072872 DOI: 10.1007/s00595-023-02778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/01/2023] [Indexed: 05/21/2024]
Abstract
PURPOSE To investigate the incidence and clinical impact of occult bacteremia in liver transplantation (LT). METHODS This prospective observational study involved a fixed-point observation for up to 2 weeks after living donor LT in 20 recipients, with 20 donors as comparison subjects. Bacteria in the blood samples were detected using the ribosomal RNA-targeted reverse-transcription quantitative polymerase chain reaction method. To identify the causality with the gut microbiota (GM), fecal samples were collected and analyzed simultaneously. RESULTS Occult bacteremia was identified in four recipients (20%) and three donors (15%) before the operation, and in seven recipients (35%) and five donors (25%) after the operation. Clostridium leptum subgroup, Prevotella, Colinesella, Enterobacteriaceae, and Streptococcus were the main pathogens responsible. Although it did not negatively affect the donor post-hepatectomy outcomes, the recipients with occult bacteremia had a higher rate of infectious complications post-LT. The GM analyses showed fewer post-LT predominant obligate anaerobes in both the recipients and donors with occult bacteremia. CONCLUSIONS Occult bacteremia is a common condition that occurs in both donors and recipients. While occult bacteremia generally remains subclinical in the healthy population, there is potential risk of the development of an apparent post-LT infection in recipients who are highly immunosuppressed.
Collapse
Affiliation(s)
- Siyuan Yao
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, USA.
| | - Shintaro Yagi
- Department of Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takuya Sugimoto
- Yakult Central Institute, Yakult Honsha Co. Ltd., Tokyo, Japan
| | - Takashi Asahara
- Yakult Central Institute, Yakult Honsha Co. Ltd., Tokyo, Japan
| | - Shinji Uemoto
- Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
66
|
Yu W, Zhu Z, Tang F. Emerging Insights into Postoperative Neurocognitive Disorders: The Role of Signaling Across the Gut-Brain Axis. Mol Neurobiol 2024:10.1007/s12035-024-04228-y. [PMID: 38801630 DOI: 10.1007/s12035-024-04228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
The pathophysiological regulatory mechanisms in postoperative neurocognitive disorders (PNCDs) are intricately complex. Currently, the pathogenesis of PNCDs has not been fully elucidated. The mechanism involved may include a variety of factors, such as neuroinflammation, oxidative stress, and neuroendocrine dysregulation. Research into the gut microbiota-induced regulations on brain functions is increasingly becoming a focal point of exploration. Emerging evidence has shown that intestinal bacteria may play an essential role in maintaining the homeostasis of various physiological systems and regulating disease occurrence. Recent studies have confirmed the association of the gut-brain axis with central nervous system diseases. However, the regulatory effects of this axis in the pathogenesis of PNCDs remain unclear. Therefore, this paper intends to review the bidirectional signaling and mechanism of the gut-brain axis in PNCDs, summarize the latest research progress, and discuss the possible mechanism of intestinal bacteria affecting nervous system diseases. This review is aimed at providing a scientific reference for predicting the clinical risk of PNCD patients and identifying early diagnostic markers and prevention targets.
Collapse
Affiliation(s)
- Wanqiu Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Zhaoqiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
- Early Clinical Research Ward, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
| | - Fushan Tang
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China.
| |
Collapse
|
67
|
Lin T, Peng M, Zhu Q, Pan X. S1PR2 participates in intestinal injury in severe acute pancreatitis by regulating macrophage pyroptosis. Front Immunol 2024; 15:1405622. [PMID: 38827741 PMCID: PMC11140028 DOI: 10.3389/fimmu.2024.1405622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Background Severe acute pancreatitis (SAP) is an inflammatory disorder affecting the gastrointestinal system. Intestinal injury plays an important role in the treatment of severe acute pancreatitis. In this study, we mainly investigated the role of S1PR2 in regulating macrophage pyroptosis in the intestinal injury of severe acute pancreatitis. Methods The SAP model was constructed using cerulein and lipopolysaccharide, and the expression of S1PR2 was inhibited by JTE-013 to detect the degree of pancreatitis and intestinal tissue damage in mice. Meanwhile, the level of pyroptosis-related protein was detected by western blot, the level of related mRNA was detected by PCR, and the level of serum inflammatory factors was detected by ELISA. In vitro experiments, LPS+ATP was used to construct the pyroptosis model of THP-1. After knockdown and overexpression of S1PR2, the pyroptosis proteins level was detected by western blot, the related mRNA level was detected by PCR, and the level of cell supernatant inflammatory factors were detected by ELISA. A rescue experiment was used to verify the sufficient necessity of the RhoA/ROCK pathway in S1PR2-induced pyroptosis. Meanwhile, THP-1 and FHC were co-cultured to verify that cytokines released by THP-1 after damage could regulate FHC damage. Results Our results demonstrated that JTE-013 effectively attenuated intestinal injury and inflammation in mice with SAP. Furthermore, we observed a significant reduction in the expression of pyroptosis-related proteins within the intestinal tissue of SAP mice upon treatment with JTE-013. We confirmed the involvement of S1PR2 in THP-1 cell pyroptosis in vitro. Specifically, activation of S1PR2 triggered pyroptosis in THP-1 cells through the RhoA/ROCK signaling pathway. Moreover, it was observed that inflammatory factors released during THP-1 cell pyroptosis exerted an impact on cohesin expression in FHC cells. Conclusion The involvement of S1PR2 in SAP-induced intestinal mucosal injury may be attributed to its regulation of macrophage pyroptosis.
Collapse
Affiliation(s)
| | | | | | - Xinting Pan
- Emergency Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
68
|
Nguyen Y, Rudd Zhong Manis J, Ronczkowski NM, Bui T, Oxenrider A, Jadeja RN, Thounaojam MC. Unveiling the gut-eye axis: how microbial metabolites influence ocular health and disease. Front Med (Lausanne) 2024; 11:1377186. [PMID: 38799150 PMCID: PMC11122920 DOI: 10.3389/fmed.2024.1377186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
Abstract
The intricate interplay between the gut microbiota and ocular health has surpassed conventional medical beliefs, fundamentally reshaping our understanding of organ interconnectivity. This review investigates into the intricate relationship between gut microbiota-derived metabolites and their consequential impact on ocular health and disease pathogenesis. By examining the role of specific metabolites, such as short-chain fatty acids (SCFAs) like butyrate and bile acids (BAs), herein we elucidate their significant contributions to ocular pathologies, thought-provoking the traditional belief of organ sterility, particularly in the field of ophthalmology. Highlighting the dynamic nature of the gut microbiota and its profound influence on ocular health, this review underlines the necessity of comprehending the complex workings of the gut-eye axis, an emerging field of science ready for further exploration and scrutiny. While acknowledging the therapeutic promise in manipulating the gut microbiome and its metabolites, the available literature advocates for a targeted, precise approach. Instead of broad interventions, it emphasizes the potential of exploiting specific microbiome-related metabolites as a focused strategy. This targeted approach compared to a precision tool rather than a broad-spectrum solution, aims to explore the therapeutic applications of microbiome-related metabolites in the context of various retinal diseases. By proposing a nuanced strategy targeted at specific microbial metabolites, this review suggests that addressing specific deficiencies or imbalances through microbiome-related metabolites might yield expedited and pronounced outcomes in systemic health, extending to the eye. This focused strategy holds the potential in bypassing the irregularity associated with manipulating microbes themselves, paving a more efficient pathway toward desired outcomes in optimizing gut health and its implications for retinal diseases.
Collapse
Affiliation(s)
- Yvonne Nguyen
- Mercer University School of Medicine, Macon, GA, United States
| | | | | | - Tommy Bui
- Departments of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Allston Oxenrider
- Departments of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Ravirajsinh N. Jadeja
- Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Menaka C. Thounaojam
- Departments of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| |
Collapse
|
69
|
Narros-Fernández P, Chomanahalli Basavarajappa S, Walsh PT. Interleukin-1 family cytokines at the crossroads of microbiome regulation in barrier health and disease. FEBS J 2024; 291:1849-1869. [PMID: 37300849 DOI: 10.1111/febs.16888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
Recent advances in understanding how the microbiome can influence both the physiology and the pathogenesis of disease in humans have highlighted the importance of gaining a deeper insight into the complexities of the host-microbial dialogue. In tandem with this progress, has been a greater understanding of the biological pathways which regulate both homeostasis and inflammation at barrier tissue sites, such as the skin and the gut. In this regard, the Interleukin-1 family of cytokines, which can be segregated into IL-1, IL-18 and IL-36 subfamilies, have emerged as important custodians of barrier health and immunity. With established roles as orchestrators of various inflammatory diseases in both the skin and intestine, it is now becoming clear that IL-1 family cytokine activity is not only directly influenced by external microbes, but can also play important roles in shaping the composition of the microbiome at barrier sites. This review explores the current knowledge surrounding the evidence that places these cytokines as key mediators at the interface between the microbiome and human health and disease at the skin and intestinal barrier tissues.
