51
|
Pires PW, Earley S. Redox regulation of transient receptor potential channels in the endothelium. Microcirculation 2018; 24. [PMID: 27809396 DOI: 10.1111/micc.12329] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/31/2016] [Indexed: 01/08/2023]
Abstract
ROS and RNS are important mediators of signaling pathways in the endothelium. Specific members of the TRP superfamily of cation channels act as important Ca2+ influx pathways in endothelial cells and are involved in endothelium-dependent vasodilation, regulation of barrier permeability, and angiogenesis. ROS and RNS can modulate the activity of certain TRP channels mainly by modifying specific cysteine residues or by stimulating the production of second messengers. In this review, we highlight the recent literature describing redox regulation of TRP channel activity in endothelial cells as well as the physiological importance of these pathways and implication for cardiovascular diseases.
Collapse
Affiliation(s)
- Paulo Wagner Pires
- Department of Pharmacology, Cardiovascular Research Center, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Scott Earley
- Department of Pharmacology, Cardiovascular Research Center, Reno School of Medicine, University of Nevada, Reno, NV, USA
| |
Collapse
|
52
|
Moore C, Gupta R, Jordt SE, Chen Y, Liedtke WB. Regulation of Pain and Itch by TRP Channels. Neurosci Bull 2018; 34:120-142. [PMID: 29282613 PMCID: PMC5799130 DOI: 10.1007/s12264-017-0200-8] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
Nociception is an important physiological process that detects harmful signals and results in pain perception. In this review, we discuss important experimental evidence involving some TRP ion channels as molecular sensors of chemical, thermal, and mechanical noxious stimuli to evoke the pain and itch sensations. Among them are the TRPA1 channel, members of the vanilloid subfamily (TRPV1, TRPV3, and TRPV4), and finally members of the melastatin group (TRPM2, TRPM3, and TRPM8). Given that pain and itch are pro-survival, evolutionarily-honed protective mechanisms, care has to be exercised when developing inhibitory/modulatory compounds targeting specific pain/itch-TRPs so that physiological protective mechanisms are not disabled to a degree that stimulus-mediated injury can occur. Such events have impeded the development of safe and effective TRPV1-modulating compounds and have diverted substantial resources. A beneficial outcome can be readily accomplished via simple dosing strategies, and also by incorporating medicinal chemistry design features during compound design and synthesis. Beyond clinical use, where compounds that target more than one channel might have a place and possibly have advantageous features, highly specific and high-potency compounds will be helpful in mechanistic discovery at the structure-function level.
Collapse
Affiliation(s)
- Carlene Moore
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Rupali Gupta
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yong Chen
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Wolfgang B Liedtke
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
53
|
Li X, Yang W, Jiang LH. Alteration in Intracellular Zn 2+ Homeostasis as a Result of TRPM2 Channel Activation Contributes to ROS-Induced Hippocampal Neuronal Death. Front Mol Neurosci 2017; 10:414. [PMID: 29311807 PMCID: PMC5732979 DOI: 10.3389/fnmol.2017.00414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/29/2017] [Indexed: 12/23/2022] Open
Abstract
Transient receptor potential melastatin-related 2 (TRPM2) channel, a molecular sensor for reactive oxygen species (ROS), plays an important role in cognitive dysfunction associated with post-ischemia brain damage thought to result from ROS-induced TRPM2-dependent neuronal death during reperfusion. Emerging evidence further suggests that an alteration in the Zn2+ homeostasis is critical in ROS-induced TRPM2-dependent neuronal death. Here we applied genetic and pharmacological interventions to define the role of TRPM2 channel in ROS-induced neuronal death and explore the mechanisms contributing in the alteration in intracellular Zn2+ homeostasis in mouse hippocampal neurons. Exposure of neurons to 30–300 μM H2O2 for 2–24 h caused concentration/duration-dependent neuronal death, which was significantly suppressed, but not completely prevented, by TRPM2-knockout (TRPM2-KO) and pharmacological inhibition of the TRPM2 channel. H2O2-induced neuronal death was also attenuated by treatment with TPEN acting as a Zn2+ selective chelator. Single cell imaging demonstrated that H2O2 evoked a prominent increase in the intracellular Zn2+ concentration, which was completely prevented by TPEN as well as TRPM2-KO and inhibition of the TRPM2 channel. Furthermore, H2O2 induced lysosomal Zn2+ release and lysosomal dysfunction, and subsequent mitochondrial Zn2+ accumulation that provokes mitochondrial dysfunction and ROS generation. These H2O2-induced lysosomal/mitochondrial effects were prevented by TRPM2-KO or TPEN. Taken together, our results provide evidence to show that a dynamic alteration in the intracellular Zn2+ homeostasis as a result of activation of the TRPM2 channel contributes to ROS-induced hippocampal neuronal death.
Collapse
Affiliation(s)
- Xin Li
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Wei Yang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
54
|
Alawieyah Syed Mortadza S, Sim JA, Neubrand VE, Jiang LH. A critical role of TRPM2 channel in Aβ42
-induced microglial activation and generation of tumor necrosis factor-α. Glia 2017; 66:562-575. [DOI: 10.1002/glia.23265] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/26/2017] [Accepted: 11/03/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Sharifah Alawieyah Syed Mortadza
- School of Biomedical Sciences, Faculty of Biological Sciences; University of Leeds; Leeds UK
- Faculty of Medicine and Health Science; University Putra Malaysia; Selangor Malaysia
| | - Joan A. Sim
- School of Medicine; University of Manchester; Manchester UK
| | - Veronika E. Neubrand
- Department of Cell Biology and Immunology, IPBLN-CSIC, Avda Conocimiento, PT Ciencias de La Salud; Institute of Parasitology and Biomedicine López-Neyra; Granada Spain
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences; University of Leeds; Leeds UK
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province and Department of Physiology and Neurobiology; Xinxiang Medical University; Xinxiang China
| |
Collapse
|
55
|
Huang S, Turlova E, Li F, Bao MH, Szeto V, Wong R, Abussaud A, Wang H, Zhu S, Gao X, Mori Y, Feng ZP, Sun HS. Transient receptor potential melastatin 2 channels (TRPM2) mediate neonatal hypoxic-ischemic brain injury in mice. Exp Neurol 2017; 296:32-40. [PMID: 28668375 DOI: 10.1016/j.expneurol.2017.06.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/01/2017] [Accepted: 06/27/2017] [Indexed: 02/01/2023]
Abstract
Transient receptor potential melastatin 2 (TRPM2), a calcium-permeable non-selective cation channel, is reported to mediate brain damage following ischemic insults in adult mice. However, the role of TRPM2 channels in neonatal hypoxic-ischemic brain injury remains unknown. We hypothesize that TRPM2+/- and TRPM2-/- neonatal mice have reduced hypoxic-ischemic brain injury. To study the effect of TRPM2 on neonatal brain damage, we used 2,3,5-triphenyltetrazolium chloride (TTC) staining to assess the infarct volume and whole brain imaging to assess morphological changes in the brain. In addition, we also evaluated neurobehavioral outcomes for sensorimotor function 7days following hypoxic-ischemic brain injury. We report that the infarct volumes were significantly smaller and behavioral outcomes were improved in both TRPM2+/- and TRPM2-/- mice compared to that of wildtype mice. Next, we found that TRPM2-null mice showed reduced dephosphorylation of GSK-3β following hypoxic ischemic injury unlike sham mice. TRPM2+/- and TRPM2-/- mice also had reduced activation of astrocytes and microglia in ipsilateral hemispheres, compared to wildtype mice. These findings suggest that TRPM2 channels play an essential role in mediating hypoxic-ischemic brain injury in neonatal mice. Genetically eliminating TRPM2 channels can provide neuroprotection against hypoxic-ischemic brain injury and this effect is elicited in part through regulation of GSK-3β.
Collapse
Affiliation(s)
- Sammen Huang
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ekaterina Turlova
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Feiya Li
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mei-Hua Bao
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Vivian Szeto
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Raymond Wong
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ahmed Abussaud
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Haitao Wang
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shuzhen Zhu
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Xinzheng Gao
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Hong-Shuo Sun
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
56
|
Abstract
Living organisms continually experience changes in ambient temperature. To detect such temperature changes for adaptive behavioral responses, we evolved the ability to sense temperature. Thermosensitive transient receptor potential (TRP) channels, so-called thermo-TRPs, are involved in many physiologic functions in diverse organisms and constitute important temperature sensors. One of the important roles of thermo-TRPs is detecting ambient temperature in sensory neurons. Importantly, the functional expression of thermo-TRPs is observed not only in sensory neurons but also in tissues and cells that are not exposed to drastic temperature changes, indicating that thermo-TRPs are involved in many physiologic functions within the body's normal temperature range. Among such thermo-TRPs, this review focuses on one thermo-sensitive metabolic sensor in particular, TRPM2, and summarizes recent progress to clarify the regulatory mechanisms and physiologic functions of TRPM2 at body temperature under various metabolic states.
Collapse
Affiliation(s)
- Makiko Kashio
- a Department of Physiology , Aichi Medical University , Nagakute , Aichi , Japan
| | - Makoto Tominaga
- b Division of Cell Signaling , Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences) , Okazaki , Aichi , Japan.,c Department of Physiological Sciences , SOKENDAI , Okazaki , Aichi , Japan.,d Institute for Environmental and Gender-Specific Medicine, Juntendo University , Bunkyo-ku, Tokyo , Japan
| |
Collapse
|
57
|
Transient Receptor Potential Melastatin 2 Regulates Phagosome Maturation and Is Required for Bacterial Clearance in Escherichia coli Sepsis. Anesthesiology 2017; 126:128-139. [PMID: 27792045 DOI: 10.1097/aln.0000000000001430] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Transient receptor potential melastatin 2 is a Ca-permeable cation channel abundantly expressed in macrophages. Trpm2 mice showed exacerbated infection and mortality during polymicrobial sepsis, which is associated with inefficient bacterial killing in macrophages. However, the mechanism of transient receptor potential melastatin 2 regulating bacterial killing remains unknown. METHODS Trpm2 mice were intraperitoneally injected with Escherichia coli. The survival rate (n = 21) and bacterial burden (n = 5) were assessed. The processes of phagosome maturation and phagosome-lysosome fusion in peritoneal macrophages were extensively studied. The impact of increasing intracellular Ca concentration on bacterial clearance in macrophages (n = 3) and on survival rate of Trpm2 mice infected with E. coli (n = 21) was investigated. RESULTS Trpm2 mice exhibited increased mortality (85% vs. 54%; P < 0.01) and aggravated bacterial burden during E. coli sepsis. Trpm2 peritoneal macrophages infected with E. coli showed dampened recruitment of lysosomal-associated membrane protein 1 and impaired phagosome maturation evidenced by a decrease in the accumulation of early endosome antigen 1, whereas a normal acquisition of Ras-related protein in brain 5. Increasing the cytosolic Ca concentration in Trpm2 peritoneal macrophages via ionomycin treatment facilitated early endosome antigen 1 recruitment to Ras-related protein in brain 5 and phagosomal localization of lysosomal-associated membrane protein 1 and consequently enhanced bactericidal activity. Adoptive transfer of ionomycin-treated Trpm2 peritoneal macrophages improved bacterial clearance and survival (67% vs. 29%; P < 0.01) in Trpm2 mice challenged with E. coli. CONCLUSIONS Transient receptor potential melastatin 2 plays a critical role in host defense against invading bacteria via promoting phagosome maturation through facilitation of early endosome antigen 1 recruitment.
