51
|
Morelos-Santana E, Islas-Preciado D, Alcalá-Lozano R, González-Olvera J, Estrada-Camarena E. Peripheral neurotrophin levels during controlled crack/cocaine abstinence: a systematic review and meta-analysis. Sci Rep 2024; 14:1410. [PMID: 38228745 DOI: 10.1038/s41598-024-51901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/10/2024] [Indexed: 01/18/2024] Open
Abstract
Cocaine/crack abstinence periods have higher risk of relapse. Abstinence as initial part of the recovery process is affected by learning and memory changes that could preserve the addictive cycle. To further understand how the interruption of cocaine/crack consumption affects neurotrophin level we performed the present systematic review and meta-analysis following the PRISMA statement (number CRD42019121643). The search formula was conducted in PubMed, Web of Science, Embase, ScienceDirect, and Google Scholar databases. The inclusion criterion was cocaine use disorder in 18 to 60-year-old people, measuring at least one neurotrophin in blood before and after a controlled abstinence period. Studies without pre-post design were excluded. Five investigations had nine different reports, four of them were subjected to a meta-analysis (n = 146). GRADE risk of bias method was followed. Individual studies reported increased peripheral brain derived neurotrophic factor (BDNF) after abstinence, evidence pooled by Hedge's g showed no significant change in BDNF after abstinence. Relevant heterogeneity in the length of the abstinence period (12-32 days), last cocaine/crack consumption monitoring and blood processing were detected that could help to explain non-significant results. Further improved methods are suggested, and a potential BDNF augmentation hypothesis is proposed that, if true, would help to understand initial abstinence as a re-adaptation period influenced by neurotrophins such as the BDNF.
Collapse
Affiliation(s)
- E Morelos-Santana
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - D Islas-Preciado
- Laboratorio de Neuropsicofarmacología, Dirección de Investigación en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, 101. Col. San Lorenzo Huipulco, CP 14370, Mexico City, Mexico
| | - R Alcalá-Lozano
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - J González-Olvera
- Secretariado Técnico del Consejo Nacional de Salud Mental, Mexico City, Mexico
| | - E Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Investigación en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, 101. Col. San Lorenzo Huipulco, CP 14370, Mexico City, Mexico.
| |
Collapse
|
52
|
Qin Q, Guo Z, Lu S, Wang X, Fu Q, Wu T, Sun Y, Liu N, Zhang H, Zhao D, Cheng M. Discovery of novel 3-(1H-pyrazol-4-yl)-1H-indazole derivatives as potent type II TRK inhibitors against acquired resistance. Eur J Med Chem 2024; 264:115953. [PMID: 38029466 DOI: 10.1016/j.ejmech.2023.115953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023]
Abstract
Tropomyosin receptor kinase (TRK) is a promising target for treating NTRK fusion cancers. The solvent front and xDFG mutations induced by larotrectinib and entrectinib result in acquired resistance in advanced-stage patients. In this study, we report a highly potent and selective type II TRK inhibitor, 40l, developed using a structure-based design strategy. Compound 40l significantly suppressed Km-12, Ba/F3-TRKAG595R, and Ba/F3-TRKAG667C cell proliferation. In biochemical and cellular assays, 40l showed better inhibitory activity against TRKAG667C than that by the positive control, selitrectinib. Additionally, it induced apoptosis of Ba/F3-TRKAG595R and Ba/F3-TRKAG667C cells in a dose-dependent manner. Furthermore, 40l showed good selectivity for a panel of 41 kinases. In vitro assays indicated that 40l possessed outstanding plasma stability and moderate liver microsomal stability. Based on the above results, compound 40l could be further optimized to overcome the solvent front and xDFG TRK mutations.
Collapse
Affiliation(s)
- Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Zhiqiang Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Shuyu Lu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Xin Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Qinglin Fu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Nian Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Haoyu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| |
Collapse
|
53
|
Asadi MR, Gharesouran J, Sabaie H, Zaboli Mahdiabadi M, Mazhari SA, Sharifi-Bonab M, Shirvani-Farsani Z, Taheri M, Sayad A, Rezazadeh M. Neurotrophin growth factors and their receptors as promising blood biomarkers for Alzheimer's Disease: a gene expression analysis study. Mol Biol Rep 2024; 51:49. [PMID: 38165481 DOI: 10.1007/s11033-023-08959-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/25/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a multifaceted neurological ailment affecting more than 50 million individuals globally, distinguished by a deterioration in memory and cognitive abilities. Investigating neurotrophin growth factors could offer significant contributions to understanding AD progression and prospective therapeutic interventions. METHODS AND RESULTS The present investigation collected blood samples from 50 patients diagnosed with AD and 50 healthy individuals serving as controls. The mRNA expression levels of neurotrophin growth factors and their receptors were measured using quantitative PCR. A Bayesian regression model was used in the research to assess the relationship between gene expression levels and demographic characteristics such as age and gender. The correlations between variables were analyzed using Spearman correlation coefficients, and the diagnostic potential was assessed using a Receiver Operating Characteristic curve. NTRK2, TrkA, TrkC, and BDNF expression levels were found to be considerably lower (p-value < 0.05) in the blood samples of AD patients compared to the control group. The expression of BDNF exhibited the most substantial decrease in comparison to other neurotrophin growth factors. Correlation analysis indicates a statistically significant positive association between the genes. The ROC analysis showed that BDNF exhibited the greatest Area Under the Curve (AUC) value of 0.76, accompanied by a sensitivity of 70% and specificity of 66%. TrkC, TrkA, and NTRK2 demonstrated considerable diagnostic potential in distinguishing between cases and controls. CONCLUSION The observed decrease in the expression levels of NTRK2, TrkA, TrkC, and BDNF in AD patients, along with the identified associations between specific genes and their diagnostic capacity, indicate that these expressions have the potential to function as biomarkers for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Gharesouran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hani Sabaie
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Mirmohsen Sharifi-Bonab
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arezou Sayad
- Department of Medical Genetics, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
54
|
Koyya P, Manthari RK, Pandrangi SL. Brain-Derived Neurotrophic Factor - The Protective Agent Against Neurological Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:353-366. [PMID: 37287291 PMCID: PMC11348470 DOI: 10.2174/1871527322666230607110617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
The burden of neurological illnesses on global health is significant. Our perception of the molecular and biological mechanisms underlying intellectual processing and behavior has significantly advanced over the last few decades, laying the groundwork for potential therapies for various neurodegenerative diseases. A growing body of literature reveals that most neurodegenerative diseases could be due to the gradual failure of neurons in the brain's neocortex, hippocampus, and various subcortical areas. Research on various experimental models has uncovered several gene components to understand the pathogenesis of neurodegenerative disorders. One among them is the brain-derived neurotrophic factor (BDNF), which performs several vital functions, enhancing synaptic plasticity and assisting in the emergence of long-term thoughts. The pathophysiology of some neurodegenerative diseases, including Alzheimer's, Parkinson's, Schizophrenia, and Huntington's, has been linked to BDNF. According to numerous research, high levels of BDNF are connected to a lower risk of developing a neurodegenerative disease. As a result, we want to concentrate on BDNF in this article and outline its protective role against neurological disorders.
Collapse
Affiliation(s)
- Prathyusha Koyya
- Department of Biotechnology, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Santhi Latha Pandrangi
- Department of Biochemistry and Bioinformatics, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| |
Collapse
|
55
|
Deng C, Chen H. Brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling in spinal muscular atrophy and amyotrophic lateral sclerosis. Neurobiol Dis 2024; 190:106377. [PMID: 38092270 DOI: 10.1016/j.nbd.2023.106377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
Tropomyosin receptor kinase B (TrkB) and its primary ligand brain-derived neurotrophic factor (BDNF) are expressed in the neuromuscular system, where they affect neuronal survival, differentiation, and functions. Changes in BDNF levels and full-length TrkB (TrkB-FL) signaling have been revealed in spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), two common forms of motor neuron diseases that are characterized by defective neuromuscular junctions in early disease stages and subsequently progressive muscle weakness. This review summarizes the current understanding of BDNF/TrkB-FL-related research in SMA and ALS, with an emphasis on their alterations in the neuromuscular system and possible BDNF/TrkB-FL-targeting therapeutic strategies. The limitations of current studies and future directions are also discussed, giving the hope of discovering novel and effective treatments.
Collapse
Affiliation(s)
- Chunchu Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
56
|
Wang Y, Liang J, Xu B, Yang J, Wu Z, Cheng L. TrkB/BDNF signaling pathway and its small molecular agonists in CNS injury. Life Sci 2024; 336:122282. [PMID: 38008209 DOI: 10.1016/j.lfs.2023.122282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 10/19/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
As one of the most prevalent neurotrophic factors in the central nervous system (CNS), brain-derived neurotrophic factor (BDNF) plays a significant role in CNS injury by binding to its specific receptor Tropomyosin-related kinase receptor B (TrkB). The BDNF/TrkB signaling pathway is crucial for neuronal survival, structural changes, and plasticity. BDNF acts as an axonal growth and extension factor, a pro-survival factor, and a synaptic modulator in the CNS. BDNF also plays an important role in the maintenance and plasticity of neuronal circuits. Several studies have demonstrated the importance of BDNF in the treatment and recovery of neurodegenerative and neurotraumatic disorders. By undertaking in-depth study on the mechanism of BDNF/TrkB function, important novel therapeutic strategies for treating neuropsychiatric disorders have been discovered. In this review, we discuss the expression patterns and mechanisms of the TrkB/BDNF signaling pathway in CNS damage and introduce several intriguing small molecule TrkB receptor agonists produced over the previous several decades.
Collapse
Affiliation(s)
- Yujin Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Medical School, Tongji University, Shanghai 200433, China
| | - Jing Liang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; School of Stomatology, Tongji University, Shanghai 200072, China
| | - Boyu Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Medical School, Tongji University, Shanghai 200433, China
| | - Jin Yang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Medical School, Tongji University, Shanghai 200433, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China.
| |
Collapse
|
57
|
Walker G, Brown C, Ge X, Kumar S, Muzumdar MD, Gupta K, Bhattacharyya M. Oligomeric organization of membrane proteins from native membranes at nanoscale spatial and single-molecule resolution. NATURE NANOTECHNOLOGY 2024; 19:85-94. [PMID: 38012273 PMCID: PMC10981947 DOI: 10.1038/s41565-023-01547-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/16/2023] [Indexed: 11/29/2023]
Abstract
The oligomeric organization of membrane proteins in native cell membranes is a critical regulator of their function. High-resolution quantitative measurements of oligomeric assemblies and how they change under different conditions are indispensable to understanding membrane protein biology. We report Native-nanoBleach, a total internal reflection fluorescence microscopy-based single-molecule photobleaching step analysis technique to determine the oligomeric distribution of membrane proteins directly from native membranes at an effective spatial resolution of ~10 nm. We achieved this by capturing target membrane proteins in native nanodiscs with their proximal native membrane environment using amphipathic copolymers. We applied Native-nanoBleach to quantify the oligomerization status of structurally and functionally diverse membrane proteins, including a receptor tyrosine kinase (TrkA) and a small GTPase (KRas) under growth-factor binding and oncogenic mutations, respectively. Our data suggest that Native-nanoBleach provides a sensitive, single-molecule platform to quantify membrane protein oligomeric distributions in native membranes under physiologically and clinically relevant conditions.
