51
|
Gasbarri C, Ruggieri F, Foschi M, Aceto A, Scotti L, Angelini G. Simple Determination of Silver Nanoparticles Concentration as Ag
+
by Using ISE as Potential Alternative to ICP Optical Emission Spectrometry. ChemistrySelect 2019. [DOI: 10.1002/slct.201902336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Carla Gasbarri
- Department of PharmacyUniversity “G. d'Annunzio” of Chieti-Pescara Via dei Vestini 66100 Chieti Italy
| | - Fabrizio Ruggieri
- Department of Chemical and Physical SciencesUniversity of L'Aquila Via Vetoio 67010 Coppito, L'Aquila Italy
| | - Martina Foschi
- Department of Chemical and Physical SciencesUniversity of L'Aquila Via Vetoio 67010 Coppito, L'Aquila Italy
| | - Antonio Aceto
- Department of MedicalOral and Biotechnological SciencesUniversity “G. d'Annunzio” of Chieti-Pescara Via dei Vestini 66100 Chieti Italy
| | - Luca Scotti
- Department of MedicalOral and Biotechnological SciencesUniversity “G. d'Annunzio” of Chieti-Pescara Via dei Vestini 66100 Chieti Italy
| | - Guido Angelini
- Department of PharmacyUniversity “G. d'Annunzio” of Chieti-Pescara Via dei Vestini 66100 Chieti Italy
| |
Collapse
|
52
|
Wang D, Wang P, Wang C, Ao Y. Effects of interactions between humic acid and heavy metal ions on the aggregation of TiO 2 nanoparticles in water environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:834-844. [PMID: 30856499 DOI: 10.1016/j.envpol.2019.02.084] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/05/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
Nanoparticles (NPs), heavy metal and natural organic matter (NOM) may simultaneously exist in the aquatic environment, where they will affect the behavior of each other and may enhance their toxicities. Studies on the influences of interactions between NOM and heavy metal ions on the behavior of NPs are scarce. In this study, combined effects of Pb2+ and HA on the aggregation behavior of TiO2 NPs in water environment were investigated by Dynamic light scattering (DLS) and Nanoparticle tracking analysis (NTA). The results illustrated that interactions between Pb2+ and HA could case the aggregation of TiO2 NPs obviously. The concurrence of Pb2+ and HA resulted in decreased critical coagulation concentration (CCC) and increased attachment efficiencies. Meanwhile, we found that the addition sequences of HA and heavy metal clearly influenced the aggregation kinetics of TiO2 NPs. At different addition sequences, the complex reaction between Pb2+ and HA changed the surface charge of TiO2 NPs, and caused the different aggregation behavior which depended on the complex locations and complex sites. Furthermore, the excitation-emission-matrix (EEM) fluorescence spectra was used to verify the significant effects of the complex interactions between Pb2+ and HA on the aggregation of TiO2 NPs. Our results would be significant for interpreting TiO2 behavior in the complicated water system. The complexation between Pb2+ and HA promoted the aggregation of TiO2 NPs, meanwhile, complex locations and complex sites played an important role.
Collapse
Affiliation(s)
- Dongxu Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China.
| |
Collapse
|
53
|
Arbo MD, Altknecht LF, Cattani S, Braga WV, Peruzzi CP, Cestonaro LV, Göethel G, Durán N, Garcia SC. In vitro cardiotoxicity evaluation of graphene oxide. Mutat Res 2019; 841:8-13. [PMID: 31138412 DOI: 10.1016/j.mrgentox.2019.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
Graphene is a two-dimensional (2D) monolayer of carbon atoms, tightly packed, forming a honey comb crystal lattice, with physical, chemical, and mechanical properties greatly used for energy storage, electrochemical devices, and in nanomedicine. Many studies showed that nanomaterials have side-effects on health. At present, there is a lack of information regarding graphene and its derivatives including their cardiotoxic properties. The aim of the present study was to evaluate the toxicity of nano-graphene oxide (nano-GO) in the rat cardiomyoblast cell line H9c2 and the involvement of oxidative processes. The cell viability was evaluated with the fluorescein diacetate (FDA)/propidium iodide (PI) and in the trypan blue exclusion assay, furthermore mitochondrial membrane potential and production of free radicals were measured. Genotoxicity was evaluated in comet assay and low molecular weight DNA experiment. Reduction of cell viability with 20, 40, 60, 80, and 100 μg/mL nano-GO was observed after 24 h incubation. Besides, nano-GO induced a mitochondrial hyperpolarization and a significant increase of free radicals production in the same concentrations. DNA breaks were observed at 40, 60, 80, and 100 μg/mL. This DNA damage was accompanied by a significant increase in LMW DNA only at 40 μg/mL. In conclusion, the nano-GO caused cardiotoxicity in our in vitro model, with mitochondrial disturbances, generation of reactive species and interactions with DNA, indicating the importance of the further evaluation of the safety of nanomaterials.
Collapse
Affiliation(s)
- Marcelo Dutra Arbo
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Louise F Altknecht
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Shanda Cattani
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Wesley V Braga
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Caroline P Peruzzi
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Larissa V Cestonaro
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Gabriela Göethel
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Nelson Durán
- Laboratório Nacional de Nanotecnologia - LNNano, Instituto de Quimica-UNICAMP, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Solange Cristina Garcia
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
54
|
Hirano A, Wada M, Tanaka T, Kataura H. Oxidative Stress of Carbon Nanotubes on Proteins Is Mediated by Metals Originating from the Catalyst Remains. ACS NANO 2019; 13:1805-1816. [PMID: 30680990 DOI: 10.1021/acsnano.8b07936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanomaterials introduced into biological systems are immediately coated by proteins in vivo. They induce oxidative stress on adsorbed proteins and hence alter the protein structures, which determines the fate pathways and biological impacts of nanomaterials. Carbon nanotubes (CNTs) have been suggested to cause protein oxidation. In this work, we discovered that CNTs induce oxidative stress on proteins in cooperation with coexisting metals originating from catalyst remains. Protein sulfhydryl groups were readily oxidized by the coexistence of CNTs and metals. Numerical simulations of the reaction demonstrated that the metals effectively mediate electron transfer between the CNTs and protein sulfhydryl groups. Thus, the coexistence of CNTs and metals, even in low concentrations, generates oxidative stress on proteins with high reaction rates. Metal catalysts used for CNT growth, in turn, catalyze the oxidation reaction of proteins. The proposed protein oxidation mechanism will advance the fundamental understanding of the biological safety and toxicity of nanomaterials synthesized using metal catalysts.
Collapse
Affiliation(s)
- Atsushi Hirano
- Nanomaterials Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Ibaraki 305-8565 , Japan
| | - Momoyo Wada
- Nanomaterials Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Ibaraki 305-8565 , Japan
| | - Takeshi Tanaka
- Nanomaterials Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Ibaraki 305-8565 , Japan
| | - Hiromichi Kataura
- Nanomaterials Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Ibaraki 305-8565 , Japan
| |
Collapse
|
55
|
Simelane S, Dlamini LN. An investigation of the fate and behaviour of a mixture of WO 3 and TiO 2 nanoparticles in a wastewater treatment plant. J Environ Sci (China) 2019; 76:37-47. [PMID: 30528029 DOI: 10.1016/j.jes.2018.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/06/2018] [Accepted: 03/16/2018] [Indexed: 05/24/2023]
Abstract
The fate and behaviour of WO3 and TiO2 mixture were investigated following the Organisation for Economic Co-operation and Development 303A guidelines. The nanoparticles were found not to influence the chemical oxygen demand removal efficiency which was maintained >80% hence the activated sludge process was on affected. The nanoparticles were eliminated from the wastewater with a greater percentage of 99.8% for TiO2 and 95.5% for WO3 found in the sludge. The activated sludge process also had no effect of the polymorphs of the nanoparticles as X-ray diffraction revealed presence of monoclinic WO3 and anatase TiO2 which were spiked into the influent. The nanoparticles were mainly removed by bio-adsorption on the activated sludge surface. The total plate count revealed that the bacterial colonies present in the control and the test units were comparable during the gradual introduction of nanoparticles in the chambers. The biomass was >0.75 MLVSS/MLSS (mixed liquor volatile suspended solids/mixed liquor suspended solids) in both the aeration vessels thus a greater proportion of the sludge were the microorganisms. A greater percentage of the Ti and W found in the effluent was mainly due to the nanoparticles adsorbed on the suspended solids with only 3.6% Ti and 28.6% W due to dissolution of nanoparticles.
Collapse
Affiliation(s)
- Sandile Simelane
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Doornfontein, Johannesburg 2028, South Africa
| | - Langelihle Nsikayezwe Dlamini
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Doornfontein, Johannesburg 2028, South Africa.
