51
|
Prosomeric classification of retinorecipient centers: a new causal scenario. Brain Struct Funct 2022; 227:1171-1193. [PMID: 35171343 DOI: 10.1007/s00429-022-02461-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/17/2021] [Indexed: 12/31/2022]
Abstract
The retina is known to target many superficial areas in the brain. These have always been studied under the tenets of the classic columnar brain model, which was not designed to produce causal explanations, being functionally oriented. This has led over the years to a remarkable absence of understanding or even hypothetical thinking about why the optic tract takes its precise course, why there are so many retinal targets (some of them at surprising sites), what mechanism places each one of them exactly at its standard position, which processes specify spatial aspects of retinotopy and differential physiological properties within the visual system, and so on, including questions about conserved and changing evolutionary aspects of the visual structures. The author posits that the origin of the current causally uninformative state of the field is the columnar model, which worked as a subliminal or cryptic dogma that disregards the molecular developmental advances accruing during the last 40 years, and in general distracts the attention of neuroscientists from causal approaches. There is now an alternative brain model, known as the prosomeric model, that does not have these problems. The author aims to show that once the data on retinal projections are mapped and analyzed within the prosomeric model the scenario changes drastically and multiple opportunities for formulating hypotheses for causal explanation of any aspects about the visual projections become apparent (emphasis is made on mouse and rabbit data, but any set of data on retinal projections in vertebrates can be used, as shown in some examples).
Collapse
|
52
|
Ogata K, Kadono F, Hirai Y, Inoue KI, Takada M, Karube F, Fujiyama F. Conservation of the Direct and Indirect Pathway Dichotomy in Mouse Caudal Striatum With Uneven Distribution of Dopamine Receptor D1- and D2-Expressing Neurons. Front Neuroanat 2022; 16:809446. [PMID: 35185482 PMCID: PMC8854186 DOI: 10.3389/fnana.2022.809446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
The striatum is one of the key nuclei for adequate control of voluntary behaviors and reinforcement learning. Two striatal projection neuron types, expressing either dopamine receptor D1 (D1R) or dopamine receptor D2 (D2R) constitute two independent output routes: the direct or indirect pathways, respectively. These pathways co-work in balance to achieve coordinated behavior. Two projection neuron types are equivalently intermingled in most striatal space. However, recent studies revealed two atypical zones in the caudal striatum: the zone in which D1R-neurons are the minor population (D1R-poor zone) and that in which D2R-neurons are the minority (D2R-poor zone). It remains obscure as to whether these imbalanced zones have similar properties on axonal projections and electrophysiology compared to other striatal regions. Based on morphological experiments in mice using immunofluorescence, in situ hybridization, and neural tracing, here, we revealed that the poor zones densely projected to the globus pallidus and substantia nigra pars lateralis, with a few collaterals in substantia nigra pars reticulata and compacta. Similar to that in other striatal regions, D1R-neurons were the direct pathway neurons. We also showed that the membrane properties of projection neurons in the poor zones were largely similar to those in the conventional striatum using in vitro electrophysiological recording. In addition, the poor zones existed irrespective of the age or sex of mice. We also identified the poor zones in the common marmoset as well as other rodents. These results suggest that the poor zones in the caudal striatum follow the conventional projection patterns irrespective of the imbalanced distribution of projection neurons. The poor zones could be an innate structure and common in mammals. The unique striatal zones possessing highly restricted projections could relate to functions different from those of motor-related striatum.
Collapse
Affiliation(s)
- Kumiko Ogata
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Fuko Kadono
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuharu Hirai
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken-ichi Inoue
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Fuyuki Karube
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- *Correspondence: Fuyuki Karube,
| | - Fumino Fujiyama
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Fumino Fujiyama,
| |
Collapse
|
53
|
Aghili Yajadda MM, Robinson PA, Henderson JA. Generalized neural field theory of cortical plasticity illustrated by an application to the linear phase of ocular dominance column formation in primary visual cortex. BIOLOGICAL CYBERNETICS 2022; 116:33-52. [PMID: 34773503 DOI: 10.1007/s00422-021-00901-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Physiologically based neural field theory (NFT) is extended to encompass cortical plasticity dynamics. An illustrative application is provided which treats the evolution of the connectivity of left- and right-eye visual stimuli to neuronal populations in the primary visual cortex (V1), and the initial, linear phase of formation of approximately one-dimensional (1D) ocular dominance columns (ODCs) that sets their transverse spatial scale. This links V1 activity, structure, and physiology within a single theory that already accounts for a range of other brain activity and connectivity phenomena, thereby enabling ODC formation and many other phenomena to be interrelated and cortical parameters to be constrained across multiple domains. The results accord with experimental ODC widths for realistic cortical parameters and are based directly on a unified description of the neuronal populations involved, their connection strengths, and the neuronal activity they support. Other key results include simple analytic approximations for ODC widths and the parameters of maximum growth rate, constraints on cortical excitatory and inhibitory gains, elucidation of the roles of specific poles of the V1 response function, and the fact that ODCs are not formed when input stimuli are fully correlated between eyes. This work provides a basis for further generalization of NFT to model other plasticity phenomena, thereby linking them to the range multiscale phenomena accounted for by NFT.
Collapse
Affiliation(s)
- M M Aghili Yajadda
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, 2006, Australia
| | - J A Henderson
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia.
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
54
|
Stacy AK, Van Hooser SD. Development of Functional Properties in the Early Visual System: New Appreciations of the Roles of Lateral Geniculate Nucleus. Curr Top Behav Neurosci 2022; 53:3-35. [PMID: 35112333 DOI: 10.1007/7854_2021_297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the years following Hubel and Wiesel's first reports on ocular dominance plasticity and amblyopia, much attention has been focused on understanding the role of cortical circuits in developmental and experience-dependent plasticity. Initial studies found few differences between retinal ganglion cells and neurons in the lateral geniculate nucleus and uncovered little evidence for an impact of altered visual experience on the functional properties of lateral geniculate nucleus neurons. In the last two decades, however, studies have revealed that the connectivity between the retina and lateral geniculate nucleus is much richer than was previously appreciated, even revealing visual plasticity - including ocular dominance plasticity - in lateral geniculate nucleus neurons. Here we review the development of the early visual system and the impact of experience with a distinct focus on recent discoveries about lateral geniculate nucleus, its connectivity, and evidence for its plasticity and rigidity during development.
Collapse
Affiliation(s)
- Andrea K Stacy
- Department of Biology, Brandeis University, Waltham, MA, USA
| | | |
Collapse
|
55
|
Groen IIA, Dekker TM, Knapen T, Silson EH. Visuospatial coding as ubiquitous scaffolding for human cognition. Trends Cogn Sci 2021; 26:81-96. [PMID: 34799253 DOI: 10.1016/j.tics.2021.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 01/28/2023]
Abstract
For more than 100 years we have known that the visual field is mapped onto the surface of visual cortex, imposing an inherently spatial reference frame on visual information processing. Recent studies highlight visuospatial coding not only throughout visual cortex, but also brain areas not typically considered visual. Such widespread access to visuospatial coding raises important questions about its role in wider cognitive functioning. Here, we synthesise these recent developments and propose that visuospatial coding scaffolds human cognition by providing a reference frame through which neural computations interface with environmental statistics and task demands via perception-action loops.
Collapse
Affiliation(s)
- Iris I A Groen
- Institute for Informatics, University of Amsterdam, Amsterdam, The Netherlands
| | - Tessa M Dekker
- Institute of Ophthalmology, University College London, London, UK
| | - Tomas Knapen
- Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Spinoza Centre for NeuroImaging, Royal Dutch Academy of Sciences, Amsterdam, The Netherlands
| | - Edward H Silson
- Department of Psychology, School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
56
|
Behpour S, Field DJ, Albert MV. On the Role of LGN/V1 Spontaneous Activity as an Innate Learning Pattern for Visual Development. Front Physiol 2021; 12:695431. [PMID: 34776991 PMCID: PMC8589027 DOI: 10.3389/fphys.2021.695431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Correlated, spontaneous neural activity is known to play a necessary role in visual development, but the higher-order statistical structure of these coherent, amorphous patterns has only begun to emerge in the past decade. Several computational studies have demonstrated how this endogenous activity can be used to train a developing visual system. Models that generate spontaneous activity analogous to retinal waves have shown that these waves can serve as stimuli for efficient coding models of V1. This general strategy in development has one clear advantage: The same learning algorithm can be used both before and after eye-opening. This same insight can be applied to understanding LGN/V1 spontaneous activity. Although lateral geniculate nucleus (LGN) activity has been less discussed in the literature than retinal waves, here we argue that the waves found in the LGN have a number of properties that fill the role of a training pattern. We make the case that the role of “innate learning” with spontaneous activity is not only possible, but likely in later stages of visual development, and worth pursuing further using an efficient coding paradigm.
