51
|
Rarani FZ, Rashidi B, Jafari Najaf Abadi MH, Hamblin MR, Reza Hashemian SM, Mirzaei H. Cytokines and microRNAs in SARS-CoV-2: What do we know? MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:219-242. [PMID: 35782361 PMCID: PMC9233348 DOI: 10.1016/j.omtn.2022.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic constitutes a global health emergency. Currently, there are no completely effective therapeutic medications for the management of this outbreak. The cytokine storm is a hyperinflammatory medical condition due to excessive and uncontrolled release of pro-inflammatory cytokines in patients suffering from severe COVID-19, leading to the development of acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome (MODS) and even mortality. Understanding the pathophysiology of COVID-19 can be helpful for the treatment of patients. Evidence suggests that the levels of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1 and IL-6 are dramatically different between mild and severe patients, so they may be important contributors to the cytokine storm. Several serum markers can be predictors for the cytokine storm. This review discusses the cytokines involved in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, focusing on interferons (IFNs) and ILs, and whether they can be used in COVID-19 treatment. Moreover, we highlight several microRNAs that are involved in these cytokines and their role in the cytokine storm caused by COVID-19.
Collapse
Affiliation(s)
- Fahimeh Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran
| |
Collapse
|
52
|
Chen X, Wu Q, Cao X, Yang Y, Gong Z, Ren T, Du Q, Yuan Y, Zuo Y, Miao Y, He J, Qiao C, Zheng Z, Zhang T, Xu Y, Wu D, Wang Q, Huang L, Xie Z, Lv H, Wang J, Gong F, Liu Z, Wen C, Zheng H. Menthone inhibits type-I interferon signaling by promoting Tyk2 ubiquitination to relieve local inflammation of rheumatoid arthritis. Int Immunopharmacol 2022; 112:109228. [PMID: 36095947 DOI: 10.1016/j.intimp.2022.109228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022]
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease. RA development is mediated by the abnormal activation of multiple signaling pathways. Recent studies have revealed that type-I interferon (IFN-I) signaling plays an essential role in the occurrence and development of RA. However, how to target IFN-I signaling to develop anti-rheumatoid arthritis drugs remains largely unexplored. Here, our study showed that IFN-I signaling was over-activated in articular synovial cells from collagen II-induced arthritis (CIA) mice. Interestingly, we found that a small molecule compound, menthone, strongly inhibited the activation of the IFN-I signaling pathway. Further studies revealed that menthone promoted K48-linked polyubiquitination of Tyk2, thus lowering the protein level and stability of Tyk2. Importantly, menthone administration in the local articulus of CIA mice significantly attenuated the local inflammation in CIA mice. This study could promote our understanding of rheumatoid arthritis, and also suggests a potential strategy to develop anti-RA drugs.
Collapse
Affiliation(s)
- Xiangjie Chen
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Qiuyu Wu
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xinhua Cao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yunshan Yang
- Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Zheng Gong
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Tengfei Ren
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Qian Du
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yukang Yuan
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yibo Zuo
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Ying Miao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jiuyi He
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Caixia Qiao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhijin Zheng
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Tingting Zhang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yang Xu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Depei Wu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Qiao Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Lin Huang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Zhijun Xie
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Haitao Lv
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215123, Jiangsu, China
| | - Jun Wang
- Department of Intensive Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215123, Jiangsu, China
| | - Fangyuan Gong
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhichun Liu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou 215123, Jiangsu, China
| | - Chengping Wen
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Hui Zheng
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
53
|
Kusiak A, Brady G. Bifurcation of signalling in human innate immune pathways to NF-kB and IRF family activation. Biochem Pharmacol 2022; 205:115246. [PMID: 36088989 DOI: 10.1016/j.bcp.2022.115246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022]
Abstract
The human innate immune response can be activated through a wide range of stimuli. This multi-faceted system can be triggered by a range of immunostimulants including pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). These stimuli drive intracellular signalling pathways that branch off downstream to activate several distinct transcription factors. The two most impactful of which in innate immune outcomes are the NF-κB and the IRF family members. Both transcription factor families play defining roles in driving inflammation as well as the antiviral response. Pathways leading to their simultaneous activation share common upstream components but eventually distinct regulators which directly facilitate their activation. This review will discuss the current state of knowledge about what is known about how these pathways bifurcate to activate NF-κB and IRF family members.
Collapse
Affiliation(s)
- Aleksandra Kusiak
- Trinity Translational Medicine Institute, St James' Campus, Trinity College Dublin, D08 W9RT Dublin, Ireland.
| | - Gareth Brady
- Trinity Translational Medicine Institute, St James' Campus, Trinity College Dublin, D08 W9RT Dublin, Ireland.
| |
Collapse
|
54
|
Klein B, Kunz M. Current concepts of photosensitivity in cutaneous lupus erythematosus. Front Med (Lausanne) 2022; 9:939594. [PMID: 36091671 PMCID: PMC9452788 DOI: 10.3389/fmed.2022.939594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Cutaneous lupus erythematosus (CLE) represents a complex autoimmune disease with a broad phenotypic spectrum ranging from acute to chronic destructive cutaneous lesions. Patients with CLE exhibit high photosensitivity and ultraviolet (UV) irradiation can lead to systemic flares in systemic lupus erythematosus. However, the exact mechanisms how UV irradiation enhances cutaneous inflammation in lupus are not fully understood. Recently, new molecular mechanisms of UV-driven immune responses in CLE were identified, offering potential therapeutic approaches. Especially the induction of type I interferons, central cytokines in lupus pathogenesis which are released by various skin cells, have become the focus of current research. In this review, we describe current pathogenic concepts of photosensitivity in lupus erythematosus, including UV-driven activation of intracellular nucleic acid sensors, cellular cytokine production and immune cell activation. Furthermore, we discuss activated pathways contributing to enhanced apoptosis as well as intracellular translocation of autoantigens thereby promoting CLE upon UV light exposure.
Collapse
Affiliation(s)
- Benjamin Klein
- Department of Dermatology, Venereology, and Allergology, University Hospital Leipzig, Leipzig, Germany
| | | |
Collapse
|
55
|
E3 ubiquitin ligase RNF6 promotes antiviral immune responses through enhancing the expression of interferon stimulated genes in myeloid cells. Clin Immunol 2022; 242:109099. [PMID: 35973638 DOI: 10.1016/j.clim.2022.109099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022]
Abstract
Interferon signaling is closely associated with clearance of viral infections as well as the development of systemic lupus erythematosus (SLE). Therefore, from a clinical perspective, it is important to identify the key regulators involved in interferon signaling pathways. In this study, we identified that RNF6, as an interferon inducible E3 ubiquitin ligase, promoted the interferon-dependent antiviral response. Knock-down of RNF6 greatly attenuated expression of ISGs and the transcriptional activity of ISRE. Specifically, increased RNF6 expression in myeloid cells of patients with SLE correlated with high expression of ISGs. Our results uncover RNF6 as a positive mediator in the antiviral immune responses and suggest that RNF6 may contribute to predict interferon signaling in SLE.
Collapse
|
56
|
Pacheco-Hernández LM, Ramírez-Noyola JA, Gómez-García IA, Ignacio-Cortés S, Zúñiga J, Choreño-Parra JA. Comparing the Cytokine Storms of COVID-19 and Pandemic Influenza. J Interferon Cytokine Res 2022; 42:369-392. [PMID: 35674675 PMCID: PMC9422807 DOI: 10.1089/jir.2022.0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/19/2022] [Indexed: 12/15/2022] Open
Abstract
Emerging respiratory viruses are major health threats due to their potential to cause massive outbreaks. Over the past 2 years, the coronavirus disease 2019 (COVID-19) pandemic has caused millions of cases of severe infection and deaths worldwide. Although natural and vaccine-induced protective immune mechanisms against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been increasingly identified, the factors that determine morbimortality are less clear. Comparing the immune signatures of COVID-19 and other severe respiratory infections such as the pandemic influenza might help dissipate current controversies about the origin of their severe manifestations. As such, identifying homologies in the immunopathology of both diseases could provide targets for immunotherapy directed to block shared pathogenic mechanisms. Meanwhile, finding unique characteristics that differentiate each infection could shed light on specific immune alterations exploitable for diagnostic and individualized therapeutics for each case. In this study, we summarize immunopathological aspects of COVID-19 and pandemic influenza from the perspective of cytokine storms as the driving force underlying morbidity. Thereby, we analyze similarities and differences in the cytokine profiles of both infections, aiming to bring forward those molecules more attractive for translational medicine and drug development.
Collapse
Affiliation(s)
- Lynette Miroslava Pacheco-Hernández
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Jazmín Ariadna Ramírez-Noyola
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Programa de Maestría en Ciencias de la Salud, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón and Plan de San Luis, Mexico City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Sergio Ignacio-Cortés
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| |
Collapse
|
57
|
Lebedeva A, Molodtsov I, Anisimova A, Berestovskaya A, Dukhin O, Elizarova A, Fitzgerald W, Fomina D, Glebova K, Ivanova O, Kalinskaya A, Lebedeva A, Lysenko M, Maryukhnich E, Misyurina E, Protsenko D, Rosin A, Sapozhnikova O, Sokorev D, Shpektor A, Vorobyeva D, Vasilieva E, Margolis L. Comprehensive Cytokine Profiling of Patients with COVID-19 Receiving Tocilizumab Therapy. Int J Mol Sci 2022; 23:7937. [PMID: 35887283 PMCID: PMC9316906 DOI: 10.3390/ijms23147937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is characterized by immune activation in response to viral spread, in severe cases leading to the development of cytokine storm syndrome (CSS) and increased mortality. Despite its importance in prognosis, the pathophysiological mechanisms of CSS in COVID-19 remain to be defined. Towards this goal, we analyzed cytokine profiles and their interrelation in regard to anti-cytokine treatment with tocilizumab in 98 hospitalized patients with COVID-19. We performed a multiplex measurement of 41 circulating cytokines in the plasma of patients on admission and 3-5 days after, during the follow-up. Then we analyzed the patient groups separated in two ways: according to the clusterization of their blood cytokines and based on the administration of tocilizumab therapy. Patients with and without CSS formed distinct clusters according to their cytokine concentration changes. However, the tocilizumab therapy, administered based on the standard clinical and laboratory criteria, did not fully correspond to those clusters of CSS. Furthermore, among all cytokines, IL-6, IL-1RA, IL-10, and G-CSF demonstrated the most prominent differences between patients with and without clinical endpoints, while only IL-1RA was prognostically significant in both groups of patients with and without tocilizumab therapy, decreasing in the former and increasing in the latter during the follow-up period. Thus, CSS in COVID-19, characterized by a correlated release of multiple cytokines, does not fully correspond to the standard parameters of disease severity. Analysis of the cytokine signature, including the IL-1RA level in addition to standard clinical and laboratory parameters may be useful to define the onset of a cytokine storm in COVID-19 as well as the indications for anti-cytokine therapy.
Collapse
Affiliation(s)
- Anna Lebedeva
- Laboratory of Atherothrombosis, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (O.I.); (A.K.); (E.M.); (D.V.)
| | - Ivan Molodtsov
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Alexandra Anisimova
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Anastasia Berestovskaya
- Clinical City Hospital №40, Moscow Department of Healthcare, 7 Kasatkina Str., 129301 Moscow, Russia; (A.B.); (D.P.)
| | - Oleg Dukhin
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Antonina Elizarova
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 29B Lincoln Dr., Bethesda, MD 20892, USA; (W.F.); (L.M.)
| | - Darya Fomina
- Clinical City Hospital №52, Moscow Department of Healthcare, 3 Pekhotnaya Str., 123182 Moscow, Russia; (D.F.); (M.L.); (E.M.)
| | - Kseniya Glebova
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Oxana Ivanova
- Laboratory of Atherothrombosis, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (O.I.); (A.K.); (E.M.); (D.V.)
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Anna Kalinskaya
- Laboratory of Atherothrombosis, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (O.I.); (A.K.); (E.M.); (D.V.)
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
- Department of Cardiology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia
| | - Anastasia Lebedeva
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
- Clinical City Hospital №40, Moscow Department of Healthcare, 7 Kasatkina Str., 129301 Moscow, Russia; (A.B.); (D.P.)
| | - Maryana Lysenko
- Clinical City Hospital №52, Moscow Department of Healthcare, 3 Pekhotnaya Str., 123182 Moscow, Russia; (D.F.); (M.L.); (E.M.)
| | - Elena Maryukhnich
- Laboratory of Atherothrombosis, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (O.I.); (A.K.); (E.M.); (D.V.)