Collapse
Affiliation(s)
- Gerard Walker
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Caroline Brown
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Xiangyu Ge
- Department of Pathology, Yale University, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Shailesh Kumar
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Mandar D Muzumdar
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Department of Genetics, Yale University, New Haven, CT, USA
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Yale Cancer Center, New Haven, USA
| | - Kallol Gupta
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | | |
Collapse
|
58
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
59
|
Xiang Q, Tao JS, Fu CJ, Liao LX, Liu LN, Deng J, Li XH. The integrated analysis and underlying mechanisms of FNDC5 on diabetic induced cognitive deficits. Int J Geriatr Psychiatry 2024; 39:e6047. [PMID: 38161286 DOI: 10.1002/gps.6047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVES Chronic hyperglycemia is considered as an important factor to promote the neurodegenerative process of brain, and the synaptic plasticity as well as heterogeneity of hippocampal cells are thought to be associated with cognitive dysfunction in the early process of neurodegeneration. To date, fibronectin type III domain-containing protein 5 (FNDC5) has been highlighted its protective role in multiple neurodegenerative diseases. However, the potential molecular and cellular mechanisms of FNDC5 on synaptic plasticity regulation in cognitive impairment (CI) induced by diabetics are still need to known. METHODS/DESIGN To investigate the heterogeneity and synaptic plasticity of hippocampus in animals with CI state induced by hyperglycemia, and explore the potential role of FNDC5 involved in this process. Firstly, the single cell sequencing was performed based on the hippocampal tissue from db diabetic mice induced CI and normal health control mice by ex vivo experiments; and then the integrated analysis and observations validation using Quantitative Real-time PCR, western blot as well as other in vitro studies. RESULTS We observed and clarified the sub-cluster of type IC spiral ganglion neurons expressed marker genes as Trmp3 and sub-cluster of astrocytes with marker gene as Atp1a2 in hippocampal cells from diabetic animals induced CI and the effect of those on neuron-glial communication. We also found that FNDC5\BDNF-Trk axis was involved in the synaptic plasticity regulation of hippocampus. In high glucose induced brain injury model in vitro, we investigated that FNDC5 significantly regulates BDNF expression and that over-expression of FNDC5 up-regulated BDNF expression (p < 0.05) and can also significantly increase the expression of synapsin-1 (p < 0.05), which is related to synaptic plasticity, In addition, the unbalanced methylation level between H3K4 and H3K9 in Fndc5 gene promoter correlated with significantly down-regulated expression of FNDC5 (p < 0.05) in the hyperglycemia state. CONCLUSION The current study revealed that the synaptic plasticity of hippocampal cells in hyperglycemia might be regulated by FNDC5\BDNF-Trk axis, playing the protective role in the process of CI induced by hyperglycemia and providing a target for the early treatment of hyperglycemia induced cognitive dysfunction in clinic.
Collapse
Affiliation(s)
- Qiong Xiang
- Institute of Medicine, Medical Research Center, Jishou University, Jishou, Hunan, China
| | - Jia-Sheng Tao
- Institute of Medicine, Medical Research Center, Jishou University, Jishou, Hunan, China
| | - Chuan-Jun Fu
- Institute of Medicine, Medical Research Center, Jishou University, Jishou, Hunan, China
| | - Li-Xiu Liao
- Institute of Pharmaceutical Sciences, Jishou University, Jishou, Hunan, China
| | - Li-Ni Liu
- Institute of Medicine, Medical Research Center, Jishou University, Jishou, Hunan, China
| | - Jing Deng
- Institute of Medicine, Medical Research Center, Jishou University, Jishou, Hunan, China
| | - Xian-Hui Li
- Institute of Pharmaceutical Sciences, Jishou University, Jishou, Hunan, China
| |
Collapse
|
60
|
Amidfar M, Garcez ML, Askari G, Bagherniya M, Khorvash F, Golpour-Hamedani S, de Oliveira J. Role of BDNF Signaling in the Neuroprotective and Memory-enhancing Effects of Flavonoids in Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:984-995. [PMID: 37702162 DOI: 10.2174/1871527323666230912090856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Foods rich in flavonoids are associated with a reduced risk of various chronic diseases, including Alzheimer's disease (AD). In fact, growing evidence suggests that consuming flavonoid- rich foods can beneficially affect normal cognitive function. Animal models have shown that many flavonoids prevent the development of AD-like pathology and improve cognitive deficits. OBJECTIVE Identifying the molecular causes underlying the memory-enhancing effect of flavonoid-rich foods makes it possible to provide the best diet to prevent cognitive decline associated with aging and Alzheimer's disease. Based on the most recent scientific literature, this review article critically examines the therapeutic role of dietary flavonoids in ameliorating and preventing the progression of AD and enhancement of memory with a focus on the role of the BDNF signaling pathway. METHODS The databases of PubMed, Web of Science, Google Scholar, and Scopus were searched up to March 2023 and limited to English language. Search strategies were using the following keywords in titles and abstracts: (Flavonoid-rich foods OR Flavonoids OR Polyphenols); AND (Brain-Derived Neurotrophic Factor OR BDNF OR CREB OR) AND (Alzheimer's disease OR memory OR cognition OR). RESULTS Flavonoid-rich foods including green tea, berries, curcumin and pomegranate exert their beneficial effects on memory decline associated with aging and Alzheimer's disease mostly through the direct interaction with BDNF signaling pathway. CONCLUSION The neuroprotective effects of flavonoid-rich foods through the CREB-BDNF mechanism have the potential to prevent or limit memory decline due to aging and Alzheimer's disease, so their consumption throughout life may prevent age-related cognitive impairment.
Collapse
Affiliation(s)
- Meysam Amidfar
- Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michelle Lima Garcez
- Graduate Program of Research and Extension (CEPEG), University Center of Espirito Santo, Espírito Santo, Brazil
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Golpour-Hamedani
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jade de Oliveira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
61
|
Queen NJ, Huang W, Zou X, Mo X, Cao L. AAV-BDNF gene therapy ameliorates a hypothalamic neuroinflammatory signature in the Magel2-null model of Prader-Willi syndrome. Mol Ther Methods Clin Dev 2023; 31:101108. [PMID: 37766791 PMCID: PMC10520877 DOI: 10.1016/j.omtm.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Individuals with Prader-Willi syndrome (PWS) exhibit several metabolic and behavioral abnormalities associated with excessive food-seeking activity. PWS is thought to be driven in part by dysfunctional hypothalamic circuitry and blunted responses to peripheral signals of satiety. Previous work described a hypothalamic transcriptomic signature of individuals with PWS. Notably, PWS patients exhibited downregulation of genes involved in neuronal development and an upregulation of neuroinflammatory genes. Deficiencies of brain-derived neurotrophic factor (BDNF) and its receptor were identified as potential drivers of PWS phenotypes. Our group recently applied an adeno-associated viral (AAV)-BDNF gene therapy within a preclinical PWS model, Magel2-null mice, to improve metabolic and behavioral function. While this proof-of-concept project was promising, it remained unclear how AAV-BDNF was influencing the hypothalamic microenvironment and how its therapeutic effect was mediated. To investigate, we hypothalamically injected AAV-BDNF to wild type and Magel2-null mice and performed mRNA sequencing on hypothalamic tissue. Here, we report that (1) Magel2 deficiency is associated with neuroinflammation in the hypothalamus and (2) AAV-BDNF gene therapy reverses this neuroinflammation. These data newly reveal Magel2-null mice as a valid model of PWS-related neuroinflammation and furthermore suggest that AAV-BDNF may modulate obesity-related neuroinflammatory phenotypes through direct or indirect means.
Collapse
Affiliation(s)
- Nicholas J. Queen
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Wei Huang
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xunchang Zou
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Lei Cao
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
62
|
Rocha Caldas G, do Amaral L, Munhoz Rodrigues D, Mayrink de Miranda A, Aparecida Guinaim Dos Santos N, Machado Rocha L, Tame Parreira RL, Cardozo Dos Santos A, Kenupp Bastos J. Brazilian Green Propolis' Artepillin C and Its Acetylated Derivative Activate the NGF-Signaling Pathways and Induce Neurite Outgrowth in NGF-Deprived PC12 Cells. Chem Biodivers 2023; 20:e202301294. [PMID: 37953436 DOI: 10.1002/cbdv.202301294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/14/2023]
Abstract
Artepillin C is the most studied compound in Brazilian Green Propolis and, along with its acetylated derivative, displays neurotrophic activity on PC12 cells. Specific inhibitors of the trkA receptor (K252a), PI3K/Akt (LY294002), and MAPK/ERK (U0126) signaling pathways were used to investigate the neurotrophic mechanism. The expression of proteins involved in axonal and synaptic plasticity (GAP-43 and Synapsin I) was assessed by western blotting. Additionally, physicochemical properties, pharmacokinetics, and drug-likeness were evaluated by the SwissADME web tool. Both compounds induced neurite outgrowth by activating the NGF-signaling pathways but through different neuronal proteins. Furthermore, in silico analyses showed interesting physicochemical and pharmacokinetic properties of these compounds. Therefore, these compounds could play an important role in axonal and synaptic plasticity and should be further investigated.
Collapse
Affiliation(s)
- Gabriel Rocha Caldas
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Lilian do Amaral
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Débora Munhoz Rodrigues
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Aline Mayrink de Miranda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Leandro Machado Rocha
- Natural Products Technology Laboratory-Fluminense Federal University, Niterói, RJ, Brazil
| | | | | | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
63
|
Tsugiyama LE, Macedo Moraes RC, Cavalcante Moraes YA, Francis-Oliveira J. Promising new pharmacological targets for depression: The search for efficacy. Drug Discov Today 2023; 28:103804. [PMID: 37865307 DOI: 10.1016/j.drudis.2023.103804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/31/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Pharmacological treatment of major depressive disorder (MDD) still relies on the use of serotonergic drugs, despite their limited efficacy. A few mechanistically new drugs have been developed in recent years, but many fail in clinical trials. Several hypotheses have been proposed to explain MDD pathophysiology, indicating that physiological processes such as neuroplasticity, circadian rhythms, and metabolism are potential targets. Here, we review the current state of pharmacological treatments for MDD, as well as the preclinical and clinical evidence for an antidepressant effect of molecules that target non-serotonergic systems. We offer some insights into the challenges facing the development of new antidepressant drugs, and the prospect of finding more effectiveness for each target discussed.
Collapse
Affiliation(s)
- Lucila Emiko Tsugiyama
- Kansai Medical University, Graduate School of Medicine, iPS Cell Applied Medicine, Hirakata, Osaka, Japan
| | - Ruan Carlos Macedo Moraes
- University of Alabama at Birmingham, Department of Psychiatry and Behavioral Neurobiology, Birmingham, AL, USA; Biomedical Sciences Institute, Department of Human Physiology, Sao Paulo University, Sao Paulo, Brazil
| | | | - Jose Francis-Oliveira
- University of Alabama at Birmingham, Department of Psychiatry and Behavioral Neurobiology, Birmingham, AL, USA; Biomedical Sciences Institute, Department of Human Physiology, Sao Paulo University, Sao Paulo, Brazil.
| |
Collapse
|
64
|
Liang Y. Pathogenicity and virulence of influenza. Virulence 2023; 14:2223057. [PMID: 37339323 DOI: 10.1080/21505594.2023.2223057] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
Influenza viruses, including four major types (A, B, C, and D), can cause mild-to-severe and lethal diseases in humans and animals. Influenza viruses evolve rapidly through antigenic drift (mutation) and shift (reassortment of the segmented viral genome). New variants, strains, and subtypes have emerged frequently, causing epidemic, zoonotic, and pandemic infections, despite currently available vaccines and antiviral drugs. In recent years, avian influenza viruses, such as H5 and H7 subtypes, have caused hundreds to thousands of zoonotic infections in humans with high case fatality rates. The likelihood of these animal influenza viruses acquiring airborne transmission in humans through viral evolution poses great concern for the next pandemic. Severe influenza viral disease is caused by both direct viral cytopathic effects and exacerbated host immune response against high viral loads. Studies have identified various mutations in viral genes that increase viral replication and transmission, alter tissue tropism or species specificity, and evade antivirals or pre-existing immunity. Significant progress has also been made in identifying and characterizing the host components that mediate antiviral responses, pro-viral functions, or immunopathogenesis following influenza viral infections. This review summarizes the current knowledge on viral determinants of influenza virulence and pathogenicity, protective and immunopathogenic aspects of host innate and adaptive immune responses, and antiviral and pro-viral roles of host factors and cellular signalling pathways. Understanding the molecular mechanisms of viral virulence factors and virus-host interactions is critical for the development of preventive and therapeutic measures against influenza diseases.
Collapse
Affiliation(s)
- Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
65
|
Ona G, Reverte I, Rossi GN, Dos Santos RG, Hallak JE, Colomina MT, Bouso JC. Main targets of ibogaine and noribogaine associated with its putative anti-addictive effects: A mechanistic overview. J Psychopharmacol 2023; 37:1190-1200. [PMID: 37937505 DOI: 10.1177/02698811231200882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
BACKGROUND There is a growing interest in studying ibogaine (IBO) as a potential treatment for substance use disorders (SUDs). However, its clinical use has been hindered for mainly two reasons: First, the lack of randomized, controlled studies informing about its safety and efficacy. And second, IBO's mechanisms of action remain obscure. It has been challenging to elucidate a predominant mechanism of action responsible for its anti-addictive effects. OBJECTIVE To describe the main targets of IBO and its main metabolite, noribogaine (NOR), in relation to their putative anti-addictive effects, reviewing the updated literature available. METHODS A comprehensive search involving MEDLINE and Google Scholar was undertaken, selecting papers published until July 2022. The inclusion criteria were both theoretical and experimental studies about the pharmacology of IBO. Additional publications were identified in the references of the initial papers. RESULTS IBO and its main metabolite, NOR, can modulate several targets associated with SUDs. Instead of identifying key targets, the action of IBO should be understood as a complex modulation of multiple receptor systems, leading to potential synergies. The elucidation of IBO's pharmacology could be enhanced through the application of methodologies rooted in the polypharmacology paradigm. Such approaches possess the capability to describe multifaceted patterns within multi-target drugs. CONCLUSION IBO displays complex effects through multiple targets. The information detailed here should guide future research on both mechanistic and therapeutic studies.