Collapse
Affiliation(s)
- Paloma Narros-Fernández
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Shrikanth Chomanahalli Basavarajappa
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Patrick T Walsh
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| |
Collapse
|
70
|
Kropp DR, Rainville JR, Glover ME, Tsyglakova M, Samanta R, Hage TR, Carlson AE, Clinton SM, Hodes GE. Chronic variable stress leads to sex specific gut microbiome alterations in mice. Brain Behav Immun Health 2024; 37:100755. [PMID: 38618010 PMCID: PMC11010943 DOI: 10.1016/j.bbih.2024.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 04/16/2024] Open
Abstract
Stress has been implicated in the incidence and severity of psychiatric and gastrointestinal disorders. The immune system is capable of modulating the activity and composition of the gut following stress and vice versa. In this study we sought to examine the sequential relationship between immune signaling and microbiome composition occurring in male and female mice over time using a variable stress paradigm. Tissue was collected prior to, during, and after the stress paradigm from the same mice. Cytokines from plasma and brain were quantified using a multiplexed cytokine assay. Fecal samples were collected at the same timepoints and 16S rRNA amplicon sequencing was performed to determine the relative abundance of microbiota residing in the guts of stressed and control mice. We found sex differences in the response of the gut microbiota to stress following 28 days of chronic variable stress but not 6 days of sub-chronic variable stress. Immune activation was quantified in the nucleus accumbens immediately following Sub-chronic variable when alterations of gut composition had not yet occurred. In both sexes, 28 days of stress induced significant changes in the proportion of Erysipelotrichaceae and Lactobacillaceae, but in opposite directions for male and female mice. Alterations to the gut microbiome in both sexes were associated with changes in cytokines related to eosinophilic immune activity. Our use of an animal stress model reveals the immune mechanisms that may underly changes in gut microbiome composition during and after stress. This study reveals potential drug targets and microbiota of interest for the intervention of stress related conditions.
Collapse
Affiliation(s)
- Dawson R. Kropp
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jennifer R. Rainville
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Matthew E. Glover
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mariya Tsyglakova
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Rupabali Samanta
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Tamer R. Hage
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Audrey E. Carlson
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sarah M. Clinton
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Georgia E. Hodes
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
71
|
Zeng N, Wu F, Lu J, Li X, Lin S, Zhou L, Wang Z, Wu G, Huang Q, Zheng D, Gao J, Wu S, Chen X, Chen M, Meng F, Shang H, He Y, Chen P, Wei H, Li Z, Zhou H. High-fat diet impairs gut barrier through intestinal microbiota-derived reactive oxygen species. SCIENCE CHINA. LIFE SCIENCES 2024; 67:879-891. [PMID: 37202543 DOI: 10.1007/s11427-022-2283-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/19/2023] [Indexed: 05/20/2023]
Abstract
Gut barrier disruption is a key event in bridging gut microbiota dysbiosis and high-fat diet (HFD)-associated metabolic disorders. However, the underlying mechanism remains elusive. In the present study, by comparing HFD- and normal diet (ND)-treated mice, we found that the HFD instantly altered the composition of the gut microbiota and subsequently damaged the integrity of the gut barrier. Metagenomic sequencing revealed that the HFD upregulates gut microbial functions related to redox reactions, as confirmed by the increased reactive oxygen species (ROS) levels in fecal microbiota incubation in vitro and in the lumen, which were detected using in vivo fluorescence imaging. This microbial ROS-producing capability induced by HFD can be transferred through fecal microbiota transplantation (FMT) into germ-free (GF) mice, downregulating the gut barrier tight junctions. Similarly, mono-colonizing GF mice with an Enterococcus strain excelled in ROS production, damaged the gut barrier, induced mitochondrial malfunction and apoptosis of the intestinal epithelial cells, and exacerbated fatty liver, compared with other low-ROS-producing Enterococcus strains. Oral administration of recombinant high-stability-superoxide dismutase (SOD) significantly reduced intestinal ROS, protected the gut barrier, and improved fatty liver against the HFD. In conclusion, our study suggests that extracellular ROS derived from gut microbiota play a pivotal role in HFD-induced gut barrier disruption and is a potential therapeutic target for HFD-associated metabolic diseases.
Collapse
Affiliation(s)
- Nianyi Zeng
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Fan Wu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Junqi Lu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiang Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Shaomei Lin
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Lang Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhongwei Wang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Guangyan Wu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Qingfa Huang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Daowen Zheng
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jie Gao
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Shan Wu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaojiao Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Muxuan Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Fanguo Meng
- Redox Medical Center for Public Health, Soochow University, Suzhou, 215301, China
| | - Haitao Shang
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Zhuang Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
72
|
Shiratori W, Ohta Y, Matsusaka K, Ohyama Y, Mamiya Y, Nakazawa H, Takahashi S, Horio R, Goto C, Sonoda M, Kurosugi A, Kaneko T, Akizue N, Ishigami H, Taida T, Okimoto K, Saito K, Matsumura T, Shiko Y, Ozawa Y, Kato J, Ikeda J, Kato N. Differences in Mucosal Permeability Among Patients With Ulcerative Colitis Classified Based on the Colonic Location and Disease Activity. Clin Transl Gastroenterol 2024; 15:e00692. [PMID: 38363861 PMCID: PMC11124768 DOI: 10.14309/ctg.0000000000000692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/09/2024] [Indexed: 02/18/2024] Open
Abstract
INTRODUCTION Factors affecting mucosal permeability (MP) in ulcerative colitis (UC) are largely unknown. We aimed to investigate the difference in MP among patients with UC classified according to the colonic locations and to evaluate the correlations between local MP and endoscopic or histological activity of UC. METHODS The transepithelial electrical resistance (TER), which is inversely proportional to permeability, of tissue samples from the mucosa of the ascending colon, descending colon, and rectum of patients with UC and healthy individuals (HIs) was measured by using the Ussing chamber. TERs were compared between patients with UC and HIs and evaluated according to colonic locations and disease activity of UC. RESULTS Thirty-eight patients with UC and 12 HIs were included in this study. Both in HIs and patients with UC, MP tends to be higher in the anal side. TER in the ascending colon was significantly lower in patients with UC than in HIs (45.3 ± 9.0 Ω × cm 2 vs 53.5 ± 9.7 Ω × cm 2 , P = 0.01). The increased permeability in UC was observed also in the descending colon, only when the inflammation involved the location. A significant correlation between TER and endoscopic activity was found in the rectum only ( r = -0.49, P = 0.002). There were no significant correlations between TERs and UC histology. DISCUSSION The MP in the colon differs according to the colonic location. The ascending colon among patients with UC showed disease-specific changes in MP, whereas the MP is increased in proportion to the endoscopic activity in the rectum.
Collapse
Affiliation(s)
- Wataru Shiratori
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
- National Hospital Organization Chiba Medical Center, Chiba, Japan
| | - Yuki Ohta
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | | | - Yuhei Ohyama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Yukiyo Mamiya
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Hayato Nakazawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Satsuki Takahashi
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Ryosuke Horio
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Chihiro Goto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Michiko Sonoda
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Akane Kurosugi
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Tatsuya Kaneko
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Naoki Akizue
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Hideaki Ishigami
- Department of Gastroenterology, Chiba Rosai Hospital, Chiba, Japan;
| | - Takashi Taida
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Kenichiro Okimoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Keiko Saito
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Tomoaki Matsumura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Yuki Shiko
- Clinical Research Center, Chiba University, Chiba, Japan.
| | | | - Jun Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Junichiro Ikeda
- Department of Pathology, Chiba University Hospital, Chiba, Japan;
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| |
Collapse
|
73
|
Chae YR, Lee YR, Kim YS, Park HY. Diet-Induced Gut Dysbiosis and Leaky Gut Syndrome. J Microbiol Biotechnol 2024; 34:747-756. [PMID: 38321650 DOI: 10.4014/jmb.2312.12031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Chronic gut inflammation promotes the development of metabolic diseases such as obesity. There is growing evidence which suggests that dysbiosis in gut microbiota and metabolites disrupt the integrity of the intestinal barrier and significantly impact the level of inflammation in various tissues, including the liver and adipose tissues. Moreover, dietary sources are connected to the development of leaky gut syndrome through their interaction with the gut microbiota. This review examines the effects of these factors on intestinal microorganisms and the communication pathways between the gut-liver and gut-brain axis. The consumption of diets rich in fats and carbohydrates has been found to weaken the adherence of tight junction proteins in the gastrointestinal tract. Consequently, this allows endotoxins, such as lipopolysaccharides produced by detrimental bacteria, to permeate through portal veins, leading to metabolic endotoxemia and alterations in the gut microbiome composition with reduced production of metabolites, such as short-chain fatty acids. However, the precise correlation between gut microbiota and alternative sweeteners remains uncertain, necessitating further investigation. This study highlights the significance of exploring the impact of diet on gut microbiota and the underlying mechanisms in the gut-liver and gut-brain axis. Nevertheless, limited research on the gut-liver axis poses challenges in comprehending the intricate connections between diet and the gut-brain axis. This underscores the need for comprehensive studies to elucidate the intricate gut-brain mechanisms underlying intestinal health and microbiota.