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Elena Misyurina
- Clinical City Hospital №52, Moscow Department of Healthcare, 3 Pekhotnaya Str., 123182 Moscow, Russia; (D.F.); (M.L.); (E.M.)
| | - Denis Protsenko
- Clinical City Hospital №40, Moscow Department of Healthcare, 7 Kasatkina Str., 129301 Moscow, Russia; (A.B.); (D.P.)
| | - Alexander Rosin
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Olga Sapozhnikova
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Denis Sokorev
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Alexander Shpektor
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
- Department of Cardiology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia
| | - Daria Vorobyeva
- Laboratory of Atherothrombosis, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (O.I.); (A.K.); (E.M.); (D.V.)
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Elena Vasilieva
- Laboratory of Atherothrombosis, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (O.I.); (A.K.); (E.M.); (D.V.)
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Leonid Margolis
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 29B Lincoln Dr., Bethesda, MD 20892, USA; (W.F.); (L.M.)
| |
Collapse
|
58
|
Dahlgren MW, Plumb AW, Niss K, Lahl K, Brunak S, Johansson-Lindbom B. Type I Interferons Promote Germinal Centers Through B Cell Intrinsic Signaling and Dendritic Cell Dependent Th1 and Tfh Cell Lineages. Front Immunol 2022; 13:932388. [PMID: 35911733 PMCID: PMC9326081 DOI: 10.3389/fimmu.2022.932388] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Type I interferons (IFNs) are essential for antiviral immunity, appear to represent a key component of mRNA vaccine-adjuvanticity, and correlate with severity of systemic autoimmune disease. Relevant to all, type I IFNs can enhance germinal center (GC) B cell responses but underlying signaling pathways are incompletely understood. Here, we demonstrate that a succinct type I IFN response promotes GC formation and associated IgG subclass distribution primarily through signaling in cDCs and B cells. Type I IFN signaling in cDCs, distinct from cDC1, stimulates development of separable Tfh and Th1 cell subsets. However, Th cell-derived IFN-γ induces T-bet expression and IgG2c isotype switching in B cells prior to this bifurcation and has no evident effects once GCs and bona fide Tfh cells developed. This pathway acts in synergy with early B cell-intrinsic type I IFN signaling, which reinforces T-bet expression in B cells and leads to a selective amplification of the IgG2c+ GC B cell response. Despite the strong Th1 polarizing effect of type I IFNs, the Tfh cell subset develops into IL-4 producing cells that control the overall magnitude of the GCs and promote generation of IgG1+ GC B cells. Thus, type I IFNs act on B cells and cDCs to drive GC formation and to coordinate IgG subclass distribution through divergent Th1 and Tfh cell-dependent pathways.
Collapse
Affiliation(s)
| | - Adam W. Plumb
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Kristoffer Niss
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Katharina Lahl
- Immunology Section, Lund University, Lund, Sweden
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Søren Brunak
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Bengt Johansson-Lindbom
- Immunology Section, Lund University, Lund, Sweden
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- *Correspondence: Bengt Johansson-Lindbom,
| |
Collapse
|
59
|
Li S, Zhang X, Yao Y, Zhu Y, Zheng X, Liu F, Feng W. Inducible miR-150 Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication by Targeting Viral Genome and Suppressor of Cytokine Signaling 1. Viruses 2022; 14:1485. [PMID: 35891465 PMCID: PMC9318191 DOI: 10.3390/v14071485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
Hosts exploit various approaches to defend against porcine reproductive and respiratory syndrome virus (PRRSV) infection. microRNAs (miRNAs) have emerged as key negative post-transcriptional regulators of gene expression and have been reported to play important roles in regulating virus infection. Here, we identified that miR-150 was differentially expressed in virus permissive and non-permissive cells. Subsequently, we demonstrated that PRRSV induced the expression of miR-150 via activating the protein kinase C (PKC)/c-Jun amino-terminal kinases (JNK)/c-Jun pathway, and overexpression of miR-150 suppressed PRRSV replication. Further analysis revealed that miR-150 not only directly targeted the PRRSV genome, but also facilitated type I IFN signaling. RNA immunoprecipitation assay demonstrated that miR-150 targeted the suppressor of cytokine signaling 1 (SOCS1), which is a negative regulator of Janus activated kinase (JAK)/signal transducer and activator of the transcription (STAT) signaling pathway. The inverse correlation between miR-150 and SOCS1 expression implies that miR-150 plays a role in regulating ISG expression. In conclusion, miR-150 expression is upregulated upon PRRSV infection. miR-150 feedback positively targets the PRRSV genome and promotes type I IFN signaling, which can be seen as a host defensive strategy.
Collapse
Affiliation(s)
- Sihan Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xuan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yao Yao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yingqi Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaojie Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fang Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
60
|
Shiri Aghbash P, Shirvaliloo M, Khalo Abass Kasho A, Alinezhad F, Nauwynck H, Bannazadeh Baghi H. Cluster of differentiation frequency on antigen presenting-cells: The next step to cervical cancer prognosis? Int Immunopharmacol 2022; 108:108896. [DOI: 10.1016/j.intimp.2022.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
|
61
|
Rao J, Xu N, Sun J, Li Y, Fu F. Case Report: Interferon-Alpha-Induced Neuromyelitis Optica Spectrum Disorder. Front Neurol 2022; 13:872684. [PMID: 35547376 PMCID: PMC9081932 DOI: 10.3389/fneur.2022.872684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Background and Objectives To describe a new case of neuromyelitis optica spectrum disorder (NMOSD) induced by the administration of interferon-alpha (IFNα) and to raise awareness of this rare drug-induced disease of IFNα treatment. Methods A single case study and comprehensive literature review of eight cases. Results A 24-year-old man was diagnosed with cerebral venous thrombosis and essential thrombocythemia. He had been undergoing IFNα treatment (IFNα-2b, 3 million IU per day) without any side effects for 18 months, at which point the patient developed persistent hiccups, nausea, urinary retention, and numbness. Spinal magnetic resonance imaging revealed a longitudinal abnormality extending from the medulla to the entire spinal cord. The patient was positive for anti-aquaporin-4 antibody (AQP4-IgG) in both the serum and cerebrospinal fluid (CSF), which confirmed the diagnosis of NMOSD. Thus, recombinant IFNα-2b was suspended immediately. Because his condition did not improve after 6-day treatment of methylprednisolone pulse therapy (1,000 mg for 3 days, then 500 mg for 3 days), intravenous immunoglobulin (0.4 g/kg/day for 5 days) was administered. The patient gradually improved. Low-dose prednisolone and mycophenolate mofetil were subsequently administered as a long-term treatment. The patient was discharged with subtle limb numbness and their expanded disability status score (EDSS) was 1. At the 1-year follow-up, the patient had not relapsed and tested negative for AQP4-IgG. We further identified the eight patients with IFNα-induced NMOSD. The median onset age was 59 years, and the median time of IFNα exposure was 18 months. Optic neuritis was the most common initial symptom (five, 55.6%), followed by myelitis in three patients and area postrema syndrome in one patient. More than half (five, 55.6%) of the patients were monophasic. After IFNα discontinuation and immunotherapy, most (seven, 77.8%) patients remained relapse-free. However, only one patient was free of sequelae. Conclusion This study highlights the potential pathogenic risk of NMOSD of IFNα treatment. Given the high disability rates of this rare drug-induced disease, it is crucial to monitor the early manifestations of NMOSD during IFNα treatment.
Collapse
Affiliation(s)
- Jie Rao
- Department of Neurology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Na Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Sun
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Li
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangwang Fu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
62
|
Cetin Gedik K, Lamot L, Romano M, Demirkaya E, Piskin D, Torreggiani S, Adang LA, Armangue T, Barchus K, Cordova DR, Crow YJ, Dale RC, Durrant KL, Eleftheriou D, Fazzi EM, Gattorno M, Gavazzi F, Hanson EP, Lee-Kirsch MA, Montealegre Sanchez GA, Neven B, Orcesi S, Ozen S, Poli MC, Schumacher E, Tonduti D, Uss K, Aletaha D, Feldman BM, Vanderver A, Brogan PA, Goldbach-Mansky R. The 2021 European Alliance of Associations for Rheumatology/American College of Rheumatology Points to Consider for Diagnosis and Management of Autoinflammatory Type I Interferonopathies: CANDLE/PRAAS, SAVI, and AGS. Arthritis Rheumatol 2022; 74:735-751. [PMID: 35315249 DOI: 10.1002/art.42087] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Autoinflammatory type I interferonopathies, chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature/proteasome-associated autoinflammatory syndrome (CANDLE/PRAAS), stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy (SAVI), and Aicardi-Goutières syndrome (AGS) are rare and clinically complex immunodysregulatory diseases. With emerging knowledge of genetic causes and targeted treatments, a Task Force was charged with the development of "points to consider" to improve diagnosis, treatment, and long-term monitoring of patients with these rare diseases. METHODS Members of a Task Force consisting of rheumatologists, neurologists, an immunologist, geneticists, patient advocates, and an allied health care professional formulated research questions for a systematic literature review. Then, based on literature, Delphi questionnaires, and consensus methodology, "points to consider" to guide patient management were developed. RESULTS The Task Force devised consensus and evidence-based guidance of 4 overarching principles and 17 points to consider regarding the diagnosis, treatment, and long-term monitoring of patients with the autoinflammatory interferonopathies, CANDLE/PRAAS, SAVI, and AGS. CONCLUSION These points to consider represent state-of-the-art knowledge to guide diagnostic evaluation, treatment, and management of patients with CANDLE/PRAAS, SAVI, and AGS and aim to standardize and improve care, quality of life, and disease outcomes.
Collapse
Affiliation(s)
- Kader Cetin Gedik
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Lovro Lamot
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Micol Romano
- University of Western Ontario, London, Ontario, Canada
| | | | - David Piskin
- University of Western Ontario, London Health Sciences Center, and Lawson Health Research Institute, London, Ontario, Canada
| | - Sofia Torreggiani
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, and UOC Pediatria a Media Intensità di Cura, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura A Adang
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Thais Armangue
- Sant Joan de Deu Children's Hospital and IDIBAPS-Hospital Clinic; University of Barcelona, Barcelona, Spain
| | - Kathe Barchus
- Autoinflammatory Alliance, San Francisco, California
| | - Devon R Cordova
- Aicardi-Goutieres Syndrome Americas Association, Manhattan Beach, California
| | - Yanick J Crow
- University of Edinburgh, Edinburgh, UK, and Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, University of Paris, Paris, France
| | - Russell C Dale
- University of Sydney, Sydney, New South Wales, Australia
| | - Karen L Durrant
- Autoinflammatory Alliance and Kaiser San Francisco Hospital, San Francisco, California
| | | | - Elisa M Fazzi
- ASST Civil Hospital and University of Brescia, Brescia, Italy
| | | | - Francesco Gavazzi
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, and University of Brescia, Brescia, Italy
| | - Eric P Hanson
- Riley Hospital for Children and Indiana University School of Medicine, Indianapolis
| | | | | | - Bénédicte Neven
- Necker Children's Hospital, AP-HP, Institut Imagine Institut des Maladies Genetiques, University of Paris, Paris, France
| | - Simona Orcesi
- IRCCS Mondino Foundation and University of Pavia, Pavia, Italy
| | - Seza Ozen
- Hacettepe University, Ankara, Turkey
| | | | | | | | - Katsiaryna Uss
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | - Brian M Feldman
- Hospital for Sick Children and University of Toronto Institute of Health Policy Management and Evaluation, Toronto, Ontario, Canada
| | - Adeline Vanderver
- Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia
| | | | | |
Collapse
|
63
|
Schmiedel BJ, Gonzalez-Colin C, Fajardo V, Rocha J, Madrigal A, Ramírez-Suástegui C, Bhattacharyya S, Simon H, Greenbaum JA, Peters B, Seumois G, Ay F, Chandra V, Vijayanand P. Single-cell eQTL analysis of activated T cell subsets reveals activation and cell type-dependent effects of disease-risk variants. Sci Immunol 2022; 7:eabm2508. [PMID: 35213211 PMCID: PMC9035271 DOI: 10.1126/sciimmunol.abm2508] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The impact of genetic variants on cells challenged in biologically relevant contexts has not been fully explored. Here, we activated CD4+ T cells from 89 healthy donors and performed a single-cell RNA sequencing assay with >1 million cells to examine cell type-specific and activation-dependent effects of genetic variants. Single-cell expression quantitative trait loci (sc-eQTL) analysis of 19 distinct CD4+ T cell subsets showed that the expression of over 4000 genes is significantly associated with common genetic polymorphisms and that most of these genes show their most prominent effects in specific cell types. These genes included many that encode for molecules important for activation, differentiation, and effector functions of T cells. We also found new gene associations for disease-risk variants identified from genome-wide association studies and highlighted the cell types in which their effects are most prominent. We found that biological sex has a major influence on activation-dependent gene expression in CD4+ T cell subsets. Sex-biased transcripts were significantly enriched in several pathways that are essential for the initiation and execution of effector functions by CD4+ T cells like TCR signaling, cytokines, cytokine receptors, costimulatory, apoptosis, and cell-cell adhesion pathways. Overall, this DICE (Database of Immune Cell Expression, eQTLs, and Epigenomics) subproject highlights the power of sc-eQTL studies for simultaneously exploring the activation and cell type-dependent effects of common genetic variants on gene expression (https://dice-database.org).