Collapse
|
58
|
Mortadza SS, Sim JA, Stacey M, Jiang LH. Signalling mechanisms mediating Zn 2+-induced TRPM2 channel activation and cell death in microglial cells. Sci Rep 2017; 7:45032. [PMID: 28322340 PMCID: PMC5359577 DOI: 10.1038/srep45032] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/20/2017] [Indexed: 01/06/2023] Open
Abstract
Excessive Zn2+ causes brain damage via promoting ROS generation. Here we investigated the role of ROS-sensitive TRPM2 channel in H2O2/Zn2+-induced Ca2+ signalling and cell death in microglial cells. H2O2/Zn2+ induced concentration-dependent increases in cytosolic Ca2+ concentration ([Ca2+]c), which was inhibited by PJ34, a PARP inhibitor, and abolished by TRPM2 knockout (TRPM2-KO). Pathological concentrations of H2O2/Zn2+ induced substantial cell death that was inhibited by PJ34 and DPQ, PARP inhibitors, 2-APB, a TRPM2 channel inhibitor, and prevented by TRPM2-KO. Further analysis indicate that Zn2+ induced ROS production, PARP-1 stimulation, increase in the [Ca2+]c and cell death, all of which were suppressed by chelerythrine, a protein kinase C inhibitor, DPI, a NADPH-dependent oxidase (NOX) inhibitor, GKT137831, a NOX1/4 inhibitor, and Phox-I2, a NOX2 inhibitor. Furthermore, Zn2+-induced PARP-1 stimulation, increase in the [Ca2+]c and cell death were inhibited by PF431396, a Ca2+-sensitive PYK2 inhibitor, and U0126, a MEK/ERK inhibitor. Taken together, our study shows PKC/NOX-mediated ROS generation and PARP-1 activation as an important mechanism in Zn2+-induced TRPM2 channel activation and, TRPM2-mediated increase in the [Ca2+]c to trigger the PYK2/MEK/ERK signalling pathway as a positive feedback mechanism that amplifies the TRPM2 channel activation. Activation of these TRPM2-depenent signalling mechanisms ultimately drives Zn2+-induced Ca2+ overloading and cell death.
Collapse
Affiliation(s)
- Sharifah Syed Mortadza
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | - Joan A Sim
- School of Life Sciences, University of Manchester, United Kingdom
| | - Martin Stacey
- School of Molecular and Cell Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom.,Sino-UK Joint Laboratory of Brain Function and Injury, and Department of Physiology and Neurobiology, Xinxiang Medical University, PR China
| |
Collapse
|
59
|
Markó L, Mannaa M, Haschler TN, Krämer S, Gollasch M. Renoprotection: focus on TRPV1, TRPV4, TRPC6 and TRPM2. Acta Physiol (Oxf) 2017; 219:589-612. [PMID: 28028935 DOI: 10.1111/apha.12828] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/22/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Abstract
Members of the transient receptor potential (TRP) cation channel receptor family have unique sites of regulatory function in the kidney which enables them to promote regional vasodilatation and controlled Ca2+ influx into podocytes and tubular cells. Activated TRP vanilloid 1 receptor channels (TRPV1) have been found to elicit renoprotection in rodent models of acute kidney injury following ischaemia/reperfusion. Transient receptor potential cation channel, subfamily C, member 6 (TRPC6) in podocytes is involved in chronic proteinuric kidney disease, particularly in focal segmental glomerulosclerosis (FSGS). TRP vanilloid 4 receptor channels (TRPV4) are highly expressed in the kidney, where they induce Ca2+ influx into endothelial and tubular cells. TRP melastatin (TRPM2) non-selective cation channels are expressed in the cytoplasm and intracellular organelles, where their inhibition ameliorates ischaemic renal pathology. Although some of their basic properties have been recently identified, the renovascular role of TRPV1, TRPV4, TRPC6 and TRPM2 channels in disease states such as obesity, hypertension and diabetes is largely unknown. In this review, we discuss recent evidence for TRPV1, TRPV4, TRPC6 and TRPM2 serving as potential targets for acute and chronic renoprotection in chronic vascular and metabolic disease.
Collapse
Affiliation(s)
- L. Markó
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
| | - M. Mannaa
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- Charité Campus Virchow; Nephrology/Intensive Care; Berlin Germany
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - T. N. Haschler
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - S. Krämer
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - M. Gollasch
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- Charité Campus Virchow; Nephrology/Intensive Care; Berlin Germany
| |
Collapse
|
60
|
TRPM2 contributes to LPC-induced intracellular Ca 2+ influx and microglial activation. Biochem Biophys Res Commun 2017; 485:301-306. [PMID: 28223219 DOI: 10.1016/j.bbrc.2017.02.087] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/17/2017] [Indexed: 12/29/2022]
Abstract
Microglia are the resident immune cells which become activated in some pathological conditions in central nervous system (CNS). Lysophosphatidylcholine (LPC), an endogenous inflammatory phospholipid, is implicated in immunomodulatory function of glial cells in the CNS. Although several studies uncovered that LPC induces intracellular Ca2+ influx and morphologic change in microglia, there is still no direct evidence showing change of phosphorylation of mitogen-activated protein kinase (MAPK) p38 (p-p38), a widely used microglia activation marker, by LPC. Furthermore, the cellular mechanism of LPC-induced microglia activation remains unknown. In this study, we found that LPC induced intracellular Ca2+ increase in primary cultured microglia, which was blocked in the presence of Gd3+, non-selective transient receptor potential (TRP) channel blocker. RT-PCR and whole cell patch clamp recordings revealed molecular and functional expression of TRP melastatin 2 (TRPM2) in microglia. Using western blotting, we also observed that LPC increased phosphorylation of p38 MAPK, and the increase of p-p38 expression is also reversed in TRPM2-knockout (KO) microglia. Moreover, LPC induced membrane trafficking of TRPM2 and intrathecal injection of LPC increased Iba-1 immunoreactivity in the spinal cord, which were significantly reduced in KO mice. In addition, LPC-induced intracellular Ca2+ increase and inward currents were abolished in TRPM2-KO microglia. Taken together, our results suggest that LPC induces intracellular Ca2+ influx and increases phosphorylation of p38 MAPK via TRPM2, which in turn activates microglia.
Collapse
|
61
|
Zhao LY, Xu WL, Xu ZQ, Qi C, Li Y, Cheng J, Liu LK, Wu YN, Gao J, Ye JH. The overexpressed functional transient receptor potential channel TRPM2 in oral squamous cell carcinoma. Sci Rep 2016; 6:38471. [PMID: 28008929 PMCID: PMC5180100 DOI: 10.1038/srep38471] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022] Open
Abstract
TRPM2, one member of the transient receptor potential (TRP) protein super-family, is a Ca2+-permeable channel that is activated by oxidative stress and confers susceptibility to cell death. In the human tongue specimens of carcinoma and the tongue carcinoma SCC cell lines, we observed the enhanced expression of TRPM2. By means of the whole-cell electrophysiological recording, the ADPR-induced currents mediated by TRPM2 were recorded in cultured SCC9 cells. Moreover, after H2O2 treatment for 24 hours, the apoptotic number of SCC9 cells was significantly increased. However, the selectively knocked-down TRPM2 with the small interfering RNA technique inhibited the survival and migration of the SCC9 cancer cells, which was independent of the p53-p21 pathway, since the expression of p21 was enhanced after TRPM2 knockdown. Furthermore, the sub-cellular localization of TRPM2 was remarkably different between cancerous and non-cancerous cells. A significant amount of the TRPM2 proteins were located in the nuclei in cancer cells. All these data suggest that TRPM2 is essential for the survival and migration of SCC cancer cells and may be a potential target for the selective treatment of tongue cancer.
Collapse
Affiliation(s)
- Ling-Yan Zhao
- Jiangsu Key Laboratory of Oral Diseases and Department of Oral and maxillofacial surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China
| | - Wan-Lin Xu
- Jiangsu Key Laboratory of Oral Diseases and Department of Oral and maxillofacial surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Zeng-Qi Xu
- Jiangsu Key Laboratory of Oral Diseases and Department of Oral and maxillofacial surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China
| | - Cui Qi
- Key Laboratory of Human Functional Genomics of Jiangsu, Department of Neurobiology, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu, 211166, China
| | - Yang Li
- Jiangsu Key Laboratory of Oral Diseases and Department of Oral and maxillofacial surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Diseases and Department of Oral and maxillofacial surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China
| | - Lai-Kui Liu
- Jiangsu Key Laboratory of Oral Diseases and Department of Oral and maxillofacial surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China
| | - Yu-Nong Wu
- Jiangsu Key Laboratory of Oral Diseases and Department of Oral and maxillofacial surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China
| | - Jun Gao
- Key Laboratory of Human Functional Genomics of Jiangsu, Department of Neurobiology, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu, 211166, China
| | - Jin-Hai Ye
- Jiangsu Key Laboratory of Oral Diseases and Department of Oral and maxillofacial surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China
| |
Collapse
|
62
|
Kakei M, Yoshida M, Dezaki K, Ito K, Yamada H, Funazaki S, Kawakami M, Sugawara H, Yada T. Glucose and GTP-binding protein-coupled receptor cooperatively regulate transient receptor potential-channels to stimulate insulin secretion [Review]. Endocr J 2016; 63:867-876. [PMID: 27321586 DOI: 10.1507/endocrj.ej16-0262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In pancreatic β-cells, glucose-induced closure of the ATP-sensitive K+ (KATP) channel is an initial process triggering glucose-stimulated insulin secretion (GSIS). This KATP-channel dependent pathway has been believed to be a central mechanism for GSIS. However, since the resting membrane potential of cells is determined by the balance of the net result of current amplitudes in outward and inward directions, it must be taken into consideration that not only KATP channel inhibition but also inward current via the basal opening of non-selective cation channels (NSCCs) plays a crucial role in membrane potential regulation. The basal activity of NSCCs is essential to effectively evoke depolarization in concert with KATP channel closure that is dependent on glucose metabolism. The present study summarizes recent findings regarding the roles of NSCCs in GSIS and GTP-binding protein coupled receptor-(GPCR) operated potentiation of GSIS.