| |
Collapse
|
56
|
Jayaram DT, Kumar A, Kippner LE, Ho PY, Kemp ML, Fan Y, Payne CK. TiO2 nanoparticles generate superoxide and alter gene expression in human lung cells. RSC Adv 2019; 9:25039-25047. [PMID: 35321350 PMCID: PMC8939877 DOI: 10.1039/c9ra04037d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
TiO2 nanoparticles are widely used in consumer products and industrial applications, yet little is understood regarding how the inhalation of these nanoparticles impacts long-term health. This is especially important for the occupational safety of workers who process these materials. We used RNA sequencing to probe changes in gene expression and fluorescence microscopy to image intracellular reactive oxygen species (ROS) in human lung cells incubated with low, non-cytotoxic, concentrations of TiO2 nanoparticles. Experiments were designed to measure changes in gene expression following an acute exposure to TiO2 nanoparticles and changes inherited by progeny cells. We observe that TiO2 nanoparticles lead to significant (>2000 differentially expressed genes) changes in gene expression following a 24 hour incubation. Following this acute exposure, the response dissipates with only 34 differentially expressed genes in progeny cells. The progeny cells adapt to this initial exposure, observed when re-challenged with a second acute TiO2 nanoparticle exposure. Accompanying these changes in gene expression is the production of intracellular ROS, specifically superoxide, along with changes in oxidative stress-related genes. These experiments suggest that TiO2 nanoparticles adapt to oxidative stress through transcriptional changes over multiple generations of cells. Human lung cells have a multi-generational response to TiO2 nanoparticle exposure determined by RNA-Seq and fluorescence microscopy.![]()
Collapse
Affiliation(s)
- Dhanya T. Jayaram
- Department of Mechanical Engineering and Materials Science
- Duke University
- Durham
- USA
| | - Ashwath Kumar
- School of Biological Sciences
- Georgia Institute of Technology
- Atlanta
- USA
| | - Linda E. Kippner
- The Wallace H. Coulter Department of Biomedical Engineering
- Georgia Institute of Technology and Emory University
- Atlanta
- USA
| | - Po-Yi Ho
- School of Biological Sciences
- Georgia Institute of Technology
- Atlanta
- USA
| | - Melissa L. Kemp
- The Wallace H. Coulter Department of Biomedical Engineering
- Georgia Institute of Technology and Emory University
- Atlanta
- USA
- Parker H. Petit Institute for Bioengineering and Biosciences
| | - Yuhong Fan
- School of Biological Sciences
- Georgia Institute of Technology
- Atlanta
- USA
- Parker H. Petit Institute for Bioengineering and Biosciences
| | - Christine K. Payne
- Department of Mechanical Engineering and Materials Science
- Duke University
- Durham
- USA
| |
Collapse
|
57
|
Zhang M, Xu C, Jiang L, Qin J. A 3D human lung-on-a-chip model for nanotoxicity testing. Toxicol Res (Camb) 2018; 7:1048-1060. [PMID: 30510678 PMCID: PMC6220735 DOI: 10.1039/c8tx00156a] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
The prevalent application of nanoparticles (NPs) has drawn intense concerns about their impact on the environment and human health. Inhalation of NPs is the major route of NP exposure and has led to adverse effects on the lung. It is of great concern to evaluate the potential hazards of nanoparticles for human health during pulmonary exposure. Here, we proposed a novel 3D human lung-on-a-chip model to recreate the organ-level structure and functions of the human lung that allow to us evaluate the pulmonary toxicity of nanoparticles. The lung-on-a-chip consists of three parallel channels for the co-culture of human vascular endothelial cells and human alveolar epithelial cells sandwiching a layer of Matrigel membrane, which recapitulate the key features of the alveolar capillary barrier in the human lung. Cell-cell interaction, cell-matrix interaction and vascular mechanical cues work synergistically to promote the barrier function of the lung-on-a-chip model. TiO2 nanoparticles and ZnO nanoparticles were applied on the lung-on-a-chip to assay their nanotoxicity on both epithelial cells and endothelial cells. Junction protein expression, increased permeability to macromolecules, dose dependent cytotoxicity, ROS production and apoptosis were assayed and compared on the chip. This lung-on-a-chip model indicated its versatile application in human pulmonary health and safety assessment for nanoparticles, environment, food and drugs.
Collapse
Affiliation(s)
- Min Zhang
- Division of Biotechnology , CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , China .
| | - Cong Xu
- Division of Biotechnology , CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , China .
- University of Chinese Academy of Sciences , Beijing , China
| | - Lei Jiang
- Division of Biotechnology , CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , China .
| | - Jianhua Qin
- Division of Biotechnology , CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , China .
- University of Chinese Academy of Sciences , Beijing , China
- CAS Centre for Excellence in Brain Science and Intelligence Technology , Chinese Academy of Sciences , Shanghai , China
- Institute for Stem Cell and Regeneration , Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
58
|
Sun Q, Li J, Le T. Zinc Oxide Nanoparticle as a Novel Class of Antifungal Agents: Current Advances and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11209-11220. [PMID: 30299956 DOI: 10.1021/acs.jafc.8b03210] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Certain types of nanoparticles, especially zinc oxide nanoparticles (ZnONPs), are widely reported to be capable of the inhibition of harmful bacteria, yeasts, and filamentous fungi. The unique physicochemical and biological properties of ZnONPs also make them attractive to the food industry for use as a promising antifungal agent. This Review thoroughly introduces the preparation methods and antifungal properties of ZnONPs and analyzes their possible antifungal mechanisms. The applicability of ZnONPs in food packaging and nutritional supplements and as an antimicrobial additive is also documented. Moreover, evaluations for biological safety of ZnONPs are objectively reviewed in this paper. The discussions addressed in this Review not only have theoretical significance but also are conducive to the development of food safety, nutrition, and human health. The summarized knowledge and future perspectives outlined here are expected to promote and guide new research toward developing and optimizing the application of ZnONPs as a novel class of antifungal agents to help improve food quality as well as food safety in the near future.
Collapse
Affiliation(s)
- Qi Sun
- College of Life Sciences , Chongqing Normal University , No. 37 Chengzhong Road , Chongqing 401331 , People's Republic of China
| | - Jianmei Li
- College of Life Sciences , Chongqing Normal University , No. 37 Chengzhong Road , Chongqing 401331 , People's Republic of China
| | - Tao Le
- College of Life Sciences , Chongqing Normal University , No. 37 Chengzhong Road , Chongqing 401331 , People's Republic of China
| |
Collapse
|
59
|
Norris MD, Seidel K, Kirschning A. Externally Induced Drug Release Systems with Magnetic Nanoparticle Carriers: An Emerging Field in Nanomedicine. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800092] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Matthew D. Norris
- Institut für Organische Chemie and Biomolekulares Wirkstoffzentrum; Leibniz Universität Hannover; Schneiderberg 1B 30167 Hannover Germany
| | - Katja Seidel
- Institut für Organische Chemie and Biomolekulares Wirkstoffzentrum; Leibniz Universität Hannover; Schneiderberg 1B 30167 Hannover Germany
| | - Andreas Kirschning
- Institut für Organische Chemie and Biomolekulares Wirkstoffzentrum; Leibniz Universität Hannover; Schneiderberg 1B 30167 Hannover Germany
| |
Collapse
|
60
|
Ávalos A, Haza A, Mateo D, Morales P. In vitro and in vivo genotoxicity assessment of gold nanoparticles of different sizes by comet and SMART assays. Food Chem Toxicol 2018; 120:81-88. [DOI: 10.1016/j.fct.2018.06.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/12/2022]
|
61
|
Zhang T, Gaffrey MJ, Thrall BD, Qian WJ. Mass spectrometry-based proteomics for system-level characterization of biological responses to engineered nanomaterials. Anal Bioanal Chem 2018; 410:6067-6077. [PMID: 29947897 PMCID: PMC6119095 DOI: 10.1007/s00216-018-1168-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 12/21/2022]
Abstract
The widespread use of engineered nanomaterials or nanotechnology makes the characterization of biological responses to nanomaterials an important area of research. The application of omics approaches, such as mass spectrometry-based proteomics, has revealed new insights into the cellular responses of exposure to nanomaterials, including how nanomaterials interact and alter cellular pathways. In addition, exposure to engineered nanomaterials often leads to the generation of reactive oxygen species and cellular oxidative stress, which implicates a redox-dependent regulation of cellular responses under such conditions. In this review, we discuss quantitative proteomics-based approaches, with an emphasis on redox proteomics, as a tool for system-level characterization of the biological responses induced by engineered nanomaterials. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Brian D Thrall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
62
|
Gubala V, Johnston LJ, Krug HF, Moore CJ, Ober CK, Schwenk M, Vert M. Engineered nanomaterials and human health: Part 2. Applications and nanotoxicology (IUPAC Technical Report). PURE APPL CHEM 2018. [DOI: 10.1515/pac-2017-0102] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AbstractResearch on engineered nanomaterials (ENM) has progressed rapidly from the very early stages of studying their unique, size-dependent physicochemical properties and commercial exploration to the development of products that influence our everyday lives. We have previously reviewed various methods for synthesis, surface functionalization, and analytical characterization of ENM in a publication titled ‘Engineered Nanomaterials: Preparation, Functionalization and Characterization’. In this second, inter-linked document, we first provide an overview of important applications of ENM in products relevant to human healthcare and consumer goods, such as food, textiles, and cosmetics. We then highlight the challenges for the design and development of new ENM for bio-applications, particularly in the rapidly developing nanomedicine sector. The second part of this document is dedicated to nanotoxicology studies of ENM in consumer products. We describe the various biological targets where toxicity may occur, summarize the four nanotoxicology principles, and discuss the need for careful consideration of the biodistribution, degradation, and elimination routes of nanosized materials before they can be safely used. Finally, we review expert opinions on the risk, regulation, and ethical aspects of using engineered nanomaterials in applications that may have direct or indirect impact on human health or our environment.
Collapse
|
63
|
Rudramurthy GR, Swamy MK. Potential applications of engineered nanoparticles in medicine and biology: an update. J Biol Inorg Chem 2018; 23:1185-1204. [PMID: 30097748 DOI: 10.1007/s00775-018-1600-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022]
Abstract
Nanotechnology advancements have led to the development of its allied fields, such as nanoparticle synthesis and their applications in the field of biomedicine. Nanotechnology driven innovations have given a hope to the patients as well as physicians in solving the complex medical problems. Nanoparticles with a size ranging from 0.2 to 100 nm are associated with an increased surface to volume ratio. Moreover, the physico-chemical and biological properties of nanoparticles can be modified depending on the applications. Different nanoparticles have been documented with a wide range of applications in various fields of medicine and biology including cancer therapy, drug delivery, tissue engineering, regenerative medicine, biomolecules detection, and also as antimicrobial agents. However, the development of stable and effective nanoparticles requires a profound knowledge on both physico-chemical features of nanomaterials and their intended applications. Further, the health risks associated with the use of engineered nanoparticles needs a serious attention.