Collapse
Affiliation(s)
| | - Cristian Gonzalez-Colin
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | | | - Job Rocha
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | | | | | | | - Hayley Simon
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Ferhat Ay
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Vivek Chandra
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Liverpool Head and Neck Centre, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom
| |
Collapse
|
64
|
Schäfer A, Franzoni G, Netherton CL, Hartmann L, Blome S, Blohm U. Adaptive Cellular Immunity against African Swine Fever Virus Infections. Pathogens 2022; 11:pathogens11020274. [PMID: 35215216 PMCID: PMC8878497 DOI: 10.3390/pathogens11020274] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
African swine fever virus (ASFV) remains a threat to global pig populations. Infections with ASFV lead to a hemorrhagic disease with up to 100% lethality in Eurasian domestic and wild pigs. Although myeloid cells are the main target cells for ASFV, T cell responses are impacted by the infection as well. The complex responses remain not well understood, and, consequently, there is no commercially available vaccine. Here, we review the current knowledge about the induction of antiviral T cell responses by cells of the myeloid lineage, as well as T cell responses in infected animals, recent efforts in vaccine research, and T cell epitopes present in ASFV.
Collapse
Affiliation(s)
- Alexander Schäfer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (A.S.); (L.H.); (S.B.)
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy;
| | | | - Luise Hartmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (A.S.); (L.H.); (S.B.)
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (A.S.); (L.H.); (S.B.)
| | - Ulrike Blohm
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (A.S.); (L.H.); (S.B.)
- Correspondence: ; Tel.: +49-38351-7-1543; +49-38351-7-1236
| |
Collapse
|
65
|
Gupta S, Shyamsundar K, Agrawal M, Vichare N, Biswas J. Current Knowledge of Biologics in Treatment of Noninfectious Uveitis. J Ocul Pharmacol Ther 2022; 38:203-222. [DOI: 10.1089/jop.2021.0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Simple Gupta
- Department of Ophthalmology, Command Hospital, Pune, India
| | - K. Shyamsundar
- Department of Ophthalmology, Command Hospital, Pune, India
| | - Mohini Agrawal
- Department of Ophthalmology, Command Hospital, Pune, India
| | - Nitin Vichare
- Department of Ophthalmology, Command Hospital, Pune, India
| | - Jyotirmay Biswas
- Department of Uveitis and Ocular Pathology, Sankara Netralaya, Chennai, India
| |
Collapse
|
66
|
Jia H, Liu C, Li D, Huang Q, Liu D, Zhang Y, Ye C, Zhou D, Wang Y, Tan Y, Li K, Lin F, Zhang H, Lin J, Xu Y, Liu J, Zeng Q, Hong J, Chen G, Zhang H, Zheng L, Deng X, Ke C, Gao Y, Fan J, Di B, Liang H. Metabolomic analyses reveal new stage-specific features of COVID-19. Eur Respir J 2022; 59:2100284. [PMID: 34289974 PMCID: PMC8311281 DOI: 10.1183/13993003.00284-2021] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/28/2021] [Indexed: 01/10/2023]
Abstract
The current pandemic of coronavirus disease 2019 (COVID-19) has affected >160 million individuals to date, and has caused millions of deaths worldwide, at least in part due to the unclarified pathophysiology of this disease. Identifying the underlying molecular mechanisms of COVID-19 is critical to overcome this pandemic. Metabolites mirror the disease progression of an individual and can provide extensive insights into their pathophysiological significance at each stage of disease. We provide a comprehensive view of metabolic characterisation of sera from COVID-19 patients at all stages using untargeted and targeted metabolomic analysis. As compared with the healthy controls, we observed different alteration patterns of circulating metabolites from the mild, severe and recovery stages, in both the discovery cohort and the validation cohort, which suggests that metabolic reprogramming of glucose metabolism and the urea cycle are potential pathological mechanisms for COVID-19 progression. Our findings suggest that targeting glucose metabolism and the urea cycle may be a viable approach to fight COVID-19 at various stages along the disease course.
Collapse
Affiliation(s)
- Hongling Jia
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- Dept of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
- These authors contributed equally to this study
| | - Chaowu Liu
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
- These authors contributed equally to this study
| | - Dantong Li
- Clinical Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
- These authors contributed equally to this study
| | - Qingsheng Huang
- Clinical Data Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- These authors contributed equally to this study
| | - Dong Liu
- Big Data and Machine Learning Laboratory, Chongqing University of Technology, Chongqing, China
- These authors contributed equally to this study
| | - Ying Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- These authors contributed equally to this study
| | - Chang Ye
- Clinical Data Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Di Zhou
- Metabo-Profile Biotechnology (Shanghai) Co. Ltd, Shanghai, China
| | - Yang Wang
- Metabo-Profile Biotechnology (Shanghai) Co. Ltd, Shanghai, China
| | - Yanlian Tan
- Dept of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Kuibiao Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Fangqin Lin
- Clinical Data Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Haiqing Zhang
- Dept of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingchao Lin
- Metabo-Profile Biotechnology (Shanghai) Co. Ltd, Shanghai, China
| | - Yang Xu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Jingwen Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Qing Zeng
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Jian Hong
- Dept of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Guobing Chen
- Institute of Geriatric Immunology, Dept of Microbiology and Immunology, School of Medicine, Dept of Neurology, Affiliated Huaqiao Hospital, Jinan University, Guangzhou, China
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Lingling Zheng
- Clinical Data Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xilong Deng
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Yunfei Gao
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, China
- Yunfei Gao, Jun Fan, Biao Di and Huiying Liang are joint lead authors
| | - Jun Fan
- Dept of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
- Yunfei Gao, Jun Fan, Biao Di and Huiying Liang are joint lead authors
| | - Biao Di
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- Yunfei Gao, Jun Fan, Biao Di and Huiying Liang are joint lead authors
| | - Huiying Liang
- Clinical Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
- Yunfei Gao, Jun Fan, Biao Di and Huiying Liang are joint lead authors
| |
Collapse
|
67
|
Cetin Gedik K, Lamot L, Romano M, Demirkaya E, Piskin D, Torreggiani S, Adang LA, Armangue T, Barchus K, Cordova DR, Crow YJ, Dale RC, Durrant KL, Eleftheriou D, Fazzi EM, Gattorno M, Gavazzi F, Hanson EP, Lee-Kirsch MA, Montealegre Sanchez GA, Neven B, Orcesi S, Ozen S, Poli MC, Schumacher E, Tonduti D, Uss K, Aletaha D, Feldman BM, Vanderver A, Brogan PA, Goldbach-Mansky R. The 2021 EULAR and ACR points to consider for diagnosis and management of autoinflammatory type I interferonopathies: CANDLE/PRAAS, SAVI and AGS. Ann Rheum Dis 2022; 81:601-613. [PMID: 35086813 PMCID: PMC9036471 DOI: 10.1136/annrheumdis-2021-221814] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/11/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Autoinflammatory type I interferonopathies, chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature/proteasome-associated autoinflammatory syndrome (CANDLE/PRAAS), stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy (SAVI) and Aicardi-Goutières syndrome (AGS) are rare and clinically complex immunodysregulatory diseases. With emerging knowledge of genetic causes and targeted treatments, a Task Force was charged with the development of 'points to consider' to improve diagnosis, treatment and long-term monitoring of patients with these rare diseases. METHODS Members of a Task Force consisting of rheumatologists, neurologists, an immunologist, geneticists, patient advocates and an allied healthcare professional formulated research questions for a systematic literature review. Then, based on literature, Delphi questionnaires and consensus methodology, 'points to consider' to guide patient management were developed. RESULTS The Task Force devised consensus and evidence-based guidance of 4 overarching principles and 17 points to consider regarding the diagnosis, treatment and long-term monitoring of patients with the autoinflammatory interferonopathies, CANDLE/PRAAS, SAVI and AGS. CONCLUSION These points to consider represent state-of-the-art knowledge to guide diagnostic evaluation, treatment and management of patients with CANDLE/PRAAS, SAVI and AGS and aim to standardise and improve care, quality of life and disease outcomes.
Collapse
Affiliation(s)
- Kader Cetin Gedik
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lovro Lamot
- Department of Pediatrics, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Micol Romano
- Division of Paediatric Rheumatology, Department of Paediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Erkan Demirkaya
- Division of Paediatric Rheumatology, Department of Paediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - David Piskin
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,London Health Sciences Center, Lawson Health Research Institute, London, Ontario, Canada
| | - Sofia Torreggiani
- 1Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,UOC Pediatria a Media Intensità di Cura, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Lombardia, Italy
| | - Laura A Adang
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Thais Armangue
- Pediatric Neuroimmunology Unit, Neurology Service, Sant Joan de Deu Children's Hospital, and IDIBAPS-Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Kathe Barchus
- Autoinflammatory Alliance, San Francisco, California, USA
| | - Devon R Cordova
- Aicardi-Goutieres Syndrome Americas Association, Manhattan Beach, California, USA
| | - Yanick J Crow
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburg, Edinburg, UK.,Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Université de Paris, Paris, Île-de-France, France
| | - Russell C Dale
- Kids Neuroscience Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Karen L Durrant
- Autoinflammatory Alliance, San Francisco, California, USA.,Kaiser San Francisco Hospital, San Francisco, California, USA
| | - Despina Eleftheriou
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Elisa M Fazzi
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Sciences ASST Civil Hospital, University of Brescia, Brescia, Italy
| | - Marco Gattorno
- Center for Autoinflammatory diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesco Gavazzi
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eric P Hanson
- Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gina A Montealegre Sanchez
- Intramural Clinical Management and Operations Branch (ICMOB), Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Bénédicte Neven
- Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Institut Imagine Institut des Maladies Genetiques, Paris, Île-de-France, France
| | - Simona Orcesi
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Lombardia, Italy
| | - Seza Ozen
- Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - M Cecilia Poli
- Department of Pediatrics, Facultad de Medicina Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | | | - Davide Tonduti
- Child Neurology Unit, COALA (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milano, Italy
| | - Katsiaryna Uss
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Aletaha
- Department of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Brian M Feldman
- Division of Rheumatology, Hospital for Sick Children, Toronto, Ontario, Canada.,30Department of Pediatrics, Faculty of Medicine, University of Toronto Institute of Health Policy Management and Evaluation, Toronto, Ontario, Canada
| | - Adeline Vanderver
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul A Brogan
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
68
|
Shiozawa S, Tsumiyama K, Miyazaki Y, Uto K, Sakurai K, Nakashima T, Matsuyama H, Doi A, Tarui M, Izumikawa M, Kimura M, Fujita Y, Satonaka C, Horiuchi T, Matsubara T, Oribe M, Yamane T, Kagawa H, Li QZ, Mizuno K, Mukai Y, Murakami K, Enya T, Tsukimoto S, Hakata Y, Miyazawa M, Shiozawa K. DOCK8-expressing T follicular helper cells newly generated beyond self-organized criticality cause systemic lupus erythematosus. iScience 2022; 25:103537. [PMID: 34977502 PMCID: PMC8689056 DOI: 10.1016/j.isci.2021.103537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/01/2021] [Accepted: 11/24/2021] [Indexed: 11/24/2022] Open
Abstract
Pathogens including autoantigens all failed to induce systemic lupus erythematosus (SLE). We, instead, studied the integrity of host's immune response that recognized pathogen. By stimulating TCR with an antigen repeatedly to levels that surpass host's steady-state response, self-organized criticality, SLE was induced in mice normally not prone to autoimmunity, wherein T follicular helper (Tfh) cells expressing the guanine nucleotide exchange factor DOCK8 on the cell surface were newly generated. DOCK8+Tfh cells passed through TCR re-revision and induced varieties of autoantibody and lupus lesions. They existed in splenic red pulp and peripheral blood of active lupus patients, which subsequently declined after therapy. Autoantibodies and disease were healed by anti-DOCK8 antibody in the mice including SLE-model (NZBxNZW) F1 mice. Thus, DOCK8+Tfh cells generated after repeated TCR stimulation by immunogenic form of pathogen, either exogenous or endogenous, in combination with HLA to levels that surpass system's self-organized criticality, cause SLE. Autoimmunity seldom takes place under integrated steady-state immune response Repeated invasion by pathogen, such as measles virus, is not exceptional but routine in life DOCK8+Tfh is generated upon TCR overstimulation by pathogen beyond self-organized criticality Newly generated DOCK8+Tfh induces autoantibodies and SLE, i.e., autoimmunity
Collapse
Affiliation(s)
- Shunichi Shiozawa
- Institute for Rheumatic Diseases, 944-25 Fujita, Katoshi 673-1462, Japan.,Department of Medicine, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan.,Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan.,Department of Medicine, Rheumatology and Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25 Fujita, Katoshi 673-1462, Japan
| | - Ken Tsumiyama
- Institute for Rheumatic Diseases, 944-25 Fujita, Katoshi 673-1462, Japan.,Department of Medicine, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan.,Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan.,Department of Medicine, Rheumatology and Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25 Fujita, Katoshi 673-1462, Japan
| | - Yumi Miyazaki
- Department of Medicine, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan.,Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Kenichi Uto
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Keiichi Sakurai
- Institute for Rheumatic Diseases, 944-25 Fujita, Katoshi 673-1462, Japan.,Department of Medicine, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan
| | - Toshie Nakashima
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Hiroko Matsuyama
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Ai Doi
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Miho Tarui
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Manabu Izumikawa
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Mai Kimura
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Yuko Fujita
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Chisako Satonaka
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Takahiko Horiuchi
- Department of Medicine, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan
| | - Tsukasa Matsubara
- Department of Medicine, Rheumatology and Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25 Fujita, Katoshi 673-1462, Japan
| | - Motohiro Oribe
- Oribe Clinic, 1-8-15 Higashi-Odori, Oita 870-0823, Japan
| | - Takashi Yamane
- Department of Rheumatology, Kakogawa City Hospital, 439 Honmachi, Kakogawa 675-8611, Japan
| | - Hidetoshi Kagawa
- Department of Medicine, Red Cross Society Himeji Hospital, 1-12-1 Shimoteno, Himeji 670-8540, Japan
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, 6001 Forest Park Road/ND 6.504, Dallas, TX 75390-8814, USA
| | - Keiko Mizuno
- Drug Discovery Platform, KAN Research Institute, Inc., 6-8-2 Minatojimaminamicho, Kobe 650-0047, Japan
| | - Yohei Mukai
- Drug Discovery Platform, KAN Research Institute, Inc., 6-8-2 Minatojimaminamicho, Kobe 650-0047, Japan
| | - Kazuhiro Murakami
- Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsujima, Aobaku 981-8558, Japan
| | - Takuji Enya
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan.,Department of Pediatrics, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Shota Tsukimoto
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan.,Department of Anesthesiology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yoshiyuki Hakata
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masaaki Miyazawa
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan.,Kindai University Anti-Aging Center, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Kazuko Shiozawa
- Department of Medicine, Rheumatology and Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25 Fujita, Katoshi 673-1462, Japan.,Rheumatology and Collagen Disease Center, Hyogo Prefectural Kakogawa Medical Center, 203 Kanno, Kakogawa 675-8555, Japan
| |
Collapse
|
69
|
Ueha T, Kusuda M, Shibata S, Hirata M, Ozaki N. [Pharmacological actions of anifrolumab (Saphnelo ®) and clinical trial results as a treatment for systemic lupus erythematosus]. Nihon Yakurigaku Zasshi 2022; 157:271-279. [PMID: 35781459 DOI: 10.1254/fpj.22026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease which causes damaging inflammation in multiple organs via the accumulation of immune complexes. SLE pathogenesis is associated with type I interferons (IFNs), which are central and reflective of disease activity in SLE. Even before clinical development of disease, genetic and environmental contributions to IFN production lead to abnormal innate and adaptive immune activation. Through the Janus kinase-signal transducer and activator of transcription signaling pathway, IFN play a central role in the immunopathogenicity of SLE. Thus, IFN-blocking therapy may be used to regulate inflammation in individuals with SLE. Food and Drug Administration (FDA)-approved anifrolumab (Saphnelo®), which is a human IgG1κ monoclonal antibody that binds to subunit 1 of the type I interferon receptor with high specificity and affinity, was also approved for the treatment of adult patients with moderate to severe SLE who are receiving standard therapy by Pharmaceuticals and Medical Device Agency (PMDA), in Japan in September 2021; anifrolumab is administered as an intravenous infusion, 300 mg over a 30-minute period, every 4 weeks. In this article, we reviewed the actions of type I IFN and anifrolumab as a treatment for SLE.