Collapse
Affiliation(s)
- Genís Ona
- International Center for Ethnobotanical Education, Research, and Service (ICEERS), Barcelona, Spain
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain
- Medical Anthropology Research Center (MARC), Universitat Rovira i Virgili, Tarragona, Spain
| | - Ingrid Reverte
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Giordano N Rossi
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rafael G Dos Santos
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, Ribeirão Preto (SP), Brazil
| | - Jaime Ec Hallak
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, Ribeirão Preto (SP), Brazil
| | - Maria Teresa Colomina
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain
| | - José Carlos Bouso
- International Center for Ethnobotanical Education, Research, and Service (ICEERS), Barcelona, Spain
- Medical Anthropology Research Center (MARC), Universitat Rovira i Virgili, Tarragona, Spain
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
66
|
Fazzari M, Lunghi G, Di Biase E, Maggioni M, Carsana EV, Cioccarelli L, Vigani L, Loberto N, Aureli M, Mauri L, Ciampa MG, Valsecchi M, Takato K, Imamura A, Ishida H, Ben Mariem O, Saporiti S, Palazzolo L, Chiricozzi E, Eberini I, Sonnino S. GM1 structural requirements to mediate neuronal functions. Glycoconj J 2023; 40:655-668. [PMID: 38100017 DOI: 10.1007/s10719-023-10141-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/02/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024]
Abstract
Since the 1980s, it has been known that the administration of ganglioside GM1 to cultured cells induced or enhanced neuronal differentiation. GM1 mechanism of action relies on its direct interaction and subsequent activation of the membrane tyrosine kinase receptor, TrkA, which naturally serves as NGF receptor. This process is mediated by the sole oligosaccharide portion of GM1, the pentasaccharide β-Gal-(1-3)-β-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-β-Gal-(1-4)-β-Glc. Here we detailed the minimum structural requirements of the oligosaccharide portion of GM1 for mediating the TrkA dependent neuritogenic processing. By in vitro and in silico biochemical approaches, we demonstrated that the minimal portion of GM1 required for the TrkA activation is the inner core of the ganglioside's oligosaccharide β-Gal-(1-3)-β-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-β-Gal. The addition of a sialic acid residue at position 3 of the outer galactose of the GM1 oligosaccharide, which forms the oligosaccharide of GD1a, prevented the interaction with TrkA and the resulting neuritogenesis. On the contrary, the addition of a fucose residue at position 2 of the outer galactose, forming the Fucosyl-GM1 oligosaccharide, did not prevent the TrkA-mediated neuritogenesis.
Collapse
Affiliation(s)
- Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Margherita Maggioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Emma Veronica Carsana
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Laura Cioccarelli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Laura Vigani
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Manuela Valsecchi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Koichi Takato
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Omar Ben Mariem
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Milano, Italy
| | - Simona Saporiti
- Analytical Excellence & Program Management, Merck Serono S.p.A, Rome, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Milano, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy.
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Milano, Italy
- Data Science Research Center, Università degli Studi di Milano, Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy.
| |
Collapse
|
67
|
Danelon V, Garret-Thomson SC, Almo SC, Lee FS, Hempstead BL. Immune activation of the p75 neurotrophin receptor: implications in neuroinflammation. Front Mol Neurosci 2023; 16:1305574. [PMID: 38106879 PMCID: PMC10722190 DOI: 10.3389/fnmol.2023.1305574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023] Open
Abstract
Despite structural similarity with other tumor necrosis factor receptor superfamily (TNFRSF) members, the p75 neurotrophin receptor (p75NTR, TNFR16) mediates pleiotropic biological functions not shared with other TNFRs. The high level of p75NTR expression in the nervous system instead of immune cells, its utilization of co-receptors, and its interaction with soluble dimeric, rather than soluble or cell-tethered trimeric ligands are all characteristics which distinguish it from most other TNFRs. Here, we compare these attributes to other members of the TNFR superfamily. In addition, we describe the recent evolutionary adaptation in B7-1 (CD80), an immunoglobulin (Ig) superfamily member, which allows engagement to neuronally-expressed p75NTR. B7-1-mediated binding to p75NTR occurs in humans and other primates, but not lower mammals due to specific sequence changes that evolved recently in primate B7-1. This discovery highlights an additional mechanism by which p75NTR can respond to inflammatory cues and trigger synaptic elimination in the brain through engagement of B7-1, which was considered to be immune-restricted. These observations suggest p75NTR does share commonality with other immune co-modulatory TNFR family members, by responding to immunoregulatory cues. The evolution of primate B7-1 to bind and elicit p75NTR-mediated effects on neuronal morphology and function are discussed in relationship to immune-driven modulation of synaptic actions during injury or inflammation.
Collapse
Affiliation(s)
- Victor Danelon
- Department of Medicine, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
| | | | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, United States
| | - Barbara L. Hempstead
- Department of Medicine, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
68
|
Albini M, Krawczun-Rygmaczewska A, Cesca F. Astrocytes and brain-derived neurotrophic factor (BDNF). Neurosci Res 2023; 197:42-51. [PMID: 36780947 DOI: 10.1016/j.neures.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 02/13/2023]
Abstract
Astrocytes are emerging in the neuroscience field as crucial modulators of brain functions, from the molecular control of synaptic plasticity to orchestrating brain-wide circuit activity for cognitive processes. The cellular pathways through which astrocytes modulate neuronal activity and plasticity are quite diverse. In this review, we focus on neurotrophic pathways, mostly those mediated by brain-derived neurotrophic factor (BDNF). Neurotrophins are a well-known family of trophic factors with pleiotropic functions in neuronal survival, maturation and activity. Within the brain, BDNF is the most abundantly expressed and most studied of all neurotrophins. While we have detailed knowledge of the effect of BDNF on neurons, much less is known about its physiology on astroglia. However, over the last years new findings emerged demonstrating that astrocytes take an active part into BDNF physiology. In this work, we discuss the state-of-the-art knowledge about astrocytes and BDNF. Indeed, astrocytes sense extracellular BDNF through its specific TrkB receptors and activate intracellular responses that greatly vary depending on the brain area, stage of development and receptors expressed. Astrocytes also uptake and recycle BDNF / proBDNF at synapses contributing to synaptic plasticity. Finally, experimental evidence is now available describing deficits in astrocytic BDNF in several neuropathologies, suggesting that astrocytic BDNF may represent a promising target for clinical translation.
Collapse
Affiliation(s)
- Martina Albini
- Department of Experimental Medicine, University of Genova, Italy; IIT Center for Synaptic Neuroscience and Technology, Genova, Italy
| | - Alicja Krawczun-Rygmaczewska
- IIT Center for Synaptic Neuroscience and Technology, Genova, Italy; Department of Life Sciences, University of Trieste, Italy
| | - Fabrizia Cesca
- IIT Center for Synaptic Neuroscience and Technology, Genova, Italy; Department of Life Sciences, University of Trieste, Italy.
| |
Collapse
|
69
|
Mallick M, Yoithap Prabhunath TR, Kumari S, Sobhia ME. An in silico study of protein-protein interactions and design of novel peptides for TrkA in ameloblastoma. J Biomol Struct Dyn 2023:1-11. [PMID: 37975413 DOI: 10.1080/07391102.2023.2278083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
Ameloblastoma is a benign odontogenic jawbone tumor. The binding of Nerve growth factor (NGF) to receptor tyrosine kinase A (TrkA) promotes cell survival, proliferation, and differentiation via PI3K/AKT and Ras/MAPK signaling. Although the exact cause of ameloblastoma remains unknown, elevated levels of NGF and TrkA expression in ameloblastoma are associated with aggressive tumor behavior and poor patient outcomes. It is previously demonstrated that His 4, Arg 9, and Glu 11 residues of NGF made crucial interactions with the TrkA subunit. The main aim of our present study to develop potential therapeutic strategies by identifying promising peptide candidates. The objectives include starting with a detailed in silico analysis to identify a crucial peptide sequence of NGF that is bound by TrkA, creating a library of novel peptides from the identified peptide sequence through a single-point mutation on interacting residues (His 4, Arg 9, and Glu 11), and selecting the top peptides based on docking score, interactions analysis, and desirable pose analysis. The study ultimately designed a hybrid peptide candidate through the simultaneous and continuous mutation of the top residues, resulting in a peptide that exhibited a more specific interaction with TrkA, blocking the binding site and preventing the interaction between NGF and TrkA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Moyim Mallick
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sahibzada Ajit Singh Nagar, India
| | | | - Sonia Kumari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sahibzada Ajit Singh Nagar, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sahibzada Ajit Singh Nagar, India
| |
Collapse
|
70
|
Miranda-Lourenço C, Rosa J, Rei N, Belo RF, Lopes AL, Silva D, Vieira C, Magalhães-Cardoso T, Viais R, Correia-de-Sá P, Sebastião AM, Diógenes MJ. Adenosinergic System and BDNF Signaling Changes as a Cross-Sectional Feature of RTT: Characterization of Mecp2 Heterozygous Mouse Females. Int J Mol Sci 2023; 24:16249. [PMID: 38003438 PMCID: PMC10671708 DOI: 10.3390/ijms242216249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Rett Syndrome is an X-linked neurodevelopmental disorder (RTT; OMIM#312750) associated to MECP2 mutations. MeCP2 dysfunction is seen as one cause for the deficiencies found in brain-derived neurotrophic factor (BDNF) signaling, since BDNF is one of the genes under MeCP2 jurisdiction. BDNF signaling is also dependent on the proper function of the adenosinergic system. Indeed, both BDNF signaling and the adenosinergic system are altered in Mecp2-null mice (Mecp2-/y), a representative model of severe manifestation of RTT. Considering that symptoms severity largely differs among RTT patients, we set out to investigate the BDNF and ADO signaling modifications in Mecp2 heterozygous female mice (Mecp2+/-) presenting a less severe phenotype. Symptomatic Mecp2+/- mice have lower BDNF levels in the cortex and hippocampus. This is accompanied by a loss of BDNF-induced facilitation of hippocampal long-term potentiation (LTP), which could be restored upon selective activation of adenosine A2A receptors (A2AR). While no differences were observed in the amount of adenosine in the cortex and hippocampus of Mecp2+/- mice compared with healthy littermates, the density of the A1R and A2AR subtype receptors was, respectively, upregulated and downregulated in the hippocampus. Data suggest that significant changes in BDNF and adenosine signaling pathways are present in an RTT model with a milder disease phenotype: Mecp2+/- female animals. These features strengthen the theory that boosting adenosinergic activity may be a valid therapeutic strategy for RTT patients, regardless of their genetic penetrance.
Collapse
Affiliation(s)
- Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Jéssica Rosa
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Rita F. Belo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana Luísa Lopes
- Laboratório de Farmacologia e Neurobiologia/MedInUP, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal (D.S.); (P.C.-d.-S.)
| | - Diogo Silva
- Laboratório de Farmacologia e Neurobiologia/MedInUP, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal (D.S.); (P.C.-d.-S.)
| | - Cátia Vieira
- Laboratório de Farmacologia e Neurobiologia/MedInUP, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal (D.S.); (P.C.-d.-S.)
| | - Teresa Magalhães-Cardoso
- Laboratório de Farmacologia e Neurobiologia/MedInUP, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal (D.S.); (P.C.-d.-S.)
| | - Ricardo Viais
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia/MedInUP, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal (D.S.); (P.C.-d.-S.)