Collapse
Affiliation(s)
- Masafumi Kakei
- Internal Medicine, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Schuhwerk H, Atteya R, Siniuk K, Wang ZQ. PARPing for balance in the homeostasis of poly(ADP-ribosyl)ation. Semin Cell Dev Biol 2016; 63:81-91. [PMID: 27664469 DOI: 10.1016/j.semcdb.2016.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022]
Abstract
Despite more than 50 years of research, the vast majority of the biology of poly(ADP-ribosyl)ation (PARylation) still remains a gross mystery. Originally described to be a part of the DNA repair machinery, poly(ADP-ribose) (PAR) is synthesized immediately by poly(ADP-ribose) polymerases (PARPs, also known as ARTDs) upon DNA damage and then rapidly removed by degrading enzymes. PAR provides a delicate and spatiotemporal interaction scaffold for numerous target proteins. Thus, the multifaceted PARylation system, consisting of PAR itself and its synthesizers and erasers, plays diverse roles in the DNA damage response (DDR), in DNA repair, transcription, replication, chromatin remodelling, metabolism and cell death. In this review, we summarize the current understanding of the biology of PARylation, focusing on the functionality and the activities of the PARPs' founding member PARP1/ARTD1, which is modulated by a variety of posttranslational modifications. We also discuss the homeostasis of PAR - a process which is maintained by the balance of PAR synthesizers and erasers. We aim to sensitize the scientific community to the complexity of PAR homeostasis. Finally, we provide some perspective on how future research could try to disentangle the biology of PARylation - perhaps the most sophisticated, but still intricate posttranslational modification described to date.
Collapse
Affiliation(s)
- Harald Schuhwerk
- Leibniz Institute on Aging - Fritz-Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Reham Atteya
- Leibniz Institute on Aging - Fritz-Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Kanstantsin Siniuk
- Leibniz Institute on Aging - Fritz-Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging - Fritz-Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany; Faculty of Biology and Pharmacy, Friedrich Schiller University Jena, Fürstengraben 1, 07743 Jena, Germany.
| |
Collapse
|
64
|
Echeverry S, Rodriguez MJ, Torres YP. Transient Receptor Potential Channels in Microglia: Roles in Physiology and Disease. Neurotox Res 2016; 30:467-78. [PMID: 27260222 DOI: 10.1007/s12640-016-9632-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 12/21/2022]
Abstract
Microglia modulate the nervous system cellular environment and induce neuroprotective and neurotoxic effects. Various molecules are involved in these processes, including families of ion channels expressed in microglial cells, such as transient receptor potential (TRP) channels. TRP channels comprise a family of non-selective cation channels that can be activated by mechanical, thermal, and chemical stimuli, and which contribute to the regulation of intracellular calcium concentrations. TRP channels have been shown to be involved in cellular processes such as osmotic regulation, cytokine production, proliferation, activation, cell death, and oxidative stress responses. Given the significance of these processes in microglial activity, studies of TRP channels in microglia have focused on determining their roles in both neuroprotective and neurotoxic processes. TRP channel activity has been proposed to play an important function in neurodegenerative diseases, ischemia, inflammatory responses, and neuropathic pain. Modulation of TRP channel activity may thus be considered as a potential therapeutic strategy for the treatment of various diseases associated with alterations of the central nervous system (CNS). In this review, we describe the expression of different subfamilies of TRP channels in microglia, focusing on their physiological and pathophysiological roles, and consider their potential use as therapeutic targets in CNS diseases.
Collapse
Affiliation(s)
- Santiago Echeverry
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá, Colombia
| | - María Juliana Rodriguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá, Colombia
| | - Yolima P Torres
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá, Colombia.
| |
Collapse
|
65
|
Ogawa N, Kurokawa T, Mori Y. Sensing of redox status by TRP channels. Cell Calcium 2016; 60:115-22. [PMID: 26969190 DOI: 10.1016/j.ceca.2016.02.009] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 11/17/2022]
Abstract
Cellular redox status is maintained by the balance between series of antioxidant systems and production of reactive oxygen/nitrogenous species. Cells utilize this redox balance to mediate diverse physiological functions. Transient receptor potential (TRP) channels are non-selective cation channels that act as biosensors for environmental and noxious stimuli, such as capsaicin and allicin, as well as changes in temperature and conditions inside the cell. TRP channels also have an emerging role as essential players in detecting cellular redox status to regulate cellular signals mediating physiological phenomena. Reactive species activate TRP channels either directly through oxidative amino acid modifications or indirectly through second messengers. For instance, TRPA1, TRPV1 and TRPC5 channels are directly activated by oxidizing agents through cysteine modification; whereas, TRPM2 channel is indirectly activated by production of ADP-ribose. One intriguing property of several TRP channels is susceptibility to both oxidizing and reducing stimuli, suggesting TRP channels could potentially act as a bidirectional sensor for detecting deviations in redox status. In this review, we discuss the unique chemical physiologies of redox sensitive TRP channels and their physiological significance in Ca(2+) signaling.
Collapse
Affiliation(s)
- Nozomi Ogawa
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Tatsuki Kurokawa
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan; Laboratory of Environmental Systems Biology, Department of Technology and Ecology, Hall of Global Environmental Studies, Kyoto University, Kyoto 615-8510, Japan.
| |
Collapse
|
66
|
The Transient Receptor Potential Melastatin 2 (TRPM2) Channel Contributes to β-Amyloid Oligomer-Related Neurotoxicity and Memory Impairment. J Neurosci 2016; 35:15157-69. [PMID: 26558786 DOI: 10.1523/jneurosci.4081-14.2015] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED In Alzheimer's disease, accumulation of soluble oligomers of β-amyloid peptide is known to be highly toxic, causing disturbances in synaptic activity and neuronal death. Multiple studies relate these effects to increased oxidative stress and aberrant activity of calcium-permeable cation channels leading to calcium imbalance. The transient receptor potential melastatin 2 (TRPM2) channel, a Ca(2+)-permeable nonselective cation channel activated by oxidative stress, has been implicated in neurodegenerative diseases, and more recently in amyloid-induced toxicity. Here we show that the function of TRPM2 is augmented by treatment of cultured neurons with β-amyloid oligomers. Aged APP/PS1 Alzheimer's mouse model showed increased levels of endoplasmic reticulum stress markers, protein disulfide isomerase and phosphorylated eukaryotic initiation factor 2α, as well as decreased levels of the presynaptic marker synaptophysin. Elimination of TRPM2 in APP/PS1 mice corrected these abnormal responses without affecting plaque burden. These effects of TRPM2 seem to be selective for β-amyloid toxicity, as ER stress responses to thapsigargin or tunicamycin in TRPM2(-/-) neurons was identical to that of wild-type neurons. Moreover, reduced microglial activation was observed in TRPM2(-/-)/APP/PS1 hippocampus compared with APP/PS1 mice. In addition, age-dependent spatial memory deficits in APP/PS1 mice were reversed in TRPM2(-/-)/APP/PS1 mice. These results reveal the importance of TRPM2 for β-amyloid neuronal toxicity, suggesting that TRPM2 activity could be potentially targeted to improve outcomes in Alzheimer's disease. SIGNIFICANCE STATEMENT Transient receptor potential melastatin 2 (TRPM2) is an oxidative stress sensing calcium-permeable channel that is thought to contribute to calcium dysregulation associated with neurodegenerative diseases, including Alzheimer's disease. Here we show that oligomeric β-amyloid, the toxic peptide in Alzheimer's disease, facilitates TRPM2 channel activation. In mice designed to model Alzheimer's disease, genetic elimination of TRPM2 normalized deficits in synaptic markers in aged mice. Moreover, the absence of TRPM2 improved age-dependent spatial memory deficits observed in Alzheimer's mice. Our results reveal the importance of TRPM2 for neuronal toxicity and memory impairments in an Alzheimer's mouse model and suggest that TRPM2 could be targeted for the development of therapeutic agents effective in the treatment of dementia.
Collapse
|
67
|
Glia and TRPM2 Channels in Plasticity of Central Nervous System and Alzheimer's Diseases. Neural Plast 2016; 2016:1680905. [PMID: 26942016 PMCID: PMC4749827 DOI: 10.1155/2016/1680905] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/25/2015] [Accepted: 12/29/2015] [Indexed: 11/18/2022] Open
Abstract
Synaptic plasticity refers to the ability of neurons to strengthen or weaken synaptic efficacy in response to activity and is the basis for learning and memory. Glial cells communicate with neurons and in this way contribute in part to plasticity in the CNS and to the pathology of Alzheimer's disease (AD), a neurodegenerative disease in which impaired synaptic plasticity is causally implicated. The transient receptor potential melastatin member 2 (TRPM2) channel is a nonselective Ca2+-permeable channel expressed in both glial cells (microglia and astrocytes) and neurons. Recent studies indicated that TRPM2 regulates synaptic plasticity as well as the activation of glial cells. TRPM2 also modulates oxidative stress and inflammation through interaction with glial cells. As both oxidative stress and inflammation have been implicated in AD pathology, this suggests a possible contribution of TRPM2 to disease processes. Through modulating the homeostasis of glutathione, TRPM2 is involved in the process of aging which is a risk factor of AD. These results potentially point TRPM2 channel to be involved in AD through glial cells. This review summarizes recent advances in studying the contribution of TRPM2 in health and in AD pathology, with a focus on contributions via glia cells.
Collapse
|
68
|
Wong PS, Roberts RE, Randall MD. Sex differences in the role of transient receptor potential (TRP) channels in endothelium-dependent vasorelaxation in porcine isolated coronary arteries. Eur J Pharmacol 2015; 750:108-17. [DOI: 10.1016/j.ejphar.2015.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 10/24/2022]
|
69
|
Zhang E, Liao P. Brain transient receptor potential channels and stroke. J Neurosci Res 2014; 93:1165-83. [PMID: 25502473 DOI: 10.1002/jnr.23529] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/10/2014] [Accepted: 11/04/2014] [Indexed: 02/06/2023]
Abstract
Transient receptor potential (TRP) channels have been increasingly implicated in the pathological mechanisms of CNS disorders. TRP expression has been detected in neurons, astrocytes, oligodendrocytes, microglia, and ependymal cells as well as in the cerebral vascular endothelium and smooth muscle. In stroke, TRPC3/4/6, TRPM2/4/7, and TRPV1/3/4 channels have been found to participate in ischemia-induced cell death, whereas other TRP channels, in particular those expressed in nonneuronal cells, have been less well studied. This review summarizes the current knowledge on the expression and functions of the TRP channels in various cell types in the brain and our current understanding of TRP channels in stroke pathophysiology. In an aging society, the occurrence of stroke is expected to increase steadily, and there is an urgent requirement to improve the current stroke management strategy. Therefore, elucidating the roles of TRP channels in stroke could shed light on the development of novel therapeutic strategies and ultimately improve stroke outcome.