Collapse
Affiliation(s)
| | - Mallappa Kumara Swamy
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
64
|
Park EJ, Khaliullin TO, Shurin MR, Kisin ER, Yanamala N, Fadeel B, Chang J, Shvedova AA. Fibrous nanocellulose, crystalline nanocellulose, carbon nanotubes, and crocidolite asbestos elicit disparate immune responses upon pharyngeal aspiration in mice. J Immunotoxicol 2018; 15:12-23. [PMID: 29237319 DOI: 10.1080/1547691x.2017.1414339] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
With the rapid development of synthetic alternatives to mineral fibers, their possible effects on the environment and human health have become recognized as important issues worldwide. This study investigated effects of four fibrous materials, i.e. nanofibrillar/nanocrystalline celluloses (NCF and CNC), single-walled carbon nanotubes (CNTs), and crocidolite asbestos (ASB), on pulmonary inflammation and immune responses found in the lungs, as well as the effects on spleen and peripheral blood immune cell subsets. BALB/c mice were given NCF, CNC, CNT, and ASB on Day 1 by oropharyngeal aspiration. At 14 days post-exposure, the animals were evaluated. Total cell number, mononuclear phagocytes, polymorphonuclear leukocytes, lymphocytes, and LDH levels were significantly increased in ASB and CNT-exposed mice. Expression of cytokines and chemokines in bronchoalveolar lavage (BAL) was quite different in mice exposed to four particle types, as well as expression of antigen presentation-related surface proteins on BAL cells. The results revealed that pulmonary exposure to fibrous materials led to discrete local immune cell polarization patterns with a TH2-like response caused by ASB and TH1-like immune reaction to NCF, while CNT and CNC caused non-classical or non-uniform responses. These alterations in immune response following pulmonary exposure should be taken into account when testing the applicability of new nanosized materials with fibrous morphology.
Collapse
Affiliation(s)
- Eun-Jung Park
- a Department of Brain Science , Ajou University School of Medicine , Suwon , Republic of Korea
| | - Timur O Khaliullin
- b Exposure Assessment Branch , NIOSH/CDC , Morgantown , WV , USA.,c Department of Physiology, Pharmacology and Neuroscience , West Virginia University , Morgantown , WV , USA
| | - Michael R Shurin
- d Department of Pathology and Immunology , University of Pittsburgh , Pittsburgh , PA , USA
| | - Elena R Kisin
- b Exposure Assessment Branch , NIOSH/CDC , Morgantown , WV , USA
| | - Naveena Yanamala
- b Exposure Assessment Branch , NIOSH/CDC , Morgantown , WV , USA
| | - Bengt Fadeel
- e Division of Molecular Toxicology, Institute of Environmental Medicine , Karolinska Institute , Stockholm , Sweden
| | - Jaerak Chang
- a Department of Brain Science , Ajou University School of Medicine , Suwon , Republic of Korea.,f Graduate School of Biomedical Sciences , Ajou University School of Medicine , Suwon , Republic of Korea
| | - Anna A Shvedova
- b Exposure Assessment Branch , NIOSH/CDC , Morgantown , WV , USA.,c Department of Physiology, Pharmacology and Neuroscience , West Virginia University , Morgantown , WV , USA
| |
Collapse
|
65
|
Sarwar F, Malik RN, Chow CW, Alam K. Occupational exposure and consequent health impairments due to potential incidental nanoparticles in leather tanneries: An evidential appraisal of south Asian developing countries. ENVIRONMENT INTERNATIONAL 2018; 117:164-174. [PMID: 29753147 DOI: 10.1016/j.envint.2018.04.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/10/2018] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
The incidental nanoparticles' (INPs) emission at work and the consequent health impairments is a burning issue of occupational toxicology. The present study is a thorough review of available literature marking an assortment of indicators on INPs generation at leather tanneries and measurable occupational ailments. The literature reported evidences unleash a similarity between the mechanisms of leather tannery induced health damages and toxico-kinetics of incidental nanoparticles in human body. The data on physico-chemical characterization of leather tannery surface dust presents presence of stressors like heavy metals, microbes, animal fur and fibers along with organic and inorganic chemicals. Bearing same characteristics, the mechanism of INPs' induced toxicity (inflammation, increased reactive oxygen species and permeability of blood brain barrier), major target organs (lung, heart, brain, skin and liver) and health damages (cancer, DNA damage, blood coagulation, cardiac arrest, platelet alteration) are quite similar to those found among tannery workers. This review also presents the identification of the different types of potential INPs production and process sources in leather tanneries. There is no data found on Particulate size variation and consequent disparity of these characterizations has been established. However, the reported literature furnishes evidences which support the premise that there is a dire need of size based incidental particulates investigation with a special emphasis on nanoparticles.
Collapse
Affiliation(s)
- Fiza Sarwar
- Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Earth & Environmental Sciences, Bahria University, Islamabad, Pakistan.
| | - Riffat Naseem Malik
- Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Khan Alam
- Department of Physics, University of Peshawar, Pakistan
| |
Collapse
|
66
|
Liu Q, Wang X, Xia T. Creative use of analytical techniques and high-throughput technology to facilitate safety assessment of engineered nanomaterials. Anal Bioanal Chem 2018; 410:6097-6111. [PMID: 30066194 DOI: 10.1007/s00216-018-1289-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/15/2018] [Accepted: 07/23/2018] [Indexed: 12/21/2022]
Abstract
With the rapid development and numerous applications of engineered nanomaterials (ENMs) in science and technology, their impact on environmental health and safety should be considered carefully. This requires an effective platform to investigate the potential adverse effects and hazardous biological outcomes of numerous nanomaterials and their formulations. We consider predictive toxicology a rational approach for this effort, which utilizes mechanism-based in vitro high-throughput screening (HTS) to make predictions on ENMs' adverse outcomes in vivo. Moreover, this approach is able to link the physicochemical properties of ENMs to toxicity that allows the development of structure-activity relationships (SARs). To build this predictive platform, extensive analytical and bioanalytical techniques and tools are required. In this review, we described the predictive toxicology approach and the accompanying analytical and bioanalytical techniques. In addition, we elaborated several successful examples as a result of using the predictive approach.
Collapse
Affiliation(s)
- Qi Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA, 90095, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Xiang Wang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA, 90095, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA, 90095, USA. .,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA. .,Division of NanoMedicine, Department of Medicine, University of California, 570 Westwood Plaza, Los Angeles, CA, 90095, USA.
| |
Collapse
|
67
|
Pellacani C, Costa LG. Role of autophagy in environmental neurotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:791-805. [PMID: 29353798 DOI: 10.1016/j.envpol.2017.12.102] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/08/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
Human exposure to neurotoxic pollutants (e.g. metals, pesticides and other chemicals) is recognized as a key risk factor in the pathogenesis of neurodegenerative disorders. Emerging evidence indicates that an alteration in autophagic pathways may be correlated with the onset of the neurotoxicity resulting from chronic exposure to these pollutants. In fact, autophagy is a natural process that permits to preserving cell homeostasis, through the seizure and degradation of the cytosolic damaged elements. However, when an excessive level of intracellular damage is reached, the autophagic process may also induce cell death. A correct modulation of specific stages of autophagy is important to maintain the correct balance in the organism. In this review, we highlight the critical role that autophagy plays in neurotoxicity induced by the most common classes of environmental contaminants. The understanding of this mechanism may be helpful to discover a potential therapeutic strategy to reduce side effects induced by these compounds.
Collapse
Affiliation(s)
- C Pellacani
- Dept. of Medicine and Surgery, University of Parma, Parma, Italy.
| | - L G Costa
- Dept. of Medicine and Surgery, University of Parma, Parma, Italy; Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
68
|
Richter JW, Shull GM, Fountain JH, Guo Z, Musselman LP, Fiumera AC, Mahler GJ. Titanium dioxide nanoparticle exposure alters metabolic homeostasis in a cell culture model of the intestinal epithelium and Drosophila melanogaster. Nanotoxicology 2018; 12:390-406. [PMID: 29600885 DOI: 10.1080/17435390.2018.1457189] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanosized titanium dioxide (TiO2) is a common additive in food and cosmetic products. The goal of this study was to investigate if TiO2 nanoparticles affect intestinal epithelial tissues, normal intestinal function, or metabolic homeostasis using in vitro and in vivo methods. An in vitro model of intestinal epithelial tissue was created by seeding co-cultures of Caco-2 and HT29-MTX cells on a Transwell permeable support. These experiments were repeated with monolayers that had been cultured with the beneficial commensal bacteria Lactobacillus rhamnosus GG (L. rhamnosus). Glucose uptake and transport in the presence of TiO2 nanoparticles was assessed using fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG). When the cell monolayers were exposed to physiologically relevant doses of TiO2, a statistically significant reduction in glucose transport was observed. These differences in glucose absorption were eliminated in the presence of beneficial bacteria. The decrease in glucose absorption was caused by damage to intestinal microvilli, which decreased the surface area available for absorption. Damage to microvilli was ameliorated in the presence of L. rhamnosus. Complimentary studies in Drosophila melanogaster showed that TiO2 ingestion resulted in decreased body size and glucose content. The results suggest that TiO2 nanoparticles alter glucose transport across the intestinal epithelium, and that TiO2 nanoparticle ingestion may have physiological consequences.
Collapse
Affiliation(s)
- Jonathan W Richter
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY , USA
| | - Gabriella M Shull
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY , USA
| | - John H Fountain
- b Department of Biological Sciences , Binghamton University , Binghamton , NY , USA
| | - Zhongyuan Guo
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY , USA
| | - Laura P Musselman
- b Department of Biological Sciences , Binghamton University , Binghamton , NY , USA
| | - Anthony C Fiumera
- b Department of Biological Sciences , Binghamton University , Binghamton , NY , USA
| | - Gretchen J Mahler
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY , USA
| |
Collapse
|
69
|
Rao X, Zhong J, Brook RD, Rajagopalan S. Effect of Particulate Matter Air Pollution on Cardiovascular Oxidative Stress Pathways. Antioxid Redox Signal 2018; 28:797-818. [PMID: 29084451 PMCID: PMC5831906 DOI: 10.1089/ars.2017.7394] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Particulate matter (PM) air pollution is a leading cause of global cardiovascular morbidity and mortality. Understanding the biological action of PM is of particular importance in improvement of public health. Recent Advances: Both fine (PM <2.5 μM) and ultrafine particles (<0.1 μM) are widely believed to mediate their effects through redox regulated pathways. A rather simplistic graded ramp model of redox stress has been replaced by a more sophisticated understanding of the role of oxidative stress in signaling, and the realization that many of the observed effects may involve disruption and/or enhancement of normal endogenous redox signaling and induction of a potent immune-mediated response, through entrainment of multiple reactive oxygen species (ROS). CRITICAL ISSUES The molecular events by which pulmonary oxidative stress in response to inhalational exposure to air pollution triggers inflammation, major ROS (e.g., superoxide, hydroxyl radical, nitric oxide, and peroxynitrite) generated in air pollution exposure, types of oxidative tissue damage in target organs, contributions of nonimmune and immune cells in inflammation, and the role of protective proteins (e.g., surfactant, proteins, and antioxidants) are highly complex and may differ depending on models and concomitant disease states. FUTURE DIRECTIONS While the role of oxidative stress in the lung has been well demonstrated, the role of oxidative stress in mediating systemic effects especially in inflammation and injury processes needs further work. The role of antioxidant defenses with chronic exposure will also need further exploration. Antioxid. Redox Signal. 28, 797-818.