Collapse
Affiliation(s)
- Yu-Rim Chae
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Yu Ra Lee
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
| | - Young-Soo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
- Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
74
|
Santonocito R, Paladino L, Vitale AM, D’Amico G, Zummo FP, Pirrotta P, Raccosta S, Manno M, Accomando S, D’Arpa F, Carini F, Barone R, Rappa F, Marino Gammazza A, Bucchieri F, Cappello F, Caruso Bavisotto C. Nanovesicular Mediation of the Gut-Brain Axis by Probiotics: Insights into Irritable Bowel Syndrome. BIOLOGY 2024; 13:296. [PMID: 38785778 PMCID: PMC11117693 DOI: 10.3390/biology13050296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Dysbiosis, influenced by poor diet or stress, is associated with various systemic diseases. Probiotic supplements are recognized for stabilizing gut microbiota and alleviating gastrointestinal issues, like irritable bowel syndrome (IBS). This study focused on the tryptophan pathways, which are important for the regulation of serotonin levels, and on host physiology and behavior regulation. METHODS Nanovesicles were isolated from the plasma of subjects with chronic diarrhea, both before and after 60 days of consuming a probiotic mix (Acronelle®, Bromatech S.r.l., Milan, Italy). These nanovesicles were assessed for the presence of Tryptophan 2,3-dioxygenase 2 (TDO 2). Furthermore, the probiotics mix, in combination with H2O2, was used to treat HT29 cells to explore its cytoprotective and anti-stress effect. RESULTS In vivo, levels of TDO 2 in nanovesicles were enhanced in the blood after probiotic treatment, suggesting a role in the gut-brain axis. In the in vitro model, a typical H2O2-induced stress effect occurred, which the probiotics mix was able to recover, showing a cytoprotective effect. The probiotics mix treatment significantly reduced the heat shock protein 60 kDa levels and was able to preserve intestinal integrity and barrier function by restoring the expression and redistribution of tight junction proteins. Moreover, the probiotics mix increased the expression of TDO 2 and serotonin receptors. CONCLUSIONS This study provides evidence for the gut-brain axis mediation by nanovesicles, influencing central nervous system function.
Collapse
Affiliation(s)
- Radha Santonocito
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Letizia Paladino
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Alessandra Maria Vitale
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Giuseppa D’Amico
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Francesco Paolo Zummo
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Paolo Pirrotta
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Samuele Raccosta
- Cell-Tech Hub, Institute of Biophysics, National Research Council of Italy, 90146 Palermo, Italy; (S.R.); (M.M.)
| | - Mauro Manno
- Cell-Tech Hub, Institute of Biophysics, National Research Council of Italy, 90146 Palermo, Italy; (S.R.); (M.M.)
| | - Salvatore Accomando
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialities “G D‘Alessandro”, PROMISE, University of Palermo, 90127 Palermo, Italy;
| | - Francesco D’Arpa
- Department of Surgical, Oncological and Stomatological Disciplines, DICHIRONS, University of Palermo, 90127 Palermo, Italy;
| | - Francesco Carini
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Rosario Barone
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Francesca Rappa
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Antonella Marino Gammazza
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Fabio Bucchieri
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Francesco Cappello
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| |
Collapse
|
75
|
Abot A, Pomié N, Astre G, Cani PD, Aussant J, Barrat E, Knauf C. Effect of the dietary supplement PERMEAPROTECT+ TOLERANCE© on gut permeability in a human co-culture epithelial and immune cells model. Heliyon 2024; 10:e28320. [PMID: 38586362 PMCID: PMC10998107 DOI: 10.1016/j.heliyon.2024.e28320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Background and objective The leaky gut syndrome is characterized by an intestinal hyperpermeability observed in multiple chronic disorders. Alterations of the gut barrier are associated with translocation of bacterial components increasing inflammation, oxidative stress and eventually dysfunctions of cellular interactions at the origin pathologies. Therapeutic and/or preventive approaches have to focus on the identification of novel targets to improve gut homeostasis. In this context, this study aims to identify the role of PERMEAPROTECT + TOLERANE©, known as PERMEA, a food complement composed of a combination of factors (including l-Glutamine) known to improve gut physiology. Methods We tested the effects of PERMEA or l-Glutamine alone (as reference) on gut permeability (FITC dextran method, expression of tight junctions) and its inflammatory/oxidative consequences (cytokines and redox assays, RT-qPCR) in a co-culture of human cells (peripheral blood mononuclear cells and intestinal epithelial cells) challenged with TNFα. Results PERMEA prevented intestinal hyperpermeability induced by inflammation. This was linked with its antioxidant and immunomodulatory properties showing a better efficacity than l-Glutamine alone on several parameters including permeability, global antioxidant charge and production of cytokines. Conclusion PERMEA is more efficient to restore intestinal physiology, reinforcing the concept that combination of food constituents could be used to prevent the development of numerous diseases.
Collapse
Affiliation(s)
| | | | | | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute LDRI, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France Belgium
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research IREC, 1200, Brussels, Belgium
| | - Justine Aussant
- Laboratoire Lescuyer, Research Department, 15 rue Le Corbusier, 17440, Aytré, France
| | - Emmanuel Barrat
- Laboratoire Lescuyer, Research Department, 15 rue Le Corbusier, 17440, Aytré, France
| | - Claude Knauf
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France Belgium
- INSERM U1220, Institut de Recherche en Santé Digestive IRSD, Université Paul Sabatier, Toulouse III, CHU Purpan, Place Du Docteur Baylac, CS 60039, CEDEX 3, 31024 Toulouse, France
| |
Collapse
|
76
|
Deng Z, Yang C, Xiang T, Dou C, Sun D, Dai Q, Ling Z, Xu J, Luo F, Chen Y. Gold nanoparticles exhibit anti-osteoarthritic effects via modulating interaction of the "microbiota-gut-joint" axis. J Nanobiotechnology 2024; 22:157. [PMID: 38589904 PMCID: PMC11000357 DOI: 10.1186/s12951-024-02447-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/30/2024] [Indexed: 04/10/2024] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that can cause severe pain, motor dysfunction, and even disability. A growing body of research indicates that gut microbiota and their associated metabolites are key players in maintaining bone health and in the progression of OA. Short-chain fatty acids (SCFAs) are a series of active metabolites that widely participate in bone homeostasis. Gold nanoparticles (GNPs) with outstanding anti-bacterial and anti-inflammatory properties, have been demonstrated to ameliorate excessive bone loss during the progression of osteoporosis (OP) and rheumatoid arthritis (RA). However, the protective effects of GNPs on OA progression are not clear. Here, we observed that GNPs significantly alleviated anterior cruciate ligament transection (ACLT)-induced OA in a gut microbiota-dependent manner. 16S rDNA gene sequencing showed that GNPs changed gut microbial diversity and structure, which manifested as an increase in the abundance of Akkermansia and Lactobacillus. Additionally, GNPs increased levels of SCFAs (such as butyric acid), which could have improved bone destruction by reducing the inflammatory response. Notably, GNPs modulated the dynamic balance of M1/M2 macrophages, and increased the serum levels of anti-inflammatory cytokines such as IL-10. To sum up, our study indicated that GNPs exhibited anti-osteoarthritis effects via modulating the interaction of "microbiota-gut-joint" axis, which might provide promising therapeutic strategies for OA.
Collapse
Affiliation(s)
- Zihan Deng
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Chuan Yang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Tingwen Xiang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Dong Sun
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Qijie Dai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Zhiguo Ling
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| | - Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
- Department of Orthopedics, Chinese PLA 76th Army Corps Hospital, Xining, People's Republic of China.
| |
Collapse
|
77
|
An H, Zhang M, Gu Z, Jiao X, Ma Y, Huang Z, Wen Y, Dong Y, Zhang P. Advances in Polysaccharides for Cartilage Tissue Engineering Repair: A Review. Biomacromolecules 2024; 25:2243-2260. [PMID: 38523444 DOI: 10.1021/acs.biomac.3c01424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Cartilage repair has been a significant challenge in orthopedics that has not yet been fully resolved. Due to the absence of blood vessels and the almost cell-free nature of mature cartilage tissue, the limited ability to repair cartilage has resulted in significant socioeconomic pressures. Polysaccharide materials have recently been widely used for cartilage tissue repair due to their excellent cell loading, biocompatibility, and chemical modifiability. They also provide a suitable microenvironment for cartilage repair and regeneration. In this Review, we summarize the techniques used clinically for cartilage repair, focusing on polysaccharides, polysaccharides for cartilage repair, and the differences between these and other materials. In addition, we summarize the techniques of tissue engineering strategies for cartilage repair and provide an outlook on developing next-generation cartilage repair and regeneration materials from polysaccharides. This Review will provide theoretical guidance for developing polysaccharide-based cartilage repair and regeneration materials with clinical applications for cartilage tissue repair and regeneration.