Collapse
Affiliation(s)
- Eric Zhang
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore.,Duke-NUS Graduate Medical School Singapore, Singapore
| |
Collapse
|
70
|
Michaelis M, Nieswandt B, Stegner D, Eilers J, Kraft R. STIM1, STIM2, and Orai1 regulate store-operated calcium entry and purinergic activation of microglia. Glia 2014; 63:652-63. [PMID: 25471906 DOI: 10.1002/glia.22775] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/14/2014] [Indexed: 11/09/2022]
Abstract
Activation of microglia is the first and main immune response to brain injury. Release of the nucleotides ATP, ADP, and UDP from damaged cells regulate microglial migration and phagocytosis via purinergic P2Y receptors. We hypothesized that store-operated Ca(2+) entry (SOCE), the prevalent Ca(2+) influx mechanism in non-excitable cells, is a potent mediator of microglial responses to extracellular nucleotides. Expression analyses of STIM Ca(2+) sensors and Orai Ca(2+) channel subunits, that comprise the molecular machinery of SOCE, showed relevant levels of STIM1, STIM2, and Orai1 in cultured mouse microglia. STIM1 expression and SOCE were down-regulated by treatment of microglia with lipopolysaccharide, suggesting that inflammation limits SOCE by lower STIM1 abundance. Ca(2+) entry induced by cyclopiazonic acid, ATP, the P2Y6 receptor agonist UDP, or the P2Y12 receptor agonist 2-methylthio-ADP (2-MeSADP) was clearly affected in microglia from Stim1(-/-) , Stim2(-/-) , and Orai1(-/-) mice. SOCE blockers or ablation of STIM1, STIM2, or Orai1 severely impaired nucleotide-induced migration and phagocytosis in microglia. Thus, this study assigns SOCE, regulated by STIM1, STIM2, and Orai1 an essential role in purinergic signaling and activation of microglia.
Collapse
Affiliation(s)
- Marlen Michaelis
- Carl-Ludwig-Institute for Physiology, University of Leipzig, 04103, Leipzig, Germany
| | | | | | | | | |
Collapse
|
71
|
Shirakawa H, Sakimoto S, Nakagawa T, Kaneko S. [Pathophysiology of immune cells during the progression of cerebral ischemic injury - involvement of TRPM2-mediated induction of iNOS in microglia/macrophage]. Nihon Yakurigaku Zasshi 2014; 144:104-9. [PMID: 25213609 DOI: 10.1254/fpj.144.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
72
|
Veldhuis NA, Poole DP, Grace M, McIntyre P, Bunnett NW. The G Protein–Coupled Receptor–Transient Receptor Potential Channel Axis: Molecular Insights for Targeting Disorders of Sensation and Inflammation. Pharmacol Rev 2014; 67:36-73. [DOI: 10.1124/pr.114.009555] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
73
|
Park L, Wang G, Moore J, Girouard H, Zhou P, Anrather J, Iadecola C. The key role of transient receptor potential melastatin-2 channels in amyloid-β-induced neurovascular dysfunction. Nat Commun 2014; 5:5318. [PMID: 25351853 DOI: 10.1038/ncomms6318] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/19/2014] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's dementia is a devastating and incurable disease afflicting over 35 million people worldwide. Amyloid-β (Aβ), a key pathogenic factor in this disease, has potent cerebrovascular effects that contribute to brain dysfunction underlying dementia by limiting the delivery of oxygen and glucose to the working brain. However, the downstream pathways responsible for the vascular alterations remain unclear. Here we report that the cerebrovascular dysfunction induced by Aβ is mediated by DNA damage caused by vascular oxidative-nitrosative stress in cerebral endothelial cells, which, in turn, activates the DNA repair enzyme poly(ADP)-ribose polymerase. The resulting increase in ADP ribose opens transient receptor potential melastatin-2 (TRPM2) channels in endothelial cells leading to intracellular Ca(2+) overload and endothelial dysfunction. The findings provide evidence for a previously unrecognized mechanism by which Aβ impairs neurovascular regulation and suggest that TRPM2 channels are a potential therapeutic target to counteract cerebrovascular dysfunction in Alzheimer's dementia and related pathologies.
Collapse
Affiliation(s)
- L Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York 10065, USA
| | - G Wang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York 10065, USA
| | - J Moore
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York 10065, USA
| | - H Girouard
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York 10065, USA
| | - P Zhou
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York 10065, USA
| | - J Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York 10065, USA
| | - C Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York 10065, USA
| |
Collapse
|
74
|
Hoarau E, Chandra V, Rustin P, Scharfmann R, Duvillie B. Pro-oxidant/antioxidant balance controls pancreatic β-cell differentiation through the ERK1/2 pathway. Cell Death Dis 2014; 5:e1487. [PMID: 25341041 PMCID: PMC4237262 DOI: 10.1038/cddis.2014.441] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 09/06/2014] [Accepted: 09/08/2014] [Indexed: 12/20/2022]
Abstract
During embryogenesis, the intrauterine milieu affects cell proliferation, differentiation, and function by modifying gene expression in susceptible cells, such as the pancreatic β-cells. In this limited energy environment, mitochondrial dysfunction can lead to overproduction of reactive oxygen species (ROS) and to a decline in β-cell function. In opposition to this toxicity, ROS are also required for insulin secretion. Here we investigated the role of ROS in β-cell development. Surprisingly, decreasing ROS production in vivo reduced β-cell differentiation. Moreover, in cultures of pancreatic explants, progenitors were highly sensitive to ROS stimulation and responded by generating β-cells. ROS enhanced β-cell differentiation through modulation of ERK1/2 signaling. Gene transfer and pharmacological manipulations, which diminish cellular ROS levels, also interfered with normal β-cell differentiation. This study highlights the role of the redox balance on β-cell development and provides information that will be useful for improving β-cell production from embryonic stem cells, a step in cell therapy for diabetes.
Collapse
Affiliation(s)
- E Hoarau
- 1] INSERM, U1016, Institut Cochin, Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - V Chandra
- 1] INSERM, U1016, Institut Cochin, Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - P Rustin
- INSERM U676, Hopital Robert Debre, Paris, France
| | - R Scharfmann
- 1] INSERM, U1016, Institut Cochin, Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - B Duvillie
- 1] INSERM, U1016, Institut Cochin, Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| |
Collapse
|
75
|
Gelderblom M, Melzer N, Schattling B, Göb E, Hicking G, Arunachalam P, Bittner S, Ufer F, Herrmann AM, Bernreuther C, Glatzel M, Gerloff C, Kleinschnitz C, Meuth SG, Friese MA, Magnus T. Transient receptor potential melastatin subfamily member 2 cation channel regulates detrimental immune cell invasion in ischemic stroke. Stroke 2014; 45:3395-402. [PMID: 25236871 DOI: 10.1161/strokeaha.114.005836] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Brain injury during stroke results in oxidative stress and the release of factors that include extracellular Ca(2+), hydrogen peroxide, adenosine diphosphate ribose, and nicotinic acid adenine dinucleotide phosphate. These alterations of the extracellular milieu change the activity of transient receptor potential melastatin subfamily member 2 (TRPM2), a nonselective cation channel expressed in the central nervous system and the immune system. Our goal was to evaluate the contribution of TRPM2 to the tissue damage after stroke. METHODS In accordance with current quality guidelines, we independently characterized Trpm2 in a murine ischemic stroke model in 2 different laboratories. RESULTS Gene deficiency of Trpm2 resulted in significantly improved neurological outcome and decreased infarct size. Besides an already known moderate neuroprotective effect of Trpm2 deficiency in vitro, ischemic brain invasion by neutrophils and macrophages was particularly reduced in Trpm2-deficient mice. Bone marrow chimeric mice revealed that Trpm2 deficiency in the peripheral immune system is responsible for the protective phenotype. Furthermore, experiments with mixed bone marrow chimeras demonstrated that Trpm2 is essential for the migration of neutrophils and, to a lesser extent, also of macrophages into ischemic hemispheres. Notably, the pharmacological TRPM2 inhibitor, N-(p-amylcinnamoyl)anthranilic acid, was equally protective in the stroke model. CONCLUSIONS Although a neuroprotective effect of TRPM2 in vitro is well known, we can show for the first time that the detrimental role of TRPM2 in stroke primarily depends on its role in activating peripheral immune cells. Targeting TRPM2 systemically represents a promising therapeutic approach for ischemic stroke.
Collapse
Affiliation(s)
- Mathias Gelderblom
- From the Department of Neurology (M. Gelderblom, P.A., C.G., T.M.), Institute of Neuroimmunology and Multiple Sclerosis (B.S., F.U., M.A.F.), and Institute of Neuropathology (C.B., M. Glatzel), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurology, University of Muenster, Muenster, Germany (N.M., G.H., S.B., A.M.H., S.G.M.); and Department of Neurology, University Clinics Wuerzburg, Wuerzburg, Germany (E.G., C.K.)
| | - Nico Melzer
- From the Department of Neurology (M. Gelderblom, P.A., C.G., T.M.), Institute of Neuroimmunology and Multiple Sclerosis (B.S., F.U., M.A.F.), and Institute of Neuropathology (C.B., M. Glatzel), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurology, University of Muenster, Muenster, Germany (N.M., G.H., S.B., A.M.H., S.G.M.); and Department of Neurology, University Clinics Wuerzburg, Wuerzburg, Germany (E.G., C.K.)
| | - Benjamin Schattling
- From the Department of Neurology (M. Gelderblom, P.A., C.G., T.M.), Institute of Neuroimmunology and Multiple Sclerosis (B.S., F.U., M.A.F.), and Institute of Neuropathology (C.B., M. Glatzel), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurology, University of Muenster, Muenster, Germany (N.M., G.H., S.B., A.M.H., S.G.M.); and Department of Neurology, University Clinics Wuerzburg, Wuerzburg, Germany (E.G., C.K.)
| | - Eva Göb
- From the Department of Neurology (M. Gelderblom, P.A., C.G., T.M.), Institute of Neuroimmunology and Multiple Sclerosis (B.S., F.U., M.A.F.), and Institute of Neuropathology (C.B., M. Glatzel), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurology, University of Muenster, Muenster, Germany (N.M., G.H., S.B., A.M.H., S.G.M.); and Department of Neurology, University Clinics Wuerzburg, Wuerzburg, Germany (E.G., C.K.)
| | - Gordon Hicking
- From the Department of Neurology (M. Gelderblom, P.A., C.G., T.M.), Institute of Neuroimmunology and Multiple Sclerosis (B.S., F.U., M.A.F.), and Institute of Neuropathology (C.B., M. Glatzel), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurology, University of Muenster, Muenster, Germany (N.M., G.H., S.B., A.M.H., S.G.M.); and Department of Neurology, University Clinics Wuerzburg, Wuerzburg, Germany (E.G., C.K.)
| | - Priyadharshini Arunachalam
- From the Department of Neurology (M. Gelderblom, P.A., C.G., T.M.), Institute of Neuroimmunology and Multiple Sclerosis (B.S., F.U., M.A.F.), and Institute of Neuropathology (C.B., M. Glatzel), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurology, University of Muenster, Muenster, Germany (N.M., G.H., S.B., A.M.H., S.G.M.); and Department of Neurology, University Clinics Wuerzburg, Wuerzburg, Germany (E.G., C.K.)
| | - Stefan Bittner
- From the Department of Neurology (M. Gelderblom, P.A., C.G., T.M.), Institute of Neuroimmunology and Multiple Sclerosis (B.S., F.U., M.A.F.), and Institute of Neuropathology (C.B., M. Glatzel), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurology, University of Muenster, Muenster, Germany (N.M., G.H., S.B., A.M.H., S.G.M.); and Department of Neurology, University Clinics Wuerzburg, Wuerzburg, Germany (E.G., C.K.)
| | - Friederike Ufer
- From the Department of Neurology (M. Gelderblom, P.A., C.G., T.M.), Institute of Neuroimmunology and Multiple Sclerosis (B.S., F.U., M.A.F.), and Institute of Neuropathology (C.B., M. Glatzel), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurology, University of Muenster, Muenster, Germany (N.M., G.H., S.B., A.M.H., S.G.M.); and Department of Neurology, University Clinics Wuerzburg, Wuerzburg, Germany (E.G., C.K.)