Collapse
|
70
|
Tong JF, Zhou L, Li S, Lu LF, Li ZC, Li Z, Gan RH, Mou CY, Zhang QY, Wang ZW, Zhang XJ, Wang Y, Gui JF. Two Duplicated Ptpn6 Homeologs Cooperatively and Negatively Regulate RLR-Mediated IFN Response in Hexaploid Gibel Carp. Front Immunol 2021; 12:780667. [PMID: 34899743 PMCID: PMC8662705 DOI: 10.3389/fimmu.2021.780667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 01/28/2023] Open
Abstract
Src homology region 2 domain-containing phosphatase 1 (SHP1), encoded by the protein tyrosine phosphatase nonreceptor type 6 (ptpn6) gene, belongs to the family of protein tyrosine phosphatases (PTPs) and participates in multiple signaling pathways of immune cells. However, the mechanism of SHP1 in regulating fish immunity is largely unknown. In this study, we first identified two gibel carp (Carassius gibelio) ptpn6 homeologs (Cgptpn6-A and Cgptpn6-B), each of which had three alleles with high identities. Then, relative to Cgptpn6-B, dominant expression in adult tissues and higher upregulated expression of Cgptpn6-A induced by polyinosinic-polycytidylic acid (poly I:C), poly deoxyadenylic-deoxythymidylic (dA:dT) acid and spring viremia of carp virus (SVCV) were uncovered. Finally, we demonstrated that CgSHP1-A (encoded by the Cgptpn6-A gene) and CgSHP1-B (encoded by the Cgptpn6-B gene) act as negative regulators of the RIG-I-like receptor (RLR)-mediated interferon (IFN) response via two mechanisms: the inhibition of CaTBK1-induced phosphorylation of CaMITA shared by CgSHP1-A and CgSHP1-B, and the autophagic degradation of CaMITA exclusively by CgSHP1-A. Meanwhile, the data support that CgSHP1-A and CgSHP1-B have sub-functionalized and that CgSHP1-A overwhelmingly dominates CgSHP1-B in the process of RLR-mediated IFN response. The current study not only sheds light on the regulative mechanism of SHP1 in fish immunity, but also provides a typical case of duplicated gene evolutionary fates.
Collapse
Affiliation(s)
- Jin-Feng Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Shun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Long-Feng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo-Cong Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Rui-Hai Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Cheng-Yan Mou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
71
|
Mirashrafi S, Moravejolahkami AR, Balouch Zehi Z, Hojjati Kermani MA, Bahreini-Esfahani N, Haratian M, Ganjali Dashti M, Pourhossein M. The efficacy of probiotics on virus titres and antibody production in virus diseases: A systematic review on recent evidence for COVID-19 treatment. Clin Nutr ESPEN 2021; 46:1-8. [PMID: 34857182 PMCID: PMC8539817 DOI: 10.1016/j.clnesp.2021.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/14/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS There are some studies indicating the effects of probiotic-containing foods or supplements on viral diseases. We aimed to conduct a rapid review of probiotics with specific emphasis on their potential for early administration in patients at greater risk of SARS-CoV-2 infection. METHODS We searched on PubMed, EMBASE, Google Scholar, Science Direct, Scopus and Web of Science up to February 2021 to identify interventional and observational studies documenting the effects of probiotics strains on interleukins, virus titers, and antibody production with a focus on probiotic-containing foods (PROSPERO Registration ID. CRD42020181453) RESULTS: From a total of 163 records, 21 studies were classified into three domains based on the efficacy of probiotics on 1) the level of interleukins (n = 7), 2) virus titers (n = 2), and 3) interferon (IFN) and antibody production (n = 12). The suppuration of pro-inflammatory interleukins and type I INF production seemed to be the main anti-viral effect of probiotics. Nine studies also indicated the beneficial effects of probiotics and fermented foods on viral diseases. CONCLUSION Based on evidence, some probiotic strains may be useful in viral infections; randomized trials are needed to confirm these findings.
Collapse
Affiliation(s)
- Shahrzad Mirashrafi
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Reza Moravejolahkami
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran,Corresponding author. Department of Clinical Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Hezar-Jerib Ave, Isfahan, Iran. P.O. Box 81746-73461. Fax: +98(31)36681378
| | - Zakiyeh Balouch Zehi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ali Hojjati Kermani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nimah Bahreini-Esfahani
- Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Haratian
- Department of Nutrition, Vice Chancellor of Health, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Marjan Ganjali Dashti
- Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX, USA
| | - Meraj Pourhossein
- Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran,Corresponding author. Department of Food Science and Technology, Food Security Research Center, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Hezar-Jerib Ave, Isfahan, Iran. P.O. Box 81746-73461. Fax: +1 519 721. 7430
| |
Collapse
|
72
|
Coordination of retrotransposons and type I interferon with distinct interferon pathways in dermatomyositis, systemic lupus erythematosus and autoimmune blistering disease. Sci Rep 2021; 11:23146. [PMID: 34848794 PMCID: PMC8632942 DOI: 10.1038/s41598-021-02522-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/18/2021] [Indexed: 01/05/2023] Open
Abstract
Type I interferon (IFN) plays a crucial role in innate and adaptive immunity, and aberrant IFN responses are involved in systemic autoimmune diseases, such as systemic lupus erythematosus (SLE) and dermatomyositis (DM). Type I IFNs can be induced by transcribed retrotransposons. The regulation of retrotransposons and type I IFN and the downstream IFN pathways in SLE, DM, and autoimmune blistering disease (AIBD) were investigated. The gene expression levels of retrotransposons, including LINE-1, type I-III IFNs, and IFN-stimulated genes (ISGs) in peripheral blood cells from patients with DM (n = 24), SLE (n = 19), AIBD (n = 14) and healthy controls (HCs, n = 10) were assessed by quantitative polymerase chain reaction. Upregulation of retrotransposons and IFNs was detected in DM patient samples, as is characteristic, compared to HCs; however, ISGs were not uniformly upregulated. In contrast, retrotransposons and IFNs, except for type II IFN, such as IFN-γ, were not upregulated in SLE. In AIBD, only some retrotransposons and type I interferons were upregulated. The DM, SLE, and AIBD samples showed coordinated expression of retrotransposons and type I IFNs and distinct spectra of IFN signaling. A positive correlation between LINE-1 and IFN-β1 was also detected in human cell lines. These factors may participate in the development of these autoimmune diseases.
Collapse
|
73
|
Vakilian M. A review on the effect of prolyl isomerization on immune response aberration and hypersensitivity reactions: A unifying hypothesis. Clin Immunol 2021; 234:108896. [PMID: 34848356 DOI: 10.1016/j.clim.2021.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 12/01/2022]
Abstract
Little is known about the causes and mechanisms of ectopic immune responses, including different types of hypersensitivity, superantigens, and cytokine storms. Two of the most questionable phenomena observed in immunology are why the intensity and extent of immune responses to different antigens are different, and why some self-antigens are attacked as foreign. The secondary structure of the peptides involved in the immune system, such as the epitope-paratope interfaces plays a pivotal role in the resulting immune responses. Prolyl cis/trans isomerization plays a fundamental role in the form of the secondary structure and the folding of proteins. This review covers some of the emerging evidence indicating the impact of prolyl isomerization on protein conformation, aberration of immune responses, and the development of hypersensitivity reactions.
Collapse
Affiliation(s)
- Mehrdad Vakilian
- Department of Cell Biology, Genetics and Physiology, University of Malaga (UMA), The Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain.
| |
Collapse
|
74
|
Shemesh M, Lochte S, Piehler J, Schreiber G. IFNAR1 and IFNAR2 play distinct roles in initiating type I interferon-induced JAK-STAT signaling and activating STATs. Sci Signal 2021; 14:eabe4627. [PMID: 34813358 DOI: 10.1126/scisignal.abe4627] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Maya Shemesh
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sara Lochte
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
75
|
Singh RP, Hahn BH, Bischoff DS. Interferon Genes Are Influenced by 17β-Estradiol in SLE. Front Immunol 2021; 12:725325. [PMID: 34733276 PMCID: PMC8558410 DOI: 10.3389/fimmu.2021.725325] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/20/2021] [Indexed: 12/23/2022] Open
Abstract
Recent evidence suggests the existence of a nexus between inflammatory pathways and the female sex hormone 17β-estradiol, resulting in increased interferon-stimulated genes (ISGs), autoantibodies, and dysregulation of immune cells in SLE. However, the molecular mechanisms and the effect of estradiol on candidate target genes and their pathways remains poorly understood. Our previous work suggests that female SLE patients have increased estradiol levels compared to healthy controls. In the present study, we explored the effects of 17β-estradiol treatment on expression of IFN (interferons)-stimulated genes and pro-inflammatory cytokines/chemokines. We found significantly increased (5-10-fold) expression of IFN-regulated genes in healthy females. Furthermore, we found significantly increased plasma levels of IL-6, IL-12, IL-17, IL-18, stem cell factor (SCF), and IL-21/IL-23 in SLE patients compared to healthy controls, and those levels positively correlated with the plasma levels of 17β-estradiol. In addition, levels of IL-21 positively correlated with the SLE disease activity index (SLEDAI) score of SLE patients. In vitro treatment of PBMCs from either SLE patients or healthy controls with 17β-estradiol at physiological concentration (~50 pg/ml) also significantly increased secretion of many pro-inflammatory cytokines and chemokines (IL-6, IL-12, IL-17, IL-8, IFN-γ; MIP1α, and MIP1β) in both groups. Further our data revealed that 17β-estradiol significantly increased the percentage of CD3+CD69+ and CD3+IFNγ+ T cells; whereas, simultaneous addition of 17β-estradiol and an ERα inhibitor prevented this effect. Collectively, our findings indicate that 17β-estradiol participates in the induction of pro-inflammatory cytokines and chemokines and further influences interferon genes and pathways.