Collapse
Affiliation(s)
- Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Meng Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital, Beijing 100044, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiangyu Jiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yinglei Ma
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhe Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | | | - Peixun Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
78
|
Chirivi M, Contreras GA. Endotoxin-induced alterations of adipose tissue function: a pathway to bovine metabolic stress. J Anim Sci Biotechnol 2024; 15:53. [PMID: 38581064 PMCID: PMC10998405 DOI: 10.1186/s40104-024-01013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/14/2024] [Indexed: 04/07/2024] Open
Abstract
During the periparturient period, dairy cows exhibit negative energy balance due to limited appetite and increased energy requirements for lactogenesis. The delicate equilibrium between energy availability and expenditure puts cows in a state of metabolic stress characterized by excessive lipolysis in white adipose tissues (AT), increased production of reactive oxygen species, and immune cell dysfunction. Metabolic stress, especially in AT, increases the risk for metabolic and inflammatory diseases. Around parturition, cows are also susceptible to endotoxemia. Bacterial-derived toxins cause endotoxemia by promoting inflammatory processes and immune cell infiltration in different organs and systems while impacting metabolic function by altering lipolysis, mitochondrial activity, and insulin sensitivity. In dairy cows, endotoxins enter the bloodstream after overcoming the defense mechanisms of the epithelial barriers, particularly during common periparturient conditions such as mastitis, metritis, and pneumonia, or after abrupt changes in the gut microbiome. In the bovine AT, endotoxins induce a pro-inflammatory response and stimulate lipolysis in AT, leading to the release of free fatty acids into the bloodstream. When excessive and protracted, endotoxin-induced lipolysis can impair adipocyte's insulin signaling pathways and lipid synthesis. Endotoxin exposure can also induce oxidative stress in AT through the production of reactive oxygen species by inflammatory cells and other cellular components. This review provides insights into endotoxins' impact on AT function, highlighting the gaps in our knowledge of the mechanisms underlying AT dysfunction, its connection with periparturient cows' disease risk, and the need to develop effective interventions to prevent and treat endotoxemia-related inflammatory conditions in dairy cattle.
Collapse
Affiliation(s)
- Miguel Chirivi
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
79
|
Tang H, Huang Y, Yuan D, Liu J. Atherosclerosis, gut microbiome, and exercise in a meta-omics perspective: a literature review. PeerJ 2024; 12:e17185. [PMID: 38584937 PMCID: PMC10999153 DOI: 10.7717/peerj.17185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Background Cardiovascular diseases are the leading cause of death worldwide, significantly impacting public health. Atherosclerotic cardiovascular diseases account for the majority of these deaths, with atherosclerosis marking the initial and most critical phase of their pathophysiological progression. There is a complex relationship between atherosclerosis, the gut microbiome's composition and function, and the potential mediating role of exercise. The adaptability of the gut microbiome and the feasibility of exercise interventions present novel opportunities for therapeutic and preventative approaches. Methodology We conducted a comprehensive literature review using professional databases such as PubMed and Web of Science. This review focuses on the application of meta-omics techniques, particularly metagenomics and metabolomics, in studying the effects of exercise interventions on the gut microbiome and atherosclerosis. Results Meta-omics technologies offer unparalleled capabilities to explore the intricate connections between exercise, the microbiome, the metabolome, and cardiometabolic health. This review highlights the advancements in metagenomics and metabolomics, their applications in research, and examines how exercise influences the gut microbiome. We delve into the mechanisms connecting these elements from a metabolic perspective. Metagenomics provides insight into changes in microbial strains post-exercise, while metabolomics sheds light on the shifts in metabolites. Together, these approaches offer a comprehensive understanding of how exercise impacts atherosclerosis through specific mechanisms. Conclusions Exercise significantly influences atherosclerosis, with the gut microbiome serving as a critical intermediary. Meta-omics technology holds substantial promise for investigating the gut microbiome; however, its methodologies require further refinement. Additionally, there is a pressing need for more extensive cohort studies to enhance our comprehension of the connection among these element.
Collapse
Affiliation(s)
- Haotian Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yanqing Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Didi Yuan
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Junwen Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
80
|
Dziedzic A, Maciak K, Bliźniewska-Kowalska K, Gałecka M, Kobierecka W, Saluk J. The Power of Psychobiotics in Depression: A Modern Approach through the Microbiota-Gut-Brain Axis: A Literature Review. Nutrients 2024; 16:1054. [PMID: 38613087 PMCID: PMC11013390 DOI: 10.3390/nu16071054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The microbiota-gut-brain (MGB) axis is a complex communication network linking the gut, microbiota, and brain, influencing various aspects of health and disease. Dysbiosis, a disturbance in the gut microbiome equilibrium, can significantly impact the MGB axis, leading to alterations in microbial composition and function. Emerging evidence highlights the connection between microbiota alterations and neurological and psychiatric disorders, including depression. This review explores the potential of psychobiotics in managing depressive disorders, emphasizing their role in restoring microbial balance and influencing the MGB axis. Psychobiotics exhibit positive effects on the intestinal barrier, immune response, cortisol levels, and the hypothalamic-pituitary-adrenal (HPA) axis. Studies suggest that probiotics may serve as an adjunct therapy for depression, especially in treatment-resistant cases. This review discusses key findings from studies on psychobiotics interventions, emphasizing their impact on the gut-brain axis and mental health. The increasing acceptance of the expanded concept of the MGB axis underscores the importance of microorganisms in mental well-being. As our understanding of the microbiome's role in health and disease grows, probiotics emerge as promising agents for addressing mental health issues, providing new avenues for therapeutic interventions in depressive disorders.
Collapse
Affiliation(s)
- Angela Dziedzic
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biochemistry, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (W.K.); (J.S.)
| | - Karina Maciak
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biochemistry, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (W.K.); (J.S.)
| | | | - Małgorzata Gałecka
- Department of Psychotherapy, Medical University of Lodz, Aleksandrowska 159, 91-229 Lodz, Poland;
| | - Weronika Kobierecka
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biochemistry, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (W.K.); (J.S.)
| | - Joanna Saluk
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biochemistry, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (W.K.); (J.S.)
| |
Collapse
|
81
|
Zhang X, Zhang H, Li S, Fang F, Yin Y, Wang Q. Recent progresses in gut microbiome mediates obstructive sleep apnea-induced cardiovascular diseases. FASEB Bioadv 2024; 6:118-130. [PMID: 38585431 PMCID: PMC10995711 DOI: 10.1096/fba.2023-00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/09/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a multifactorial sleep disorder with a high prevalence in the general population. OSA is associated with an increased risk of developing cardiovascular diseases (CVDs), particularly hypertension, and is linked to worse outcomes. Although the correlation between OSA and CVDs is firmly established, the mechanisms are poorly understood. Continuous positive airway pressure is primary treatment for OSA reducing cardiovascular risk effectively, while is limited by inadequate compliance. Moreover, alternative treatments for cardiovascular complications in OSA are currently not available. Recently, there has been considerable attention on the significant correlation between gut microbiome and pathophysiological changes in OSA. Furthermore, gut microbiome has a significant impact on the cardiovascular complications that arise from OSA. Nevertheless, a detailed understanding of this association is lacking. This review examines recent advancements to clarify the link between the gut microbiome, OSA, and OSA-related CVDs, with a specific focus on hypertension, and also explores potential health advantages of adjuvant therapy that targets the gut microbiome in OSA.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Haifen Zhang
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Shuai Li
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Fan Fang
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Yanran Yin
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Qiang Wang
- Department of Infectious Disease, Shanxi Provincial People's HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
82
|
Vohra A, Karnik R, Desai M, Vyas H, Kulshrestha S, Upadhyay KK, Koringa P, Devkar R. Melatonin-mediated corrective changes in gut microbiota of experimentally chronodisrupted C57BL/6J mice. Chronobiol Int 2024; 41:548-560. [PMID: 38557404 DOI: 10.1080/07420528.2024.2329205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Chronic consumption of a high-calorie diet coupled with an altered sleep-wake cycle causes disruption of circadian clock that can impact the gut microbiome leading to metabolic syndrome and associated diseases. Herein, we investigate the effects of a high fat high fructose diet (H) alone or in combination with photoperiodic shifts induced chronodisruption (CD) on gut microbiota of C57BL/6J male mice. Further, the merits of daily evening intraperitoneal administration of melatonin in restoring gut microbiota are studied herein. Experimental groups viz. H, CD and HCD mice recorded higher levels of serum pro-inflammatory cytokines (TNF-α and IL-6) and lower levels of the anti-inflammatory cytokine, IL-10. These findings correlate with a concomitant increase in the transcripts of TLR4, TNF-α, and IL-6 in small intestine of the said groups. A decrement in mRNA levels of Ocln, ZO-1 and Vdr in these groups implied towards an altered gut permeability. These results were in agreement with the observed decrement in percentage abundance of total gut microflora and Firmicutes: Bacteroidetes (F/B) ratio. Melatonin administration accounted for lower-level inflammation (serum and gut) along with an improvement in gut permeability markers. The total abundance of gut microflora and F/B ratio showed an improvement in all the melatonin-treated groups and the same is the highlight of this study. Taken together, our study is the first to report perturbations in gut microbiota resulting due to a combination of photoperiodic shifts induced CD and a high fat high calorie diet-induced lifestyle disorder. Further, melatonin-mediated rejuvenation of gut microbiome provides prima facie evidence of its role in improving gut dysbiosis that needs a detailed scrutiny.