Collapse
Affiliation(s)
- Sahar Behpour
- Department of Information Science, University of North Texas, Denton, TX, United States
| | - David J Field
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | - Mark V Albert
- Department of Computer Science and Engineering, University of North Texas, Denton, TX, United States.,Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| |
Collapse
|
57
|
Soteros BM, Sia GM. Complement and microglia dependent synapse elimination in brain development. WIREs Mech Dis 2021; 14:e1545. [PMID: 34738335 PMCID: PMC9066608 DOI: 10.1002/wsbm.1545] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 01/31/2023]
Abstract
Synapse elimination, also known as synaptic pruning, is a critical step in the maturation of neural circuits during brain development. Mounting evidence indicates that the complement cascade of the innate immune system plays an important role in synapse elimination. Studies indicate that excess synapses during development are opsonized by complement proteins and subsequently phagocytosed by microglia which expresses complement receptors. The process is regulated by diverse molecular signals, including complement inhibitors that affect the activation of complement, as well as signals that affect microglial recruitment and activation. These signals may promote or inhibit the removal of specific sets of synapses during development. The complement-microglia system has also been implicated in the pathogenesis of several developmental brain disorders, suggesting that the dysregulation of mechanisms of synapse pruning may underlie the specific circuitry defects in these diseases. Here, we review the latest evidence on the molecular and cellular mechanisms of complement-dependent and microglia-dependent synapse elimination during brain development, and highlight the potential of this system as a therapeutic target for developmental brain disorders. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Neurological Diseases > Stem Cells and Development Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Breeanne M Soteros
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Gek Ming Sia
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
58
|
A cell-ECM mechanism for connecting the ipsilateral eye to the brain. Proc Natl Acad Sci U S A 2021; 118:2104343118. [PMID: 34654745 PMCID: PMC8545493 DOI: 10.1073/pnas.2104343118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Distinct features of the visual world are transmitted from the retina to the brain through anatomically segregated circuits. Despite this being an organizing principle of visual pathways in mammals, we lack an understanding of the signaling mechanisms guiding axons of different types of retinal neurons into segregated layers of brain regions. We explore this question by identifying how axons from the ipsilateral retina innervate a specific lamina of the superior colliculus. Our studies reveal a unique cell–extracellular matrix recognition mechanism that specifies precise targeting of these axons to the superior colliculus. Loss of this mechanism not only resulted in the absence of this eye-specific visual circuit, but it led to an impairment of innate predatory visual behavior as well. Information about features in the visual world is parsed by circuits in the retina and is then transmitted to the brain by distinct subtypes of retinal ganglion cells (RGCs). Axons from RGC subtypes are stratified in retinorecipient brain nuclei, such as the superior colliculus (SC), to provide a segregated relay of parallel and feature-specific visual streams. Here, we sought to identify the molecular mechanisms that direct the stereotyped laminar targeting of these axons. We focused on ipsilateral-projecting subtypes of RGCs (ipsiRGCs) whose axons target a deep SC sublamina. We identified an extracellular glycoprotein, Nephronectin (NPNT), whose expression is restricted to this ipsiRGC-targeted sublamina. SC-derived NPNT and integrin receptors expressed by ipsiRGCs are both required for the targeting of ipsiRGC axons to the deep sublamina of SC. Thus, a cell–extracellular matrix (ECM) recognition mechanism specifies precise laminar targeting of ipsiRGC axons and the assembly of eye-specific parallel visual pathways.
Collapse
|
59
|
cAMP-Dependent Co-stabilization of Axonal Arbors from Adjacent Developing Neurons. Cell Rep 2021; 33:108220. [PMID: 33027659 DOI: 10.1016/j.celrep.2020.108220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 07/30/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022] Open
Abstract
Axonal arbors in many neuronal networks are exuberant early during development and become refined by activity-dependent competitive mechanisms. Theoretical work proposed non-competitive interactions between co-active axons to co-stabilize their connections, but the demonstration of such interactions is lacking. Here, we provide experimental evidence that reducing cyclic AMP (cAMP) signaling in a subset of retinal ganglion cells favors the elimination of thalamic projections from neighboring neurons, pointing to a cAMP-dependent interaction that promotes axon stabilization.
Collapse
|
60
|
Figueroa C, Yang H, DiSpirito J, Bourgeois JR, Kalyanasundaram G, Doshi I, Bilbo SD, Kopec AM. Morphine exposure alters Fos expression in a sex-, age-, and brain region-specific manner during adolescence. Dev Psychobiol 2021; 63:e22186. [PMID: 34423851 DOI: 10.1002/dev.22186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/17/2021] [Accepted: 08/08/2021] [Indexed: 11/06/2022]
Abstract
Data in both humans and preclinical animal models clearly indicate drug exposure during adolescence, when the "reward" circuitry of the brain develops, increases the risk of substance use and other mental health disorders later in life. Human data indicate that different neural and behavioral sequelae can be observed in early versus late adolescence. However, most studies with rodent models examine a single adolescent age compared to a mature adult age, and often only in males. Herein, we sought to determine whether the acute response to the opioid morphine would also differ across adolescence, and by sex. By quantifying Fos positive cells, a proxy for neural activity, at different stages during adolescence (pre-, early, mid-, and late adolescence) and in multiple reward regions (prefrontal cortex, nucleus accumbens, caudate/putamen), we determined that the neural response to acute morphine is highly dependent on adolescent age, sex, and brain region. These data suggest that heterogeneity in the consequences of adolescent opioid exposure may be due to age- and sex-specific developmental profiles in individual reward processing regions. In future studies, it will be important to add age within adolescence as an independent variable for a holistic view of healthy or abnormal reward-related neural development.
Collapse
Affiliation(s)
- C Figueroa
- Deptartment of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - H Yang
- Deptartment of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA.,Northeastern University, Boston, MA, USA
| | - J DiSpirito
- Deptartment of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA.,Rensselaer Polytechnic Institute, Troy, NY, USA
| | - J R Bourgeois
- Deptartment of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - G Kalyanasundaram
- Deptartment of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - I Doshi
- Deptartment of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - S D Bilbo
- Deptartment of Psychology and Neuroscience, Duke University, Durham, NC, USA.,Deptartment of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.,Lurie Center for Autism, Harvard Medical School, Boston, MA, USA
| | - A M Kopec
- Deptartment of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA.,Deptartment of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.,Lurie Center for Autism, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
61
|
Klimmasch L, Schneider J, Lelais A, Fronius M, Shi BE, Triesch J. The development of active binocular vision under normal and alternate rearing conditions. eLife 2021; 10:e56212. [PMID: 34402429 PMCID: PMC8445622 DOI: 10.7554/elife.56212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/04/2021] [Indexed: 12/18/2022] Open
Abstract
The development of binocular vision is an active learning process comprising the development of disparity tuned neurons in visual cortex and the establishment of precise vergence control of the eyes. We present a computational model for the learning and self-calibration of active binocular vision based on the Active Efficient Coding framework, an extension of classic efficient coding ideas to active perception. Under normal rearing conditions with naturalistic input, the model develops disparity tuned neurons and precise vergence control, allowing it to correctly interpret random dot stereograms. Under altered rearing conditions modeled after neurophysiological experiments, the model qualitatively reproduces key experimental findings on changes in binocularity and disparity tuning. Furthermore, the model makes testable predictions regarding how altered rearing conditions impede the learning of precise vergence control. Finally, the model predicts a surprising new effect that impaired vergence control affects the statistics of orientation tuning in visual cortical neurons.
Collapse
Affiliation(s)
- Lukas Klimmasch
- Frankfurt Institute for Advanced Studies (FIAS)Frankfurt am MainGermany
| | - Johann Schneider
- Frankfurt Institute for Advanced Studies (FIAS)Frankfurt am MainGermany
| | - Alexander Lelais
- Frankfurt Institute for Advanced Studies (FIAS)Frankfurt am MainGermany
| | - Maria Fronius
- Department of Ophthalmology, Child Vision Research Unit, Goethe UniversityFrankfurt am MainGermany
| | - Bertram Emil Shi
- Department of Electronic and Computer Engineering, Hong Kong University of Science and TechnologyHong KongChina
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies (FIAS)Frankfurt am MainGermany
| |
Collapse
|
62
|
Limited functional convergence of eye-specific inputs in the retinogeniculate pathway of the mouse. Neuron 2021; 109:2457-2468.e12. [DOI: 10.1016/j.neuron.2021.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/16/2021] [Accepted: 05/28/2021] [Indexed: 11/22/2022]
|
63
|
Ge X, Zhang K, Gribizis A, Hamodi AS, Sabino AM, Crair MC. Retinal waves prime visual motion detection by simulating future optic flow. Science 2021; 373:373/6553/eabd0830. [PMID: 34437090 DOI: 10.1126/science.abd0830] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 05/26/2021] [Indexed: 01/01/2023]
Abstract
The ability to perceive and respond to environmental stimuli emerges in the absence of sensory experience. Spontaneous retinal activity prior to eye opening guides the refinement of retinotopy and eye-specific segregation in mammals, but its role in the development of higher-order visual response properties remains unclear. Here, we describe a transient window in neonatal mouse development during which the spatial propagation of spontaneous retinal waves resembles the optic flow pattern generated by forward self-motion. We show that wave directionality requires the same circuit components that form the adult direction-selective retinal circuit and that chronic disruption of wave directionality alters the development of direction-selective responses of superior colliculus neurons. These data demonstrate how the developing visual system patterns spontaneous activity to simulate ethologically relevant features of the external world and thereby instruct self-organization.
Collapse
Affiliation(s)
- Xinxin Ge
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kathy Zhang
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alexandra Gribizis
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ali S Hamodi
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Aude Martinez Sabino
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Michael C Crair
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
64
|
Plasticity in the hippocampal formation of shorebirds during the wintering period: Stereological analysis of parvalbumin neurons in Actitis macularius. Learn Behav 2021; 50:45-54. [PMID: 34244975 DOI: 10.3758/s13420-021-00473-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 11/08/2022]
Abstract
The number of parvalbumin neurons can be modified by social, multisensory, and cognitive stimuli in both mammals and birds, but nothing is known about their plasticity in long-distance migratory shorebirds. Here, in the spotted sandpiper (Actitis macularius), we investigated the plasticity of parvalbumin neurons of two brain areas during this species' wintering period at a lower latitude. We compared individuals in a nonmigratory rest period (November-January) and premigration (May-July) period. We used parvalbumin as a marker for counting a subpopulation of inhibitory neurons in the hippocampal formation (HF), with the magnocellular nucleus of the tectal isthmus (IMC) as a control area. Because the HF is involved in learning and memory and social interaction and the IMC is essential for control of head, neck, and eye movements, we hypothesized that parvalbumin neurons would increase in the HF and remain unchanged in the IMC. We used an optical fractionator to estimate cell numbers. Compared with the nonmigratory rest birds, parvalbumin neuron count estimates in the premigration birds increased significantly in the HF but remained unchanged in IMC. We suggest that the greater number of parvalbuminergic neurons in the HF of A. macularius in the premigration period represents adaptive circuitry changes involved in the migration back to reproductive niches in the northern hemisphere.