Collapse
Affiliation(s)
- Xiaoquan Rao
- 1 Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University , Cleveland, Ohio
| | - Jixin Zhong
- 1 Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University , Cleveland, Ohio
| | - Robert D Brook
- 2 Department of Medicine, Division of Cardiovascular Medicine, University of Michigan , Ann Arbor, Michigan
| | - Sanjay Rajagopalan
- 1 Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
70
|
Hadwin PJ, Sipkens TA, Thomson KA, Liu F, Daun KJ. Kalman filter approach for uncertainty quantification in time-resolved laser-induced incandescence. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2018. [PMID: 29522040 DOI: 10.1364/josaa.35.000386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Time-resolved laser-induced incandescence (TiRe-LII) data can be used to infer spatially and temporally resolved volume fractions and primary particle size distributions of soot-laden aerosols, but these estimates are corrupted by measurement noise as well as uncertainties in the spectroscopic and heat transfer submodels used to interpret the data. Estimates of the temperature, concentration, and size distribution of soot primary particles within a sample aerosol are typically made by nonlinear regression of modeled spectral incandescence decay, or effective temperature decay, to experimental data. In this work, we employ nonstationary Bayesian estimation techniques to infer aerosol properties from simulated and experimental LII signals, specifically the extended Kalman filter and Schmidt-Kalman filter. These techniques exploit the time-varying nature of both the measurements and the models, and they reveal how uncertainty in the estimates computed from TiRe-LII data evolves over time. Both techniques perform better when compared with standard deterministic estimates; however, we demonstrate that the Schmidt-Kalman filter produces more realistic uncertainty estimates.
Collapse
|
71
|
Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties. NANOSCALE RESEARCH LETTERS 2018; 13:44. [PMID: 29417375 PMCID: PMC5803171 DOI: 10.1186/s11671-018-2457-x] [Citation(s) in RCA: 524] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/25/2018] [Indexed: 05/11/2023]
Abstract
Studies on the methods of nanoparticle (NP) synthesis, analysis of their characteristics, and exploration of new fields of their applications are at the forefront of modern nanotechnology. The possibility of engineering water-soluble NPs has paved the way to their use in various basic and applied biomedical researches. At present, NPs are used in diagnosis for imaging of numerous molecular markers of genetic and autoimmune diseases, malignant tumors, and many other disorders. NPs are also used for targeted delivery of drugs to tissues and organs, with controllable parameters of drug release and accumulation. In addition, there are examples of the use of NPs as active components, e.g., photosensitizers in photodynamic therapy and in hyperthermic tumor destruction through NP incorporation and heating. However, a high toxicity of NPs for living organisms is a strong limiting factor that hinders their use in vivo. Current studies on toxic effects of NPs aimed at identifying the targets and mechanisms of their harmful effects are carried out in cell culture models; studies on the patterns of NP transport, accumulation, degradation, and elimination, in animal models. This review systematizes and summarizes available data on how the mechanisms of NP toxicity for living systems are related to their physical and chemical properties.
Collapse
Affiliation(s)
- Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe shosse, Moscow, Russian Federation 115521
| | - Svetlana Bozrova
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe shosse, Moscow, Russian Federation 115521
| | - Pavel Sokolov
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe shosse, Moscow, Russian Federation 115521
| | - Mikhail Berestovoy
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe shosse, Moscow, Russian Federation 115521
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation 119992
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe shosse, Moscow, Russian Federation 115521
| |
Collapse
|
72
|
Lv B, Wang C, Hou J, Wang P, Miao L, You G, Yang Y, Xu Y, Zhang M, Ci H. Towards a better understanding on aggregation behavior of CeO 2 nanoparticles in different natural waters under flow disturbance. JOURNAL OF HAZARDOUS MATERIALS 2018; 343:235-244. [PMID: 28963887 DOI: 10.1016/j.jhazmat.2017.09.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 06/07/2023]
Abstract
The fate of nanoparticles in natural waters is affected by the combination of various factors, especially the flow disturbance which plays a decisive role in the transport of nanoparticles. This study investigated the aggregation behavior of CeO2 nanoparticles (NPs) in natural waters by using a unique instrument to simulate flow disturbance. The results indicated that, in the absence of a shear force, the CeO2 NPs formed linear, chain-like aggregates in seawater, owing to the high IS, which compressed the electrical double layer of particles. On the other hand, the NPs formed more compact aggregates in lake water, owing to an ion bridge effect between the NPs and the dissolved organic matter (DOM). It was also found that shear forces affected the aggregation behavior of the NPs. A low shear force promoted the aggregation of the NPs by increasing the collision efficiency while the aggregates were broken by a high shear force. Remarkably, the NPs maintained their potential for continuous aggregation when the slow stirring was reintroduced, suggesting that the aggregates began to grow again under renewed stirring. The results of this study could help in predicting the fate and transport behavior of CeO2 NPs in actual aquatic environments.
Collapse
Affiliation(s)
- Bowen Lv
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yangyang Yang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Hanlin Ci
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
73
|
Sipkens TA, Hadwin PJ, Grauer SJ, Daun KJ. General error model for analysis of laser-induced incandescence signals. APPLIED OPTICS 2017; 56:8436-8445. [PMID: 29091624 DOI: 10.1364/ao.56.008436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/17/2017] [Indexed: 06/07/2023]
Abstract
This paper presents a novel error model for TiRe-LII signals and illustrates how the model can be used to diagnose a detection system, quantify uncertainties in TiRe-LII, and characterize fluctuations in the measured process. Noise in a single TiRe-LII measurement shot obeys a Poisson-Gaussian noise model. Variation in the aerosol results in shot-to-shot fluctuations in the measured signals. These fluctuations induce a quadratic relationship between the mean and variance of a set of signals. We show how this model can elucidate aspects of the measurement system and fundamental properties of the aerosol, by comparing the noise model to four sets of experimental data.
Collapse
|
74
|
Coleman BR, Knight T, Gies V, Jakubek ZJ, Zou S. Manipulation and Quantification of Graphene Oxide Flake Size: Photoluminescence and Cytotoxicity. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28911-28921. [PMID: 28776377 DOI: 10.1021/acsami.7b08585] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Single-layered graphene oxide (GO) has exhibited great promise in the areas of sensing, membrane filtration, supercapacitors, bioimaging, and therapeutic carriers because of its biocompatibility, large surface area, and electrochemical, photoluminescent, and optical properties. To elucidate how the physical dimensions of GO affect its intrinsic properties, we employed sonication to produce more than 130 different sizes of GO in aqueous dispersion and implemented new approaches to characterize various GO properties as a function of the average flake size. New protocols were developed to determine and compare the flake size of GO dispersions sonicated with energies up to 20 MJ/g by using dynamic light scattering and atomic force microscopy (AFM). The relationship between the average flake size and sonication energy per unit mass of GO was observed to follow a power law. AFM height measurements showed that the sonication of GO yielded monolayered flakes. Photoluminescence of GO was characterized as a function of the sonication energy (or the average flake size which is the monotonic function of the sonication energy), excitation wavelength, and pH of the dispersion. The strong dependence of the photoluminescence intensity on pH control and the variation of the photoluminescence intensity with different flake sizes were observed. An intense photoluminescence signal, likely related to the separation of the oxidative debris from the GO framework, was found at the highest sonication energies (E ≳ 15 MJ/g) or under extremely alkaline conditions (pH ≳ 11). The cytotoxicity of GO was studied with various flake sizes. Size- and concentration-dependent cytotoxicity was observed for cell lines NIH 3T3 and A549. The NIH 3T3 cell line also demonstrated time-dependent cytotoxicity.
Collapse
Affiliation(s)
- Brian R Coleman
- Measurement Science and Standards, National Research Council Canada , 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Timothy Knight
- Measurement Science and Standards, National Research Council Canada , 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
- Department of Physics, McMaster University , 1280 Main Street W., Hamilton, Ontario L8S 4L8, Canada
| | - Valerie Gies
- Measurement Science and Standards, National Research Council Canada , 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Zygmunt J Jakubek
- Measurement Science and Standards, National Research Council Canada , 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Shan Zou
- Measurement Science and Standards, National Research Council Canada , 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
- Department of Chemistry, Carleton University , 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
75
|
Ramírez-García G, Gutiérrez-Granados S, Gallegos-Corona MA, Palma-Tirado L, d'Orlyé F, Varenne A, Mignet N, Richard C, Martínez-Alfaro M. Long-term toxicological effects of persistent luminescence nanoparticles after intravenous injection in mice. Int J Pharm 2017; 532:686-695. [PMID: 28705622 DOI: 10.1016/j.ijpharm.2017.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 11/15/2022]
Abstract
The ZnGa1.995Cr0.005O4 persistent luminescence nanoparticles offer the promise of revolutionary tools for biological imaging with applications such as cell tracking or tumor detection. They can be re-excited through living tissues by visible photons, allowing observations without any time constraints and avoiding the undesirable auto-fluorescence signals observed when fluorescent probes are used. Despite all these advantages, their uses demand extensive toxicological evaluation and control. With this purpose, mice were injected with a single intravenous administration of hydroxylated or PEGylated persistent luminescence nanoparticles at different concentrations and then a set of standard tests were carried out 1day, 1 month and 6 months after the administration. High concentrations of hydroxylated nanoparticles generate structural alterations at histology level, endoplasmic reticulum damage and oxidative stress in liver, as well as rising in white blood cells counts. A mechanism involving the endoplasmic reticulum damage could be the responsible of the observed injuries in case of ZGO-OH. On the contrary, no toxicological effects related to PEGylated nanoprobes treatment were noted during our in vivo experiments, denoting the protective effect of PEG-functionalization and thereby, their potential as biocompatible in vivo diagnostic probes.