| | - Alexander M Herrmann
- From the Department of Neurology (M. Gelderblom, P.A., C.G., T.M.), Institute of Neuroimmunology and Multiple Sclerosis (B.S., F.U., M.A.F.), and Institute of Neuropathology (C.B., M. Glatzel), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurology, University of Muenster, Muenster, Germany (N.M., G.H., S.B., A.M.H., S.G.M.); and Department of Neurology, University Clinics Wuerzburg, Wuerzburg, Germany (E.G., C.K.)
| | - Christian Bernreuther
- From the Department of Neurology (M. Gelderblom, P.A., C.G., T.M.), Institute of Neuroimmunology and Multiple Sclerosis (B.S., F.U., M.A.F.), and Institute of Neuropathology (C.B., M. Glatzel), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurology, University of Muenster, Muenster, Germany (N.M., G.H., S.B., A.M.H., S.G.M.); and Department of Neurology, University Clinics Wuerzburg, Wuerzburg, Germany (E.G., C.K.)
| | - Markus Glatzel
- From the Department of Neurology (M. Gelderblom, P.A., C.G., T.M.), Institute of Neuroimmunology and Multiple Sclerosis (B.S., F.U., M.A.F.), and Institute of Neuropathology (C.B., M. Glatzel), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurology, University of Muenster, Muenster, Germany (N.M., G.H., S.B., A.M.H., S.G.M.); and Department of Neurology, University Clinics Wuerzburg, Wuerzburg, Germany (E.G., C.K.)
| | - Christian Gerloff
- From the Department of Neurology (M. Gelderblom, P.A., C.G., T.M.), Institute of Neuroimmunology and Multiple Sclerosis (B.S., F.U., M.A.F.), and Institute of Neuropathology (C.B., M. Glatzel), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurology, University of Muenster, Muenster, Germany (N.M., G.H., S.B., A.M.H., S.G.M.); and Department of Neurology, University Clinics Wuerzburg, Wuerzburg, Germany (E.G., C.K.)
| | - Christoph Kleinschnitz
- From the Department of Neurology (M. Gelderblom, P.A., C.G., T.M.), Institute of Neuroimmunology and Multiple Sclerosis (B.S., F.U., M.A.F.), and Institute of Neuropathology (C.B., M. Glatzel), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurology, University of Muenster, Muenster, Germany (N.M., G.H., S.B., A.M.H., S.G.M.); and Department of Neurology, University Clinics Wuerzburg, Wuerzburg, Germany (E.G., C.K.)
| | - Sven G Meuth
- From the Department of Neurology (M. Gelderblom, P.A., C.G., T.M.), Institute of Neuroimmunology and Multiple Sclerosis (B.S., F.U., M.A.F.), and Institute of Neuropathology (C.B., M. Glatzel), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurology, University of Muenster, Muenster, Germany (N.M., G.H., S.B., A.M.H., S.G.M.); and Department of Neurology, University Clinics Wuerzburg, Wuerzburg, Germany (E.G., C.K.)
| | - Manuel A Friese
- From the Department of Neurology (M. Gelderblom, P.A., C.G., T.M.), Institute of Neuroimmunology and Multiple Sclerosis (B.S., F.U., M.A.F.), and Institute of Neuropathology (C.B., M. Glatzel), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurology, University of Muenster, Muenster, Germany (N.M., G.H., S.B., A.M.H., S.G.M.); and Department of Neurology, University Clinics Wuerzburg, Wuerzburg, Germany (E.G., C.K.).
| | - Tim Magnus
- From the Department of Neurology (M. Gelderblom, P.A., C.G., T.M.), Institute of Neuroimmunology and Multiple Sclerosis (B.S., F.U., M.A.F.), and Institute of Neuropathology (C.B., M. Glatzel), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurology, University of Muenster, Muenster, Germany (N.M., G.H., S.B., A.M.H., S.G.M.); and Department of Neurology, University Clinics Wuerzburg, Wuerzburg, Germany (E.G., C.K.).
| |
Collapse
|
76
|
Ryskamp DA, Redmon S, Jo AO, Križaj D. TRPV1 and Endocannabinoids: Emerging Molecular Signals that Modulate Mammalian Vision. Cells 2014; 3:914-38. [PMID: 25222270 PMCID: PMC4197638 DOI: 10.3390/cells3030914] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/27/2014] [Accepted: 09/05/2014] [Indexed: 01/18/2023] Open
Abstract
Transient Receptor Potential Vanilloid 1 (TRPV1) subunits form a polymodal cation channel responsive to capsaicin, heat, acidity and endogenous metabolites of polyunsaturated fatty acids. While originally reported to serve as a pain and heat detector in the peripheral nervous system, TRPV1 has been implicated in the modulation of blood flow and osmoregulation but also neurotransmission, postsynaptic neuronal excitability and synaptic plasticity within the central nervous system. In addition to its central role in nociception, evidence is accumulating that TRPV1 contributes to stimulus transduction and/or processing in other sensory modalities, including thermosensation, mechanotransduction and vision. For example, TRPV1, in conjunction with intrinsic cannabinoid signaling, might contribute to retinal ganglion cell (RGC) axonal transport and excitability, cytokine release from microglial cells and regulation of retinal vasculature. While excessive TRPV1 activity was proposed to induce RGC excitotoxicity, physiological TRPV1 activity might serve a neuroprotective function within the complex context of retinal endocannabinoid signaling. In this review we evaluate the current evidence for localization and function of TRPV1 channels within the mammalian retina and explore the potential interaction of this intriguing nociceptor with endogenous agonists and modulators.
Collapse
Affiliation(s)
- Daniel A Ryskamp
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | - Sarah Redmon
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | - Andrew O Jo
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| |
Collapse
|
77
|
Abstract
SIGNIFICANCE Environmental and endogenous reactive species such as reactive oxygen species (ROS), reactive nitrogen species (RNS), and other electrophiles are not only known to exert toxic effects on organisms, but are also emerging as molecules that mediate cell signaling responses. However, the mechanisms underlying this cellular redox signaling by reactive species remains largely uncharacterized. RECENT ADVANCES Ca2+-permeable cation channels encoded by the transient receptor potential (trp) gene superfamily are characterized by a wide variety of activation triggers that act from outside and inside the cell. Recent studies have revealed that multiple TRP channels sense reactive species and induce diverse physiological and pathological responses, such as cell death, chemokine production, and pain transduction. TRP channels sense reactive species either indirectly through second messengers or directly via oxidative modification of cysteine residues. In this review, we describe the activation mechanisms and biological roles of redox-sensitive TRP channels, including TRPM2, TRPM7, TRPC5, TRPV1, and TRPA1. CRITICAL ISSUES The sensitivity of TRP channels to reactive species in vitro has been well characterized using molecular and pharmacological approaches. However, the precise activation mechanism(s) and in vivo function(s) of ROS/RNS-sensitive TRP channels remain elusive. FUTURE DIRECTIONS Redox sensitivity of TRP channels has been shown to mediate previously unexplained biological phenomena and is involved in various pathologies. Understanding the physiological significance and activation mechanisms of TRP channel regulation by reactive species may lead to TRP channels becoming viable pharmacological targets, and modulators of these channels may offer therapeutic options for previously untreatable diseases.
Collapse
Affiliation(s)
- Daisuke Kozai
- 1 Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University , Kyoto, Japan
| | | | | |
Collapse
|
78
|
Permeation, regulation and control of expression of TRP channels by trace metal ions. Pflugers Arch 2014; 467:1143-64. [PMID: 25106481 PMCID: PMC4435931 DOI: 10.1007/s00424-014-1590-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/10/2014] [Accepted: 07/13/2014] [Indexed: 01/26/2023]
Abstract
Transient receptor potential (TRP) channels form a diverse family of cation channels comprising 28 members in mammals. Although some TRP proteins can only be found on intracellular membranes, most of the TRP protein isoforms reach the plasma membrane where they form ion channels and control a wide number of biological processes. There, their involvement in the transport of cations such as calcium and sodium has been well documented. However, a growing number of studies have started to expand our understanding of these proteins by showing that they also transport other biologically relevant metal ions like zinc, magnesium, manganese and cobalt. In addition to this newly recognized property, the activity and expression of TRP channels can be regulated by metal ions like magnesium, gadolinium, lanthanum or cisplatin. The aim of this review is to highlight the complex relationship between metal ions and TRP channels.
Collapse
|
79
|
Nakagawa T, Isami K, Haraguchi K, So K, Asakura K, Shirakawa H, Kaneko S. [Roles of transient receptor potential melastatin 2 expressed on immune cells in neuropathic pain]. YAKUGAKU ZASSHI 2014; 134:379-86. [PMID: 24584019 DOI: 10.1248/yakushi.13-00236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuropathic pain is a pathological pain condition that often results from peripheral nerve injury. Several lines of evidence suggest that neuroinflammation mediated by the interaction between immune cells and neurons plays an important role in the pathogenesis of neuropathic pain. Transient receptor potential melastatin 2 (TRPM2) is a nonselective Ca(2+)-permeable cation channel that acts as a sensor for reactive oxygen species. Recent evidence suggests that TRPM2 expressed on immune cells plays an important role in immune and inflammatory responses. In this study, we examined the roles of TRPM2 expressed on immune and glial cells in neuropathic pain. TRPM2 deficiency attenuated pain behaviors (mechanical allodynia, thermal hyperalgesia and spontaneous pain behaviors) in various kinds of inflammatory and neuropathic pain, but not in nociceptive pain models. In peripheral nerve injury-induced neuropathic pain models, TRPM2 deficiency diminished infiltration of neutrophils mediated through CXCL2 production from macrophages around the injured peripheral nerve and activation of spinal microglia, suggesting that TRPM2 expressed on macrophages and microglia aggravates peripheral and spinal pronociceptive inflammatory responses. Furthermore, we examined the infiltration of peripheral immune cells into the injured nerve and spinal cord using bone marrow chimeric mice by crossing wildtype and TRPM2-knockout mice. The results suggest that TRPM2 plays an important role in the infiltration of peripheral immune cells, particularly macrophages, into the spinal cord, rather than into the injured nerves. The spinal infiltration of macrophages mediated by TRPM2 may contribute to the pathogenesis of neuropathic pain.