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria J. Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
71
|
Terracina S, Ferraguti G, Tarani L, Fanfarillo F, Tirassa P, Ralli M, Iannella G, Polimeni A, Lucarelli M, Greco A, Fiore M. Nerve Growth Factor and Autoimmune Diseases. Curr Issues Mol Biol 2023; 45:8950-8973. [PMID: 37998739 PMCID: PMC10670231 DOI: 10.3390/cimb45110562] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
NGF plays a crucial immunomodulatory role and increased levels are found in numerous tissues during autoimmune states. NGF directly modulates innate and adaptive immune responses of B and T cells and causes the release of neuropeptides and neurotransmitters controlling the immune system activation in inflamed tissues. Evidence suggests that NGF is involved in the pathogenesis of numerous immune diseases including autoimmune thyroiditis, chronic arthritis, multiple sclerosis, systemic lupus erythematosus, mastocytosis, and chronic granulomatous disease. Furthermore, as NGF levels have been linked to disease severity, it could be considered an optimal early biomarker to identify therapeutic approach efficacy. In conclusion, by gaining insights into how these molecules function and which cells they interact with, future studies can devise targeted therapies to address various neurological, immunological, and other disorders more effectively. This knowledge may pave the way for innovative treatments based on NGF manipulation aimed at improving the quality of life for individuals affected by diseases involving neurotrophins.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Fanfarillo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Massimo Ralli
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Giannicola Iannella
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
72
|
Vink HA, Ramekers D, Foster AC, Versnel H. The efficacy of a TrkB monoclonal antibody agonist in preserving the auditory nerve in deafened guinea pigs. Hear Res 2023; 439:108895. [PMID: 37837701 DOI: 10.1016/j.heares.2023.108895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
The auditory nerve typically degenerates following loss of cochlear hair cells or synapses. In the case of hair cell loss neural degeneration hinders restoration of hearing through a cochlear implant, and in the case of synaptopathy suprathreshold hearing is affected, potentially degrading speech perception in noise. It has been established that neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) can mitigate auditory nerve degeneration. Several potential BDNF mimetics have also been investigated for neurotrophic effects in the cochlea. A recent in vitro study showed favorable effects of M3, a TrkB monoclonal antibody agonist, when compared with BDNF. In the present study we set out to examine the effect of M3 on auditory nerve preservation in vivo. Thirty-one guinea pigs were bilaterally deafened, and unilaterally treated with a single 3-µl dose of 7 mg/ml, 0.7 mg/ml M3 or vehicle-only by means of a small gelatin sponge two weeks later. During the experiment and analyses the experimenters were blinded to the three treatment groups. Four weeks after treatment, we assessed the treatment effect (1) histologically, by quantifying survival of SGCs and their peripheral processes (PPs); and (2) electrophysiologically, with two different paradigms of electrically evoked compound action potential (eCAP) recordings shown to be indicative of neural health: single-pulse stimulation with varying inter-phase gap (IPG), and pulse-train stimulation with varying inter-pulse interval. We observed a consistent and significant preservative effect of M3 on SGC survival in the lower basal turn (approximately 40% more survival than in the untreated contralateral cochlea), but also in the upper middle and lower apical turn of the cochlea. This effect was similar for the two treatment groups. Survival of PPs showed a trend similar to that of the SGCs, but was only significantly higher for the highest dose of M3. The protective effect of M3 on SGCs was not reflected in any of the eCAP measures: no statistically significant differences were observed between groups in IPG effect nor between the M3 treatment groups and the control group using the pulse-train stimulation paradigm. In short, while a clear effect of M3 was observed on SGC survival, this was not clearly translated into functional preservation.
Collapse
Affiliation(s)
- Henk A Vink
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands; UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Dyan Ramekers
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands; UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | | | - Huib Versnel
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands; UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
73
|
Peng Y, Chen X, Rao Z, Wu W, Zuo H, Chen K, Li K, Lin H, Liu S, Xiao Y, Wang B, Quan D, Qing X, Bai Y, Shao Z. Multifunctional annulus fibrosus matrix prevents disc-related pain via inhibiting neuroinflammation and sensitization. Acta Biomater 2023; 170:288-302. [PMID: 37598791 DOI: 10.1016/j.actbio.2023.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/25/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Chronic low back pain mainly attributed to intervertebral disc (IVD) degeneration. Endogenous damage-associated molecular patterns (DAMPs) in the injured IVD, particularly mitochondria-derived nucleic acid molecules (CpG DNA), play a primary role in the inflammatory responses in macrophages. M1-type macrophages form a chronic inflammatory microenvironment by releasing pro-inflammatory factors and nerve growth factor (NGF) that induce nerve growth into the inner annulus fibrosus, resulting in persistent hyperalgesia. We fabricated an amphiphilic polycarbonate that naturally forms cationic nanoparticles (cNP) in aqueous solutions, with the hydrophobic core loaded with TrkA-IN-1, an antagonist against the NGF receptor (TrkA). The drug delivery nanoparticles were denoted as TI-cNP. TrkA-IN-1 and TI-cNP were added to the decellularized annulus fibrosus matrix (DAF) hydrogel to form hybrid hydrogels, denoted as TI-DAF and TI-cNP-DAF, respectively. As a result, TrkA-IN-1 showed a delayed release profile both in TI-DAF and TI-cNP-DAF. Each mole of cNP could bind approximately 3 mol of CpG DNA to inhibit inflammation. cNP-DAF and TI-cNP-DAF significantly inhibited the M1 phenotype induced by CpG DNA. TI-DAF and TI-cNP-DAF reduced neurite branching and axon length, and inhibited the expression of neurogenic mediators (CGRP and substance P) in the presence of NGF. Besides, TI-cNP-DAF relieved mechanical hyperalgesia, reduced CGRP and substance P expression in the dorsal root ganglion, and downregulated GFAP and c-FOS signaling in the spinal cord in the rat disc herniation model. Summarily, TI-cNP-DAF, a novel composite IVD hydrogel, efficiently mediated the inflammatory environment, inhibited nerve ingrowth and sensitization, and could be clinically applied for treating discogenic pain. STATEMENT OF SIGNIFICANCE: Discogenic lower back pain, related to intervertebral disc degeneration (IDD), imposes a tremendous health and economic burden globally. M1-type macrophages release pro-inflammatory factors and nerve growth factor (NGF) that induce nerve growth into the inner annulus fibrosus, resulting in persistent hyperalgesia and discogenic pain. Reconstructing matrix integrity and modulating the inflammatory microenvironment are promising strategies for preventing the ingrowth and activation of neurites. The TI-cNP-DAF hydrogel recovers tissue integrity, alleviates inflammation, and delivers the TrkA antagonist to inhibit the activity of NGF, thus restraining hyperinnervation and nociceptive input. Due to its simple production process, injectability, and acellular strategy, the hydrogel is operable and holds great potential for treating discogenic lower back pain.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuanzuo Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zilong Rao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China
| | - Wei Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huiying Zuo
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China
| | - Kaibin Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China
| | - Kanglu Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Xiao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - BaiChuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Daping Quan
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ying Bai
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
74
|
Cefis M, Chaney R, Wirtz J, Méloux A, Quirié A, Leger C, Prigent-Tessier A, Garnier P. Molecular mechanisms underlying physical exercise-induced brain BDNF overproduction. Front Mol Neurosci 2023; 16:1275924. [PMID: 37868812 PMCID: PMC10585026 DOI: 10.3389/fnmol.2023.1275924] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Accumulating evidence supports that physical exercise (EX) is the most effective non-pharmacological strategy to improve brain health. EX prevents cognitive decline associated with age and decreases the risk of developing neurodegenerative diseases and psychiatric disorders. These positive effects of EX can be attributed to an increase in neurogenesis and neuroplastic processes, leading to learning and memory improvement. At the molecular level, there is a solid consensus to involve the neurotrophin brain-derived neurotrophic factor (BDNF) as the crucial molecule for positive EX effects on the brain. However, even though EX incontestably leads to beneficial processes through BDNF expression, cellular sources and molecular mechanisms underlying EX-induced cerebral BDNF overproduction are still being elucidated. In this context, the present review offers a summary of the different molecular mechanisms involved in brain's response to EX, with a specific focus on BDNF. It aims to provide a cohesive overview of the three main mechanisms leading to EX-induced brain BDNF production: the neuronal-dependent overexpression, the elevation of cerebral blood flow (hemodynamic hypothesis), and the exerkine signaling emanating from peripheral tissues (humoral response). By shedding light on these intricate pathways, this review seeks to contribute to the ongoing elucidation of the relationship between EX and cerebral BDNF expression, offering valuable insights into the potential therapeutic implications for brain health enhancement.
Collapse
Affiliation(s)
- Marina Cefis
- Département des Sciences de l’Activité Physique, Faculté des Sciences, Université du Québec à Montréal, Montreal, QC, Canada
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Remi Chaney
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Julien Wirtz
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Alexandre Méloux
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Aurore Quirié
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Clémence Leger
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Anne Prigent-Tessier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Philippe Garnier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
- Département Génie Biologique, Institut Universitaire de Technologie, Dijon, France
| |
Collapse
|
75
|
Girych M, Kulig W, Enkavi G, Vattulainen I. How Neuromembrane Lipids Modulate Membrane Proteins: Insights from G-Protein-Coupled Receptors (GPCRs) and Receptor Tyrosine Kinases (RTKs). Cold Spring Harb Perspect Biol 2023; 15:a041419. [PMID: 37487628 PMCID: PMC10547395 DOI: 10.1101/cshperspect.a041419] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Lipids play a diverse and critical role in cellular processes in all tissues. The unique lipid composition of nerve membranes is particularly interesting because it contains, among other things, polyunsaturated lipids, such as docosahexaenoic acid, which the body only gets through the diet. The crucial role of lipids in neurological processes, especially in receptor-mediated cell signaling, is emphasized by the fact that in many neuropathological diseases there are significant deviations in the lipid composition of nerve membranes compared to healthy individuals. The lipid composition of neuromembranes can significantly affect the function of receptors by regulating the physical properties of the membrane or by affecting specific interactions between receptors and lipids. In addition, it is worth noting that the ligand-binding pocket of many receptors is located inside the cell membrane, due to which lipids can even modulate the binding of ligands to their receptors. These mechanisms highlight the importance of lipids in the regulation of membrane receptor activation and function. In this article, we focus on two major protein families: G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) and discuss how lipids affect their function in neuronal membranes, elucidating the basic mechanisms underlying neuronal function and dysfunction.
Collapse
Affiliation(s)
- Mykhailo Girych
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Giray Enkavi
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
76
|
Zhang QQ, Qu Y. Brain-derived neurotrophic factor in degenerative retinal diseases: Update and novel perspective. J Neurosci Res 2023; 101:1624-1632. [PMID: 37334646 DOI: 10.1002/jnr.25226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/16/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
Dysfunction and death of neuronal cells are cardinal features of degenerative retinal diseases that are known to arise as the disease progresses. Increasingly evidence suggests that abnormal expression of brain-derived neurotrophic factor (BDNF) may serve as an obligatory relay of the dysfunction and death of neuronal cells in degenerative retinal diseases. Although disorder of BDNF, whether depletion or augmentation, has been connected with neuronal apoptosis and neuroinflammation, the exact mechanisms underlying the effect of impaired BDNF expression on degenerative retinal diseases remain unclear. Here, we present an overview of how BDNF is linked to pathological mechanism of retinal degenerative diseases, summarize BDNF-based treatment strategies, and discuss possible research perspectives in the future.
Collapse
Affiliation(s)
- Qing-Qing Zhang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Qu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
77
|
Yadav H, Jaldhi, Bhardwaj R, Anamika, Bakshi A, Gupta S, Maurya SK. Unveiling the role of gut-brain axis in regulating neurodegenerative diseases: A comprehensive review. Life Sci 2023; 330:122022. [PMID: 37579835 DOI: 10.1016/j.lfs.2023.122022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Emerging evidence have shown the importance of gut microbiota in regulating brain functions. The diverse molecular mechanisms involved in cross-talk between gut and brain provide insight into importance of this communication in maintenance of brain homeostasis. It has also been observed that disturbed gut microbiota contributes to neurological diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and aging. Recently, gut microbiome-derived exosomes have also been reported to play an essential role in the development and progression of neurodegenerative diseases and could thereby act as a therapeutic target. Further, pharmacological interventions including antibiotics, prebiotics and probiotics can influence gut microbiome-mediated management of neurological diseases. However, extensive research is warranted to better comprehend this interconnection in maintenance of brain homeostasis and its implication in neurological diseases. Thus, the present review is aimed to provide a detailed understanding of gut-brain axis followed by possibilities to target the gut microbiome for improving neurological health.