Collapse
Affiliation(s)
- Gonzalo Ramírez-García
- Departamento de Farmacia, Universidad de Guanajuato, 36050, Guanajuato, Mexico; Departamento de Química, Universidad de Guanajuato, 36050, Guanajuato, Mexico; Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), F-75005, Paris, France; INSERM, UTCBS (U 1022), F-75006, Paris, France; CNRS, UTCBS UMR 8258, F-75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UTCBS U 1022, F-75006 Paris, France
| | | | | | | | - Fanny d'Orlyé
- Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), F-75005, Paris, France; INSERM, UTCBS (U 1022), F-75006, Paris, France; CNRS, UTCBS UMR 8258, F-75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UTCBS U 1022, F-75006 Paris, France
| | - Anne Varenne
- Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), F-75005, Paris, France; INSERM, UTCBS (U 1022), F-75006, Paris, France; CNRS, UTCBS UMR 8258, F-75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UTCBS U 1022, F-75006 Paris, France
| | - Nathalie Mignet
- Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), F-75005, Paris, France; INSERM, UTCBS (U 1022), F-75006, Paris, France; CNRS, UTCBS UMR 8258, F-75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UTCBS U 1022, F-75006 Paris, France
| | - Cyrille Richard
- Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), F-75005, Paris, France; INSERM, UTCBS (U 1022), F-75006, Paris, France; CNRS, UTCBS UMR 8258, F-75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UTCBS U 1022, F-75006 Paris, France.
| | | |
Collapse
|
76
|
Romero-Franco M, Godwin HA, Bilal M, Cohen Y. Needs and challenges for assessing the environmental impacts of engineered nanomaterials (ENMs). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:989-1014. [PMID: 28546894 PMCID: PMC5433198 DOI: 10.3762/bjnano.8.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 04/06/2017] [Indexed: 05/29/2023]
Abstract
The potential environmental impact of nanomaterials is a critical concern and the ability to assess these potential impacts is top priority for the progress of sustainable nanotechnology. Risk assessment tools are needed to enable decision makers to rapidly assess the potential risks that may be imposed by engineered nanomaterials (ENMs), particularly when confronted by the reality of limited hazard or exposure data. In this review, we examine a range of available risk assessment frameworks considering the contexts in which different stakeholders may need to assess the potential environmental impacts of ENMs. Assessment frameworks and tools that are suitable for the different decision analysis scenarios are then identified. In addition, we identify the gaps that currently exist between the needs of decision makers, for a range of decision scenarios, and the abilities of present frameworks and tools to meet those needs.
Collapse
Affiliation(s)
- Michelle Romero-Franco
- University of California Center for Environmental Implications of Nanotechnology, University of California, Los Angeles 6522 CNSI Building, 570 Westwood Plaza Box 957227 Los Angeles, CA 90095-7227, USA
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Box 951772, 56-070 CHS Los Angeles, California 90095, USA
| | - Hilary A Godwin
- University of California Center for Environmental Implications of Nanotechnology, University of California, Los Angeles 6522 CNSI Building, 570 Westwood Plaza Box 957227 Los Angeles, CA 90095-7227, USA
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Box 951772, 56-070 CHS Los Angeles, California 90095, USA
- California Nano Systems Institute, University of California Los Angeles, 6522 CNSI Building, 570 Westwood Plaza, Box 957227, Los Angeles, CA 90095-7227, USA
- UCLA Institute of the Environment and Sustainability, University of California, La Kretz Hall, Suite 300, Box 951496, Los Angeles, CA 90095-1496, USA
| | - Muhammad Bilal
- University of California Center for Environmental Implications of Nanotechnology, University of California, Los Angeles 6522 CNSI Building, 570 Westwood Plaza Box 957227 Los Angeles, CA 90095-7227, USA
- California Nano Systems Institute, University of California Los Angeles, 6522 CNSI Building, 570 Westwood Plaza, Box 957227, Los Angeles, CA 90095-7227, USA
- UCLA Institute of the Environment and Sustainability, University of California, La Kretz Hall, Suite 300, Box 951496, Los Angeles, CA 90095-1496, USA
| | - Yoram Cohen
- University of California Center for Environmental Implications of Nanotechnology, University of California, Los Angeles 6522 CNSI Building, 570 Westwood Plaza Box 957227 Los Angeles, CA 90095-7227, USA
- California Nano Systems Institute, University of California Los Angeles, 6522 CNSI Building, 570 Westwood Plaza, Box 957227, Los Angeles, CA 90095-7227, USA
- UCLA Institute of the Environment and Sustainability, University of California, La Kretz Hall, Suite 300, Box 951496, Los Angeles, CA 90095-1496, USA
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, 5531 Boelter Hall, Los Angeles, CA 90095-1592, USA
| |
Collapse
|
77
|
Emissions and Possible Environmental Implication of Engineered Nanomaterials (ENMs) in the Atmosphere. ATMOSPHERE 2017. [DOI: 10.3390/atmos8050084] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
78
|
Cytotoxicity of gold nanoparticles with different structures and surface-anchored chiral polymers. Acta Biomater 2017; 53:610-618. [PMID: 28213095 DOI: 10.1016/j.actbio.2017.01.082] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 12/15/2022]
Abstract
Nanoparticles (NPs) can have profound effects on cell biology. However, the potential adverse effects of gold nanoparticles (AuNPs) with different surface chirality and structures have not been elucidated. In this study, monolayers of poly(acryloyl-l(d)-valine (l(d)-PAV) chiral molecules were anchored on the surfaces of gold nanocubes (AuNCs) and nanooctahedras (AuNOs), respectively. The l-PAV-AuNCs and d-PAV-AuNCs, or the l-PAV-AuNOs and d-PAV-AuNOs, had identical physicochemical properties in terms of size, morphology and ligand density except of the reverse molecular chirality on the particle surfaces, respectively. The l-PAV capped AuNCs and AuNOs exhibited larger cytotoxicity to A549 cells than the D-PAV coated ones, and the PAV-AuNOs had larger cytotoxicity than PAV-AuNCs when being capped with the same type of enantiomers, respectively. The cytotoxicity was positively correlated with the cellular uptake amount, and thereby the production of intracellular reactive oxygen species (ROS). STATEMENT OF SIGNIFICANCE • Gold nanoparticles with different structure and surface chirality are fabricated. • The structure and surface chirality at the nanoscale can influence cytotoxicity and genotoxicity. • A new perspective on designing nanoparticles for drug delivery, bioimaging and diagnosis.
Collapse
|
79
|
Xia T. Multifunctional nanotherapeutics for treatment of ocular disease. ANNALS OF EYE SCIENCE 2017; 2:22. [PMID: 30123872 PMCID: PMC6097193 DOI: 10.21037/aes.2017.03.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Center for Environmental Implications of Nanotechnology (CEIN), California NanoSystems Institute (CNSI), University of California Los Angeles, Los Angeles, CA 90095, USA
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
80
|
Yoshioka Y, Kuroda E, Hirai T, Tsutsumi Y, Ishii KJ. Allergic Responses Induced by the Immunomodulatory Effects of Nanomaterials upon Skin Exposure. Front Immunol 2017; 8:169. [PMID: 28261221 PMCID: PMC5311046 DOI: 10.3389/fimmu.2017.00169] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/02/2017] [Indexed: 01/13/2023] Open
Abstract
Over the past decade, a vast array of nanomaterials has been created through the development of nanotechnology. With the increasing application of these nanomaterials in various fields, such as foods, cosmetics, and medicines, there has been concern about their safety, that is, nanotoxicity. Therefore, there is an urgent need to collect information about the biological effects of nanomaterials so that we can exploit their potential benefits and design safer nanomaterials, while avoiding nanotoxicity as a result of inhalation or skin exposure. In particular, the immunomodulating effect of nanomaterials is one of most interesting aspects of nanotoxicity. However, the immunomodulating effects of nanomaterials through skin exposure have not been adequately discussed compared with the effects of inhalation exposure, because skin penetration by nanomaterials is thought to be extremely low under normal conditions. On the other hand, the immunomodulatory effects of nanomaterials via skin may cause severe problems for people with impaired skin barrier function, because some nanomaterials could penetrate the deep layers of their allergic or damaged skin. In addition, some studies, including ours, have shown that nanomaterials could exhibit significant immunomodulating effects even if they do not penetrate the skin. In this review, we summarize our current knowledge of the allergic responses induced by nanomaterials upon skin exposure. First, we discuss nanomaterial penetration of the intact or impaired skin barrier. Next, we describe the immunomodulating effects of nanomaterials, focusing on the sensitization potential of nanomaterials and the effects of co-exposure of nanomaterials with substances such as chemical sensitizers or allergens, on the onset of allergy, following skin exposure. Finally, we discuss the potential mechanisms underlying the immunomodulating effects of nanomaterials by describing the involvement of the protein corona in the interaction of nanomaterials with biological components and by presenting recent data about the adjuvant effects of well-characterized particle adjuvant, aluminum salt, as an example of immunomodulatory particulate.
Collapse
Affiliation(s)
- Yasuo Yoshioka
- Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan; Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan
| | - Etsushi Kuroda
- Laboratory of Vaccine Science, Immunology Frontier Research Center, World Premier International Research Center, Osaka University , Suita, Osaka , Japan
| | - Toshiro Hirai
- Department of Dermatology and Immunology, University of Pittsburgh , Pittsburgh, PA , USA
| | - Yasuo Tsutsumi
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan; Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Ken J Ishii
- Laboratory of Vaccine Science, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan; Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| |
Collapse
|
81
|
Castell N, Dauge FR, Schneider P, Vogt M, Lerner U, Fishbain B, Broday D, Bartonova A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? ENVIRONMENT INTERNATIONAL 2017; 99:293-302. [PMID: 28038970 DOI: 10.1016/j.envint.2016.12.007] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 05/21/2023]
Abstract
The emergence of low-cost, user-friendly and very compact air pollution platforms enable observations at high spatial resolution in near-real-time and provide new opportunities to simultaneously enhance existing monitoring systems, as well as engage citizens in active environmental monitoring. This provides a whole new set of capabilities in the assessment of human exposure to air pollution. However, the data generated by these platforms are often of questionable quality. We have conducted an exhaustive evaluation of 24 identical units of a commercial low-cost sensor platform against CEN (European Standardization Organization) reference analyzers, evaluating their measurement capability over time and a range of environmental conditions. Our results show that their performance varies spatially and temporally, as it depends on the atmospheric composition and the meteorological conditions. Our results show that the performance varies from unit to unit, which makes it necessary to examine the data quality of each node before its use. In general, guidance is lacking on how to test such sensor nodes and ensure adequate performance prior to marketing these platforms. We have implemented and tested diverse metrics in order to assess if the sensor can be employed for applications that require high accuracy (i.e., to meet the Data Quality Objectives defined in air quality legislation, epidemiological studies) or lower accuracy (i.e., to represent the pollution level on a coarse scale, for purposes such as awareness raising). Data quality is a pertinent concern, especially in citizen science applications, where citizens are collecting and interpreting the data. In general, while low-cost platforms present low accuracy for regulatory or health purposes they can provide relative and aggregated information about the observed air quality.