Collapse
Affiliation(s)
- Takayuki Nakagawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | | | | | | | | | | | | |
Collapse
|
80
|
Regulation and Localization of Transient Receptor Potential Melastatin 2 in Rat Uterus. Reprod Sci 2014; 21:1288-95. [DOI: 10.1177/1933719114525276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
81
|
Wang X, Piccolo CW, Cohen BM, Buttner EA. Transient receptor potential melastatin (TRPM) channels mediate clozapine-induced phenotypes in Caenorhabditis elegans. J Neurogenet 2014; 28:86-97. [PMID: 24564792 DOI: 10.3109/01677063.2013.879717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The molecular mechanisms of action of antipsychotic drugs (APDs) are not fully understood. Here, we characterize phenotypes of missense and knockout mutations in the Caenorhabditis elegans transient receptor potential melastatin (TRPM) channel ortholog gtl-2, a candidate APD target identified in a genome-wide RNAi (RNA interference) screen for Suppressors of Clozapine-induced Larval Arrest (scla genes). We then employ the developmental phenotypes of gtl-2(lf) mutants to validate our previous gtl-2(RNAi) result. GTL-2 acts in the excretory canal cell to regulate Mg(2+) homeostasis. Using exc (excretory canal abnormal) gene mutants, we demonstrate that excretory canal cell function is necessary for clozapine-induced developmental delay and lethality. Moreover, cell-specific promoter-driven expression studies reveal that GTL-2 function in the excretory canal cell is important for its role in the SCLA phenotype. We then investigate the mechanism by which GTL-2 function in the excretory canal cell impacts clozapine-induced phenotypes. gtl-2(lf) mutations cause hypermagnesemia, and we show that exposure of the wild-type strain to high Mg(2+) phenocopies gtl-2(lf) with respect to suppression of clozapine-induced developmental delay and lethality. Our results suggest that GTL-2 TRPM channel function in the excretory canal cell is important for clozapine's developmental effects. TRP channels are expressed in mammalian brain and are implicated in the pathogenesis of mental illnesses but have not been previously implicated in APD action.
Collapse
Affiliation(s)
- Xin Wang
- Department of Psychiatry, Harvard Medical School , Boston, Massachusetts , USA
| | | | | | | |
Collapse
|
82
|
Wu YS, Nan FH, Huang SL, Hsiao CM, Lai KC, Lu CL, Chen SN. Studies of macrophage cellular response to the extracellular hydrogen peroxide by tilapia model. FISH & SHELLFISH IMMUNOLOGY 2014; 36:459-466. [PMID: 24398263 DOI: 10.1016/j.fsi.2013.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 06/03/2023]
Abstract
Reactive oxygen species (ROS) may act as signaling molecules in the physiology responses and the present study aims to investigate the effect of extracellular hydrogen peroxide on macrophages cellular response. The results obtained in the present study showed that the extracellular hydrogen peroxide affectively alter the membrane potential of the cell membrane and ion exchange channels in the cell membrane through intracellular NAD turnover that may lead to an intracellular calcium ion concentration alteration and subsequently induce the downstream signal activation.
Collapse
Affiliation(s)
- Yu-Sheng Wu
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20248, Taiwan
| | - Shih-Ling Huang
- Freshwater Aquaculture Research Center, Fisheries Research Institute, Council of Agriculture, Changhua 50562, Taiwan
| | - Chien-Mei Hsiao
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan
| | - Kam-Chiu Lai
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Chung-Lun Lu
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Shiu-Nan Chen
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan; Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
83
|
Miyake T, Shirakawa H, Kusano A, Sakimoto S, Konno M, Nakagawa T, Mori Y, Kaneko S. TRPM2 contributes to LPS/IFNγ-induced production of nitric oxide via the p38/JNK pathway in microglia. Biochem Biophys Res Commun 2014; 444:212-7. [DOI: 10.1016/j.bbrc.2014.01.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 01/11/2014] [Indexed: 11/30/2022]
|
84
|
Sharma P, Ping L. Calcium ion influx in microglial cells: physiological and therapeutic significance. J Neurosci Res 2014; 92:409-23. [PMID: 24464907 DOI: 10.1002/jnr.23344] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/09/2013] [Accepted: 11/12/2013] [Indexed: 01/16/2023]
Abstract
Microglial cells, the immunocompetent cells of the central nervous system (CNS), exhibit a resting phenotype under healthy conditions. In response to injury, however, they transform into an activated state, which is a hallmark feature of many CNS diseases. Factors or agents released from the neurons, blood vessels, and/or astrocytes could activate these cells, leading to their functional and structural modifications. Microglial cells are well equipped to sense environmental changes within the brain under both physiological and pathological conditions. Entry of calcium ions (Ca(2+)) plays a critical role in the process of microglial transformation; several channels and receptors have been identified on the surface of microglial cells. These include store-operated channel, Orai1, and its sensor protein, stromal interaction molecule 1 (STIM1), in microglial cells, and their functions are modulated under pathological stimulations. Transient receptor potential (TRP) channels and voltage- and ligand-gated channels (ionotropic and metabotropic receptors) are also responsible for Ca(2+) influx into the microglial cells. An elevation of intracellular Ca(2+) concentration subsequently regulates microglial cell functions by activating a diverse array of Ca(2+)-sensitive signaling cascades. Perturbed Ca(2+) homeostasis contributes to the progression of a number of CNS disorders. Thus, regulation of Ca(2+) entry into microglial cells could be a pharmacological target for several CNS-related pathological conditions. This Review addresses the recent insights into microglial cell Ca(2+) influx mechanisms, their roles in the regulation of functions, and alterations of Ca(2+) entry in specific CNS disorders.
Collapse
Affiliation(s)
- Purnima Sharma
- All India Institute of Medical Sciences-Physiology, Basni Industrial Area Phase II Jodhpur, Rajasthan, India
| | | |
Collapse
|
85
|
Abstract
TRPM2 (transient receptor potential melastatin 2) is a non-selective Ca2+-permeable cation channel activated by ADPR (adenosine diphosphoribose) and H2O2. It is widely expressed in mammalian cells and plays an important role in the regulation of various cell functions. However, the mechanisms of TRPM2 channel activation are not fully understood. Previously, we reported that TRPM2 channel activation is induced by high intracellular Cl- concentration. In the present study, we investigated the functional role of Lys1110 in the membrane-proximal C-terminal region by site-directed mutagenesis. Replacement of the positively charged amino acid lysine (Lys1110) with the neutrally charged amino acid asparagine (K1110N) or the negatively charged amino acid glutamic acid (K1110E) generated mutants that failed to induce an increase in free cytosolic calcium concentration ([Ca2+]i) not only by intracellular injection of Cl-, but also by H2O2 or ADPR. However, a mutant generated by replacing the lysine residue with a positively charged amino acid arginine (K1110R) displayed channel activity similar to wild-type TRPM2. Interestingly, in the K1107N/K1110N double-point mutant, the impaired function of the K1110N mutant in response to ADPR and H2O2, but not to Cl-, was recovered. There were no changes in protein expression, membrane trafficking and oligomerization of the mutant channels. The extent of [Ca2+]i increase by H2O2 in HEK (human embryonic kidney)-293 cells expressing TRPM2 mutants was well correlated with the degree of susceptibility to H2O2-induced cell death. These results display the crucial role of a positively charged amino acid residue at position 1110 for TRPM2 channel activity.
Collapse
|
86
|
Abstract
TRPM2 is the second member of the transient receptor potential melastatin-related (TRPM) family of cation channels. The protein is widely expressed including in the brain, immune system, endocrine cells, and endothelia. It embodies both ion channel functionality and enzymatic ADP-ribose (ADPr) hydrolase activity. TRPM2 is a Ca(2+)-permeable nonselective cation channel embedded in the plasma membrane and/or lysosomal compartments that is primarily activated in a synergistic fashion by intracellular ADP-ribose (ADPr) and Ca(2+). It is also activated by reactive oxygen and nitrogen species (ROS/NOS) and enhanced by additional factors, such as cyclic ADPr and NAADP, while inhibited by permeating protons (acidic pH) and adenosine monophosphate (AMP). Activation of TRPM2 leads to increases in intracellular Ca(2+) levels, which can serve signaling roles in inflammatory and secretory cells through release of vesicular mediators (e.g., cytokines, neurotransmitters, insulin) and in extreme cases can induce apoptotic and necrotic cell death under oxidative stress.
Collapse
Affiliation(s)
- Malika Faouzi
- Center for Biomedical Research, The Queen's Medical Center, 1301 Punchbowl Street, Honolulu, HI, 96813, USA,
| | | |
Collapse
|
87
|
Modulation of NMDAR subunit expression by TRPM2 channels regulates neuronal vulnerability to ischemic cell death. J Neurosci 2013; 33:17264-77. [PMID: 24174660 DOI: 10.1523/jneurosci.1729-13.2013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal vulnerability to ischemia is dependent on the balance between prosurvival and prodeath cellular signaling. In the latter, it is increasingly appreciated that toxic Ca(2+) influx can occur not only via postsynaptic glutamate receptors, but also through other cation conductances. One such conductance, the Transient receptor potential melastatin type-2 (TRPM2) channel, is a nonspecific cation channel having homology to TRPM7, a conductance reported to play a key role in anoxic neuronal death. The role of TRPM2 conductances in ischemic Ca(2+) influx has been difficult to study because of the lack of specific modulators. Here we used TRPM2-null mice (TRPM2(-/-)) to study how TRPM2 may modulate neuronal vulnerability to ischemia. TRPM2(-/-) mice subjected to transient middle cerebral artery occlusion exhibited smaller infarcts when compared with wild-type animals, suggesting that the absence of TRPM2 is neuroprotective. Surprisingly, field potentials (fEPSPs) recorded during redox modulation in brain slices taken from TRPM2(-/-) mice revealed increased excitability, a phenomenon normally associated with ischemic vulnerability, whereas wild-type fEPSPs were unaffected. The upregulation in fEPSP in TRPM2(-/-) neurons was blocked selectively by a GluN2A antagonist. This increase in excitability of TRPM2(-/-) fEPSPs during redox modulation depended on the upregulation and downregulation of GluN2A- and GluN2B-containing NMDARs, respectively, and on augmented prosurvival signaling via Akt and ERK pathways culminating in the inhibition of the proapoptotic factor GSK3β. Our results suggest that TRPM2 plays a role in downregulating prosurvival signals in central neurons and that TRPM2 channels may comprise a therapeutic target for preventing ischemic damage.
Collapse
|
88
|
Hecquet CM, Zhang M, Mittal M, Vogel SM, Di A, Gao X, Bonini MG, Malik AB. Cooperative interaction of trp melastatin channel transient receptor potential (TRPM2) with its splice variant TRPM2 short variant is essential for endothelial cell apoptosis. Circ Res 2013; 114:469-79. [PMID: 24337049 DOI: 10.1161/circresaha.114.302414] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Oxidants generated by activated endothelial cells are known to induce apoptosis, a pathogenic feature of vascular injury and inflammation from multiple pathogeneses. The melastatin-family transient receptor potential 2 (TRPM2) channel is an oxidant-sensitive Ca2+ permeable channel implicated in mediating apoptosis; however, the mechanisms of gating of the supranormal Ca2+ influx required for initiating of apoptosis are not understood. OBJECTIVE Here, we addressed the role of TRPM2 and its interaction with the short splice variant TRPM2 short variant (TRPM2-S) in mediating the Ca2+ entry burst required for induction of endothelial cell apoptosis. METHODS AND RESULTS We observed that TRPM2-S was basally associated with TRPM2 in the endothelial plasmalemma, and this interaction functioned to suppress TRPM2-dependent Ca2+ gating constitutively. Reactive oxygen species production in endothelial cells or directly applying reactive oxygen species induced protein kinase C-α activation and phosphorylation of TRPM2 at Ser 39. This in turn stimulated a large entry of Ca2+ and activated the apoptosis pathway. A similar TRPM2-dependent endothelial apoptosis mechanism was seen in intact vessels. The protein kinase C-α-activated phosphoswitch opened the TRPM2 channel to allow large Ca2+ influx by releasing TRPM2-S inhibition of TRPM2, which in turn activated caspase-3 and cleaved the caspase substrate poly(ADP-ribose) polymerase. CONCLUSIONS Here, we describe a fundamental mechanism by which activation of the trp superfamily TRPM2 channel induces apoptosis of endothelial cells. The signaling mechanism involves reactive oxygen species-induced protein kinase C-α activation resulting in phosphorylation of TRPM2-S that allows enhanced TRPM2-mediated gating of Ca2+ and activation of the apoptosis program. Strategies aimed at preventing the uncoupling of TRPM2-S from TRPM2 and subsequent Ca2+ gating during oxidative stress may mitigate endothelial apoptosis and its consequences in mediating vascular injury and inflammation.