Collapse
|
65
|
Choi BJ, Chen YCD, Desplan C. Building a circuit through correlated spontaneous neuronal activity in the developing vertebrate and invertebrate visual systems. Genes Dev 2021; 35:677-691. [PMID: 33888564 PMCID: PMC8091978 DOI: 10.1101/gad.348241.121] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During the development of the vertebrate nervous systems, genetic programs assemble an immature circuit that is subsequently refined by neuronal activity evoked by external stimuli. However, prior to sensory experience, the intrinsic property of the developing nervous system also triggers correlated network-level neuronal activity, with retinal waves in the developing vertebrate retina being the best documented example. Spontaneous activity has also been found in the visual system of Drosophila Here, we compare the spontaneous activity of the developing visual system between mammalian and Drosophila and suggest that Drosophila is an emerging model for mechanistic and functional studies of correlated spontaneous activity.
Collapse
Affiliation(s)
- Ben Jiwon Choi
- Department of Biology, New York University, New York, New York 10003, USA
| | | | - Claude Desplan
- Department of Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
66
|
Jang J, Song M, Paik SB. Retino-Cortical Mapping Ratio Predicts Columnar and Salt-and-Pepper Organization in Mammalian Visual Cortex. Cell Rep 2021; 30:3270-3279.e3. [PMID: 32160536 DOI: 10.1016/j.celrep.2020.02.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/27/2019] [Accepted: 02/07/2020] [Indexed: 12/22/2022] Open
Abstract
In the mammalian primary visual cortex, neural tuning to stimulus orientation is organized in either columnar or salt-and-pepper patterns across species. For decades, this sharp contrast has spawned fundamental questions about the origin of functional architectures in visual cortex. However, it is unknown whether these patterns reflect disparate developmental mechanisms across mammalian taxa or simply originate from variation of biological parameters under a universal development process. In this work, after the analysis of data from eight mammalian species, we show that cortical organization is predictable by a single factor, the retino-cortical mapping ratio. Groups of species with or without columnar clustering are distinguished by the feedforward sampling ratio, and model simulations with controlled mapping conditions reproduce both types of organization. Prediction from the Nyquist theorem explains this parametric division of the patterns with high accuracy. Our results imply that evolutionary variation of physical parameters may induce development of distinct functional circuitry.
Collapse
Affiliation(s)
- Jaeson Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Min Song
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
67
|
Wosniack ME, Kirchner JH, Chao LY, Zabouri N, Lohmann C, Gjorgjieva J. Adaptation of spontaneous activity in the developing visual cortex. eLife 2021; 10:61619. [PMID: 33722342 PMCID: PMC7963484 DOI: 10.7554/elife.61619] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Spontaneous activity drives the establishment of appropriate connectivity in different circuits during brain development. In the mouse primary visual cortex, two distinct patterns of spontaneous activity occur before vision onset: local low-synchronicity events originating in the retina and global high-synchronicity events originating in the cortex. We sought to determine the contribution of these activity patterns to jointly organize network connectivity through different activity-dependent plasticity rules. We postulated that local events shape cortical input selectivity and topography, while global events homeostatically regulate connection strength. However, to generate robust selectivity, we found that global events should adapt their amplitude to the history of preceding cortical activation. We confirmed this prediction by analyzing in vivo spontaneous cortical activity. The predicted adaptation leads to the sparsification of spontaneous activity on a slower timescale during development, demonstrating the remarkable capacity of the developing sensory cortex to acquire sensitivity to visual inputs after eye-opening.
Collapse
Affiliation(s)
- Marina E Wosniack
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany.,School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Jan H Kirchner
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany.,School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Ling-Ya Chao
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Nawal Zabouri
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Christian Lohmann
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands.,Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Julijana Gjorgjieva
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany.,School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
68
|
Redolfi N, Lodovichi C. Spontaneous Afferent Activity Carves Olfactory Circuits. Front Cell Neurosci 2021; 15:637536. [PMID: 33767612 PMCID: PMC7985084 DOI: 10.3389/fncel.2021.637536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Electrical activity has a key role in shaping neuronal circuits during development. In most sensory modalities, early in development, internally generated spontaneous activity sculpts the initial layout of neuronal wiring. With the maturation of the sense organs, the system relies more on sensory-evoked electrical activity. Stimuli-driven neuronal discharge is required for the transformation of immature circuits in the specific patterns of neuronal connectivity that subserve normal brain function. The olfactory system (OS) differs from this organizational plan. Despite the important role of odorant receptors (ORs) in shaping olfactory topography, odor-evoked activity does not have a prominent role in refining neuronal wiring. On the contrary, afferent spontaneous discharge is required to achieve and maintain the specific diagram of connectivity that defines the topography of the olfactory bulb (OB). Here, we provide an overview of the development of olfactory topography, with a focus on the role of afferent spontaneous discharge in the formation and maintenance of the specific synaptic contacts that result in the topographic organization of the OB.
Collapse
Affiliation(s)
- Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Claudia Lodovichi
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Neuroscience Institute CNR, Padua, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy.,Padova Neuroscience Center, University of Padua, Padua, Italy
| |
Collapse
|
69
|
Kuhlmann N, Wagner Valladolid M, Quesada-Ramírez L, Farrer MJ, Milnerwood AJ. Chronic and Acute Manipulation of Cortical Glutamate Transmission Induces Structural and Synaptic Changes in Co-cultured Striatal Neurons. Front Cell Neurosci 2021; 15:569031. [PMID: 33679324 PMCID: PMC7930618 DOI: 10.3389/fncel.2021.569031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
In contrast to the prenatal topographic development of sensory cortices, striatal circuit organization is slow and requires the functional maturation of cortical and thalamic excitatory inputs throughout the first postnatal month. While mechanisms regulating synapse development and plasticity are quite well described at excitatory synapses of glutamatergic neurons in the neocortex, comparatively little is known of how this translates to glutamate synapses onto GABAergic neurons in the striatum. Here we investigate excitatory striatal synapse plasticity in an in vitro system, where glutamate can be studied in isolation from dopamine and other neuromodulators. We examined pre-and post-synaptic structural and functional plasticity in GABAergic striatal spiny projection neurons (SPNs), co-cultured with glutamatergic cortical neurons. After synapse formation, medium-term (24 h) TTX silencing increased the density of filopodia, and modestly decreased dendritic spine density, when assayed at 21 days in vitro (DIV). Spine reductions appeared to require residual spontaneous activation of ionotropic glutamate receptors. Conversely, chronic (14 days) TTX silencing markedly reduced spine density without any observed increase in filopodia density. Time-dependent, biphasic changes to the presynaptic marker Synapsin-1 were also observed, independent of residual spontaneous activity. Acute silencing (3 h) did not affect presynaptic markers or postsynaptic structures. To induce rapid, activity-dependent plasticity in striatal neurons, a chemical NMDA receptor-dependent “long-term potentiation (LTP)” paradigm was employed. Within 30 min, this increased spine and GluA1 cluster densities, and the percentage of spines containing GluA1 clusters, without altering the presynaptic signal. The results demonstrate that the growth and pruning of dendritic protrusions is an active process, requiring glutamate receptor activity in striatal projection neurons. Furthermore, NMDA receptor activation is sufficient to drive glutamatergic structural plasticity in SPNs, in the absence of dopamine or other neuromodulators.
Collapse
Affiliation(s)
- Naila Kuhlmann
- Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, BC, Canada.,Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | - Lucía Quesada-Ramírez
- Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, BC, Canada
| | - Matthew J Farrer
- Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, BC, Canada.,McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Austen J Milnerwood
- Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, BC, Canada.,Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
70
|
Wang BS, Bernardez Sarria MS, An X, He M, Alam NM, Prusky GT, Crair MC, Huang ZJ. Retinal and Callosal Activity-Dependent Chandelier Cell Elimination Shapes Binocularity in Primary Visual Cortex. Neuron 2021; 109:502-515.e7. [PMID: 33290732 PMCID: PMC7943176 DOI: 10.1016/j.neuron.2020.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/23/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022]
Abstract
In mammals with binocular vision, integration of the left and right visual scene relies on information in the center visual field, which are relayed from each retina in parallel and merge in the primary visual cortex (V1) through the convergence of ipsi- and contralateral geniculocortical inputs as well as transcallosal projections between two visual cortices. The developmental assembly of this binocular circuit, especially the transcallosal pathway, remains incompletely understood. Using genetic methods in mice, we found that several days before eye-opening, retinal and callosal activities drive massive apoptosis of GABAergic chandelier cells (ChCs) in the binocular region of V1. Blockade of ChC elimination resulted in a contralateral eye-dominated V1 and deficient binocular vision. As pre-vision retinal activities convey the left-right organization of the visual field, their regulation of ChC density through the transcallosal pathway may prime a nascent binocular territory for subsequent experience-driven tuning during the post-vision critical period.