Collapse
Affiliation(s)
- Aliasgar Vohra
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Department of Neurology, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Rhydham Karnik
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Dr Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Mansi Desai
- Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, India
| | - Hitarthi Vyas
- Department of Internal Medicine, Division of Gastroenterology & Hepatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Shruti Kulshrestha
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Kapil Kumar Upadhyay
- Department of Internal Medicine, Division of Gastroenterology & Hepatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Prakash Koringa
- Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, India
| | - Ranjitsinh Devkar
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
83
|
Brown GC, Heneka MT. The endotoxin hypothesis of Alzheimer's disease. Mol Neurodegener 2024; 19:30. [PMID: 38561809 PMCID: PMC10983749 DOI: 10.1186/s13024-024-00722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Lipopolysaccharide (LPS) constitutes much of the surface of Gram-negative bacteria, and if LPS enters the human body or brain can induce inflammation and act as an endotoxin. We outline the hypothesis here that LPS may contribute to the pathophysiology of Alzheimer's disease (AD) via peripheral infections or gut dysfunction elevating LPS levels in blood and brain, which promotes: amyloid pathology, tau pathology and microglial activation, contributing to the neurodegeneration of AD. The evidence supporting this hypothesis includes: i) blood and brain levels of LPS are elevated in AD patients, ii) AD risk factors increase LPS levels or response, iii) LPS induces Aβ expression, aggregation, inflammation and neurotoxicity, iv) LPS induces TAU phosphorylation, aggregation and spreading, v) LPS induces microglial priming, activation and neurotoxicity, and vi) blood LPS induces loss of synapses, neurons and memory in AD mouse models, and cognitive dysfunction in humans. However, to test the hypothesis, it is necessary to test whether reducing blood LPS reduces AD risk or progression. If the LPS endotoxin hypothesis is correct, then treatments might include: reducing infections, changing gut microbiome, reducing leaky gut, decreasing blood LPS, or blocking LPS response.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
84
|
Hajihashemi P, Haghighatdoost F, Kassaian N, Hoveida L, Tamizifar B, Nili H, Rahim Khorasani M, Adibi P. Bovine Colostrum in Increased Intestinal Permeability in Healthy Athletes and Patients: A Meta-Analysis of Randomized Clinical Trials. Dig Dis Sci 2024; 69:1345-1360. [PMID: 38361147 DOI: 10.1007/s10620-023-08219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/27/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Increasing intestinal permeability causes chronic inflammation, which is one of the etiological factors of many diseases that presently constitute global challenges. AIMS Considering the importance of developing therapies to eliminate the increased intestinal permeability, in this systematic review and meta-analysis, we analyze the impact of bovine colostrum (BC) on the gut barrier and its permeability. METHODS Online databases, including PubMed, ISI Web of Science, and Scopus, were searched to find pertinent articles up to March 2022. Weighted mean difference (WMD) and 95% confidence intervals (CI) were considered as effect sizes. The random-effects model was used to pool the study results. RESULTS A total of ten articles were included in the meta-analysis. The pooled effect revealed a significant reduction in the 5-h urinary lactulose/rhamnose ratio after BC consumption [mean difference (MD): -0.24; 95% CI -0.43 to -0.04; I2 = 99%] and urinary lactulose/mannitol ratio (MD: -0.01; 95% CI -0.02 to -0.001; I2 = 29.8%). No differences were observed in the plasma intestinal fatty acid-binding protein (I-FABP) between BC and control groups (MD: 2.30; 95% CI -293.9 to 298.5; I2 = 92%). CONCLUSIONS BC supplementation significantly reduced intestinal permeability; however, to confirm the results, more randomized clinical trials considering different quality, dose, and duration are needed.
Collapse
Affiliation(s)
- Parisa Hajihashemi
- Isfahan Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Haghighatdoost
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nazila Kassaian
- Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Hoveida
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, PO Box: 84515/155, Isfahan, Iran.
| | - Babak Tamizifar
- Isfahan Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Nili
- Zeitoon Vaccine Innovators Company, Isfahan Town of Science and Technology, Isfahan, Iran
| | - Marzieh Rahim Khorasani
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peyman Adibi
- Isfahan Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
85
|
Yang S, Cao J, Sun C, Yuan L. The Regulation Role of the Gut-Islets Axis in Diabetes. Diabetes Metab Syndr Obes 2024; 17:1415-1423. [PMID: 38533266 PMCID: PMC10964787 DOI: 10.2147/dmso.s455026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/03/2024] [Indexed: 03/28/2024] Open
Abstract
The gut-islets axis is an important endocrine signaling axis that regulates the function of islets by modulating the gut micro-environment and its endocrine metabolism. The discovery of intestinal hormones, such as GLP-1 and GIP, has established a preliminary link between the gut and the islet, paving the way for the development of GLP-1 receptor agonists based on the regulation theory of the gut-islets axis for diabetes treatment. This discovery has created a new paradigm for diabetes management and rapidly made the regulation theory of the gut-islets axis a focal point of research attention. Recent years, with in-depth study on gut microbiota and the discovery of intestinal-derived extracellular vesicles, the concept of gut endocrine and the regulation theory of the gut-islets axis have been further expanded and updated, offering tremendous research opportunities. The gut-islets axis refers to the complex interplay between the gut and the islet, which plays a crucial role in regulating glucose homeostasis and maintaining metabolic health. The axis involves various components, including gut microbiota, intestinal hormones, amino acids and ACE2, which contribute to the communication and coordination between the gut and the islet.
Collapse
Affiliation(s)
- Songtao Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Jie Cao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Chuan Sun
- Department of Emergency Medical, Wuhan ASIA GENERAL Hospital, Wuhan, 430000, People’s Republic of China
| | - Li Yuan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
86
|
Wang B, Liu S, Lin L, Xu W, Gong Z, Xiao W. The protective effect of L-theanine on the intestinal barrier in heat-stressed organisms. Food Funct 2024; 15:3036-3049. [PMID: 38414417 DOI: 10.1039/d3fo04459a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Heat stress caused by heatwaves, extreme temperatures, and other weather can damage the intestinal barrier of organisms. L-Theanine (LTA) attenuates heat stress-induced oxidative stress, inflammatory responses, and impaired immune function, but its protective effect on the intestinal barrier of heat-stressed organisms is unclear. In this study, low (100 mg kg-1 d-1), medium (200 mg kg-1 d-1), and high (400 mg kg-1 d-1) dosages of LTA were used in the gavage of C57BL/6J male mice that were experimented on for 50 d. These mice were subjected to heat stress for 2 h d-1 at 40 ± 1 °C and 60 ± 5% RH in the last 7 d. LTA attenuated the heat stress-induced decreases in body mass and feed intake, and the destruction of intestinal villi and crypt depth; reduced the serum levels of FITC-dextran and D-LA, as well as the DAO activity; and upregulated the colonic tissues of Occludin, Claudin-1, and ZO-1 mRNA and occludin protein expression. The number of goblet cells in the colon tissue of heat-stressed organisms increased in the presence of LTA, and the expression levels of Muc2, Muc4 mRNA, and Muc2 protein were upregulated. LTA increased the abundance of Bifidobacterium and Turicibacter, and decreased the abundance of Enterorhabdus and Desulfovibrio in the intestinal tract of heat-stressed organisms and restored gut microbiota homeostasis. LTA promoted the secretion of IL-4, IL-10, and sIgA and inhibited the secretion of TNF-α and IFN-γ in the colon of heat-stressed organisms. The expressions of Hsf1, Hsp70, Hsph1, TLR4, P38 MAPK, p-P65 NF-κB, MLCK mRNA, and proteins were downregulated by LTA in the colon of heat-stressed organisms. These results suggest that LTA protects the intestinal barrier in heat-stressed organisms by modulating multiple molecular pathways. Therefore, this study provides evidence on how tea-containing LTA treatments could be used to prevent and relieve intestinal problems related to heat stress.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Sha Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Ling Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Wei Xu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Zhihua Gong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
87
|
Zeng G, Li J, Wang Y, Su J, Lu Z, Zhang F, Ding W. Polystyrene microplastic-induced oxidative stress triggers intestinal barrier dysfunction via the NF-κB/NLRP3/IL-1β/MCLK pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123473. [PMID: 38301820 DOI: 10.1016/j.envpol.2024.123473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
Emerging evidence has demonstrated the association between microplastics (MPs) with a diameter of <5 mm and the risk of intestinal diseases. However, the molecular mechanisms contributing to MP-induced intestinal barrier dysfunction have not been fully appreciated. In this study, C57BL/6 J mice were exposed to polystyrene microplastics (PS-MPs, 0.2, 1 or 5 μm) at 1 mg/kg body weight daily by oral gavage for 28 days. We found that PS-MPs exposure induced oxidative stress and inflammatory cell infiltration in mice colon, leading to an increased expression of pro-inflammatory cytokine. Moreover, there were an increase in intestinal permeability and decrease in mucus secretion, accompanied by downregulation of tight junction (TJ)-related zonula occluden-1 (ZO-1), occluding (OCLN) and claudin-1 (CLDN-1) in mice colon. Especially, 5 μm PS-MPs (PS5)-induced intestinal epithelial TJ barrier damage was more severe than 0.2 μm PS-MPs (PS0.2) and 1 μm PS-MPs (PS1). In vitro experiments indicated that PS5-induced oxidative stress upregulated the expression of nuclear factor kappa B (NF-κB), nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome, and myosin light chain kinase (MLCK). Meanwhile, pre-treatment with the antioxidant NAC, NLRP3 inhibitor MCC950 and MLCK inhibitor ML-7 considerably reduced PS5-triggered reactive oxygen species (ROS) production and inflammatory response, inhibited the activation of the NF-κB/NLRP3/MLCK pathway, and upregulated ZO-1, OCLN and CLDN-1 expression in Caco-2 cells. Taken together, our study demonstrated that PS-MPs cause intestinal barrier dysfunction through the ROS-dependent NF-κB/NLRP3/IL-1β/MLCK pathway.