Collapse
Affiliation(s)
- Claudie M Hecquet
- From the Department of Pharmacology and the Center for Lung and Vascular Biology (C.M.H., M.Z., M.M., S.M.V., A.D., X.G., M.G.B., A.B.M.) and Section of Cardiology (M.G.B.), College of Medicine, University of Illinois, Chicago
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Bajić A, Spasić M, Andjus PR, Savić D, Parabucki A, Nikolić-Kokić A, Spasojević I. Fluctuating vs. continuous exposure to H₂O₂: the effects on mitochondrial membrane potential, intracellular calcium, and NF-κB in astroglia. PLoS One 2013; 8:e76383. [PMID: 24124554 PMCID: PMC3790680 DOI: 10.1371/journal.pone.0076383] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/27/2013] [Indexed: 01/08/2023] Open
Abstract
The effects of H2O2 are widely studied in cell cultures and other in vitro systems. However, such investigations are performed with the assumption that H2O2 concentration is constant, which may not properly reflect in vivo settings, particularly in redox-turbulent microenvironments such as mitochondria. Here we introduced and tested a novel concept of fluctuating oxidative stress. We treated C6 astroglial cells and primary astrocytes with H2O2, using three regimes of exposure - continuous, as well as fluctuating at low or high rate, and evaluated mitochondrial membrane potential and other parameters of mitochondrial activity - respiration, reducing capacity, and superoxide production, as well as intracellular ATP, intracellular calcium, and NF-κB activation. When compared to continuous exposure, fluctuating H2O2 induced a pronounced hyperpolarization in mitochondria, whereas the activity of electron transport chain appears not to be significantly affected. H2O2 provoked a decrease of ATP level and an increase of intracellular calcium concentration, independently of the regime of treatment. However, fluctuating H2O2 induced a specific pattern of large-amplitude fluctuations of calcium concentration. An impact on NF-κB activation was observed for high rate fluctuations, whereas continuous and low rate fluctuating oxidative stress did not provoke significant effects. Presented results outline the (patho)physiological relevance of redox fluctuations.
Collapse
Affiliation(s)
- Aleksandar Bajić
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Mihajlo Spasić
- Department of Physiology, Institute for Biological Research ‘Siniša Stanković’, University of Belgrade, Belgrade, Serbia
| | - Pavle R. Andjus
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Danijela Savić
- Department of Neurobiology, Institute for Biological Research ‘Siniša Stanković’, University of Belgrade, Belgrade, Serbia
| | - Ana Parabucki
- Department of Neurobiology, Institute for Biological Research ‘Siniša Stanković’, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Nikolić-Kokić
- Department of Physiology, Institute for Biological Research ‘Siniša Stanković’, University of Belgrade, Belgrade, Serbia
| | - Ivan Spasojević
- Life Sciences Department, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
90
|
Androgen and PARP-1 regulation of TRPM2 channels after ischemic injury. J Cereb Blood Flow Metab 2013; 33:1549-55. [PMID: 23801245 PMCID: PMC3790922 DOI: 10.1038/jcbfm.2013.105] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 11/08/2022]
Abstract
The calcium-permeable transient receptor potential M2 (TRPM2) ion channel was recently demonstrated to have a sexually dimorphic contribution to ischemic brain injury, with inhibition or knockdown of the channel protecting male brain preferentially. We tested the hypothesis that androgen signaling is required for this male-specific cell-death pathway. Additionally, we tested the hypothesis that differential activation of the enzyme poly (ADP-ribose) polymerase-1 (PARP-1) is responsible for male-specific TRPM2 channel activation and neuronal injury. We observed that administration of the TRPM2 inhibitor clotrimazole (CTZ) 2 hours after onset of ischemia reduced infarct volume in male mice and that protection from ischemic damage by CTZ was abolished by removal of testicular androgens (castration; CAST) and rescued by androgen replacement. Male PARP-1 knockout mice had reduced ischemic damage compared with WT mice and inhibition of TRPM2 with CTZ failed to reduce infarct size. Lastly, we observed that ischemia increased PARP activity in the peri-infarct region of male mice to a greater extent than female mice and the difference was abolished in CAST male mice. Data presented in the current study indicate that TRPM2-mediated neuronal death in the male brain requires intact androgen signaling and PARP-1 activity.
Collapse
|
91
|
Involvement of TRPM2 in peripheral nerve injury-induced infiltration of peripheral immune cells into the spinal cord in mouse neuropathic pain model. PLoS One 2013; 8:e66410. [PMID: 23935822 PMCID: PMC3728297 DOI: 10.1371/journal.pone.0066410] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/07/2013] [Indexed: 12/26/2022] Open
Abstract
Recent evidence suggests that transient receptor potential melastatin 2 (TRPM2) expressed in immune cells plays an important role in immune and inflammatory responses. We recently reported that TRPM2 expressed in macrophages and spinal microglia contributes to the pathogenesis of inflammatory and neuropathic pain aggravating peripheral and central pronociceptive inflammatory responses in mice. To further elucidate the contribution of TRPM2 expressed by peripheral immune cells to neuropathic pain, we examined the development of peripheral nerve injury-induced neuropathic pain and the infiltration of immune cells (particularly macrophages) into the injured nerve and spinal cord by using bone marrow (BM) chimeric mice by crossing wildtype (WT) and TRPM2-knockout (TRPM2-KO) mice. Four types of BM chimeric mice were prepared, in which irradiated WT or TRPM2-KO recipient mice were transplanted with either WT-or TRPM2-KO donor mouse-derived green fluorescence protein-positive (GFP(+)) BM cells (TRPM2(BM+/Rec+), TRPM2(BM-/Rec+), TRPM2(BM+/Rec-), and TRPM2(BM-/Rec-) mice). Mechanical allodynia induced by partial sciatic nerve ligation observed in TRPM2(BM+/Rec+) mice was attenuated in TRPM2(BM-/Rec+), TRPM2(BM+/Rec-), and TRPM2(BM-/Rec-) mice. The numbers of GFP(+) BM-derived cells and Iba1/GFP double-positive macrophages in the injured sciatic nerve did not differ among chimeric mice 14 days after the nerve injury. In the spinal cord, the number of GFP(+) BM-derived cells, particularly GFP/Iba1 double-positive macrophages, was significantly decreased in the three TRPM2-KO chimeric mouse groups compared with TRPM2(BM+/Rec+) mice. However, the numbers of GFP(-)/Iba1(+) resident microglia did not differ among chimeric mice. These results suggest that TRPM2 plays an important role in the infiltration of peripheral immune cells, particularly macrophages, into the spinal cord, rather than the infiltration of peripheral immune cells into the injured nerves and activation of spinal-resident microglia. The spinal infiltration of macrophages mediated by TRPM2 may contribute to the pathogenesis of neuropathic pain.
Collapse
|
92
|
Knowles H, Li Y, Perraud AL. The TRPM2 ion channel, an oxidative stress and metabolic sensor regulating innate immunity and inflammation. Immunol Res 2013; 55:241-8. [PMID: 22975787 DOI: 10.1007/s12026-012-8373-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
TRPM2 (transient receptor potential melastatin 2) is the unique fusion of a Ca(2+)-permeable pore with an enzymatic domain that binds the NAD(+)-metabolite ADP-ribose (ADPR), resulting in channel opening. ADPR formation is a metabolic corollary of cellular stress, but can also be elicited enzymatically through NAD glycohydrolases like CD38. TRPM2 thus functions as a metabolic and oxidative stress sensor and translates this information into ion fluxes that can affect Ca(2+) signaling and the membrane potential. TRPM2 is strongly represented in immune cells of the phagocytic lineage, themselves professional generators of oxidants. The recent characterization of TRPM2-deficient mouse models has revealed the involvement of this channel in various aspects of immunity. Monocytes lacking TRPM2 show reduced production of the CXCL2 chemokine, resulting in diminished neutrophilic influx to the colon in chemically induced colitis, and thus protection against tissue ulceration in TRPM2(-/-) mice. However, the insufficient production of proinflammatory cytokines leads to high morbidity and lethality of the TRPM2(-/-) mice following infection with the bacterial pathogen Listeria monocytogenes. In the context of endotoxin-induced pulmonary inflammation, TRPM2's absence was found to promote inflammation and ROS production. TRPM2 acts thereby as a negative feedback loop by interfering through membrane depolarization with ROS generation by NADPH oxidases. In dendritic cells, TRPM2 is a lysosomal Ca(2+)-release channel that promotes chemokine responsiveness and cell migration, which is reminiscent of CD38-mediated functions. The discovery of TRPM2 has unveiled an unsuspected signaling pathway and established ADPR as a novel second messenger. Understanding TRPM2's complex involvement in inflammation is crucial to evaluating the potential of manipulating TRPM2 activity and ADPR metabolism for therapeutic intervention.