Collapse
Affiliation(s)
- Ram P Singh
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bevra H Hahn
- Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - David S Bischoff
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
76
|
Rahman MA, Islam MS. Early approval of COVID-19 vaccines: Pros and cons. Hum Vaccin Immunother 2021; 17:3288-3296. [PMID: 34283001 PMCID: PMC8437465 DOI: 10.1080/21645515.2021.1944742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/25/2021] [Accepted: 06/13/2021] [Indexed: 02/08/2023] Open
Abstract
The development of safe and effective vaccines has been an overriding priority for controlling the 2019-coronavirus disease (COVID-19) pandemic. From the onset, COVID-19 has caused high mortality and economic losses and yet has also offered an opportunity to advance novel therapeutics such as DNA and mRNA vaccines. Although it is hoped that the swift acceptance of such vaccines will prevent loss of life, rejuvenate economies and restore normal life, there could also be significant pitfalls. This perspective provides an overview of future directions and challenges in advancing promising vaccine platforms to widespread therapeutic use.
Collapse
Affiliation(s)
- Md Arifur Rahman
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Division of Virology, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Md Sayeedul Islam
- Department of Biological Sciences, Graduate School of Science, Osaka University, Japan
| |
Collapse
|
77
|
Hayran Y, Allı N, Akpınar Ü, Öktem A, Yücel Ç, Fırat Oguz E, Turhan T. Serum galectin-3 levels in patients with psoriasis. Int J Clin Pract 2021; 75:e14545. [PMID: 34137138 DOI: 10.1111/ijcp.14545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Galectin-3 is a β-galactoside-binding lectin associated with cellular proliferation, inflammation and angiogenesis, which are the major characteristics of psoriatic skin. OBJECTIVES To investigate serum galectin-3 levels in psoriasis patients compared with healthy controls and to study its relationship with disease characteristics. METHODS Seventy-eight patients diagnosed with psoriasis and 78 age- and sex-matched healthy volunteers were included in the study. Serum galectin-3, IL-17, IL-6 and TNF-α levels were measured using Enzyme-linked immunosorbent assay (ELISA). RESULTS Serum Galectin-3, IL-17, IL-6 and TNF-α levels were significantly higher in psoriasis patients compared with control group (P < .001, P = .003, P < .001 and P < .001, respectively). A cut-off value of 10 ng/mL for galectin-3 was set after receiver operating characteristic analysis. A serum galectin-3 level >10 ng/mL increased the risk of psoriasis by 14.5 times (95% CI: 6.6-32.3, P < .001) and a serum galectin-3 level >10 ng/mL predicted psoriasis with 83.3% sensitivity and 74.3% specificity. No statistically significant association was observed between serum galectin-3 concentrations and disease characteristics including disease severity, presence of psoriatic arthritis, nail involvement and psoriatic comorbidity. No statistically significant correlation was observed between serum galectin-3 level and serum IL-17, IL-6 and TNF-α levels (all three P values > .05). CONCLUSIONS Elevated serum galectin-3 levels in psoriasis patients may indicate a possible role of galectin-3 in pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Yıldız Hayran
- Department of Dermatology, Ankara City Hospital, Ankara, Turkey
| | - Nuran Allı
- Department of Dermatology, Ankara City Hospital, Ankara, Turkey
| | - Ümit Akpınar
- Department of Dermatology, Ankara City Hospital, Ankara, Turkey
| | - Ayşe Öktem
- Department of Dermatology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Çiğdem Yücel
- Department of Medical Biochemistry, University of Health Sciences, Gulhane Teaching and Research Hospital, Ankara, Turkey
| | - Esra Fırat Oguz
- Department of Medical Biochemistry, Ankara City Hospital, Ankara, Turkey
| | - Turan Turhan
- Department of Medical Biochemistry, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
78
|
Yamamoto K, Kondo Y, Ohnishi S, Yoshida M, Sugiyama T, Sakamoto N. The TLR4-TRIF-type 1 IFN-IFN-γ pathway is crucial for gastric MALT lymphoma formation after Helicobacter suis infection. iScience 2021; 24:103064. [PMID: 34585114 PMCID: PMC8450267 DOI: 10.1016/j.isci.2021.103064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/20/2021] [Accepted: 08/26/2021] [Indexed: 01/12/2023] Open
Abstract
Helicobacter suis, a zoonotic infection-related bacterium, can induce gastric mucosa-associated lymphoid tissue (MALT) lymphoma in humans and animals. Recently, we reported that the formation of gastric MALT lymphoma after H. suis infection is induced by interferon (IFN)-γ activation. Here, we revealed that activation of the Toll-like receptor (TLR) 4–Toll/IL-1 receptor domain-containing adapter-inducing interferon-β (TRIF) pathway after H. suis infection is associated with the production of type 1 IFNs (IFN-α, IFN-β) by gastric epithelial cells. Additionally, these type 1 IFNs interact with type 1 IFN receptors on gastric B cells, facilitating the secretion of IFN-γ and the activation of which is enhanced by positive feedback regulation in B cells. These results suggest that the TLR4–TRIF-type 1 IFN–IFN-γ pathway is crucial in the development of gastric MALT lymphoma after H. suis infection and may, therefore, represent a therapeutic target for the prevention of this condition. H. suis MPLA causes type 1 IFN production in the stomach via TLR4–TRIF signaling The interaction between type 1 IFNs and IFNAR on B cells causes IFN-γ production Interaction of IFN-γ and IFNGR on B cells causes IFN-γ positive feedback regulation IFN-γ from gastric B cells induces gastric lymphoid follicles after H. suis infection
Collapse
Affiliation(s)
- Koji Yamamoto
- Research Division of Molecular Targeting Therapy and Prevention of GI Cancer, Hokkaido University Hospital, Sapporo, Hokkaido 060-8638, Japan.,Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Yasuyuki Kondo
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Shunsuke Ohnishi
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Masaru Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.,Division of Metabolomics Research, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Toshiro Sugiyama
- Research Division of Molecular Targeting Therapy and Prevention of GI Cancer, Hokkaido University Hospital, Sapporo, Hokkaido 060-8638, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| |
Collapse
|
79
|
Movassaghi M, Chung R, Anderson CB, Stein M, Saenger Y, Faiena I. Overcoming Immune Resistance in Prostate Cancer: Challenges and Advances. Cancers (Basel) 2021; 13:cancers13194757. [PMID: 34638243 PMCID: PMC8507531 DOI: 10.3390/cancers13194757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Immunotherapy has changed the landscape of treatment modalities available for many different types of malignancies. However, the factors that influence the success of immunotherapeutics have not been as clearly seen in advanced prostate cancer, likely due to immunosuppressive factors that exist within the prostate cancer tumor microenvironment. While there have been many immunotherapeutics used for prostate cancer, the majority have targeted a single immunosuppressive mechanism resulting in limited clinical efficacy. More recent research centered on elucidating the key mechanisms of immune resistance in the prostate tumor microenvironment has led to the discovery of a range of new treatment targets. With that in mind, many clinical trials have now set out to evaluate combination immunotherapeutic strategies in patients with advanced prostate cancer, in the hopes of circumventing the immunosuppressive mechanisms. Abstract The use of immunotherapy has become a critical treatment modality in many advanced cancers. However, immunotherapy in prostate cancer has not been met with similar success. Multiple interrelated mechanisms, such as low tumor mutational burden, immunosuppressive cells, and impaired cellular immunity, appear to subvert the immune system, creating an immunosuppressive tumor microenvironment and leading to lower treatment efficacy in advanced prostate cancer. The lethality of metastatic castrate-resistant prostate cancer is driven by the lack of therapeutic regimens capable of generating durable responses. Multiple strategies are currently being tested to overcome immune resistance including combining various classes of treatment modalities. Several completed and ongoing trials have shown that combining vaccines or checkpoint inhibitors with hormonal therapy, radiotherapy, antibody–drug conjugates, chimeric antigen receptor T cell therapy, or chemotherapy may enhance immune responses and induce long-lasting clinical responses without significant toxicity. Here, we review the current state of immunotherapy for prostate cancer, as well as tumor-specific mechanisms underlying therapeutic resistance, with a comprehensive look at the current preclinical and clinical immunotherapeutic strategies aimed at overcoming the immunosuppressive tumor microenvironment and impaired cellular immunity that have largely limited the utility of immunotherapy in advanced prostate cancer.
Collapse
Affiliation(s)
- Miyad Movassaghi
- Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA; (R.C.); (C.B.A.)
- Correspondence: (M.M.); (I.F.)
| | - Rainjade Chung
- Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA; (R.C.); (C.B.A.)
| | - Christopher B. Anderson
- Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA; (R.C.); (C.B.A.)
| | - Mark Stein
- Department of Medicine, Division of Medical Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (Y.S.)
| | - Yvonne Saenger
- Department of Medicine, Division of Medical Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (Y.S.)
| | - Izak Faiena
- Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA; (R.C.); (C.B.A.)
- Correspondence: (M.M.); (I.F.)
| |
Collapse
|
80
|
Zhang W, An EK, Hwang J, Jin JO. Mice Plasmacytoid Dendritic Cells Were Activated by Lipopolysaccharides Through Toll-Like Receptor 4/Myeloid Differentiation Factor 2. Front Immunol 2021; 12:727161. [PMID: 34603298 PMCID: PMC8481683 DOI: 10.3389/fimmu.2021.727161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/02/2021] [Indexed: 11/29/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are known to respond to viral infections. However, the activation of pDCs by bacterial components such as lipopolysaccharides (LPS) has not been well studied. Here, we found that pDCs, conventional dendritic cells (cDCs), and B cells express high levels of toll-like receptor 4 (TLR4), a receptor for LPS. Moreover, LPS could effectively bind to not only cDCs but also pDCs and B cells. Intraperitoneal administration of LPS promoted activation of splenic pDCs and cDCs. LPS treatment led to upregulation of interferon regulatory factor 7 (IRF7) and induced production of interferon-alpha (IFN-α) in splenic pDCs. Furthermore, LPS-dependent upregulation of co-stimulatory molecules in pDCs did not require the assistance of other immune cells, such as cDCs. However, the production levels of IFN-α were decreased in cDC-depleted splenocytes, indicating that cDCs may contribute to the enhancement of IFN-α production in pDCs. Finally, we showed that activation of pDCs by LPS requires the TLR4 and myeloid differentiation factor 2 (MD2) signaling pathways. Thus, these results demonstrate that the gram-negative component LPS can directly stimulate pDCs via TLR4/MD2 stimulation in mice.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Eun-Koung An
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
81
|
Wang TY, Sun MX, Zhang HL, Wang G, Zhan G, Tian ZJ, Cai XH, Su C, Tang YD. Evasion of Antiviral Innate Immunity by Porcine Reproductive and Respiratory Syndrome Virus. Front Microbiol 2021; 12:693799. [PMID: 34512570 PMCID: PMC8430839 DOI: 10.3389/fmicb.2021.693799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Innate immunity is the front line for antiviral immune responses and bridges adaptive immunity against viral infections. However, various viruses have evolved many strategies to evade host innate immunity. A typical virus is the porcine reproductive and respiratory syndrome virus (PRRSV), one of the most globally devastating viruses threatening the swine industry worldwide. PRRSV engages several strategies to evade the porcine innate immune responses. This review focus on the underlying mechanisms employed by PRRSV to evade pattern recognition receptors signaling pathways, type I interferon (IFN-α/β) receptor (IFNAR)-JAK-STAT signaling pathway, and interferon-stimulated genes. Deciphering the antiviral immune evasion mechanisms by PRRSV will enhance our understanding of PRRSV’s pathogenesis and help us to develop more effective methods to control and eliminate PRRSV.
Collapse
Affiliation(s)
- Tong-Yun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ming-Xia Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hong-Liang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guoqing Zhan
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Infectious Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chenhe Su
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
82
|
Bruce WJ, Koljonen JL, Romanelli MR, Khan AU, Neumeister MW. Adjuvant and Neoadjuvant Therapeutics for the Treatment of Cutaneous Melanoma. Clin Plast Surg 2021; 48:651-658. [PMID: 34503725 DOI: 10.1016/j.cps.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adjuvant therapy plays an integral role in the treatment algorithm for stage III and stage IV cutaneous melanoma. Current ongoing clinical trials are exploring the effects of neoadjuvant therapeutics, specifically for the presurgical treatment of high-risk, borderline resectable disease. In both the adjuvant and neoadjuvant settings, the early chemotherapeutic and biochemical antitumor agents are making way to newer immune therapies, mutation-specific targeted therapies, and oncolytic vaccines that are transforming the treatment of malignant melanoma. The use of these systemic therapies in addition to surgical resection has been shown to increase both overall and progression-free survival.