Collapse
Affiliation(s)
- Bor-Shuen Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Maria Sol Bernardez Sarria
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Xu An
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Miao He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Nazia M Alam
- The Burke Neurological Institute, White Plains, NY 10605, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Glen T Prusky
- The Burke Neurological Institute, White Plains, NY 10605, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Michael C Crair
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Z Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
71
|
Wong ES, Zhang XJ, Yuan N, Li J, Pang CP, Chen L, Tham CC, Cheung CY, Yam JC. Association of Optical Coherence Tomography Angiography Metrics With Detection of Impaired Macular Microvasculature and Decreased Vision in Amblyopic Eyes: The Hong Kong Children Eye Study. JAMA Ophthalmol 2021; 138:858-865. [PMID: 32584368 DOI: 10.1001/jamaophthalmol.2020.2220] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Importance Microvascular abnormalities in amblyopia are becoming evident with high-resolution imaging, such as optical coherence tomography angiography (OCT-A); however, to our knowledge, the clinical significance and use of these findings are unknown. Objective To assess changes in quantitative OCT-A metrics in amblyopic eyes and explore their association with visual acuity in children. Design, Setting, and Participants This population-based nested case-control study included children aged 6 to 8 years who were consecutively recruited between January 2016 and July 2017 from the population-based Hong Kong Children Eye Study (HKCES) at the Chinese University of Hong Kong Eye Centre. All participants underwent OCT-A with a swept-source OCT and detailed ophthalmic investigations. Macular microvasculature of the superficial capillary plexus was quantified by a customized automated image analysis program. A multivariable linear regression was conducted to evaluate the differences in OCT-A metrics between amblyopic and nonamblyopic eyes after adjustment for all known confounders. Data analysis was conducted from September to November 2018. Main Outcomes and Measures Differences in OCT-A metric (foveal avascular zone [FAZ]) area, FAZ circularity, vessel density, vessel diameter index, and fractal dimension between amblyopic and nonamblyopic eyes. Results There were 30 participants with amblyopia (mean [SD] age, 7.57 [1.2] years; 16 girls [53.3%]) and 1045 controls (mean [SD] age, 7.65 [1.0] years; 580 girls [55.5%]) in this cohort. Compared with control eyes, amblyopic eyes had decreased FAZ circularity (-0.058; 95% CI, -0.096 to -0.021, P = .002), decreased fractal dimension (-0.014; 95% CI, -0.024 to -0.003; P = .01), and increased vessel diameter index (0.002; 95% CI, 0.002 to 0.003; P < .001). A difference was not identified between FAZ area and vessel density. LogMAR visual acuity was associated with FAZ circularity (sβ, -0.133; P < .001) and vessel diameter index (sβ, 0.097; P = .001) but not with vessel density nor FAZ area. Conclusions and Relevance The results of this population-based study in children supports the presence of macular microvascular abnormalities in amblyopic eyes. Such changes as measured by OCT-A metrics are associated with visual acuity, inferring retinal involvement in the development of amblyopia and suggesting a potential role of quantitative OCT-A metrics in the diagnosis and recognition of amblyopia.
Collapse
Affiliation(s)
- Emily S Wong
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Eye Hospital, Kowloon, Hong Kong
| | - Xiu-Juan Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Nan Yuan
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Jian Li
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong.,Zhejiang University School of Medicine, Department of Ophthalmology, Affiliated Hangzhou First People's Hospital, Hangzhou, China
| | - C P Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Lijia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Eye Hospital, Kowloon, Hong Kong.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Carol Y Cheung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Eye Hospital, Kowloon, Hong Kong.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Sha Tin, Hong Kong
| |
Collapse
|
72
|
Yu Q, Fu H, Wang G, Zhang J, Yan B. Short-Term Visual Experience Leads to Potentiation of Spontaneous Activity in Mouse Superior Colliculus. Neurosci Bull 2021; 37:353-368. [PMID: 33394455 DOI: 10.1007/s12264-020-00622-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/02/2020] [Indexed: 12/19/2022] Open
Abstract
Spontaneous activity in the brain maintains an internal structured pattern that reflects the external environment, which is essential for processing information and developing perception and cognition. An essential prerequisite of spontaneous activity for perception is the ability to reverberate external information, such as by potentiation. Yet its role in the processing of potentiation in mouse superior colliculus (SC) neurons is less studied. Here, we used electrophysiological recording, optogenetics, and drug infusion methods to investigate the mechanism of potentiation in SC neurons. We found that visual experience potentiated SC neurons several minutes later in different developmental stages, and the similarity between spontaneous and visually-evoked activity increased with age. Before eye-opening, activation of retinal ganglion cells that expressed ChR2 also induced the potentiation of spontaneous activity in the mouse SC. Potentiation was dependent on stimulus number and showed feature selectivity for direction and orientation. Optogenetic activation of parvalbumin neurons in the SC attenuated the potentiation induced by visual experience. Furthermore, potentiation in SC neurons was blocked by inhibiting the glutamate transporter GLT1. These results indicated that the potentiation induced by a visual stimulus might play a key role in shaping the internal representation of the environment, and serves as a carrier for short-term memory consolidation.
Collapse
Affiliation(s)
- Qingpeng Yu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Hang Fu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Gang Wang
- Center of Brain Sciences, Beijing Institute of Basic Medical Sciences, No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Jiayi Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| | - Biao Yan
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
73
|
Abstract
Retinal ganglion cells (RGCs) serve as a crucial communication channel from the retina to the brain. In the adult, these cells receive input from defined sets of presynaptic partners and communicate with postsynaptic brain regions to convey features of the visual scene. However, in the developing visual system, RGC interactions extend beyond their synaptic partners such that they guide development before the onset of vision. In this Review, we summarize our current understanding of how interactions between RGCs and their environment influence cellular targeting, migration and circuit maturation during visual system development. We describe the roles of RGC subclasses in shaping unique developmental responses within the retina and at central targets. Finally, we highlight the utility of RNA sequencing and genetic tools in uncovering RGC type-specific roles during the development of the visual system.
Collapse
Affiliation(s)
- Shane D'Souza
- The Visual Systems Group, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| | - Richard A Lang
- The Visual Systems Group, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Department of Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
74
|
Woertz EN, Wilk MA, Duwell EJ, Mathis JR, Carroll J, DeYoe EA. The relationship between retinal cone density and cortical magnification in human albinism. J Vis 2020; 20:10. [PMID: 32543650 PMCID: PMC7416892 DOI: 10.1167/jov.20.6.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The human fovea lies at the center of the retina and supports high-acuity vision. In normal visual system development, the highest acuity is correlated with both a high density of cone photoreceptors in the fovea and a magnified retinotopic representation of the fovea in the visual cortex. Both cone density and the cortical area dedicated to each degree of visual space—the latter describing cortical magnification (CM)—steadily decrease with increasing eccentricity from the fovea. In albinism, peak cone density at the fovea and visual acuity are decreased, but seem to be within normal limits in the periphery, thus providing a model to explore the correlation between retinal structure, cortical structure, and behavior. Here, we used adaptive optics scanning light ophthalmoscopy to assess retinal cone density and functional magnetic resonance imaging to measure CM in the primary visual cortex of normal controls and individuals with albinism. We find that retinotopic organization is more varied among individuals with albinism than previously appreciated. Additionally, CM outside the fovea is similar to that in controls, but also more variable. CM in albinism and controls exceeds that which might be predicted based on cone density alone, but is more accurately predicted by retinal ganglion cell density. This finding suggests that decreased foveal cone density in albinism may be partially counteracted by nonuniform connectivity between cones and their downstream signaling partners. Together, these results emphasize that central as well as retinal factors must be included to provide a complete picture of aberrant structure and function in albinism.
Collapse
|
75
|
Moghimi S, Shadkam A, Mahmoudzadeh M, Calipe O, Panzani M, Edalati M, Ghorbani M, Routier L, Wallois F. The intimate relationship between coalescent generators in very premature human newborn brains: Quantifying the coupling of nested endogenous oscillations. Hum Brain Mapp 2020; 41:4691-4703. [PMID: 33463873 PMCID: PMC7555093 DOI: 10.1002/hbm.25150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/26/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Temporal theta slow-wave activity (TTA-SW) in premature infants is a specific neurobiomarker of the early neurodevelopment of perisylvian networks observed as early as 24 weeks of gestational age (wGA). It is present at the turning point between non-sensory driven spontaneous networks and cortical network functioning. Despite its clinical importance, the underlying mechanisms responsible for this spontaneous nested activity and its functional role have not yet been determined. The coupling between neural oscillations at different timescales is a key feature of ongoing neural activity, the characteristics of which are determined by the network structure and dynamics. The underlying mechanisms of cross-frequency coupling (CFC) are associated with several putative functions in adults. In order to show that this generic mechanism is already in place early in the course of development, we analyzed electroencephalography recordings from sleeping preterm newborns (24-27 wGA). Employing cross-frequency phase-amplitude coupling analyses, we found that TTAs were orchestrated by the SWs defined by a precise temporal relationship. Notably, TTAs were synchronized to the SW trough, and were suppressed during the SW peak. Spontaneous endogenous TTA-SWs constitute one of the very early signatures of the developing temporal neural networks with key functions, such as language and communication. The presence of a fine-tuned relationship between the slow activity and the TTA in premature neonates emphasizes the complexity and relative maturity of the intimate mechanisms that shape the CFC, the disruption of which can have severe neurodevelopmental consequences.
Collapse
Affiliation(s)
- Sahar Moghimi
- Electrical Engineering DepartmentFerdowsi University of MashhadIran
- Rayan Center for Neuroscience and BehaviorFerdowsi University of MashhadMashhadIran
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction CérébraleCentre Universitaire de Recherches en SanteAmiens CedexFrance
| | - Azadeh Shadkam
- Electrical Engineering DepartmentFerdowsi University of MashhadIran
| | - Mahdi Mahmoudzadeh
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction CérébraleCentre Universitaire de Recherches en SanteAmiens CedexFrance
- Inserm UMR1105, EFSN PédiatriquesCentre Hospitalier Universitaire Amiens sudAmiens CedexFrance
| | - Olivia Calipe
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction CérébraleCentre Universitaire de Recherches en SanteAmiens CedexFrance
| | - Marine Panzani
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction CérébraleCentre Universitaire de Recherches en SanteAmiens CedexFrance
| | - Mohammadreza Edalati
- Electrical Engineering DepartmentFerdowsi University of MashhadIran
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction CérébraleCentre Universitaire de Recherches en SanteAmiens CedexFrance
| | - Maryam Ghorbani
- Electrical Engineering DepartmentFerdowsi University of MashhadIran
- Rayan Center for Neuroscience and BehaviorFerdowsi University of MashhadMashhadIran
| | - Laura Routier
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction CérébraleCentre Universitaire de Recherches en SanteAmiens CedexFrance
- Inserm UMR1105, EFSN PédiatriquesCentre Hospitalier Universitaire Amiens sudAmiens CedexFrance
| | - Fabrice Wallois
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction CérébraleCentre Universitaire de Recherches en SanteAmiens CedexFrance
- Inserm UMR1105, EFSN PédiatriquesCentre Hospitalier Universitaire Amiens sudAmiens CedexFrance
| |
Collapse
|
76
|
Alvarado JA, Dhande OS, Prosseda PP, Kowal TJ, Ning K, Jabbehdari S, Hu Y, Sun Y. Developmental distribution of primary cilia in the retinofugal visual pathway. J Comp Neurol 2020; 529:1442-1455. [PMID: 32939774 DOI: 10.1002/cne.25029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/21/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022]
Abstract
The mammalian visual system is composed of circuitry connecting sensory input from the retina to the processing core of the visual cortex. The two main retinorecipient brain targets, the superior colliculus (SC) and dorsal lateral geniculate nucleus (dLGN), bridge retinal input and visual output. The primary cilium is a conserved organelle increasingly viewed as a critical sensor for the regulation of developmental and homeostatic pathways in most mammalian cell types. Moreover, cilia have been described as crucial for neurogenesis, neuronal maturation, and survival in the cortex and retina. However, cilia in the visual relay center remain to be fully described. In this study, we characterized the ciliation profile of the SC and dLGN and found that the overall number of ciliated cells declined during development. Interestingly, shorter ciliated cells in both regions were identified as neurons, whose numbers remained stable over time, suggesting that cilia retention is a critical feature for optimal neuronal function in SC and dLGN. Our study suggests that primary cilia are important for neuronal maturation and function in cells of the SC and dLGN.