Collapse
Affiliation(s)
- Nuria Castell
- NILU - Norwegian Institute for Air Research, Kjeller, Norway.
| | - Franck R Dauge
- NILU - Norwegian Institute for Air Research, Kjeller, Norway
| | | | - Matthias Vogt
- NILU - Norwegian Institute for Air Research, Kjeller, Norway
| | - Uri Lerner
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Barak Fishbain
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - David Broday
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alena Bartonova
- NILU - Norwegian Institute for Air Research, Kjeller, Norway
| |
Collapse
|
82
|
CANLI EG, CANLI M. Effects of aluminum, copper, and titanium nanoparticles onsome blood parameters in Wistar rats. TURK J ZOOL 2017. [DOI: 10.3906/zoo-1512-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
83
|
Guo Z, Martucci NJ, Moreno-Olivas F, Tako E, Mahler GJ. Titanium Dioxide Nanoparticle Ingestion Alters Nutrient Absorption in an In Vitro Model of the Small Intestine. NANOIMPACT 2017; 5:70-82. [PMID: 28944308 PMCID: PMC5604471 DOI: 10.1016/j.impact.2017.01.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ingestion of titanium dioxide (TiO2) nanoparticles from products such as agricultural chemicals, processed food, and nutritional supplements is nearly unavoidable. The gastrointestinal tract serves as a critical interface between the body and the external environment, and is the site of essential nutrient absorption. The goal of this study was to examine the effects of ingesting the 30 nm TiO2 nanoparticles with an in vitro cell culture model of the small intestinal epithelium, and to determine how acute or chronic exposure to nano-TiO2 influences intestinal barrier function, reactive oxygen species generation, proinflammatory signaling, nutrient absorption (iron, zinc, fatty acids), and brush border membrane enzyme function (intestinal alkaline phosphatase). A Caco-2/HT29-MTX cell culture model was exposed to physiologically relevant doses of TiO2 nanoparticles for acute (four hours) or chronic (five days) time periods. Exposure to TiO2 nanoparticles significantly decreased intestinal barrier function following chronic exposure. Reactive oxygen species (ROS) generation, proinflammatory signaling, and intestinal alkaline phosphatase activity all showed increases in response to nano-TiO2. Iron, zinc, and fatty acid transport were significantly decreased following exposure to TiO2 nanoparticles. This is because nanoparticle exposure induced a decrease in absorptive microvilli in the intestinal epithelial cells. Nutrient transporter protein gene expression was also altered, suggesting that cells are working to regulate the transport mechanisms disturbed by nanoparticle ingestion. Overall, these results show that intestinal epithelial cells are affected at a functional level by physiologically relevant exposure to nanoparticles commonly ingested from food.
Collapse
Affiliation(s)
- Zhongyuan Guo
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902
| | - Nicole J. Martucci
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902
| | | | - Elad Tako
- Plant, Soil and Nutrition Laboratory, Agricultural Research Services, U.S. Department of Agriculture, Ithaca, NY
| | - Gretchen J. Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902
- Correspondence to Gretchen Mahler, PhD, Binghamton University, Department of Biomedical Engineering, 2608 Biotechnology Building, Binghamton, NY 13902, Phone: 607-777-5238, Fax: 607-777-5780,
| |
Collapse
|
84
|
The changing face of nanomaterials: Risk assessment challenges along the value chain. Regul Toxicol Pharmacol 2016; 84:105-115. [PMID: 27998719 DOI: 10.1016/j.yrtph.2016.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/17/2016] [Accepted: 12/15/2016] [Indexed: 12/25/2022]
Abstract
Risk assessment (RA) of manufactured nanomaterials (MNM) is essential for regulatory purposes and risk management activities. Similar to RA of "classical" chemicals, MNM RA requires knowledge about exposure as well as of hazard potential and dose response relationships. What makes MNM RA especially challenging is the multitude of materials (which is expected to increase substantially in the future), the complexity of MNM value chains and life cycles, the accompanying possible changes in material properties over time and in contact with various environmental and organismal milieus, and the difficulties to obtain proper exposure data and to consider the proper dose metric. This article discusses these challenges and also critically overviews the current state of the art regarding MNM RA approaches.
Collapse
|
85
|
Karami Mehrian S, De Lima R. Nanoparticles cyto and genotoxicity in plants: Mechanisms and abnormalities. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.enmm.2016.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
86
|
Skariyachan S, Parveen A, Garka S. Nanoparticle Fullerene (C60) demonstrated stable binding with antibacterial potential towards probable targets of drug resistant Salmonella typhi - a computational perspective and in vitro investigation. J Biomol Struct Dyn 2016; 35:3449-3468. [PMID: 27817242 DOI: 10.1080/07391102.2016.1257441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Salmonella typhi, a Gram negative bacterium, has become multidrug resistant (MDR) to wide classes of antibacterials which necessitate an alarming precaution. This study focuses on the binding potential and therapeutic insight of Nano-Fullerene C60 towards virulent targets of Salmonella typhi by computational prediction and preliminary in vitro assays. The clinical isolates of Salmonella typhi were collected and antibiotic susceptibility profiles were assessed. The drug targets of pathogen were selected by rigorous literature survey and gene network analysis by various metabolic network resources. Based on this study, 20 targets were screened and the 3D structures of few drug targets were retrieved from PDB and others were computationally predicted. The structures of nanoleads such as Fullerene C60, ZnO and CuO were retrieved from drug databases. The binding potential of these nanoleads towards all selected targets were predicted by molecular docking. The best docked conformations were screened and concept was investigated by preliminary bioassays. This study revealed that most of the isolates of Salmonella typhi were found to be MDR (p < .05). The theoretical models of selected drug targets showed high stereochemical validity. The molecular docking studies suggested that Fullerene C60 showed better binding affinity towards the drug targets when compared to ZnO and CuO. The preliminary in vitro assays suggested that 100 μg/L Fullerene C60 posses significant inhibitory activities and absence of drug resistance to this nanoparticle. This study suggests that Fullerene C60 can be scaled up as probable lead molecules against the major drug targets of MDR Salmonella typhi.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions, Visvesvaraya Technological University , Belagavi 560 078 , Karnataka , India
| | - Asma Parveen
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions, Visvesvaraya Technological University , Belagavi 560 078 , Karnataka , India
| | - Shruti Garka
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions, Visvesvaraya Technological University , Belagavi 560 078 , Karnataka , India
| |
Collapse
|
87
|
Demir E, Castranova V. Genotoxic effects of synthetic amorphous silica nanoparticles in the mouse lymphoma assay. Toxicol Rep 2016; 3:807-815. [PMID: 28959608 PMCID: PMC5616205 DOI: 10.1016/j.toxrep.2016.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 10/17/2016] [Accepted: 10/19/2016] [Indexed: 01/25/2023] Open
Abstract
Synthetic amorphous silica nanoparticles (SAS NPs) have been used in various industries, such as plastics, glass, paints, electronics, synthetic rubber, in pharmaceutical drug tablets, and a as food additive in many processed foods. There are few studies in the literature on NPs using gene mutation approaches in mammalian cells, which represents an important gap for genotoxic risk estimations. To fill this gap, the mouse lymphoma L5178Y/Tk+/− assay (MLA) was used to evaluate the mutagenic effect for five different concentrations (from 0.01 to 150 μg/mL) of two different sizes of SAS NPs (7.172 and 7.652 nm) and a fine collodial form of silicon dioxide (SiO2). This assay detects a broad spectrum of mutational events, from point mutations to chromosome alterations. The results obtained indicate that the two selected SAS NPs are mutagenic in the MLA assay, showing a concentration-dependent effect. The relative mutagenic potencies according to the induced mutant frequency (IMF) are as follows: SAS NPs (7.172 nm) (IMF = 705.5 × 10−6), SAS NPs (7.652 nm) (IMF = 575.5 × 10−6), and SiO2 (IMF = 57.5 × 10−6). These in vitro results, obtained from mouse lymphoma cells, support the genotoxic potential of NPs as well as focus the discussion of the benefits/risks associated with their use in different areas.
Collapse
Affiliation(s)
- Eşref Demir
- Giresun University, Faculty of Engineering, Department of Genetics and Bioengineering, 28200-Güre, Giresun, Turkey
| | - Vincent Castranova
- Department of Pharmaceutical Sciences, School of Pharmacy, RC Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
88
|
Xia T, Zhu Y, Mu L, Zhang ZF, Liu S. Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century. Natl Sci Rev 2016. [PMID: 28649460 PMCID: PMC5473351 DOI: 10.1093/nsr/nww064] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Air pollution is a severe threat to public health globally, affecting everyone in developed and developing countries alike. Among different air pollutants, particulate matter (PM), particularly combustion-produced fine PM (PM2.5) has been shown to play a major role in inducing various adverse health effects. Strong associations have been demonstrated by epidemiological and toxicological studies between increases in PM2.5 concentrations and premature mortality, cardiopulmonary diseases, asthma and allergic sensitization, and lung cancer. The mechanisms of PM-induced toxicological effects are related to their size, chemical composition, lung clearance and retention, cellular oxidative stress responses and pro-inflammatory effects locally and systemically. Particles in the ultrafine range (<100 nm), although they have the highest number counts, surface area and organic chemical content, are often overlooked due to insufficient monitoring and risk assessment. Yet, ample studies have demonstrated that ambient ultrafine particles have higher toxic potential compared with PM2.5. In addition, the rapid development of nanotechnology, bringing ever-increasing production of nanomaterials, has raised concerns about the potential human exposure and health impacts. All these add to the complexity of PM-induced health effects that largely remains to be determined, and mechanistic understanding on the toxicological effects of ambient ultrafine particles and nanomaterials will be the focus of studies in the near future.