Collapse
Affiliation(s)
- Himanshi Yadav
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Jaldhi
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Rati Bhardwaj
- Department of Biotechnology, Delhi Technical University, Delhi, India
| | - Anamika
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Amrita Bakshi
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Suchi Gupta
- Tech Cell Innovations Private Limited, Centre for Medical Innovation and Entrepreneurship (CMIE), All India Institute of Medical Sciences, New Delhi, India
| | - Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India.
| |
Collapse
|
78
|
Muhie S, Gautam A, Misganaw B, Yang R, Mellon SH, Hoke A, Flory J, Daigle B, Swift K, Hood L, Doyle FJ, Wolkowitz OM, Marmar CR, Ressler K, Yehuda R, Hammamieh R, Jett M. Integrated analysis of proteomics, epigenomics and metabolomics data revealed divergent pathway activation patterns in the recent versus chronic post-traumatic stress disorder. Brain Behav Immun 2023; 113:303-316. [PMID: 37516387 DOI: 10.1016/j.bbi.2023.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 07/31/2023] Open
Abstract
Metabolomics, proteomics and DNA methylome assays, when done in tandem from the same blood sample and analyzed together, offer an opportunity to evaluate the molecular basis of post-traumatic stress disorder (PTSD) course and pathogenesis. We performed separate metabolomics, proteomics, and DNA methylome assays on blood samples from two well-characterized cohorts of 159 active duty male participants with relatively recent onset PTSD (<1.5 years) and 300 male veterans with chronic PTSD (>7 years). Analyses of the multi-omics datasets from these two independent cohorts were used to identify convergent and distinct molecular profiles that might constitute potential signatures of severity and progression of PTSD and its comorbid conditions. Molecular signatures indicative of homeostatic processes such as signaling and metabolic pathways involved in cellular remodeling, neurogenesis, molecular safeguards against oxidative stress, metabolism of polyunsaturated fatty acids, regulation of normal immune response, post-transcriptional regulation, cellular maintenance and markers of longevity were significantly activated in the active duty participants with recent PTSD. In contrast, we observed significantly altered multimodal molecular signatures associated with chronic inflammation, neurodegeneration, cardiovascular and metabolic disorders, and cellular attritions in the veterans with chronic PTSD. Activation status of signaling and metabolic pathways at the early and late timepoints of PTSD demonstrated the differential molecular changes related to homeostatic processes at its recent and multi-system syndromes at its chronic phase. Molecular alterations in the recent PTSD seem to indicate some sort of recalibration or compensatory response, possibly directed in mitigating the pathological trajectory of the disorder.
Collapse
Affiliation(s)
- Seid Muhie
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; The Geneva Foundation, Silver Spring, MD 20910, USA.
| | - Aarti Gautam
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Burook Misganaw
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Vysnova Inc. Landover, MD 20785, USA
| | - Ruoting Yang
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Synthia H Mellon
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Allison Hoke
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Janine Flory
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10468, USA
| | - Bernie Daigle
- Departments of Biological Sciences and Computer Science, The University of Memphis, Memphis, TN 38152, USA
| | - Kevin Swift
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA
| | - Owen M Wolkowitz
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA
| | - Charles R Marmar
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kerry Ressler
- McLean Hospital, Belmont, MA 02478, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Rachel Yehuda
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10468, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Marti Jett
- US Army Medical Research and Development Command, HQ, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| |
Collapse
|
79
|
Wang Z, Wang J, Wang Y, Xiang S, Zhou H, Song S, Song X, Tu Z, Zhou Y, Ding K, Zhang ZM, Zhang Z, Lu X. Structure-Based Optimization of the Third Generation Type II Macrocycle TRK Inhibitors with Improved Activity against Solvent-Front, xDFG, and Gatekeeper Mutations. J Med Chem 2023; 66:12950-12965. [PMID: 37676745 DOI: 10.1021/acs.jmedchem.3c00899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The solvent-front (SF), gatekeeper, and xDFG motif mutations of tropomyosin receptor kinase (TRK) mediating acquired resistance of larotrectinib and entrectinib represent an unmet clinical need. To date, no effective drugs are being approved to overcome these mutants. Thus, a series of macrocycle compounds were designed and synthesized as new type II TRK inhibitors to combat clinically relevant mutations. The representative compound 10g exhibited excellent potency against wide type TRKA/C, TRKAG595R, TRKAG667C, and TRKAF589L with IC50 values of 5.21, 4.51, 6.77, 1.42, and 6.13 nM, respectively, and a good kinome selectivity against 378 kinases. 10g also strongly suppressed the proliferation of Ba/F3 cells transfected with SF, GK, xDFG, and others (Val to Met) single mutants with IC50 values of 1.43-47.56 nM. Moreover, 10g demonstrated ideal antitumor efficacy in both BaF3-CD74-NTRK1G595R and BaF3-CD74-NTRK1G667C xenograft models. The study provides a promising lead compound for pan-anticancer drug discovery.
Collapse
Affiliation(s)
- Zuqin Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Jie Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Yongjin Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Shuang Xiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Hengliang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Shukai Song
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Xiaojuan Song
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Zhengchao Tu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Zhi-Min Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| |
Collapse
|
80
|
Numakawa T, Kajihara R. Involvement of brain-derived neurotrophic factor signaling in the pathogenesis of stress-related brain diseases. Front Mol Neurosci 2023; 16:1247422. [PMID: 37781095 PMCID: PMC10537938 DOI: 10.3389/fnmol.2023.1247422] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Neurotrophins including brain-derived neurotrophic factor, BDNF, have critical roles in neuronal differentiation, cell survival, and synaptic function in the peripheral and central nervous system. It is well known that a variety of intracellular signaling stimulated by TrkB, a high-affinity receptor for BDNF, is involved in the physiological and pathological neuronal aspects via affecting cell viability, synaptic function, neurogenesis, and cognitive function. As expected, an alteration of the BDNF/TrkB system is suspected to be one of the molecular mechanisms underlying cognitive decline in cognitive diseases and mental disorders. Recent evidence has also highlighted a possible link between the alteration of TrkB signaling and chronic stress. Furthermore, it has been demonstrated that downregulation of the BDNF/TrkB system and chronic stress have a role in the pathogenesis of Alzheimer's disease (AD) and mental disorders. In this review, we introduce current evidence showing a close relationship between the BDNF/TrkB system and the development of cognition impairment in stress-related disorders, and the possible contribution of the upregulation of the BDNF/TrkB system in a therapeutic approach against these brain diseases.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Ryutaro Kajihara
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
81
|
Wang G, Han J, Meng X, Kang SS, Liu X, Sun YE, Luo Q, Ye K. Zein-Based Nanoparticles Improve the Therapeutic Efficacy of a TrkB Agonist toward Alzheimer's Disease. ACS Chem Neurosci 2023; 14:3249-3264. [PMID: 37583253 PMCID: PMC10734774 DOI: 10.1021/acschemneuro.3c00401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
The brain-derived neurotrophic factor (BDNF)/TrkB pathway plays a crucial role in neural plasticity and neuronal survival but is often deficient in neurodegenerative diseases like Alzheimer's disease (AD). CF3CN acts as a specific TrkB agonist that displays therapeutic effects in the AD mouse model, but its brain/plasma ratio (B/P ratio) distribution is not satisfactory. To increase its brain exposure, we synthesized several derivatives and employed nanoparticle (NP) formulation to optimize the most potent #2 derivative's in vivo PK profiles. We generated stable #2-loaded zein/lactoferrin composite NPs (#2/zein/LF) using the antisolvent co-precipitation method. In vivo PK studies revealed that nanoencapsulation improved #2's oral bioavailability by approximately 2-fold and significantly enhanced its plasma Cmax and t1/2, but the brain profiles were comparable. Pharmacodynamics showed that #2/zein/LF activates TrkB signaling that phosphorylates asparagine endopeptidase (AEP) T322 and decreases its enzymatic activity, resulting in reduced AEP-cleaved amyloid precursor protein and Tau fragments in the brains of AD mice, correlating with its PK profiles. After 3 months of treatment in 3xTg mice, #2/zein/LF decreased AD pathologies and alleviated cognitive dysfunction. Hence, zein/LF composite nanoencapsulation is a promising drug delivery method for improving the PK profiles of a potential preclinical candidate for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Guangxing Wang
- School of Medicine, Tongji University, Shanghai 200092, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Jianxin Han
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Xin Meng
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Yi Eve Sun
- School of Medicine, Tongji University, Shanghai 200092, China
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Qian Luo
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| |
Collapse
|
82
|
Loch AA, Pinto MTC, Andrade JC, de Jesus LP, de Medeiros MW, Haddad NM, Bilt MTVD, Talib LL, Gattaz WF. Plasma levels of neurotrophin 4/5, NGF and pro-BDNF influence transition to mental disorders in a sample of individuals at ultra-high risk for psychosis. Psychiatry Res 2023; 327:115402. [PMID: 37544089 DOI: 10.1016/j.psychres.2023.115402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/19/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Neurotrophins (NTs) and their precursors (pro-NTs) are polypeptides with important roles in neuronal development, differentiation, growth, survival and plasticity, as well as apoptosis and neuronal death. Imbalance in NT levels were observed in schizophrenia spectrum disorders, but evidence in ultra-high risk for psychosis (UHR) samples is scarce. METHODS A naturalistic sample of 87 non-help-seeking UHR subjects and 55 healthy controls was drawn from the general population. Blood samples were collected and NT-3, NT-4/5, BDNF, pro-BDNF, NGF, pro-NGF were analyzed through enzyme linked immunosorbent assay (ELISA). Information on cannabis and tobacco use was also collected. Logistic regression models and path analysis were used to control for confounders (tobacco, age, cannabis use). RESULTS NT-4/5 was significantly decreased, and pro-BDNF was significantly increased in UHR individuals compared to controls. Cannabis use and higher NGF levels were significantly related to transition to psychiatric disorders among UHR subjects. Increased pro-BDNF and decreased NT-4/5 influenced transition by the mediation of perceptual abnormalities. CONCLUSIONS Our study shows for the first time that NTs are altered in UHR compared to healthy control individuals, and that they can be a predictor of transition to psychiatric illnesses in this population. Future studies should employ larger naturalistic samples to confirm the findings.
Collapse
Affiliation(s)
- Alexandre Andrade Loch
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil.
| | - Marcel Tavares Camilo Pinto
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Julio Cesar Andrade
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Leonardo Peroni de Jesus
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Matheus Wanderley de Medeiros
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Natalia Mansur Haddad
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Martinus Theodorus van de Bilt
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil
| | - Leda Leme Talib
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil
| | - Wagner Farid Gattaz
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil
| |
Collapse
|
83
|
Luo H, Zhang C, He L, Lin Z, Zhang JC, Qi Q, Chen JX, Yao W. 18β-glycyrrhetinic acid ameliorates MPTP-induced neurotoxicity in mice through activation of microglial anti-inflammatory phenotype. Psychopharmacology (Berl) 2023; 240:1947-1961. [PMID: 37436491 DOI: 10.1007/s00213-023-06415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023]
Abstract
RATIONALE 18β-glycyrrhetinic acid (18β-GA) has been reported to have anti-inflammatory and neuroprotective effects. However, the therapeutic effect of 18β-GA in Parkinson's disease (PD) has not been defined. OBJECTIVE The current study aimed to evaluate the potential therapeutic effects of 18β-GA in treating PD by mitigating 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. RESULTS The study showed that 18β-GA has anti-inflammatory effects by upregulating TREM2 expression in BV2 cells, which correlates with the presence of NF-E2-related factor-2 (Nrf2). 18β-GA reduced inflammation in BV2 cells treated with 1-methyl-4- phenylpyridinium (MPP+) by enhancing TREM2 expression, which promotes an anti-inflammatory microglial phenotype. Repeated administration of 18β-GA in MPTP-treated mice led to therapeutic effects by enhancing TREM2 expression, resulting in the activation of anti-inflammatory microglia. Moreover, 18β-GA attenuated the decrease in brain-derived neurotrophic factor (BDNF) levels in both MPP+-induced BV2 cells and MPTP-intoxicated mice, indicating the involvement of BDNF in the beneficial effects of 18β-GA. CONCLUSIONS It is probable that activating microglial anti-inflammatory response through TREM2 expression might serve as a novel therapeutic strategy for PD. Additionally, 18β-GA seems to hold potential as a new therapeutic agent for PD.
Collapse
Affiliation(s)
- Hanyue Luo
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Caishi Zhang
- School of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Lujuan He
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zefang Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Ji-Chun Zhang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Qi Qi
- MOE Key Laboratory of Tumor Molecular Biology, Department of Pharmacology, School of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| | - Wei Yao
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
84
|
Lao-Peregrin C, Xiang G, Kim J, Srivastava I, Fall AB, Gerhard DM, Kohtala P, Kim D, Song M, Garcia-Marcos M, Levitz J, Lee FS. Synaptic plasticity via receptor tyrosine kinase/G protein-coupled receptor crosstalk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555210. [PMID: 37693535 PMCID: PMC10491144 DOI: 10.1101/2023.08.28.555210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Cellular signaling involves a large repertoire of membrane receptors operating in overlapping spatiotemporal regimes and targeting many common intracellular effectors. However, both the molecular mechanisms and physiological roles of crosstalk between receptors, especially those from different superfamilies, are poorly understood. We find that the receptor tyrosine kinase (RTK), TrkB, and the G protein-coupled receptor (GPCR), metabotropic glutamate receptor 5 (mGluR5), together mediate a novel form of hippocampal synaptic plasticity in response to brain-derived neurotrophic factor (BDNF). Activated TrkB enhances constitutive mGluR5 activity to initiate a mode-switch that drives BDNF-dependent sustained, oscillatory Ca 2+ signaling and enhanced MAP kinase activation. This crosstalk is mediated, in part, by synergy between Gβγ, released by TrkB, and Gα q -GTP, released by mGluR5, to enable a previously unidentified form of physiologically relevant RTK/GPCR crosstalk.