Collapse
Affiliation(s)
- Guodong Zeng
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanli Wang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingran Su
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongbing Lu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
88
|
Shvets Y, Khranovska N, Senchylo N, Ostapchenko D, Tymoshenko I, Onysenko S, Kobyliak N, Falalyeyeva T. Microbiota substances modulate dendritic cells activity: A critical view. Heliyon 2024; 10:e27125. [PMID: 38444507 PMCID: PMC10912702 DOI: 10.1016/j.heliyon.2024.e27125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Contemporary research in the field of microbiota shows that commensal bacteria influence physiological activity of different organs and systems of a human organism, such as brain, lungs, immune and metabolic systems. This influence is realized by various processes. One of them is trough modulation of immune mechanisms. Interactions between microbiota and the human immune system are known to be complex and ambiguous. Dendritic cells (DCs) are unique cells, which initiate the development and polarization of adaptive immune response. These cells also interconnect native and specific immune reactivity. A large set of biochemical signals from microbiota in the form of different microbiota associated molecular patterns (MAMPs) and bacterial metabolites that act locally and distantly in the human organism. As a result, commensal bacteria influence the maturity and activity of dendritic cells and affect the overall immune reactivity of the human organism. It then determines the response to pathogenic microorganisms, inflammation, associated with different pathological conditions and even affects the effectiveness of vaccination.
Collapse
Affiliation(s)
- Yuliia Shvets
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Natalia Khranovska
- National Cancer Institute of Ukraine, 33/43 Yuliia Zdanovska Str., Kyiv, Ukraine
| | - Natalia Senchylo
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Danylo Ostapchenko
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Iryna Tymoshenko
- Bogomolets National Medical University, 13 Shevchenka Blvd., Kyiv, Ukraine
| | - Svitlana Onysenko
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Nazarii Kobyliak
- Bogomolets National Medical University, 13 Shevchenka Blvd., Kyiv, Ukraine
- Medical Laboratory CSD, 22b Zhmerynska Str., Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
- Medical Laboratory CSD, 22b Zhmerynska Str., Kyiv, Ukraine
| |
Collapse
|
89
|
Chen X, Zhu D, Ge R, Bao Z. Fecal transplantation of young mouse donors effectively improves enterotoxicity in elderly recipients exposed to triphenyltin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116140. [PMID: 38417315 DOI: 10.1016/j.ecoenv.2024.116140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Triphenyltin (TPT) is a widely used biocide known for its high toxicity to various organisms, including humans, and its potential contribution to environmental pollution. The aging process leads to progressive deterioration of physiological functions in the elderly, making them more susceptible to the toxic effects of environmental pollutants. This study aimed to investigate the mitigating effect of fecal transplantation in young mice on the toxicological impairment caused by TPT exposure. For the study, 18-month-old mice were divided into four groups with six replicates each. The control group was fed a basal diet, the TPT group was exposed to 3.75 mg/Kg TPT, the feces group received fecal transplantation from 8-week-old young mice, and the combined group was exposed to 3.75 mg/Kg TPT after receiving fecal transplantation. Compared with the elderly control group, TPT induced significant upregulation of mRNA expression of pro-inflammatory factors (IL-1β, IL-6, TNF-α), while the anti-inflammatory factor gene IL-10 was significantly suppressed. The mRNA expression of intestinal barrier proteins (Claudin, Occludin, Muc2) was also significantly downregulated. However, fecal transplantation in young mice alleviated TPT-induced changes in inflammatory factors, ameliorated oxidative stress, and increased the activities of antioxidant enzymes (including SOD, CAT, GSH-Px). Further analysis using 16 s RNA showed that exposure to TPT led to changes in the composition of the intestinal flora. Untargeted metabolomics observations of feces from older mice revealed that exposure to TPT resulted in altered fecal metabolites. Fecal transplantation in young mice altered the microbiota of TPT-exposed older mice, especially by enhancing the levels of core probiotics. Similar beneficial effects were observed through untargeted metabolomics. Overall, this study highlights the potential benefits of young fecal transplantation in protecting the elderly from the toxicity of TPT, offering a promising approach to improve healthy aging.
Collapse
Affiliation(s)
- Xiuxiu Chen
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Donghui Zhu
- The Department of Cardiovascular and Thoracic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Renshan Ge
- Department of Anaesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Zhijun Bao
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
90
|
Hao Z, Ding X, Wang J. Effects of gut bacteria and their metabolites on gut health of animals. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:223-252. [PMID: 38763528 DOI: 10.1016/bs.aambs.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The intestine tract is a vital site for the body to acquire nutrients, serving as the largest immune organ. Intestinal health is crucial for maintaining a normal physiological state. Abundant microorganisms reside in the intestine, colonized in a symbiotic manner. These microorganisms can generate various metabolites that influence host physiological activities. Microbial metabolites serve as signaling molecules or metabolic substrates in the intestine, and some intestinal microorganisms act as probiotics and promote intestinal health. Researches on host, probiotics, microbial metabolites and their interactions are ongoing. This study reviews the effects of gut bacteria and their metabolites on intestinal health to provide useful references for animal husbandry.
Collapse
Affiliation(s)
- Zhuang Hao
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China
| | - Xuedong Ding
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China
| | - Jing Wang
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China.
| |
Collapse
|
91
|
Fronton F, Villemur R, Robert D, St-Pierre Y. Divergent bacterial landscapes: unraveling geographically driven microbiomes in Atlantic cod. Sci Rep 2024; 14:6088. [PMID: 38480867 PMCID: PMC10938007 DOI: 10.1038/s41598-024-56616-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
Establishing microbiome signatures is now recognized as a critical step toward identifying genetic and environmental factors shaping animal-associated microbiomes and informing the health status of a given host. In the present work, we prospectively collected 63 blood samples of the Atlantic cod population of the Southern Gulf of Saint Lawrence (GSL) and characterized their 16S rRNA circulating microbiome signature. Our results revealed that the blood microbiome signature was dominated at the phylum level by Proteobacteria, Bacteroidetes, Acidobacteria and Actinobacteria, a typical signature for fish populations inhabiting the GSL and other marine ecosystems. At the genus level, however, we identified two distinct cod groups. While the microbiome signature of the first group was dominated by Pseudoalteromonas, a genus we previously found in the microbiome signature of Greenland and Atlantic halibut populations of the GSL, the second group had a microbiome signature dominated by Nitrobacter and Sediminibacterium (approximately 75% of the circulating microbiome). Cods harboring a Nitrobacter/Sediminibacterium-rich microbiome signature were localized in the most southern part of the GSL, just along the northern coast of Cape Breton Island. Atlantic cod microbiome signatures did not correlate with the weight, length, relative condition, depth, temperature, sex, and salinity, as previously observed in the halibut populations. Our study provides, for the first time, a unique snapshot of the circulating microbiome signature of Atlantic cod populations and the potential existence of dysbiotic signatures associated with the geographical distribution of the population, probably linked with the presence of nitrite in the environment.