Collapse
Affiliation(s)
- Tian Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90034, USA
- Corresponding authors. E-mails: ;
| | - Yifang Zhu
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, SUNY, Buffalo, NY 14214, USA
| | - Zuo-Feng Zhang
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Corresponding authors. E-mails: ;
| |
Collapse
|
89
|
Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model. Int J Mol Sci 2016; 17:ijms17101603. [PMID: 27669221 PMCID: PMC5085636 DOI: 10.3390/ijms17101603] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/08/2016] [Accepted: 09/15/2016] [Indexed: 01/09/2023] Open
Abstract
Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with future perspectives on research into AgNPs.
Collapse
|
90
|
Carmona ER, Inostroza-Blancheteau C, Rubio L, Marcos R. Genotoxic and oxidative stress potential of nanosized and bulk zinc oxide particles in Drosophila melanogaster. Toxicol Ind Health 2016; 32:1987-2001. [DOI: 10.1177/0748233715599472] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zinc oxide nanoparticles (ZnONP) are manufactured on a large scale and can be found in a variety of consumer products, such as sunscreens, lotions, paints and food additives. Few studies have been carried out on its genotoxic potential and related mechanisms in whole organisms. In the present study, the in vivo genotoxic activity of ZnONP and its bulk form was assayed using the wing-spot test and comet assay in Drosophila melanogaster. Additionally, a lipid peroxidation analysis using the thiobarbituric acid assay was also performed. Results obtained with the wing-spot test showed a lack of genotoxic activity of both ZnO forms. However, when both particle sizes were tested in the comet assay using larvae haemocytes, a significant increase in DNA damage was observed for ZnONP treatments but only at the higher dose applied. In addition, the lipid peroxidation assay showed significant malondialdehyde (MDA) induction for both ZnO forms, but the induction of MDA for ZnONP was higher for the ZnO bulk, suggesting that the observed DNA strand breaks could be induced by mediated oxidative stress. The overall data suggest that the potential genotoxicity of ZnONP in Drosophila can be considered weak according to the lack of mutagenic and recombinogenic effects and the induction of primary DNA damage only at high toxic doses of ZnONP. This study is the first assessing the genotoxic and oxidative stress potential of nano and bulk ZnO particles in Drosophila.
Collapse
Affiliation(s)
- Erico R Carmona
- Grupo de Genotoxicología, Núcleo de Investigación en Estudios Ambientales, Facultad de Recursos Naturales, Escuela de Medicina Veterinaria, Universidad Católica de Temuco, Temuco, Chile
| | - Claudio Inostroza-Blancheteau
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Escuela de Agronomía, Universidad Católica de Temuco, Temuco, Chile
| | - Laura Rubio
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
91
|
Thwala M, Klaine SJ, Musee N. Interactions of metal-based engineered nanoparticles with aquatic higher plants: A review of the state of current knowledge. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1677-1694. [PMID: 26757140 DOI: 10.1002/etc.3364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/14/2015] [Accepted: 01/07/2016] [Indexed: 05/29/2023]
Abstract
The rising potential for the release of engineered nanoparticles (ENPs) into aquatic environments requires evaluation of risks to protect ecological health. The present review examines knowledge pertaining to the interactions of metal-based ENPs with aquatic higher plants, identifies information gaps, and raises considerations for future research to advance knowledge on the subject. The discussion focuses on ENPs' bioaccessibility; uptake, adsorption, translocation, and bioaccumulation; and toxicity effects on aquatic higher plants. An information deficit surrounds the uptake of ENPs and associated dynamics, because the influence of ENP characteristics and water quality conditions has not been well documented. Dissolution appears to be a key mechanism driving bioaccumulation of ENPs, whereas nanoparticulates often adsorb to plant surfaces with minimal internalization. However, few reports document the internalization of ENPs by plants; thus, the role of nanoparticulates' internalization in bioaccumulation and toxicity remains unclear, requiring further investigation. The toxicities of metal-based ENPs mainly have been associated with dissolution as a predominant mechanism, although nano toxicity has also been reported. To advance knowledge in this domain, future investigations need to integrate the influence of ENP characteristics and water physicochemical parameters, as their interplay determines ENP bioaccessibility and influences their risk to health of aquatic higher plants. Furthermore, harmonization of test protocols is recommended for fast tracking the generation of comparable data. Environ Toxicol Chem 2016;35:1677-1694. © 2016 SETAC.
Collapse
Affiliation(s)
- Melusi Thwala
- Source Directed Scientific Measures Research Group, Council for Scientific and Industrial Research, Pretoria, South Africa
- Zoology Department, University of Johannesburg, Johannesburg, South Africa
| | - Stephen J Klaine
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- School of Biological Sciences, North-West University, Potchefstroom, South Africa
| | - Ndeke Musee
- Department of Chemical Engineering, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
92
|
Genome-wide identification and functional analysis of long noncoding RNAs involved in the response to graphene oxide. Biomaterials 2016; 102:277-91. [PMID: 27348851 DOI: 10.1016/j.biomaterials.2016.06.041] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 11/23/2022]
Abstract
Long noncoding RNAs (lncRNAs), which are defined as noncoding RNAs having at least 200 nucleotides, can potentially regulate various biological processes. However, the roles of lncRNAs in regulating cellular response to engineered nanomaterials (ENMs) are still unclear. Using Hiseq 2000 sequencing technique, we performed a genome-wide screen to identify lncRNAs involved in the control of toxicity of graphene oxide (GO) using in vivo Caenorhabditis elegans assay system. HiSeq 2000 sequencing, followed by quantitative analysis, identified only 34 dysregulated lncRNAs in GO exposed nematodes. Bioinformatics analysis implies the biological processes and signaling pathways mediated by candidate lncRNAs involved in the control of GO toxicity. A lncRNAs-miRNAs network possibly involved in the control of GO toxicity was further raised. Moreover, we identified the shared lncRNAs based on the molecular regulation basis for chemical surface modifications and/or genetic mutations in reducing GO toxicity. We further provide direct evidence that these shared lncRNAs, linc-37 and linc-14, were involved in the control of chemical surface modifications and genetic mutations in reducing GO toxicity. linc-37 binding to transcriptional factor FOXO/DAF-16 might be important for the control of GO toxicity. Our whole-genome identification and functional analysis of lncRNAs highlights the important roles of lncRNAs based molecular mechanisms for cellular responses to ENMs in organisms.
Collapse
|
93
|
Imran M, Shah MR, Ullah F, Ullah S, Elhissi AM, Nawaz W, Ahmad F, Sadiq A, Ali I. Glycoside-based niosomal nanocarrier for enhanced in-vivo performance of Cefixime. Int J Pharm 2016; 505:122-32. [DOI: 10.1016/j.ijpharm.2016.03.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/29/2022]
|
94
|
Li N, Georas S, Alexis N, Fritz P, Xia T, Williams MA, Horner E, Nel A. A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): Why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J Allergy Clin Immunol 2016; 138:386-96. [PMID: 27130856 DOI: 10.1016/j.jaci.2016.02.023] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/30/2016] [Accepted: 02/24/2016] [Indexed: 01/08/2023]
Abstract
Ultrafine particles (UFPs) are airborne particulates of less than 100 nm in aerodynamic diameter. Examples of UFPs are diesel exhaust particles, products of cooking, heating, and wood burning in indoor environments, and, more recently, products generated through the use of nanotechnology. Studies have shown that ambient UFPs have detrimental effects on both the cardiovascular and respiratory systems, including a higher incidence of atherosclerosis and exacerbation rate of asthma. UFPs have been found to alter in vitro and in vivo responses of the immune system to allergens and can also play a role in allergen sensitization. The inflammatory properties of UFPs can be mediated by a number of different mechanisms, including the ability to produce reactive oxygen species, leading to the generation of proinflammatory cytokines and airway inflammation. In addition, because of their small size, UFPs also have unique distribution characteristics in the respiratory tree and circulation and might be able to alter cellular function in ways that circumvent normal signaling pathways. Additionally, UFPs can penetrate intracellularly and potentially cause DNA damage. The recent advances in nanotechnology, although opening up new opportunities for the advancement of technology and medicine, could also lead to unforeseen adverse health effects in exposed human subjects. Further research is needed to clarify the safety of nanoscale particles, as well as the elucidation of the possible beneficial use of these particulates to treat disease.
Collapse
Affiliation(s)
- Ning Li
- Department of Pathology & Diagnostic Investigation, CVM, Michigan State University, East Lansing, Mich.
| | - Steve Georas
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY
| | - Neil Alexis
- Center for Environmental Medicine and Lung Biology, University of North Carolina, Chapel Hill, NC
| | | | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, Calif
| | - Marc A Williams
- US Army Public Health Command, Toxicology Portfolio, Health Effects Research Program, Aberdeen Proving Ground, Aberdeen, Md
| | | | - Andre Nel
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, Calif.
| |
Collapse
|
95
|
DeLoid G, Casella B, Pirela S, Filoramo R, Pyrgiotakis G, Demokritou P, Kobzik L. Effects of engineered nanomaterial exposure on macrophage innate immune function. NANOIMPACT 2016; 2:70-81. [PMID: 29568809 PMCID: PMC5860825 DOI: 10.1016/j.impact.2016.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Increasing use of engineered nanomaterials (ENMs) means increased human exposures. Potential adverse effects include those on the immune system, ranging from direct toxicity to impairment of defenses against environmental pathogens and toxins. Effects on lung macrophages may be especially prominent, because they serve to clear foreign materials like ENMs and bacterial pathogens. We investigated the effects of 4 hour exposures over a range of concentrations, of a panel of industry-relevant ENMs, including SiO2, Fe2O3, ZnO, CeO2, TiO2, and an Ag/SiO2 composite, on human THP-1 macrophages. Effects on phagocytosis of latex beads, and phagocytosis and killing of Francisella tularensis (FT), as well as viability, oxidative stress and mitochondrial integrity, were measured by automated scanning confocal microscopy and image analysis. Results revealed some notable patterns: 1) Phagocytosis of unopsonized beads was increased, whereas that of opsonized beads was decreased, by all ENMs, with the exception of ZnO, which reduced both opsonized and unopsonized uptake; 2) Uptake of opsonized and unopsonized FT was either impaired or unaffected by all ENMs, with the exception of CeO2, which increased phagocytosis of unopsonized FT; 3) Macrophage killing of FT tended to improve with all ENMs; and 4) Viability was unaffected immediately following exposures with all ENMs tested, but was significantly decreased 24 hours after exposures to Ag/SiO2 and ZnO ENMs. The results reveal a complex landscape of ENM effects on macrophage host defenses, including both enhanced and reduced capacities, and underscore the importance of robust hazard assessment, including immunotoxicity assessment, of ENMs.