Collapse
Affiliation(s)
- Jorge A Alvarado
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Onkar S Dhande
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Philipp P Prosseda
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Tia J Kowal
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Sayena Jabbehdari
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA.,Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA.,Palo Alto Veterans Administration, Palo Alto, California, USA
| |
Collapse
|
77
|
Liang L, Chen C. Organization, Function, and Development of the Mouse Retinogeniculate Synapse. Annu Rev Vis Sci 2020; 6:261-285. [DOI: 10.1146/annurev-vision-121219-081753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual information is encoded in distinct retinal ganglion cell (RGC) types in the eye tuned to specific features of the visual space. These streams of information project to the visual thalamus, the first station of the image-forming pathway. In the mouse, this connection between RGCs and thalamocortical neurons, the retinogeniculate synapse, has become a powerful experimental model for understanding how circuits in the thalamus are constructed to process these incoming lines of information. Using modern molecular and genetic tools, recent studies have suggested a more complex circuit organization than was previously understood. In this review, we summarize the current understanding of the structural and functional organization of the retinogeniculate synapse in the mouse. We discuss a framework by which a seemingly complex circuit can effectively integrate and parse information to downstream stations of the visual pathway. Finally, we review how activity and visual experience can sculpt this exquisite connectivity.
Collapse
Affiliation(s)
- Liang Liang
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Neuroscience, Yale University, New Haven, Connecticut 06520, USA
| | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
78
|
Cong Q, Soteros BM, Wollet M, Kim JH, Sia GM. The endogenous neuronal complement inhibitor SRPX2 protects against complement-mediated synapse elimination during development. Nat Neurosci 2020; 23:1067-1078. [PMID: 32661396 PMCID: PMC7483802 DOI: 10.1038/s41593-020-0672-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Complement-mediated synapse elimination has emerged as an important process in both brain development and neurological diseases, but whether neurons express complement inhibitors that protect synapses against complement-mediated synapse elimination remains unknown. Here, we show that the sushi domain protein SRPX2 is a neuronally expressed complement inhibitor that regulates complement-dependent synapse elimination. SRPX2 directly binds to C1q and blocks its activity, and SRPX2-/Y mice show increased C3 deposition and microglial synapse engulfment. They also show a transient decrease in synapse numbers and increase in retinogeniculate axon segregation in the lateral geniculate nucleus. In the somatosensory cortex, SRPX2-/Y mice show decreased thalamocortical synapse numbers and increased spine pruning. C3-/-;SRPX2-/Y double-knockout mice exhibit phenotypes associated with C3-/- mice rather than SRPX2-/Y mice, which indicates that C3 is necessary for the effect of SRPX2 on synapse elimination. Together, these results show that SRPX2 protects synapses against complement-mediated elimination in both the thalamus and the cortex.
Collapse
Affiliation(s)
- Qifei Cong
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Breeanne M Soteros
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mackenna Wollet
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jun Hee Kim
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Gek-Ming Sia
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
79
|
The potential effects of NICU environment and multisensory stimulation in prematurity. Pediatr Res 2020; 88:161-162. [PMID: 31901220 DOI: 10.1038/s41390-019-0738-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/11/2019] [Accepted: 12/15/2019] [Indexed: 12/20/2022]
|
80
|
Neuronal regulation of the blood-brain barrier and neurovascular coupling. Nat Rev Neurosci 2020; 21:416-432. [PMID: 32636528 DOI: 10.1038/s41583-020-0322-2] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2020] [Indexed: 12/31/2022]
Abstract
To continuously process neural activity underlying sensation, movement and cognition, the CNS requires a homeostatic microenvironment that is not only enriched in nutrients to meet its high metabolic demands but that is also devoid of toxins that might harm the sensitive neural tissues. This highly regulated microenvironment is made possible by two unique features of CNS vasculature absent in the peripheral organs. First, the blood-blood barrier, which partitions the circulating blood from the CNS, acts as a gatekeeper to facilitate the selective trafficking of substances between the blood and the parenchyma. Second, neurovascular coupling ensures that, following local neural activation, regional blood flow is increased to quickly supply more nutrients and remove metabolic waste. Here, we review how neural and vascular activity act on one another with regard to these two properties.
Collapse
|
81
|
Coupling Neuropeptide Levels to Structural Plasticity in Drosophila Clock Neurons. Curr Biol 2020; 30:3154-3166.e4. [PMID: 32619484 DOI: 10.1016/j.cub.2020.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022]
Abstract
We have previously reported that pigment dispersing factor (PDF) neurons, which are essential in the control of rest-activity cycles in Drosophila, undergo circadian remodeling of their axonal projections, a phenomenon called circadian structural plasticity. Axonal arborizations display higher complexity during the day and become simpler at night, and this remodeling involves changes in the degree of connectivity. This phenomenon depends on the clock present within the ventrolateral neurons (LNvs) as well as in glia. In this work, we characterize in detail the contribution of the PDF neuropeptide to structural plasticity at different times across the day. Using diverse genetic strategies to temporally restrict its downregulation, we demonstrate that even subtle alterations to PDF cycling at the dorsal protocerebrum correlate with impaired remodeling, underscoring its relevance for the characteristic morning spread; PDF released from the small LNvs (sLNvs) and the large LNvs (lLNvs) contribute to the process. Moreover, forced depolarization recruits activity-dependent mechanisms to mediate growth only at night, overcoming the restriction imposed by the clock on membrane excitability. Interestingly, the active process of terminal remodeling requires PDF receptor (PDFR) signaling acting locally through the cyclic-nucleotide-gated channel ion channel subunit A (CNGA). Thus, clock-dependent PDF signaling shapes the connectivity of these essential clock neurons on daily basis.
Collapse
|
82
|
Danka Mohammed CP, Khalil R. Postnatal Development of Visual Cortical Function in the Mammalian Brain. Front Syst Neurosci 2020; 14:29. [PMID: 32581733 PMCID: PMC7296053 DOI: 10.3389/fnsys.2020.00029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
This review aims to discuss (1) the refinement of mammalian visual cortical circuits and the maturation of visual functions they subserve in primary visual cortex (V1) and other visual cortical areas, and (2) existing evidence supporting the notion of differential rates of maturation of visual functions in different species. It is well known that different visual functions and their underlying circuitry mature and attain adultlike characteristics at different stages in postnatal development with varying growth rates. The developmental timecourse and duration of refinement varies significantly both in V1 of various species and among different visual cortical areas; while basic visual functions like spatial acuity mature earlier requiring less time, higher form perception such as contour integration is more complex and requires longer postnatal time to refine. This review will highlight the importance of systematic comparative analysis of the differential rates of refinement of visual circuitry and function as that may help reveal underlying key mechanisms necessary for healthy visual development during infancy and adulthood. This type of approach will help future studies to establish direct links between various developmental aspects of different visual cortical areas in both human and animal models; thus enhancing our understanding of vision related neurological disorders and their potential therapeutic remedies.
Collapse
Affiliation(s)
- Chand Parvez Danka Mohammed
- Biosciences and Bioengineering Research Institute (BBRI), American University of Sharjah, Sharjah, United Arab Emirates
| | - Reem Khalil
- Biosciences and Bioengineering Research Institute (BBRI), American University of Sharjah, Sharjah, United Arab Emirates.,Department of Biology, Chemistry, and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
83
|
Abstract
Binocular vision depends on retinal ganglion cell (RGC) axon projection either to the same side or to the opposite side of the brain. In this article, we review the molecular mechanisms for decussation of RGC axons, with a focus on axon guidance signaling at the optic chiasm and ipsi- and contralateral axon organization in the optic tract prior to and during targeting. The spatial and temporal features of RGC neurogenesis that give rise to ipsilateral and contralateral identity are described. The albino visual system is highlighted as an apt comparative model for understanding RGC decussation, as albinos have a reduced ipsilateral projection and altered RGC neurogenesis associated with perturbed melanogenesis in the retinal pigment epithelium. Understanding the steps for RGC specification into ipsi- and contralateral subtypes will facilitate differentiation of stem cells into RGCs with proper navigational abilities for effective axon regeneration and correct targeting of higher-order visual centers.
Collapse
Affiliation(s)
- Carol Mason
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10027, USA; .,Department of Neuroscience, Columbia University, New York, NY 10027, USA.,Department of Ophthalmology, Columbia University, New York, NY 10027, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA;
| | - Nefeli Slavi
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
84
|
Balaskas N, Ng D, Zampieri N. The Positional Logic of Sensory-Motor Reflex Circuit Assembly. Neuroscience 2020; 450:142-150. [PMID: 32387250 DOI: 10.1016/j.neuroscience.2020.04.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/11/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
Throughout his scientific career, Tom Jessell pioneered the spinal cord as a model system to study the molecular programs of neural specification, axon guidance, and connection specificity. His contributions to these fields and more broadly to that of developmental neuroscience will continue to inspire and define many generations of researchers. It is challenging to capture all of Tom's findings in one essay, and therefore, here we wish to briefly highlight his contributions to the problem of connection specificity, with a focus on the spinal sensory-motor reflex circuit. In particular, emphasis will be placed on discoveries from his laboratory that revealed a significant role of positional strategies in establishing selective sensory-motor connections. This work introduced novel principles of neuronal connectivity that may apply to how precise circuit wiring occurs throughout the nervous system.