Collapse
Affiliation(s)
- Heather Knowles
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver School of Medicine, Denver, CO 80206, USA
| | | | | |
Collapse
|
93
|
Verkhratsky A, Parpura V. Store-operated calcium entry in neuroglia. Neurosci Bull 2013; 30:125-33. [PMID: 23677809 DOI: 10.1007/s12264-013-1343-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 02/14/2013] [Indexed: 11/30/2022] Open
Abstract
Neuroglial cells are homeostatic neural cells. Generally, they are electrically non-excitable and their activation is associated with the generation of complex intracellular Ca(2+) signals that define the "Ca(2+) excitability" of glia. In mammalian glial cells the major source of Ca(2+) for this excitability is the lumen of the endoplasmic reticulum (ER), which is ultimately (re)filled from the extracellular space. This occurs via store-operated Ca(2+) entry (SOCE) which is supported by a specific signaling system connecting the ER with plasmalemmal Ca(2+) entry. Here, emptying of the ER Ca(2+) store is necessary and sufficient for the activation of SOCE, and without Ca(2+) influx via SOCE the ER store cannot be refilled. The molecular arrangements underlying SOCE are relatively complex and include plasmalemmal channels, ER Ca(2+) sensors, such as stromal interaction molecule, and possibly ER Ca(2+) pumps (of the SERCA type). There are at least two sets of plasmalemmal channels mediating SOCE, the Ca(2+)-release activated channels, Orai, and transient receptor potential (TRP) channels. The molecular identity of neuroglial SOCE has not been yet identified unequivocally. However, it seems that Orai is predominantly expressed in microglia, whereas astrocytes and oligodendrocytes rely more on TRP channels to produce SOCE. In physiological conditions the SOCE pathway is instrumental for the sustained phase of the Ca(2+) signal observed following stimulation of metabotropic receptors on glial cells.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK,
| | | |
Collapse
|
94
|
Sumoza-Toledo A, Fleig A, Penner R. TRPM2 channels are not required for acute airway inflammation in OVA-induced severe allergic asthma in mice. JOURNAL OF INFLAMMATION-LONDON 2013; 10:19. [PMID: 23631390 PMCID: PMC3648402 DOI: 10.1186/1476-9255-10-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 04/23/2013] [Indexed: 11/23/2022]
Abstract
Background Airway inflammation and asthma have been linked to oxidative stress and the melastatin-related transient receptor potential cation channel, member 2 (TRPM2), which can be activated by reactive oxygen species (ROS), has emerged as a potential therapeutic target for inflammatory diseases. Objective Using TRPM2 deficient (TRPM2-/-) mice, we investigated whether the TRPM2 ion channel, which mediates calcium (Ca2+) influx and lysosomal Ca2+ release, plays a role in the pathophysiology of severe allergic asthma in mouse. Methods Severe allergic asthma was initiated in wild type (WT) and TRPM2-/- mice by repeated sensitization with ovalbumin (OVA)/aluminum hydroxide on Days 0, 7 and 14, followed by intranasal challenge on Days 21, 22 and 23. Mice were investigated for the presence of airway responsiveness, airway inflammation, production of allergen-specific antibodies, cytokine response and lung pathology. Results The absence of TRPM2 channels has no obvious effect on major etiologic markers of severe allergic asthma in this mouse model. Neither airway resistance nor mucus production are affected in TRPM2-/- mice. TRPM2 channel ablation also does not alter airway inflammation or immunocyte infiltration and does not affect antibody response or cytokine levels. Conclusions TRPM2 is not required for airway inflammation in OVA-induced severe allergic asthma in mice. Accordingly, TRPM2 might not be a suitable therapeutic target for airway inflammation caused by allergens in humans.
Collapse
Affiliation(s)
- Adriana Sumoza-Toledo
- Laboratory for Cellular and Molecular Signaling, Center for Biomedical Research at The Queen's Medical Center and John A, Burns School of Medicine, University of Hawai'i, 1301 Punchbowl St, Honolulu, HI, 96813, USA.
| | | | | |
Collapse
|
95
|
Oxidative stress mediates the disruption of airway epithelial tight junctions through a TRPM2-PLCγ1-PKCα signaling pathway. Int J Mol Sci 2013; 14:9475-86. [PMID: 23629676 PMCID: PMC3676794 DOI: 10.3390/ijms14059475] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/18/2013] [Accepted: 04/16/2013] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress has been implicated as an important contributing factor in the pathogenesis of several pulmonary inflammatory diseases. Previous studies have indicated a relationship between oxidative stress and the attenuation of epithelial tight junctions (TJs). In Human Bronchial Epithelial-16 cells (16HBE), we demonstrated the degradation of zonula occludens-1 (ZO-1), and claudin-2 exhibited a great dependence on the activation of the transient receptor potential melastatin (TRPM) 2 channel, phospholipase Cγ1 (PLCγ1) and the protein kinase Cα (PKCα) signaling cascade.
Collapse
|
96
|
Simon F, Varela D, Cabello-Verrugio C. Oxidative stress-modulated TRPM ion channels in cell dysfunction and pathological conditions in humans. Cell Signal 2013; 25:1614-24. [PMID: 23602937 DOI: 10.1016/j.cellsig.2013.03.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 10/27/2022]
Abstract
The transient receptor potential melastatin (TRPM) protein family is an extensive group of ion channels expressed in several types of mammalian cells. Many studies have shown that these channels are crucial for performing several physiological functions. Additionally, a large body of evidence indicates that these channels are also involved in numerous human diseases, known as channelopathies. A characteristic event frequently observed during pathological states is the raising in intracellular oxidative agents over reducing molecules, shifting the redox balance and inducing oxidative stress. In particular, three members of the TRPM subfamily, TRPM2, TRPM4 and TRPM7, share the remarkable feature that their activities are modulated by oxidative stress. Because of the increase in oxidative stress, these TRPM channels function aberrantly, promoting the onset and development of diseases. Increases, absences, or modifications in the function of these redox-modulated TRPM channels are associated with cell dysfunction and human pathologies. Therefore, the effect of oxidative stress on ion channels becomes an essential part of the pathogenic mechanism. Thus, oxidative stress-modulated ion channels are more susceptible to generating pathological states than oxidant-independent channels. This review examines the most relevant findings regarding the participation of the oxidative stress-modulated TRPM ion channels, TRPM2, TRPM4, and TRPM7, in human diseases. In addition, the potential roles of these channels as therapeutic tools and targets for drug design are discussed.
Collapse
Affiliation(s)
- Felipe Simon
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andres Bello, Avenida Republica 239, 8370146, Santiago, Chile.
| | | | | |
Collapse
|
97
|
Sexually dimorphic response of TRPM2 inhibition following cardiac arrest-induced global cerebral ischemia in mice. J Mol Neurosci 2013; 51:92-8. [PMID: 23532768 DOI: 10.1007/s12031-013-0005-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/13/2013] [Indexed: 12/28/2022]
Abstract
Transient global cerebral ischemia due to cardiac arrest followed by resuscitation (CA/CPR) causes significant neurological damage in vulnerable neuron populations within the brain, such as hippocampal CA1 neurons. In recent years, we have implicated the transient receptor potential M2 (TRPM2) channel as a mediator of ischemic injury to neurons. We previously demonstrated that genetic and pharmacological strategies that reduce TRPM2 function preferentially protect male neurons in vitro and reduce infarct volume following experimental stroke. Due to the narrow therapeutic window for intervention following ischemic stroke, it is important to assess the role of TRPM2 in other models of cerebral ischemia. Therefore, this study utilized a modified mouse model of CA/CPR to mimic more accurately the clinical condition by maintaining body and head temperatures near the physiological range throughout. Here, we report that inhibition of TRPM2 activity with clotrimazole reduces hippocampal CA1 neuronal injury when administered 30 min after resuscitation from cardiac arrest. Consistent with our previous observations, neuroprotection was observed in male mice and no effect on injury was observed in the female. These findings provide further evidence for TRPM2 as a target for protection against cerebral ischemia in the male brain.
Collapse
|
98
|
MacDonald JF, Belrose JC, Xie YF, Jackson MF. Nonselective cation channels and links to hippocampal ischemia, aging, and dementia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:433-47. [PMID: 23224901 DOI: 10.1007/978-1-4614-4756-6_37] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Stroke is a very strong risk factor for dementia. Furthermore, ischemic stroke and Alzheimer's disease (AD) share a number of overlapping mechanisms of neuron loss and dysfunction, including those induced by the inappropriate activation of N-methyl-D-aspartate receptors (NMDARs). These receptors form a major subtype of excitatory glutamate receptor. They are nonselective cation channels with appreciable Ca(2+) permeability, and their overactivation leads to neurotoxicity in the cortex and hippocampus. NMDARs have therefore been therapeutic targets in both conditions, but they have failed in the treatment of stroke, and there is limited rationale for using them in treating AD. In this chapter, we discuss current understanding of subtypes of NMDARs and their potential roles in -ischemic stroke and AD. We also discuss the properties of several other nonselective cation channels, transient receptor potential melastatin 2 and 7 channels, and their implications in linking these conditions.
Collapse
Affiliation(s)
- John F MacDonald
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada.
| | | | | | | |
Collapse
|
99
|
Beppu K, Kosai Y, Kido MA, Akimoto N, Mori Y, Kojima Y, Fujita K, Okuno Y, Yamakawa Y, Ifuku M, Shinagawa R, Nabekura J, Sprengel R, Noda M. Expression, subunit composition, and function of AMPA-type glutamate receptors are changed in activated microglia; possible contribution of GluA2 (GluR-B)-deficiency under pathological conditions. Glia 2013; 61:881-91. [PMID: 23468421 DOI: 10.1002/glia.22481] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 01/23/2013] [Indexed: 01/01/2023]
Abstract
Microglia express AMPA (α-amino-hydroxy-5-methyl-isoxazole-4-propionate)-type of glutamate (Glu) receptors (AMPAR), which are highly Ca(2+) impermeable due to the expression of GluA2. However, the functional importance of AMPAR in microglia remains to be investigated, especially under pathological conditions. As low expression of GluA2 was reported in some neurodegenerative diseases, GluA2(-/-) mice were used to show the functional change of microglial AMPARs in response to Glu or kainate (KA). Here we found that Glu-induced currents in the presence of 100 μM cyclothiazide, an inhibitor of AMPAR desensitization, showed time-dependent decrease after activation of microglia with lipopolysaccharide (LPS) in GluA2(+/+) microglia, but not in GluA2(-/-) microglia. Upon activation of microglia, expression level of GluA2 subunits significantly increased, while expression of GluA1, A3 and A4 subunits on membrane surface significantly decreased. These results suggest that nearly homomeric GluA2 subunits were the main reason for low conductance of AMPAR in activated microglia. Increased expression of GluA2 in microglia was also detected partially in brain slices from LPS-injected mice. Cultured microglia from GluA2(-/-) mice showed higher Ca(2+) -permeability, consequently inducing significant increase in the release of proinflammatory cytokine, such as TNF-α. The conditioning medium from KA-treated GluA2(-/-) microglia had more neurotoxic effect on wild type cultured neurons than that from KA-treated GluA2(+/+) microglia. These results suggest that membrane translocation of GluA2-containing AMPARs in activated microglia has functional importance and thus, dysfunction or decreased expression of GluA2 may accelerate Glu neurotoxicity via excess release of proinflammatory cytokines from microglia.
Collapse
Affiliation(s)
- Kaoru Beppu
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Schilling T, Eder C. Patch clamp protocols to study ion channel activity in microglia. Methods Mol Biol 2013; 1041:163-82. [PMID: 23813379 DOI: 10.1007/978-1-62703-520-0_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microglia express a variety of ion channels, which can be distinguished based on their ion selectivity into K(+), H(+), Na(+), Ca(2+), nonselective cation, and Cl(-) channels. With respect to their activation mode, voltage-, Ca(2+)-, calcium release-, G protein-, swelling-, and stretch-activated ion channels have been described in microglia. The best method to study the activity of microglial ion channels is the patch clamp technique. The activity of microglial ion channels under physiological conditions is best explored using the perforated patch clamp technique, which allows recordings of membrane potential or ion currents, while the intracellular milieu of the cells remains intact. In whole-cell patch clamp recordings, application of specific voltage protocols with defined intra- and extracellular solutions allows precise identification of a certain ion channel type in microglia as well as the investigation of the channel's biophysical and pharmacological properties. This chapter summarizes patch clamp protocols optimal for recording and analysis of microglial ion channel activity in vitro and in situ.
Collapse
|