Collapse
Affiliation(s)
- William J Bruce
- Institute for Plastic Surgery, Southern Illinois University School of Medicine, 747 North Rutledge Street #3, Springfield, IL 62702, USA
| | - Jessie L Koljonen
- Institute for Plastic Surgery, Southern Illinois University School of Medicine, 747 North Rutledge Street #3, Springfield, IL 62702, USA
| | - Michael R Romanelli
- Institute for Plastic Surgery, Southern Illinois University School of Medicine, 747 North Rutledge Street #3, Springfield, IL 62702, USA
| | - Aziz U Khan
- Division of Hematology/Oncology, Department of Internal Medicine, Southern Illinois University School of Medicine, 315 West Carpenter Street, Springfield, IL 62702, USA
| | - Michael W Neumeister
- Institute for Plastic Surgery, Southern Illinois University School of Medicine, P.O. Box 19653, Springfield, IL 62794-9653, USA.
| |
Collapse
|
83
|
Hassan AS, Hare J, Gounder K, Nazziwa J, Karlson S, Olsson L, Streatfield C, Kamali A, Karita E, Kilembe W, Price MA, Borrow P, Björkman P, Kaleebu P, Allen S, Hunter E, Ndung'u T, Gilmour J, Rowland-Jones S, Esbjörnsson J, Sanders EJ. A Stronger Innate Immune Response During Hyperacute Human Immunodeficiency Virus Type 1 (HIV-1) Infection Is Associated With Acute Retroviral Syndrome. Clin Infect Dis 2021; 73:832-841. [PMID: 33588436 PMCID: PMC8423478 DOI: 10.1093/cid/ciab139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Acute retroviral syndrome (ARS) is associated with human immunodeficiency virus type 1 (HIV-1) subtype and disease progression, but the underlying immunopathological pathways are poorly understood. We aimed to elucidate associations between innate immune responses during hyperacute HIV-1 infection (hAHI) and ARS. METHODS Plasma samples obtained from volunteers (≥18.0 years) before and during hAHI, defined as HIV-1 antibody negative and RNA or p24 antigen positive, from Kenya, Rwanda, Uganda, Zambia, and Sweden were analyzed. Forty soluble innate immune markers were measured using multiplexed assays. Immune responses were differentiated into volunteers with stronger and comparatively weaker responses using principal component analysis. Presence or absence of ARS was defined based on 11 symptoms using latent class analysis. Logistic regression was used to determine associations between immune responses and ARS. RESULTS Of 55 volunteers, 31 (56%) had ARS. Volunteers with stronger immune responses (n = 36 [65%]) had increased odds of ARS which was independent of HIV-1 subtype, age, and risk group (adjusted odds ratio, 7.1 [95% confidence interval {CI}: 1.7-28.8], P = .003). Interferon gamma-induced protein (IP)-10 was 14-fold higher during hAHI, elevated in 7 of the 11 symptoms and independently associated with ARS. IP-10 threshold >466.0 pg/mL differentiated stronger immune responses with a sensitivity of 84.2% (95% CI: 60.4-96.6) and specificity of 100.0% (95% CI]: 90.3-100.0). CONCLUSIONS A stronger innate immune response during hAHI was associated with ARS. Plasma IP-10 may be a candidate biomarker of stronger innate immunity. Our findings provide further insights on innate immune responses in regulating ARS and may inform the design of vaccine candidates harnessing innate immunity.
Collapse
Affiliation(s)
- Amin S Hassan
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya.,Department of Translational Medicine, Lund University, Sweden
| | - Jonathan Hare
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom.,IAVI, New York, New York, USA, and Nairobi, Kenya
| | - Kamini Gounder
- Africa Health Research Institute, Durban, South Africa.,HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Jamirah Nazziwa
- Department of Translational Medicine, Lund University, Sweden
| | - Sara Karlson
- Department of Translational Medicine, Lund University, Sweden
| | - Linnéa Olsson
- Department of Internal Medicine, Helsingborg Hospital, Helsingborg, Sweden
| | | | | | - Etienne Karita
- Rwanda/Zambia HIV Research Group, Kigali, Rwanda and Lusaka, Zambia
| | - William Kilembe
- Rwanda/Zambia HIV Research Group, Kigali, Rwanda and Lusaka, Zambia
| | - Matt A Price
- IAVI, New York, New York, USA, and Nairobi, Kenya.,UCSF Department of Epidemiology and Biostatistics, San Francisco,California, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Per Björkman
- Department of Translational Medicine, Lund University, Sweden
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute, Uganda, and London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Susan Allen
- Rwanda/Zambia HIV Research Group, Kigali, Rwanda and Lusaka, Zambia.,Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Eric Hunter
- Rwanda/Zambia HIV Research Group, Kigali, Rwanda and Lusaka, Zambia.,Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Thumbi Ndung'u
- Africa Health Research Institute, Durban, South Africa.,HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Max Planck Institute for Infection Biology, Berlin, Germany.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA.,Division of Infection and Immunity, University College London, London, United Kingdom
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Sarah Rowland-Jones
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Joakim Esbjörnsson
- Department of Translational Medicine, Lund University, Sweden.,Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Eduard J Sanders
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya.,Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
84
|
Verdecia M, Kokai-Kun JF, Kibbey M, Acharya S, Venema J, Atouf F. COVID-19 vaccine platforms: Delivering on a promise? Hum Vaccin Immunother 2021; 17:2873-2893. [PMID: 34033528 PMCID: PMC8381795 DOI: 10.1080/21645515.2021.1911204] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of the novel SARS-CoV-2 and COVID-19 has brought into sharp focus the need for a vaccine to prevent this disease. Vaccines have saved millions of lives since their introduction to the public over 200 years ago. The potential for vaccination reached new heights in the mid-20th century with the development of technologies that expanded the ability to create novel vaccines. Since then, there has been continued technological advancement in vaccine development. The resulting platforms provide the promise for solutions for many infectious diseases, including those that have been with us for decades as well as those just now emerging. Each vaccine platform represents a different technology with a unique set of advantages and challenges, especially when considering manufacturing. Therefore, it is essential to understand each platform as a separate product and process with its specific quality considerations. This review outlines the relevant platforms for developing a vaccine for SARS-CoV-2 and discusses the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Mark Verdecia
- United States Pharmacopeial Convention, Rockville, MD, USA
| | | | - Maura Kibbey
- United States Pharmacopeial Convention, Rockville, MD, USA
| | - Sarita Acharya
- United States Pharmacopeial Convention, Rockville, MD, USA
| | - Jaap Venema
- United States Pharmacopeial Convention, Rockville, MD, USA
| | - Fouad Atouf
- United States Pharmacopeial Convention, Rockville, MD, USA
| |
Collapse
|
85
|
Provance OK, Geanes ES, Lui AJ, Roy A, Holloran SM, Gunewardena S, Hagan CR, Weir S, Lewis-Wambi J. Disrupting interferon-alpha and NF-kappaB crosstalk suppresses IFITM1 expression attenuating triple-negative breast cancer progression. Cancer Lett 2021; 514:12-29. [PMID: 34022283 PMCID: PMC8221017 DOI: 10.1016/j.canlet.2021.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/20/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
Overexpression of interferon induced transmembrane protein-1 (IFITM1) enhances tumor progression in multiple cancers, but its role in triple-negative breast cancer (TNBC) is unknown. Here, we explore the functional significance and regulation of IFITM1 in TNBC and strategies to target its expression. Immunohistochemistry staining of a tissue microarray demonstrates that IFITM1 is overexpressed in TNBC samples which is confirmed by TCGA analysis. Targeting IFITM1 by siRNA or CRISPR/Cas9 in TNBC cell lines significantly inhibits proliferation, colony formation, and wound healing in vitro. Orthotopic mammary fat pad and mammary intraductal studies reveal that loss of IFITM1 reduces TNBC tumor growth and invasion in vivo. RNA-seq analysis of IFITM1/KO cells reveals significant downregulation of several genes involved in proliferation, migration, and invasion and functional studies identified NF-κB as an important downstream target of IFITM1. Notably, siRNA knockdown of p65 reduces IFITM1 expression and a drug-repurposing screen of FDA approved compounds identified parthenolide, an NFκB inhibitor, as a cytotoxic agent for TNBC and an inhibitor of IFITM1 in vitro and in vivo. Overall, our findings suggest that targeting IFITM1 by suppressing interferon-alpha/NFκB signaling represents a novel therapeutic strategy for TNBC treatment.
Collapse
Affiliation(s)
- Olivia K Provance
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Eric S Geanes
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Asona J Lui
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Anuradha Roy
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA; High Throughput Screening Laboratory, University of Kansas, Lawrence, KS, 66049, USA
| | - Sean M Holloran
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Biochemistry, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Christy R Hagan
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Biochemistry, University of Kansas Medical Center, Kansas City, KS, 66160, USA; The University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Scott Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA; The University of Kansas Cancer Center, Kansas City, KS, 66160, USA; The Institute for Advancing Medical Innovation, Kansas City, KS, 66160, USA
| | - Joan Lewis-Wambi
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA; The University of Kansas Cancer Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
86
|
Ding M, Malhotra R, Ottosson T, Lundqvist M, Mebrahtu A, Brengdahl J, Gehrmann U, Bäck E, Ross-Thriepland D, Isaksson I, Magnusson B, Sachsenmeier KF, Tegel H, Hober S, Uhlén M, Mayr LM, Davies R, Rockberg J, Schiavone LH. Secretome screening reveals immunomodulating functions of IFNα-7, PAP and GDF-7 on regulatory T-cells. Sci Rep 2021; 11:16767. [PMID: 34408239 PMCID: PMC8373891 DOI: 10.1038/s41598-021-96184-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Regulatory T cells (Tregs) are the key cells regulating peripheral autoreactive T lymphocytes. Tregs exert their function by suppressing effector T cells. Tregs have been shown to play essential roles in the control of a variety of physiological and pathological immune responses. However, Tregs are unstable and can lose the expression of FOXP3 and suppressive functions as a consequence of outer stimuli. Available literature suggests that secreted proteins regulate Treg functional states, such as differentiation, proliferation and suppressive function. Identification of secreted proteins that affect Treg cell function are highly interesting for both therapeutic and diagnostic purposes in either hyperactive or immunosuppressed populations. Here, we report a phenotypic screening of a human secretome library in human Treg cells utilising a high throughput flow cytometry technology. Screening a library of 575 secreted proteins allowed us to identify proteins stabilising or destabilising the Treg phenotype as suggested by changes in expression of Treg marker proteins FOXP3 and/or CTLA4. Four proteins including GDF-7, IL-10, PAP and IFNα-7 were identified as positive regulators that increased FOXP3 and/or CTLA4 expression. PAP is a phosphatase. A catalytic-dead version of the protein did not induce an increase in FOXP3 expression. Ten interferon proteins were identified as negative regulators that reduced the expression of both CTLA4 and FOXP3, without affecting cell viability. A transcriptomics analysis supported the differential effect on Tregs of IFNα-7 versus other IFNα proteins, indicating differences in JAK/STAT signaling. A conformational model experiment confirmed a tenfold reduction in IFNAR-mediated ISG transcription for IFNα-7 compared to IFNα-10. This further strengthened the theory of a shift in downstream messaging upon external stimulation. As a summary, we have identified four positive regulators of FOXP3 and/or CTLA4 expression. Further exploration of these Treg modulators and their method of action has the potential to aid the discovery of novel therapies for both autoimmune and infectious diseases as well as for cancer.