Collapse
Affiliation(s)
- Glen DeLoid
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
- corresponding author: Glen M. DeLoid,
| | - Beatriz Casella
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
- Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Sandra Pirela
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
| | - Rose Filoramo
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
| | - Georgios Pyrgiotakis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
| | - Lester Kobzik
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
96
|
Wu Y, He G, Zhang Y, Liu Y, Li M, Wang X, Li N, Li K, Zheng G, Zheng Y, Yin Q. Unique antitumor property of the Mg-Ca-Sr alloys with addition of Zn. Sci Rep 2016; 6:21736. [PMID: 26907515 PMCID: PMC4764862 DOI: 10.1038/srep21736] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/29/2016] [Indexed: 12/25/2022] Open
Abstract
In clinical practice, tumor recurrence and metastasis after orthopedic prosthesis implantation is an intensely troublesome matter. Therefore, to develop implant materials with antitumor property is extremely necessary and meaningful. Magnesium (Mg) alloys possess superb biocompatibility, mechanical property and biodegradability in orthopedic applications. However, whether they possess antitumor property had seldom been reported. In recent years, it showed that zinc (Zn) not only promote the osteogenic activity but also exhibit good antitumor property. In our present study, Zn was selected as an alloying element for the Mg-1Ca-0.5Sr alloy to develop a multifunctional material with antitumor property. We investigated the influence of the Mg-1Ca-0.5Sr-xZn (x = 0, 2, 4, 6 wt%) alloys extracts on the proliferation rate, cell apoptosis, migration and invasion of the U2OS cell line. Our results show that Zn containing Mg alloys extracts inhibit the cell proliferation by alteration the cell cycle and inducing cell apoptosis via the activation of the mitochondria pathway. The cell migration and invasion property were also suppressed by the activation of MAPK (mitogen-activated protein kinase) pathway. Our work suggests that the Mg-1Ca-0.5Sr-6Zn alloy is expected to be a promising orthopedic implant in osteosarcoma limb-salvage surgery for avoiding tumor recurrence and metastasis.
Collapse
Affiliation(s)
- Yuanhao Wu
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Guanping He
- Southern Medical University, Guangzhou 510515, China
- Department of Orthopedics, Guangdong Key Lab of Orthopedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Key Lab of Orthopedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Yang Liu
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Mei Li
- Department of Orthopedics, Guangdong Key Lab of Orthopedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Xiaolan Wang
- Department of Orthopedics, Guangdong Key Lab of Orthopedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Nan Li
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Kang Li
- Southern Medical University, Guangzhou 510515, China
- Department of Orthopedics, Guangdong Key Lab of Orthopedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Guan Zheng
- Southern Medical University, Guangzhou 510515, China
- Department of Orthopedics, Guangdong Key Lab of Orthopedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Yufeng Zheng
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Qingshui Yin
- Southern Medical University, Guangzhou 510515, China
- Department of Orthopedics, Guangdong Key Lab of Orthopedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| |
Collapse
|
97
|
Nanosilica and Polyacrylate/Nanosilica: A Comparative Study of Acute Toxicity. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9353275. [PMID: 26981538 PMCID: PMC4770131 DOI: 10.1155/2016/9353275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/12/2015] [Accepted: 12/17/2015] [Indexed: 12/29/2022]
Abstract
We compared the acute toxicity of nanosilica and polyacrylate/nanosilica instillation in Wistar rats (n = 60). Exposure to nanosilica and polyacrylate/nanosilica showed a 30% mortality rate. When compared with saline-treated rats, animals in both exposure groups exhibited a significant reduction of PO2 (P < 0.05) at both 24 and 72 hr. after exposure. Both exposure groups exhibited a significant reduction of neutrophils in arterial blood compared to saline controls (P < 0.05) 24 hr. after exposure. The levels of blood ALT and LDH in exposed groups were found to be significantly increased (P < 0.05) 24 hr. following exposure. The exposed groups exhibited various degrees of pleural effusion and pericardial effusion. Our findings indicated respiratory exposure to polyacrylate/nanosilica and nanosilica is likely to cause multiple organ toxicity.
Collapse
|
98
|
Senut MC, Zhang Y, Liu F, Sen A, Ruden DM, Mao G. Size-Dependent Toxicity of Gold Nanoparticles on Human Embryonic Stem Cells and Their Neural Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:631-46. [PMID: 26676601 PMCID: PMC5033512 DOI: 10.1002/smll.201502346] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/08/2015] [Indexed: 05/17/2023]
Abstract
This study explores the use of human embryonic stem cells (hESCs) for assessing nanotoxicology, specifically, the effect of gold nanoparticles (AuNPs) of different core sizes (1.5, 4, and 14 nm) on the viability, pluripotency, neuronal differentiation, and DNA methylation of hESCs. The hESCs exposed to 1.5 nm thiolate-capped AuNPs exhibit loss of cohesiveness and detachment suggesting ongoing cell death at concentrations as low as 0.1 μg mL(-1). The cells exposed to 1.5 nm AuNPs at this concentration do not form embryoid bodies but rather disintegrate into single cells within 48 h. Cell death caused by 1.5 nm AuNPs also occur in hESC-derived neural progenitor cells. None of the other nanoparticles exhibit toxic effects on the hESCs at concentrations as high as 10 μg mL(-1) during a 19 d neural differentiation period. Thiolate-capped 4 nm AuNPs at 10 μg mL(-1) cause a dramatic decrease in global DNA methylation (5 mC) and a corresponding increase in global DNA hydroxymethylation (5 hmC) of the hESC's DNA in only 24 h. This work identifies a type of AuNPs highly toxic to hESCs and demonstrates the potential of hESCs in predicting nanotoxicity and characterizing their ability to alter the DNA methylation and hydroxymethylation patterns in the cells.
Collapse
Affiliation(s)
- Marie-Claude Senut
- Institute of Environmental Health and Sciences, Wayne State University, 275 East Hancock Road, Detroit, Michigan 48201, USA
| | - Yanhua Zhang
- Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, USA
| | - Fangchao Liu
- Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, USA
| | - Arko Sen
- Institute of Environmental Health and Sciences, Wayne State University, 275 East Hancock Road, Detroit, Michigan 48201, USA
| | - Douglas M. Ruden
- Institute of Environmental Health and Sciences, Wayne State University, 275 East Hancock Road, Detroit, Michigan 48201, USA
| | - Guangzhao Mao
- Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, USA
| |
Collapse
|
99
|
Chia SL, Tay CY, Setyawati MI, Leong DT. Decoupling the Direct and Indirect Biological Effects of ZnO Nanoparticles Using a Communicative Dual Cell-Type Tissue Construct. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:647-657. [PMID: 26670581 DOI: 10.1002/smll.201502306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 11/04/2015] [Indexed: 06/05/2023]
Abstract
While matter at the nanoscale can be manipulated, the knowledge of the interactions between these nanoproducts and the biological systems remained relatively laggard. Current nanobiology study is rooted on in vitro study using conventional 2D cell culture model. A typical study employs monolayer cell culture that simplifies the real context of which to measure any nanomaterial effect; unfortunately, this simplification also demonstrated the limitations of 2D cell culture in predicting the actual biological response of some tissues. In fact, some of the characteristics of tissue such as spatial arrangement of cells and cell-cell interaction, which are simplified in 2D cell culture model, play important roles in how cells respond to a stimulus. To more accurately recapitulate the features and microenvironment of tissue for nanotoxicity assessments, an improved organotypic-like in vitro multicell culture system to mimic the kidney endoepithelial bilayer is introduced. Results showed that important nano-related parameters such as the diffusion, direct and indirect toxic effects of ZnO nanoparticles can be studied by combining this endoepithelial bilayer tissue model and traditional monolayer culture setting.
Collapse
Affiliation(s)
- Sing Ling Chia
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, N4.1, Nanyang Avenue, Singapore, 639798, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Magdiel I Setyawati
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - David T Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
100
|
Zhang J, Dong Q, Liu Y, Zhou X, Shi H. Response to shock load of engineered nanoparticles in an activated sludge treatment system: Insight into microbial community succession. CHEMOSPHERE 2016; 144:1837-1844. [PMID: 26539708 DOI: 10.1016/j.chemosphere.2015.10.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/17/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
The environmental impacts of the use of engineered nanoparticles (NPs) remain unclear and have attracted increasing concern worldwide. Considering that NPs eventually end up in wastewater treatment systems, the potential impact of ZnO and TiO2 NPs on the activated sludge was investigated using laboratory-scale sequencing batch reactors (SBRs). Short-term (24 h) exposure to 1, 10 and 100 mg/L shock loads of NPs reduced the oxygen uptake rate of the activated sludge by 3.55%-12.51% compared with the controls. In our experiment, the toxicities of TiO2 NPs were higher than those of ZnO NPs as reflected in the inhibition of oxygen utilization in the activated sludge. However, both the short-term (24 h) and long-term (21 days) exposure to ZnO and TiO2 NPs did not adversely affect the pollutant removal of the SBRs. Furthermore, the polymerase chain reaction-denaturing gel gradient electrophoresis revealed that the microbial community did not significantly vary after the short-term exposure (24 h) to 1, 10 and 100 mg/L shock loads of NPs; however, the cluster analysis in our experiment revealed that the slight difference caused by the NPs largely depended on exposure time rather than on NP type and NP concentration. The long-term exposure (13 days) to 10 mg/L shock load of ZnO or TiO2 NPs caused no substantial microbial community shifts in the activated sludge. The microbial diversity also showed no significant change when exposed to NPs as revealed by the Shannon-Wiener index.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Simulation and Regulation of River Basin Water Cycle, China Institute of Water Resources and Hydropower Research, A-1 Fuxing Road Haidian District, Beijing 100038, China
| | - Qian Dong
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 10084, China
| | - Yanchen Liu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 10084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 10084, China.
| | - Hanchang Shi
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 10084, China
| |
Collapse
|