Collapse
|
85
|
Fernandez A, Sarn N, Eng C, Wright KM. Intrinsic control of DRG sensory neuron diversification by Pten. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552039. [PMID: 37781577 PMCID: PMC10541114 DOI: 10.1101/2023.08.04.552039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Phosphatase and tensin homolog (PTEN) modulates intracellular survival and differentiation signaling pathways downstream of neurotrophin receptors in the developing peripheral nervous system (PNS). Although well-studied in the context of brain development, our understanding of the in vivo role of PTEN in the PNS is limited to models of neuropathic pain and nerve injury. Here, we assessed how alterations in PTEN signaling affects the development of peripheral somatosensory circuits. We found that sensory neurons within the dorsal root ganglia (DRG) in Pten heterozygous ( Pten Het ) mice exhibit defects in neuronal subtype diversification. Abnormal DRG differentiation in Pten Het mice arises early in development, with subsets of neurons expressing both progenitor and neuronal markers. DRGs in Pten Het mice show dysregulation of both mTOR and GSK-3β signaling pathways downstream of PTEN. Finally, we show that mice with an autism-associated mutation in Pten ( Pten Y68H/+ ) show abnormal DRG development. Thus, we have discovered a crucial role for PTEN signaling in the intrinsic diversification of primary sensory neuron populations in the DRG during development.
Collapse
|
86
|
Nguyen TM, Ngoc DTM, Choi JH, Lee CH. Unveiling the Neural Environment in Cancer: Exploring the Role of Neural Circuit Players and Potential Therapeutic Strategies. Cells 2023; 12:1996. [PMID: 37566075 PMCID: PMC10417274 DOI: 10.3390/cells12151996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
The regulation of the immune environment within the tumor microenvironment has provided new opportunities for cancer treatment. However, an important microenvironment surrounding cancer that is often overlooked despite its significance in cancer progression is the neural environment surrounding the tumor. The release of neurotrophic factors from cancer cells is implicated in cancer growth and metastasis by facilitating the infiltration of nerve cells into the tumor microenvironment. This nerve-tumor interplay can elicit cancer cell proliferation, migration, and invasion in response to neurotransmitters. Moreover, it is possible that cancer cells could establish a network resembling that of neurons, allowing them to communicate with one another through neurotransmitters. The expression levels of players in the neural circuits of cancers could serve as potential biomarkers for cancer aggressiveness. Notably, the upregulation of certain players in the neural circuit has been linked to poor prognosis in specific cancer types such as breast cancer, pancreatic cancer, basal cell carcinoma, and stomach cancer. Targeting these players with inhibitors holds great potential for reducing the morbidity and mortality of these carcinomas. However, the efficacy of anti-neurogenic agents in cancer therapy remains underexplored, and further research is necessary to evaluate their effectiveness as a novel approach for cancer treatment. This review summarizes the current knowledge on the role of players in the neural circuits of cancers and the potential of anti-neurogenic agents for cancer therapy.
Collapse
Affiliation(s)
- Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (T.M.N.); (D.T.M.N.)
| | - Dinh Thi Minh Ngoc
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (T.M.N.); (D.T.M.N.)
| | - Jung-Hye Choi
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang-Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (T.M.N.); (D.T.M.N.)
| |
Collapse
|
87
|
Winstone J, Shafique H, Clemmer ME, Mackie K, Wager-Miller J. Effects of Tetrahydrocannabinol and Cannabidiol on Brain-Derived Neurotrophic Factor and Tropomyosin Receptor Kinase B Expression in the Adolescent Hippocampus. Cannabis Cannabinoid Res 2023; 8:612-622. [PMID: 35639364 PMCID: PMC10442678 DOI: 10.1089/can.2021.0025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Adolescence is an important phase in brain maturation, specifically it is a time during which weak synapses are pruned and neural pathways are strengthened. Adolescence is also a time of experimentation with drugs, including cannabis, which may have detrimental effects on the developing nervous system. The cannabinoid type 1 receptor (CB1) is an important modulator of neurotransmitter release and plays a central role in neural development. Neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B (TrkB), are also critical during development for axon guidance and synapse specification. Objective: The objective of this study was to examine the effects of the phytocannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), on the expression of BDNF, its receptor TrkB, and other synaptic markers in the adolescent mouse hippocampus. Materials and Methods: Mice of both sexes were injected daily from P28 to P49 with 3 mg/kg THC, CBD, or a combination of THC/CBD. Brains were harvested on P50, and the dorsal and ventral hippocampi were analyzed for levels of BDNF, TrkB, and several synaptic markers using quantitative polymerase chain reaction, western blotting, and image analyses. Results: THC treatment statistically significantly reduced transcript levels of BDNF in adolescent female (BDNF I) and male (BDNF I, II, IV, VI, and IX) hippocampi. These changes were prevented when CBD was co-administered with THC. CBD by itself statistically significantly increased expression of some transcripts (BDNF II, VI, and IX for females, BDNF VI for males). No statistically significant changes were observed in protein expression for BDNF, TrkB, phospho-TrkB, phospho-CREB (cAMP response element-binding protein), and the synaptic markers, vesicular GABA transporter, vesicular glutamate transporter, synaptobrevin, and postsynaptic density protein 95. However, CB1 receptors were statistically significantly reduced in the ventral hippocampus with THC treatment. Conclusions: This study found changes in BDNF mRNA expression within the hippocampus of adolescent mice exposed to THC and CBD. THC represses transcript expression for some BDNF variants, and this effect is rescued when CBD is co-administered. These effects were seen in both males and females, but sex differences were observed in specific BDNF isoforms. While a statistically significant reduction in CB1 receptor protein in the ventral dentate gyrus was seen, no other changes in protein levels were observed.
Collapse
Affiliation(s)
- Joanna Winstone
- Department of Psychological and Brain Sciences, The Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
| | - Hana Shafique
- Department of Psychological and Brain Sciences, The Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
| | - Madeleine E. Clemmer
- Department of Psychological and Brain Sciences, The Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, The Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
| | - Jim Wager-Miller
- Department of Psychological and Brain Sciences, The Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
88
|
Song J, Zhao G, Li H, Yang Y, Yu Y, Hu Y, Li Y, Li J, Hu Y. Tandem mass tag (TMT) labeling-based quantitative proteomic analysis reveals the cellular protein characteristics of 16HBE cells infected with coxsackievirus A10 and the potential effect of HMGB1 on viral replication. Arch Virol 2023; 168:217. [PMID: 37524962 DOI: 10.1007/s00705-023-05821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/23/2023] [Indexed: 08/02/2023]
Abstract
Coxsackievirus A10 (CV-A10) is recognized as one of the most important pathogens associated with hand, foot, and mouth disease (HFMD) in young children under 5 years of age worldwide, and it can lead to fatal neurological complications. However, available commercial vaccines fail to protect against CV-A10. Therefore, there is an urgent need to study new protein targets of CV-A10 and develop novel vaccine-based therapeutic strategies. Advances in proteomics in recent years have enabled a comprehensive understanding of host pathogen interactions. Here, to study CV-A10-host interactions, a global quantitative proteomic analysis was conducted to investigate the molecular characteristics of host cell proteins and identify key host proteins involved in CV-A10 infection. Using tandem mass tagging (TMT)-based mass spectrometry, a total of 6615 host proteins were quantified, with 293 proteins being differentially regulated. To ensure the validity and reliability of the proteomics data, three randomly selected proteins were verified by Western blot analysis, and the results were consistent with the TMT results. Further functional analysis showed that the upregulated and downregulated proteins were associated with diverse biological activities and signaling pathways, such as metabolic processes, biosynthetic processes, the AMPK signaling pathway, the neurotrophin signaling pathway, the MAPK signaling pathway, and the GABAergic synaptic signaling. Moreover, subsequent bioinformatics analysis demonstrated that these differentially expressed proteins contained distinct domains, were localized in different subcellular components, and generated a complex network. Finally, high-mobility group box 1 (HMGB1) might be a key host factor involved in CV-A10 replication. In summary, our findings provide comprehensive insights into the proteomic profile during CV-A10 infection, deepen our understanding of the relationship between CV-A10 and host cells, and establish a proteomic signature for this viral infection. Moreover, the observed effect of HMGB1 on CV-A10 replication suggests that it might be a potential therapeutic target treatment of CV-A10 infection.
Collapse
Affiliation(s)
- Jie Song
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.
| | - Guifang Zhao
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Hui Li
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yan Yang
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yue Yu
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yunguang Hu
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yadong Li
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Jiang Li
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yajie Hu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.
| |
Collapse
|
89
|
Kasakura N, Murata Y, Shindo A, Kitaoka S, Furuyashiki T, Suzuki K, Segi-Nishida E. Overexpression of NT-3 in the hippocampus suppresses the early phase of the adult neurogenic process. Front Neurosci 2023; 17:1178555. [PMID: 37575306 PMCID: PMC10413268 DOI: 10.3389/fnins.2023.1178555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
The dentate gyrus (DG) of the hippocampus regulates stress-related emotional behaviors and ensures neurogenesis throughout life. Neurotrophin-3 (NT-3) is a neurotrophic factor that regulates neuronal differentiation, survival, and synaptic formation in both the peripheral and central nervous systems. NT-3 is expressed in the adult DG of the hippocampus; several chronic stress conditions enhance NT-3 expression in rodents. However, functional modulation of the adult DG by NT-3 signaling remains unclear. To directly investigate the impact of NT-3 on DG function, NT-3 was overexpressed in the hippocampal ventral DG by an adeno-associated virus carrying NT-3 (AAV-NT-3). Four weeks following the AAV-NT-3 injection, high NT-3 expression was observed in the ventral DG. We examined the influence of NT-3 overexpression on the neuronal responses and neurogenic processes in the ventral DG. NT-3 overexpression significantly increased the expression of the mature DG neuronal marker calbindin and immediate early genes, such as Fos and Fosb, thereby suggesting DG neuronal activation. During neurogenesis, the number of proliferating cells and immature neurons in the subgranular zone of the DG significantly decreased in the AAV-NT-3 group. Among the neurogenesis-related factors, Vegfd, Lgr6, Bmp7, and Drd1 expression significantly decreased. These results demonstrated that high NT-3 levels in the hippocampus regulate the activation of mature DG neurons and suppress the early phase of neurogenic processes, suggesting a possible role of NT-3 in the regulation of adult hippocampal function under stress conditions.
Collapse
Affiliation(s)
- Nanami Kasakura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Yuka Murata
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Asuka Shindo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Shiho Kitaoka
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Hyogo, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kanzo Suzuki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Eri Segi-Nishida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
90
|
Siddiqui T, Cosacak MI, Popova S, Bhattarai P, Yilmaz E, Lee AJ, Min Y, Wang X, Allen M, İş Ö, Atasavum ZT, Rodriguez-Muela N, Vardarajan BN, Flaherty D, Teich AF, Santa-Maria I, Freudenberg U, Werner C, Tosto G, Mayeux R, Ertekin-Taner N, Kizil C. Nerve growth factor receptor (Ngfr) induces neurogenic plasticity by suppressing reactive astroglial Lcn2/Slc22a17 signaling in Alzheimer's disease. NPJ Regen Med 2023; 8:33. [PMID: 37429840 DOI: 10.1038/s41536-023-00311-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
Neurogenesis, crucial for brain resilience, is reduced in Alzheimer's disease (AD) that induces astroglial reactivity at the expense of the pro-neurogenic potential, and restoring neurogenesis could counteract neurodegenerative pathology. However, the molecular mechanisms promoting pro-neurogenic astroglial fate despite AD pathology are unknown. In this study, we used APP/PS1dE9 mouse model and induced Nerve growth factor receptor (Ngfr) expression in the hippocampus. Ngfr, which promotes neurogenic fate of astroglia during the amyloid pathology-induced neuroregeneration in zebrafish brain, stimulated proliferative and neurogenic outcomes. Histological analyses of the changes in proliferation and neurogenesis, single-cell transcriptomics, spatial proteomics, and functional knockdown studies showed that the induced expression of Ngfr reduced the reactive astrocyte marker Lipocalin-2 (Lcn2), which we found was sufficient to reduce neurogenesis in astroglia. Anti-neurogenic effects of Lcn2 was mediated by Slc22a17, blockage of which recapitulated the pro-neurogenicity by Ngfr. Long-term Ngfr expression reduced amyloid plaques and Tau phosphorylation. Postmortem human AD hippocampi and 3D human astroglial cultures showed elevated LCN2 levels correlate with reactive gliosis and reduced neurogenesis. Comparing transcriptional changes in mouse, zebrafish, and human AD brains for cell intrinsic differential gene expression and weighted gene co-expression networks revealed common altered downstream effectors of NGFR signaling, such as PFKP, which can enhance proliferation and neurogenesis in vitro when blocked. Our study suggests that the reactive non-neurogenic astroglia in AD can be coaxed to a pro-neurogenic fate and AD pathology can be alleviated with Ngfr. We suggest that enhancing pro-neurogenic astroglial fate may have therapeutic ramifications in AD.