Collapse
Affiliation(s)
- Nikolaos Balaskas
- The Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA.
| | - David Ng
- The Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA.
| | - Niccolò Zampieri
- Max-Delbrück-Center for Molecular Medicine Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| |
Collapse
|
85
|
Pan-Vazquez A, Wefelmeyer W, Gonzalez Sabater V, Neves G, Burrone J. Activity-Dependent Plasticity of Axo-axonic Synapses at the Axon Initial Segment. Neuron 2020; 106:265-276.e6. [PMID: 32109363 PMCID: PMC7181187 DOI: 10.1016/j.neuron.2020.01.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 12/06/2019] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
The activity-dependent rules that govern the wiring of GABAergic interneurons are not well understood. Chandelier cells (ChCs) are a type of GABAergic interneuron that control pyramidal cell output through axo-axonic synapses that target the axon initial segment. In vivo imaging of ChCs during development uncovered a narrow window (P12-P18) over which axons arborized and formed connections. We found that increases in the activity of either pyramidal cells or individual ChCs during this temporal window result in a reversible decrease in axo-axonic connections. Voltage imaging of GABAergic transmission at the axon initial segment (AIS) showed that axo-axonic synapses were depolarizing during this period. Identical manipulations of network activity in older mice (P40-P46), when ChC synapses are inhibitory, resulted instead in an increase in axo-axonic synapses. We propose that the direction of ChC synaptic plasticity follows homeostatic rules that depend on the polarity of axo-axonic synapses.
Collapse
Affiliation(s)
- Alejandro Pan-Vazquez
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Winnie Wefelmeyer
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Victoria Gonzalez Sabater
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Guilherme Neves
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, UK
| | - Juan Burrone
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
86
|
Ahmadi K, Fracasso A, Puzniak RJ, Gouws AD, Yakupov R, Speck O, Kaufmann J, Pestilli F, Dumoulin SO, Morland AB, Hoffmann MB. Triple visual hemifield maps in a case of optic chiasm hypoplasia. Neuroimage 2020; 215:116822. [PMID: 32276070 DOI: 10.1016/j.neuroimage.2020.116822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/27/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022] Open
Abstract
In humans, each hemisphere comprises an overlay of two visuotopic maps of the contralateral visual field, one from each eye. Is the capacity of the visual cortex limited to these two maps or are plastic mechanisms available to host more maps? We determined the cortical organization of the visual field maps in a rare individual with chiasma hypoplasia, where visual cortex plasticity is challenged to accommodate three hemifield maps. Using high-resolution fMRI at 7T and diffusion-weighted MRI at 3T, we found three hemiretinal inputs, instead of the normal two, to converge onto the left hemisphere. fMRI-based population receptive field mapping of the left V1-V3 at 3T revealed three superimposed hemifield representations in the left visual cortex, i.e. two representations of opposing visual hemifields from the left eye and one right hemifield representation from the right eye. We conclude that developmental plasticity including the re-wiring of local intra- and cortico-cortical connections is pivotal to support the coexistence and functioning of three hemifield maps within one hemisphere.
Collapse
Affiliation(s)
- Khazar Ahmadi
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, 39120, Germany; Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, 22362, Sweden
| | - Alessio Fracasso
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, 3584 CS, the Netherlands; Department of Radiology, University Medical Center Utrecht, Utrecht, 3584 CX, the Netherlands; Spinoza Centre for Neuroimaging, Amsterdam, 1105 BK, the Netherlands; Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QB, UK
| | - Robert J Puzniak
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, 39120, Germany
| | - Andre D Gouws
- Department of Psychology, York Neuroimaging Centre, University of York, York, YO10 5NY, UK
| | - Renat Yakupov
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke University, Magdeburg, 39120, Germany; German Center for Neurodegenerative Diseases, Magdeburg, 39120, Germany
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke University, Magdeburg, 39120, Germany; German Center for Neurodegenerative Diseases, Magdeburg, 39120, Germany; Leibniz Institute for Neurobiology, Magdeburg, 39118, Germany; Center for Behavioral Brain Sciences, Magdeburg, 39106, Germany
| | - Joern Kaufmann
- Department of Neurology, Otto-von-Guericke-University, Magdeburg, 39120, Germany
| | - Franco Pestilli
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 1101 E, USA
| | - Serge O Dumoulin
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, 3584 CS, the Netherlands; Spinoza Centre for Neuroimaging, Amsterdam, 1105 BK, the Netherlands; Department of Experimental and Applied Psychology, VU University Amsterdam, Amsterdam, 1081 BT, the Netherlands
| | - Antony B Morland
- Department of Psychology, York Neuroimaging Centre, University of York, York, YO10 5NY, UK; Centre for Neuroscience, Hull-York Medical School, University of York, York, YO10 5DD, UK
| | - Michael B Hoffmann
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, 39120, Germany; Center for Behavioral Brain Sciences, Magdeburg, 39106, Germany.
| |
Collapse
|
87
|
Alteration in the time and/or mode of delivery differentially modulates early development in mice. Mol Brain 2020; 13:34. [PMID: 32151280 PMCID: PMC7063737 DOI: 10.1186/s13041-020-00578-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/02/2020] [Indexed: 12/27/2022] Open
Abstract
Delivery is a complex biological process involving hormonal and mechanical stimuli that together condition the survival and development of the fetus out of the womb. Accordingly, changes in the time or way of being born are associated with an alteration of fundamental biological functions and hypothesized to promote the emergence of neurodevelopmental disorders. Hence, the steadily rise in preterm birth and cesarean section (CS) delivery rates over the past years has become a worldwide health concern. In our previous work, we reported that even though no long-term autistic-like deficits were observed, mice born preterm by CS presented early transient neuronal and communicative defects. However, understanding if these alterations were due to an early birth combined with CS delivery, or if prematurity solely could lead to a similar outcome remained to be evaluated. Using mice born either at term or preterm by vaginal or CS delivery, we assessed early life ultrasonic vocalizations and the onset of eye opening. We report that alterations in communicative behaviors are finely attuned and specifically affected either by preterm birth or by the association between CS delivery and preterm birth in mice, while delayed onset of eye opening is due to prematurity. Moreover, our work further underlies a gender-dependent vulnerability to changes in the time and/or way of being born with distinct outcomes observed in males and females. Thus, our results shed light on the intricacy of birth alterations and might further explain the disparities reported in epidemiological studies.
Collapse
|
88
|
Xu X, Hanganu-Opatz IL, Bieler M. Cross-Talk of Low-Level Sensory and High-Level Cognitive Processing: Development, Mechanisms, and Relevance for Cross-Modal Abilities of the Brain. Front Neurorobot 2020; 14:7. [PMID: 32116637 PMCID: PMC7034303 DOI: 10.3389/fnbot.2020.00007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
The emergence of cross-modal learning capabilities requires the interaction of neural areas accounting for sensory and cognitive processing. Convergence of multiple sensory inputs is observed in low-level sensory cortices including primary somatosensory (S1), visual (V1), and auditory cortex (A1), as well as in high-level areas such as prefrontal cortex (PFC). Evidence shows that local neural activity and functional connectivity between sensory cortices participate in cross-modal processing. However, little is known about the functional interplay between neural areas underlying sensory and cognitive processing required for cross-modal learning capabilities across life. Here we review our current knowledge on the interdependence of low- and high-level cortices for the emergence of cross-modal processing in rodents. First, we summarize the mechanisms underlying the integration of multiple senses and how cross-modal processing in primary sensory cortices might be modified by top-down modulation of the PFC. Second, we examine the critical factors and developmental mechanisms that account for the interaction between neuronal networks involved in sensory and cognitive processing. Finally, we discuss the applicability and relevance of cross-modal processing for brain-inspired intelligent robotics. An in-depth understanding of the factors and mechanisms controlling cross-modal processing might inspire the refinement of robotic systems by better mimicking neural computations.
Collapse
Affiliation(s)
- Xiaxia Xu
- Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Bieler
- Laboratory for Neural Computation, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
89
|
Bazwinsky-Wutschke I, Dehghani F. Impact of cochlear ablation on calretinin and synaptophysin in the gerbil anteroventral cochlear nucleus before the hearing onset. J Chem Neuroanat 2020; 104:101746. [PMID: 31945410 DOI: 10.1016/j.jchemneu.2020.101746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/31/2023]
Abstract
Mammalian auditory system undergoes many structural and functional modifications during postnatal development, which are dependent on the relationship between auditory nerve fibers and their nuclei. In the present study, the cochlea of Meriones unguiculatus was ablated unilaterally on postnatal day 5 or 9 (P5 or P9), before the onset of hearing. Histochemical analysis of synaptophysin (SYN) and calretinin (CR) in anterior anteroventral cochlear nucleus (AVCN-A) was performed to analyze whether unilateral cochlea ablation induces changes in the auditory terminal endings and somata of spherical bushy cells (SBCs). During the period of postnatal development, CR-labeling was evident in somata of SBCs and in auditory nerve terminals. SYN was most apparent in puncta encircled cell bodies, progressing with age. Cochlear removal at P5 induced a decrease in CR-labeling in SBCs somata 6 h and 48 h post-lesion; whereas, ablation at P9 increased the somatic CR-labeling in the lesioned AVCN-A after 24 and 48 h post-lesion. The SYN-labeled synaptic puncta were remarkably reduced in the AVCN-A of P5- and P9-cochlea-ablated gerbils with stronger effects in P5 animals (a 50% reduction after 48 h). Interestingly, a significant increase in the SYN-immunolabeled puncta was found after 48 h compared to 24 h in the lesioned AVCN-A of P9 gerbils, indicating reactive synaptogenesis. Our study shows, that following the destruction of the cochlea at different postnatal periods, the CR- and SYN-labeling are differentially influenced in the AVCN-A, which in turn coincides with different critical developmental periods before the onset of hearing.