Collapse
Affiliation(s)
- Mei Ding
- grid.418151.80000 0001 1519 6403Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rajneesh Malhotra
- grid.418151.80000 0001 1519 6403Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Tomas Ottosson
- grid.418151.80000 0001 1519 6403Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Magnus Lundqvist
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Aman Mebrahtu
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Johan Brengdahl
- grid.418151.80000 0001 1519 6403Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ulf Gehrmann
- grid.418151.80000 0001 1519 6403Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elisabeth Bäck
- grid.418151.80000 0001 1519 6403Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Douglas Ross-Thriepland
- grid.417815.e0000 0004 5929 4381Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ida Isaksson
- grid.418151.80000 0001 1519 6403Sample Management, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Björn Magnusson
- grid.418151.80000 0001 1519 6403Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Hanna Tegel
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Sophia Hober
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlén
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Lorenz M. Mayr
- grid.417815.e0000 0004 5929 4381Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Rick Davies
- grid.417815.e0000 0004 5929 4381Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Johan Rockberg
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Lovisa Holmberg Schiavone
- grid.418151.80000 0001 1519 6403Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
87
|
Klein B, Günther C. Type I Interferon Induction in Cutaneous DNA Damage Syndromes. Front Immunol 2021; 12:715723. [PMID: 34381458 PMCID: PMC8351592 DOI: 10.3389/fimmu.2021.715723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
Type I interferons (IFNs) as part of the innate immune system have an outstanding importance as antiviral defense cytokines that stimulate innate and adaptive immune responses. Upon sensing of pattern recognition particles (PRPs) such as nucleic acids, IFN secretion is activated and induces the expression of interferon stimulated genes (ISGs). Uncontrolled constitutive activation of the type I IFN system can lead to autoinflammation and autoimmunity, which is observed in autoimmune disorders such as systemic lupus erythematodes and in monogenic interferonopathies. They are caused by mutations in genes which are involved in sensing or metabolism of intracellular nucleic acids and DNA repair. Many authors described mechanisms of type I IFN secretion upon increased DNA damage, including the formation of micronuclei, cytosolic chromatin fragments and destabilization of DNA binding proteins. Hereditary cutaneous DNA damage syndromes, which are caused by mutations in proteins of the DNA repair, share laboratory and clinical features also seen in autoimmune disorders and interferonopathies; hence a potential role of DNA-damage-induced type I IFN secretion seems likely. Here, we aim to summarize possible mechanisms of IFN induction in cutaneous DNA damage syndromes with defects in the DNA double-strand repair and nucleotide excision repair. We review recent publications referring to Ataxia teleangiectasia, Bloom syndrome, Rothmund–Thomson syndrome, Werner syndrome, Huriez syndrome, and Xeroderma pigmentosum. Furthermore, we aim to discuss the role of type I IFN in cancer and these syndromes.
Collapse
Affiliation(s)
- Benjamin Klein
- Department of Dermatology, Venereology and Allergology, University Medicine Leipzig, Leipzig, Germany
| | - Claudia Günther
- Department of Dermatology, University Hospital and Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
88
|
Saikh KU, Ranji CM. Cells Stimulated with More Than One Toll-Like Receptor-Ligand in the Presence of a MyD88 Inhibitor Augmented Interferon- β via MyD88-Independent Signaling Pathway. Viral Immunol 2021; 34:646-652. [PMID: 34287077 DOI: 10.1089/vim.2021.0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Host exposure to pathogens engage multiple pathogen recognition receptors (PRRs) including toll-like receptors (TLRs); recruit intracellular signaling adaptor proteins primarily myeloid differentiation primary response protein 88 (MyD88) for activating downstream signaling cascades, which culminate in the production of type I interferons (IFNs), proinflammatory cytokines, and chemokines; and impede pathogen replication and dissemination. However, recent studies highlight that absence of MyD88 increased antiviral type I IFN induction, and MyD88-/- mice showed a higher survival rate compared with the low survival rate of the MyD88+/+ mice, implicating MyD88 limits antiviral type I IFN response. As a single infectious agent may harbor multiple PRR agonists, which trigger different sets of TLR-initiated immune signaling, we examined whether MyD88 inhibition during stimulation of cells with more than one TLR-ligand would augment type I IFN. We stimulated human U87- and TLR3-transfected HEK293-TLR7 cells with TLR-ligands, such as lipopolysaccharides (LPS) (TLR4-ligand) plus poly I:C (TLR3-ligand) or imiquimod (R837, TLR7-ligand) plus poly I:C, in the presence of compound 4210, a previously reported MyD88 inhibitor, and measured IFN-β response using an enzyme-linked immunosorbent assay. Our results showed that when U87- or TLR3-transfected HEK293-TLR7 cells were stimulated with TLR-ligands, such as poly I:C plus LPS or poly I:C plus R837, IFN-β production was significantly increased with MyD88 inhibition in a dose-dependent manner. Collectively, these results indicate that during more than one TLR-ligand-induced immune signaling event, impairment of antiviral type I IFN response was restored by inhibition of MyD88 through MyD88-independent pathway of type I IFN signaling, thus, offer a MyD88-targeted approach for type I IFN induction.
Collapse
Affiliation(s)
- Kamal U Saikh
- Department of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Cyra M Ranji
- Department of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| |
Collapse
|
89
|
Imgenberg-Kreuz J, Sandling JK, Norheim KB, Johnsen SJA, Omdal R, Syvänen AC, Svenungsson E, Rönnblom L, Eloranta ML, Nordmark G. DNA Methylation-Based Interferon Scores Associate With Sub-Phenotypes in Primary Sjögren's Syndrome. Front Immunol 2021; 12:702037. [PMID: 34335613 PMCID: PMC8322981 DOI: 10.3389/fimmu.2021.702037] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 11/15/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune inflammatory disease with profound clinical heterogeneity, where excessive activation of the type I interferon (IFN) system is considered one of the key mechanisms in disease pathogenesis. Here we present a DNA methylation-based IFN system activation score (DNAm IFN score) and investigate its potential associations with sub-phenotypes of pSS. The study comprised 100 Swedish patients with pSS and 587 Swedish controls. For replication, 48 patients with pSS from Stavanger, Norway, were included. IFN scores were calculated from DNA methylation levels at the IFN-induced genes RSAD2, IFIT1 and IFI44L. A high DNAm IFN score, defined as > meancontrols +2SDcontrols (IFN score >4.4), was observed in 59% of pSS patients and in 4% of controls (p=1.3x10-35). Patients with a high DNAm IFN score were on average seven years younger at symptom onset (p=0.017) and at diagnosis (p=3x10-3). The DNAm IFN score levels were significantly higher in pSS positive for both SSA and SSB antibodies compared to SSA/SSB negative patients (pdiscovery=1.9x10-8, preplication=7.8x10-4). In patients positive for both SSA subtypes Ro52 and Ro60, an increased score was identified compared to single positive patients (p=0.022). Analyzing the discovery and replication cohorts together, elevated DNAm IFN scores were observed in pSS with hypergammaglobulinemia (p=2x10-8) and low C4 (p=1.5x10-3) compared to patients without these manifestations. Patients < 70 years with ongoing lymphoma at DNA sampling or lymphoma at follow-up (n=7), presented an increased DNAm IFN score compared to pSS without lymphoma (p=0.025). In conclusion, the DNAm-based IFN score is a promising alternative to mRNA-based scores for identification of patients with activation of the IFN system and may be applied for patient stratification guiding treatment decisions, monitoring and inclusion in clinical trials.
Collapse
Affiliation(s)
- Juliana Imgenberg-Kreuz
- Section of Rheumatology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Johanna K. Sandling
- Section of Rheumatology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Katrine Brække Norheim
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Svein Joar Auglænd Johnsen
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Roald Omdal
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Ann-Christine Syvänen
- Molecular Medicine and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Elisabet Svenungsson
- Rheumatology Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Rönnblom
- Section of Rheumatology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Maija-Leena Eloranta
- Section of Rheumatology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Gunnel Nordmark
- Section of Rheumatology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
90
|
Kelly H, Sokola B, Abboud H. Safety and efficacy of COVID-19 vaccines in multiple sclerosis patients. J Neuroimmunol 2021; 356:577599. [PMID: 34000472 PMCID: PMC8095041 DOI: 10.1016/j.jneuroim.2021.577599] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 01/07/2023]
Abstract
COVID-19 vaccination is recommended for multiple sclerosis patients. Disease-modifying therapies can influence the safety and efficacy of COVID-19 vaccines. RNA, DNA, protein, and inactivated vaccines are likely safe for multiple sclerosis patients. A few incidences of central demyelination were reported with viral vector vaccines, but their benefits likely outweigh their risks if alternatives are unavailable. Live-attenuated vaccines should be avoided whenever possible in treated patients. Interferon-beta, glatiramer acetate, teriflunomide, fumarates, and natalizumab are not expected to impact vaccine efficacy, while cell-depleting agents (ocrelizumab, rituximab, ofatumumab, alemtuzumab, and cladribine) and sphingosine-1-phosphate modulators will likely attenuate vaccine responses. Coordinating vaccine timing with dosing regimens for some therapies may optimize vaccine efficacy.
Collapse
Affiliation(s)
- Hannah Kelly
- Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Brent Sokola
- Department of Pharmacy, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hesham Abboud
- Multiple Sclerosis and Neuroimmunology Program, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
91
|
Yao M, Zhang C, Gao C, Wang Q, Dai M, Yue R, Sun W, Liang W, Zheng Z. Exploration of the Shared Gene Signatures and Molecular Mechanisms Between Systemic Lupus Erythematosus and Pulmonary Arterial Hypertension: Evidence From Transcriptome Data. Front Immunol 2021; 12:658341. [PMID: 34335565 PMCID: PMC8320323 DOI: 10.3389/fimmu.2021.658341] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE) is an autoimmune disease that can affect multiple systems. Pulmonary arterial hypertension (PAH) has a close linkage with SLE. However, the inter-relational mechanisms between them are still unclear. This article aimed to explore the shared gene signatures and potential molecular mechanisms in SLE and PAH. Methods The microarray data of SLE and PAH in the Gene Expression Omnibus (GEO) database were downloaded. The Weighted Gene Co-Expression Network Analysis (WGCNA) was used to identify the co-expression modules related to SLE and PAH. The shared genes existing in the SLE and PAH were performed an enrichment analysis by ClueGO software, and their unique genes were also performed with biological processes analyses using the DAVID website. The results were validated in another cohort by differential gene analysis. Moreover, the common microRNAs (miRNAs) in SLE and PAH were obtained from the Human microRNA Disease Database (HMDD) and the target genes of whom were predicted through the miRTarbase. Finally, we constructed the common miRNAs–mRNAs network with the overlapped genes in target and shared genes. Results Using WGCNA, four modules and one module were identified as the significant modules with SLE and PAH, respectively. A ClueGO enrichment analysis of shared genes reported that highly activated type I IFN response was a common feature in the pathophysiology of SLE and PAH. The results of differential analysis in another cohort were extremely similar to them. We also proposed a disease road model for the possible mechanism of PAH secondary to SLE according to the shared and unique gene signatures in SLE and PAH. The miRNA–mRNA network showed that hsa-miR-146a might regulate the shared IFN-induced genes, which might play an important role in PAH secondary to SLE. Conclusion Our work firstly revealed the high IFN response in SLE patients might be a crucial susceptible factor for PAH and identified novel gene candidates that could be used as biomarkers or potential therapeutic targets.
Collapse
Affiliation(s)
- Menghui Yao
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunyi Zhang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Congcong Gao
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qianqian Wang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengmeng Dai
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Runzhi Yue
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenbo Sun
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenfang Liang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaohui Zheng
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
92
|
Antigenic sites in SARS-CoV-2 spike RBD show molecular similarity with pathogenic antigenic determinants and harbors peptides for vaccine development. Immunobiology 2021; 226:152091. [PMID: 34303920 PMCID: PMC8297981 DOI: 10.1016/j.imbio.2021.152091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 03/13/2021] [Accepted: 03/30/2021] [Indexed: 01/22/2023]
Abstract
The spike protein of coronavirus is key target for drug development and other pharmacological interventions. In current study, we performed an integrative approach to predict antigenic sites in SARS-CoV-2 spike receptor binding domain and found nine potential antigenic sites. The predicted antigenic sites were then assessed for possible molecular similarity with other known antigens in different organisms. Out of nine sites, seven sites showed molecular similarity with 54 antigenic determinants found in twelve pathogenic bacterial species (Mycobacterium tuberculosis, Mycobacterium leprae, Bacillus anthracis, Borrelia burgdorferi, Clostridium perfringens, Clostridium tetani, Helicobacter Pylori, Listeria monocytogenes, Staphylococcus aureus, Streptococcus pyogenes, Vibrio cholera and Yersinia pestis), two malarial parasites (Plasmodium falciparum and Plasmodium knowlesi) and influenza virus A. Most of the bacterial antigens that displayed molecular similarity with antigenic sites in SARS-CoV-2 RBD (receptor binding domain) were toxins and virulent factors. Antigens from Mycobacterium that showed similarity were mainly involved in modulating host cell immune response and ensuring persistence and survival of pathogen in host cells. Presence of a large number of antigenic determinants, similar to those in highly pathogenic microorganisms, not merely accounts for complex etiology of the disease but also provides an explanation for observed pathophysiological complications, such as deregulated immune response, unleashed or dysregulated cytokine secretion (cytokine storm), multiple organ failure etc., that are more evident in aged and immune-compromised patients. Over-representation of antigenic determinants from Plasmodium and Mycobacterium in all antigenic sites suggests that anti-malarial and anti-TB drugs can prove to be clinical beneficial for COVID-19 treatment. Besides this, anti-leprosy, anti-lyme, anti-plague, anti-anthrax drugs/vaccine etc. are also expected to be beneficial in COVID-19 treatment. Moreover, individuals previously immunized/vaccinated or had previous history of malaria, tuberculosis or other disease caused by fifteen microorganisms are expected to display a considerable degree of resistance against SARS-CoV-2 infection. Out of the seven antigenic sites predicted in SARS-CoV-2, a part of two antigenic sites were also predicted as potent T-cell epitopes (KVGGNYNYL444-452 and SVLYNSASF366-374) against MHC class I and three (KRISNCVADYSVLYN356-370, DLCFTNVYADSFVI389-402, and YRVVVLSFELLHA508-520) against MHC class II. All epitopes possessed significantly lower predicted IC50 value which is a prerequisite for a preferred vaccine candidate for COVID-19.