Collapse
Affiliation(s)
- Tohid Siddiqui
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, 01307, Dresden, Germany
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, 01307, Dresden, Germany
| | - Stanislava Popova
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, 01307, Dresden, Germany
- Neuron D GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Prabesh Bhattarai
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, 01307, Dresden, Germany
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Elanur Yilmaz
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Annie J Lee
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Yuhao Min
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Özkan İş
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Zeynep Tansu Atasavum
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, 01307, Dresden, Germany
| | - Natalia Rodriguez-Muela
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, 01307, Dresden, Germany
| | - Badri N Vardarajan
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Delaney Flaherty
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Andrew F Teich
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Ismael Santa-Maria
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Edificio E, 28223, Pozuelo de Alarcon, Madrid, Spain
| | - Uwe Freudenberg
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069, Dresden, Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, D-01307, Dresden, Germany
| | - Giuseppe Tosto
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, 01307, Dresden, Germany.
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
91
|
Bioque M, Mac-Dowell KS, Font C, Meseguer A, Macau E, Garcia-Orellana M, Valentí M, Leza JC, Bernardo M. Acute effects of a session of electroconvulsive therapy on brain-derived neurotrophic factor plasma levels. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2023; 16:137-142. [PMID: 32674992 DOI: 10.1016/j.rpsm.2020.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 04/29/2020] [Accepted: 05/22/2020] [Indexed: 11/15/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are neurotrophins that play critical roles in brain neuronal function. Previous studies have established the association between BDNF and NGF signaling and severe mental disorders, but changes in BDNF plasma levels and electroconvulsive therapy (ECT) response are controversial. The aim of his study was to explore the acute effects of a single session of ECT on these neurotrophins signaling. Plasma levels of BDNF and NGF and their tyrosine kinase-type receptors expression in peripheral blood mononuclear cells (PBMCs) were determined before and two hours after a single ECT session in 30 subjects with a severe mental disorder. Two hours after an ECT session we found a statistically significant decrease of BDNF plasma levels (p=0.007). We did not find significant acute effects on NGF plasma levels or receptors expression in PBMCs. We found a significant inverse correlation between the time of convulsion and BDNF plasma levels decrease (r=-0.041, p=0.024). We have identified a decrease in BDNF plasma levels after 2h of a single ECT session. These results indicate the interest for future research in the role of neurotrophins in the response and safety of ECT.
Collapse
Affiliation(s)
- Miquel Bioque
- Barcelona Clínic Schizophrenia Unit, Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en red en salud Mental (CIBERSAM), Departament de Medicina, Universitat de Barcelona, Spain.
| | - Karina S Mac-Dowell
- Department of Pharmacology & Toxicology, Faculty of Medicine, Universidad Complutense de Madrid University, Instituto de Investigación Hospital 12 de Octubre (i+12), IUIN; CIBERSAM, Spain
| | - Cristina Font
- Department of Pharmacology & Toxicology, Faculty of Medicine, Universidad Complutense de Madrid University, Instituto de Investigación Hospital 12 de Octubre (i+12), IUIN; CIBERSAM, Spain
| | - Ana Meseguer
- Barcelona Clínic Schizophrenia Unit, Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona; CIBERSAM, Spain
| | - Elisabet Macau
- Psychiatry Department, Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Marta Garcia-Orellana
- Anesthesiolgy Department, Hospital Clínic de Barcelona, Barcelona; Universitat de Barcelona, Barcelona, Spain
| | - Marc Valentí
- Barcelona Bipolar Disorder Program, Psychatry Department, Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Juan C Leza
- Department of Pharmacology & Toxicology, Faculty of Medicine, Universidad Complutense de Madrid University, Instituto de Investigación Hospital 12 de Octubre (i+12), IUIN; CIBERSAM, Spain.
| | - Miquel Bernardo
- Barcelona Clínic Schizophrenia Unit, Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en red en salud Mental (CIBERSAM), Departament de Medicina, Universitat de Barcelona, Spain
| |
Collapse
|
92
|
El-Nassan HB, Al-Qadhi MA. Recent advances in the discovery of tropomyosin receptor kinases TRKs inhibitors: A mini review. Eur J Med Chem 2023; 258:115618. [PMID: 37413881 DOI: 10.1016/j.ejmech.2023.115618] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
The tropomyosin receptor tyrosine kinases (TRKs) control the cell proliferation mainly in the nervous system and are encoded by NTRK genes. Fusion and mutation of NTRK genes were detected in various types of cancers. Many small molecules TRK inhibitors have been discovered during the last two decades and some of them have entered clinical trials. Moreover, two of these inhibitors; larotrectinib and entrectinib; were approved by FDA for the treatment of TRK-fusion positive solid tumors. However, mutation of TRK enzymes resulted in resistance to both drugs. Therefore, next generation TRK inhibitors were discovered to overcome the acquired drug resistance. Additionally, the off-target and on-target adverse effects on the brain initiated the need for selective TRK subtype inhibitors. Indeed, some molecules were recently reported as selective TRKA or TRKC inhibitors with minimal CNS side effects. The current review highlighted the efforts done during the last three years in the design and discovery of novel TRK inhibitors.
Collapse
Affiliation(s)
- Hala B El-Nassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mustafa A Al-Qadhi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
93
|
Wang H, Zhong C, Qi L, Fang X, Yuan Y. Expression and prognostic impact of NTF3 and TrkC in hepatocellular carcinoma. Scand J Gastroenterol 2023; 58:1309-1316. [PMID: 37272057 DOI: 10.1080/00365521.2023.2217976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Treatment of patients with NTRK fusion-positive cancers using first-generation tropomyosin-related kinase (Trk) inhibitors is associated with high response rates, regardless of tumor histology. However, there have been few studies on neurotrophin-3 (NTF3) and TrkC ligands in hepatocellular carcinoma (HCC). METHODS We used immunohistochemistry to evaluate NTF3 and TrkC expression levels in tissue samples. Gene expression profiling interactive analysis was used to determine TrkC and NTF3 expression in HCC. Western blotting, quantitative reverse transcription polymerase chain reaction, and enzyme-linked immunosorbent assays were utilized to analyze TrkC and NTF3 levels in HCC cell lines. Proliferation tests and cell migration were also explored. RESULTS NTF3 and TrkC levels were lower in HCC tissue (median H- scores 149.09 and 54.60, respectively) than those in para-cancerous tissue (192.69 and 71.70, respectively); no statistical difference was found in the survival rate. Positive correlations were observed between NTF3 and TrkC levels in both HCC and para-cancerous tissues. Alpha-fetoprotein was the only clinical characteristic associated with TrkC levels. The transcription of NTF3 was lower in HCC samples compared to normal samples. NTF3 overexpression inhibited the proliferation of MHCC97-L and HepG2 cells but did not significantly affect cell migration. CONCLUSIONS The transcription of NTF3 was lower in HCC samples compared to normal samples, indicating a potential association with disease-free survival and overall survival in HCC. NTF3 and TrkC expression levels were lower in HCC tissues than those in para-cancerous tissues. Our results indicate that NTF3 may be a prognostic factor for HCC.
Collapse
Affiliation(s)
- Hejing Wang
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chenhan Zhong
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Lina Qi
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuefeng Fang
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
94
|
Meng P, Zhang X, Liu TT, Liu J, Luo Y, Xie MX, Yang H, Fang R, Guo DW, Zhong ZY, Wang YH, Ge JW. A whole transcriptome profiling analysis for antidepressant mechanism of Xiaoyaosan mediated synapse loss via BDNF/trkB/PI3K signal axis in CUMS rats. BMC Complement Med Ther 2023; 23:198. [PMID: 37322430 DOI: 10.1186/s12906-023-04000-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Depression is a neuropsychiatric disease resulting from deteriorations of molecular networks and synaptic injury induced by stress. Traditional Chinese formula Xiaoyaosan (XYS) exert antidepressant effect, which was demonstrated by a great many of clinical and basic investigation. However, the exact mechanism of XYS has not yet been fully elucidated. METHODS In this study, chronic unpredictable mild stress (CUMS) rats were used as a model of depression. Behavioral test and HE staining were used to detect the anti-depressant effects of XYS. Furthermore, whole transcriptome sequencing was employed to establish the microRNA (miRNA), long non-coding RNA (lncRNA), circular RNA (circRNA), and mRNA profiles. The biological functions and potential mechanisms of XYS for depression were gathered from the GO and KEGG pathway. Then, constructed the competing endogenous RNA (ceRNA) networks to illustrate the regulatory relationship between non-coding RNA (ncRNA) and mRNA. Additionally, longest dendrite length, total length of dendrites, number of intersections, and density of dendritic spines were detected by Golgi staining. MAP2, PSD-95, SYN were detected by immunofluorescence respectively. BDNF, TrkB, p-TrkB, PI3K, Akt, p-Akt were measured by Western Blotting. RESULTS The results showed that XYS could increase the locomotor activity and sugar preference, decreased swimming immobility time as well as attenuate hippocampal pathological damage. A total of 753 differentially expressed lncRNAs (DElncRNAs), 28 circRNAs (DEcircRNAs), 101 miRNAs (DEmiRNAs), and 477 mRNAs (DEmRNAs) were identified after the treatment of XYS in whole transcriptome sequencing analysis. Enrichment results revealed that XYS could regulate multiple aspects of depression through different synapse or synaptic associated signal, such as neurotrophin signaling and PI3K/Akt signaling pathways. Then, vivo experiments indicated that XYS could promote length, density, intersections of synapses and also increase the expression of MAP2 in hippocampal CA1, CA3 regions. Meanwhile, XYS could increase the expression of PSD-95, SYN in the CA1, CA3 regions of hippocampal by regulating the BDNF/trkB/PI3K signal axis. CONCLUSION The possible mechanism on synapse of XYS in depression was successfully predicted. BDNF/trkB/PI3K signal axis were the potential mechanism of XYS on synapse loss for its antidepressant. Collectively, our results provided novel information about the molecular basis of XYS in treating depression.
Collapse
Affiliation(s)
- Pan Meng
- Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education Park, Yuelu District, Hunan, Changsha, China
| | - Xi Zhang
- The Second People's Hospital of Hunan Province, Changsha, Hunan, China
| | - Tong-Tong Liu
- Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education Park, Yuelu District, Hunan, Changsha, China
| | - Jian Liu
- First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yan Luo
- Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education Park, Yuelu District, Hunan, Changsha, China
| | - Ming-Xia Xie
- Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education Park, Yuelu District, Hunan, Changsha, China
| | - Hui Yang
- First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rui Fang
- Hunan Academy of Chinese Medicine, Yuelu District, 58 Lushan Road, Changsha, Hunan, China
| | - Dong-Wei Guo
- The Second People's Hospital of Hunan Province, Changsha, Hunan, China
| | - Zi-Yan Zhong
- Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education Park, Yuelu District, Hunan, Changsha, China
| | - Yu-Hong Wang
- Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education Park, Yuelu District, Hunan, Changsha, China.
| | - Jin-Wen Ge
- Hunan Academy of Chinese Medicine, Yuelu District, 58 Lushan Road, Changsha, Hunan, China.
| |
Collapse
|
95
|
Overbeck TR, Reiffert A, Schmitz K, Rittmeyer A, Körber W, Hugo S, Schnalke J, Lukat L, Hugo T, Hinterthaner M, Reuter-Jessen K, Schildhaus HU. NTRK Gene Fusions in Non-Small-Cell Lung Cancer: Real-World Screening Data of 1068 Unselected Patients. Cancers (Basel) 2023; 15:cancers15112966. [PMID: 37296928 DOI: 10.3390/cancers15112966] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
(1) Background: The main objectives of our study are (i) to determine the prevalence of NTRK (neurotrophic tyrosine kinase) fusions in a routine diagnostic setting in NSCLC (non-small cell lung cancer) and (ii) to investigate the feasibility of screening approaches including immunohistochemistry (IHC) as a first-line test accompanied by fluorescence in situ hybridization (FISH) and RNA-(ribonucleic acid-)based next-generation sequencing (RNA-NGS). (2) Methods: A total of 1068 unselected consecutive patients with NSCLC were screened in two scenarios, either with initial IHC followed by RNA-NGS (n = 973) or direct FISH testing (n = 95). (3) Results: One hundred and thirty-three patients (14.8%) were IHC positive; consecutive RNA-NGS testing revealed two patients (0.2%) with NTRK fusions (NTRK1-EPS15 (epidermal growth factor receptor pathway substrate 15) and NTRK1-SQSTM1 (sequestosome 1)). Positive RNA-NGS was confirmed by FISH, and NTRK-positive patients benefited from targeted treatment. All patients with direct FISH testing were negative. RNA-NGS- or FISH-positive results were mutually exclusive with alterations in EGFR (epidermal growth factor receptor), ALK (anaplastic lymphoma kinase), ROS1 (ROS proto-oncogene 1), BRAF (proto-oncogene B-Raf), RET (rearranged during transfection) or KRAS (kirsten rat sarcoma viral oncogene). Excluding patients with one of these alterations raised the prevalence of NTRK-fusion positivity among panTrk-(tropomyosin receptor kinase-) IHC positive samples to 30.5%. (4) Conclusions: NTRK fusion-positive lung cancers are exceedingly rare and account for less than 1% of patients in unselected all-comer populations. Both RNA-NGS and FISH are suitable to determine clinically relevant NTRK fusions in a real-world setting. We suggest including panTrk-IHC in a diagnostic workflow followed by RNA-NGS. Excluding patients with concurrent molecular alterations to EGFR/ALK/ROS1/BRAF/RET or KRAS might narrow the target population.