Collapse
Affiliation(s)
- Fanny Fronton
- INRS-Center Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Richard Villemur
- INRS-Center Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Dominique Robert
- Institut des Sciences de la Mer, Université du Québec à Rimouski, 310, allée des Ursulines, C.P. 3300, Rimouski, QC, G5L 3A1, Canada
| | - Yves St-Pierre
- INRS-Center Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
92
|
Fekete M, Lehoczki A, Major D, Fazekas-Pongor V, Csípő T, Tarantini S, Csizmadia Z, Varga JT. Exploring the Influence of Gut-Brain Axis Modulation on Cognitive Health: A Comprehensive Review of Prebiotics, Probiotics, and Symbiotics. Nutrients 2024; 16:789. [PMID: 38542700 PMCID: PMC10975805 DOI: 10.3390/nu16060789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
Recent research exploring the relationship between the gut and the brain suggests that the condition of the gut microbiota can influence cognitive health. A well-balanced gut microbiota may help reduce inflammation, which is linked to neurodegenerative conditions. Prebiotics, probiotics, and symbiotics are nutritional supplements and functional food components associated with gastrointestinal well-being. The bidirectional communication of the gut-brain axis is essential for maintaining homeostasis, with pre-, pro-, and symbiotics potentially affecting various cognitive functions such as attention, perception, and memory. Numerous studies have consistently shown that incorporating pre-, pro-, and symbiotics into a healthy diet can lead to improvements in cognitive functions and mood. Maintaining a healthy gut microbiota can support optimal cognitive function, which is crucial for disease prevention in our fast-paced, Westernized society. Our results indicate cognitive benefits in healthy older individuals with probiotic supplementation but not in healthy older individuals who have good and adequate levels of physical activity. Additionally, it appears that there are cognitive benefits in patients with mild cognitive impairment and Alzheimer's disease, while mixed results seem to arise in younger and healthier individuals. However, it is important to acknowledge that individual responses may vary, and the use of these dietary supplements should be tailored to each individual's unique health circumstances and needs.
Collapse
Affiliation(s)
- Mónika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Andrea Lehoczki
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
- National Institute for Haematology and Infectious Diseases, Department of Haematology and Stem Cell Transplantation, South Pest Central Hospital, 1097 Budapest, Hungary
| | - Dávid Major
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Tamás Csípő
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Stefano Tarantini
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK 73104, USA
| | - Zoltán Csizmadia
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - János Tamás Varga
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
93
|
Shi F, Gao YS, Han SM, Huang CS, Hou QS, Wen XW, Wang BS, Zhu ZY, Zou L. Allulose mitigates chronic enteritis by reducing mitochondria dysfunction via regulating cathepsin B production. Int Immunopharmacol 2024; 129:111645. [PMID: 38354512 DOI: 10.1016/j.intimp.2024.111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Metabolic changes have been linked to the development of inflammatory bowel disease (IBD), which includes colitis. Allulose, an endogenous bioactive monosaccharide, is vital to the synthesis of numerous compounds and metabolic processes within living organisms. Nevertheless, the precise biochemical mechanism by which allulose inhibits colitis remains unknown. Allulose is an essential and intrinsic protector of the intestinal mucosal barrier, as it maintains the integrity of tight junctions in the intestines, according to the current research. It is also important to know that there is a link between the severity of inflammatory bowel disease (IBD) and colorectal cancer (CRC), chemically-induced colitis in rodents, and lower levels of allulose in the blood. Mice with colitis, either caused by dextran sodium sulphate (DSS) or naturally occurring colitis in IL-10-/- mice, had less damage to their intestinal mucosa after being given allulose. Giving allulose to a colitis model starts a chain of reactions because it stops cathepsin B from ejecting and helps lysosomes stick together. This system effectively stops the activity of myosin light chain kinase (MLCK) when intestinal epithelial damage happens. This stops the breakdown of tight junction integrity and the start of mitochondrial dysfunction. To summarise, the study's findings have presented data that supports the advantageous impact of allulose in reducing the advancement of colitis. Its ability to stop the disruption of the intestinal barrier enables this. Therefore, allulose has potential as a medicinal supplement for treating colitis.
Collapse
Affiliation(s)
- Fang Shi
- Department of Abdominal Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Yong-Sheng Gao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Shu-Mei Han
- Department of Gastroenterology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Cheng-Suo Huang
- Department of Gastroenterology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Qing-Sheng Hou
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Xiao-Wen Wen
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Ben-Shi Wang
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Zhen-Yu Zhu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Lei Zou
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China.
| |
Collapse
|
94
|
Livzan MA, Gaus OV, Ekimov IN. Non-alcoholic fatty liver disease and psoriasis: mechanisms of comorbidity and approaches to therapy. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2024:113-120. [DOI: 10.21518/ms2024-045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Psoriasis is a chronic immune-mediated skin disease of a multifactorial nature, characterized by accelerated proliferation of keratinocytes and impaired differentiation, an imbalance between pro-inflammatory and anti-inflammatory cytokines, with frequent involvement of the musculoskeletal system in the pathological process. The etiology of psoriasis is unknown, but several risk factors have been identified, including family history, smoking and obesity. The high prevalence of obesity, diseases of the cardiovascular system and digestive organs in patients with psoriasis allows us to consider it as an indicator of the patient’s metabolic disorders. In the structure of comorbidity of patients with psoriasis, special attention is drawn to non-alcoholic fatty liver disease (NAFLD), which occupies a leading position in the structure of the incidence of chronic diffuse liver diseases among the adult population in many countries of the world, including Russia. Patients with psoriasis are more often diagnosed with NAFLD, regardless of the presence of metabolic syndrome and other traditional risk factors. The presence of NAFLD is associated with more severe psoriasis and worse outcomes. On the other hand, a negative effect of psoriasis on the course of liver pathology has been noted. In this regard, it seems particularly relevant to study the etiological factors and pathogenetic links underlying this comorbidity, as potential targets for targeted therapy, which can improve the effectiveness of treatment for this cohort of patients. The purpose of this review publication is to summarize and systematize the available data on the prevalence of comorbidity of psoriasis and NAFLD in the population, the mechanisms of its formation and approaches to patient management.
Collapse
|
95
|
Meyer N, Illarionov B, Fischer M, Wieser H. Preparation and Immunochemical Characterization of a Water-Soluble Gluten Peptide Fraction for Improving the Diagnosis of Celiac Disease. Nutrients 2024; 16:742. [PMID: 38474870 DOI: 10.3390/nu16050742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The diagnosis of celiac disease (CD) is complex and requires a multi-step procedure (symptoms, serology, duodenal biopsy, effect of a gluten-free diet, and optional genetic). The aim of the study was to contribute to the improvement of CD diagnosis by preparing a water-soluble gluten peptide fraction (called Solgluten) and by selecting gluten-specific enzyme-linked immunosorbent assays (ELISA) for the detection of gluten immunogenic gluten peptides (GIPs) in urine and blood serum spiked with Solgluten. Food-grade Solgluten was prepared by the extraction of a peptic digest of vital gluten with water, centrifugation, and freeze-drying. The process was relatively easy, repeatable, and cheap. The content of gliadin-derived GIPs was 491 mg/g. Solgluten was used as antigenic material to compare two competitive ELISA kits (R7021 and K3012) and two sandwich ELISA kits (M2114 and R7041) in their quality regarding the quantitation of GIPs in urine and blood serum. The quality parameters were the reactivity, sensitivity, coefficients of variation and determination, and curve shape. The evaluation of the kits showed a number of discrepancies in individual quality parameters measured in urine and serum. Due to the lowest limit of quantitation and the highest coefficient of determination, M2114 may be the first choice, while R7021 appeared to be less suitable because of the high coefficients of variation and unfavorable curve progression. The results set the stage for improving CD diagnosis by supplementing conventional blood tests with oral provocation with Solgluten and subsequent ELISA measurement of GIPs that could support the no-biopsy approach and by better assessing the effect of a gluten-free diet by monitoring adherence to the diet by measuring GIPs in urine and blood.
Collapse
Affiliation(s)
- Niklas Meyer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Boris Illarionov
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Herbert Wieser
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
96
|
Xiao C, Comer L, Pan X, Everaert N, Schroyen M, Song Z. Zinc glycinate alleviates LPS-induced inflammation and intestinal barrier disruption in chicken embryos by regulating zinc homeostasis and TLR4/NF-κB pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116111. [PMID: 38350216 DOI: 10.1016/j.ecoenv.2024.116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/26/2024] [Accepted: 02/11/2024] [Indexed: 02/15/2024]
Abstract
The effect of an immune challenge induced by a lipopolysaccharide (LPS) exposure on systemic zinc homeostasis and the modulation of zinc glycinate (Zn-Gly) was investigated using a chicken embryo model. 160 Arbor Acres broiler fertilized eggs were randomly divided into 4 groups: CON (control group, injected with saline), LPS (LPS group, injected with 32 µg of LPS saline solution), Zn-Gly (zinc glycinate group, injected with 80 µg of zinc glycinate saline solution) and Zn-Gly+LPS (zinc glycinate and LPS group, injected with the same content of zinc glycinate and LPS saline solution). Each treatment consisted of eight replicates of five eggs each. An in ovo feeding procedure was performed at 17.5 embryonic day and samples were collected after 12 hours. The results showed that Zn-Gly attenuated the effects of LPS challenge-induced upregulation of pro-inflammatory factor interleukin 1β (IL-1β) level (P =0.003). The LPS challenge mediated zinc transporter proteins and metallothionein (MT) to regulate systemic zinc homeostasis, with increased expression of the jejunum zinc export gene zinc transporter protein 1 (ZnT-1) and elevated expression of the import genes divalent metal transporter 1 (DMT1), Zrt- and Irt-like protein 3 (Zip3), Zip8 and Zip14 (P < 0.05). A similar trend could be observed for the zinc transporter genes in the liver, which for ZnT-1 mitigated by Zn-Gly supplementation (P =0.01). Liver MT gene expression was downregulated in response to the LPS challenge (P =0.004). These alterations caused by LPS resulted in decreased serum and liver zinc levels and increased small intestinal, muscle and tibial zinc levels. Zn-Gly reversed the elevated expression of the liver zinc finger protein A20 induced by the LPS challenge (P =0.025), while Zn-Gly reduced the gene expression of the pro-inflammatory factors IL-1β and IL-6, decreased toll-like receptor 4 (TLR4) and nuclear factor kappa-B p65 (NF-κB p65) (P < 0.05). Zn-Gly also alleviated the LPS-induced downregulation of the intestinal barrier gene Claudin-1. Thus, LPS exposure prompted the mobilization of zinc transporter proteins and MT to perform the remodeling of systemic zinc homeostasis, Zn-Gly participated in the regulation of zinc homeostasis and inhibited the production of pro-inflammatory factors through the TLR4/NF-κB pathway, attenuating the inflammatory response and intestinal barrier damage caused by an immune challenge.