Collapse
Affiliation(s)
- Ivonne Bazwinsky-Wutschke
- Department of Biology, University of Leipzig, Talstrasse 33, D-04103 Leipzig, Germany; Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, D-06108 Halle (Saale), Germany.
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, D-06108 Halle (Saale), Germany
| |
Collapse
|
90
|
Cisneros-Franco JM, Voss P, Thomas ME, de Villers-Sidani E. Critical periods of brain development. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:75-88. [PMID: 32958196 DOI: 10.1016/b978-0-444-64150-2.00009-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Brain plasticity is maximal at specific time windows during early development known as critical periods (CPs), during which sensory experience is necessary to establish optimal cortical representations of the surrounding environment. After CP closure, a range of functional and structural elements prevent passive experience from eliciting significant plastic changes in the brain. The transition from a plastic to a more fixed state is advantageous as it allows for the sequential consolidation and retention of new and more complex perceptual, motor, and cognitive functions. However, the formation of stable neural representations may pose limitations on future revisions to the circuitry. If sensory experience is abnormal or absent during this time, it can have profound effects on sensory representations in adulthood, resulting in quasi-permanent adaptations that can make it nearly impossible to learn certain skills or process certain stimulus properties later on in life. This chapter begins with a brief introduction to experience-dependent plasticity throughout the lifespan (Section Introduction). Next, we define what constitutes a CP (Section What Are Critical Periods?) and review some of the key CPs in the visual and auditory systems (Section Key Critical Periods of Sensory Systems). We then discuss the mechanisms whereby cortical plasticity is regulated both locally and through neuromodulatory systems (Section How Are Critical Periods Regulated?). Finally, we highlight studies showing that CPs can be extended beyond their normal epochs, closed prematurely, or reopened during adult life by merely altering sensory inputs (Section Timing of Critical Periods: Can CP Plasticity Be Extended, Limited, or Reactivated?).
Collapse
Affiliation(s)
- J Miguel Cisneros-Franco
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
| | - Patrice Voss
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
| | - Maryse E Thomas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
| | - Etienne de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada.
| |
Collapse
|
91
|
Jeng JY, Ceriani F, Hendry A, Johnson SL, Yen P, Simmons DD, Kros CJ, Marcotti W. Hair cell maturation is differentially regulated along the tonotopic axis of the mammalian cochlea. J Physiol 2019; 598:151-170. [PMID: 31661723 PMCID: PMC6972525 DOI: 10.1113/jp279012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Key points Outer hair cells (OHCs) enhance the sensitivity and the frequency tuning of the mammalian cochlea. Similar to the primary sensory receptor, the inner hair cells (IHCs), the mature functional characteristics of OHCs are acquired before hearing onset. We found that OHCs, like IHCs, fire spontaneous Ca2+‐induced action potentials (APs) during immature stages of development, which are driven by CaV1.3 Ca2+ channels. We also showed that the development of low‐ and high‐frequency hair cells is differentially regulated during pre‐hearing stages, with the former cells being more strongly dependent on experience‐independent Ca2+ action potential activity.
Abstract Sound amplification within the mammalian cochlea depends upon specialized hair cells, the outer hair cells (OHCs), which possess both sensory and motile capabilities. In various altricial rodents, OHCs become functionally competent from around postnatal day 7 (P7), before the primary sensory inner hair cells (IHCs), which become competent at about the onset of hearing (P12). The mechanisms responsible for the maturation of OHCs and their synaptic specialization remain poorly understood. We report that spontaneous Ca2+ activity in the immature cochlea, which is generated by CaV1.3 Ca2+ channels, differentially regulates the maturation of hair cells along the cochlea. Under near‐physiological recording conditions we found that, similar to IHCs, immature OHCs elicited spontaneous Ca2+ action potentials (APs), but only during the first few postnatal days. Genetic ablation of these APs in vivo, using CaV1.3−/− mice, prevented the normal developmental acquisition of mature‐like basolateral membrane currents in low‐frequency (apical) hair cells, such as IK,n (carried by KCNQ4 channels), ISK2 and IACh (α9α10nAChRs) in OHCs and IK,n and IK,f (BK channels) in IHCs. Electromotility and prestin expression in OHCs were normal in CaV1.3−/− mice. The maturation of high‐frequency (basal) hair cells was also affected in CaV1.3−/− mice, but to a much lesser extent than apical cells. However, a characteristic feature in CaV1.3−/− mice was the reduced hair cell size irrespective of their cochlear location. We conclude that the development of low‐ and high‐frequency hair cells is differentially regulated during development, with apical cells being more strongly dependent on experience‐independent Ca2+ APs. Outer hair cells (OHCs) enhance the sensitivity and the frequency tuning of the mammalian cochlea. Similar to the primary sensory receptor, the inner hair cells (IHCs), the mature functional characteristics of OHCs are acquired before hearing onset. We found that OHCs, like IHCs, fire spontaneous Ca2+‐induced action potentials (APs) during immature stages of development, which are driven by CaV1.3 Ca2+ channels. We also showed that the development of low‐ and high‐frequency hair cells is differentially regulated during pre‐hearing stages, with the former cells being more strongly dependent on experience‐independent Ca2+ action potential activity.
Collapse
Affiliation(s)
- Jing-Yi Jeng
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Federico Ceriani
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Aenea Hendry
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Piece Yen
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | | | - Corné J Kros
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
92
|
Initiation of CNS Myelination in the Optic Nerve Is Dependent on Axon Caliber. Cell Rep 2019; 25:544-550.e3. [PMID: 30332636 PMCID: PMC6258034 DOI: 10.1016/j.celrep.2018.09.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/19/2018] [Accepted: 09/13/2018] [Indexed: 11/20/2022] Open
Abstract
Emerging evidence suggests that neuronal signaling is important for oligodendrocyte myelination; however, the necessity of
this signaling during development is unclear. By eliminating dynamic neuronal signaling along the developing optic nerve, we find
that oligodendrocyte differentiation is not dependent on neuronal signaling and that the initiation of myelination is dependent on
a permissive substrate, namely supra-threshold axon caliber. Furthermore, we show that loss of dynamic neuronal signaling results
in hypermyelination of axons. We propose that oligodendrocyte differentiation is regulated by non-neuronal factors during optic
nerve development, whereas myelination is sensitive to the biophysical properties of axonal diameter. Mayoral et al. show that elimination of neuronal signaling via enucleation of the developing optic nerve of
Wlds mice results in normal oligodendrocyte differentiation but disrupted myelination. Myelination is rescued
when axons are enlarged prior to enucleation, showing that supra-threshold axon caliber, but not neuronal signaling, is necessary
for myelination.
Collapse
|
93
|
Diversity of Ocular Dominance Patterns in Visual Cortex Originates from Variations in Local Cortical Retinotopy. J Neurosci 2019; 39:9145-9163. [PMID: 31558616 DOI: 10.1523/jneurosci.1151-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 11/21/2022] Open
Abstract
The primary visual cortex contains a detailed map of retinal stimulus position (retinotopic map) and eye input (ocular dominance map) that results from the precise arrangement of thalamic afferents during cortical development. For reasons that remain unclear, the patterns of ocular dominance are very diverse across species and can take the shape of highly organized stripes, convoluted beads, or no pattern at all. Here, we use a new image-processing algorithm to measure ocular dominance patterns more accurately than in the past. We use these measurements to demonstrate that ocular dominance maps follow a common organizing principle that makes the cortical axis with the slowest retinotopic gradient orthogonal to the ocular dominance stripes. We demonstrate this relation in multiple regions of the primary visual cortex from individual animals, and different species. Moreover, consistent with the increase in the retinotopic gradient with visual eccentricity, we demonstrate a strong correlation between eccentricity and ocular dominance stripe width. We also show that an eye/polarity grid emerges within the visual cortical map when the representation of light and dark stimuli segregates along an axis orthogonal to the ocular dominance stripes, as recently demonstrated in cats. Based on these results, we propose a developmental model of visual cortical topography that sorts thalamic afferents by eye input and stimulus polarity, and then maximizes the binocular retinotopic match needed for depth perception and the light-dark retinotopic mismatch needed to process stimulus orientation. In this model, the different ocular dominance patterns simply emerge from differences in local retinotopic cortical topography.SIGNIFICANCE STATEMENT Thalamocortical afferents segregate in primary visual cortex by eye input and light-dark polarity. This afferent segregation forms cortical patterns that vary greatly across species for reasons that remain unknown. Here we show that the formation of ocular dominance patterns follows a common organizing principle across species that aligns the cortical axis of ocular dominance segregation with the axis of slowest retinotopic gradient. Based on our results, we propose a model of visual cortical topography that sorts thalamic afferents by eye input and stimulus polarity along orthogonal axes with the slowest and fastest retinotopic gradients, respectively. This organization maximizes the binocular retinotopic match needed for depth perception and the light-dark retinotopic mismatch needed to process stimulus orientation in carnivores and primates.
Collapse
|
94
|
Gribizis A, Ge X, Daigle TL, Ackman JB, Zeng H, Lee D, Crair MC. Visual Cortex Gains Independence from Peripheral Drive before Eye Opening. Neuron 2019; 104:711-723.e3. [PMID: 31561919 DOI: 10.1016/j.neuron.2019.08.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/15/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
Visual spatial perception in the mammalian brain occurs through two parallel pathways: one reaches the primary visual cortex (V1) through the thalamus and another the superior colliculus (SC) via direct projections from the retina. The origin, development, and relative function of these two evolutionarily distinct pathways remain obscure. We examined the early functional development of both pathways by simultaneously imaging pre- and post-synaptic spontaneous neuronal activity. We observed that the quality of retinal activity transfer to the thalamus and superior colliculus does not change across the first two postnatal weeks. However, beginning in the second postnatal week, retinal activity does not drive V1 as strongly as earlier wave activity, suggesting that intrinsic cortical activity competes with signals from the sensory periphery as the cortex matures. Together, these findings bring new insight into the function of the SC and V1 and the role of peripheral activity in driving both circuits across development.