Collapse
Affiliation(s)
- Tobias Raphael Overbeck
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Göttingen Comprehensive Cancer Center (G-CCC), Lungentumorzentrum Universität Göttingen, 37075 Göttingen, Germany
| | - Annika Reiffert
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Katja Schmitz
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Tyrolpath Obrist Brunhuber GmbH and Krankenhaus St. Vinzenz, 6511 Zams, Austria
| | - Achim Rittmeyer
- Göttingen Comprehensive Cancer Center (G-CCC), Lungentumorzentrum Universität Göttingen, 37075 Göttingen, Germany
- Lungenfachklinik Immenhausen, 34376 Immenhausen, Germany
| | - Wolfgang Körber
- Göttingen Comprehensive Cancer Center (G-CCC), Lungentumorzentrum Universität Göttingen, 37075 Göttingen, Germany
- Department of Pneumology Evangelisches Krankenhaus Weende, 37075 Göttingen, Germany
| | - Sara Hugo
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Juliane Schnalke
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Laura Lukat
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Tabea Hugo
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Discovery Life Sciences, 34119 Kassel, Germany
| | - Marc Hinterthaner
- Göttingen Comprehensive Cancer Center (G-CCC), Lungentumorzentrum Universität Göttingen, 37075 Göttingen, Germany
- Department of Heart, Thoracic and Vascular Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Kirsten Reuter-Jessen
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Hans-Ulrich Schildhaus
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Discovery Life Sciences, 34119 Kassel, Germany
| |
Collapse
|
96
|
Kalotay E, Klugmann M, Housley GD, Fröhlich D. Dominant aminoacyl-tRNA synthetase disorders: lessons learned from in vivo disease models. Front Neurosci 2023; 17:1182845. [PMID: 37274211 PMCID: PMC10234151 DOI: 10.3389/fnins.2023.1182845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/05/2023] [Indexed: 06/06/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) play an essential role in protein synthesis, being responsible for ligating tRNA molecules to their corresponding amino acids in a reaction known as 'tRNA aminoacylation'. Separate ARSs carry out the aminoacylation reaction in the cytosol and in mitochondria, and mutations in almost all ARS genes cause pathophysiology most evident in the nervous system. Dominant mutations in multiple cytosolic ARSs have been linked to forms of peripheral neuropathy including Charcot-Marie-Tooth disease, distal hereditary motor neuropathy, and spinal muscular atrophy. This review provides an overview of approaches that have been employed to model each of these diseases in vivo, followed by a discussion of the existing animal models of dominant ARS disorders and key mechanistic insights that they have provided. In summary, ARS disease models have demonstrated that loss of canonical ARS function alone cannot fully account for the observed disease phenotypes, and that pathogenic ARS variants cause developmental defects within the peripheral nervous system, despite a typically later onset of disease in humans. In addition, aberrant interactions between mutant ARSs and other proteins have been shown to contribute to the disease phenotypes. These findings provide a strong foundation for future research into this group of diseases, providing methodological guidance for studies on ARS disorders that currently lack in vivo models, as well as identifying candidate therapeutic targets.
Collapse
Affiliation(s)
- Elizabeth Kalotay
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
97
|
Kumar P, Osahon OW, Sekhar RV. GlyNAC (Glycine and N-Acetylcysteine) Supplementation in Old Mice Improves Brain Glutathione Deficiency, Oxidative Stress, Glucose Uptake, Mitochondrial Dysfunction, Genomic Damage, Inflammation and Neurotrophic Factors to Reverse Age-Associated Cognitive Decline: Implications for Improving Brain Health in Aging. Antioxidants (Basel) 2023; 12:antiox12051042. [PMID: 37237908 DOI: 10.3390/antiox12051042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Cognitive decline frequently occurs with increasing age, but mechanisms contributing to age-associated cognitive decline (ACD) are not well understood and solutions are lacking. Understanding and reversing mechanisms contributing to ACD are important because increased age is identified as the single most important risk factor for dementia. We reported earlier that ACD in older humans is associated with glutathione (GSH) deficiency, oxidative stress (OxS), mitochondrial dysfunction, glucose dysmetabolism and inflammation, and that supplementing GlyNAC (glycine and N-acetylcysteine) improved these defects. To test whether these defects occur in the brain in association with ACD, and could be improved/reversed with GlyNAC supplementation, we studied young (20-week) and old (90-week) C57BL/6J mice. Old mice received either regular or GlyNAC supplemented diets for 8 weeks, while young mice received the regular diet. Cognition and brain outcomes (GSH, OxS, mitochondrial energetics, autophagy/mitophagy, glucose transporters, inflammation, genomic damage and neurotrophic factors) were measured. Compared to young mice, the old-control mice had significant cognitive impairment and multiple brain defects. GlyNAC supplementation improved/corrected the brain defects and reversed ACD. This study finds that naturally-occurring ACD is associated with multiple abnormalities in the brain, and provides proof-of-concept that GlyNAC supplementation corrects these defects and improves cognitive function in aging.
Collapse
Affiliation(s)
- Premranjan Kumar
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ob W Osahon
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rajagopal V Sekhar
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
98
|
Ehinger Y, Soneja D, Phamluong K, Salvi A, Ron D. Identification of Novel BDNF-Specific Corticostriatal Circuitries. eNeuro 2023; 10:ENEURO.0238-21.2023. [PMID: 37156610 PMCID: PMC10198608 DOI: 10.1523/eneuro.0238-21.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is released from axon terminals originating in the cerebral cortex onto striatal neurons. Here, we characterized BDNF neurons in the corticostriatal circuitry. First, we used BDNF-Cre and Ribotag transgenic mouse lines to label BDNF-positive neurons in the cortex and detected BDNF expression in all the subregions of the prefrontal cortex (PFC). Next, we used a retrograde viral tracing strategy, in combination with BDNF-Cre knock-in mice, to map the cortical outputs of BDNF neurons in the dorsomedial and dorsolateral striatum (DMS and DLS, respectively). We found that BDNF-expressing neurons located in the medial prefrontal cortex (mPFC) project mainly to the DMS, and those located in the primary and secondary motor cortices (M1 and M2, respectively) and agranular insular cortex (AI) project mainly to the DLS. In contrast, BDNF-expressing orbitofrontal cortical (OFC) neurons differentially target the dorsal striatum (DS) depending on their mediolateral and rostrocaudal location. Specifically, the DMS is mainly innervated by the medial and ventral part of the orbitofrontal cortex (MO and VO, respectively), whereas the DLS receives projections specifically from the lateral part of the OFC (LO). Together, our study uncovers previously unknown BDNF corticostriatal circuitries. These findings could have important implications for the role of BDNF signaling in corticostriatal pathways.
Collapse
Affiliation(s)
- Yann Ehinger
- Department of Neurology, University of California, San Francisco, 94143-0663 CA
| | - Drishti Soneja
- Department of Neurology, University of California, San Francisco, 94143-0663 CA
| | - Khanhky Phamluong
- Department of Neurology, University of California, San Francisco, 94143-0663 CA
| | - Alexandra Salvi
- Department of Neurology, University of California, San Francisco, 94143-0663 CA
| | - Dorit Ron
- Department of Neurology, University of California, San Francisco, 94143-0663 CA
| |
Collapse
|
99
|
Zhang Y, Bai Y, Shi Q, Zhou B, Ni M, Zheng J, Cui Z. The antibacterial activity and antibacterial mechanism analyses of an LRR-IG protein in the Chinese mitten crab, Eriocheir sinensis. Int J Biol Macromol 2023; 234:123732. [PMID: 36801302 DOI: 10.1016/j.ijbiomac.2023.123732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Leucine-rich repeat and immunoglobulin domain containing protein (LRR-IG) family is an important class of immune molecules in invertebrates. Herein, a novel LRR-IG, named as EsLRR-IG5, was identified from Eriocheir sinensis. It contained typical structures of LRR-IG including an N-terminal LRR region and three IG domains. EsLRR-IG5 was ubiquitously expressed in all the tested tissues, and its transcriptional levels increased after being challenged with Staphylococcus aureus and Vibrio parahaemolyticus. Recombinant proteins of LRR and IG domains from the EsLRR-IG5 (named as rEsLRR5 and rEsIG5) were successfully obtained. rEsLRR5 and rEsIG5 could bind to both gram-positive bacteria and gram-negative bacteria as well as lipopolysaccharide (LPS) and peptidoglycan (PGN). Moreover, rEsLRR5 and rEsIG5 exhibited antibacterial activities against V. parahaemolyticus and V. alginolyticus and displayed bacterial agglutination activities against S. aureus, Corynebacterium glutamicum, Micrococcus lysodeikticus, V. parahaemolyticus and V. alginolyticus. The scanning electron microscopy (SEM) observation revealed that the membrane integrity of V. parahaemolyticus and V. alginolyticus was destroyed by rEsLRR5 and rEsIG5, which may lead to the leakage of cell contents and death. This study provided clues for further studies on the immune defense mechanism mediated by LRR-IG in crustaceans and provided candidate antibacterial agents for prevention and control of diseases in aquaculture.
Collapse
Affiliation(s)
- Yi Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yunhui Bai
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Qiao Shi
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Bin Zhou
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Mengqi Ni
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo 315020, China.
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| |
Collapse
|
100
|
Manti S, Xerra F, Spoto G, Butera A, Gitto E, Di Rosa G, Nicotera AG. Neurotrophins: Expression of Brain-Lung Axis Development. Int J Mol Sci 2023; 24:ijms24087089. [PMID: 37108250 PMCID: PMC10138985 DOI: 10.3390/ijms24087089] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Neurotrophins (NTs) are a group of soluble growth factors with analogous structures and functions, identified initially as critical mediators of neuronal survival during development. Recently, the relevance of NTs has been confirmed by emerging clinical data showing that impaired NTs levels and functions are involved in the onset of neurological and pulmonary diseases. The alteration in NTs expression at the central and peripheral nervous system has been linked to neurodevelopmental disorders with an early onset and severe clinical manifestations, often named "synaptopathies" because of structural and functional synaptic plasticity abnormalities. NTs appear to be also involved in the physiology and pathophysiology of several airway diseases, neonatal lung diseases, allergic and inflammatory diseases, lung fibrosis, and even lung cancer. Moreover, they have also been detected in other peripheral tissues, including immune cells, epithelium, smooth muscle, fibroblasts, and vascular endothelium. This review aims to provide a comprehensive description of the NTs as important physiological and pathophysiological players in brain and lung development.
Collapse
Affiliation(s)
- Sara Manti
- Pediatric Unit, Department of Human and Pediatric Pathology "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy
| | - Federica Xerra
- Pediatric Unit, Department of Human and Pediatric Pathology "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy
| | - Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, "Gaetano Barresi" University of Messina, 98124 Messina, Italy
| | - Ambra Butera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, "Gaetano Barresi" University of Messina, 98124 Messina, Italy
| | - Eloisa Gitto
- Intensive Pediatric Unit, Department of Human Pathology of the Adult and Developmental Age, "Gaetano Barresi" University of Messina, 98124 Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, "Gaetano Barresi" University of Messina, 98124 Messina, Italy
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, "Gaetano Barresi" University of Messina, 98124 Messina, Italy
| |
Collapse
|