Collapse
Affiliation(s)
- Chuanpi Xiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Luke Comer
- Nutrition and Animal Microbiota Ecosystems lab, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Xue Pan
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Nadia Everaert
- Nutrition and Animal Microbiota Ecosystems lab, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
97
|
Zeng B, Li Y, Xia J, Xiao Y, Khan N, Jiang B, Liang Y, Duan L. Micro Trojan horses: Engineering extracellular vesicles crossing biological barriers for drug delivery. Bioeng Transl Med 2024; 9:e10623. [PMID: 38435823 PMCID: PMC10905561 DOI: 10.1002/btm2.10623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 03/05/2024] Open
Abstract
The biological barriers of the body, such as the blood-brain, placental, intestinal, skin, and air-blood, protect against invading viruses and bacteria while providing necessary physical support. However, these barriers also hinder the delivery of drugs to target tissues, reducing their therapeutic efficacy. Extracellular vesicles (EVs), nanostructures with a diameter ranging from 30 nm to 10 μm secreted by cells, offer a potential solution to this challenge. These natural vesicles can effectively pass through various biological barriers, facilitating intercellular communication. As a result, artificially engineered EVs that mimic or are superior to the natural ones have emerged as a promising drug delivery vehicle, capable of delivering drugs to almost any body part to treat various diseases. This review first provides an overview of the formation and cross-species uptake of natural EVs from different organisms, including animals, plants, and bacteria. Later, it explores the current clinical applications, perspectives, and challenges associated with using engineered EVs as a drug delivery platform. Finally, it aims to inspire further research to help bioengineered EVs effectively cross biological barriers to treat diseases.
Collapse
Affiliation(s)
- Bin Zeng
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Ying Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Jiang Xia
- Department of ChemistryThe Chinese University of Hong Kong, ShatinHong Kong SARChina
| | - Yin Xiao
- School of Medicine and Dentistry & Menzies Health Institute Queensland, SouthportGold CoastQueenslandAustralia
| | - Nawaz Khan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Bin Jiang
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- R&D Division, Eureka Biotech Inc, PhiladelphiaPennsylvaniaUSA
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning HospitalShenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental HealthShenzhenGuangdongChina
| | - Li Duan
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| |
Collapse
|
98
|
Zheng S, Liu Z, Liu H, Lim JY, Li DWH, Zhang S, Luo F, Wang X, Sun C, Tang R, Zheng W, Xie Q. Research development on gut microbiota and vulnerable atherosclerotic plaque. Heliyon 2024; 10:e25186. [PMID: 38384514 PMCID: PMC10878880 DOI: 10.1016/j.heliyon.2024.e25186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
The relationship between gut microbiota and its metabolites with cardiovascular disease (CVD) has been proven. In this review, we aim to conclude the potential mechanism of gut microbiota and its metabolites on inducing the formation of vulnerable atherosclerotic plaque, and to discuss the effect of intestinal metabolites, including trimethylamine-N-oxide (TMAO), lipopolysaccharide (LPS), phenylacetylglutamine (PAG), short-chain fatty acids (SCFAs) on plaque stability. Finally, we include the impact of gut microbiota and its metabolites on plaque stability, to propose a new therapeutic direction for coronary heart disease. Gut microbiota regulation intervenes the progress of arteriosclerosis, especially on coronary atherosclerosis, by avoiding or reducing the formation of vulnerable plaque, to lower the morbidity rate of myocardial infarction.
Collapse
Affiliation(s)
- Shujiao Zheng
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Zuheng Liu
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Haiyue Liu
- Xiamen Key Laboratory of Genetic Testing, The Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jie Ying Lim
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Dolly Wong Hui Li
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shaofeng Zhang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fang Luo
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiujing Wang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Changqing Sun
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Rong Tang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wuyang Zheng
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qiang Xie
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
99
|
Ostrov I, Gong Y, Zuk JB, Wickramasinghe PCK, Tmenova I, Roopchand DE, Zhao L, Raskin I. Elemental iron protects gut microbiota against oxygen-induced dysbiosis. PLoS One 2024; 19:e0298592. [PMID: 38412144 PMCID: PMC10898728 DOI: 10.1371/journal.pone.0298592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/28/2024] [Indexed: 02/29/2024] Open
Abstract
Gut dysbiosis induced by oxygen and reactive oxygen species may be related to the development of inflammation, resulting in metabolic syndrome and associated-conditions in the gut. Here we show that elemental iron can serve as an antioxidant and reverse the oxygen-induced dysbiosis. Fecal samples from three healthy donors were fermented with elemental iron and/or oxygen. 16S rRNA analysis revealed that elemental iron reversed the oxygen-induced disruption of Shannon index diversity of the gut microbiota.The bacteria lacking enzymatic antioxidant systems also increased after iron treatment. Inter-individual differences, which corresponded to iron oxidation patterns, were observed for the tested donors. Gut bacteria responding to oxygen and iron treatments were identified as guilds, among which, Escherichia-Shigella was promoted by oxygen and depressed by elemental iron, while changes in bacteria such as Bifidobacterium, Blautia, Eubacterium, Ruminococcaceae, Flavonifractor, Oscillibacter, and Lachnospiraceae were reversed by elemental iron after oxygen treatment. Short-chain fatty acid production was inhibited by oxygen and this effect was partially reversed by elemental iron. These results suggested that elemental iron can regulate the oxygen/ROS state and protect the gut microbiota from oxidative stress.
Collapse
Affiliation(s)
- Ievgeniia Ostrov
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Yongjia Gong
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Joshua B Zuk
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Purni C K Wickramasinghe
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Irina Tmenova
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Diana E Roopchand
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Ilya Raskin
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| |
Collapse
|
100
|
Liu J, Wei X, Wang T, Zhang M, Gao Y, Cheng Y, Chi L. Intestinal mucosal barrier: a potential target for traditional Chinese medicine in the treatment of cardiovascular diseases. Front Pharmacol 2024; 15:1372766. [PMID: 38469405 PMCID: PMC10925767 DOI: 10.3389/fphar.2024.1372766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Cardiovascular disease (CVD) is a serious public health problem, and among non-communicable diseases, CVD is now the leading cause of mortality and morbidity worldwide. CVD involves multiple organs throughout the body, especially the intestinal tract is the first to be involved. The impairment of the intestinal mucosal barrier is considered a significant pathological alteration in CVD and also contributes to the accelerated progression of the disease, thereby offering novel insights for CVD prevention and treatment. The treatment of Chinese medicine is characterized by multi-metabolites, multi-pathways, and multi-targets. In recent years, the studies of Traditional Chinese Medicine (TCM) in treating CVD by repairing the intestinal mucosal barrier have gradually increased, showing great therapeutic potential. This review summarizes the studies related to the treatment of CVD by TCM (metabolites of Chinese botanical drugs, TCM formulas, and Chinese patent medicine) targeting the repair of the intestinal mucosal barrier, as well as the potential mechanisms. We have observed that TCM exerts regulatory effects on the structure and metabolites of gut microbiota, enhances intestinal tight junctions, improves intestinal dyskinesia, repairs intestinal tissue morphology, and preserves the integrity of the intestinal vascular barrier through its anti-inflammatory, antioxidant, and anti-apoptotic properties. These multifaceted attributes position TCM as a pivotal modulator of inhibiting myocardial fibrosis, and hypertrophy, and promoting vascular repairment. Moreover, there exists a close association between cardiovascular risk factors such as hyperlipidemia, obesity, and diabetes mellitus with CVD. We also explore the mechanisms through which Chinese botanical drugs impact the intestinal mucosal barrier and regulate glucose and lipid metabolism. Consequently, these findings present novel insights and methodologies for treating CVD.
Collapse
Affiliation(s)
- Jiahui Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiunan Wei
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Wang
- College of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miaomiao Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Cheng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lili Chi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|