Collapse
Affiliation(s)
- Alexandra Gribizis
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xinxin Ge
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Tanya L Daigle
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - James B Ackman
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Daeyeol Lee
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Michael C Crair
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
95
|
X-Chromosome Insufficiency Alters Receptive Fields across the Human Early Visual Cortex. J Neurosci 2019; 39:8079-8088. [PMID: 31434689 DOI: 10.1523/jneurosci.2745-18.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 01/15/2023] Open
Abstract
Here, we investigated processing by receptive fields, a fundamental property of neurons in the visual system, using fMRI and population receptive field (pRF) mapping in 20 human females with monosomic Turner syndrome (TS) (mean age, 10.3 ± 2.0 years) versus 22 age- and sex-matched controls (mean age, 10.4 ± 1.9 years). TS, caused by X-chromosome haploinsufficiency in females, is associated with well-recognized effects on visuospatial processing, parieto-occipital cortical anatomy, and parietal lobe function. However, it is unknown whether these effects are related to altered brain structure and function in early visual areas (V1-V3) versus downstream parietal cortical regions. Results show that girls with TS have the following: (1) smaller volume of V1-V3, (2) lower average pRF eccentricity in early visual areas, and (3) sparser pRF coverage in the periphery of the visual field. Further, we examined whether the lower volume of early visual areas, defined using retinotopic mapping, in TS is due to smaller surface area or thinner cortex. Results show that girls with TS had a general reduction in surface area relative to controls in bilateral V1 and V2. Our data suggest the possibility that the smaller cortical surface area of early visual areas in girls with TS may be associated with a lower number of neurons, which in turn, leads to lesser coverage of the peripheral visual field compared to controls. These results indicate that X-chromosome haploinsufficiency associated with TS affects the functional neuroanatomy of early visual areas, and suggest that investigating pRFs in TS may shed insights into their atypical visuospatial processing.SIGNIFICANCE STATEMENT Turner syndrome is caused by the absence of one of the two X-chromosomes in females. Using functional neuroimaging and population receptive field mapping, we find that chromosome dosage variation (X-monosomy) associated with Turner syndrome affects the functional neuroanatomy of the visual cortex. Specifically, girls with Turner syndrome have smaller early visual areas that provide lesser coverage of the peripheral visual field compared with healthy controls. Our observations provide compelling evidence that the X-chromosome affects not only parietal cortex, as described in previous studies, but also affects early visual areas. These findings suggest a paradigm change in understanding the effect of X-monosomy on the development of visuospatial abilities in humans.
Collapse
|
96
|
Schlüter A, Rossberger S, Dannehl D, Janssen JM, Vorwald S, Hanne J, Schultz C, Mauceri D, Engelhardt M. Dynamic Regulation of Synaptopodin and the Axon Initial Segment in Retinal Ganglion Cells During Postnatal Development. Front Cell Neurosci 2019; 13:318. [PMID: 31417359 PMCID: PMC6682679 DOI: 10.3389/fncel.2019.00318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
A key component allowing a neuron to function properly within its dynamic environment is the axon initial segment (AIS), the site of action potential generation. In visual cortex, AIS of pyramidal neurons undergo periods of activity-dependent structural plasticity during development. However, it remains unknown how AIS morphology is organized during development for downstream cells in the visual pathway (retinal ganglion cells; RGCs) and whether AIS retain the ability to dynamically adjust to changes in network state. Here, we investigated the maturation of AIS in RGCs during mouse retinal development, and tested putative activity-dependent mechanisms by applying visual deprivation with a focus on the AIS-specific cisternal organelle (CO), a presumed Ca2+-store. Whole-mount retinae from wildtype and Thy1-GFP transgenic mice were processed for multi-channel immunofluorescence using antibodies against AIS scaffolding proteins ankyrin-G, βIV-spectrin and the CO marker synaptopodin (synpo). Confocal microscopy in combination with morphometrical analysis of AIS length and position as well as synpo cluster size was performed. Data indicated that a subset of RGC AIS contains synpo clusters and that these show significant dynamic regulation in size during development as well as after visual deprivation. Using super resolution microscopy, we addressed the subcellular localization of synpo in RGC axons. Similar to cortical neurons, RGCs show a periodic distribution of AIS scaffolding proteins. A previously reported scaffold-deficient nanodomain correlating with synpo localization is not evident in all RGC AIS. In summary, our work demonstrates a dynamic regulation of both the AIS and synpo in RGCs during retinal development and after visual deprivation, providing first evidence that the AIS and CO in RGCs can undergo structural plasticity in response to changes in network activity.
Collapse
Affiliation(s)
- Annabelle Schlüter
- Institute of Neuroanatomy, Center for Biomedical Research and Medical Technology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Sabrina Rossberger
- Kirchhoff-Institute for Physics, Applied Optics, Heidelberg University, Heidelberg Germany
| | - Dominik Dannehl
- Institute of Neuroanatomy, Center for Biomedical Research and Medical Technology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jan Maximilian Janssen
- Institute of Neuroanatomy, Center for Biomedical Research and Medical Technology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Silke Vorwald
- Institute of Neuroanatomy, Center for Biomedical Research and Medical Technology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Christian Schultz
- Institute of Neuroanatomy, Center for Biomedical Research and Medical Technology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Maren Engelhardt
- Institute of Neuroanatomy, Center for Biomedical Research and Medical Technology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
97
|
Abstract
Functional neural circuits of mature animals are shaped during postnatal development by eliminating early-formed redundant synapses and strengthening of necessary connections. In the nervous system of newborn animals, redundant synapses are only transient features of the circuit. During subsequent postnatal development, some synapses are strengthened whereas other redundant connections are weakened and eventually eliminated. In this review, we introduce recent studies on the mechanisms of developmental remodeling of climbing fiber-to-Purkinje cell synapses in the cerebellum and synapses from the retina to neurons in the dorsal lateral geniculate nucleus of the visual thalamus (retinogeniculate synapses). These are the two representative models of developmental synapse remodeling in the brain and they share basic principles, including dependency on neural activity. However, recent studies have disclosed that, in several respects, the two models use different molecules and strategies to establish mature synaptic connectivity. We describe similarities and differences between the two models and discuss remaining issues to be tackled in the future in order to understand the general schemes of developmental synapse remodeling.
Collapse
Affiliation(s)
- Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
98
|
Lelais A, Mahn J, Narayan V, Zhang C, Shi BE, Triesch J. Autonomous Development of Active Binocular and Motion Vision Through Active Efficient Coding. Front Neurorobot 2019; 13:49. [PMID: 31379548 PMCID: PMC6646586 DOI: 10.3389/fnbot.2019.00049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/24/2019] [Indexed: 11/18/2022] Open
Abstract
We present a model for the autonomous and simultaneous learning of active binocular and motion vision. The model is based on the Active Efficient Coding (AEC) framework, a recent generalization of classic efficient coding theories to active perception. The model learns how to efficiently encode the incoming visual signals generated by an object moving in 3-D through sparse coding. Simultaneously, it learns how to produce eye movements that further improve the efficiency of the sensory coding. This learning is driven by an intrinsic motivation to maximize the system's coding efficiency. We test our approach on the humanoid robot iCub using simulations. The model demonstrates self-calibration of accurate object fixation and tracking of moving objects. Our results show that the model keeps improving until it hits physical constraints such as camera or motor resolution, or limits on its internal coding capacity. Furthermore, we show that the emerging sensory tuning properties are in line with results on disparity, motion, and motion-in-depth tuning in the visual cortex of mammals. The model suggests that vergence and tracking eye movements can be viewed as fundamentally having the same objective of maximizing the coding efficiency of the visual system and that they can be learned and calibrated jointly through AEC.
Collapse
Affiliation(s)
| | - Jonas Mahn
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| | - Vikram Narayan
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| | - Chong Zhang
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Bertram E Shi
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| |
Collapse
|
99
|
Abstract
Maturation of neuronal circuits requires selective elimination of synaptic connections. Although neuron-intrinsic mechanisms are important in this process, it is increasingly recognized that glial cells also play a critical role. Without proper functioning of these cells, the number, morphology, and function of synaptic contacts are profoundly altered, resulting in abnormal connectivity and behavioral abnormalities. In addition to their role in synaptic refinement, glial cells have also been implicated in pathological synapse loss and dysfunction following injury or nervous system degeneration in adults. Although mechanisms regulating glia-mediated synaptic elimination are still being uncovered, it is clear this complex process involves many cues that promote and inhibit the removal of specific synaptic connections. Gaining a greater understanding of these signals and the contribution of different cell types will not only provide insight into this critical biological event but also be instrumental in advancing knowledge of brain development and neural disease.
Collapse
Affiliation(s)
- Daniel K. Wilton
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Lasse Dissing-Olesen
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Beth Stevens
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Stanley Center, Broad Institute, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
100
|
Murcia-Belmonte V, Erskine L. Wiring the Binocular Visual Pathways. Int J Mol Sci 2019; 20:ijms20133282. [PMID: 31277365 PMCID: PMC6651880 DOI: 10.3390/ijms20133282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Retinal ganglion cells (RGCs) extend axons out of the retina to transmit visual information to the brain. These connections are established during development through the navigation of RGC axons along a relatively long, stereotypical pathway. RGC axons exit the eye at the optic disc and extend along the optic nerves to the ventral midline of the brain, where the two nerves meet to form the optic chiasm. In animals with binocular vision, the axons face a choice at the optic chiasm—to cross the midline and project to targets on the contralateral side of the brain, or avoid crossing the midline and project to ipsilateral brain targets. Ipsilaterally and contralaterally projecting RGCs originate in disparate regions of the retina that relate to the extent of binocular overlap in the visual field. In humans virtually all RGC axons originating in temporal retina project ipsilaterally, whereas in mice, ipsilaterally projecting RGCs are confined to the peripheral ventrotemporal retina. This review will discuss recent advances in our understanding of the mechanisms regulating specification of ipsilateral versus contralateral RGCs, and the differential guidance of their axons at the optic chiasm. Recent insights into the establishment of congruent topographic maps in both brain hemispheres also will be discussed.
Collapse
Affiliation(s)
| | - Lynda Erskine
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, UK
| |
Collapse
|