Collapse
|
93
|
Dimitriou F, Long G, Menzies A. Novel adjuvant options for cutaneous melanoma. Ann Oncol 2021; 32:854-865. [DOI: 10.1016/j.annonc.2021.03.198] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/13/2021] [Accepted: 03/09/2021] [Indexed: 01/10/2023] Open
|
94
|
Wang Y, Ma Q, Huo Z. Identification of hub genes, pathways, and related transcription factors in systemic lupus erythematosus: A preliminary bioinformatics analysis. Medicine (Baltimore) 2021; 100:e26499. [PMID: 34160465 PMCID: PMC8238284 DOI: 10.1097/md.0000000000026499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 05/31/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ damage and the production of a variety of autoantibodies. The pathogenesis of SLE has not been fully defined, and it is difficult to treat. Our study aimed to identify candidate genes that may be used as biomarkers for the screening, diagnosis, and treatment of SLE. METHODS We used the GEO2R tool to identify the differentially expressed genes (DEGs) in SLE-related datasets retrieved from the Gene Expression Omnibus (GEO). In addition, we also identified the biological functions of the DEGs by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Additionally, we constructed protein-protein interaction (PPI) networks to identify hub genes, as well as the regulatory network of transcription factors related to DEGs. RESULTS Two datasets were identified for use from the GEO (GSE50772, GSE4588), and 34 up-regulated genes and 4 down-regulated genes were identified by GEO2R. Pathway analysis of the DEGs revealed enrichment of the interferon alpha/beta signaling pathway; GO analysis was mainly enriched in response to interferon alpha, regulation of ribonuclease activity. PPIs were constructed through the STRING database and 14 hub genes were selected and 1 significant module (score = 12.923) was obtained from the PPI network. Additionally, 11 key transcription factors that interacted closely with the 14 hub DEGs were identified from the gene transcription factor network. CONCLUSIONS Bioinformatic analysis is an effective tool for screening the original genomic data in the GEO database, and a large number of SLE-related DEGs were identified. The identified hub DEGs may be potential biomarkers of SLE.
Collapse
|
95
|
Wang X, Liu Y, Han X, Zou G, Zhu W, Shen H, Liu H. Small molecule approaches to treat autoimmune and inflammatory diseases (Part II): Nucleic acid sensing antagonists and inhibitors. Bioorg Med Chem Lett 2021; 44:128101. [PMID: 33984476 DOI: 10.1016/j.bmcl.2021.128101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023]
Abstract
Nucleic acid sensing pathways play an important role in the innate immune system, protecting hosts against infections. However, a large body of evidence supports a close association between aberrant activation of those pathways and autoimmune and inflammatory diseases. Part II of the digest series on small molecule approaches to autoimmune and inflammatory diseases concentrates on recent advances with respect to small molecule antagonists or inhibitors of the nucleic acid sensing pathways, including endosomal TLRs, NLRP3 inflammasome and cGAS-STING.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Yafei Liu
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Xingchun Han
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Ge Zou
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Wei Zhu
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Hong Shen
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Haixia Liu
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China.
| |
Collapse
|
96
|
The Bacterial and Viral Agents of BRDC: Immune Evasion and Vaccine Developments. Vaccines (Basel) 2021; 9:vaccines9040337. [PMID: 33916119 PMCID: PMC8066859 DOI: 10.3390/vaccines9040337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Bovine respiratory disease complex (BRDC) is a multifactorial disease of cattle which presents as bacterial and viral pneumonia. The causative agents of BRDC work in synergy to suppress the host immune response and increase the colonisation of the lower respiratory tracts by pathogenic bacteria. Environmental stress and/or viral infection predispose cattle to secondary bacterial infections via suppression of key innate and adaptive immune mechanisms. This allows bacteria to descend the respiratory tract unchallenged. BRDC is the costliest disease among feedlot cattle, and whilst vaccines exist for individual pathogens, there is still a lack of evidence for the efficacy of these vaccines and uncertainty surrounding the optimum timing of delivery. This review outlines the immunosuppressive actions of the individual pathogens involved in BRDC and highlights the key issues in the development of vaccinations against them.
Collapse
|
97
|
Acidereli H, Turut FA, Cevik O. Acetylation of interferon regulatory factor-5 suppresses androgen receptor and downregulates expression of Sox2. Cell Biochem Funct 2021; 39:667-678. [PMID: 33780016 DOI: 10.1002/cbf.3633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
Interferon regulatory factor-5 (IRF5) is a transcription factor and has essential cellular mechanisms as a tumour suppressor gene. IRF5 protein function is irregular in various human cancers, and its role in prostate cancer is also unknown. This study presents the first evidence that IRF5 expression is controlled with androgen receptor (AR) signalling interaction and stem cell factors (Nanog, Oct4, Sox2) in prostate cancer. Human prostate cancer cell lines (PC3, DU145 and LNCaP) were transfected plasmids and assessed for cellular localization of IRF5 and AR interaction with IF-staining. Co-immunoprecipitation and ChIP assay were used to detect the IRF5 and AR protein-protein interaction and IRF5 stem cell factors protein-gene interaction. The target relation between IRF5, AR, CREB, p300, ISRE, ARE and NF-кB was tested by luciferase assay. IRF5 was low expressed in androgen-dependent prostate cancer cells and tissues. The analysis of human prostate cancer clinical samples supports the interaction of IRF5 and AR in a pathological role, as IRF5 expression is down-regulated in the tumours' advanced stages. Tumour suppression mechanism of IRF5 and SOX2 levels in cells reduces and causes AR acetylation. Those affect the prostate cancer mechanism by modifying the cellular response in the signal pathway. IRF5 can be promising for treating androgen-dependent prostate cancers and is a therapeutic protein for new drug studies.
Collapse
Affiliation(s)
- Hilal Acidereli
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey.,Department of Biochemistry, Faculty of Arts and Science, Dumlupinar University, Kütahya, Turkey
| | - Fatma Aysun Turut
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Ozge Cevik
- Department of Medicinal Biochemistry, School of Medicine, Aydin Adnan Menderes University, Aydin, 09010, Turkey
| |
Collapse
|
98
|
Garcia-del-Barco D, Risco-Acevedo D, Berlanga-Acosta J, Martos-Benítez FD, Guillén-Nieto G. Revisiting Pleiotropic Effects of Type I Interferons: Rationale for Its Prophylactic and Therapeutic Use Against SARS-CoV-2. Front Immunol 2021; 12:655528. [PMID: 33841439 PMCID: PMC8033157 DOI: 10.3389/fimmu.2021.655528] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
The pandemic distribution of SARS-CoV-2 together with its particular feature of inactivating the interferon-based endogenous response and accordingly, impairing the innate immunity, has become a challenge for the international scientific and medical community. Fortunately, recombinant interferons as therapeutic products have accumulated a long history of beneficial therapeutic results in the treatment of chronic and acute viral diseases and also in the therapy of some types of cancer. One of the first antiviral treatments during the onset of COVID-19 in China was based on the use of recombinant interferon alfa 2b, so many clinicians began to use it, not only as therapy but also as a prophylactic approach, mainly in medical personnel. At the same time, basic research on interferons provided new insights that have contributed to a much better understanding of how treatment with interferons, initially considered as antivirals, actually has a much broader pharmacological scope. In this review, we briefly describe interferons, how they are induced in the event of a viral infection, and how they elicit signaling after contact with their specific receptor on target cells. Additionally, some of the genes stimulated by type I interferons are described, as well as the way interferon-mediated signaling is torpedoed by coronaviruses and in particular by SARS-CoV-2. Angiotensin converting enzyme 2 (ACE2) gene is one of the interferon response genes. Although for many scientists this fact could result in an adverse effect of interferon treatment in COVID-19 patients, ACE2 expression contributes to the balance of the renin-angiotensin system, which is greatly affected by SARS-CoV-2 in its internalization into the cell. This manuscript also includes the relationship between type I interferons and neutrophils, NETosis, and interleukin 17. Finally, under the subtitle of "take-home messages", we discuss the rationale behind a timely treatment with interferons in the context of COVID-19 is emphasized.
Collapse
Affiliation(s)
- Diana Garcia-del-Barco
- Neuroprotection Project, Center for Genetic Engineering and Biotechnology, Pharmaceutical Division, Havana, Cuba
| | - Daniela Risco-Acevedo
- Neuroprotection Project, Center for Genetic Engineering and Biotechnology, Pharmaceutical Division, Havana, Cuba
| | - Jorge Berlanga-Acosta
- Cytoprotection Project, Center for Genetic Engineering and Biotechnology, Pharmaceutical Division, Havana, Cuba
| | | | - Gerardo Guillén-Nieto
- Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
99
|
Watanabe H, Yabe-Wada T, Onai N, Unno M. Detailed Structure of Mouse Interferon α2 and Its Interaction with Sortilin. J Biochem 2021; 170:265-273. [PMID: 33769476 DOI: 10.1093/jb/mvab038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/19/2021] [Indexed: 11/14/2022] Open
Abstract
Interferon α (IFNα) is a type I interferon, an essential cytokine employed by the immune system to fight viruses. Although a number of the structures of type I interferons have been reported, most of the known structures of IFNα are in complex with its receptors. There are only two examples of structures of free IFNα: one is a dimeric X-ray structure without side-chain information; and another is an NMR structure of human IFNα. Although we have shown that Sortilin is involved in the secretion of IFNα, the details of the molecular interaction and the secretion mechanism remain unclear. Recently, we solved the X-ray structure of mouse Sortilin, but the structure of mouse IFNα remained unknown. In the present study, we determined the crystal structure of mouse IFNα2 at 2.1 Å resolution and investigated its interaction with Sortilin. Docking simulations suggested that Arg22 of mouse IFNα2 is important for the interaction with mouse Sortilin. Mutation of Arg22 to alanine facilitated IFNα2 secretion, as determined by flow cytometry, highlighting the contribution of this residue to the interaction with Sortilin. These results suggest an important role for Arg22 in mouse IFNα for Sortilin-mediated IFNα trafficking.
Collapse
Affiliation(s)
- Honoka Watanabe
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan.,Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai Naka, Ibaraki 319-1106, Japan
| | - Toshiki Yabe-Wada
- Department of Immunology, Kanazawa Medical University, Kahoku Uchinada, Ishikawa 920-0293, Japan
| | - Nobuyuki Onai
- Department of Immunology, Kanazawa Medical University, Kahoku Uchinada, Ishikawa 920-0293, Japan
| | - Masaki Unno
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan.,Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai Naka, Ibaraki 319-1106, Japan
| |
Collapse
|
100
|
Di Cola I, Ruscitti P, Giacomelli R, Cipriani P. The Pathogenic Role of Interferons in the Hyperinflammatory Response on Adult-Onset Still's Disease and Macrophage Activation Syndrome: Paving the Way towards New Therapeutic Targets. J Clin Med 2021; 10:1164. [PMID: 33802085 PMCID: PMC7999936 DOI: 10.3390/jcm10061164] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Adult-onset Still's disease (AOSD) is a systemic inflammatory disorder of unknown aetiology affecting young adults, which is burdened by life-threatening complications, mostly macrophage activation syndrome (MAS). Interferons (IFNs) are signalling molecules that mediate a variety of biological functions from defence against viral infections, to antitumor and immunomodulatory effects. These molecules have been classified into three major types: IFN I, IFN II, IFN III, presenting specific characteristics and functions. In this work, we reviewed the role of IFNs on AOSD and MAS, focusing on their pathogenic role in promoting the hyperinflammatory response and as new possible therapeutic targets. In fact, both preclinical and clinical observations suggested that these molecules could promote the hyperinflammatory response in MAS during AOSD. Furthermore, the positive results of inhibiting IFN-γ in primary hemophagocytic lymphohistiocytosis may provide a solid rationale to arrange further clinical studies, paving the way for reducing the high mortality rate in MAS during AOSD.
Collapse
Affiliation(s)
- Ilenia Di Cola
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.D.C.); (P.C.)
| | - Piero Ruscitti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.D.C.); (P.C.)
| | - Roberto Giacomelli
- Rheumatology and Immunology Unit, Department of Medicine, University of Rome Campus Biomedico, 00128 Rome, Italy;
| | - Paola Cipriani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.D.C.); (P.C.)
| |
Collapse
|